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Abstract

Much of the theory of random processes has been developed with the assump-
tion that distant time periods are weakly correlated. However, it has been
discovered in many real-world phenomena that this assumption is not valid.
These findings have resulted in extensive research interest into stochastic
processes that have strong correlations that persist over long time periods.
This phenomenon is called long range dependence.

This phenomena has been defined in the time and frequency domains by
the slow decay of their autocorrelation function and the existence of a pole at
the origin of the spectral density function, respectively. Information theory
has proved very useful in statistics and probability theory. However, there
has not been much research into the information theoretic properties and
characterisations of this phenomena.This thesis characterises the phenom-
ena of long range dependence, for discrete and continuous-valued stochastic
processes in discrete time, by an information theoretic measure, the entropy
rate.

The entropy rate measures the amount of information contained in a
stochastic process on average, per random variable. Common characterisa-
tions of long range dependence in the time and frequency domains are given
by the slow convergence to quantities of interest, such as the sample mean.
We show that this type of behaviour is present in the entropy rate func-
tion, by showing that long range dependence also has slow convergence of
the conditional entropy to the entropy rate, due to some entropic quantities
diverging to infinity. As an extension we show for classes of Gaussian pro-
cesses and Markov chains that long range dependence by an infinite amount
of shared information between the past and future of a stochastic process.

The slow convergence has the impact of making accurate estimation of
the differential entropy rate on data from long range dependent processes
difficult, to the extent that existing techniques either are not accurate or
are computationally intensive. We introduce a new estimation technique,
that is able to balance these two concerns and make quick and accurate
estimates of the differential entropy rate from continuous-valued data. We

xvii
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develop and utilise a connection between the differential entropy rate and the
Shannon entropy rate of its quantised process as the basis of the estimation
technique. This allows us to draw on the extensive research into Shannon
entropy rate estimation on discrete-valued data, and we show that properties
for the differential entropy rate estimator can be inherited from the choice of
Shannon entropy rate estimator.



Chapter 1

Introduction

In this thesis, we are concerned with understanding the behaviour of in-
formation theoretic based measures when applied to long range dependent
(LRD) processes, i.e., processes that have strong correlations with the past.
The field of information theory is centred around the concept of Shannon
entropy, which is a measure of the uncertainty of a random variable. An
extension of this concept to stochastic processes produces a measure called
the entropy rate. We characterise LRD by the convergence of the entropy
rate, and then develop estimation techniques for the entropy rate which are
robust to the influence of LRD.

Traditional models in probability theory have been extremely successful
in modelling a wide range of real-world phenomena, such as arrivals of phone
calls to exchanges, epidemics, and financial markets. These models typically
rely on the assumption that the phenomena have weak correlations between
distant time intervals, That is, the correlations between two points decays
quickly as the distance between the time points increases. For example, the
number of calls that occurred 10 hours ago has low correlation with the
number of calls in the next hour. However for real-world processes, there
exist many phenomena where this assumption is not valid and events that
occur a long time in the past have a large impact on the present and future
values.

The initial research into LRD was driven by the hydrologist Harold Ed-
win Hurst into flooding on the Nile river [89]. He was aiming to calculate
the capacity of a reservoir on the Nile river and his analysis led to some
unexpected conclusions. He discovered, by analysing empirical data, that a
quantity called the rescaled range, measuring the variability of time series
data over the entire time period, grows at a much faster rate than expected,
assuming weak temporal correlations. Given the stochastic models at the
time, it was expected that the rescaled range would increase in proportion to

1



2 Chapter 1. Introduction

n
1
2 . However, Hurst discovered empirically that the rescaled range grows at

the rate of ∼ n0.72, indicating that the strength of correlations of the present
value with time periods in the distant past were much stronger than ex-
pected. This phenomena is called long range dependence (LRD), also called
long memory. Another class which has strong negative correlations is called
constrained short range dependent (CSRD), which has some similar prop-
erties to LRD processes. Models that do not exhibit these phenomena are
called short range dependent (SRD), or short memory.

The discovery of LRD led to the development of stochastic models that
could explain and induce much longer term correlations. Mandelbrot and
Van Ness [127] introduced a class of models called fractional Brownian mo-
tion, and its increment process fractional Gaussian noise (FGN), which are
LRD extensions of Brownian motion and Gaussian noise. These models were
developed to model telecommunications systems, after an empirical discov-
ery that errors tended to cluster together, rather than the typical assumption
that errors were independent of each other.

A second class of LRD model is a linear time series model, autoregressive
fractionally integrated moving average processes (ARFIMA). These models
extend autoregressive integrated moving average (ARIMA) processes, util-
ising a fractional exponent of the differencing operator inducing regression
on the infinite past. They were developed independently by Granger and
Joyeux [77] and Hosking [87], to model complex phenomena in economics
and hydrology.

Fractional Gaussian noise and ARFIMA processes have many properties
in common, such as slow convergence of estimators, power-law decay of the
autocorrelation function and the appearance of local trends which can be
mistaken for non-stationarity.

An important parameter that is used to measure the strength of corre-
lations, and therefore the degree of LRD in a process, is named the Hurst
parameter, H. This provides a characterisation, for SRD processes H = 0.5,
LRD processes have H > 0.5 and CSRD have H < 0.5. We show that for
the two common LRD models, FGN and ARFIMA, that the amount of un-
certainty in the processes decreases as H → 0 or 1 with the increase in the
strength of positive and negative correlations.

The entropy rate has been used as a measure of the intrinsic uncertainty of
a stochastic process and therefore a measure of the complexity of a stochastic
process. An LRD process shares much information between the past and
future. Hence, there is less uncertainty in LRD processes as compared with
SRD processes, and thus we expect a lower entropy rate for LRD processes.

A constant theme of this work is the slow convergence rate of quantities
of interest and in particular the entropy rate for LRD processes. An existing
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example is the slow convergence of the sample mean to the expected value,
given a large number of observations, n. For many processes the variance of
the sample mean converges at the rate of n−1, however in some cases of LRD
processes the convergence rate is n2H−2. For the class of Gaussian processes
we show in this thesis that the convergence rate of the conditional entropy to
the entropy rate for LRD and CSRD processes is slower than for processes
with SRD.

We show that some related measures, the excess entropy and mutual
information between past and future are infinite for LRD/CSRD Gaussian
processes, similar to the sum of the autocorrelation function in the time
domain. This supports an alternate perspective on persistent correlations, as
stochastic processes whose entire past and future share infinite information.

Similarly, we analyse the convergence in the case of discrete space LRD
Markov chains, which are characterised by an infinite second moment of the
return time random variable. In this case we show a similar result, that
the convergence rate of the conditional entropy to the entropy rate for LRD
processes is slower than the short memory case and the convergence rate is a
function of the Hurst parameter. These results reinforce the idea that LRD
is characterised by slower convergence to quantities, and demonstrates that
this behaviour extends to other information theoretic quantities, such as the
mutual information between past and future.

Estimation of the entropy rate is used in real-world applications to classify
the uncertainty of a stochastic process. However, slow convergence of the en-
tropy rate raises some questions: “How do entropy rate estimators behave for
LRD processes?” and “Can we develop computationally efficient estimators
that are robust to the influence of LRD?”.

For continuous valued processes there are a variety of estimation tech-
niques and measures: sample entropy, approximate entropy, permutation
entropy and specific entropy. We illustrate that the first three measures are
unable to capture the underlying uncertainty of LRD processes. Specific en-
tropy, however, provides robust estimation of the entropy rate, but it does
so at a much higher computational complexity. Hence, we conclude that
current estimation techniques have some issues in accurately estimating en-
tropy rates with low time complexity. We improve this situation and develop
an entropy rate estimation technique, NPD Entropy, that is robust to the
influence of LRD and lower computational complexity.

NPD Entropy leverages non-parametric estimation techniques developed
for the Shannon entropy rate, i.e., on discrete state spaces to calculate dif-
ferential entropy rate estimates. Shannon entropy rate estimators are often
based on limit theorems involving expressions of the entropy rate and vary
in their properties and performance on data. We prove a connection between
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the differential entropy rate and the Shannon entropy rate of the quantised
data. Then NPD Entropy estimates the Shannon entropy rate of a quantised
version of the data, and then converts the estimate to a differential entropy
rate estimate. The flexibility of this approach allows the choice of a suitable
estimation technique, since many properties are inherited from the Shannon
entropy rate estimator.

This thesis provides a new perspective on LRD, through the lens of in-
formation theoretic quantities. We demonstrate that the typical behaviour
of LRD carries over into the information domain, characterised by slow con-
vergence to important quantities, such as the entropy rate and the mutual
information between past and future. However, given this difficult setting we
can still estimate the differential entropy rate quickly and accurately.

1.1 Key Contributions
This thesis investigates and characterises the relationship between the en-
tropy rate and its behaviour for LRD stochastic processes. We develop and
apply entropy rate estimation techniques to data derived from LRD pro-
cesses, that are robust to the influence of the LRD behaviour. The contri-
butions are in the information theory of Gaussian processes, Markov chains
and robust estimation of the differential entropy rate. We summarise the key
contributions of this thesis as follows.

1. Proving for Gaussian process that the excess entropy and mutual infor-
mation between past and future are equivalent. For LRD and CSRD
processes we prove that the mutual information between past and fu-
ture is infinite for many classes of processes, supporting an alternate
definition of LRD stationary processes. Then proving that the con-
vergence rates of the conditional entropy to the entropy rate is at a
slower rate for stationary LRD/CSRD Gaussian processes, than SRD
Gaussian processes.

2. Proving equivalence of the convergence of the conditional entropy to
the entropy rate for Markov chains, to the convergence rate of the
n-step probability transitions to the stationary distribution. Leading
to the result for Markov chains, that the mutual information between
past and future is infinite. Then proving that the convergence rate is
dependent on the value of the Hurst parameter.

3. A comprehensive review of the current state of the art in entropy rate
estimation for discrete and continuous-valued processes.
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4. Introducing a new estimation technique for the differential entropy rate,
NPD-Entropy, which exploits a connection between Shannon and dif-
ferential entropy rate, and utilises a Shannon entropy rate estimator
on a quantised version of the process. Proving that NPD-Entropy is
able to inherit favourable statistical properties from the choice of the
Shannon entropy rate estimator used in the implementation.

1.2 Outline of Thesis

Chapter 2 provides the background material for understanding the thesis.
Most of the definitions and results are standard but are included for com-
pleteness and because in some cases there are small variations in the litera-
ture.

Chapter 3 analyses entropy rate of LRD Gaussian processes to provide
an information theoretic characterisation of Gaussian processes. We begin
with analysing two very commonly used LRD stochastic models, Fractional
Gaussian Noise and ARFIMA(p,d,q). We define expressions for their entropy
rates, and illustrate the influence of the strength of the correlations of the
past and the total variance of the process, by analysing the entropy rate as
a function of the Hurst parameter. We prove, for Gaussian processes, that
the mutual information between past and future and the excess entropy are
equivalent, showing an identical link in differential entropy that was shown
for Shannon entropy by Crutchfield and Feldman [44], that is that they are
equal for Gaussian processes. Subsequently we show they are infinite for
large classes of LRD and CSRD processes.

Chapter 4 analyses the entropy rate of LRD Markov chains to provide an
information theoretic characterisation. We analyse the convergence rate of
the conditional entropy to the entropy rate, and show that it is equivalent
to the convergence of n-step transition probabilities to the stationary distri-
bution. This is a very well studied problem in the theory of Markov chains,
called Markov chain mixing. We investigate the finiteness of the mutual in-
formation between past and future, and show that this is infinite for all LRD
Markov chains, and in the case of power-law tails of the return time random
variable that this forms a boundary between LRD and SRD processes, with
SRD processes being finite. Utilising the connection with the Markov chain
mixing problem, and the rich theory that has been developed, we analyse
the convergence rate of the n-step probability transitions to the stationary
distribution for LRD processes. We show that this is closely related to the
finiteness of fractional moments of the return time distribution. The we find
the rate of convergence for LRD Markov chains with power-law tailed com-
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plementary cumulative distribution functions of the return time distribution,
and show that the rate of convergence is related to the Hurst parameter.

Chapter 5 presents a review of entropy rate estimation for both Shannon
and differential entropy rate, as a comprehensive review on entropy rate
estimation is not known to the authors. We present and discuss the a wide
variety of techniques for the parametric estimation for Gaussian, Markov,
Hidden Markov and renewal processes. Then we investigate the state-of-
the-art for non-parametric estimation, which make estimates without any
assumptions on the process that generated the data. Given fewer techniques
developed for continuous state spaces we focus in-depth on the estimation
techniques, Approximate Entropy, Sample Entropy, Permutation Entropy
and Specific Entropy. We conclude that there is a gap in the research for
differential entropy estimators that are robust to LRD.

Chapter 6 focuses on the estimation of the differential entropy rate for
LRD processes, and in particular developing efficient techniques that are ro-
bust to the influence of LRD. Since no differential entropy rate estimator
has been developed that is accurate with low computational complexity. We
generate simulated data from Fractional Gaussian Noise and ARFIMA(0,d,0)
processes, and show that the current techniques either do not capture the
complexity of LRD processes, or have high computational complexity. We
make a link between the differential entropy rate and the Shannon entropy
rate of a quantised version of a continuous valued process, showing that they
differ by the logarithm of the size of the bins of the quantisation. Using this,
we define an estimation technique, NPD-Entropy, which makes estimates of
the Shannon entropy rate of a quantised version of the process, and adds the
logarithm of the size of the bins for quantisation. This balances the two con-
cerns, accuracy and time complexity, and provides estimates which are able
to reflect the uncertainty of LRD processes and have lower computational
complexity than known techniques. We then analyse theoretical properties
of NPD-Entropy, and show that we are able to inherit useful statistical prop-
erties of estimators, such as consistency and bias, from the Shannon entropy
rate estimator used.

In Chapter 7, we conclude the thesis by providing a summary of the
results and discuss the potential extensions to this current work.

1.3 Publication List
Parts of this thesis have been published or submitted to journals.

1. Feutrill, Andrew, and Matthew Roughan. “A Review of Shannon
and Differential Entropy Rate Estimation” Entropy 23.8 (2021): 1046.
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Chapter 2

Background

This thesis examines the concept of entropy and the entropy rate as a measure
of uncertainty for stochastic processes. In particular, we will be using these
concepts as a way of gaining additional insight into the concept of Long
Range Dependence (LRD) when applied to continuous and discrete-valued
stochastic processes in discrete time.

In this chapter, we begin by defining the concept of information entropy,
Shannon and differential, i.e., for discrete and continuous-valued random
variables. Then we extend this concept to stochastic processes to define the
entropy rate, the limit of the average new information per random variable
in stochastic process. These are the information theoretic measures that will
be used throughout the thesis and applied to analyse the behaviour of LRD
processes.

We define LRD stochastic processes, and discuss their properties which
have made traditional analysis difficult. We introduce two LRD continuous-
valued examples, Fractional Gaussian Noise (FGN) and ARFIMA(p,d,q),
which have been studied since their discovery and definition respectively
by Mandelbrot and Van Ness [127] and independently by Hosking [87] and
Granger and Joyeux [77]. We will illustrate that LRD is characterised by slow
convergence to various quantities, such as the sample mean, and divergent
sums of second order properties, such as the autocovariance function. The
behaviour of information theoretic measures, when applied to LRD stochastic
processes, is the theme of this thesis.

2.1 Entropy

Information entropy is a concept that was first introduced by Claude Shan-
non [154], post World War 2 where it was a building block of coding and

9
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communication theory and spawned the field of information theory. We will
begin this section by summarising the key concepts and results that will be
utilised for both discrete and continuous random variables, and introduce
the entropy rate, which will be used throughout this thesis as a measure of
complexity or uncertainty of a stochastic process.

2.1.1 Shannon Entropy

Shannon entropy is a concept that was introduced by Claude Shannon [154]
as a measure of uncertainty of a random variable. The motivation was to
develop a robust measure of uncertainty, H(p1, . . . , pn) for finite set of prob-
abilities p1, . . . , pn, later generalised to countably infinite state spaces. The
uncertainty measure is based on the following 3 properties [154]:

1. The function H should be continuous as a function of any individual
probability pi.

2. If all the pi’s are equal, i.e., follow the uniform distribution, pi = 1
n
,

then the function should be monotonically increasing function of n. In
other words, if there are more uniform choices there is more uncertainty.

3. If the uncertainty function, H, is decomposed into successive uncer-
tainty functions, then the total H should be the weighted sum of H for
both of the choices.

To interpret the last property, we provide the following example from
Shannon [154]. Given a probability distribution, p1 = 1

2
, p2 = 1

3
, p3 = 1

6
, at

the top level can split this distribution into two uncertainty functions. We
decompose this distribution into the uncertainty of p1 with a probability 1

2
,

or remaining two with probability 1
2
. Then the remaining probabilities, p2

and p3, are renormalised with probabilities 2
3
and 1

3
. Then the decomposition

of the function H is

H

(
1

2
,
1

3
,
1

6

)
= H

(
1

2
,
1

2

)
+

1

2
H

(
2

3
,
1

3

)
.

These three properties lead to the following result, which characterises
the only possible form of the uncertainty function, which is then used as the
definition of information entropy.

Theorem 2.1.1 (Theorem 2 [154]). The only function, H, that satisfies the
probabilities given above is

H = −K
n∑
i=1

pi log pi,
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where K is a positive constant. When pi = 0, we define 0 log 0 = 0 due to a
limiting argument and probability zero events do not influence the calculation.

Remark. The proof is given in Appendix 2 of Shannon [154]. The constant
K amounts to a choice of units, and we use the standard of choosing K = 1
and using log2 for discrete random variables to have the units of bits.

Theorem 2.1.1 defines the Shannon entropy of a discrete random variable,
and extend to a possibly infinite state space. For completeness we include
the following definition of Shannon entropy.

Definition 2.1.1. For a discrete random variable, X, with support on Ω,
with a probability mass function p(x), the Shannon entropy, H(X) is defined
as

H(X) = −
∑
x∈Ω

p(x) log p(x).

The units of entropy are dependent upon the choice of the base of the
logarithm. It’s common to use log2 in the case of a discrete random variable,
and in this case the units are bits. Another common unit is the nat obtained
from using the natural logarithm in Definition 2.1.1. The usage of nats
is more common for a notion of entropy we will define later for continuous
random variables. In this thesis we will use log2 for discrete random variables
and the natural log for continuous random variables.

For example, the Bernoulli distributed random variable, X ∼ B(p), has
two possible outcomes, 0 and 1, and a probability mass function of

P(X = x) =

{
p, if x = 1

q = 1− p, if x = 0.

Then the entropy of the random variable, in bits, is

H(X) = −
∑
x∈Ω

p(x) log p(x),

= −p log p− (1− p) log(1− p).

We can see that the entropy of the random variable is completely charac-
terised by the value of p. We have plotted the entropy of a Bernoulli random
variable as a function of the probability, p, in Figure 2.1. To align this with
the original inspiration we expect that this random variable should have the
highest entropy, that is entropy is maximised when p = 1

2
.

A property of note here is that the uniform distribution over a finite
number of elements represents the distribution with the highest entropy.
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Figure 2.1: Entropy of a Bernoulli random variable as function of the prob-
ability, p. We can see that the function has the properties as defined by
Shannon, and it is maximised when p = 1

2
.

Philosophically this aligns with the “Principle of Indifference” [103, pg. 45],
attributed to Laplace, which states that given no other information all prob-
abilities should be assigned to be equal, and the “Principle of Maximum
Entropy” by Jaynes [96], which states that the distribution that best rep-
resents the current knowledge of system is the distribution which has the
highest entropy. This principle inspired the maximum entropy approaches
that were discussed earlier, with the Bernoulli random variable example.

To maximise the entropy function, we find inflection points and therefore
we differentiate with respect to p and then solve for dH

dp
= 0.

dH

dp
= − log2 p− p

(
1

p log(2)

)
+ log2(1− p)− (1− p)

(
−1

(1− p) log(2)

)
,

= log2

(
1− p
p

)
.

Then we set this to 0 and solve for p, which gives

log2

(
1− p
p

)
= 0,
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⇐⇒ 1− p
p

= 1,

=⇒ 2p = 1, =⇒ p =
1

2
.

It has a maximum at p = 1
2
, which aligns with our intuition for an uncer-

tainty measure, since at this point it is the most difficult to predict the out-
come. This is shown in Figure 2.1, where the maximum occurs at p = 1

2
and

decreases in either direction as p tends to 0 or 1. This concept is called max-
imum entropy estimation, and a large body of work in statistical inference
of both models and parameters [109, pg. 36] [41, pg. 409], and optimisation
where it is used as a dual to maximum likelihood approaches [15].

The result is that every distribution’s uncertainty can be measured by its
divergence from the uniform distribution. We make this idea more rigorous,
for finite state spaces, with the following result.

Theorem 2.1.2 (Theorem 2.6.4 [41]). The Shannon entropy, H(X) is bounded
by

H(X) ≤ logN,

where N is the number of states in the state space of X. Equality occurs if
and only if X is uniformly distributed.

We now extend the definition of Shannon entropy for a collection of mul-
tiple random variables, called the joint entropy. This is needed to define the
concept of entropy we use for stochastic processes, entropy rate.

Definition 2.1.2. For a collection of discrete random variables, X1, ..., Xn,
with support on, Ω1, ...,Ωn and joint probability mass function p(x1, ..., xn) =
p(x), we define the joint entropy of the collection of random variables as,

H(X1, ..., Xn) = −
∑
x1∈Ω1

...
∑
xn∈Ωn

p(x) log p(x).

Another important notion that we use is conditional entropy, H(Y |X),
which is the expected value of the entropy of a random variable Y , averaged
over the knowledge of conditioning random variable X. Intuitively, the aver-
age amount of information of a random variable, Y , given we have knowledge
of a value of a random variable, X.

Definition 2.1.3. For random variables, X and Y with a joint probability
mass function (X, Y ) ∼ p(x, y), the conditional entropy is defined as

H(Y |X) = −
∑
x∈Ω

∑
y∈Ω

p(x, y) log p(y|x).
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If X and Y are independent random variables, then H(Y |X) = H(Y ).
The joint entropy and conditional entropy are complementary concepts,

as the joint entropy of two random variables, X and Y , is equal to the en-
tropy of a random variable H(X) plus the conditional entropy of the other
conditioned on the first, H(Y |X). This is summarised in the following theo-
rem [41, pg. 17].

Theorem 2.1.3 (Chain rule of entropy).

H(X, Y ) = H(X) +H(Y |X).

This result can be extended to an arbitrary collection of random variables,
and we can calculate the joint entropy for a collection of random variables
as the sum of conditional entropies. This is a very useful characterisation
which is used in the proofs and calculation of other results.

Theorem 2.1.4. Let X1, . . . , Xn be a collection of random variables, then

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|Hi−1, . . . , X1).

Note that when i = 1 the contribution to the sum is H(X1).

A variety of entropic measures are defined using the conditional entropy,
as we often want to quantify the uncertainty of one random variable knowing
the value or distribution of another, or even more generally from a collection
of observed random variables. A common uncertainty measure is called the
relative entropy, commonly known as the Kullback-Leibler Divergence.

Definition 2.1.4. The relative entropy, D(p||q), between two probability
mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈Ω

p(x) log
p(x)

q(x)
.

This can be thought of as a measure of the difference between two prob-
ability mass functions, which are defined over the same state space. This
quantity has some important properties, such as being always positive, by
the Information Inequality [41, Theorem 2.6.3, pg. 28], and is equal to
zero if and only if p = q. Relative entropy can be infinite if there ex-
ists any x ∈ Ω such that p(x) > 0, when q(x) = 0, since for this term
D(p||q) = p(x) log p(x)

q(x)
→ ∞. Although relative entropy appears similar to

a distance metric it is not symmetric, i.e., D(p||q) 6= D(q||p) in general.
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Relative entropy is related to a metric called the Fisher Information metric,
which is defined as

gij(θ) = E

[
∂p(x, θ)

∂θj

∂p(x, θ)

∂θk

]
,

for a set of coordinates θ = (θ1, . . . , θn), with a probability mass (or density)
function p(x, θ). With the relationship given by

D(p(θ + δ)||p(θ)) ≈ δ2

2
g(θ)

[109, pg. 26]. The field of information geometry introduced by Amari [3, 4],
analyses this metric to give insight into probability and statistics.

An extension of the relative entropy is the mutual information, which
quantifies the amount of information that is shared between two random
variables.

Definition 2.1.5. The mutual information, I(X;Y ) between two random
variables X and Y with joint probability mass function p(x, y), marginal prob-
ability mass functions p(x) and p(y) respectively, is defined as

I(X;Y ) =
∑
x∈Ω

∑
y∈Ω

p(x, y) log
p(x, y)

p(x)p(y)
,

= D(p(x, y)||p(x)p(y)).

The mutual information is a useful concept in information theory, as it
quantifies the difference between the joint mass function, p(x, y), and the
product of marginal mass functions p(x)p(y). The mutual information has
similar properties to the relative entropy, it is positive, and is zero if and
only if p(x, y) = p(x)p(y). Therefore, the mutual information quantifies how
far the random variables X and Y are from independence.

To finalise this section we will present a theorem that summarises the
links between mutual information and the joint and conditional entropy of
two random variables.

Theorem 2.1.5. The following equalities exist between mutual information
I(X;Y ) and entropy H,

I(X;Y ) = H(X)−H(X|Y ),

I(X;Y ) = H(Y )−H(Y |X),

I(X;Y ) = H(X) +H(Y )−H(X, Y ),

I(X;Y ) = I(Y ;X),

I(X;X) = H(X).
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This theorem summarises some important points, that mutual informa-
tion is a symmetric uncertainty measure, that it quantifies the difference
between the entropy of random variables, given knowledge of another, and
that the mutual information of itself is the Shannon entropy, which justifies
another name for Shannon entropy, the self information [41].

2.1.2 Differential Entropy

We will be considering entropic measures of stochastic processes composed
of either discrete and continuous random variables in discrete time, so we
will extend the concept of entropy to continuous-valued random variables.
In Shannon’s original work [154], he extended the definition to continuous
random variables by considering the definition of Shannon entropy as the
expected value of the information content, i.e., H(X) = −E[log(p(X))].
There are many definitions and results of interest that are direct analogues
of Shannon entropy. We have placed many of these definitions and results in
Appendix B, but present the results that are directly used in future sections
of the thesis.

Using this approach for the entropy of continuous random variables, with
density f(x), we define differential entropy.

Definition 2.1.6. The differential entropy, h(X) of a random variable, X,
with support, Ω, and probability density function, f(x), is,

h(X) =

∫
Ω

f(x) log f(x)dx.

Differential entropy has some important properties which differ from the
intuition we have developed for Shannon entropy. For example, differential
entropy can be negative, or even diverge to −∞. We see an example of
this behaviour by considering the Dirac delta function, δ(x), i.e., the unit
impulse, defined by the properties δ(x) = 0 for x 6= 0 and

∫∞
−∞ δ(x) dx = 1.

The Dirac delta can be thought of, in terms of probability, as a completely
determined point in time, that is, a function possessing no uncertainty. It can
be constructed as the limit of rectangular pulses of constant area 1 as their
width decreases, equivalent to the density of a uniform random variable, and
hence we can calculate the differential entropy of the Dirac delta function as

h(X) = −
∫ a

−a

1

2a
log

(
1

2a

)
dx,

= log(2a),
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which tends to −∞ as a→ 0.
The intuition for h(X) = −∞ from Cover and Thomas [41, pg. 248] is

that the number of bits on average required to describe a continuous random
variable, X to n-bit accuracy is h(X) + n, when using log2 for calculation
of the differential entropy. Meaning h(X) = −∞, can be read as requiring
n − ∞ bits, so we can describe the random variable arbitrarily accurately
without any using any bits of information.

Finally in this section we will discuss and prove a result that links the
differential entropy of a random variable and the Shannon entropy of its
quantisation. This is an important connection and we will extend this con-
nection to stochastic processes to form the basis of an estimation technique
in Chapter 5

Theorem 2.1.6 ([41, pg. 247]). For a Riemann integrable density, f(x), of
a random variable, X, with an associated quantised random variable,

X∆ = xi if i∆ ≤ X < (i+ 1)∆,

for a partition of the range of X into bins of size ∆. Then as ∆→ 0,

H
(
X∆
)

+ log ∆→ h(X).

Proof. The probability that X∆ = xi is given by

pi =

∫ (i+1)∆

i∆

f(x)dx,

= ∆f(xi).

Then we can calculate the Shannon entropy of the quantised random variable,
X∆, as

H(X∆) = −
∞∑

i=−∞

pi log pi,

= −
∞∑

i=−∞

∆f(xi) log (∆f(xi)) ,

= −
∞∑

i=−∞

∆f(xi) log f(xi)− log ∆
∞∑

i=−∞

∆f(xi),

= −
∞∑

i=−∞

∆f(xi) log f(xi)− log ∆.
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Where the last term simplifies since
∑

∆f(xi) =
∑
pi = 1. Now by the

Riemann integrability of f(x), this implies that f(x) log f(x) is Riemann
integrable. Taking the limit as ∆ → 0, gives that the first term above
becomes −

∫
f(x) log f(x)dx = h(X), and the result follows.

Note that the limit as ∆ → 0 means that we are taking the limit of the
expression as the window size decreases to zero. This applies throughout the
thesis.

2.1.3 Entropy Rate

In this section we define an entropic measure that can be applied to stochastic
processes, the entropy rate. This is defined as the asymptotic value of the
average information per sampled random variable in a stochastic process.

Throughout this thesis we will use the entropy rate, both Shannon and
differential, as a measure of complexity or randomness contained in a stochas-
tic process. We leave the definition and discussion of differential entropy rate
to Appendix B, however it is a natural analogue replacing joint Shannon en-
tropy with joint differential entropy.

We will define and discuss the entropy rate in terms of the Shannon
entropy, applying to random variables on discrete state spaces.

Definition 2.1.7. For a discrete-valued, discrete-time stochastic process,
χ = {Xi}i∈N, the entropy rate, is defined as,

H(χ) = lim
n→∞

1

n
H(X1, ..., Xn),

where the limit exists.

The entropy rate does not exist for many stochastic processes, as it re-
quires the existence of a limit.

We will not be giving definitions and background for stochastic processes,
a thorough treatment can be found in Cinlar [34], however for the purpose of
discussion we will need to define some properties. In general, the processes
we will be analysing in this thesis will have the property of stationarity. Intu-
itively, this corresponds to the time invariance of the marginal distribution,
and simplifies the analysis.

Definition 2.1.8. For a stochastic process, χ = {Xi}i∈N, with a cumu-
lative distribution function at times, t1, . . . , tn, of, FX(t1, . . . , tn). We say
that the process is stationary if FX(t1 + τ, . . . , tn + τ) = FX(t1, . . . , tn),∀τ >
0, t1, . . . , tn ∈ R, and ∀n ∈ N.
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This property is helpful for finding the entropy rate of a stochastic process,
as it implies that the distribution doesn’t vary with time shifts, which is
sufficient for the existence of the limit [41, pg. 77]. Stationarity allows
another characterisation of the entropy rate of a stochastic process, as the
limit of the conditional entropy of the process. We will provide a proof,
since we use characterisation of the entropy rate for stationary processes
to analyse the convergence rates of the conditional entropy to the entropy
rate for both Gaussian processes and Markov chains. In the following proof,
one of the implications is that the entropy rate must exist for stationary
processes, which intuitively makes sense as the distribution will not change
asymptotically, and hence a limit can be achieved.

