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ABSTRACT

We explore chiral magnonic resonators as building blocks of artificial neural networks. Via micromagnetic simulations and analytical
modeling, we demonstrate that the spin-wave modes confined in the resonators exhibit a strongly nonlinear response owing to energy con-
centration when resonantly excited by incoming spin waves. This effect may be harnessed to implement an artificial neuron in a network.
Therefore, the confined and propagating spin-wave modes can serve as neurons and interneural connections, respectively. For modest excita-
tion levels, the effect can be described in terms of a nonlinear shift of the resonant frequency (“detuning”), which results in amplitude-
dependent transmission of monochromatic spin waves, which may be harnessed to recreate a “sigmoid-like” activation function. At even
stronger excitation levels, the nonlinearity leads to bistability and hysteresis, akin to those occurring in nonlinear oscillators when the excita-
tion strength exceeds a threshold set by the decay rate of the mode. In magnonic resonators, the latter includes both the Gilbert damping and
the radiative decay due to the coupling with the medium. The results of our simulations are well described by a phenomenological model in
which the nonlinear detuning of the confined mode is quadratic in its amplitude, while the propagation in the medium is linear.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0149466

Artificial intelligence and neuromorphic computing are the
major areas of recent expansion of magnonics,1 in its search for a tech-
nology niche where the use of spin waves2 could yield decisive practi-
cal benefits.3–5 Hence, the research focus in magnonics is shifting from
the design and demonstration of individual devices and functionali-
ties6–18 to exploration and exploitation of more complex systems and
approaches that could benefit from the power of machine learn-
ing.19–21 This includes devices that exploit resonant coupling between
propagating and confined spin-wave modes.6,8,11–16,18 In Ref. 16, chiral
magnonic resonators6,7,12,14 (Fig. 1) are proposed as building blocks of
artificial neural networks. The idea is that the confined and propagat-
ing spin-wave modes would serve as neurons and interneural connec-
tions, respectively, and that the resonant increase in the confined
modes’ amplitude would bolster their nonlinearity and, thereby, also
the computing power of the whole neural network. However, the non-
linearity of chiral magnonic resonators has not been systematically
explored, a gap bridged here.

We use micromagnetic simulations and phenomenological
modeling to study the nonlinear behavior of stripe chiral magnonic
resonators14 in view of their potential use as artificial neurons. We
show that, at moderately strong excitation levels, a nonlinear shift of

the confined mode frequency leads to an amplitude-dependent trans-
mission of the propagating spin wave at a fixed frequency. We demon-
strate that this amplitude-dependent transmission mimics the
thresholding behavior of an artificial neuron. At even stronger excita-
tion levels, the phenomena of bistability and hysteresis are observed in
the spin-wave transmission curves. The simulated data are fitted using
a phenomenological model, obtained by including the cubic nonline-
arity of the resonator’s local mode but keeping the propagating modes
linear. Our results are consistent both with those for other nonlinear
magnonic systems and with predictions of the more general theory of
nonlinear oscillations.

To characterize the amplitude dependence of the transmission
coefficient of the stripe chiral magnonic resonator [Fig. 1(a)], we use
numerical micromagnetic simulations run with MuMax3.22 The reso-
nator is represented by a magnetic stripe placed 15nm beneath a mag-
nonic waveguide. The resonator and waveguide are both assumed
infinite in the y-direction but have x � z cross-sectional dimensions of
50� 20 and 10 240� 20nm2, respectively. Their infinite extent is sim-
ulated using the periodic boundary conditions in the macro-geometry
approximation, with the macro-geometry having a square shape in the
x; yð Þ plane. The sample is discretized into 5 nm cubic cells. The
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waveguide and resonator have identical magnetic parameters: the satu-
ration magnetization, MS, of 800 kA/m, the exchange constant of 13
pJ/m, zero magneto-crystalline anisotropy, the Gilbert damping con-
stant of 0.005, and the default value of the gyromagnetic ratio. The
2.5lm regions near the waveguide’s ends have their Gilbert damping
increased to 0.1, to suppress spin-wave reflections. A bias magnetic
field of 100mT magnetizes the waveguide in the x direction—that of
spin-wave propagation. This yields the spin-wave dispersion [Fig.
1(b)] typical for the backward volume geometry, as in Refs. 6, 7, and
14, and we avoid complications associated with non-reciprocity of the
Damon–Eshbach configuration and with quantization in patterned
waveguides. We note that, however, the effects described below should
persist for all types of spin waves, including those in the
Damon–Eshbach and forward volume configurations.5,14,16 No bias
magnetic field is applied to the stripe resonator, whose magnetization
is aligned along the y-direction by its shape anisotropy.

In the dynamic simulations, right-going monochromatic spin
waves are launched by a magnetic field, bext x; tð Þ k ẑ . The field is uni-
form in the ðy; zÞ plane and Gaussian-shaped in the x-direction, with
the Gaussian centered at the boundary between the regions of
increased and normal damping near the waveguide’s left end. The field

is harmonic with its amplitude ramped up from zero to the set value
b0 over time of about 2 ns. The time evolution of the magnetization is
sampled eight times per period of the driving field over 32 ns, which
enables us to resolve any second and third harmonic generation with-
out Fourier aliasing and, with appropriate windowing and zero-pad-
ding,14 to exclude the long-duration transient effects. The
transmission coefficient sR is computed using14

sR ¼
X
S

F Mzf gx
F Mref

z

� �
x

" #�
; (1)

where x is the angular frequency; Ffgx denotes the Fourier trans-
form from the time to frequency domain; Mz and Mref

z are z-compo-
nents the waveguide’s magnetization in simulations with and without
the resonator, respectively;

P
S denotes averaging over the y; zð Þ cross

section of the waveguide at a distance of 1lm to the right from the
resonator; and the asterisk denotes complex conjugation.

Figure 2 shows the frequency dependence of the transmission
coefficient sR computed for different excitation strengths, for frequen-
cies near the quasi-uniform [Fig. 2(a)] and dark [Fig. 2(b)] modes. As
the amplitude A0 of the incident spin wave increases, the transmission
minima shift to lower frequencies, and the transmission line shapes
develop asymmetry. In particular, the left-hand slope becomes nearly
vertical for amplitudes A0 above 0.031 MS. This behavior is consistent
with the transition to the bistable regime (well-studied for other mag-
nonic systems e.g., in Refs. 11 and 23–27) that manifests itself as a hys-
teresis when the frequency is swept (“chirped”) in the vicinity of the
resonance. To simulate the hysteresis, the constant excitation fre-
quency, f , is replaced by a linearly chirped one, defined as

FIG. 2. The transmission amplitude, sRj j, is shown for spin-wave frequencies near
the quasi-uniform (a) and dark (b) modes, for different incident wave amplitudes,
A0. In the regime of bistability, the dotted lines indicate the alternative transmission
branch, and the arrows indicate the path of the hysteresis evolution when cycling
the frequency. The dashed lines indicate the critical frequency, below which the bist-
ability occurs. The inset in (b) shows the relationship between the driving field
strength b0 and the A0=MS ratio at the waveguide location corresponding to the
midpoint of the resonator, obtained from the reference simulations.

FIG. 1. (a) A stripe chiral magnonic resonator under a magnonic waveguide is
shown. The waveguide’s magnetization, Mfilm k x̂ , is aligned by the bias field,
Bbias, while the resonator’s magnetization, Mresonator k ŷ , is aligned by its shape
anisotropy. The resonator’s local mode, u tð Þ, is coupled, with coupling strengths
DR and DL, to propagating modes of the waveguide: right-going wR t; xð Þ and left-
going wL t; xð Þ, respectively. (b) The left panel shows the dispersion of backward-
volume spin waves in an isolated waveguide: The analytical result (black dashed
line) is overlaid on the simulated data (red background). The center panel shows
the linear transmission of right-going waves computed numerically for a chiral mag-
nonic resonator located 15 nm below the waveguide. The right panel shows the
simulated ðx; zÞ distributions of the Fourier amplitude (top) and phase (bottom) of
the resonator’s quasi-uniform and dark modes, corresponding to the transmission
dips at 13.1 and 17.19 GHz, respectively.
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2pf tð Þ ¼ d/ tð Þ=dt. Here, the phase varies as / tð Þ ¼ 2pðDf2T t2 þ f0tÞ,
where Df is the overall frequency change (from the initial value f0)
over chirping duration T ¼ 80 ns, long enough to make the transition
smooth. The transmission for each metastable state is computed from
simulations run for another 32 ns while keeping the excitation strength
and frequency constant. The simulations reproduce the bistability
expected at amplitudes above 0.031MS, revealing regimes of high and
low transmissions when sweeping the incident spin-wave frequency
up and down, respectively. The full transmission hysteresis loop is
accessed in the clockwise direction, as shown by arrows in Fig. 2(b).