Theorem 2.1.7 (Theorem 4.2.1 [41]). For a stationary stochastic process,
the entropy rate exists and is equal to

H(χ) = lim
n→∞

H(Xn|Xn−1, . . . , X1).

Proof. We begin by showing that the conditional entropy is non-increasing
as n increases.

H(Xn+1|Xn, . . . , X2, X1) ≤ H(Xn+1|Xn, . . . , X2),

≤ H(Xn|Xn−1, . . . , X1).

The first inequality follows since conditioning cannot increase entropy, and
the second follows from the stationarity of the process. Now if we take the
limit of H(Xn+1|Xn, . . . , X2, X1) as n→∞, this limit exists since we have a
decreasing sequence of non-negative numbers, by the monotone convergence
theorem [149, Theorem 11.28]. By the chain rule of entropy, Theorem 2.1.3,
we have

H(X1, . . . , Xn)

n
=

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1).

Since we have shown that the conditional entropy has a limit as n→∞, this
implies that the average converges to the same limit, as convergence of the
sequence implies convergence of the Cesaro mean to the same limit [189, pg.
76]. Therefore by taking the limits of both sides we have

H(χ) = lim
n→∞

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1),

= lim
n→∞

H(Xn|Xn−1, . . . , X1).
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We will briefly give an example of calculating the entropy rate for Markov
chains, which have the property that

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn = xn|Xn−1 = xn−1).

We will discuss Markov chains in greater detail in Section 4, however this
property is enough to illustrate the behaviour of interest. We call the prob-
abilities, pij = P(Xn = j|Xn−1 = i), the transition probabilities of the
Markov chain and the stationary distribution is, πi = P(Xn = i), when it
exists. Hence for a stationary Markov chain

H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1).

Then we calculate the entropy rate for a stationary Markov chain as

H(χ) = lim
n→∞

H (Xn|Xn−1, . . . , X1) ,

= lim
n→∞

H (Xn|Xn−1) ,

= H(X2|X1),

= −
∑
i∈Ω

∑
j∈Ω

πipij log pij.

Where we have used the definition of conditional entropy and the Markov
property to simplify the calculation. In Chapter 4 we will look to analyse
the entropy rate of a Markov chain that converges to stationarity, but starts
in an initial state given an arbitrary initial distribution.

To quantify the difference between the past and future of a stochastic
process, we will expand the definition of mutual information, Definition 2.1.5,
to define a quantity called the mutual information between past and future.
This quantifies the shared information between the infinite past {Xs, s <
0} and infinite future {Xs, s ≥ 0}. We will start by defining this in full
generality, as this forms the basis of some interesting quantities relating to
the entropy rate.

Definition 2.1.9. The mutual information between past and future for lag,
τ is defined as

I(τ) = I({Xs, s < t}, {Xs, s ≥ t+ τ}).

Remark. The definition of mutual information between past and future is
identical in the case of differential entropy, substituting mutual information
for differential entropy.



2.1. Entropy 21

This is tied to the concept of information regularity of a process [90,
Theorem IV.6], which has been defined as stochastic processes for which
I(τ) → 0 as τ → ∞ [119]. Then we define the mutual information between
past and future as the mutual information between past and future for 0 lags,
Ip-f ,

Ip-f = I({Xs, s < t}, {Xs, s ≥ t}).

Some connections between this concept and the finiteness of sums incorpo-
rating the partial autocorrelation function will be explored in Chapter 3.

The next quantity we will define is the excess entropy, which has been
formulated as the infinite sum of the differences between the conditional
entropy and the entropy rate, as we observe more random variables, and
therefore gives characterisation of the rate of convergence of the conditional
entropy to the entropy rate.

Definition 2.1.10. The excess entropy, E, of a stochastic process, χ =
{Xi}i∈N, is defined as

E =
∞∑
n=1

(He(n)−H(χ)) ,

where

He(n) = H(X1, . . . , Xn)−H(X1, . . . , Xn−1),

= H(Xn|Xn−1, . . . , X1).

Remark. The definition of excess entropy is identical in the case of continu-
ous valued processes, by replacing the differential entropy in place of Shannon
entropy.

This quantity is discussed extensively in Crutchfield and Feldman [44],
who give a few different characterisations. However, the key intuition is the
excess or additional entropy that is accumulated in the convergence of the
conditional entropy to the entropy rate. Hence, it is a measure of the rate
of convergence of the conditional entropy to the entropy rate. We present a
useful characterisation of the excess entropy as a limit.

Theorem 2.1.8 (Proposition 7 [44]). The excess entropy can be written as

E = lim
n→∞

[H(X1, . . . , Xn)− nH(χ)] .
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The theorem shows that the excess entropy is the limit of the difference
between the joint entropies and n copies of the entropy rate. Next we will
present a result that links the mutual information between past and future
and the excess entropy, showing that the two concepts are in fact equivalent.
The amount of shared information between the past and future of a process
is equal the accumulated information when converging from the conditional
entropy to the entropy rate.

Theorem 2.1.9 (Proposition 8 [44]). The excess entropy is equal to the
mutual information between past and future

E = Ip-f ,

when the limit exists.

Remark. Note that this statement only applies in the discrete case, and the
proof given by Crutchfield and Feldman is not fully rigorous. We will prove
this more rigorously in Chapter 3.

This connection between mutual information and excess entropy will be
used later in this thesis, as we want to characterise the amount of shared
information between past and future, and the excess entropy provides an
alternate way to analyse the quantity.

2.2 Long Range Dependence
Long range dependence (LRD) refers to a process where influence of past
values persists over long time periods. In mathematical terms, intuitively
we think of this as the slow decay of the autocovariance function, which we
define below. We will introduce some common definitions and characterisa-
tions of LRD in this section, and then discuss some common models which
exhibit this type of behaviour. Some further discussion of LRD, in particular
discussion of the influence of self-similarity and non-stationarity in included
in Appendix C.

Definition 2.2.1. The autocovariance function of a stationary stochastic
process, {Xi}i∈Z+, is defined as

γ(k) = E [(Xn − µ) (Xn+k − µ)] .

We define the autocorrelation coefficient for k lags as

ρ(k) =
γ(k)

γ(0)
=
γ(k)

σ2
= Corr(Xk+n, Xn),

where σ2 is the variance of a random variable of the process.
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Remark. Note that this is easily confused with the autocorrelation function
of a stochastic process, which is defined as

R(k) = E [XnXn+k] .

Throughout this thesis we will be using the autocorrelation coefficient, ρ(k)
and not the autocorrelation function, R(k), when analysing stochastic pro-
cesses.

Another quantity of interest that measures the dependence structure of
a stochastic process is the partial autocorrelation function.

Definition 2.2.2. The partial autocorrelation function of a stationary stochas-
tic process, {Xi}i∈Z+, is defined as

α(1) = ρ(1),

α(n) = Corr(Xk+n − PXn,...,Xk+n−1
Xk+n, Xn − PXn,...,Xk+n−1

Xn),∀n ≥ 2,

where PXn,...,Xk+n−1
is the linear projection onto the space spanned by the

intermediate observations.

The partial autocorrelation function, more intuitively, is the autocorrelation
coefficient between two observations when removing the linear dependence
of the observations between them.

A related quantity of a stochastic process is the spectral density, which
represents the distribution of frequencies within the process. We will use a
theorem from the time series literature to form a definition and show the
relationship between the spectral density and the autocorrelation function.

Theorem 2.2.1 (Corollary 4.3.1 (i) [23]). A complex-valued function, γ(k),
is the autocovariance function of a discrete-time stationary stochastic process,
{Xi}i∈Z if and only if ∀k ∈ Z, we have

γ(k) =

∫ π

−π
eikλdF (λ),

where F is a right continuous, non-decreasing, bounded function on the real
interval [−π, π] with F (−π) = 0.

We call the function, F , from this theorem the spectral distribution and
if it is differentiable everywhere then we define the spectral density as the
function as follows.
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Definition 2.2.3. The spectral density of an autocovariance function, γ(k),
is defined ∀λ ∈ [−π, π], as

f(λ) =
1

2π

∞∑
n=−∞

e−inλγ(n).

Note that the spectral density is non-negative for all λ ∈ [−π, π].
Theorem 2.2.1 gives the autocovariance in terms of the spectral density

as

γ(k) =

∫ π

−π
eikλf(λ)dλ.

We can see that autocovariance and the spectral density are related through
the Fourier Transform [23, pg. 117], and are equivalent via the Kolmogorov
Isomorphism Theorem [19], and hence these are both characterisations of the
correlation structure of a stochastic process. Analysis via the spectral density
allows for a larger number of techniques to study stochastic processes, and
we will use spectral approaches to investigate LRD in this thesis.

We now define LRD in two equivalent ways, via the autocorrelation and
spectral density. The following statement defines the concept of LRD in
terms of its autocorrelation function, which is the most common approach
to defining the phenomenon.

Definition 2.2.4. Let {Xn}n∈N be a stationary process. If there exists α ∈
(0, 1), and cγ > 0, such that the auto-covariance γ(k) satisfies

lim
k→∞

γ(k)

cγk−α
= 1,

then we say that the process is long range dependent.

The definition of LRD in the frequency domain considers the limit of the
spectral density near the origin.

Definition 2.2.5. Let {Xn}n∈N be a stationary process. If there exists β ∈
(0, 1), and cf > 0, such that the spectral density f(λ) satisfies

lim
λ→0

f(λ)

cf |λ|−β
= 1,

then we say that the process is long range dependent.
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This perspective tells us that these processes are dominated by the low fre-
quencies, which corresponds to long wavelengths and hence the long range
correlations. Note that both the definitions result in an asymptotic power-
law of their respective functions, and asymptotic power-laws are a constant
theme in the LRD literature.

In Hurst’s original work, he was aiming to estimate the size of a dam for
the Nile River and was analysing a time series of the Nile River annual min-
ima [150]. He calculated a quantity named the rescaled range, R

S
(X1, . . . , Xn),

which operates on n observations, x1, . . . , xn. This is defined as

R

S
(X1, . . . , Xn) =

max0≤i≤n
(
Si − i

n
Sn
)
−min0≤i≤n

(
Si − i

n
Sn
)√

1
n

∑n
i=1

(
Xi − Sn

n

) .

In this definition Sn = X1 + . . . + Xn is the partial sum sequence, and
therefore Sn

n
is the sample mean. The numerator quantifies how far the partial

sums deviate from the uniform growth, i.e., the first term is measuring the
maximum difference in the index between the observed value and the scaled
partial sum. The denominator is the sample standard deviation and provides
a normalisation.

A typical assumption that was previously used in reservoir management
was that the yearly outflow could be well modelled by

Xi = µ+ εi,

where µ is the observed average and εi is i.i.d. white noise such that, E[εi] = 0
and finite variance [129]. An argument in Samorodnitsky [150, pg. 177],
shows that under assumptions of short range correlations that R

S
(X1, . . . , Xn)

grows at the rate of n
1
2 . This highlights the unexpected outcome of Hurst’s

empirical analysis of the Nile river minima, given the start of the art theory
at the time.

First we will introduce Gaussian processes, since many of the processes
studied in this thesis are of this type. Then we define a short range dependent
Gaussian process to show why the assumption of growth of the rescaled range
was expected to be at the rate of n

1
2 .

Definition 2.2.6. A stochastic process is called a Gaussian process if and
only if every finite collection of random variables has a multivariate Gaussian
distribution. That is for every t1, . . . , tk ∈ R,

(Xt1 , . . . , Xtk) ∼ N (µ,Σ),

where µ is the vector of expected values and Σ is the covariance matrix.
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An important Gaussian process is Brownian Motion, which has applica-
tions across many areas of probability theory.

Definition 2.2.7. We define Brownian Motion, B = {B(t)}t≥0, by the fol-
lowing properties:

1. B(0) = 0.

2. B has independent increments, i.e., ∀t > 0, the increments B(t+ u)−
B(t),∀u ≥ 0, are independent of B(s),∀s ≤ t.

3. B has Gaussian increments, i.e., B(t+u)−B(t) ∼ N (0, u), is normally
distributed.

4. The sample paths of B are continuous almost surely.

Note that the process is non-stationary since the covariance function isn’t
time invariant. Brownian Motion is not long range dependent, however it will
be used throughout this thesis because Brownian Motion, and its increment
process Gaussian Noise, form the basis of processes used in this thesis, Frac-
tional Brownian Motion and Fractional Gaussian Noise.

Hurst found in his investigation of the Nile flooding that the rescaled
range grows at the rate of n0.72, which differed from the expected value of
n

1
2 for short range correlations [89]. For example, the rescaled range of

Brownian motion grows at the rate of n1/2 [151, pg. 176]. Hurst then found
this phenomena in a range of physical time series, such as sunspots, rainfall
and atmospheric pressure [80]. This lead to the definition Hurst parameter,
H, as the exponent of the rescaled range, i.e., nH. However, we will define
it equivalently with respect to the exponent α in Definition 2.2.4 as

H = 1− α/2.

Some intuition for the higher value of H for long memory processes, is that
the longer trends will cause higher deviations of the partial sums, causing
higher than expected growth.

The following theorem shows that Definition 2.2.4 and Definition 2.2.5
are equivalent, with exponents in terms of the Hurst parameter.

Theorem 2.2.2 (Theorem 2.1 [14]).

1. If Definition 2.2.4 holds with 0 < α = 2 − 2H < 1. Then the spectral
density, f(λ), exists and

lim
λ→0

f(λ)

cf |λ|1−2H = 1,
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where

cf =
cρσ

2

π

Γ(2H− 1)

sin(π − πH)
.

2. If Definition 2.2.5 holds with 0 < β = 2H− 1 < 1. Then

lim
k→∞

γ(k)

cγk2H−2
= 1,

where

cρ =
2cfΓ(2− 2H)

sin(πH− 1
2
π)σ2

.

Since exponents of LRD processes are in the range α ∈ (0, 1) this im-
plies that H must be in the range (0.5, 1). To summarise the behaviour of
processes by their Hurst parameter: the region H > 1/2 exhibits LRD, also
known as persistent, in the time series literature, and H < 1/2 for negatively
correlated processes, also known as anti-persistent; and H = 1/2 for short
range correlated processes, e.g., Brownian Noise. An important consequence
of Definition 2.2.4 and Theorem 2.2.2, is on the summability of the correlation
function, namely:

∞∑
k=−∞

γ(k)
<∞, for 0 < H ≤ 1

2
,

=∞, for 1
2
< H < 1.

.

This is often presented as the definition of LRD in other works. Sometimes a
weaker definition,

∑∞
k=−∞ |γ(k)| =∞, is given as the definition of LRD [151,

pg. 194].
Negatively correlated processes, H < 1/2, have not received as much con-

sideration as the SRD and LRD cases, due to fewer practical applications.
They have many properties in common with short range dependent processes
as they still have a summable autocorrelation function [14, 72]. However, in
addition their structure enforces that

∑∞
k=−∞ γ(k) = 0 [14, pg. 52]. This is

quite a strict and surprising property, and hence these processes have been
called constrained short range dependent (CSRD) [72].

A commonly analysed self-similar process is a generalisation of Brownian
Motion, called Fractional Brownian Motion (FBM). Its increment process,
Fractional Gaussian Noise, is one of the fundamental processes studied in
this thesis. We define FBM by its covariance function, since it is a Gaussian
process the mean and covariance are sufficient to completely characterise the
stochastic process [101, pg. 103].
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Definition 2.2.8. Fractional Brownian Motion, BH = {BH(t)}t≥0, is defined
by the following properties:

1. BH(0) = 0.

2. E[BH(t)] = 0, ∀t > 0.

3. The covariance function is E[BH(t)BH(s)] = 1
2

(
t2H + s2H − |t− s|2H

)
.

4. The sample paths of B are continuous almost surely.

FBM is also a non-stationary process, due to the time dependence of the
covariance function. Note that this process is generally not considered to be
LRD, due to its non-stationarity [150]. In contrast to Brownian motion the
non-overlapping increments of the process are not independent, due to the
long memory. The increments of the process are stationary since we can see
that for any r > 0,

E[(BH(t+ r)−BH(r)) (BH(s+ r)−BH(r))] = E[BH(t)BH(s)],

by expanding and applying the covariance function. The increments are
correlated as we can see for t1 < t2 ≤ t3 < t4, that

E[BH(t4 − t3)BH(t2 − t1)] =

1

2

(
(t4 − t3)2H + (t2 − t1)2H − |t4 − t3 − (t2 − t1) |2H

)
.

Then we can conclude that the correlations of the increments are positive for
H > 1

2
, negatively for H < 1

2
and independent in the case H = 1

2
, by the sign

of the expression above [18, pg. 9].
Sample paths of fractional Brownian motion are shown in Figure 2.2 for a

range of Hurst parameters, H = 0.2, 0.5, 0.8. The figure shows the influence
of the Hurst parameter with the appearance of long periods of upwards and
downwards “trends”. The negatively correlated process has a smaller range
of movement and less smooth paths from the frequent direction shifts. For
H = 0.5 we have the regular Brownian motion discussed above, with no
correlation between disjoint increments.

The phenomenon of LRD has large effects on even the most fundamental
statistics that are used to analyse data. A common result in statistics con-
cerns the size of the variance of the sample mean, X̄n = 1

n

∑n
i=1Xi, and how

it converges to the true value with an increasing number of observations, n.
This can be summarised in the following result.
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Figure 2.2: Sample paths of Fractional Brownian Motion with Hurst pa-
rameters, H = 0.2, 0.5, 0.8. We see that the long range dependence results in
smoother paths with lager local trends. In contrast, the negatively correlated
paths occur over a much smaller range due to the lower likelihood of trends.
These realisations were generated using the fbm Python package [66], using
the Davies-Harte method [49].
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Theorem 2.2.3 (1.1 [14]). For a sample of n observations of an i.i.d. stochas-
tic process, {Xi}i∈Z, with common mean, E[Xi] = µ the common variance of
the observations is V ar(Xi) = σ2 <∞, then

V ar(X̄n) = σ2n−1.

This is a foundational result in statistics, and is used to calculate the un-
certainty in parameter estimates. This is linked to another fundamental re-
sult in statistics, the central limit theorem, which states that the distribution
of the sample mean of n independent and identically distributed observations
has a normal distribution in the limit, i.e., for ∞ < x <∞,

lim
n→∞

P

(
Sn
σ
√
n
≤ x

)
= Φ(x),

where Φ(x) is the cumulative distribution function of a normally distributed
random variable and σ is the standard deviation [146, pg. 161].

The rate of convergence of the variance of the sample mean generalises
from i.i.d. data to short range dependent processes, such as ARMA processes
and Gaussian Noise, with the variance becoming, σ2c(ρ)n−1, i.e., differing
from the i.i.d. case by a term that is a function of the correlations [14, pg. 5].
Note that this does not change the rate of convergence of the variance of the
sample mean [14, pg. 5]. However, for LRD processes this is not necessarily
true, and any conclusion on the rate of convergence of the sample variance
would be an underestimate, as the following result for Fractional Gaussian
Noise, which we define in the next section shows [13].

Theorem 2.2.4. For a sample of n observations of a Fractional Gaussian
Noise process, {Xi}i∈Z, where the variance of the observations is V ar(Xi) =
σ2 <∞, then

V ar(X̄n) = σ2n2H−2,

where H is the Hurst parameter.

Therefore, for processes exhibiting LRD we have to be extremely careful
when we are applying common statistical techniques. However, the influence
of LRD is more expansive than this simple example illustrates. We present,
in Appendix C, some other behaviour that illustrates the quantitative differ-
ences in how LRD stochastic processes behave.

This type of result, a qualitative change in behaviour from short range
to long range dependence gives an alternate perspective on LRD, as a phase
transition between regimes with different properties, as described by Samorod-
nitsky [151]. We will discuss this perspective in Appendix C with some results
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that illustrate this phase transition, such as the behaviour of partial sums
and maxima. In this thesis we will illustrate that a phase transition also
occurs in the entropic domain for classes of LRD and CSRD processes.

In the next sections we will introduce two common stationary LRD mod-
els, Fractional Gaussian Noise (FGN) and ARFIMA(p,d,q). These were de-
veloped as extensions to common probabilistic models, Gaussian Noise and
ARMA/ARIMA classes of processes. They are parsimonious models that
use very few parameters to induce the long memory properties we have dis-
cussed. These two models will form the bulk of the discussion and the ex-
amples throughout the thesis. They are both discrete-time models and in
general we will not discuss continuous-time models, except where they form
relevant examples to discuss certain properties. Later in Chapter 4, we will
extend some results and characterisations to LRD Markov processes.

2.2.1 Fractional Gaussian Noise

We will begin by defining Fractional Gaussian Noise, which was introduced
first by Mandelbrot and Van Ness [127] to describe and explain Hurst’s em-
pirical findings. We saw in the previous section that FBM is not a stationary
process. However, its increments are stationary, and these increments are
the definition of Fractional Gaussian Noise.

Definition 2.2.9. We define discrete-time Fractional Gaussian Noise (FGN),
X(n), ∀n ∈ Z+ as

X(n) = BH(n)−BH(n− 1).

We calculate the autocovariance function of FGN as

E [Xn+kXn] = E
[(
BH(n+ k)−BH(n+ k − 1)

) (
BH(n)−BH(n− 1)

)]
,

since FBM has zero expectation, and hence FGN also has zero expectation.
Applying the covariance function in Definition 2.2.8 to the individual terms
and cancelling, we get

γ(k) := E [Xn+kXn] =
σ2

2

(
(k + 1)2H − 2k2H + (k − 1)2H) .

This shows that the covariance is only dependent on the time between ob-
servations, and since this is a Gaussian process with constant mean and co-
variance only dependent on the time between observations, then the process
is stationary [23, pg. 13]. Then the autocorrelation function is

ρ(k) =
1

2
k2Hg(k−1),
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where g(x) = (1 + x)2H − 2 + (1− x)2H.

For H 6= 1
2
we take the Taylor series expansion at the origin and the first

non-zero term is 2H(2H− 1)x2. Taking the limit as k →∞ we have

ρ(k)→ H(2H− 1)k2H−2.

Therefore, we can see by Definition 2.2.4 that the parameter range 1
2
<

H < 1, FGN is LRD. Another note is that in the case of H = 1
2
that the

autocorrelation function is ρ(k) = 0, and therefore Gaussian Noise is a special
case of FGN with H = 1

2
.

Figure 2.3 shows some sample paths of FGN for a range of different Hurst
parameters. These are derived from the same sample paths of FBM given in
Figure 2.2. We can see that longer trends emerge when the Hurst parameter
is greater than 1/2, and the negative correlation of lower H values results in
a process that rapidly shifts between positive and negative values.

The following theorem from Beran [14] derives the spectral density of
FGN, based on initial work on self-similar processes [157], defined in Defini-
tion C.0.1.

Theorem 2.2.5 (Proposition 2.7 [14]). The spectral density, f(λ), of Frac-
tional Gaussian Noise is given for λ ∈ [−π, π] to be

f(λ) = 2cf (1− cosλ)
∞∑

j=−∞

|2πj + λ|−2H−1,

where cf = σ2

2π
sin(πH)Γ(2H+ 1) and σ2 is the variance of a random variable

of the process.

Similar to the approach of the covariance function, taking a Taylor series
expansion around the origin yields the following corollary.

Corollary 2.2.5.1 (Corollary 2.1 [14]). For FGN with Hurst parameter H

f(λ) ∼ cf |λ|1−2H, as λ→ 0.

Therefore, we can see that FGN has the required properties in the spectral
domain. This concludes our introduction to FGN, we will use this process
throughout the thesis and draw on the properties discussed in this section.
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Figure 2.3: Sample paths of Fractional Gaussian Noise with Hurst parame-
ters, H = 0.2, 0.5, 0.8. These realisations were based on the paths of FBM
from Figure 2.2, and generated using the fbm Python package [66], using the
Davies-Harte method [49].. We see the the same properties exist for FGN,
longer trends, and larger deviation from the origin.
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2.2.2 ARFIMA(p,d,q)

In this section we will introduce the ARFIMA(p,d,q) class of models, which
are generalisations of the Autoregressive Moving Average (ARMA) class of
time series models. ARMA models, popularised by the influential book
by Box and Jenkins [21], and their generalisation Autoregressive Integrated
Moving Average (ARIMA) models often used to model non-stationary pro-
cesses. ARFIMA models are a generalisation of ARIMA, using fractional
exponents of the differencing operator, resulting in stationary class of pos-
itively and negatively correlated models. They are widely used since the
linear structure is easy to analyse, can be applied to a broad range of data.

We begin by defining two polynomials that are required in the definition
of the time series models discussed above, they are the autoregressive, φ(x),
and moving average, ψ(x), polynomials respectively. They are used as poly-
nomials of the lag operator, L, where LXn = Xn−1, with the polynomials
defined as

φ(x) = 1−
p∑
j=1

φjx
j, for coefficients φj and p ∈ Z+,

ψ(x) = 1 +

q∑
j=1

ψjx
j, for coefficients ψj and q ∈ Z+.

Definition 2.2.10. A stationary stochastic process {Xi}i∈Z, such that

φ(L)(1− L)dXi = ψ(L)εi,

for some −1/2 < d < 1/2 and εi for i ∈ Z, is an i.i.d. process with εi ∼
N (0, σ2

ε ), is called a ARFIMA(p, d, q) process.

Remark. Note that this process is a Gaussian process, since it’s stationary
and the noise is given by a normal random variable. The definition can
be expanded to allow non-normally distributed noise, however we only use
normally distributed noise in this thesis.

The fractional integration in this case comes from the (1− L)d term which
we expand using the generalised binomial theorem

(1− L)d =
∞∑
k=0

(
d

k

)
(−1)k Lk,

where the binomial coefficients are generalised by the Gamma function,(
d

k

)
=

Γ (d+ 1)

Γ (k + 1) Γ (d− k + 1)
.
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These are an extremely flexible class of processes. The autoregressive and
moving average polynomials allow any short term behaviour to be modelled
while still retaining the asymptotic power-law decay of the covariance func-
tions, and therefore LRD. An important special case of an ARFIMA(p,d,q)
process is that of ARFIMA(0,d,0), where φ(x) = ψ(x) = 1, with no lag on
the noise, ε, and the all the auto-regressive terms on the previous values come
from the differencing operator, (1− L)d. This is much easier to analyse since
it doesn’t involve double summation to obtain the coefficients, and many
theoretical results have been derived in this case.

The exponent, d, has a relationship to the Hurst parameter,

H = d+
1

2
.

In Figure 2.4 we have plotted ARFIMA(0,d,0) processes with exponent
d = −0.3, 0, 0.3, which are equivalent to H = 0.2, 0.5, 0.8. The process
has very similar behaviour to FGN, where we see the emergence of long term
trends in the noise for the positively correlated process, and strong oscillation
of the negatively correlated process. An advantage of these models is their
ability to generate this behaviour with a linear structure.

The zeros of the autoregressive and moving average polynomials impact
the stationarity and the existence of some representations, via inversion of
the moving average polynomial. If the complex roots of the autoregressive
polynomial, φ(x), lie outside the unit circle then there is one unique sta-
tionary solution of the model [21, pg. 55]. This is called causal in the time
series literature, and the implication is that the moving average represen-
tation, has coefficients with a convergent sum, i.e., Xn =

∑∞
j=0 θjεn−j with∑∞

j=0 |θj| <∞ [23, pg. 85]. If the moving average polynomial has roots out-
side the unit circle, then we call the process invertible and there is a unique
autoregressive representation. The implication being that the autoregressive
representative sum has convergent coefficients, εn =

∑∞
j=−∞ πjXn−j with∑∞

j=0 |πj| <∞. In this thesis, we will be analysing ARFIMA processes that
are both stationary and invertible, with all roots of both polynomials lying
outside of the unit circle.

We derive the spectral density by considering the ARFIMA process as an
ARMA process on a variable that has been through the linear filter, (1−L)d.
That is, we can represent the ARFIMA process, if stationary, as

Xn =
ψ (L)

φ (L)
(1− L)−d εn.

Which is an ARMA process

Xn =
ψ (L)

φ (L)
Yn,
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Figure 2.4: Sample paths of ARFIMA(0,d,0) with d = −0.3, 0, 0.3 with corre-
sponding Hurst parameters, H = 0.2, 0.5, 0.8. We see the the same properties
exist as observed in FGN, although induced by a linear model
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for Yn = (1− L)−d εn. By Theorem 4.10.1 in Brockwell and Davis [23], the
spectral density of a process, Y =

∑∞
k=−∞ hkXk, that has been through a

linear filter, h(x), has a resulting spectral density of fY (λ) = |h(eiλ)|2fX(λ).
Therefore, the spectral density of an ARMA process is

fARMA(λ) =
σ2
ε

2π

|ψ(eiλ)|2

|φ(eiλ)|2
,

where σ2
ε is the variance of the innovations, εn ∼ N (0, σε). Thus the spectral

density of an ARFIMA(p,d,q) process is given by,

f(λ) =
σ2
ε |ψ(eiλ)|2

2π|φ(eiλ)|2
|1− eiλ|−2d. (2.1)

Since |1− eiλ| =
√

2− 2 cosλ = 2 sin
(
|λ|
2

)
, and noting the limit as λ→ 0 is

lim
λ→0

2 sin

(
1

2
|λ|
)
→ |λ|,

the spectral density of an ARFIMA process as λ→ 0 is

f(λ) ∼ σ2
ε |ψ(1)|2

2π|φ(1)|2
|λ|−2d.

By Definition 2.2.5, we can see that when d > 0 an ARFIMA process is
LRD. Directly computing the covariance functions of ARFIMA(p,d,q) pro-
cesses can be quite difficult in general, however we can show by Theorem 2.2.2
that as k →∞,

ρ(k) ∼ cρk
2d−1.

We present the special case of ARFIMA(0,d,0), from Beran [14, pg. 64],
where the correlation function is given by

ρ(k) =
Γ(1− d)Γ(k + d))

Γ(d)Γ(k + 1− d)
.

Due to an asymptotic result on the ratio of Gamma functions [167] showing
that as k →∞,

Γ(k + a)

Γ(k + b)
∼ ka−b,
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this implies that

ρ(k) ∼ Γ(1− d)

Γ(d)
k2d−1.

An example theorem characterising ARFIMA(0,d,0) processes, is given
below. Dropping the additional complexity from the autoregressive and mov-
ing average polynomials, we can get exact autoregressive and moving average
representations, with exact expressions for the coefficients.

Theorem 2.2.6 (Proposition 2.2 [14]). Let Xn be a ARFIMA(0,d,0) process
with -1

2
< d < 1

2
. Then

(i) the following infinite autoregressive representation holds:

∞∑
k=0

πkXn−k = εn,

where εn(n = 1, 2, ...) are independent identically distributed random variables
and

πk =
Γ(k − d)

Γ(k + 1)Γ(−d)
.

For k →∞ we have,

πk ∼
1

Γ(−d)
k−d−1.

(ii) The following infinite moving average representation holds:

Xn =
∞∑
k=0

akεn−k

where εn(n = 1, 2, ...) are independent identically distributed random variables
and

ak =
Γ(k + d)

Γ(k + 1)Γ(d)
.

For k →∞ we have

ak ∼
1

Γ(d)
kd−1.

Note that the autoregressive and moving average polynomials are φ(x) =
ψ(x) = 1,∀x, and therefore ARFIMA(0,d,0) is stationary and invertible.
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Differential Entropy Rate
Characterisation of Long Range
Dependent Gaussian Processes

We discussed in the last chapter that the entropy rate of discrete time stochas-
tic processes has been studied as a measure of the average uncertainty. Most
studies have focused on processes whose correlations decay quickly, and hence
the dependence on past observations disappears rapidly. However, many real
processes from a variety of contexts, i.e., data networks [116, 178, 179], cli-
mate [171], hydrology [14, 89, 114], and economics [39, 180], have been shown
to exhibit long range dependence.

Recent work has investigated information theoretic characterisation of
long range and short range processes [30, 54, 120], using the finiteness of mu-
tual information between past and future. In this chapter, we aim to clarify
this characterisation and investigate its implications for Gaussian processes.

We calculate the differential entropy rate for the two most common sta-
tionary Gaussian Long Range Dependent (LRD) processes: Fractional Gaus-
sian Noise (FGN) and the Auto-Regressive Fractionally-Integrated Moving
Average (ARFIMA). We start by deriving the entropy rate for these pro-
cesses, and show that they both have negative poles as the processes tend
towards strong long-range correlations, but that their behaviour when anti-
correlated is surprisingly different: FGN has a pole similar to that for posi-
tive correlations, but ARFIMA does not. This contradicts common intuition
based on their similar spectral densities that FGN and ARFIMA(0,d,0) are
close to equivalent.

We also investigate the links between the two information measures: ex-
cess entropy and the mutual information between past and future processes,
and compare these to the differential entropy rate. We show that the dif-

39
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ferential entropy rate definition for excess entropy is equivalent to the mu-
tual information between past and future for continuous valued discrete time
Gaussian processes, and hence that excess entropy is infinite for all LRD and
CSRD Gaussian processes with power-law decaying autocovariance functions.

3.1 Entropy rate function for Fractional Gaus-
sian Noise

We want to understand the effect of memory on the entropic properties of
a stochastic process. We start with the entropy rate characterisation for
Gaussian processes originally derived by Kolmogorov (see Ihara [92, pg. 76])

h(χ) =
1

2
log(2πe) +

1

4π

∫ π

−π
log(2πf(λ)) dλ, (3.1)

where f(λ) is the spectral density, i.e., the Fourier transform of the autoco-
variance function for a mean zero process. We use this characterisation due
to the specific dependence on the spectral density, for Gaussian processes.
This assists us in deriving understanding of LRD and SRD Gaussian pro-
cesses, and their impact on entropy rates, due to the properties of spectral
densities, i.e. pole at λ = 0 for LRD processes, continuous and positive for
SRD processes, and zero at λ = 0 for CSRD processes.

We will begin by investigating the spectral density of Fractional Gaussian
Noise (FGN), which is given by Theorem 2.2.5

f(λ) = 2cf (1− cosλ)
∞∑

j=−∞

|2πj + λ|−2H−1, (3.2)

where, cf = σ2

2π
sin(πH)Γ(2H + 1), H is the Hurst parameter, and σ2 is the

variance of the process.
This spectral density is difficult to analyse as it has an infinite sum of

absolute values. In particular, when we apply the entropy rate character-
isation 3.1, as it involves taking a logarithm of a sum, making analytical
calculation prohibitively difficult. However, we can still use this expression
to derive some properties of the entropy rate of FGN processes.
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3.1.1 Comparison of approximate and analytical spec-
tral density for entropy rate calculation

Substituting the spectral density of FGN (3.2) into the second term in the
entropy rate expression (3.1) we get∫ π

−π
log
(
2πf(λ)

)
dλ = 2π log(4πcf ) +

∫ π

−π
log(1− cosλ)dλ

+

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ,

= 2π log(4πcf )− 2π log 2

+

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ.

(3.3)

Where the second term,
∫ π
−π log(1− cosλ)dλ = −2π log 2, is given in Jeffrey

and Dai [97, pg. 274]. The last term is finite for all H ∈ (0, 1), since
the singularity that exists when λ = j = 0 in the absolute value term is
integrable. This is important as we can then see that this does not affect the
asymptotic behaviour of FGN processes. The resulting entropy rate is

h(χ) =
1

2
log(2πeσ2) +

1

2
log (sin(πH)Γ(2H + 1))

+
1

4π

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ, (3.4)

from plugging the result of 3.3 into 3.1.
We calculate h(χ) using numerical integration via Python’s SpiPy li-

brary [177]. We plot the differential entropy rate of Fractional Gaussian
Noise as a function of the Hurst parameter, H, in Figure 3.1. The plot shows
the impact of the variance on entropy rate calculation, and hence that the
entropy rate of Fractional Gaussian Noise has a large dependence on the
variance, which isn’t surprising given the characterisation of entropy rate for
Gaussian processes via its spectral density. Each unit increase in variance
has a smaller effect on the value of the differential entropy, due to the log(σ2)
term. In general, the entropy rate of a Gaussian process is proportional to
the logarithm of the innovation variance [51]. So we expect that the entropy
rate scales at this rate in Gaussian processes, and therefore that the impact
of variance reduces as the size increases.
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Figure 3.1: Entropy rate of Fractional Gaussian Noise as a function of the
Hurst Parameter. The maximum is at H = 0.5, where the process is white
Gaussian noise. As H → 0 or 1, the function tends towards −∞, as the
strength of the negative or positive correlations increase. The impact of
changing variance decreases as the variance increase, due to the log(σ2) term.

Another approach is to consider the dependence between positive and
negative correlations and the leading constant cf for the limit of spectral
density as λ → 0, since these adjust for the degree of correlation. This
approach is inspired by Veitch et al. [174]. We derive the entropy rate function
similar to Equation 3.4, without expanding cf . We substitute Equation 3.3
into the entropy rate expression which gives

h(χ) =
1

2
log(2πe)

+
1

4π

(
2π log(4πcf )− 2π log 2 +

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ

)
,

=
1

2
log(2πe) +

1

2
log(4πcf )−

1

2
log 2
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Figure 3.2: Entropy rate of Fractional Gaussian Noise as a function of the
Hurst Parameter, however considering the impact of cf . The impact of chang-
ing cf decreases as the variance increase, due to the log(cf ) term.

+
1

4π

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ,

=
1

2
log(4π2ecf ) +

1

4π

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ. (3.5)

We plot the differential entropy rate as a function of H, for constant cf =
1, 2, 3, 4, in Figure 3.2.

The spectral density expression is quite cumbersome to work with and
an approximation is often used, which is accurate at low frequencies [14, pg.
53]. It is derived from a Taylor series expansion of the spectral density and
is given by,

f(λ) ≈ cf |λ|1−2H.

We can obtain a closed form for the entropy rate if we substitute this ap-
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Figure 3.3: Comparison of the numerically integrated spectral density and
the spectral density approximation. The approximation is relatively good for
H ≥ 1/2 but an underestimate for H ≤ 1/2.

proximation into the integral in the entropy rate expression (3.1) to get∫ π

−π
log(2πf(λ)) dλ =

∫ π

−π
log (2πcf ) dλ+

∫ π

−π
log
(
|λ|1−2H) dλ,

= 2π log (2πcf ) + 2 (1− 2H)

∫ π

0

log (λ) dλ,

= 2π log (2πcf ) + 2 (1− 2H) (π log π − π) .

Note that there is a singularity at the origin of the spectral density of LRD
processes. However, the integral is still well defined and finite in this case.
Therefore the entropy rate approximation is,

h̃(χ) =
1

2
log(2πeσ2) +

1

2
log (sin(πH)Γ(2H + 1)) +

1

2
(1− 2H)(log π − 1),

which differs from the exact formulation only in the last term.
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Figure 3.3 shows the entropy rate and its approximation. We can see
that the entropy rate approximation is very good for the positively corre-
lated cases H ≥ 0.5 and at the limits around H = 0 or 1. However for
moderately, negatively-correlated processes the approximation is a notice-
able underestimate of the entropy rate.

3.1.2 Properties of Entropy rate for Fractional Gaussian
Noise

Figure 3.3 shows some interesting properties

• The entropy rate function as a function of H is not symmetric. Neg-
atively correlated processes seem to have higher uncertainty the same
distance from H = 0.5.

• The entropy rate asymptotically tends to −∞ as H → 0 or 1.

• The maximum entropy rate occurs at 0.5. Indicating that the maximum
entropy occurs for white Gaussian noise.

We explain how these properties emerge below.

3.1.2.1 Asymptotic behaviour

Theorem 3.1.1. The differential entropy rate of Fractional Gaussian Noise,
h(χ)→ −∞ as H → 0 or 1.

Proof. When H → 0 or 1, the term cf → 0, as the gamma function terms are
non-zero, however the trigonometric terms tend to 0 as H tends to an integer
value. Hence, asymptotically the entropy rate expression is dominated by
log cf → −∞, as cf → 0, since for all H the integral term is finite.

Remark. Note that the approximation works well in the limits H → 0 or 1,
and so the theorem describes the asymptotic behaviour of entropy rate well.
Moreover, the theorem lines up with the intuition for an LRD process. As we
move closer to either perfectly positively or negatively correlated, the process
becomes “less uncertain”, i.e., we have less entropy on average. When the
uncertainty disappears, by viewing the entire past we can accurately infer the
current value. It’s important to reiterate that the differential entropy can be
−∞, which can be interpreted as least uncertainty for a process.
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3.1.2.2 Maximum

We want to understand the maximum of differential entropy rate, as a func-
tion of the Hurst parameter. This will provide an understanding of which
parameter choices represent the highest uncertainty. We differentiate the
entropy rate, with respect to H and then solve for H when the derivative
equals zero. Here we need to apply this to the exact formula because the
approximation distorts the location of the maximum. Therefore, dropping
constant terms, we get

dh

dH
=

1

2

d

dH
log
(
σ2 sin(πH)Γ(2H + 1)

)
+

1

4π

d

dH

∫ π

−π
log

(
∞∑

j=−∞

|2πj + λ|−2H−1

)
dλ

=
1

2

d

dH
log
(

sin(πH)
)

+
1

2

d

dH
log
(
Γ(2H + 1)

)
− 1

2π

∫ π

−π

∑
j log(|2πj + λ|)|2πj + λ|−2H−1∑

j |2πj + λ|−2H−1
dλ

=
π

2
cot(πH) + ψ(2H + 1)− 1

2π

∫ π

−π

∑
j log(|2πj + λ|)|2πj + λ|−2H−1∑

j |2πj + λ|−2H−1
dλ.

where ψ(z) = Γ′(z)/Γ(z) is the digamma function.
Then we set this expression to zero, and solve for H. This is a transcen-

dental equation with no closed form. We solve it numerically using Python’s
SciPy package [177], which yields H ≈ 0.500. Therefore we conjecture that
the maximum entropy rate, using the exact spectral density, is at H = 0.5,
which aligns with the idea that a SRD FGN process has more uncertainty
than any equivalent LRD FGN process.

Note that from the solution of the spectral density approximation is H ≈
0.516. So although using the spectral density approximation is acceptable
for many purposes, it can lead to false conclusions about the properties of
the differential entropy rate.

3.2 Entropy rate function for ARFIMA(p,d,q)
We consider the differential entropy rate function of a related process to
Fractional Gaussian Noise, which is ARFIMA(p,d,q), the fractional exten-
sion of the ARIMA (Autoregressive Integrated Moving Average) processes,
by extending to non-integer differencing parameters, d [77, 87]. FGN and
ARFIMA(0,d,0) are commonly used stationary LRD processes for modelling
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real phenomena, and in particular FGN and ARFIMA(0,d,0) have very sim-
ilar properties in the time and frequency domains, as seen in Sections 2.2.1
and 2.2.2 respectively. Additionally, these processes have been linked by
limit of their autocorrelation coefficients, ρ(k) := γ(k)/σ2, under aggrega-
tion and rescaling [72]. However, ARFIMA processes do differ from FGN in
that you could change the rate of convergence to a fixed point, i.e., alter the
eventual limit under aggregation and rescaling, with the addition of additive
noise [174], which implies that this class is less robust to the addition of noise.
Hence, there may be some differences in behaviour when looking through an
entropic lens.

We will express an entropy rate characterisation for ARMA processes
in terms of its innovation process variance, from Ihara [92, pg. 78], and
show that this can be extended to ARFIMA(0,d,0) and ARFIMA(p,d,q)
processes. Then we will use the result to characterise the entropy rate of an
ARFIMA(0,d,0) process in terms of its process variance.

Theorem 3.2.1 (From Ihara [92, pg. 78]). The entropy rate of an ARMA(p,q)
process is given by, h(χ) = 1

2
log(2πeσ2

ε ).

This is an interesting result, since the entropy rate of an ARMA process
is dependent upon the variance of the innovations, independent of the pa-
rameters of an ARMA process. We will investigate if the autoregressive and
moving average parameters have any impact on the entropy rate of ARFIMA
processes. Now, we state our extension of this result to ARFIMA(0,d,0) and
present a proof based on Ihara’s proof of Theorem 3.2.1

Theorem 3.2.2. The entropy rate of a stationary ARFIMA(0,d,0) process
is given by, h(χ) = 1

2
log(2πeσ2

ε ).

Proof. First we calculate
∫ π
−π log(2πf(λ))dλ, using the spectral density of an

ARFIMA process given in (2.1)∫ π

−π
log(2πf(λ))dλ =

∫ π

−π
log(σ2

ε |1− eiλ|1−2H)dλ,

=

∫ π

−π
log(σ2

ε )dλ+ (1− 2H)

∫ π

−π
log |1− eiλ|dλ.

Now we transform the elements in the last term using their trigonometric
representation,

|1− eiλ| = |1− cos(λ)− i sin(λ)|,

=
√

(1− cos(λ))2 + sin2(λ),
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=
√

2− 2 cos(λ),

=

√
4 sin2

(
λ

2

)
,

= 2

∣∣∣∣ sin(λ2
) ∣∣∣∣.

This makes the integral of the log spectral density,∫ π

−π
log |1− eiλ|dλ = 2

∫ π

0

log

(
2 sin

(
λ

2

))
dλ,

= 2

∫ π

0

log(2)dλ+ 2

∫ π

0

log

(
sin

(
λ

2

))
dλ,

We substitute y = λ/2,∫ π

−π
log |1− eiλ|dλ = 2π log(2) + 2

∫ π
2

0

log(sin y)2dy,

= 2π log(2) + 4
(
−π

2
log(2)

)
,

= 0.

Where the equality
∫ π

2

0
log(sin y)dy = −π

2
log(2) is given by [108].

So the last term of the spectral density vanishes, and∫ π

−π
log(2πf(λ))dλ =

∫ π

−π
log(σ2

ε )dλ+ (1− 2H)

∫ π

−π
log |1− eiλ|dλ,

= 2π log(σ2
ε ).

Using Kolmogorov’s entropy rate expression, the entropy rate is therefore,

h(χ) =
1

2
log(2πe) +

1

4π

(
2π log(σ2

ε )
)
,

=
1

2
log(2πeσ2

ε ).

Remark. This can be shown also using the infinite autoregressive expres-
sion in Theorem 2.2.6, Xn = εn −

∑∞
k=1 πkXn−k, and substituting into the

conditional entropy rate for stationary processes,

h(χ) = lim
n→∞

h(Xn|Xn−1, ..., X0).
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Then we can remove the conditioning from the entropy rate calculation,

h(χ) = lim
n→∞

h

(
εn −

∞∑
k=1

πkXn−k

∣∣∣∣Xn−1, ..., X0

)
= lim

n→∞
h(εn).

Which then implies that h(χ) = 1
2

log(2πeσ2
ε ), i.e., the entropy rate of the

process depends only on the entropy introduced at each step by the innova-
tions. Therefore, we conclude that the entropy rate of an ARFIMA(0,d,0)
process is constant with respect to the innovation variance, but potentially
has dependence on H when considering its process variance.

We can generalise to ARFIMA(p,d,q) processes by adding an additional
condition, the invertibility of the moving average polynomial.

Theorem 3.2.3. The entropy rate of a stationary ARFIMA(p,d,q) process
with invertible moving average polynomial is given by, h(χ) = 1

2
log(2πeσ2

ε ).

Proof. Since ARFIMA(p,d,q) processes are stationary and invertible, this
implies that the polynomials φ(x) and ψ(x), have roots outside of the unit
circle, i.e. each root z ∈ C is such that |z| > 1. By the Fundamental Theorem
of Algebra, both the autoregressive and moving average polynomials can be
factored into affine factors. As the constant terms are 1, this implies the
polynomials can be factored as φ(x) =

∏p
i=1(1 − aix) and ψ(x) =

∏q
i=i(1 −

bix), where |ai|, |bi| < 1,∀i. Recall from equation (2.1)that the spectral
density is given by,

f(λ) =
σ2
ε

2π
|1− eiλ|−2d |ψ(eiλ)|2

|φ(eiλ)|2
.

Hence,

log((2πf(λ)))

= log(σ2
ε )− 2d log |1− eiλ|+ 2 log

∣∣∣∣∣
q∏
j=1

(1− ajeiλ)

∣∣∣∣∣− 2 log

∣∣∣∣∣
p∏
j=1

(1− bjeiλ)

∣∣∣∣∣ ,
= log(σ2

ε )− 2d log |1− eiλ|+
q∑
j=1

2 log |1− ajeiλ| −
p∑
j=1

2 log |1− bjeiλ|.

Now we calculate the integral of the log spectral density,∫ π

−π
log(2πf(λ))dλ =

∫ π

−π
log(σ2

ε )dλ−
∫ π

−π
2d log |1− eiλ|dλ
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+

q∑
j=1

2

∫ π

−π
log |1− ajeiλ|dλ−

p∑
j=1

2

∫ π

−π
log |1− bjeiλ|dλ,

= 2π log(σ2
ε ).

Where the third equality is given as all the integrals of log |1 − aeiλ| over
[−π, π] vanish for |a| ≤ 1 [158].

We substitute this expression into Kolmogorov’s entropy rate expression
for Gaussian processes.

h(χ) =
1

2
log(2πe) +

1

4π
(2π log(σ2

ε )),

=
1

2
log(2πeσ2

ε ).

This result leads to the following corollary, which can finalise the discus-
sion of the differential entropy rate in terms of innovation variance for the
classes of AR, MA, ARMA processes. This is relevant as the definition in
terms of the innovation variance is the perspective that is commonly used in
the time series literature, when modelling real world processes.

Corollary 3.2.3.1. The differential entropy rate of stationary AR(p), in-
vertible MA(q) and, stationary and invertible ARMA(p,q) processes is h(χ) =
1
2

log(2πeσ2
ε ).

Hence, for these models the entropy rate can be calculated in terms of the
variance of its innovations. However we want to compare the entropy rates,
as a function of their Hurst parameter, between ARFIMA(0,d,0) and FGN,
so we want to fix the variance of process itself, σ2. We will use the autoco-
variance function of ARFIMA(0,d,0), from Beran [14, pg. 63],

γ(k) = σ2
ε

(−1)kΓ(1− 2d)

Γ(k − d+ 1)Γ(1− k − d)
.

Note that γ(0) = σ2,

σ2 = γ(0) = σ2
ε

Γ(1− 2d)

Γ(1− d)2
,

and hence,

σ2
ε = σ2 Γ(1− d)2

Γ(1− 2d)
.

This leads to the following characterisation of ARFIMA(0,d,0) processes
in terms of the Hurst parameter, H, noting that d = H− 1/2.



3.2. Entropy rate function for ARFIMA(p,d,q) 51

Corollary 3.2.3.2. The entropy rate of an ARFIMA(0,d,0) process for a
fixed process variance, σ2, is given by,

h(χ) =
1

2
log(2πeσ2) + log

(
Γ

(
3

2
−H

))
− 1

2
log

(
Γ(2− 2H)

)
. (3.6)

Proof. By Theorem 3.2.2 and from the characterisation of σ2
ε above,

h(χ) =
1

2
log

(
2πeσ2 Γ(1− d)2

Γ(1− 2d)

)
,

=
1

2
log(2πeσ2) + log(Γ(1− d))− 1

2
log(Γ(1− 2d)),

=
1

2
log(2πeσ2) + log

(
Γ

(
3

2
−H

))
− 1

2
log(Γ(2− 2H)).

Remark. The same approach can be used for more general ARFIMA(p,d,q)
processes. However in this case, there is no general closed form for the au-
tocovariance function, so the variance must be calculated for each process
and then substituted for the innovation variance. Interestingly, this result
indicates that the effect of the changing the process variance is balanced by
the effect of the change in the Hurst parameter, with respect to the inno-
vation variance. This results in the constant differential entropy rate when
considered in terms of its innovation variance.

We show the plot of the ARFIMA(0,d,0) entropy rate as a function of the
Hurst parameter, H, with process variance, σ2 = 1, 2, 3, 4, in Figure 3.4. The
plot shows some interesting behaviour, particularly when compared to the
FGN entropy rate function in Figure 3.6. Some of these observed properties
are:

• The entropy rate is not symmetric, much less so than FGN. The posi-
tively correlated side has a dramatic drop, however the negatively cor-
related side stays relatively high. In order words, there is a demonstra-
ble difference between FGN and ARFIMA(0,d,0) in the behaviour as
CSRD processes.

• The entropy rate asymptotically tends to −∞ as H → 1 only.

• The maximum entropy rate occurs at the same point as FGN, H = 0.5,
indicating that the maximum entropy occurs for white Gaussian noise.
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Figure 3.4: The entropy rate of ARFIMA(0,d,0) as a function of the Hurst
parameter, H, for variance, σ2 = 1, 2, 3, 4. On the positively correlated
side, H > 0.5, we see a similar asymptotic behaviour to FGN. However,
for negatively correlated processes, the amount of entropy in the process,
stays quite high. We see the maximum of the function at H = 0.5, which
intuitively shows that the highest uncertainty occurs for the white Gaussian
noise process.

Note that we have examined the dependence between the degree of posi-
tive or negative correlations and the process variance. This was chosen due
to the dependence observed in Gaussian processes between the entropy rate
and variance. As in Section 3.1 we also derive the entropy rate function
without expanding cf and plot for constant cf = 1, 2, 3, 4.

The spectral density for an ARFIMA(p,d,q) process is,

f(λ) = fARMA(λ)|1− eiλ|−2d,

where

fARMA(λ) =
σ2
ε

2π

|ψ(eiλ)|2

|φ(eiλ)|2
.
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Noting that in the limit as λ→ 0, that f(λ) ∼ fARMA(0)|λ|−2d.
Taking cf for ARFIMA(p,d,q) processes as the coefficient in the asymp-

totic limit as λ→ 0, we have

cf = fARMA(0) =
σ2
ε

2π

|ψ(1)|2

|φ(1)|2
.

In the case of ARFIMA(0,d,0) we have that the autoregressive and moving
average polynomials are constant and equal to one, i.e. ψ(x) = φ(x) = 1, we
get that

cf =
σ2
ε

2π
.

Substituting this into the entropy rate expression we get

h(χ) =
1

2
log(2πe) +

1

4π

∫ π

−π
log
(
2πcf |1− eiλ|−2d

)
dλ,

=
1

2
log(2πe) +

1

2
π log(4πcf )−

1

2
π log 2 +

1

4π
(2π log(2πcf )) ,

=
1

2
log(4π2ecf ).

Note that this differs from Equation 3.5 only by the last term. Therefore the
differences between FGN and ARFIMA(0,d,0) are solely due to the integral
term in FGN’s spectral density. Additionally, the entropy rate is constant
with respect to H for cf . This is due to the result of Theorem 3.2.2, as
in the case of ARFIMA(0,d,0), the entropy rate is constant with respect to
the innovation variance and cf , for ARFIMA(0,d,0), scales the innovation
variance. The differential entropy rate function is plotted as a function of H,
for a range of different cf ’s is given in Figure 3.5.

Similar to the previous section, we will prove the asymptotics of the
entropy rate function, and show that the maximum occurs at H = 0.5.

Corollary 3.2.3.3. The differential entropy rate of ARFIMA(0,d,0), h(χ),
tends to negative infinity as H → 1, for a fixed variance σ2 ∈ R.

Proof. As H → 1, the term Γ(3
2
− H) is bounded away from zero, as well

as the 1
2

log(2πeσ2), for a fixed variance 0 < σ2 < ∞. Now, as H → 1, the
term Γ(2 − 2H) → Γ(0). There exists a singularity for the gamma function
at 0, which diverges to infinity. Which implies that the term −1

2
log(Γ(2 −

2H))→ −∞, since Γ(x)→∞, as x→ 0. This implies that h(χ)→ −∞, as
H → 1.
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Figure 3.5: The entropy rate of ARFIMA(0,d,0) as a function of the Hurst
parameter, H, for cf , σ2 = 1, 2, 3, 4. Due to the relationship with the in-
novation variance the entropy rate function for ARFIMA(0,d,0) processes is
constant for H.

Remark. Note that the value of the entropy rate function for an ARFIMA(0,d,0)
process as H → 0, when σ2 = 1, is

h(χ) =
1

2
log(2πeσ2) + log

(
Γ

(
3

2

))
− 1

2
log(Γ(2)) ≈ 1.298.

Which doesn’t drop that far from its maximum of approximately 1.419, par-
ticularly in comparison to the asymptotic value of −∞ as H → 1.

To complete this section of the analysis, we will consider the maximum
of the entropy rate function of ARFIMA(0,d,0), and conclude which Hurst
parameter has the highest uncertainty, in the sense of maximum differential
entropy rate.

Theorem 3.2.4. The differential entropy rate of ARFIMA(0,d,0) as a func-
tion of H attains its maximum at H = 1/2.
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Figure 3.6: Comparison of the entropy rate as function of the Hurst parame-
ter, for both ARFIMA(0,d,0) and FGN processes, with variance 1. It appears
that the ARFIMA(0,d,0) process has an entropy rate which is greater than or
equal to FGN for all values ofH. The negatively correlated portion falls away
quickly as H → 0 for FGN but stays relatively high for the ARFIMA(0,d,0)
process. The maximum of the functions coincide at H = 0.5.

Proof. We differentiate the entropy rate function with respect to H, and we
get

dh(χ)

dH
=

d

dH

(
1

2
log(2πeσ2) + log

(
Γ(

3

2
−H)

)
− 1

2
log (Γ(2− 2H))

)
,

=
d

dH

(
log(Γ(

3

2
−H))

)
− d

dH
(log(Γ(2− 2H))) ,

=
Γ(3

2
−H)ψ

(
3
2
−H

)
Γ(3

2
−H)

− Γ(2− 2H)ψ(2− 2H)

Γ(2− 2H)
,

= ψ

(
3

2
−H

)
− ψ(2− 2H),

where ψ(x) is the digamma function.
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Then we set dh(χ)
dH = 0, and we have ψ

(
3
2
−H

)
= ψ(2 − 2H). Since

ψ
(

3
2
−H

)
and ψ(2 − 2H) are monotonically decreasing functions for H ∈

[0, 1] with the latter having a higher rate of decrease, this implies that the
digamma functions intersect in at most one point. Since 3

2
− H = 2 − 2H

only when H = 1/2, this implies that h(χ) achieves a unique maximum at
this point.

This aligns with our intuition, that the highest uncertainty occurs for
this model when it is uncorrelated and equal to white Gaussian noise, as
it simplifies to Xn = εn, identical to FGN processes. This explains why
the maxima coincide for the two processes, given the same process variance,
although ARFIMA(0,d,0) appears to have a higher differential entropy across
the entire parameter range, when not at H = 0.5. This is observation is
consistent with previous results in this area such as Burg’s Theorem [32], that
the AR and ARMA class of processes are the maximum entropy models given
appropriate constraints on the covariances and impulse responses [68, 91].
Further research is required to understand whether the ARFIMA class has
maximum entropy for processes with power-law decaying autocorrelation.

We have shown in this section that the behaviour for the ARFIMA(0,d,0)
model differs from that of FGN in the behaviour of their CSRD processes.
This is a surprising discovery and warrants further investigation. Both mod-
els, however, have much less uncertainty as the strength of the positive cor-
relations increases, as well as a maximum uncertainty occurring for uncor-
related processes. Hence, we may be able to characterise the behaviour of
LRD processes on the entropy rate as tending to −∞ as the strength of
correlations increases.

In remainder of the chapter we look at other information theoretic mea-
sures as way to characterise the behaviour of SRD and LRD processes.

3.3 Mutual Information and Excess Entropy for
Long Range Dependent Gaussian Processes

In this section we continue analysing of the differential entropy rate for
stochastic models that exhibit LRD. We investigate the links between the
amount of entropy that is accumulated during the convergence of the con-
ditional entropy to the entropy rate and the amount of information that is
shared between the past and future of a stochastic process, the excess en-
tropy. Then we will classify when this quantity converges and diverges for
the range of the Hurst parameter for ARFIMA and FGN processes.
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We extend the standard notion of mutual information for continuous-
valued random variables that we defined in Definition B.1.4 to the special
case of mutual information between past and future, Ip-f , which will measure
the amount of information about the infinite future, given knowledge of the
infinite past. We extend the definition of mutual information between past
and future for continuous-valued random variables in the same way as the
discrete-valued case from Definition 2.1.9, which in this case is

Ip-f = I({Xs, s < 0}, {Xs, s ≥ 0}),

where Xs is a continuous-valued random variables for all s ∈ Z.
Exactly as in Theorem 2.1.5, alternative characterisations for the mutual

information also apply in the case of differential entropy. One we will use in
the analysis is I(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X) [41, pg.251].

There exist many processes that have infinite excess entropy but are not
long range dependent. Some examples are given, including deterministic
processes, in Crutchfield and Feldman [44].

Crutchfield and Feldman [44] analysed a quantity named excess entropy,∑∞
n=1 (H(Xn|Xn−1, . . . , X0)−H(χ)) from Definition 2.1.10, for the Shannon

entropy H and corresponding entropy rate H(χ), which has been shown to
be equivalent to the mutual information between past and future. This has
been named, with implicit interpretation, as stored information [155], effec-
tive measure complexity [78, 121], predictive information [133]. Importantly,
it has been used to measure the convergence rate of the conditional entropy,
based on past observations, to the entropy rate. We aim to extend this re-
sult to differential entropy, and then the question of classification of LRD
processes via the amount of shared information can be made by the conver-
gence rate to the entropy rate. We extend Definition 2.1.10 to the case of
differential entropy.