The inset in Fig. 2(b) (also Fig. S1 of the supplementary material)
shows that the spin waves in the waveguide remain in the linear regime
when their transmission spectra already exhibit a strong nonlinearity.
The latter is, therefore, associated with the nonlinearity of the resonator’s
modes. This corroborates the speculations from Ref. 16 of using chiral
magnonic resonators as building blocks of artificial neural networks and
their modes as magnonic neurons. Furthermore, this observation sup-
ports our earlier conjecture that propagating spin waves could serve as
linear interneural connections and the magnonic waveguides could,
therefore, work as artificial synapses.28 The strong nonlinearity confined
to the resonators distinguishes our system from those in Refs. 11, 19, 20,
and 27, which exploited nonlinearity of propagating modes.

From the viewpoint of designing devices for neuromorphic com-
puting, the possibility of replicating a sigmoid-like activation function
from the resonator’s response would be of particular interest. This is
demonstrated in Fig. 3 for the spin-wave frequency tuned to the trans-
mission minimum in the linear regime. The nonlinear detuning of the
minimum (Fig. 2) enhances the transmission, for both the quasi-
uniform and dark modes. However, the amplitude dependence of the
transmission coefficient is modified drastically as the frequency of the
incident spin waves changes by as little as 100MHz. This could pre-
sent a limitation for computing schemes exploiting time- or

frequency-domain multiplexing19 albeit not for those using space mul-
tiplexing.20 Alternatively, such resonators showing a reduced transmis-
sion at increased spin-wave amplitudes could find an application as
power limiters. The individual characteristics (beyond the frequency
difference) of the resonator’s quasi-uniform and dark modes may play
a role when selecting one of them for applications: e.g., the enhanced
non-reciprocity and suppressed reflection of the dark mode14 can be
advantageous for resonators placed in series. It is apparent, however,
that for both modes, the transmission never reaches 100% regardless
of the amplitude of the incident spin wave. This will limit the number
of resonators that can be concatenated, unless spin-wave amplifiers
are used between successive resonators to compensate losses due to
both the unwanted absorption/reflection in the resonator and the
Gilbert damping in the waveguide. Alternatively, one could make the
resonator using low-damping materials like yttrium-iron garnet
(YIG).29 This would reduce the intrinsic linewidth, C0, of the resona-
tor (compared to the Permalloy resonator studied here), making the
transmission dips in Fig. 2 narrower and resulting in a stronger trans-
mission at the same nonlinear detuning from the resonance.
Furthermore, the nonlinearity would be expected to manifest at even
lower spin-wave amplitudes. The shape (i.e., minima, maxima, and
“steepness”) of the response in Fig. 3 can also be controlled by choice
of the resonator’s cross section, waveguide-to-resonator spacing, and
the strength and orientation of the bias magnetic field.6,14,16