Definition 3.3.1. The differential excess entropy, E, of a stochastic process,
{Xi}i∈N, is defined as,

E =
∞∑
n=1

(he(n)− h(χ)) , (3.7)

= lim
n→∞

[h(Xn, . . . , X0)− nh(χ)] .

where

he(n) = h(X1, .., Xn)− h(X1, ..., Xn−1),

= h(Xn|Xn−1, ..., X1).
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We have the tools available to make an explicit link between the mutual
information between past and future and the excess entropy of a continuous-
valued, discrete-time stochastic process. This is an exact analogue of Propo-
sition 8 from Crutchfield and Feldman [44] and has been stated utilising a
different approach by Ding and Xiang [54].

Theorem 3.3.1. For a stationary, continuous-valued stochastic process, the
mutual information between past and future, Ip-f , is equal to the differential
excess entropy, E.

Proof. The mutual information for a process X, with a past and future of n
observations,

I[{Xs,−n ≤ s < 0};{Xs, 0 ≤ s < n}]
= h(X0, ..., Xn−1)− h(X0, ..., Xn−1|X−n, ..., X−1),

=
n−1∑
i=0

h(Xi|Xi−1, ..., X0)−
n−1∑
i=0

h(Xi|Xi−1, ..., X−n),

=
n−1∑
i=0

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)
,

by the chain rule of differential entropy[41, pg. 253]. Then we consider the
mutual information between past and future, by taking the limit of the above
expression as n→∞, which leads to

Ip-f = lim
n→∞

[
n−1∑
i=0

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)]
,

= lim
n→∞

[
∞∑
i=0

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)
1{i<n}

]
.

We define the sequence of measurable functions, fn(i) as

fn(i) =

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)
1{i<n},

and we define the function, g(i) as

g(i) = h(Xi|Xi−1, ..., X0)− h(χ).

We want to show that |fn(i)| ≤ g(i) for all n and for all i ∈ N. In this case
it is equivalent to showing that fn(i) ≤ g(i), since fn(i) ≥ 0 for all n, i ∈ N,
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as the second term of fn(i) conditions on more random variables, and since
conditioning cannot increase entropy this implies that h(Xi|Xi−1, ..., X0) ≥
h(Xi|Xi−1, ..., X−n). We consider two cases, i < n and i ≥ n, separately. In
the case, i ≥ n, we have that fn(i) = 0, and since g(i) ≥ 0 for all i, this
implies that fn(i) ≤ g(i). Considering the second case, i < n, we have that

fn(i) =

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)
,

and therefore,

g(i)− fn(i) = h(Xi|Xi−1, ..., X−n)− h(χ).

Again, since conditioning does not increase entropy and the characterisation
of entropy rate for stationary processes from Theorem B.2.1 this implies that
g(i) − fn(i) ≥ 0 and therefore g(i) ≥ fn(i) for all n, i such that i < n.
Then we can apply the monotone convergence theorem [57, pg. 27], since
fn(i)→ h(Xi|Xi−1, ..., X0)− h(χ) pointwise, this implies that

Ip-f = lim
n→∞

∞∑
i=0

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)
1{i<n},

=
∞∑
i=0

lim
n→∞

(
h(Xi|Xi−1, ..., X0)− h(Xi|Xi−1, ..., X−n)

)
1{i<n},

=
∞∑
i=0

(
h(Xi|Xi−1, ..., X0)− h(χ)

)
.

Remark. This proof is similar to that of Proposition 8 from Crutchfield and
Feldman [44]. However, it is more rigorous since the limit is kept out the
front of the sum while simultaneously applied to the second term in the sum.
This approach using monotone convergence can resolve the issue in their
proof.

In Crutchfield and Feldman [44], they analyse the excess entropy of discrete
random variables to understand the convergence rate of the conditional en-
tropy to the entropy rate. We will analyse when the excess entropy converges
or diverges for the ARFIMA and FGN classes of processes, over the range
of the Hurst parameter. Then we will apply conclusions made to the mutual
information between past and future.

We begin by classifying the convergence and divergence of excess entropy
for the ARFIMA class of processes
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Theorem 3.3.2. For stationary and invertible ARFIMA(p,d,q) the excess
entropy is finite if and only if d = 0, i.e. H = 1/2.

Proof. From Theorem 9.4 of Debowski [50], we have for Gaussian processes
that

E <∞ ⇐⇒
∞∑
n=1

nα2
n <∞ and |αn| < 1,∀n ∈ N,

where αn is the partial autocorrelation function from Definition 2.2.2 We
will analyse the two different cases d ∈ (−1/2, 1/2) \ {0} and d = 0 separately,
starting with the former. From Theorem 2.5 of Inoue [94], we have that

αn ∼
|d|
n
,

for all d ∈ (−1/2, 1/2) \ {0}. Since d doesn’t depend on n, we get

∞∑
n=1

n

(
|d|
n

)2

= d2

∞∑
n=1

(
1

n

)
=∞.

Which implies that E = ∞. Now we consider the case d = 0, which are
ARMA processes. From Theorem 7.1 of Inuoe [94], we have that

|αn| ≤Mrn,

for a constant M > 0 and where R < r < 1 and R = max
(

1
|u1| , ...,

1
|uq |

)
,

where u1, ..., uq are the complex zeros of the moving average polynomial.
Therefore,

∞∑
n=1

nα2
n ≤

∞∑
n=1

n (Mrn)2 ,

= M2

∞∑
n=1

nr2n <∞, , since r < 1.

Which implies that E <∞.

This leads to a simple corollary that the result also applies to the mutual
information between past and future.

Corollary 3.3.2.1. For ARFIMA processes the mutual information between
past and future is finite if and only if H = 1/2.
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Proof. This is shown by combining Theorem 3.3.2 and Theorem 3.3.1.

This is an interesting result which indicates that the boundary between
finite and infinite excess entropy is between SRD and LRD/CSRD ARFIMA
processes. That is, any persistent correlations, whether positive or negative,
induce infinite excess entropy, and not just positive correlattions i.e., LRD,
as has been suspected in previous work such as the discussion in section
3.4 of Li [120] and Ding and Xiang [54]. The assumptions in the discussion
around the equivalences are due to the second part of Theorem 1 of Li [120]
which gives the following statement. If the spectral density f(λ) is continuous
and f(λ) > 0, then Ip-f is finite if and only if the autocovariance function
satisfies the condition

∑∞
k=1 kγ(k)2 <∞. Given the result in Theorem 3.3.2

the condition f(λ) > 0 is critical. Since, in the case of CSRD ARFIMA
processes the spectral density has a root at 0. Therefore to classify the
behaviour of the excess entropy across the entire range of of H we need
to take a different approach than Li [120] and Ding and Xiang [54], and
adding some additional regularity conditions on the infinite autoregressive
and moving average representations. This builds upon the work of Inoue [94],
which classified the behaviour of the partial autocorrelation function for these
processes with the following conditions.

Condition 3.3.1. {Xn}n∈N is a purely non-deterministic process. That
is, for the Hilbert space, H, spanned by {Xk}k∈Z in the probability space
L2(Ω,F , P ), then

∞⋂
n=−∞

H(−∞,n] = {0}.

The next conditions are on the coefficients of the AR(∞), and MA(∞),
representations with coefficients {an}n∈N and {cn}n∈N respectively. That is,

εn =
∞∑
k=1

akXn−k,

and, Xn =
∞∑
k=1

ckεn−k.

Condition 3.3.2. {an}n∈N is eventually decreasing to zero.

Condition 3.3.3. {cn}n∈N is eventually decreasing to zero and cn ≥ 0 for
all n ≥ 0.
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With the addition of these conditions we are able to classify the behaviour
of processes with autocovariance functions of the form γ(n) ∼ Cn2d−1, where
d = H − 1/2. Note that we utilise the results from several papers from
Inuoe [93, 94] where they consider behaviour of autocovariance functions of
the form, γ(n) ∼ l(n)n2d−1, where l(n) is a slowly varying function, that is

lim
n→∞

l(λn)

l(n)
, ∀λ > 0.

Theorem 3.3.3. For stationary Gaussian processes with an autocovariance
function γ(n) ∼ Cn2d−1, for a constant C, obeying conditions 3.3.1, 3.3.2,
and 3.3.3, the excess entropy is finite if and only if d = 0, i.e., H = 1/2.

Proof. We will split the proof into the cases where d ∈ (0, 1/2), d = 0, and
d ∈ (−1/2, 0). Note that we have the autocovariance in the form γ(n) ∼
l(n)n2d−1, with l(n) = C trivially a slowly varying function, since ∀λ > 0 we
have that

l(λn) = l(n).

For d ∈ (0, 1/2), by Theorem 6.1 of Inoue [94], we have that

αn ∼
d

n
.

Therefore, as in Theorem 3.3.2 we have that E = ∞. In the case d = 0,
we consider the integral l̃(n) =

∫ n
B

l(n)
s
ds =

∫ n
B

C
s
ds. Since the behaviour is

independent of B by Inoue [94], we take B = 1. The integral diverges as
n→∞ because, ∫ n

1

C

s
ds = C

∫ n

1

1

s
ds,

= C [log s]n1 ,

→∞ as n→∞.

By Theorem 6.1 of Inoue [94] we have that

αn ∼
l(n)

2nl̃(n)
,

=
C

2nC log(n)
,

=
1

2n log(n)
.
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Therefore,

∞∑
n=1

nα2
n ∼

∞∑
n=1

n

(
1

2n log(n)

)2

,

=
1

4

∞∑
n=1

(
1

n log2(n)

)
.

Since we consider the tail behaviour of the sum for divergence, we have that

1

4

∞∑
n=2

n

(
1

n log2(n)

)
<∞,

by Knopp [105, pg. 63]. We conclude that
∑∞

n=1 nα
2
n < ∞ and therefore

E < ∞. Finally we consider d ∈ (−1/2, 0). By Theorem 6.1 of Inoue [94],
we have that

αn ∼
γ(n)∑n

k=−n γ(k)
,

∼ n2d−1∑n
k=−n k

2d−1
, since γ(n) ∼ Cn2d−1.

The denominator is the consecutive sum of powers, which has the following
well known asymptotic form

n∑
k=−n

k2d−1 ∼ n2d

2d
.

Note that this asymptotic sum indicates that
∑n

k=−n γ(k)→ 0 as n→∞, a
well-known behaviour for CSRD processes.
Therefore, as in Theorem 3.3.2 we have E =∞.

We provide an identical corollary to Corollary 3.3.2.1 for processes that
meet .

Corollary 3.3.3.1. For stationary Gaussian processes with an autocovari-
ance function γ(n) ∼ Cn2d−1, for a constant C, obeying conditions 3.3.1, 3.3.2,
and 3.3.3, the mutual information between past and future is finite if and only
if H = 1/2.

Proof. This is shown by combining Theorem 3.3.3 and Theorem 3.3.1.
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Theorem 3.3.3 provides a classification of the behaviour of excess entropy
for processes where the autocovariance function γ(n) ∼ Cn2d−1, in future we
may be able to extend this to the more general case where γ(n) ∼ l(n)n2d−1,
where l(n) is a slowly varying function. Using the same argument as above we
can show the same result in the case that d ∈ (0, 1/2), and d = 0. Following
on from the comments at the end of Section 6 of Inoue [94], it would be
interesting to understand how generally the relation,

αn ∼
γ(n)∑n

k=−n γ(k)
,

holds, and if a potential classification of LRD/SRD/CSRD processes by their
excess entropy exists, based on improved knowledge of the asymptotics of the
partial autocorrelation function.

3.4 Conclusion
In this chapter, we are concerned with the behaviour of the differential en-
tropy rate to understand and characterise the behaviour of LRD and SRD
processes. Analysing two common LRD processes, FGN and ARFIMA(0,d,0),
we have shown that the maximum occurs in the absence of correlations, i.e.,
H = 0.5, and the differential entropy rate tends to the minimum, −∞ as
the strength of positive correlations increase, i.e., as we receive more infor-
mation from correlations, the entropy of the process decreases. However,
there is very different behaviour for negatively correlated processes, where
ARFIMA(0,d,0) processes do not tend to −∞ as the strength of the nega-
tive correlations increases. Further research is required to understand this
behaviour for these processes.

In addition, we have made a link, similar to Shannon entropy, between
the mutual information between past and future and excess entropy, meaning
that the amount of shared information between the complete past of future
of a process is the same as the additional information that accrues when
converging to the entropy rate, based on past observations. This leads to a
characterisation of processes that have power-law decay of their covariance
function, by the properties of their mutual information between past and
future. This characterisation is that processes which are LRD or CSRD,
have infinite mutual information between past and future.



Chapter 4

Shannon Entropy Rate
Characterisation of Long Range
Dependent Markov Chains

Markov chains are a class of discrete time stochastic processes characterised
by the property that the transition probability is only dependent on knowl-
edge of the current state. This is called the Markov property and is the
defining property of a large class of processes in discrete and continuous
time, called Markov processes.

We will introduce the relevant properties and concepts of Markov chains
in the first part of this chapter and in Appendix D. Less often studied are
LRD Markov chains. In addition to the Markov property, LRD Markov
chains are characterised by the infinite second moment of the return time
random variable and the growth of the variance of the counting function of
the number of visits to a state. We show here that LRD Markov chains
have similar behaviour to LRD Gaussian processes, except on discrete state
spaces.

In this chapter, we extend our analysis of entropy rate convergence of
stochastic processes by considering Markov chains. We show that there is a
connection between the rate of convergence of a Markov chain to its station-
ary distribution, and the rate of convergence of the conditional entropy to
the entropy rate. We show that the convergence rate depends on the exis-
tence of moments of the return time distribution. When all moments of the
return time random variable are finite we have geometric convergence, shift-
ing to sub-geometric convergence if any infinite moment exists. By adding
a common condition for LRD processes, that the complementary cumulative
distribution function of the return time random variable has a power law
tail, i.e., P(T > n) ∼ cn−α. We can then show that the convergence to

65
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the stationary distribution is at a power-law rate, and that the convergence
rate is O(n2−2H), where n is the number of data and note that H and α are
related as H = 1− α/2, similar to other results on LRD processes.

4.1 Markov Chain Background
In this section, we will define Markov chains. This will allow us to analyse
their information theoretic properties, such as the entropy rate, and char-
acterisations of LRD on these processes, via their convergence rates. We
leave a more through discussion of the relevant properties and concepts to
Appendix D. This appendix outlines the background of concepts such as irre-
ducibility, aperiodicity, hitting times and the stationary distribution. These
are required to understand LRD Markov chains, their definition and the
calculation of the entropy rate of a Markov chain, but the definitions are
standard. However, we provide the key definitions here.

Definition 4.1.1. A discrete-time stochastic process, χ = {Xn}n∈Z+ on a
countable state space, Ω, is called a Markov chain if for every n

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn = xn|Xn−1 = xn−1).

We will discuss some useful additional properties, the first property is
time-homogeneity, which states that the probability of transitioning between
states doesn’t change over time.

Definition 4.1.2. We call a Markov chain, χ = {Xn}n∈Z+, time-homogeneous
if for every n and all states i, j ∈ Ω,

P(Xn+1 = j|Xn = i) = P(Xn = j|Xn−1 = i).

In this case, we call the probabilities,

pij = P(Xn = j|Xn−1 = i),

the transition probabilities. We have that for every state, i ∈ Ω that the
transition probabilities sum to 1,∑

j∈Ω

pij = 1,

since at each step of the chain the process must be in a state. We generalise
the transition probabilities to an arbitrary number of steps, that we call the
k-step transition probabilities,

p
(k)
ij = P(Xn+k = j|Xk = i).

We provide additional background of Markov chains in Appendix D.
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4.2 LRD Markov Chains
LRD processes defined on discrete state spaces in discrete time have been
much less studied than on continuous state spaces. The concept of LRD
has been defined and characterised on general point processes [46], renewal
processes [45] and Markov renewal processes [176].

A key insight for point and renewal processes is that LRD can be defined
with respect to the second-order behaviour of the counting function of the
number of events in an interval, N(0, t]. A definition of LRD for point and
renewal processes is given by the variance of this function. A point or renewal
process is said to have LRD if the growth of the variance of the function is
faster than linear [45, 46], that is

lim sup
t→∞

Var(N(0, t])

t
=∞.

This was extended to the case of irreducible Markov chains in discrete time
on countable state spaces by Carpio and Daley [27], by using the variance of
the counting function of the number of visits of the Markov chain, {Xn}n∈Z+ ,
to state i up until time n, Ni(0, n]. That is, the variance of

Ni(0, n] =
n∑
k=1

1{Xk=i}.

This is a natural extension, since the rate of increase of the variance of the
counting function is a property of the communicating class. This leads to
the following definition of LRD on Markov chains.

Definition 4.2.1. An irreducible and aperiodic Markov chain, {Xn}n∈Z+, is
said to be long range dependent if

lim sup
n→∞

Var(Ni(0, n])

n
=∞.

Otherwise, we say the Markov chain is short range dependent [27].

Carpio and Daley [27] show that this applies to all states in the commu-
nicating class, and therefore is independent of the particular state i used in
the definition.

A random variable which characterises the long term behaviour of Markov
chains is the return time random variable, Tii, to a particular state i. For
example, this is used in classifying Markov chains as positive recurrent, null
recurrent and transient. The random variable is defined as

Tii = inf{n ≥ 1 : Xn = i,X0 = i}.
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The return times of LRD Markov chains were shown, in Lemma 1 of Carpio
and Daley [27], to have an infinite second moment. Oguz and Anantha-
ran [134] extended this result to show that other functions of Markov chains
also have an infinite second moment, given some regularity conditions on the
function.

A related concept to infinite moments is that of heavy-tailed or sub-
exponential distributions, which are distributions whose tail decay is slower
than exponential.

Definition 4.2.2. A probability distribution of a random variable, X, with
cumulative distribution function, F , is called heavy-tailed, or sub-exponential,
if and only if ∀t > 0 ∫ ∞

−∞
etxdF (x) =∞.

We will discuss some of the aspects of Markov chain stationary distribu-
tion convergence with reference to return time distributions with this prop-
erty. Note that in this chapter we will be considering discrete return time
random variables with heavy tails, and the integral will become an infinite
sum.

We aim to answer how LRD affects the rate of convergence of important
quantities for Markov chains, which are often used to describe the properties
of the Markov chain itself, its stationary distribution and its entropy rate.

In this chapter we show that, like other types of LRD processes, con-
vergence rates of certain quantities of LRD Markov chains are considerably
slower than for short range dependent processes. We prove that the con-
vergence of the n-step transition probabilities to the stationary distribution
occurs at a rate that is a power law, that is nc as n→∞ for some c ∈ (0, 1),
i.e., slower than linear in its rate of convergence.

We extend this idea to the entropy rate, which for Markov chains is a
function of the stationary distribution and the n-step transition probabilities
and can be thought of as the asymptotic rate of new information for the
process. This is an analogue of Chapter 3 showing that the conditional
entropy converges to the entropy rate more slowly for LRD discrete time
Gaussian processes than their short range dependent counterparts. However,
here we consider Markov chains on discrete state spaces which are more
relevant to many real contexts, such as the analysis of natural language.

We are able to show that for all positive recurrent ergodic Markov chains
the rate of convergence to the entropy rate is the same as the rate of con-
vergence of the n-step transitions to the stationary distribution. In addition,
we show that this implies that for LRD Markov chains that the mutual in-
formation between past and future is infinite.
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4.3 Entropy Rate Convergence relationship with
Mixing Time

In this section we discuss the convergence of the conditional entropy of a
Markov chain to its entropy rate. The entropy rate is the asymptotic limit
of the average information from each additional observation of the Markov
chain, and is used as a measure of uncertainty or complexity of a stochastic
process. We show that there is an equivalence between the rate of convergence
of the n-step transition probabilities to the stationary distribution and the
convergence of the conditional entropy to the entropy rate. From Carpio and
Daley [27] the convergence rate is a property of the entire communicating
class, so any convergence rate in a particular state applies to all states in
an ergodic chain. We demonstrate that the behaviour of the excess entropy
of LRD Markov chains is consistent with the entropy rate of Gaussian LRD
processes. We conclude for ergodic Markov chains that LRD is characterised
by slow convergence and an infinite amount of shared information between
the past and future of the process.

First, we note that the entropy rate of an ergodic Markov chain is the
same as the limit of the conditional entropy, a result commonly seen for
stationary Markov chains [41, pg. 75]. However, we extend the result to a
Markov chain starting from an arbitrary initial state.

Lemma 4.3.1. For an ergodic Markov chain χ the entropy rate is equal to
the limit

H[χ] = lim
n→∞

H[Xn|Xn−1, . . . , X0].

Proof. The proof is omitted as it follows the same argument as Theorem
4.2.1 in Cover and Thomas [41].

Next we note that the entropy rate of an ergodic Markov chain is the same
as a stationary Markov chain, using Lemma 4.3.1. This is a useful result as it
provides the intuition that the entropy rate forgets about its initial state due
to the process’s ergodicity. We make one additional assumption, required for
the calculation of the entropy rate over a countable set, that the conditional
entropy given knowledge of which state the process is in, is finite; formally,
that is

H [Xn|Xn−1 = i] = −
∑
j∈Ω

pij log pij <∞.

This is not an onerous assumption, since for interesting analysis we require
that the entropy of a random variable is finite. We next provide the entropy
rate of ergodic Markov chains.
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Theorem 4.3.2. The entropy rate of an ergodic Markov Chain is

H[χ] = −
∑
i

∑
j

πipij log pij.

Proof. The proof is omitted as it follows the same argument as Theorem
4.2.4 in Cover and Thomas [41].

Therefore we have an explicit form for the entropy rate of a Markov chain
that is ergodic, rather than just stationary, and therefore the expression is
independent of the initial state of the chain.

Next, by analysing the limit of the conditional entropy conditioned on the
previous observations of the Markov chain, we show that the convergence to
the entropy rate is equivalent to the convergence to the stationary distribu-
tion. This provides another perspective on long range dependence, that the
convergence to the entropy rate, the average new information from a random
variable of a stochastic process, is slower. This equivalence is given by the
following theorem.

Theorem 4.3.3. The convergence of the conditional entropy of an ergodic,
positive recurrent Markov Chain to its entropy rate is at the same rate as the
convergence to the stationary distribution.

Proof. We define the initial distribution as θ = {θi}i∈Ω, i.e., P(X0 = i) = θi.
Then the conditional entropy of X1 given X0 is

H[X1|X0] = −
∑
i

∑
j

P(X0 = i,X1 = j) logP(X1 = j|X0 = i),

= −
∑
i

∑
j

θipij log pij.

Considering the conditional entropy of Xn given the history up to step
n − 1, of the previously observed random variables X0, . . . , Xn−1, on the
states i0, i1, . . . , in ∈ Ω, where pi0i1 = P(X1 = i1|X0 = i0),

H[Xn|Xn−1, . . . , X0]

= −
∑
in

. . .
∑
i0

P(X0 = i0, . . . , Xn = in) logP(Xn = in|Xn−1 = in−1, . . . , X0 = i0),

= −
∑
in

. . .
∑
i0

θi0pi0i1 . . . pin−1in log pin−1in .
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Where we have split the joint probability into a path of the conditional
probabilities of transitions on the states, i0, i1, . . . , in ∈ Ω, i.e.,

P(X0 = i0, . . . , Xn = in) = P(X0 = i0)P(X1 = i1|X0 = i0) . . .P(Xn = in|Xn−1 = in−1),

= θi0pi0i1 . . . pin−1in .

By summing through the intermediate states, utilising the (n-1)-step tran-
sition probability of transitioning between states i0 and in−1, p

(n−1)
i0in−1

, we get

H[Xn|Xn−1, . . . , X0] = −
∑
in

∑
in−1

∑
i0

θi0p
(n−1)
i0in−1

pin−1in log pin−1in ,

= −
∑
in

∑
in−1

pin−1in log pin−1in

(∑
i0

θi0p
(n−1)
i0in−1

)
. (4.1)

Note that the term pin−1in log pin−1in quantifies the information contained in
the transitions. As n→∞, the sum

∑
i θip

(n−1)
ij → πj, since a positive recur-

rent chain has a stationary distribution and by the ergodicity of the chain,
it converges to the stationary distribution from any state by Theorem D.0.3.
Taking the limit of Equation (4.1) shows that the convergence of the con-
ditional entropy to the entropy rate depends on the rate of convergence of∑

i θip
(n)
ij → πj.

This theorem shows that the convergence rate of other quantities for
Markov chains are intimately connected to the convergence rate of the sta-
tionary distribution.

Now we consider some more information theoretic quantities, the excess
entropy, which considers the “additional” information that accrues in the
convergence to the entropy rate from the conditional entropy and the mutual
information between past and future, measuring the amount of information
that is shared between the infinite past and infinite future of processes. For
processes on countable sets, the excess entropy was shown to be equivalent
to the mutual information [44]. We define both here and show that in the
case of LRD Markov chains that these two measures are infinite, providing
another characterisation of LRD. Note that we denote the excess entropy, E,
in line with previous work and use the expectation operator E[·].

A definition of LRD, suggested in Li [120], is that the mutual information
between past and future is infinite. In Chapter 3 we showed that for many
classes of LRD processes, such as ARFIMA processes and those meeting some
additional conditions, that the excess entropy is infinite [64]. We show that
in the case of LRD Markov Chains the excess entropy is infinite, by the limits
of the quantities, Qn

ij =
∑n

r=1

(
p

(r)
ij − πj

)
, for i, j ∈ Ω. Carpio and Daley [27]
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used Qn
ij to show that the state space must be infinite in the case of LRD.

We use it to illustrate the slow convergence, and to reinforce an entropic
perspective on LRD.

First we prove a lemma that is used to show the slow convergence be-
haviour of LRD Markov chains.

Lemma 4.3.4. For any sequence {xi}∞i=1 such that

lim
n→∞

n∑
i=1

xi →∞,

we can form a partition {Rm},

Rm = {im, . . . , im+1 − 1}

with i1 = 1, such that ∑
i∈{Rm}

xi ≥ 0

for all m ∈ N.

Proof. For a limit of a diverging partial sum

∞∑
i=1

xi →∞,

there exists by definition an N ∈ N such that

N∑
i=1

xi ≥ a,

for any a ∈ R. Therefore we choose a = 0, i1 = 1 and i2 − 1 = N . This
defines the first set in the partition

R1 = {i1, . . . , i2 − 1},

such that ∑
i∈R1

xi ≥ 0.

We then create a new sequence x(1)
i which begins with first element xN+1,

that is the new sequence starts at the index immediately after N . The
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new sequence diverges since removing a finite portion of the beginning of a
divergent sequence produces a sequence that still diverges. That is,

lim
n→∞

n∑
i=1

x
(1)
i →∞.

We can repeat this argument for R2, with a = 0, i2 = N +1, and i3−1 = M ,
for an M ∈ N. As before we define a new sequence x(2)

i with its first element
xM+1, the element with index M + 1, and repeat the process. Therefore,
we can continue and creates a partition, {Rm} = R1, R2, R3, . . . with the
required properties. That is,

Rm = {im, . . . , im+1 − 1}

such that ∑
i∈Rm

xi ≥ 0,

for all m ∈ N.

Theorem 4.3.5. A countable state LRD Markov chain has infinite excess
entropy.

Proof. By Carpio and Daley [27], we have for LRD Markov chains

lim
n→∞

n∑
r=1

(∑
k

θkp
(r−1)
ki − πi

)
=∞.

From Lemma 4.3.4 we can form sets

Rm = {im, . . . , im+1 − 1}

such that

S(i)
m =

∑
r∈Rm

(∑
k

θkp
(r−1)
ki − πi

)

and S(i)
m ≥ 0 for all m ∈ N, and for any given state i. Since the transition

probabilites, pij are such that 0 ≤ pij ≤ 1, we have

−pij log pij S
(i)
m ≥ 0
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for all i, j and m. By Tonelli’s theorem, we have that∑
i,j

∑
m

−pij log pijS
(i)
m =

∑
m

∑
i,j

−pij log pijS
(i)
m (4.2)

The LHS of Equation 4.2 is∑
i,j

∑
m

−pij log pij S
(i)
m =∞,

by Carpio and Daley [27]. The RHS of equation 4.2 is

∑
m

∑
i,j

−pij log pijS
(i)
m =

∑
m

∑
i,j

−pij log pij
∑
r∈Rm

(∑
k

θkp
(r−1)
ki − πi

)

=
∑
m

∑
i,j

∑
r∈Rm

−pij log pij

(∑
k

θkp
(r−1)
ki − πi

)

=
∑
m

[∑
i,j

∑
r∈Rm

(
−pij log pij

∑
k

θkp
(r−1)
ki + pij log pijπi

)]

=
∑
m

[∑
i,j

∑
r∈Rm

(
−pij log pij

∑
k

θkp
(r−1)
ki

)
+
∑
i,j

∑
r∈Rm

pij log pijπi

]
.

We can swap the order of the summations since the terms all have the same
sign, which gives

∑
m

∑
i,j

−pij log pijS
(i)
m =

∑
m

[∑
r∈Rm

∑
i,j

(
−pij log pij

∑
k

θkp
(r−1)
ki

)
+
∑
r∈Rm

∑
i,j

pij log pijπi

]
,

=
∑
m

∑
r∈Rm

[∑
i,j

(
−pij log pij

∑
k

θkp
(r−1)
ki

)
+
∑
i,j

pij log pijπi

]
,

=
∞∑
n=1

H[Xn|Xn−1, . . . , X1]−H[χ].

Therefore, the excess entropy of LRD Markov chains is infinite.

This result leads to a corollary that classifies LRD Markov chains.

Corollary 4.3.5.1. The mutual information between past and future of a
Markov chain is infinite if the Markov chain is LRD

Proof. Theorem 4.3.5 and Proposition 8 of Crutchfield and Feldman [44]
imply the result.
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Therefore, we have shown that for Markov chains that LRD implies that
the excess entropy is infinite. This supports the notion that this definition of
LRD exhibits the “right” behaviour for Markov chains. As is common with
other definitions of LRD, it is characterised by slow convergence to quantities,
such as sample mean, and we have shown in this section that this behaviour
extends to a common way of measuring uncertainty of stochastic processes,
the entropy rate. Most processes that have been developed that exhibit this
behaviour are defined on a continuous state space, so these results show that
even for discrete valued spaces this behaviour exists. This behaviour is the
result of the infinite second moment of the return time random variable, hence
this is the simplest discrete valued model of which this behaviour occurs. This
result might also lead to useful means of discriminating between SRD and
LRD sequences of discrete values, such as sequences of words.

Other discrete space models have been show to exhibit LRD, such as
Markov renewal processes, which are a Markov chain with the time spent
in a state occurring randomly according to a distribution. However in this
case, the LRD behaviour has been defined by an infinite second moment of
the time spent in a state, the dwell time, which then leads to the return
time also having an infinite moment. Some possible extensions are to anal-
yse the convergence rate to the stationary distribution and entropy rate of
Markov renewal processes and semi-Markov chains. For these processes LRD
behaviour can come from both sources, driven by the return time behaviour
from the Markov chain and those driven by the dwell time distribution.

4.4 Convergence to the Stationary Distribution
of Long Range Dependent Markov Chains

We next examine the actual rate of convergence as a function of H. In
this section we introduce some of the main concepts and relevant results
regarding the convergence of the limit of n-step transition probabilities to the
stationary distribution for Markov chains. This subject has been well studied,
in particular conditions where the Markov chain converges at a geometric
rate, i.e., decays as ρn for some ρ such that 0 < ρ < 1, are well known.
It was also noted in Carpio and Daley [27] that the convergence of the n-
step transitions probabilities to the stationary distribution is “slow” for LRD
processes. We aim to calculate this convergence for LRD Markov chains by
showing the rate of convergence is related to the existence of a corresponding
moment of the return time, with the slowest convergence occurring for LRD
Markov chain where the second moment of the return time doesn’t exist. This
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reinforces previous characterisations for LRD on other stochastic processes
which show slow convergence is a typical behaviour.

In addition to the concepts above we need a notion of distance between
probability mass functions. Specifically, the distance between the n-step
transition probabilities and the stationary distribution. Here we use the
total variation norm.

Definition 4.4.1. The total variation distance between two probability dis-
tributions, µ and ν on a support, Ω, with an associated sigma algebra, F is
defined as

d(µ, ν) = ||µ− ν||TV = sup
A∈F
|µ(A)− ν(A)|.

This definition gives the total variation as the maximum difference be-
tween the two probability distributions across all possible events. An exten-
sion of this distance is called the f -norm, which is used in the statements
of more general convergence theorems where convergence is of the quantity,
f (Xn), to its mean value, given an arbitrary function f : Ω→ [1,∞) of the
states.

Definition 4.4.2. The f -norm of two probability distributions, µ and ν on
a support, Ω is defined as

||µ− ν||f = sup
g:|g|≤f

|µ(g)− ν(g)|,

where µ(g) =
∑

i∈Ω µ(i)g(i), for an arbitrary function g.

Note that the definition here applies to any function g that is dominated
by f . The total variation and f-norms are equivalent using the function
f = 1 [169].

A classic theorem, Theorem 4.4.1 below, classifies the convergence rate of
all finite state Markov chains. Characterising the convergence of finite state
Markov chains is simpler than the countable state case, as every recurrent
Markov chain is positive recurrent and all moments of the return time are
finite [88, Theorem 7.3.1]. Given the finite state space, this implies that the
convergence rate for finite state Markov chains is geometric.

Theorem 4.4.1 (Theorem 4.9 [118]). For an ergodic Markov chain on a
finite state space Ω with stationary distribution π and probability transition
matrix P , there exists α ∈ (0, 1) and C > 0 such that ∀i, j ∈ Ω

max
i∈Ω
||p(n)

ij − πj||TV ≤ Cαn.
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However, since LRD Markov chains have an infinite second moment of the
return time random variable, and as Carpio and Daley [27] note, that LRD
Markov chains must therefore have an infinite state space. Geometric con-
vergence for Markov chains on countably infinite state spaces requires more
conditions, since moments of the return time can be infinite. An important
concept, introduced by Kendall [102], is the following.

Definition 4.4.3 (Geometric Ergodicity). A Markov chain, {Xn}n∈Z+, is
geometrically ergodic if there exist numbers ci, πi and 0 ≤ ρi < 1 for every
state i ∈ Ω such that

||p(n)
ii − πi||TV ≤ ciρ

n
i .

This concept has been prominent in the theory of Markov chains, and has
been applied in many contexts, in particular in queueing theory and Monte
Carlo Markov chain techniques, where it is important to understand the
length of time it takes for a process to converge to its stationary distribution.
Geometric ergodicity implies a fast convergence rate, as it can be bounded
by an exponentially decaying function.

An extension of Theorem 4.4.1 has been developed for Markov chains
on general, not necessarily countable, state spaces. It requires additional
definitions to state its conditions. First we will define the sampled chain of
a Markov chain.

Definition 4.4.4. Let a = {an}n∈Z+ be a distribution, then we define the
sampled chain of a Markov chain {Xn}n∈Z+ for a state i and a subset of the
state space, A, to be

Ka(i, A) =
∞∑
n=0

p
(n)
iA an,

where p(n)
iA is the n-step transition probability of moving from state i to a

subset A.

Now we define the concept of a petite set.

Definition 4.4.5. A set C is called petite if the sampled chain satisfies the
following bound

Ka(i, A) ≥ ν(A),

for all i ∈ C and for all subsets A, and for a non-trivial measure ν, that is
ν(A) 6= 0.
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When Ω is countable, every state i ∈ Ω forms a singleton petite set and we
use these results from general state spaces to refer to petite sets of a single
countable state.

The following theorem summarises some important implications and char-
acterisations of geometric ergodicity. The notation p∞(C) is the limiting
probability of being in a subset C.

Theorem 4.4.2 (Geometric Ergodic Theorem [131, Theorem 15.0.1]). For
an ergodic Markov chain, {Xn}n∈Z+, on a countable state space, the following
conditions are equivalent:

1. The chain {Xn}n∈Z+ is positive recurrent with stationary distribution,
π, and there exists a petite set C, 0 < ρC < 1 and 0 < MC < ∞ and
p∞(C) > 0, such that for all i ∈ C

|p(n)
i,C − p

∞(C)| ≤MCρ
n
C .

2. There exists some petite set C and γ > 1 for all i ∈ C such that

sup
i∈C

Ei[γ
Tii ] <∞,

where Ei[·] = E[·|X0 = i].

Note that we have removed some equivalent conditions that are irrelevant
to our discussion.

Part 2 of Theorem 4.4.2 is a condition on the radius of convergence of
the probability generating function of the return time random variable, and
when considering sets consisting of a single point, it reduces to a condition on
the return time distribution. We define the probability generating function
of the return time distribution as

Fii(z) =
∞∑
n=1

P(Tii = n)zn = E[zTii ].

for z ∈ C. By Theorem 4.4.2, if the radius of convergence of Fii(z) is greater
than 1, then the chain is geometrically ergodic. For a positive recurrent
Markov chain, the radius of convergence is at least 1 since the return time is
finite almost surely, and hence

∑∞
n=1P(Tii = n) = 1.

Lemma 4.4.3. The return time distribution of a Markov chain is heavy-
tailed if and only if the convergence to the stationary distribution is slower
than geometric.
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Proof. The definition of a heavy-tailed distribution, is equivalent the moment
generating function, E[etTii ] being infinite for all t > 0 because a heavy
tail from Definition 4.2.2 is equivalent to having infinite moments [67, pg.
11]. This implies that for any heavy-tailed return time distribution, that
Fii(e

t) = ∞,∀ t > 0 ⇐⇒ E[etTii ] = ∞, ∀ t > 0. For the probability
generating function, Fii(z), t > 0 ⇐⇒ z > e0 = 1. Which implies that the
radius of convergence is exactly 1. By the discussion of the implications of
Part 2 of Theorem 4.4.2 above, this implies that the convergence is slower
than geometric.

Hence, LRD Markov chains must converge more slowly than geometric
convergence. We now use the knowledge of the moments of the return time
to provide a convergence rate for LRD processes and introduce similar results
to geometric ergodicity and in this discussion we will use convergence rates
of the form r(n) = (n+ 1)β.

The direct analogue of the classification of geometric ergodicity for general
rate functions is given by the following theorem.

Theorem 4.4.4 (Theorem 2.1 [169]). For an ergodic Markov chain, a func-
tion f : Ω → [1,∞) and a rate function, r(n) : Z+ → R+. The following
statements are equivalent:

1. There exists a petite set, C, such that

sup
i∈C

Ei

[
TC−1∑
k=0

r(k)f(Xk)

]
<∞,

where TC is the return time to the set C and Ei[·] = E[·|X0 = i].

2. The sequence, r(n)||pni,· − π (·) ||f → 0 as n→∞ for all C such that

sup
i∈C

Ei

[
TB−1∑
k=0

r(k)f(Xk)

]
<∞,

for all subsets B ∈ F where TB is the return time to subset B.

Any of these conditions implies

r(n)||p(n)
i,· − π(·)||f → 0, ∀i ∈ Ω.

We have shown in Lemma 4.4.3, that any infinite moment of the return
time distribution implies that the Markov chain cannot converge geometri-
cally.

We define a condition that we will use throughout this chapter, concerning
the tail decay of the return time random variable.
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Condition 4.4.1. The complementary cumulative distribution function of
the return time random variable Tii has a power-law tail. That is, P(Tii >
n) ∼ cn−α, where α > 1 and c > 0.

Next, we show that we can link the maximum convergence rate of the
Markov chain to the supremum of finite moments of the return time, under
Condition 4.4.1.

To use the first part of Theorem 4.4.4, we require a lemma to that when
f is the constant function equal to 1, i.e., f = 1 that Ei

[∑Tii−1
k=0 r(k)

]
<∞

is equivalent to an easier to analyse expression for power law decay. The
behaviour of the return time random variable is a property of the commu-
nication class, and therefore for an irreducible Markov chain the power-law
behaviour of the return time to a state i applies to all states.

Lemma 4.4.5. For an ergodic Markov chain where P(Tii > n) ∼ cn−α,

Ei

[
Tii−1∑
k=0

r(k)

]
<∞,

if and only if
∞∑
k=1

r(k)k−α <∞.

Proof. We have

Ei

[
Tii−1∑
k=0

r(k)

]
=
∞∑
n=1

(
n−1∑
k=0

r(k)

)
P(Tii = n)

=
∞∑
n=1

r(n)P(Tii > n),

where the second equality follows by Tonelli’s theorem for a positive random
variable.

With this, we can state the next result, Lemma 4.4.6, that the rate of
convergence, via the exponent of a power-law, is dependent on the existence
of a corresponding moment of the return time random variable.

Lemma 4.4.6. The rate of convergence of the n-step transition probabili-
ties to the stationary distribution of an ergodic Markov chain with Condi-
tion 4.4.1, is O(n1−α). Specificaly, for any 0 < β < α− 1

(n+ 1)β||p(n)
i,· − π (·) ||TV → 0.
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Proof. From Theorem 4.4.4, we can show that the return time random vari-
able in Part 1 converges using the function f(Xn) = 1,∀n, since we are con-
sidering the convergence rate from a singleton, that is the state i, which by
definition is a petite set. Now considering f = 1 and the petite set C = {i},
the condition in Part 1 becomes,

Ei

[
Tii−1∑
k=0

r(k)

]
<∞.

By, Lemma 4.4.5 this condition is equivalent to
∞∑
k=1

r(k)k−α <∞,

for an ergodic Markov chain with Condition 4.4.1.
We can apply Theorem 4.4.4, to show the exponents under which conver-

gence occurs. We can see that we require a function r(n) = (n + 1)β such
that, β − α < −1, since any sum

∑∞
n=0(n + 1)γ =

∑∞
n=1 n

γ, diverges for
γ ≥ −1. This implies that we require β < α − 1 and we require β > 0 for
convergence to occur. So any rate between these two will converge.

Condition 4.4.1 requires a return time with power law, e.g., P(Tii > n) ∼
cn−α. We use

α = sup
{
δ : E[T δii] <∞

}
,

which we call the moment index. The range of the moment index is α ≥ 0,
however we are only considering α > 1 in this discussion since we con-
sider positive recurrent Markov chains. From the previous discussion and
Lemma 4.4.3, we can conclude that if all moments of the return time ran-
dom variable exist, then the convergence to the stationary distribution is
geometric. From Lemma 4.4.6, if there exist any infinite moments of the
return time random variable and a power-law tail in the return time random
variable, then the convergence is a power-law with exponent of the moment
index minus 1, i.e., α− 1.

This gives an interesting link between the convergence rate of an LRD
Markov chain and the Hurst parameter. This is summarised in the following
theorem.

Theorem 4.4.7. The rate of convergence of the n-step transition probabilities
to the stationary distribution of a LRD Markov chain power-law decaying
complementary cumulative distribution function for the return time, P(Tii >
n) ∼ n−α, 1 < α < 2, is O(n2−2H). That is, for any 0 < β < H

(n+ 1)2−2β||p(n)
ii − πi||TV → 0,∀i.
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Proof. From Carpio and Daley [27] and Theorem 1 of Daley [45] we have
that the Hurst parameter is linked to the moment index by the following
relationship,

H =
1

2
(3− α) . (4.3)

Since, the exponent α in the complementary cumulative distribution func-
tion represents the moment index in the distribution [67, pg. 32], and by
rearranging (4.3) that α − 1 = 2− 2H. Then the result follows by applying
Lemma 4.4.6.

This result echoes previous work in the area of LRD, e.g., [13], which
shows that the convergence rate to important quantities is slower for LRD
processes and is related to the Hurst parameter. Interestingly, this result
illustrates that the convergence rate slows as the Hurst parameter tends to
one, i.e., as the degree of LRD increases. As H → 1 the exponent tends to
0, and the moment index is close to 1 and at that stage the expectation of
the return time is finite. If the moment index is ≤ 1, then the expectation
becomes infinite, and the Markov chain is null-recurrent, i.e., E[Tii] = ∞
and α = 1.

Finally, we will discuss the behaviour of the excess entropy under the
additional assumption that the return time random variable has a power-law
tail, i.e., P(Tii > n) ∼ cn−α, where α > 1 and c > 0 . Using the same argu-
ment as Lemma 4.4.6, the rate of convergence to the stationary distribution
is O(n1−α). Which by Theorem 4.3.3 implies that the convergence rate of
the conditional entropy to the entropy rate is also O(n1−α). This gives

E(n) =
n∑
r=1

H[Xr|Xr−1, . . . , X1]−H[X ],

∼
∞∑
r=1

n1−α.

Which implies that in the case of power-law tail of the return time random
variable that E <∞ ⇐⇒ α > 2. That is, the excess entropy is finite if and
only if the second moment of the return time random variable is finite. This
leads to the following result.

Corollary 4.4.7.1. For Markov chains with the complementary cumulative
distribution function of the return time has a power law tail, i.e., P(Tii >
n) ∼ cn−α, where α > 1 and c > 0, the Markov chain is LRD if and only if
E is infinite.



Chapter 5

A Survey of Entropy Rate
Estimation

The estimation of the entropy of a random variable has long been an area
of interest in Information Theory. From the original definition by Shan-
non [154], the interest in development of information theory and entropy as
a concept was motivated by aiming to understand the uncertainty of sources
of information and in the development of communications theory. In real
systems, understanding this uncertainty allows more robust models and a
better understanding of complex phenomena.

Estimation of the entropy of random variables has been reviewed on
several occasions, with reviews that have covered the estimation of Shan-
non, differential, and other types of entropy measures. A recent survey by
Verdu [175], reviews techniques for empirical estimation of many informa-
tion measures, such as entropy, relative entropy and mutual information, for
both discrete and continuous data. Amigó et. al. [5] surveyed generalised
entropies, for further quantification of complexity and uncertainty of random
variables. Rodriguez et al. [40] survey and review the performance of 18 en-
tropy estimators for short samples of data, assessing them on their bias and
mean squared error. A comparison of different generalised entropy measures,
and their performance, was recently performed by Al-Babtain et. al. [1].

In this chapter, we review techniques for estimating the entropy rate, a
measure of uncertainty for stochastic processes. This is a measure of the av-
erage uncertainty of a stochastic process, when measured per sample. Shan-
non’s initial work considered the problem of quantifying the uncertainty of
Markov sources of information [154]. We will be considering estimation tech-
niques of the entropy rate for both discrete and continuous data, therefore
covering both Shannon and differential entropy rate estimation. There are a
variety of estimation properties and ways of assessing the quality of estima-

83
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Modelling Estimate
Entropy Rate

Estimate
Parametric Nonparametric

Parametric [11, 24, 25, 26, 29, 35, 36,
37, 71, 83, 100, 125, 132,
135, 136, 141, 144, 160,
166, 184]

[9, 10, 28, 33, 60, 70, 81,
104, 117, 122, 139, 140,
159, 163, 164, 165, 168]

Nonparametric N/A [7, 47, 79, 98, 99, 106, 142,
143, 147, 162, 172]

Table 5.1: Comparison of entropy rate estimation techniques into categories
based on parametric/nonparametric techniques. The modelling estimate
refers to the quantity that is estimated in the technique and the entropy
rate estimate refers to the full entropy rate expression used. For example, if
estimating entropy rate of a Markov chain using plug-in estimation. Then the
modelling estimates may be nonparametric for the transition probabilities,
pij and the stationary distribution, πj. However, the entropy rate estimator
is a parametric estimator for the Markov model. Hence, there are no non-
parametric/parametric estimators because nonparametric entropy estimators
do not use a model.

tors that will be used in this section and throughout the thesis; a discussion
is given in Appendix E.

There are two main estimation paradigms that are used in statistical es-
timation, parametric and nonparametric estimation. Parametric techniques
assume a model for the stochastic process that generates the data, and fit
parameters to the model [42]. In many cases, these parameters are estimated
and then used directly in an entropy rate expression, which we call plug-in
estimation. Nonparametric approaches, on the other hand, make very few as-
sumptions on the process that generates the data. However they can contain
assumptions about properties, such as stationarity [42]. Fewer assumptions
for an estimator can lead to more robustness. This review will cover tech-
niques using both of these approaches, outlining what assumptions are used
in the generation of the estimates. The material has been published in the
paper “A Review of Shannon and Differential Entropy Rate Estimation” [65].

The parametric estimation techniques reviewed here model the data as
Gaussian processes, Markov processes, hidden Markov models and renewal
processes. For Gaussian processes, due to the equivalence of entropy rate
estimation and spectral density estimation, which we discuss below, we in-
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Time
State Space Discrete Continuous
Discrete [7, 11, 29, 35, 36, 37, 71, 74,

75, 79, 83, 98, 99, 100, 106,
125, 132, 135, 136, 141, 143,
144, 160, 166, 172, 184]

[71]

Continuous [7, 9, 10, 24, 25, 28, 33, 47,
60, 70, 81, 104, 117, 122,
139, 140, 142, 147, 159, 163,
164, 165, 168]

N/A

Table 5.2: Comparison of entropy rate estimation techniques. They are
partitioned into 4 categories based whether they are discrete or continuous
time, and whether the work on discrete or continuous valued data.

troduce some literature on spectral density estimation, such as maximum
entropy and maximum likelihood techniques.

Nonparametric estimators are often based on limit theorems of an ex-
pression of the entropy rate, with estimation being made on a finite set of
data. We review and present assumptions and properties of nonparametric
entropy rate estimation techniques for Shannon entropy rate, which are based
on limit theorems of string matches. For differential entropy rate estimation,
we present 3 techniques that were developed as measures of complexity of
time series, rather than strictly as entropy rate estimators. In some special
cases, such as first order Markov chains, these estimators have been shown
to converge to the entropy rate and therefore, in practice, have been used
as entropy rate estimators. Then we present another approach using condi-
tional entropy estimates, based on observations of a finite past, that provides
an exact estimate, given some assumptions. There are far fewer techniques
that have been developed for continuous-valued random variables, which is
not surprising given the history of development of information theory for
transmission of data.

5.1 Parametric approaches

In this section we will discuss parametric approaches to estimate the entropy
rate of a process from observed data. Parametric estimators assume a model
for the data, estimate some aspects of the model from the data and then di-
rectly calculate the entropy rate from those estimates. The three model types
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used are Gaussian processes, Markov processes, and renewal/point processes.

5.1.1 Gaussian Processes

First we will cover a class of processes that are defined by the assumption
that the finite dimensional distributions are normally distributed. Since the
spectral density is the Fourier transform of the autocovariance, all the infor-
mation for the process is encoded in the spectral density.

The entropy rate of a Gaussian process is given by,

h (χ) =
1

2
log(2πe) +

1

4π

∫ π

−π
log(f(λ))dλ, (5.1)

where f(λ) is the spectral density of the process [41, pg. 417].
This reduces the estimation task down to estimating the spectral den-

sity of the process. That is, using an approach to create an estimate of the
spectral density function, f̂(λ), and plugging it in to the expression above.
There are several methods to estimate the spectral density of a Gaussian
process, and hence produce a estimator of the entropy rate. Note that we
can use this framework even in the cases of discrete-valued, discrete-time pro-
cesses, using sampling techniques which can be used to calculate the integral
in (5.1). A variety of parametric and nonparametric techniques have been
developed to estimate the spectral density of a Gaussian process. We will
refer to these as either parametric/nonparametric or parametric/parametric
for the classification by their entropy estimate and modelling estimate type.

5.1.1.1 Maximum Entropy Spectral Estimation

A common technique used for the inference of spectral density is maximum
entropy spectral estimation. This is a fitting paradigm that selects the esti-
mate that maximises the entropy, that is, has the highest uncertainty, given
the current knowledge.

These techniques were introduced by Burg [24, 25], when aiming to model
seismic signals by fitting stochastic models. He showed that given a finite set
of covariance constraints for a process, E[XiXi+k] = αk, k = 0, 1, . . . , p, then
the process that is the best fit for the constraints, given a maximum entropy
approach, is the class of autoregressive processes, AR(p),

Xn = −
p∑

k=1

akXn−k + εn,

where εn ∼ N (0, σ2) is normally distributed and ak and σ2 are selected to fit
the constraints [32].
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This type of analysis can be generalised to auto-regressive moving-average,
ARMA(p,q), models of the form

Xn = −
p∑

k=1

akXn−k +

q∑
k=1

bkεn−k,

where the additional parameters, bk, are selected to fit the behaviour of the
noise process. Maximum entropy spectral analysis in this case also has to
consider the function of the noise, called the impulse response function. It
was shown by Franke [68, 69] that ARMA is the maximum entropy process
given a finite set of constraints on the covariances and constraints on the
impulse response function, E[Xiεi−k] = σ2

εhk, k = 1, . . . , q, where σ2
ε is the

variance of the noise variables and hk are the parameters of the impulse
responses.

The entropy rate of the AR(p) and ARMA(p,q) classes of processes does
not need to perform the integration over the spectral density function, given
in 5.1, because the rate is known to be [64]

h (χ) =
1

2
log(2πeσ2

ε ).

That is, the new information at each step of the process arises purely from
the innovations, and if we can estimate the variance of the innovations then
we can infer the entropy rate directly. Note that σ2

ε is the variance of the
innovation process, not the variance of the AR/ARMA process itself. This
has been extended to the ARFIMA(p,d,q) class of processes, where a process
passed through a linear filter (1− L)d ,−1

2
< d < 1

2
, of the lag parame-

ter L, i.e., LXn = Xn−1 is an ARMA(p,q) process, with the same entropy
rate [64]. However, for a fixed process variance, the entropy rate in this case
is dependent upon the fractional parameter, d.

5.1.1.2 Maximum Likelihood Spectral Estimation

In contrast to maximum entropy techniques, there are a class of techniques
using a likelihood-based approach. These select model parameters based on
likelihood function, which is the probability of parameters that would have
generated the observations. In contrast to maximum entropy techniques,
maximum likelihood requires a model of the data, from which the likelihood
function is calculated.

These were first developed by Capon [26], to estimate the power spectrum
from an array of sensors. Each sensor’s signal is modelled as, xi = s + ni,
where xi is the observed value at a sensor i, s is the signal and ni is the noise
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at sensor i. The maximum likelihood assumption is used in the density of
the noise, a multivariate normal distribution, and then a maximum likelihood
estimate is made for the underlying signal.

Connections between the maximum entropy and maximum likelihood
paradigms have been found in some aspects of spectral estimation. Lan-
dau [113] makes a connection between the maximum likelihood estimate of
a spectral measure based on a one parameter distribution and the maxi-
mum entropy spectral measure, where the maximum entropy measure is the
uniform average over all of the maximum likelihood spectral measures. In
the one-parameter case, maximum entropy is the uniform average over the
parameters of the maximum likelihood estimators.

These approaches can then be used for an entropy rate estimate, calcu-
lating (5.1) above by plugging in the inferred spectral density function.

5.1.1.3 Nonparametric Spectral Density Estimation

The spectral density of a Gaussian process can be estimated directly without
additional modelling assumptions, and then used in (5.1) to estimate the
entropy rate.

A common technique to estimate the spectral density is called the peri-
odogram, which uses the fact that the spectral density is the Fourier trans-
form of the autocovariance function. Therefore, we can calculate the plug in
estimate of the spectral density estimate as

f̂(λ) =
∞∑

j=−∞

ˆγ(j)eijλdλ,

where the autocovariance function can be estimated from observed data as

γ̂(k) =
1

n− k

n−k∑
i=1

XiXi+k.

However, this can cause issues as it may not converge for large sample sizes.
This motivated the research of the maximum entropy processes, given differ-
ent autocorrelation constraints [25].

Some important work in the development of the periodogram on time
series data is from Bartlett [9, 10] and Parzen [139, 140] showing the consis-
tency of the periodogram. Smoothing techniques have been developed and
expanded in work by Tukey [168] and Grenander [81].

Other techniques for nonparametric spectral density have been developed.
Some examples include Stoica and Sundin [159] by considering the estimation
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as an approximation to maximum likelihood estimation. Other nonparamet-
ric techniques are robust to data from long memory processes, which have
a pole at the origin of the spectral density, by Kim [104]. Finally numerous
Bayesian techniques have been developed for smoothing [117], parametric
inference of the periodogram [28, 70], robust to long memory [122], using
MCMC to sample a posterior distribution [33, 60] and using Gaussian pro-
cess priors [163, 164, 165].

5.1.2 Markov Processes

Markov processes have been used to model information sources since Shan-
non’s introduction of information theory [154]. In this section, we discuss
entropy rate estimation assuming the Markov property, that is for a process
{Xi}i∈N,

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn = xn|Xn−1 = xn−1).

There are two main types of Markov processes considered, firstly a sim-
ple Markov chain, and secondly hidden Markov models (HMM). We mention
Markov jump processes at the end, which have had substantially less atten-
tion.

5.1.2.1 Markov Chains

The entropy rate of a stationary Markov chain with state space, Ω, is given
by

H(χ) =
∑
i∈Ω

∑
j∈Ω

πipij log pij, (5.2)

where the pij = P(Xn = j|Xn−1 = i) form the probability transition matrix
and πi is the stationary distribution for the Markov chain [41, Theorem
4.2.4]. For this approach, an implicit assumption of an ergodic Markov chain
is required, for the existence of the stationary distribution.

A few different approaches have been developed to estimate transition
probabilities and the stationary distribution, which utilise parametric or non-
parametric estimators.

The approach that has received most attention is to estimate the sta-
tionary distribution, and the probability transition matrix directly, which
was inspired by the description of plug-in estimators for single samples by
Basharin [11]. Maximum likelihood estimation techniques have been devel-
oped by Ciuperca and Girardin [35], on a finite state space, Girardin and
Sesboue [74, 75] on two-state chains, and Ciuperca and Girardin [36] on
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countable state spaces. These utilise maximum likelihood estimators for πi
and pij, given observations of the chain X = (X0, . . . , Xn),

p̂ij =
Nij[0, n)

Ni[0, n)
, and, π̂i =

Ni[0, n)

n
,

where

Nij[0, n) =
n∑

m=1

1{Xm=j,Xm−1=i}, and, Ni[0, n) =
∑
j∈Ω

Nij[0, n),

are the counting functions of transitions from state i to j and visits to state
i respectively.

Whether estimating from one long sample or many groups of samples, the
estimator from plugging these values into the entropy rate expression (5.2)
are strongly consistent and asymptotically normal [35, 36, 75].

For the countable case, for any finite sample there will be transitions that
have not been observed which are then set to 0, i.e., pij = 0 if Nij[0, n) = 0,
however in the limit as n→ 0 the entropy rate still converges. These results
have been extended to more general measures using extensions of the entropy
rate, such as Renyi Entropy [37].

Kamath and Verdu [100] have analysed the convergence rates for finite
samples and single paths of estimators of this type. They showed that conver-
gence of the entropy rate estimators can be bounded using the convergence
rate of the Markov chain and the number of data observed.

A similar technique on finite state Markov chains was introduced by Han
et al. [83], by enforcing a reversibility condition on the Markov chain tran-
sitions, in particular πipij = πjpji. Using the stationarity of the transition
function of the Markov chain they define an estimator by utilising Shannon
entropy estimators, of the conditional entropy H(X2|X1 = i), and then the
overall estimator is

Ĥ =
∑
i∈E

π̂iĤ(X2|X1 = i),

where π̂i is the stationary distribution estimate.
An estimator was proposed by Chang [29] for finite Markov chains with

knowledge of the probability transition matrices, and calculates the conver-
gence rate to the entropy rate estimate,

ĤN =

∑N−1
n=0 H(Xn)

N
,
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given an initial state, X0 = x and where H(Xn) is the Shannon entropy
given knowledge of the current state, Xn ∈ Ω. This is the same as using
the maximum likelihood estimator of πi, considering the probabilities as pa-
rameters, and then having a known conditional entropy estimate, as in the
previous approach by Han et al. [83]. Chang was able to show that there is
an exponential rate of convergence of this technique to the real value [29]. A
similar result is obtained by Yari and Nikooravesh [184], showing an expo-
nential convergence rate for this type of estimator under an assumption of
ergodicity.

A final approach by Strelioff et al. [160] utilises Bayesian techniques to
calculate the entropy rate of a Markov chain, using the connection to sta-
tistical mechanics. The model parameters, the probability transitions of the
kth order Markov chain, are inferred as a posterior using a prior distribution,
incorporating observed evidence. This is formulated as

P(θk|Mk)P(D|θk,Mk) = P(D, θk|Mk),

where D is the data, Mk is a kth order Markov chain and θk are the pa-
rameters, transition probabilities, of the Markov chain. The same framework
can be applied to other information theoretic measures, the Kullback-Leibler
divergence.

5.1.2.2 Hidden Markov Models

A generalisation of Markov chains is given by hidden Markov Models, where
we observe a sequence, {Yi}i∈Z+ where there is a hidden underlying Markov
chain, {Xi}i∈Z+ , and the probabilities of the observations of the hidden
Markov model only depend on the current state of the Markov chain,

P(Yn = yn|Yn−1, . . . , Y1, Xn, . . . , X1) = P(Yn = yn|Xn).

Hence, this also exhibits the Markov property with dependence on the latent
Markov chain.

In general there is no known expression to directly calculate the entropy
rate of a hidden Markov model [61, 62, 95, 145], so we can’t just describe
the techniques with respect to a plug-in expression for this class of mod-
els. However, some upper and lower bounds have been given by Cover and
Thomas [41, pg. 69], and a proof of convergence of the bounds to the true
value. It was shown that the entropy rate function is analytic in its parame-
ters in [82], and it has been shown that the entropy rate function of a hidden
Markov model varies analytically in its parameters, with some assumptions
on the positivity of the transition matrix of the embedded Markov chain.
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In the more specific case of binary valued models, where both the Markov
chain {Xi}i∈Z+ and observed random variables {Yi}i∈Z+ are binary valued,
there have been expressions derived based on a noise model using a series
expansion and analysing the asymptotics [183, 187, 188], and some analysis
which links the entropy rate to the Lyapunov exponents, arising in dynam-
ical systems [95]. Nair et al. [132] generated some upper and lower bounds,
depending on the stationary distribution of the Markov chain and the en-
tropy of a Bernoulli random variable. Lower bounds were further refined by
Ordentlich [136], by creating an inequality that utilises a related geometri-
cally distributed random variable. The exact expression remains elusive and
is an active topic of research, however as pointed out by Jacquet et al. [95],
the link with Lyapunov exponents highlights the difficulty of this problem in
general.