In Ref. 14, we introduced a phenomenological model for chiral res-
onant scattering of spin waves, which we now extend to the nonlinear
regime. In the model, the local mode, u tð Þ, is represented as an oscilla-
tor of resonant frequency X0 and decrement C0 linearly coupled to the
propagating left- and right-moving waves. To describe our findings, we
incorporate the nonlinearity in the dynamics of the oscillator. In princi-
ple, this can be done in many ways, e.g., by introducing new terms in
the equation for the oscillator, which can be quadratic, cubic, or higher-
order in either displacement or velocity of the mode. However, from the
theory of nonlinear oscillations,30,31 it is well-known that, if the system
is probed near the resonance, the primary effect is the shift of the reso-
nant frequency. For a cubic nonlinearity, this shift is quadratic in ampli-
tude and may be positive or negative in sign. For a quadratic
nonlinearity, the shift is also quadratic but always negative.
Consequently, the behavior near the resonance is rather universal and is
not tied to a specific form of the nonlinear contributions. Indeed, let us
consider free motion of the system without damping. In the linear
regime, it is sinusoidal with amplitude-independent frequency.
Nonlinear effects deform it into a periodic motion of a more compli-
cated shape, e.g., by clipping the sine wave. However, such deformations
are projected away when the fundamental harmonic is extracted from
the signal, and the nonlinearity is only manifested in the link between
the period and the amplitude. Hence, nonlinearities of different types
are best distinguished in other effects, such as rectification and higher
harmonic generation, which are beyond the scope of our analysis. Thus,
we describe the local mode, u tð Þ, via the following equation:

i
@u tð Þ
@t
¼ X0 � iC0ð Þu tð Þ � k u tð Þ

�� ��2u tð Þ þ D�RwR t; 0ð Þ

þ D�LwL t; 0ð Þ: (2)

The first term describes a free linear oscillator of frequency X0 and dis-
sipative linewidth C0. The second term introduces the nonlinearity k
via the quadratic shift of the resonant frequency:

FIG. 3. The dependence of the magnitude (top row) and phase (bottom row) of the
transmission coefficient, sR, upon the amplitude of the incident spin waves, A0=MS,
is illustrated for wave frequencies near the quasi-uniform (left column) and dark
(right column) mode resonances. The curves at 13.1 and 17.19 GHz show a
sigmoid-like activation function response. The curves at 13 and 17.1 GHz show the
behavior of a power limiter.
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xres ¼ X0 � k uj j2: (3)

The remaining terms describe hybridization with the right-going wave
wR t; xð Þ and left-going wave wL t; xð Þ, where DR and DL are the
respective coupling strengths, at the resonator’s position x ¼ 0. Based
on our earlier observations, we keep the equations describing the
right-going wave wR t; xð Þ and left-going wave wL t; xð Þ linear,

@wR t; xð Þ
@t

þ vR
@wR t; xð Þ

@x
¼ �id xð ÞDR u tð Þ;

@wL t; xð Þ
@t

� vL
@wL t; xð Þ

@x
¼ �id xð ÞDL u tð Þ;

(4)

where vR Lð Þ is the group velocity of the local mode to the right (left)
propagating modes.

Integrating Eq. (4) along x (as in Ref. 14) and denoting the com-
plex amplitude of the incident spin wave at x ¼ 0 as I, we obtain for
the transmission coefficient

sR Lð Þ ¼ 1�
iD�R Lð Þ
vR Lð Þ

u
I
; (5)

where the local mode of the driven nonlinear harmonic oscillator is
described by

i
@u
@t
¼ X0 � iCtotð Þu� k uj j2uþ DRI: (6)

Here, the resonator’s total linewidth is Ctot ¼ C0 þ CR þ CL, where
CRðLÞ � DRðLÞ

�� ��2= 2vR Lð Þð Þ are its radiative linewidths into the right
(left) propagating mode. The reflection coefficient is

rR Lð Þ ¼ �
iD�L Rð Þ
vL Rð Þ

u
I
: (7)

To apply this theory to our data, we note that the modes u and w
are proportional to the magnetization disturbances in the resonator
and in the waveguide, with normalization coefficients that depend
upon the volume of the resonator, width of the waveguide, and other
parameters. However, we are interested in the nonlinear frequency
shift and its effect on the transmission, rather than the modes u and w
per se. Therefore, we simplify the analysis by rescaling u and I and
recasting Eq. (6), for excitation at frequency x, in the form involving
only the magnitude ~uj j of the rescaled local mode

½ðx� X0 þ ~k ~uj j2Þ2 þ C2
tot� ~uj j2 ¼ A0j j2: (8)

We do this to eliminate the factor of DR on the right-hand side as well
as the proportionality coefficient between I and A0. The rescaling only
affects the coefficient in the nonlinear term, denoted as ~k, but does not
change the overall frequency shift: k uj j2 ¼ ~k ~uj j2. Thus, the frequency
shift is found from a cubic in ~uj j2 equation with only one unknown
parameter ~k. Depending on the values of the amplitude A0 and fre-
quency x of the incident spin wave, the equation has either one or
three real roots. Once ~uj j2 is found, the amplitude-dependent trans-
mission coefficient is calculated as in linear theory with a shifted reso-
nance frequency,

sR x; A0j jð Þ ¼ x� X0 þ ~k ~uj j2 þ i Ctot � 2CRð Þ
x� X0 þ ~k ~uj j2 þ iCtot

: (9)

The existence of multiple roots is responsible for the bistability
observed in Fig. 2 and directly related to the foldover effect in nonlin-
ear ferromagnetic resonance.23–26 The bistable regime may only occur
if the incident spin wave’s frequency is below a critical value,

x0 ¼ X0 � Ctot

ffiffiffi
3
p

: (10)

The corresponding values of the propagating and local modes’ ampli-
tudes are given by

A00
�� �� ¼ 2

ffiffiffi
2
p

33=4

ffiffiffiffiffiffiffiffi
C3
tot
~k

s
and ~u0

�� �� ¼ ffiffiffi
2
p

31=4

ffiffiffiffiffiffiffiffi
Ctot

~k

r
; (11)

respectively, both of which can be used to identify the nonlinear
parameter ~k.

Figure 4 presents results of fitting the simulated data from Fig. 2
to the phenomenological model. The simulated complex transmission
coefficient is fitted to

sfit ¼ sRexp iURð Þ; (12)

where sR is defined by Eq. (9) with ~uj j2 found from Eq. (8). As in Ref.
14, the phase factor exp iURð Þ is included to offset effects associated
with the finite precision of the simulations and presence of additional
resonator modes (not accounted for in the model). The following pro-
cedure is used. First, the data at A0=MS ¼ 0:001 are fitted to the linear
model, to obtain the values of X0, C0 þ CL, CR, and UR (Table I).

FIG. 4. The amplitude and phase of the simulated transmission (symbols) and cor-
responding fits to the phenomenological model (lines) are shown for different spin-
wave amplitudes and frequencies near the resonator’s (a) quasi-uniform and (b)
dark mode.

TABLE I. The parameters extracted from the fit of the simulated data at A0=MS
¼ 0:001 to the phenomenological model with zero k are shown.

Mode
X0

2p
(GHz)

C0 þ CL

2p
(GHz)

CR

2p
(GHz)

UR (rad)

Quasi-uniform 13.10 0.0863 0.1038 0.290
Dark 17.19 0.0893 0.0688 0.050
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With these values fixed, the value of ~k is then used as the only fitting
parameter when fitting datasets for A0=MS values of 0.02, 0.04, and
0.064, representing cases of “weak,” “moderate,” and “strong” nonline-
arity, respectively. The best agreement is found for ~k ¼ 9� 10�10

GHz m2 A�2, for both resonator modes. Figure 5 shows the nonlinear
resonance frequency shift, k uj j2, found for different excitation
strengths using the parameters extracted from the fits. The parameter
values from Table I are used to plot the vertical dashed lines corre-
sponding to the critical frequency x0. At frequencies below the critical
value, the foldover is observed, as expected.

In summary, we have modeled spin-wave scattering from a non-
linear chiral magnonic resonator. At moderately strong excitation lev-
els, the nonlinear resonance detuning (resonance frequency shift) is
observed, which results in an amplitude-dependent transmission at a
fixed spin-wave frequency. We show that this amplitude-dependent
transmission may be harnessed to recreate the thresholding behavior
of an artificial neuron. At even stronger excitation levels, the phenom-
ena of bistability and hysteresis are observed in the transmission
curves, related to the foldover of the nonlinear resonance curve of the
resonator’s local modes. The simulated data are fitted well using a phe-
nomenological model, obtained by including the cubic nonlinearity of
the resonator’s local mode but keeping the propagating modes linear.
Our results are consistent both with those for other nonlinear mag-
nonic systems and with predictions of the more general theory of non-
linear oscillations.

See the supplementary material for spatial profiles of spin waves
propagating in the magnonic waveguide for different excitation
strengths.
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