Although there are no explicit estimators for HMMs, Ordentlich and
Weissman [135] created an estimator for the binary sequence {Yi}i∈Z+ ,

H(Y ) = E

[
H2

(
eYi

1 + eYi
? p ? δ

)]
,

where

H2(p) = −p log2 p− (1− p) log2 (1− p) ,

is the binary entropy function, ? is the binary convolution operator, p and
δ are the probability of the embedded Markov chain changing state and the
probability of observing a different state from the Markov chain. Given these
simplifications, we can get an expression in terms of the expectation of the
random variable and the stationary distribution. Luo and Guo [125] utilised
a fixed point expression that can be developed on the cumulative distribution
function. Then a conditional entropy expression is exploited to calculate an
entropy rate estimate,

H(X1|X0, Y
1
−∞) = E

[
H2

((
1 + e−αX0−r(Y1)−L2

)−1
)]
,

and

α = log ((1− ε) /ε) ,

r(y) = log
PY |X(y + 1)

PY |X(y − 1)
,

whereH2 is the binary entropy function, PY |X() is the conditional probability
of random variable Y given X and L2 is the log-likelihood ratio. Then they
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computed this numerically to form estimates, using a technique that exploits
the fixed-point structure in a set of functional equations.

Gao et. al. [71] use a nonparametric approach using limit theorems dis-
cussed in Section 5.2.1, which is applied to other processes such as Markov
chains. However, with some assumptions, results can be achieved using
limit theorems and fitting parameters to data. Travers [166] uses a path-
mergability condition, if there exist paths that emit a symbol from the pro-
cess {Yi}i∈Z+ ,

δi(w) =
{
j ∈ E : Pi

(
X
|w|−1
0 = w, Y|w| = j

)}
,

such that for two distinct states i and j, there is a state k that can be reached
from both states while creating the same path, i.e.,

k ∈ δi(w) ∩ δj(w).

Then entropy rate estimates are made nonparametrically of the conditional
entropy,

HT (χ) = H(XT |XT−1, . . . , X1),

which under the the stationarity assumption this converges to the entropy
rate. Given these assumptions, the estimates converge to the true value in
the total variation norm at an exponential rate.

Peres and Quas [141] then tackle the problem of finite state hidden
Markov models with rare transitions. The analysis is performed by setting
some rare transitions to 0. In this case, they have defined the entropy rate
as the average over the possible paths w,

H(Y ) = lim
N→∞

1

N

∑
w∈ΩN

P(Y N
1 = w) logP(Y N

1 = w).

Under these assumptions, some lower and upper bounds of the expression
above were found. These bounds are composed of the sums of the entropy rate
of the Markov chain alone, and the entropy of the conditional distribution of
the observed variables given the latent Markov chain.

5.1.2.3 Other Markov Processes

In addition Markov and hidden Markov chains, some less studied Markov
process have had parametric entropy rate estimators developed.

Dumitrescu [56] analysed Markov pure-jump processes, which are pro-
cesses that have an embedded discrete-time Markov chain with jumps occur-
ring at random times, Tt, for the t-th jump, where the rates are given by a
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generator matrix, Q = (qij)i,j∈Ω. In this case, Dumitrescu [56] proved that
the entropy rate is

H(χ) =
∑
i∈Ω

πi
∑
j 6=i

qij log qij +
∑
i∈Ω

πi
∑
j 6=i

qij, (5.3)

for π, the stationary distribution of the Markov chain.
Regnault [144] showed that, similar to the results of Ciuperca and Gi-

rardin [35, 36], that the stationary distribution could be estimated consis-
tently and is asymptotically normal, for both: one long sample paths and an
aggregation of multiple sample paths. Consistency and asymptotic normality
of the generator matrix, Q̂, also proved, which are estimated using

q̂ij =

{
Nij [0,n)

Ri[0,n)
, if Ri[0, n) 6= 0,

0, otherwise,

where Ri[0, n) is the total time spent in state i. Regnault then proved that
plugging these estimates into the parametric form of the entropy rate in (5.3)
results in consistent and asymptotically normal estimates of the entropy rate,
for the case of estimation from one long single path and estimation of multiple
paths.

5.1.3 Renewal/Point Processes

Another important class of stochastic processes are renewal processes. These
processes are a sequence of independent realisations of an inter-event distri-
bution. We define the renewal process S = {Si}i∈N, where Si is the time
of the ith event, and the inter-event times X = {Xi}i∈N, and note that
Si =

∑i
j=0Xj. In a renewal process the Xi are all independent. A key

description of a renewal process is the counting function of events, which is
defined similarly to the Markov chain case above, N [0, n) =

∑∞
j=0 1{Sj≤n},

where each jump increments N [0, n) by 1. The entropy rate in the case of
discrete-time inter-event distribution, pi, is

H(S) = λH(X),

= −λ
∞∑
j=1

pj log pj,

where λ = 1/E[X1].
Gao et al. [71] defined a technique for estimating the entropy rate of

discrete-time renewal processes, for a discrete distribution of inter-event
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times, pj, j = 1, 2, . . ., to model binary valued time series. The estimator
is simply,

H(S) = −λ̂
∞∑
j=1

p̂j log p̂j.

This was shown to be a consistent estimator of entropy rate, however in
practice it was shown that long strings can be undersampled unless the pro-
cess was observed for an extremely long time. This is another example of a
nonparametric model inside of a parametric estimator.

Alternatively, you could estimate pj parametrically, e.g., assume X is a
geometric random variable and then pj = p(1 − p)j and then estimate the
probability, the parameter p and plug this into the entropy rate estimator.

5.2 Nonparametric Approaches
In this section we will be discussing nonparametric estimators of the Shan-
non and differential entropy rate. In contrast to the previous section, the
estimators presented here make very few assumptions about the form of the
data generating process. However, there are still assumptions that are re-
quired to enable the analysis, in particular the stationarity or ergodicity of
the process, to allow for limit theorems which are used to develop estima-
tors with the desired properties. Nonparametric methods are robust to the
type of distribution and parameter choices of models [73, pg. 3]. There
has been more research interest for Shannon entropy rate estimation, rather
than differential entropy rate. However, there has been considerable research
into the estimation of differential entropy, see Beirlant et. al. [12]. The in-
terest into differential entropy estimation techniques continues, particularly
with the increase in computational power to enable efficient calculation of
kernel-density based techniques [20].

5.2.1 Discrete-Valued, Discrete-Time Entropy Rate Es-
timation

In this section we will briefly describe some entropy rate estimators for
discrete-valued, discrete-time processes. We will consider techniques that
utilise completely nonparametric inference of quantities that can be used for
entropy rate inference. Nonparametric estimators have a rich history in in-
formation theory as ways of characterising the complexity and uncertainty
of sources of generating data, particularly when considering communication
theory and dynamical systems.
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The first estimator we discuss is based on the Lempel-Ziv compression
algorithm [186]. The estimation technique is based on a limit theorem on
the frequency of string matches of a given length, for each n ∈ Z+. Given
the length of the prefix sequences of a process starting at digit i, xi, xi+1, . . .,
we define,

Lni (x) = min{L : xi+L−1
i 6= xj+L−1

j , 1 ≤ j ≤ n, j 6= i},

where xi+ni = xixi+1 . . . xi+n. This is the length of the shortest prefix of
xi, xi+1, . . . which is not a prefix of any other xj, xj+1, ... for j ≤ n. A limit
theorem was developed byWyner and Ziv [181], based on the string matching,
which states,

lim
n→∞

Lni (x)

log n
→ 1

H(χ)
, in probability.

This was extended to almost sure convergence, by Ornstein and Weiss [137].
Utilising the idea of this theorem, estimation techniques were developed
which utilise multiple substrings and average the Lni ’s instead of estimat-
ing from one long string, to make accurate and robust estimates with faster
convergence to the true value. The following statement, by Grassberger [79],
was suggested heuristically,

lim
n→∞

∑n
i=1 L

n
i (x)

n log n
=

1

H(χ)
, a.s.

This expression was shown, by Shields [156], to not hold except in the
cases of simple dependency structures, such as i.i.d. processes and Markov
chains. However, a weaker version does hold for general ergodic processes,
which states that for a given ε > 0, all but a fraction of at most ε of the∑n

i=1 L
n
i (x)/n log n, are within the same ε of 1/H(χ) [156].

This is converted to an estimation technique by taking a suitably large
truncation, and calculating the above expression for 1/H(χ). However, to
make consistent estimates for more complex dependency structures, where
the limit expression above does not hold, additional conditions are required.
Kontoyiannis and Suhov [107], and Quas [143] extended this concept to a
wider range of processes, firstly to stationary ergodic processes that obey
a Doeblin condition, i.e., there exists an integer r ≥ 1 and a real number
β ∈ (0, 1) such that for all x0 ∈ A,P(X0 = x0|X−r−∞) ≤ β, with probability
one, and secondly to processes with infinite alphabets and to random fields
satisfying the Doeblin condition.

Kontoyiannis and Suhov [107] followed the results of Shields [156] and
Ornstein and Weiss [137], to show that the above estimator is consistent in
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much further generality with the addition of the Doeblin condition. They
also state that without the condition, 1/h(χ) is the asymptotic lower bound
of the expression.

Another class of estimators, which was initially suggested by Dobrushin [55],
uses a distance metric on the “closeness” of different strings. We let ρ
be a metric on the sample space Ω, and define sequences of length T , as
xi+Ti = (xi, xi+1, ...., xi+T ), with each of the n sequences being independent.
A nearest neighbour estimator is defined as,

ĥn = − 1

n log n

n∑
j=1

log

(
min
i:i 6=j

ρ(xi+Ti , xj+Tj )

)
.

Grassberger suggested this as an estimator with the metric ρ(x, y) = max{2−k :
xk 6= yk} [79]. This is an equivalent formulation using the Lni quantity, and
therefore the same results from Shields apply. Similar techniques for nearest
neighbour estimation were developed by Kaltchenko et al. [99], and the con-
vergence rate for the nearest neighbour estimator was shown by Kaltchenko
and Timofeeva [98]. Another related estimator was developed by Vatutin and
Mikhailov [172], where they calculated the bias and consistency for nearest
neighbour estimation.

A generalisation of the nearest neighbour entropy estimator was intro-
duced as a measure called Statentropy by Timofeev [162]. This estimator is
defined as,

ĥn = − 1

n log n

n∑
j=1

log

(
(k)

min
i:i 6=j

ρ(xi+Ti , xj+Tj )

)
,

where min(k) is the kth order statistic, i.e., the kth smallest value of the
pairwise comparisons. Hence, this is a generalisation of the nearest neighbour
estimator, by considering the kth smallest value, rather than the minimum.
This estimator has been shown to be consistent, with convergence rates to
the entropy rate developed by Kaltchenko et al. [98].

5.2.2 Continuous-Valued, Discrete-Time Entropy Rate
Estimation

We consider some non-parametric estimators of entropy rate for continuous-
valued data in two different classes, entropy measures that are adapted from
Shannon entropy, that we can use for comparison of complexity of a system,
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and absolute measures, which are intended to accurately estimate the value
of differential entropy rate for a system.

The measures adapted from Shannon entropy include two closely related
approaches, approximate [142] and sample entropy [147], which utilise pair-
wise comparisons between substrings of realisations of the process to cal-
culate a distance metric. Another popular approach is permutation entropy
which utilises the frequency of different permutations of order statistics of the
process [8], and then calculates the estimate using an analogue of Shannon
entropy on the observed relative frequencies [7].

These techniques were developed to quantify the complexity of continuous-
valued time series, and therefore the intention is to compare time series as
opposed to provide an absolute estimate. These types of measures, from dy-
namic systems literature, have been successful in the analysis of signals to
detect change [2, 31, 111]. From the probabilistic perspective we have an in-
terest in the accurate, nonparametric estimation of differential entropy rate
from data, without any assumptions on the distribution of the underlying
source, and to compare complexity using this quantity.

The final technique we consider, specific entropy [47], is an absolute mea-
sure of the entropy rate. Due to computational advances, the technique uses
nonparametric kernel density estimation of the conditional probability den-
sity function, based on a finite past, and uses this as the basis of a plug-in
estimator.

We present each of these techniques in more detail below.

5.2.2.1 Approximate Entropy

Approximate entropy was introduced by Pincus [142], with the intention of
classifying complex systems. However it has been used to make entropy
rate estimates, since it was shown in the original paper to converge to
the true value in the cases of i.i.d. processes and first-order finite Markov
chains. Given a sequence of data, x1, x2, ..., xN , we have parameters m
and r, which represent the length of the substrings we use for comparison
and the maximum distance, according to a distance metric, between sub-
strings to be considered a match. Then we create a sequence of substrings,
u1 = [x1, ..., xm], u2 = [x2, ..., xm+1], ..., uN−m+1 = [xN−m+1, ..., xN ] and we
define a quantity,

Cm
i (r) =

1

N −m+ 1

N−m+1∑
j=1

1{d[ui,uj ]≤r},

where d[x(i), x(j)] is a distance metric. Commonly used metrics for this
measure are the l∞ and l2 distances.
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The following quantity, used in the calculation of the approximate en-
tropy, is defined in Eckmann and Ruelle [59] and used in Pincus [142],

Φm(r) =
1

N −m+ 1

N−m+1∑
i=1

logCm
i (r).

We now define the approximate entropy, ApEn(m, r), which is,

ApEn(m, r) = lim
N→∞

[
Φm(r)− Φm+1(r)

]
.

For finite sequences of length N this is positively biased because of the
logarithm function E[log(X)] ≤ log(E[X]) by Jensen’s inequality [52] and
the counting of some substrings twice. The bias in this estimator decreases
as the number of samples, N , gets larger [52].

Pincus showed in his initial paper, that approximate entropy would con-
verge to the entropy rate for i.i.d and finite Markov chains [142]. However,
this doesn’t hold in more general cases. It has been noted that the approx-
imate entropy corresponds to the differential Renyi entropy rate of order
1 [110].

Approximate entropy is also quite sensitive to the two parameters, m, and
r, and hence care must be taken when selecting these parameters [52, 185]. It
is recommended that m has a relatively low value, e.g., 2 or 3, which will en-
sure that the conditional probabilities can be estimated reasonably well [52].
The recommended values for r, are in the range of 0.1σ − 0.25σ, where σ
is the standard deviation of the observed data [52]. Another approach has
been suggested by Udhayakumar et. al. [170] to replace r by a histogram
estimator based on the number of bins, and generate an entropy profile based
on multiple different rs, to reduce the sensitivity to this parameter.

5.2.2.2 Sample Entropy

A closely related technique for estimating the entropy rate is sample en-
tropy [147], which was developed to address the issues of bias and lack of
relative consistency in approximate entropy. The sample entropy, SampEn,
is a simpler algorithm than ApEn, with a lower time complexity to make an
estimate and eliminating self-matches in the data. Similar to the approxi-
mate entropy, it has been noted that the sample entropy corresponds to the
differential Renyi entropy rate of order 2 [110].

We define sample entropy, by using very similar objects to approximate
entropy. Given a time series, x1, ..., xN , of length N , we calculate substrings
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umi = [xi, ..., xi+m−1] of length m, and choose the parameter, r, for the max-
imum threshold between strings. We now define two related quantities,

A =
N−m∑
i=0

1{d[um+1
i ,um+1

j ]<r},

B =
N−m+1∑
i=0

1{d[umi ,u
m
j ]<r},

where d[umi , u
m
j ] is a distance metric, with the usual distance metrics l∞ and

l2. Finally we define the sample entropy as,

SampEn = − log
A

B
.

As A will be always less than or equal to B, this value will always be non-
negative.

Sample entropy removes the bias that is introduced via the double count-
ing of substrings in approximate entropy, however sample entropy does not
reduce the source of bias that is introduced by the correlation of the sub-
strings used in the calculation [52, 147].

5.2.2.3 Permutation Entropy

In addition to the two related entropy rate estimation techniques, we in-
troduce permutation entropy developed by Bandt and Pompe [7]. Unlike
the previous two, this has not been shown to converge to the true entropy
rate, for particular stochastic processes. However, it was developed for the
same purpose, to quantify the complexity of processes generating time se-
ries data. Further development of the theory was undertaken by Bandt and
Pompe, justifying the development of permutation entropy as a complexity
measure [8].

Given a set of discrete-time data, x1, . . . , xN , we consider permutations,
π ∈ Π of length n which represent the numerical order of the substring data.
For example, with n = 3 three consecutive data points (2, 7, 5) and (3, 9, 8)
are examples of the permutation 021, and (5, 1, 3) and (7, 4, 5) are examples
of the permutation 201, the the numbers in the permutation represent the
ordering of the substring. For every permutation π, the relative frequencies
are calculated as

p(π) =
|{t|t ≤ T − n, xt+1, ..., xt+n has type π|}

T − n+ 1
.
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Hence, we are working with approximations to the real probabilities, how-
ever we could recover these by taking the limit as T → ∞ by the Law of
Large Numbers [57, pg. 73] using a characteristic function on observing the
permutation, with a condition on the stationarity of the stochastic process.

The permutation entropy of a time series, of order n ≥ 2, is then defined
as,

H(n) = −
∑
π∈Π

p(π) log p(π).

Permutation entropy has a parameter which controls the length of the
order permutations considered, the order n. The number of permutations for
an order scales as n!, which creates a time complexity issue as the required
computations grows very quickly in the size of the order. Hence, the minimum
possible data required to observe all of the possible permutations of order
n, is n! data. However, it is claimed that the permutation entropy is robust
to the order of the permutations used [7]. In practice smaller n’s are used,
such as n = 3, 4, 5 due to the growth of the number of permutations which
requires more data to observe all of the permutations [7]. There is another
parameter, embedding delay, which is the period of the elements that are
considered. That is, for a sample, x1, x2, . . . for an embedding delay of τ the
elements used in the permutation entropy calculation are x1, x1+τ , x1+2τ . In
this work we will be using τ = 1.

5.2.2.4 Specific Entropy Rate

The specific entropy rate was defined by Darmon [47], to provide a differen-
tial entropy rate estimation technique that has a stronger statistical footing
than the previously defined estimation techniques. The intent of the de-
velopment of this quantity was to create a measure of the complexity of a
continuous-valued, discrete-time time series, as a function of its state. Then
a differential entropy rate estimate is made by taking a time average of the
specific entropy rate estimates, and therefore can be applied in particular to
ergodic processes. The approach is to consider the short-term predictability
of a sequence, by utilising a finite history of values to create a kernel density
estimate of the conditional probability density function. Then use the kernel
density estimate to plug-in to the differential entropy rate formula, when us-
ing the conditional density function. For the calculation of this quantity, a
parameter of the length of the history, p, is used for a kernel density estimate
of the conditional probability density function.

The definition of the specific entropy rate, makes a finite truncation of the
conditional entropy version of the entropy rate, from Theorem B.2.1. One
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condition is required in the formulation of the theoretical basis, which is that
the process being measured is conditionally stationary. That is, given the
conditional distribution function of Xt+1, conditional on (Xt, . . . , Xt−p+1) =
X, does not depend on the value of t for a fixed length of history being consid-
ered, p. In the paper by Darmon [47], they show that the conditional entropy
up to order p, depends on the state specific entropy rate of a particular history
(xp, . . . , x1) = xp

1 and the density of the possible pasts (Xp, . . . , X1) = Xp
1 .

This is shown by an argument which establishes that,

h
(
Xt|Xt−1

t−p
)

= −E
[
E
[
log f

(
Xt|Xt−1

t−p
)]]

.

Where the first expectation is with respect to f(xp
1), and the second expec-

tation is with respect to f(Xp+1|xp
1). Given this relationship and the law of

total expectation, the specific entropy rate, of order p, h(p)
t , is defined as

h
(p)
t = h

(
Xt|Xt−1

t−p = xt−1
t−p
)
,

= −E
[
log f

(
Xt|Xt−1

t−p
)]
,

= −
∫ ∞
−∞

f (xp+1|xp
1) log f (xp+1|xp

1) dxp+1.

Hence, the specific entropy rate estimator, ĥ(p)
t , defined by plugging in the

estimate of the density obtained by kernel density estimation, f̂ (xp+1|xp
1), is

ĥ
(p)
t = −E

[
log f̂ (xp+1|xp

1)
]
.

Using the specific entropy rate an estimate of the differential entropy rate of
order p, ˆh(p), is defined as

ĥ(p) =
1

T − p

T∑
t=p

ĥ
(p)
t ,

=
1

T − p

T∑
t=p

−E
[
log f̂ (xp+1|xp

1)
]
,

which is the time average of all the specific entropy rates across the observed
states.

Darmon [47] implemented a version of the specific entropy rate by using
kernel density estimation to estimate the conditional entropy, based on the
past. The specific entropy rate implementation relies on some parameters to
construct the kernel density estimation, which is the length of the past, p and
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the p+1 bandwidths, k1, . . . , kp+1 that are used in the kernel density estima-
tion [47]. The parameter choice can have large impacts on the quality of the
estimation, in particular depending on how long the past that is considered.
The suggested technique for selecting p is a cross-validation technique which
removes an individual observation and l observations either side. Then the
following expression is minimised for its parameters p, k1, . . . , kp+1,

CV (p, k1, . . . , kp+1) = − 1

T − p

T∑
t=p+1

log f̂−t:l
(
Xt|X t−1

t−p
)
.

where f̂−t:l is the conditional density with the points removed [47]. A sug-
gested approach is to take l = 0 and only remove the individual observa-
tion [48]. In practice, it is advised to fix p and then calculate the bandwidths
due to the computational complexity of the cross-validation [47].
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Chapter 6

Robust Estimation for LRD
Processes

Estimation of entropy rate is a classical problem in information theory. The
entropy rate is the asymptotic limit of the per sample average entropy of a
discrete-time stationary stochastic process as defined in Definition 2.1.7. It
is used as a measure of the complexity of the process and thus to perform
comparisons, and detect anomalies.

Estimation of entropy rate is comparatively easy when the underlying
stochastic process is SRD. The reality is that many real data sequences are
LRD. Nonparametric approaches to estimation have the very significant ad-
vantage that they do not depend on a fitting a model of the data and hence
have a degree of robustness missing from parametric estimators, in particular
when estimating processes exhibiting LRD.

A great deal of theory has been developed on nonparametric entropy rate
estimation from data from finite alphabets [107, 156], since these models form
the basis of discrete codes for communications. These estimation techniques
have been extended to countably infinite alphabets [106, 143]. However,
these approaches cannot be directly applied to continuous-valued stochastic
processes, which are a main topic of interest in this chapter.

There are several approaches that are designed for estimating the (dif-
ferential) entropy rate of continuous-valued stochastic processes: approxi-
mate [142], sample [147] and permutation entropy [7]. These estimators have
been used in estimating the entropy rate for processes, particularly for those
that are memoryless or have short memory. For example, approximate en-
tropy has been shown to converge to the entropy rate for independent and
identically distributed processes and first order Markov chains in the discrete-
valued case [142]. However, at best, these estimators are sensitive to their
parameter choices; at worst we shall see that they have severe defects when
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Values Estimation Quality Computation
Estimation Technique Discrete Continuous Consistent Asymp. unbiased Correlation Length Complexity Time (s)
Grassberger [79] 4 6 6 6 ≈ log(N)
Kontoyiannis and Suhov [107] 4 6 4 4 ≈ log(N)
Statentropy [162] 4 6 4 4 ≈ log(N)
Vatutin and Mikhailov [172] 4 6 6 6 N
Approximate Entropy [142] 4 4 6 6 m O(N2) 10.01
Sample Entropy [147] 4 4 6 6 m O(N2) 263.0
Permutation Entropy [7] 4 4 6 6 n O(n!N) 0.82
Specific Entropy Rate [47] 6 4 4 4 p O(N2p) 504, 219.9
NPD Entropy 6 4 4 4 ≈ log(N) O(N log(N)) 39.96

Table 6.1: Comparison of differential entropy rate estimators. The discrete-
value (only) estimators have more desirable properties: being consistent and
asymptotically unbiased. Approximate, sample and permutation entropy
can be applied to either discrete or continuous valued sequences but these
are biased and inconsistent. Correlation length refers to the longest lag at
which correlations are included into the entropy into the estimate where the
length of data is N , the length of substrings matched in approximate and
sample entropy is m, the order of permutations used in permutation entropy
is n, and p is a specified parameter of specific entropy rate. Note also that
although specific entropy rate behaves relatively well, the computation time
of the author’s R implementation are prohibitive. We have only included
the complexity and computation time for the continuous-valued estimators
that we test in this chapter. The computation time is the total time to
make estimates on 1000 time series of length 1000, with more details of the
experiment in Section 6.4.2.

applied to LRD processes.
In this chapter, we compare the existing approaches and develop a new

nonparametric differential entropy rate estimator – NPD Entropy – for continuous-
valued stochastic processes. It combines the best of the existing discrete
alphabet nonparametric estimators with the standard signal processing tech-
niques to obtain an estimate that is more reliable than the alternatives, in
particular when applied to LRD processes. We have implemented this esti-
mator in Python as a package, NPD-Entropy, that is available on GitHub1.

Table 6.1 outlines our results. Notably, several discrete alphabet ap-
proaches come with guarantees of consistency but cannot be applied directly
to continuous-valued processes as they are based on matching strings. On the
other hand, the main approaches that have been applied to continuous values
– approximate, sample and permutation entropy – are not consistent, except
in special parametric cases, and what’s more the use of (short) finite win-
dows limits their ability to cope with processes with extended correlations.

1https://github.com/afeutrill/npd_entropy
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We show, for instance, that these estimation techniques do not make accu-
rate estimates for the entropy rate for processes whose dependency structure
has slowly decaying correlations.

We examine these entropy rate estimates performance on data gener-
ated by long range dependent (LRD) processes. We apply the estimation
approaches to two common LRD processes: Fractional Gaussian Noise and
ARFIMA(0,d,0), for which we have expressions for the differential entropy
rate that can be directly evaluated, see equations 3.4 and 3.6 respectively.
Thus we can show exactly how bad some estimators are when applied to an
even slightly challenging data set.

Another alternative – specific entropy rate – was developed as a technique
to calculate the predictive uncertainty for a specific state of a continuous-
valued process [47]. This approach utilises more rigorous statistical foun-
dations to estimate the entropy rate of a state given the observation of a
finite past. The technique is able to make accurate entropy rate estimates
by calculating the average over the states. This is able to capture the com-
plex dependency structure with past observations. However this comes at a
large computational cost, and hence cannot be used for large sequences, or
for streaming data to make online estimates (see Table 6.1 for computation
time comparisons).

Our estimation technique – NPD Entropy – utilises the extensive research
into nonparametric estimation of the entropy rate for discrete alphabets to
provide estimation techniques that are robust to strongly correlated pro-
cesses. We utilise a connection between the Shannon entropy and differential
entropy [41, pg. 248], and then extend it to the case of Shannon and dif-
ferential entropy rates. The technique quantises the continuous-valued data
into discrete bins, then makes an estimation of the quantised process using
discrete alphabet techniques. Then the differential entropy rate estimate is
calculated by adjusting by the quantitative difference between the differential
entropy rate and the Shannon entropy rate of the quantised process.

We show that NPD Entropy inherits many useful estimation properties
from discrete alphabet estimators, including consistency and bias. Hence,
by choosing a finite alphabet rate estimator that has a set of the desired
properties we can ensure that NPD Entropy also has these properties for
inference on continuous-valued data. We show that NPD Entropy estimates
perform well in the estimation of differential entropy rate of stochastic pro-
cesses which have more complex dependency structure, in particular LRD
processes

We also compare the runtime performance of techniques and find that
quantised estimation can make much faster estimates than any approach of
comparable accuracy.
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6.1 Performance of existing estimation techniques

In this section we will analyse samples of continuous valued, discrete time
LRD data using the existing continuous-value entropy rate estimators. Most
analysis and tests of Approximate and Sample entropy have been based on
i.i.d. processes or finite state Markov chains i.e., processes with either very
short or no correlations. However, many real processes, in particular the
types of processes for which complexity measures are useful, exhibit long-
range correlations. To create sample data for testing we created 50 samples
of 2000 data points, and averaged the estimates to get the values presented.
Figure 6.1 shows just how bad common estimators are for FGN. Both the
shape and scale of the entropy estimate curves are quite wrong (with the ex-
ception of the shape of the sample entropy). Note that the adapted Shannon
entropy estimators are all positive, hence will not be able to estimate the
negative values of the differential entropy rate.

One might be concerned that the results stem from particular parameter
choices, or other details of the estimates, so we investigate further below.

Figures 6.2 and 6.3 show the entropy rate estimates for the Sample and
Approximate Entropy for both Fractional Gaussian Noise and ARFIMA(0,d,0)
for two different parameters m = 2, 3 and r = 0.2 as recommended in
Delgado-Bonal and Marshak [52].

Sample Entropy approximates the the shape of the real entropy rate func-
tions but provides large overestimates. This reinforces the use of Sample
Entropy as a measure of complexity of a time series, as long as it is not
claimed to be an estimate of differential entropy rate. Unfortunately the
name implicitly makes this claim.

Approximate Entropy, however, fails to even approximate trend or range
of values. Interestingly, this technique is also quite sensitive to changes in
the value of m.

Figure 6.4 shows the Permutation Entropy of order n = 3. These results
are indicate that permutation entropy is not a good choice for strongly corre-
lated process as all estimates exist on a very small scale, and there seems to be
little difference in measured complexity across the range ofH. The maximum
Permutation Entropy for any process, with n = 3, isH(π) = log2(3!) u 2.585,
and all of the estimates are within 0.2 of the maximum value. Hence, this
measure does not seem to able to pick up the entropy rate trend in LRD
data. Although the trend looks promising on a small scale, once we compare
the behaviour to the actual entropy rate, it is a poor estimator.

Naively, these estimates can be improved by extending the lengths of the
windows being used, however, for LRD processes large windows would be
required. Unfortunately the computational complexity of the approaches (see
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Figure 6.1: Approximate, sample and permutation entropy
estimates for FGN. The red curve shows the true entropy
rate for FGN processes. Note the wide discrepancies in the
estimates.
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Figure 6.2: Entropy-rate estimates of FGN and
ARFIMA(0,d,0) with process variance σ2 = 1 using
Sample Entropy (r = 0.2). The estimates show the rough
trend of the LRD processes, however it overestimates the
differential entropy by a large amount. See Figure 6.1, note
that the parameter choice affects the results but not in a
useful manner.
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Figure 6.3: Entropy-rate estimates of FGN and ARFIMA(0,d,0) with process
variance σ2 = 1 using Approximate Entropy (r = 0.2). It fails to even
approximate trend or range of values. Interestingly, this technique is also
quite sensitive to changes in the value of m.

Figure 6.4: Entropy-rate estimates of FGN and ARFIMA(0,d,0) with process
variance σ2 = 1 using Permutation Entropy (n = 3). This appears to capture
the trend of the entropy rate function, however the scale of the changes is
wrong. Noting that the maximum Permutation Entropy for any process is
log2(3!) ≈ 2.585 the range displayed is very small.
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Figure 6.5: Specific Entropy rate (p = 10) estimates of the entropy rate
of FGN. These estimates are very good over the range of H, however the
estimates start to diverge for smaller values of H.

Figure 6.6: Specific Entropy rate (p = 10) estimates of the entropy rate
of FGN. These estimates are very good over the range of H, however the
estimates diverge as H tends to 1.
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Table 6.1) grows with increases window sizes and we see stability problems
at least with Approximate Entropy, so there does not appear to be a suitable
trade-off between computational cost and accuracy.

Estimates derived from Specific Entropy rate are shown in Figures 6.5
and 6.6, with p = 10. Specific entropy rate provides good agreement with
the entropy rate for LRD FGN and ARFIMA(0,d,0), for H > 1

2
, with greater

divergence occurring in the CSRD parameter range for small H values. How-
ever, note that the computational cost for these estimates is very high, being
over 500,000 seconds to make 1000 estimates using 1000 data points.

6.2 The Link between Shannon and Differential
Entropy Rates

Motivated by the problems in existing continuous-value entropy rate estima-
tors, as illustrated in the previous section, we make a connection between
the differential and Shannon entropy rate, which we use as the basis of an
estimation technique. We propose an approach where we quantise the con-
tinuous valued process into a discrete valued process, then apply estimators
from the discrete valued domain, and then translate back to differential en-
tropy. Note that we will be using natural logarithms for differential entropy,
and therefore we will be using the units of nats throughout the chapter.

Given the definitions of Shannon and differential entropy, Definitions 2.1.1
and 2.1.6 respectively, we utilise a connection that exists between these quan-
tities for a quantised version of continuous data. From Cover and Thomas [41,
pg. 248], a link is defined between differential entropy and Shannon entropy,
for a quantised window size ∆ and the associated Shannon entropy H(X∆),
where X∆ = xi, if i∆ ≤ X < (i+1)∆. This is made explicit in Theorem 2.1.6
of the background with H

(
X∆
)

+ log (∆)→ h(X) as ∆→ 0.
Hence, if we quantise and apply Shannon entropy estimators we may be

able to make a useful estimation of differential entropy, particularly with
finer quantisations and more data. We extend this relationship to the case of
Shannon entropy rate and differential entropy rate, by considering the joint
entropy of a quantised process and then taking the limit as n → ∞. We
clarify the relationship between the entropy rates in the following theorem,
which is an extension of Theorem 8.3.1 of Cover and Thomas [41].

Theorem 6.2.1. If the joint density function, f(x1, ..., xn), of a stationary
stochastic process, χ = {Xm}m∈N is continuous and Riemann integrable ∀n ∈
N and f(x1, ..., xn) log f(x1, ..., xn) is Riemann integrable ∀n ∈ N, then

H(χ∆) + log(∆)→ h(χ), as ∆→ 0.
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Remark. An implication, as noted in Cover and Thomas [41] is that the
entropy rate of an n-bit quantisation of a continuous-valued, discrete-time
stochastic process, χ is approximately h(χ) + n, when using log2 in the ex-
pression above.

Proof. The beginning of the proof follows an identical argument to Theorem
8.3.1 of Cover and Thomas [41], but for multiple random variables. Note
that Cover and Thomas use the i as an index for the bin of the quantised
value, and for this we use the index j We use i for the index of the random
variable of the stochastic process. For all finite n ∈ N, the joint density of the
finite collection of random variables is given by f(x1, ..., xn). We partition
the range of each random variable Xi into bins of length ∆ with the random
variables indexed by i ∈ {1, . . . , n}. Similar to equation 8.23 of Cover and
Thomas [41], by the mean value theorem for multiple variables [182], there
exists (x

(j)
1 , ..., x

(j)
n ) ∈ Rn, such that

f(x
(j)
1 , ..., x(j)

n )∆n =

∫ (j1+1)∆

j1∆

...

∫ (jn+1)∆

jn∆

f(x1, ..., xn)dx1 . . . dxn.

Where the x(j)
i are such that,

ji∆ ≤ x
(j)
i < (ji + 1)∆.

Where we denote by x(j)
i ∈ R the quantised value of the bin indexed by ji

for the ith random variable Xi. Then we consider the quantised random
variables, X∆

i , like equation 8.24 of Cover and Thomas [41], by partitioning
each random variable, for i ∈ {1, . . . , n}, into bins indexed by ji ∈ Z,

X∆
i = x

(j)
i , if ji∆ ≤ Xi < (ji + 1)∆.

Then, like equation 8.25 of Cover and Thomas [41], the probability that(
X∆

1 , ..., X
∆
n

)
=
(
x

(j)
1 , ..., x

(j)
n

)
is given by

P(
(
X∆

1 , ..., X
∆
n

)
=
(
x

(j)
1 , ..., x(j)

n

)
) =

∫ (j1+1)∆

j1∆

...

∫ (jn+1)∆

jn∆

f(x1, ..., xn)dx1 . . . dxn,

= f(xj1 , ..., xjn)∆n.

Where we use the notation

P
((
X∆

1 , ..., X
∆
n

)
=
(
x

(j)
1 , ..., x(j)

n

))
= P(x

(j)
1 , ..., x(j)

n ).
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We define P(X∆
n = x

′(j)
n |X∆

n−1 = x
′(j)
n−1, ..., X

∆
1 = x

′(j)
1 ) with the simpler nota-

tion

P(x′(j)n |x
′(j)
n−1, ..., x

′(j)
1 ) =

∫ (jn+1)∆

jn∆

f(xn|xn−1, ..., x1)dxn,

= f(x′(j)n |x
′(j)
n−1, ..., x

′(j)
1 )∆.

Where the second equality is due to the single variable mean value theorem.
Note that we differentiate that the value for the conditional density, x′(j)n , for
the single value mean value theorem and the multivariate density, x(j)

n , used
in the multivariate mean value theorem may be different.
Hence, following the argument of Cover and Thomas [41], we consider the

conditional Shannon entropy of the quantised random variable,

H(X∆
n |X∆

n−1, ..., X
∆
1 ) = −

∞∑
j1=−∞

. . .
∞∑

jn=−∞

P(x
(j)
1 , ..., x(j)

n ) log(P(x′(j)n |x
′(j)
n−1, ..., x

′(j)
1 )),

= −
∞∑

j1=−∞

. . .
∞∑

jn=−∞

f(x
(j)
1 , ..., x(j)

n )∆n log(f(x′(j)n |x
′(j)
n−1, ..., x

′(j)
1 )∆),

= −
∞∑

j1=−∞

. . .
∞∑

jn=−∞

f(x
(j)
1 , ..., x(j)

n )∆n log(f(x′(j)n |x
′(j)
n−1, ..., x

′(j)
1 ))

−
∞∑

j1=−∞

. . .
∞∑

jn=−∞

f(x
(j)
1 , ..., x(j)

n )∆n log(∆).

The joint density, f(x1, ..., xn), and conditional density f(xn|xn−1, ..., x1) are
Riemann integrable ∀n ∈ N, which implies that as ∆→ 0,

−
∞∑

j1=−∞

. . .
∞∑

jn=−∞

f(x
(j)
1 , ..., x(j)

n )∆n log(f(x′(j)n |x
′(j)
n−1, ..., x

′(j)
1 ))

→ −
∫ ∞
−∞

. . .

∫ ∞
−∞

f(x1, ..., xn) log(f(xn|xn−1, ..., x1))dx1 . . . dxn,

= h(Xn|Xn−1, . . . , X1).

We have
∞∑

j1=−∞

. . .

∞∑
jn=−∞

f(x
(j)
1 , ..., x(j)

n )∆n = 1,

since it is the sum over all possibilities of a probability mass function.
Therefore, we get as ∆→ 0,

H(X∆
n |X∆

n−1, . . . , X
∆
1 ) + log(∆)→ h(Xn|Xn−1, . . . , X1).
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From this point on we diverge from the single variable proof of Theorem
8.3.1 of Cover and Thomas [41], since we require analysis of the two limits
as ∆→ 0 and n→∞ simultaneously. Now we define a function

g(k, n,m) = H(X2−n

i |X2−m

i−1 , ..., X
2−m

i−k ) + log(2−n).

We note that

g(k + 1, n,m) ≤ g(k, n,m),

since conditioning cannot increase entropy. We have that

g(k, n+ 1,m) ≤ g(k, n,m),

and

g(k, n,m+ 1) ≤ g(k, n,m),

since the entropy is not increased by considering a smaller bin size, and by
conditioning on smaller bins.
Since for functions, f(n,m), with

f(n+ 1,m), f(n,m+ 1) ≤ f(n,m)

we have from Schilling [153, pg. 29]

inf
n∈N

inf
m∈N

f(n,m) = inf
n∈N

f(n, n) = inf
m∈N

inf
n∈N

f(n,m). (6.1)

Therefore by the definition of the differential entropy rate

h(χ) = lim
k→∞

h(Xk|Xk−1, ..., X1),

= lim
k→∞

lim
∆→0

H(X∆
k |X∆

k−1 . . . , X
∆
1 ) + log(∆), by Theorem 2.1.6

= inf
k∈N

inf
n∈N

inf
m∈N

g(k, n,m), since the infima of g is equivalent to the limit,

= inf
k∈N

inf
n∈N

g(k, n, n), by the expression (6.1) with respect to k and m,

= inf
n∈N

inf
k∈N

g(k, n, n), by the expression (6.1) swapping the order of infima,

= inf
n∈N

lim
k→∞

[
H(X2−n

i |X2−n

i−1 , ..., X
2−n

i−k ) + log(2−n)
]
,

= lim
∆→0

[
H(χ∆) + log(∆)

]
.
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Remark. In the process of proving this theorem we showed that in the limit
as ∆ → 0 there is a link between the Shannon conditional entropy of the
quantised process and the conditional differential entropy. This is,

h(X∆
n |X∆

n−1, . . . , X
∆
1 ) + log(∆)→ h(Xn|Xn−1, . . . , X1),

for any collection of random variables of length n.

As an example, if we consider the quantisation of length ∆ = 1, then the
quantised process should be close to the differential entropy as,

H(χ∆
1 ) + log(1) = H(χ1),

≈ h(χ),

and we can make an approximation of the differential entropy rate, which
we will use as the basis of an estimation technique in the following section.
However, there will be an error which is due to the difference between the
real differential entropy rate, and the approximation of the integral at the
quantisation size, ∆.

Another aspect to note is that as the quantisation window gets finer, i.e.,
as ∆ gets smaller, the term in the estimator, log (∆) → −∞. There is a
potential concern that this disparity between the correction term and the
actual estimate could lead to numerical errors. Thus, smaller quantisations
aren’t necessarily better. There may be a range of values of ∆, where the
estimation is closest to the real value, and we can trade off these potential
errors. In the next section, we will define an estimator using the connection
in Theorem 6.2.1 and investigate empirically the ideal range of choices of ∆
for practical estimation.

6.3 NPD-Entropy Estimator
Theorem 6.2.1 gives us a way to convert an estimator of entropy rate for
discrete-valued, discrete-time stochastic processes into an estimator for a
continuous-valued process. We call this strategy NPD-Entropy estimation
and explore its properties in this section. In particular we develop links
from the properties of the Shannon entropy rate estimator that is selected
to the corresponding NPD-estimator. In the following arguments we assume
that the differential entropy rate and Shannon entropy rate of the quantised
sequence exist.

We begin with the definition of NPD-Entropy, short for Non-Parametric
Differential Entropy estimator.
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Definition 6.3.1 (NPD-Entropy). The NPD-Entropy estimator of the dif-
ferential entropy rate, h(χ), of a continuous-valued, discrete time stationary
stochastic process, χ = {Xi}i∈N, using a Shannon entropy rate estimator,
H(χ∆), of the corresponding quantised discrete-time, discrete-valued stochas-
tic process χ∆ = {X∆

i }i∈N with window size, ∆, is defined as

ĥNPD(χ) = Ĥ(χ∆) + log (∆) .

We analyse some properties of NPD-Entropy and start by considering the
consistency of the estimation technique.

Theorem 6.3.1. NPD-Entropy, ĥNPD, is a consistent estimator as ∆→ 0,
if and only if the associated Shannon entropy rate estimator, Ĥ, is consistent,
i.e., as ∆→ 0 the following two are equivalent:

lim
n→∞

Ĥ(χ∆
n )→ H(χ∆),

lim
n→∞

ĥNPD(χn)→ h(χ),

where n denotes the length of the data sequence to which the estimator is
applied.

Proof. Appling the definition of consistency gives

lim
n→∞

ĥNPD(χn) = lim
n→∞

Ĥ(χ∆
n ) + log (∆) .

Applying Theorem 6.2.1 and the consistency of the Shannon entropy rate
estimator gives the result.

Remark. This is a very general result, that only relies on the existence of a
consistent estimator for discrete valued stochastic processes. The argument is
agnostic to the mode of convergence used, and the strength of the convergence
result depends on which mode of convergence is used for the consistency of
the Shannon entropy rate estimator. That is, if we have convergence in
probability of the Shannon entropy rate estimator, then we have convergence
in probability of the resulting differential entropy rate estimator.

Note that this result gives consistency of the estimator in the limit. In
practice, we will fix the window size to use for online estimation. However,
this will result in an estimator that is overbiased.

We continue this discussion by considering some other properties that
are useful for estimation, in particular the bias, variance and mean squared
error. We summarise these facts in the following theorem, and show how we
can inherit properties from discrete estimation.
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Theorem 6.3.2. The NPD-Entropy, ĥNPD, constructed from an estimator
of the Shannon entropy rate, Ĥ has the following properties:

1. BiasH [Ĥn(χ∆)]→ Biash[ĥNPD(χ)],

2. Var(Ĥn(χ∆))→ Var(ĥNPD(χ)),

3. MSE(Ĥn(χ∆))→ MSE(ĥNPD(χ)),

as ∆→ 0.

Proof. From the definition of bias [146, pg. 126] we have

BiasH [Ĥn(χ∆)] = E[Ĥn(χ∆)]−H(χ∆),

→ E
[
ĥNPD(χ)− log (∆)

]
− (h(χ)− log (∆)) , as n→∞,

= E[ĥNPD(χ)]− h(χ),

= Biash[ĥNPD(χ)].

Where we can exchange the limit as n → ∞ with the expectation in the
second equality, since the expectation of Ĥ is finite.

The result for the mean squared error of the estimator follows by an
identical argument, substituting, ĥNPD − log (∆) and h− log (∆) for Ĥ and
H respectively as n→∞, therefore we omit the argument.
We consider another characterisation of the mean squared error, known as
the bias-variance decomposition [85, pg. 24],

MSE[Ĥ] = BiasH [Ĥ]2 + Var(Ĥ),

and placing in terms of the variance and substituting the bias and mean
square error equivalences as n→∞, we get

Var(Ĥ) = BiasH [Ĥ]2 −MSE[Ĥ],

→ Biash[ĥNPD]2 −MSE[ĥNPD], as n→∞,
= Var(ĥNPD).

Note that the NPD Entropy estimator itself will be biased for any finite
quantisation window, since the results hold in the limit as n→∞.
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Figure 6.7: NPD Entropy estimates with ∆ = 1 compared to actual entropy
rate of FGN. The estimates have a small bias, with the bias increasing as
H → 0 and the entropy rate function asymptotically tends to −∞.

6.4 Evaluation of Performance

To test this concept, we have implemented an estimator using Lempel-Ziv
string matching [186] matching, as described by Grassberger [79] to create
a quantised entropy rate estimator. The conditions in Kontoyiannis and
Suhov [106] ensure that we produce a consistent Shannon entropy rate esti-
mator. We will use these to then make estimates of the differential entropy
rate.

The estimator was implemented in Python using the NumPy library [84].
The estimator, NPD-Entropy is available in the GitHub repository, referred
to in the beginning of the chapter.

We were able to parallelise the implementation of NPD Entropy to in-
crease the performance of the estimation technique. This is because we can
calculate the length of each prefix sequence, Ln(x), independently, without
knowledge of any other prefix sequence. This has been implemented using
the Python library Numba [112], which is able to parallelise the loop to cal-
culate the length of the prefixes, L(x). This approach is able to speed up the
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Figure 6.8: NPD Entropy estimates with ∆ = 1 compared to actual entropy
rate of ARFIMA. Note the close correspondence, with a small bias.

implementation, and hence allows the algorithm to be able to be run online,
for quick estimation of entropy rates of streaming data.

The estimators were tested on data generated by FGN and ARFIMA(0,d,0)
processes. We generated 50 test samples of 2000 data points for each process,
where the length was chosen to capture the longer term trends of sequences
of LRD processes. The estimates for each process were then averaged, to
show the mean estimate at each value of H. The FGN realisations were gen-
erated using the Davies-Harte method [49], and the python package fbm [66].
The ARFIMA(0,d,0) realisations were generated using the Durbin-Levinson
algorithm [130], from the R package arfima [173].

From observing both Figure 6.7 and Figure 6.8, utilising a quantised
interval size of 1 (i.e., ∆ = 1), we see overall good agreement, except in the
region H → 0 for FGN. Note that in the case of ARFIMA that H = d+ 1

2
. In

all cases the NPD-Entropy estimator was better at picking up the underlying
trends of the entropy rate functions for strongly correlated processes than the
measures adapted from Shannon entropy in Section 6.1, but specific entropy
rate produced closer estimates of the differential entropy rate at a large cost
in computation time.
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There are a few places where errors can be introduced in practical estima-
tion using this estimation technique. The limit theorems and the results on
the inherited properties, from Section 6.3, of the estimator hold as ∆ → 0,
which for practical purposes we are unable to achieve. However, this leaves
us with trying to understand the possible errors that have been introduced.
Potential sources of estimation error are from the the quantised Shannon en-
tropy rate estimate, and the approximation of the integral for the differential
entropy rate estimate, i.e., as

∑
f(x)∆→

∫
f(x), due to the result holding

in the limit. As the quantisation window decreases, for ∆ < 1 and as ∆→ 0,
small differences from the true value and estimated values can be enlarged by
the adjustment to the Shannon entropy rate estimate of log (∆). To test the
deviation from true value, as a function of the quantisation size, we produced
estimates for a range of different quantisation window sizes, 1

3
, 1

2
, 1, 2, 3, and

across the range of the Hurst parameter, [0, 1]. Given that we have standard-
ised all of the process variances to be σ2 = 1, the window size is in direct
proportion with the variance. This means that small fluctuations of the pro-
cess will produce the next realisation within the same bin, and therefore the
measured uncertainty will come from larger shifts. In general we would tailor
the window size to the variance, since we want to balance the number of bins
and the expected size of movements between random variables of the process.

The results for FGN are shown in Figure 6.9. The most accurate of these
across the whole range is at ∆ = 1, which is surprising as we should be more
accurate as the quantisation size decreases. However, we are balancing a few
different sources of error and in this case the best result is to quantise at a
window size of 1. As the Hurst parameter tends to 1, the finer quantisations
become more accurate estimators This is because as the correlations become
stronger the variation in the process will be more subtle, and the process
appears more smooth, hence the smaller quantisation windows are required
to estimate the uncertainty.

The results are similar for ARFIMA(0,d,0) processes, with the closest
estimate, across the entire parameter range, to the true value of the entropy
rate being when the quantisation window was of size, ∆ = 1. For the rest of
the quantisation sizes the estimates got worse as they got further away from
1, i.e. the next closest were ∆ = 1

2
and 2. The finer quantisations, ∆ = 1

2
, 1

3

became more accurate as H increased, since the changes in the time se-
ries occur on a much smaller scale the positive correlations increase. For
ARFIMA(0,d,0) processes, the finer quantisations are better able to capture
the divergence towards −∞ as H → 1. Similar to FGN, the finer quanti-
sations are required to pick up the deviations as H → 1. We recommend
that ∆ = 1 is used in general, and decreasing the window size as the Hurst
parameter tends to 1, to capture the smaller variations in the process as the
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Figure 6.9: Comparison of the NPD-Entropy estimates and true values of
differential entropy rate of FGN with ∆ = 1

3
, 1

2
, 1, 2, 3. The window size

of one has the best estimates, however as the Hurst parameter tends to 1
the finer quantisations, i.e., 1

3
and 1

2
, approximate the asymptotic decrease

better.

autocorrelation of the time series increases to 1.

6.4.1 Robustness of estimator to non-stationarity

In statistics and probability theory, a common assumption that is made to
enable analysis of stochastic processes is stationarity, meaning that the prob-
ability distribution is time invariant over the stochastic processes, see Defi-
nition 2.1.8.

In reality, many real world processes are not exactly stationary, hence we
need to understand how robust the quantised estimation technique is to non-
stationarity. In the previous section we have shown that the estimator has
good performance in the cases of LRD processes. However, we would like
to test the performance against processes that have a convergent entropy
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Figure 6.10: Comparison of the NPD-Entropy estimates and true values of
differential entropy rate of ARFIMA(0,d,0) with ∆ = 1

3
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2
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to FGN, the window size of 1 provides the best estimates over the range
of Hurst parameter values, however we also see that the finer quantisations
become more accurate as H increases towards 1.

rate, but have moment statistics that vary with time. In this section, we will
analyse some well defined non-stationary processes, with an entropy rate that
converges, and use the estimators to make estimates of their entropy rates,
and compare to the true value. We test two different approaches, the first
being a process with a non-stationary mean that alternates deterministically
with a common variance, and a random walk with increasing variance.

The initial test for a departure from stationarity is by considering a mean-
shifting process. We define this as Xn = µn + εn, where εn ∼ N (0, 1) and
independent and we use the example where µn alternates periodically be-
tween 0 and 1 every 100 samples. The mean shifts are predictable so the
entropy rate is

h (µn + εn) = h (εn)



124 Chapter 6. Robust Estimation for LRD Processes

=
1

2
log(2πe) ≈ 1.419,

since there is no uncertainty in the mean. The changing mean makes accu-
rate estimation of differential entropy rate more difficult because all of the
estimators we are aware of assume stationarity.

We test this process with 50 realisations of 2000 data points. The mean
and variance of the estimates are shown in Table 6.2. NPD-Entropy, with a
choice of parameter ∆ = 1, estimated the entropy rate to be 1.554, which
overestimates the true value by a small amount, similar to specific entropy
rate. Sample and permutation entropy both overestimate the true value, with
permutation entropy having an extremely low variance, close to its maximum
value, log(3!) ≈ 2.585. Approximate entropy was a large underestimate,
similar to the behaviour with m = 3 for both the ARFIMA(0,d,0) and FGN
estimates.

The second test for robustness to a departure from non-stationarity is
to consider a simple model that has a stationary mean, but varying second
order statistics, a Gaussian Random Walk, {Zn}n∈N. This model is a discrete
time stochastic process, where each step Xi ∼ N (0, 1) and independent and
we consider the sum of the steps Zn =

∑n
i=1 Xi. The entropy rate can

be derived by considering the limiting conditional entropy to give h(Zn) =
h(Xn) ≈ 1.419 once again. However, the process has non-stationary second
moment Var(Zn) = n.

As in the previous test, 50 realisations of the model were made and then
estimates were made and the mean and variance calculated. Most of the
estimators exhibited behaviour similar to the mean-shift process, but the
NPD-estimator performed worse.

The usage of specific entropy rate depends on estimator of the conditional
entropy. We used Darmon’s [47] implementation in R, using kernel density
estimation to estimate the conditional entropy. These initial results suggest
that specific entropy rate is relatively robust, but its alternatives are not.
However NPD-Entropy is somewhat robust to mean shifts, if not to changes
in variance. The variance of the Gaussian walk grows proportionally to the
number of random samples of the process, as opposed to the mean shifting
process which has constant variance of the normally distributed noise. This
may explain the difficulty of estimating the true value, as all of the bins are
likely to have small numbers of observations, unless large amounts of data
points are observed. Therefore, we have to be careful in how processes depart
from stationarity, to understand how closely we can estimate the true entropy
rate.
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Mean Shift Gaussian Walk
Estimation Technique Mean Variance Mean Variance
Approximate Entropy 0.482 0.0008 0.099 0.0007
Sample Entropy 2.263 0.015 2.336 0.205
Permutation Entropy 2.582 0.000005 2.497 0.0002
Specific Entropy Rate 1.478 0.0005 1.523 0.0007
NPD-Entropy 1.554 0.002 2.385 0.083

Table 6.2: Differential entropy rate estimates applied to two non-stationary
processes: a Gaussian mean shift process and a Gaussian walk, both with en-
tropy rates 1.419. Each process was simulated 50 times. Sample entropy and
permutation entropy both provide large overestimates of the true entropy,
and approximate entropy provides large underestimates. NPD-entropy be-
haves only slightly worse than specific entropy rate on the mean-shift process,
but somewhat worse on the Gaussian walk. Estimator variances are included
to inform about the relative size of the errors.

6.4.2 Complexity Analysis of Estimation Techniques

The worst-case asymptotic time complexities of the estimators tested here
are shown in Table 6.1. Approximate entropy has two loops, first to calculate
every Cm

i (r), the number of strings that exceed a threshold, by fixing one of
the substrings, then a second loop over all of the Cm

i (r)’s, i.e., for a pairwise
comparison of all substrings. Hence, the time complexity is approximately
O(N2), where N is the length of data. Sample entropy requires two separate
loops, which run over the substrings of order m and m + 1, all calculating
the number of pairs that exceed a threshold, i.e., two loops of order N2,
which also results in a pairwise comparison and hence the time complexity
is O(N2). Permutation entropy takes the relative frequency of each possible
permutation, of order n, of which there exist n! permutations. This is per-
formed across the entire data set, and hence the worst-case time complexity
for permutation entropy is O(n!N), and hence is extremely sensitive to the
choice of order n. With appropriate choices of order this can be used as
a quick measure of complexity of time series, however it grows extremely
quickly with the order of permutation and hence there is a trade off here
between how much data is available with what order can be selected for this
technique.

Specific entropy rate’s complexity depends on the choice of estimator of
the conditional entropy. We used Darmon’s [47] implementation in R which
used the package np for nonparametric kernel density estimation [47], to
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estimate the conditional entropy. The technique calculates the bandwidth
parameters and then calculates the product and univariate kernel estimates
for windows of length p. Hence, to make an estimate we do N kernel density
evaluations, and therefore Np for the calculation of the estimate of the joint
density per window, and hence with a loop over all of the windows we get an
approximate complexity of O(N2p). Although this does not appear substan-
tially worse that the other estimators, the actual amount of computation is
dramatically larger.

NPD Entropy leverages Shannon entropy rate estimators. In our case we
use the Grassberger [79] estimate, which utilises string-matching based on
Lempel-Ziv algorithm [186], which has a complexity of O(N log(N).

Complexity estimates are useful to understand scaling properties, but the
actual computation times for finite data can be dominated by non-asymptotic
terms, and so we test performance directly using 1000 estimates of N = 1000
data points. Tests were performed on a 2.4GHz Intel Core i5 processor with
8GB of RAM, running MacOS 10.14.6. The results are shown in Table 6.1.
Approximate entropy was much slower than sample entropy, with permuta-
tion entropy being the fastest by far. However NPD-Entropy is faster than
all but permutation entropy and runs extremely quickly compared to specific
entropy rate. The specific entropy rate was considerably slower than all the
measures with the 1000 estimates being in the order of 6 days.

Given the time complexity, we suggest using NPD-Entropy as an efficient
way of classifying complexity of a continuous-valued system. NPD-Entropy
provides a more accurate and robust measurement with comparable or better
computation times than most alternatives. Specific entropy rate is superior
for accurate measures, but computationally prohibitive except where accu-
racy is the only criteria.

6.5 Conclusion

We have defined a new technique for the nonparametric estimation of the
differential entropy rate. We made an explicit link between the differential
entropy rate and the Shannon entropy rate of the associated quantised pro-
cess. This forms the basis of the estimation technique, NPD Entropy, by
quantising the continuous data and utilising the existing theory of Shan-
non entropy rate estimation. We have shown that this estimation technique
inherits statistical properties from the Shannon entropy rate estimator and
performs better than other differential entropy rate estimators in the presence
of strongly correlated data.

In addition, we have investigated the robustness to non-stationarity of the
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estimation technique, and provided over-estimates of the entropy rate. More
research is required to analyse the robustness to non-stationarity and under-
stand if the influence is similar to the Shannon entropy rate case. Finally, we
have demonstrated the utility of NPD Entropy and shown that it can be run
quickly and efficiently to make decent estimates if used in an online mode.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The development and analysis of LRD model has been of large interest over
the previous few decades. This surge in research activity was inspired by dis-
coveries by Harold Hurst, showing that real-world phenomena, in particular
the flood levels of the Nile river can have strong correlations with the past.
Models of LRD phenomena that do not account for this behaviour can be
poor representations of the real system.

In this thesis, we introduce a new perspective on LRD, by characteris-
ing the properties of an information theoretic measure, the entropy rate, by
the slow convergence and by the infinite sum of a quantity related to the
convergence. Then we consider the robust estimation of information theo-
retic quantities for data generated by LRD processes, given the impact of
the entropy rate characterisation. Intuitively, there should be more shared
information between the past and future values of an LRD process, due to
the strong correlations with the past. This point of view has been consid-
ered by a few authors, with a suggestion by Li [120] to define the boundary
between short and long memory by the finiteness of the mutual information
between past and future. We show that for Markov chains with power-law
tail of the return time random variable that Li’s idea was correct, however in
the case of Gaussian processes that CSRD processes also have infinite mutual
information between past and future. Confirming the intuition that there is
an infinite amount of information shared between the past and future, and
therefore has slow convergence rates to the entropy rate from the conditional
entropy. Given the difficulties of quantifying the entropy rate of LRD pro-
cesses, we investigated the robust estimation of the entropy rate, and find
that this task is difficult to perform quickly and accurately.

129
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In Chapter 3 we analysed the entropy rate function, as a function of
the Hurst parameter, for LRD Gaussian processes. Utilising two common
models, FGN and ARFIMA, we illustrated the behaviour of the entropy
rate function, and show that these two processes behave differently in their
information theoretic properties, despite being closely related in the time and
frequency domain. We proved that two information theoretic measures, the
excess entropy and mutual information between past and future are equal
for Gaussian processes, which we then used to characterise LRD and CSRD
Gaussian processes as those where the measures are infinite. Thus we showed
that LRD and CSRD Gaussian processes are characterised by an infinite
amount of shared information between and past and future. Which implies
that these processes have a “slower” convergence rate as these quantities are
related to the convergence of conditional entropy to the entropy rate.

Continuing to characterise the behaviour of LRD, we turned our atten-
tion to Markov chains defined on discrete state spaces in Chapter 4. We
showed that the convergence of the conditional entropy to the entropy rate
is at the same rate as the convergence of the n-step transition probabilities
to the stationary distribution, thus allowing us to phrase this as a Markov
chain mixing time problem. As a consequence, we proved that the mutual
information between past and future is once again infinite for LRD Markov
chains, providing the same characterisation of LRD as the previous chapter
on Gaussian processes. Finally, we utilised the literature on Markov chain
mixing to show that LRD Markov chains do in fact have slower convergence,
and this depends on the Hurst parameter, and therefore the strength of pos-
itive correlations.

This work indicates that may be able to relate strong positive and negative
correlations on general stochastic process, by information theoretic proper-
ties. This raises the natural questions such as “Are there more classes of
stochastic processes for which LRD and CSRD is equivalent to the mutual
information between past and future being infinite?”. In addition, we have
discovered that the convergence of the conditional entropy to the entropy
rate, via observing the process, has slower convergence for LRD processes.
Thus identifying another type of quantity whose convergence rate is impacted
by LRD. This result may hold in full generality for LRD processes, but more
research is required for the potential characterisation.

We shifted our attention to the question of estimation in Chapters 5 and 6.
In Chapter 5 we provided a review of the state-of-the-art of the estimation of
the entropy rate for both Shannon and differential entropy rate. Providing
in-depth analysis of both parametric and non-parametric techniques, and
highlighting the relatively fewer number of techniques for the estimation of
differential entropy rate.
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Continuing on the discussion of entropy rate estimation in Chapter 6, we
illustrated the difficulties and issues with the estimation of entropy rate for
LRD processes. Using the current state of the art estimation techniques we
find that the current techniques either have issues with accuracy or computa-
tional complexity. We developed a technique, NPD Entropy, to estimate the
differential entropy rate that uses Shannon entropy estimation on quantised
data, motivated by a theorem we developed which connects the differential
entropy rate and the Shannon entropy rate of a quantised process. This
technique provides a good balance between the accuracy and computation
time, and the differential entropy rate estimator is able to inherit important
properties of the Shannon entropy rate estimator.

The entropy rate is used as a measure of complexity or uncertainty of a
stochastic process. Therefore, its robust estimation is useful in many applied
settings as a way of classifying the complexity of a data source. By utilising
our technique, differential entropy rate estimation is translated to a Shan-
non entropy rate estimation problem, for which many estimators have been
developed from limit theorems, with elegant estimation properties.

In this thesis, we have demonstrated that there are useful characterisa-
tions and insights that can be gained from approaching LRD from the per-
spective of information theoretic measures. These characterisations can be
used in applied contexts to provide understanding of LRD in real-phenomena,
and then have been used to form estimation techniques that robust to the
influence of LRD.

7.2 Future Work

There are a few extensions and generalisations to the work in this thesis,
to both the characterisation and estimation of the entropy rate for LRD
processes.

From the initial discoveries in the characterisation of the behaviour of
the entropy rate for LRD Gaussian processes and Markov chains, this begs
the question of whether the behaviour can be generalised to more classes of
stochastic processes. For continuous-valued processes, the proof of the char-
acterisation of the convergence rate of the conditional entropy to the entropy
rate relies on a characterisation of the entropy rate for Gaussian processes,
therefore new techniques would be required to answer this question. More
general techniques may be able to make advances on whether the mutual in-
formation between past and future is infinite for LRD and CSRD processes,
from the information theoretic perspective.

Another related question, alluded to in Chapter 3, is finding which class
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of processes have maximum entropy under the constraint of power-law de-
caying covariances. From previous results for AR and ARMA processes, and
Figure 3.6 it appears likely that this would be the ARFIMA class. This has
applications to the theory of estimation, and model selection.

As has been noted earlier in the thesis, LRD on discrete state spaces is
much less studied. Some obvious generalisations of the analysis presented for
Markov chains, could apply to semi-Markov chains, and potentially to more
general point processes defined on discrete spaces. There are some additional
difficulties that arise in the analysis of these more general processes, instead
of transitioning state at each time step, the time between transitions follows
a probability distribution. However, this behaviour means that the LRD
behaviour can be driven by the infinite second moment of the distribution
of time between transitions, in addition to the infinite second moment of the
return time to the same state as in the Markov chain case. This means that
LRD can occur on a finite state space, in contrast to Markov chains that
require infinite states for the infinite second moment of the return time. The
interaction of these two causes of LRD behaviour on discrete state spaces
may provide some interesting research avenues.

There are improvements that can be made to the differential entropy rate
estimator, NPD Entropy. Analysis to understand if other estimation proper-
ties of interest can be inherited from a chosen Shannon entropy rate estima-
tion technique. Accurate quantification of the error between the estimated
and true value would be very useful, in being able to generate confidence
intervals and to quantify the uncertainty in the estimate. Following this,
further understanding of the relationship between the errors and improved
methodology for generating bin sizes, to achieve the theoretical asymptotic
properties. Outside of NPD Entropy, continuing the development of ro-
bust differential entropy rate estimation is valuable, as we have shown that
no techniques provide robustness to non-stationarity, given the underlying
assumptions of stationarity in many techniques. Therefore, developing esti-
mators robust to real-world data would be valuable, which could be used to
understand the complexity and uncertainty in many real-world data gener-
ating sources, and provide insight on real-world phenomena.
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NPD Entropy Estimator Package

We developed an implementation of the estimator defined in Chapter 6, NPD
Entropy, in Python. This can be found on GitHub at the following url,
https://github.com/afeutrill/npd_entropy. In this appendix we will briefly
describe the estimation code and its function.

A.1 Installation
The code can be installed in two ways, via cloning the GitHub repository or
more simply through pip. From the command line, input this command.

pip install npd_entropy

A.2 Functionality
As described above, the code implements the NPD Entropy estimator as
defined in Chapter 6. The estimation technique was originally defined in
Grassberger [79], with the description of the technique given in Chapter 5.

Given the technique that we have developed it requires a quantisation
of the input sequence of continuous-valued data. We provide three different
quantisation approaches, these are:

• partitioning of the data into equally spaced bins, equally spaced count-
ing up from the origin,

• partitioning of the data into equally spaced bins, equally spaced centred
at the origin,

• partitioning the data into bins that have the same amount of probability
mass, assuming a normally distributed random variable.
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The code for the respective quantisations is given in the block below.

import numpy as np
from numba import jit, prange
from scipy.special import erfinv

def quantise_series( series , delta) :
"""
Returns a quantised version of a continuous−valued, discrete−time

process. This takes the floor to the nearest increment of 1/res
Parameters:
series − numpy array: A time series of continuous valued variables
delta − float : the bin width of the quantisation
Returns:
Numpy array of a discrete quantised version of the series
"""
series = np.array(series)
return np.floor( series∗1/delta) ∗ delta

def quantise_series_around_zero(series, delta):
"""
Returns a quantised version of a continuous−valued, discrete−time

process. Quantises centred around zero.
Parameters:
series − numpy array: A time series of continuous valued variables
delta − float : the bin width of the quantisation
Returns:
Numpy array of a discrete quantised version of the series
"""
series = np.array(series)
return np.rint(series∗1/delta) ∗ delta

def quantise_series_normal_quantiles(series, num_quantiles):
"""
Returns a quantised version of a continuous−valued, discrete−time

process. This returns discrete quantiles of the same probability
mass, according to a normal distribution

Parameters:
series − numpy array: A time series of continuous valued variables
num_quantiles − int: The number of possible quantiles to use as bins

for the quantisation
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Returns:
Numpy array of a discrete quantised version of the series
"""
series = np.array(series)
bins = np.array([np.sqrt(2) ∗ erfinv(2 ∗ ( i/num_quantiles) − 1) for i

in range(num_quantiles+1)])
return np.digitize( series , bins)

All of these techniques return a discrete version of the original data.
To calculate the entropy rate estimate we pass the quantised series into

the estimator. The implementation of the estimator is given by the following
code, which performs string matching across many offset sub-sequences of
the quantised data. Then the Shannon entropy rate estimator is returned for
the quantised data.

@jit(nopython = True)
def grassberger_estimate(series, n):
"""
Implementation of the estimator described in P. Grassberger "

Estimating the information content of symbol sequences and
efficient codes", IEEE Transactions on Information Theory 1989.

Parameters:
series − numpy array: A discrete−valued time series.
n − int: Number of past values to start for string matching.
Returns:
Shannon entropy estimate of the discrete−valued time series
"""
L_num_array = np.zeros((n,))
for i in prange(n):
L_num = 0
for num in np.arange(n):
for j in np.arange(1, n−num+1):
# Comparing the series to back in time only
if np.all( series [n+i:n+i+num] == series[n+i−j−num:n+i−j]):
break
# If the end of the loop with no matches, then set L_num to the

previous length
if j == n − num:
L_num = num − 1
# Tests whether non−match has occurred, then exits
if L_num > 0:
break
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L_num_array[i] = L_num
reciprocal = 1/(n ∗ np.log(n)) ∗ L_num_array.sum()
H_est = 1/reciprocal
return H_est

Given the Shannon entropy rate estimate we then calculate the differential
entropy rate estimate by adding the log ∆ term. The NPD Entropy estimate
is given by the following function.

def npd_entropy(H_est, delta):
"""
Generic implementation of NPD Entropy, which calculates a differential

entropy rate estimate, h_est, given a Shannon entropy rate
estimate, H_est.

Parameters:
H_est − float: Shannon entropy rate estimate, from any technique
delta − float : the bin width of the quantisation
Returns:
Differential entropy rate estimate of a quantised estimate
"""
return H_est + np.log(delta)

A.3 Usage
An example of the usage of the functions to quantise the series is given by
the following command, after importing the npd-entropy package.

import npd_entropy
quantised_series = npd_entropy.quantise_series(series, 1)
shannon_entropy_rate_estimate = npd_entropy.grassberger_estimate(

quantised_series, 100)
npd_entropy.npd_entropy(shannon_entropy_rate_estimate, 1)

The first command here, returns the quantised version of the series. This
result is then given to the Shannon entropy rate estimator. Note that for
string matching that we need to consider some history to form the string
matches, that is greater than log n long. The final part of the estimation is
adding the term to correct between Shannon entropy rate of the quantised
data and the differential entropy rate of the original data.
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Entropy

This appendix provides additional definitions and results related to the con-
cept of entropy, and in particular, differential entropy, where these definitions
and results are direct analogues of the Shannon entropy case. We start with
some a discussion of expanded results in differential entropy.

B.1 Differential Entropy

After the definition of differential entropy in Definition 2.1.6 we define the
joint differential entropy for a collection of continuous random variables as a
natural extension to the multivariate case,

Definition B.1.1. The joint differential entropy of a collection of continuous
random variables, X1, ..., Xn, with support on, Ω1 × ... × Ωn, with a joint
density function, f(x1, ..., xn) = f(x), is

h(X1, ..., Xn) =

∫
Ω1

...

∫
Ωn

f(x) log f(x)dx.

Like differential entropy, the joint differential entropy can also be neg-
ative, by generalising the above example to n dimensions, e.g., take the
uniform distribution on an n-dimensional subset of Rn and take the limit
as a → 0. An example is the joint density of the multivariate Gaussian
distribution, with density function

f(x) =
1((√

2π
)n |Σ| 12)e− 1

2
xTΣ−1x,
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where Σ is the covariance matrix and with zero mean for every dimension.
Which has the joint differential entropy

h(X1, ..., Xn) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x) log f(x)dx,

=

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x)

(
−1

2
log ((2π)n|Σ|)− xTΣ−1x

2

)
dx,

= −1

2
log ((2π)n|Σ|)− E[XTΣ−1X]

2
.

Then we can manipulate the last term, XTΣ−1X = tr
(
XTΣ−1X

)
, since it is

a 1× 1 matrix, where tr(A) is the trace function of a matrix A. This implies

E[XTΣ−1X] = E
[
tr
(
XTΣ−1X

)]
,

= tr
(
E[XTX]Σ−1

)
,

= tr(I) = n,

since E[XTX] = Σ for a mean zero process and where the second equality is
given because of the linearity of expectation. Therefore the entropy rate of
the multivariate Gaussian distribution is

h(X1, ..., Xn) =
1

2
log ((2πe)n|Σ|) .

We define the conditional entropy in a similar manner as the joint entropy,
as the expectation of − log f(x|y).

Definition B.1.2. The conditional differential entropy, h(X|Y ) of two ran-
dom variables X and Y , with a joint density f(x, y), is defined as

h(X|Y ) = −
∫

Ω1

∫
Ω2

f(x, y) log f(x|y)dxdy.

A theorem of interest that links these two concepts is the chain rule for
differential entropy, which is a direct analogue of the Shannon entropy case.
This theorem is very useful as it gives approaches to analyse the joint entropy
given information of the conditionals, which are estimated from observed
data.

Theorem B.1.1 (Chain rule of Differential entropy [41, pg. 253]).

h(X1, . . . , Xn) =
n∑
i=1

h(Xi|Xi−1, . . . , X1).
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Relative measures are also defined as for Shannon entropy, these serve
the same function for differential entropy, quantifying the difference between
probability density functions. We define the relative entropy, or Kullback-
Leibler divergence, for differential entropy.

Definition B.1.3. The relative entropy, D(f(x)||g(x)), of two probability
density functions f(x) and g(x) is defined as

D(f(x)||g(x)) =

∫
Ω

f(x) log

(
f(x)

g(x)

)
dx.

Note that this has the same properties as the discrete version, and are
consistent with the discussion after Definition 2.1.4. Even though differential
entropy may be negative, the relative entropy is non-negative, with equality
if and only if f = g almost everywhere [41, Theorem 8.6.1, pg. 252]. The
density is finite when the support of f is completely contained in the support
of g. We now define the mutual information for two random variables. The
fact that the relative entropy is non-negative has resulted in a lot of authors
to use this as a measure of complexity or uncertainty, instead of differen-
tial entropy. However, it is a relative measure, and needs to be quantified
with respect to another probability distribution. Therefore, it is often used
to quantify the difference between the distribution with the “highest uncer-
tainty” on the support set, e.g., relative to the uniform distribution over a
finite interval.

Definition B.1.4. The mutual information, I(X;Y ), between two random
variables X and Y , with a joint density f(x, y) is defined as

I(X;Y ) =

∫
Ω1

∫
Ω2

f(x, y) log

(
f(x, y)

f(x)f(y)

)
dxdy.

Similar to the relative entropy this has the same properties as the discrete
case. The quantity is non-negative with equality if and only if f(x, y) =
f(x)f(y).

B.2 Differential Entropy Rate
Finally we will introduce the entropy rate for stochastic processes on contin-
uous state spaces, the differential entropy rate. We will quickly present the
main definitions for completeness, however, as many of the definitions and
theorems are the natural extensions of the concepts defined previously for
Shannon entropy we will not present the analogues of simple extensions and
results for differential entropy.
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Definition B.2.1. The differential entropy rate for a continuous-valued,
discrete-time stochastic process, χ = {Xi}i∈N, is defined as,

h(χ) = lim
n→∞

1

n
h(X1, ..., Xn).

An example of a process which is non-stationary but has a differential
entropy rate is the Gaussian walk, S = {Sn}n∈N. This is defined as the
process of sums of i.i.d. normally distributed random variables, i.e., Sn =∑n

i=1 Xi, where Xi ∼ N (0, σ2). The process has mean 0 for all n, however it
is non-stationary as the variance depends on the number of steps, n, as

Var(Sn) = Var

(
n∑
i=1

Xi

)
= nσ2.

However, the entropy rate converges and is equal to

lim
n→∞

h(S1, ..., Sn)

n
= lim

n→∞

∑n
i=1 h(Si|Si−1, . . . , S1)

n
,

= lim
n→∞

nh(Xi)

n
,

= h(Xi),

as each random variable Xi is independent.
This example illustrates that the entropy rate of process that is indepen-

dent of its history is the same as the entropy of a single random variable of
the process. This very intuitive as it shows that the history is not consid-
ered for sequences of independent random variables. In chapters 3 and 4 we
also consider the convergence rate of the conditional entropy, from observing
the history, to the entropy rate. By showing that i.i.d. processes achieve
their entropy rate from the first random variable, this implies that it has
already converged, and therefore that in the i.i.d. case the convergence is
instantaneous.

An equivalent characterisation of the differential entropy rate for station-
ary stochastic processes, using conditional entropy, is given by the following
theorem. This is a direct analogue of the Shannon entropy case, and is ex-
tended to differential entropy utilising an identical argument [41, pg. 416].

Theorem B.2.1. For a stationary stochastic process, {Xi}i∈N, the differen-
tial entropy rate is equal to,

h(χ) = lim
n→∞

h(Xn|Xn−1, ..., X1),

where the limit exists.
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This states that for a stationary stochastic process, the differential entropy
rate is the limit of the new information that we get from each new random
variable, after observing the infinite past.
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Appendix C

Long Range Dependence

In this appendix we provide some additional results that describe and give
more context to the phenomenon of LRD.

A related concept to LRD is self-similarity, which involves the scale invari-
ance of a stochastic process. A constant theme throughout LRD is scaling
phenomena and power laws, such as seen with the R/S statistic and the
sample mean which we discuss below. The self similarity property has been
connected to LRD since the development of the theory by Mandelbrot [126],
Mandelbrot and Van Ness [127].

Definition C.0.1. A continuous-time stochastic process, (X(t))t∈T is called
self similar if there exists a H > 0, such that

(X(ct))
D
=
(
cHX(t)

)
.

For the relevance to LRD, the examples we will introduce have self-similarity
with the Hurst parameter.

FBM exhibits self-similarity, since if we consider the process, BH(ct), for
c > 0 we see

E[BH(ct)BH(cs)] =
1

2

(
(ct)2H + (cs)2H − |ct− cs|2H

)
,

= c2H
(

1

2

(
t2H + s2H − |t− s|2H

))
.

This is equal to the covariance function of the process cHBH(t), and FBM is
self-similar with parameter H.

There are strong links between the concepts of power-law tails of probabil-
ity distributions and the phenomenon of LRD. In addition to the asymptotic
decay of the covariance function, other quantities of interest in LRD processes

143
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also feature asymptotic power laws, e.g., partial sum variance [14, Theorem
2.2] and variance of sample means [13]. Mandelbrot in his early investigations
into LRD, named two related phenomena the Noah effect, after extremely
heavy tailed events, e.g, extreme rainfall, and the Joseph effect, after long
periods of correlated events, e.g., periods of correlated high or low flood levels
in the Nile River [128]. These phenomena are linked fundamentally through
their scaling, where the Noah effect is scaling in the spatial domain, and the
Joseph effect is scaling in the temporal domain [80]. Given these links the
work of Mandelbrot focused on a developing models to explain both of these
phenomena, and resulted in classes of models that had these effects which
had both Gaussian and non-Gaussian marginal distributions, of which the
non-Gaussian marginals had the property that the probability distributions
scaled as a power law, that is for a density function, f(x),

f(x) ∼ x−α,

=⇒ f(cx) ∼ c−αx−α.

In particular, the power-laws to model the extreme events have parameteri-
sations where the variance is infinite, i.e., E

[
(X − µ)2] =∞. This approach

was inspired by the results from errors in telecommunications networks by
Berger and Mandelbrot [16], and Mandelbrot [126]. Although the links be-
tween the two phenomena are very strong, and power-laws will be a consistent
theme throughout the thesis, it was shown that infinite variance power-law
tails alone was not enough to induce LRD behaviour, as some examples of
processes with infinite variance having the growth of R/S statistic at the rate
of n

1
2 [151, pg. 180].
A related asymptotic property that involves power law tails is called reg-

ular variation, which comes up consistently in this area of probability.

Definition C.0.2. A function L : (0,∞) → (0,∞) is called a regularly
varying function, if for every a > 0

lim
x→∞

L(ax)

L(x)
= g(a) <∞.

Another related concept is called slowly varying, that is defined with
the limit above being g(a) = 1 for all a > 0. Often this comes up in the
characterisation of probability distributions or conditions on tails behaving
like a power-law of a negative exponent, e.g., p(x) ∼ L(x)x−α, for a slowly
varying function L(x) [38].

Classes of point processes and renewal processes, known as fractal based
processes have been shown to exhibit the phenomena of LRD, various ex-
amples are defined by Lowen and Teich [124]. These are defined like regular
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point processes, such as the Poisson process, with the interarrival distribu-
tions given by an infinite variance power-law probability distribution. We
present a theorem of Taqqu et al. [161], which connect the two concepts of
the Noah effect and the Hurst effect. The heavy tailed source, i.e., Noah
effect, is an Alternating (or On-Off) fractal renewal processes, which are a
subclass of fractal renewal process on a binary state space, where the time
until jumps between the two states is given by a power-law probability dis-
tribution. This was inspired by the analysis of ethernet packet data.

Definition C.0.3. Let {W (t)}t≥0 be a stationary binary valued time series,
then

W (t) = 1, the process is “On” at time t, with mean duration µ1

W (t) = 0, the process is “Off” at time t, with mean duration µ2

If the “On” times are i.i.d. and the “Off” times are i.i.d. (not necessarily with
the same distribution). Then {W (t)}t≥0 is an alternating renewal process.

We want to take a superposition of these types of processes, where we
define the superposition of processes below.

Definition C.0.4. The superposition of M i.i.d. On/Off Processes {W (m)(t)}t≥0

at time t is defined as:

W ∗
M(t) =

M∑
m=1

W (m)(t)

The aggregated count in the interval [0, T t] is:

W ∗
M(Tt) =

∫ Tt

0

(
M∑
m=1

W (m)(u))du.

Then we can state the theorem, and point out that the aggregation of a
bunch of heavy-tailed infinite variance point processes can create LRD in the
limiting process.

Theorem C.0.1 (Theorem 2 [161]). For large M and T, the aggregated count
process {W ∗

M(Tt)}t≥0, for fractal Alternating On/Off processes, behaves sta-
tistically like

TM
µ1

µ1 + µ2

t+ TH
√
L(T )MσBH(t)
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or more precisely,

lim
T→∞

lim
M→∞

(W ∗
M(Tt)− TM µ1

µ1+µ2
t)

TH
√
L(T )M

= σBH(t),

where L(T ) is a slowly varying function.

An alternate second order definition for LRD involving the variance of the
partial sums, and the growth rate greater than linear, called LRD in terms
of Allen variance (LRD-AV) in some literature [86], however we will see
that this definition is equivalent to the autocorrelation and spectral density
definitions.

Definition C.0.5. A stochastic process, {Xi}i∈Z+ is LRD-AV if the sequence
of partial sums Sn =

∑n
i=0Xi, has the property

lim
n→∞

V ar(Sn)

n
=∞.

This definition presents another second-order approach to defining LRD.
This is related to the other definitions because the variance of the partial
sum can be transformed to a form depending on the covariance function,

V ar(Sn) =
n∑
i=1

n∑
j=1

Cov(Xi, Xj),

=
n∑
i=1

n∑
j=1

γ(|i− j|),

= nγ(0) + 2
n−1∑
i=1

(n− i) γ(i).

This leads to the following result, after dividing through by n and taking
the limit, showing that the definitions are equivalent and is an adaption of
Proposition 6.1.1 [151] of Samorodnitsky, where they use the definition of
absolute summability for LRD, i.e.,

∑∞
k=1 |γ(k)|.

Theorem C.0.2. The sum
∑∞

k=−∞ γ(k) <∞, if and only if

lim
n→∞

V ar(Sn)

n
= γ(0) + 2

∞∑
i=1

γ(i) <∞.
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In the case of the definition of LRD using
∑∞

k=−∞ |γ(k)| = ∞, the two
definitions of LRD-AV and LRD are not equivalent. A stronger condition is
required for equivalence, that the autocovariance decays as a power law i.e.,
equivalent to Definition 2.2.4. An in-depth discussion of different definitions
of LRD and their interactions is given in Section 5.2 of [72].

An example of the phase transition behaviour is shown by a link between
the scaling of partial sum processes, Sn(t) = {S[nt]}t≥0 of an increment pro-
cess and the strength of correlations.

Theorem C.0.3 (Proposition 9.2.6 [151]). Let Xn = Y (n)−Y (n−1) be the
increment process of a self-similar process, Y , with stationary increments,
with H > 0. Then(

n−HSn(t), t ≥ 0
)
⇒ (Y (t), t ≥ 0) , as n→∞.

Which demonstrates the rate of scaling of the process, for self-similarity,
varies depending on the strength of the correlations with the past.

Similar phase transition behaviour exists for the partial maxima of pro-
cesses, which are defined as

Mn = max(X1, . . . , Xn), n = 1, 2, . . . .

Phase transitions occur in these statistics when the covariances decay at a
rate slower than (log n)−1 and the partial maxima grows as a power. Interest-
ingly, this shows that the phase transition behaviour isn’t always consistent
with power-law decay of the second-order statistics. Examples of this type
of behaviour is described Samorodnitsky [151, 152] and in the case of heavy
tailed processes with infinite variance [138].

We aim in this thesis to demonstrate that similar phase transition be-
haviour occurs for LRD processes with respect to the behaviour of the con-
vergence of the conditional entropy to the entropy rate, and finiteness of the
mutual information between past and future.

Finally we discuss the problem of distinguishing LRD from that of non-
stationarity. Since we are talking about long term local trends of stationary
processes it can be difficult using ordinary statistical analysis techniques
to determine whether we are analysing data that is stationary or not. A
cautionary tale along this line is presented by Samorodnitsky [151, pg. 183]
from a paper by Bhattacharya et. al. [17], which details a non-stationary
process that behaves like a process with a Hurst parameter greater than
1/2 indicating that it’s an LRD process. We define a non-stationary process

Xn = Yn + (a+ n)−β , i = 1, 2, . . . ,
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where a ≥ 0, 0 < β < 1
2
, and the random variables Yn are i.i.d. with finite

variance, σ2. This defines a non-stationary model as the final term is a drift
term that decreases in magnitude as n → ∞, however the model becomes
stationary in the limit. We will consider the range statistics, i.e., the nu-
merator of the R/S statistic separately for the first and second terms of Xn

above. Let

rn = max
0≤i≤n

(
si −

i

n
sn

)
− min

0≤i≤n

(
si −

i

n
sn

)
, where sm =

m∑
j=1

(a+ j)−β,

Rn = max
0≤i≤n

(
Ti −

i

n
Tn

)
− min

0≤i≤n

(
Ti −

i

n
Tn

)
, where Tm =

m∑
j=1

Ym.

Considering the second term of rn, we can see that it is 0, since it is a
decreasing sequence of positive numbers. Now to get an asymptotic value for
the first term, first we can apply Theorem 10.5.6 of Samorodnitsky [151], to
sn which yields

sn ∼
1

1− β
n1−β, as n→∞.

Then if we take the maximum value over all of the indices i, in the first term
of rn, denoted i∗, we get the following by substitution and simplifying,

i∗ =

⌊(sn
n

)− 1
β − a

⌋
,

∼ (1− β)
1
β n, as n→∞.

Which after combining and solving gives

max
0≤i≤n

(
si −

i

n
sn

)
= si∗ −

i∗

n
sn,

∼ β (1− β)
1
β
−2 n1−β.

Since the Yn’s are i.i.d. with finite variance, the range of the first n observa-
tions, Rn, grows as n

1
2 .

For the process

rn −Rn ≥ max
0≤i≤n

(
Si −

i

n
Sn

)
− min

0≤i≤n

(
Si −

i

n
Sn

)
≥ rn +Rn.

Therefore in the limit as n→∞

max
0≤i≤n

(
Si −

i

n
Sn

)
− min

0≤i≤n

(
Si −

i

n
Sn

)
∼ β (1− β)

1
β
−2 n1−β.
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A similar bounding argument on the denominator of the R/S statistic
shows that √√√√ 1

n

n∑
i=1

(
Xi −

Sn
n

)
→ σ.

Combining all of this we can see that

1

n1−β
R

S
(X1, . . . , Xn)→ β (1− β)

1
β
−2

σ
.

From this example we can see that the R/S statistic grows at the rate of
n1−β, which is the same as LRD processes with H = 1− β. There are other
classes of non-stationary models models that can have this property. Regime
switching models have also shown that they can replicate the characteristics
of LRD models, such as Diebold and Inoue [53], who showed that only small
regime changes are able to induce partial sum growth at the same rate as LRD
processes. Markov switching models have also shown this ability, matching
the results of scaling with a positively correlated Hurst parameter and with
good agreement to real economic data [123].

Not all perspectives on LRD make it difficult to determine whether data is
generated from a stationary LRD process or a non-stationary one. Roughan [148]
has shown that LRD in data makes anomaly detection easier as stronger cor-
relations mean that large immediate deviations are rarer. This approach
can determine differences from LRD data, particularly the case of non-
stationarity, more than traditional techniques. We will investigate some ap-
proaches to test for robustness to non-stationary for estimation of entropy
for LRD processes in this thesis.

C.1 R/S Statistic for FGN
We present a discussion the growth of the R/S statistic of FGN from Samorod-
nitsky [151, pg. 181]. By the definition of FGN, the partial sums are
Sn = BH(n) for all n. Then we can see

max
0≤i≤n

(
Si −

i

n
Sn

)
− min

0≤i≤n

(
Si −

i

n
Sn

)
= max

0≤i≤n

(
BH(i)− i

n
BH(n)

)
− min

0≤i≤n

(
BH(i)− i

n
BH(n)

)
,

D
= nH

[
max
0≤i≤n

(
BH(

i

n
)− i

n
BH(1)

)
− min

0≤i≤n

(
BH(

i

n
)− i

n
BH(1)

)]
,
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by the self-similarity property of FBM. Then, from the continuity of the
sample paths of FBM, we have

max
0≤i≤n

(
BH(

i

n
)− i

n
BH(1)

)
− min

0≤i≤n

(
BH(

i

n
)− i

n
BH(1)

)
→ sup

0≤t≤1

(
BH(t)− tBH(1)

)
− inf

0≤t≤1

(
BH(t)− tBH(1)

)
,

with probability 1. Which then implies that the R/S statistic of FGN grows
like nH, since

n−H
R

S
(X1, . . . , Xn)⇒ 1

σ
sup

0≤t≤1

(
BH(t)− tBH(1)

)
− inf

0≤t≤1

(
BH(t)− tBH(1)

)
,

as the denominator is same as the previous arguments of the R/S statistic.
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Markov Chains

In this section we introduce some additional content that is required to un-
derstand the definitions and concepts used in Chapter 5.

We will introduce a common example that will be used to highlight the
properties introduced, and to build some intuition on the behaviour. This is
the simple random walk on the integers, which we will define as a Markov
chain, via its transition probabilities. We define the simple random walk,
{Sn}n∈Z+ with support on Z, as the stochastic process S0 = 0, with the
following probability transitions to the next state from the current state for
i ∈ Z,

pi,i+1 = pi,i−1 =
1

2
.

That is, we are considering the random walk starting at the origin, that
moves to the next or previous integer with equal probability.

We want to be able to describe properties of Markov chains as existing
for classes of states, rather than considering the individual state. We will
introduce a concept of accessibility and then discuss the classification of
different states of a Markov chain.

Definition D.0.1. For states, i, j ∈ Ω, we say that j is accessible from i,
i → j if there exists an m, such that the m-step transition probability is
positive, i.e.,

pmi,j > 0.

Using Definition D.0.1 we can generalise accessibility to a definition of
accessibility in both directions, we call states with this property communi-
cating states. We call all members of a subset that communicate exclusively
a communicating class.

151
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Definition D.0.2. For states, i, j ∈ Ω, we say that j communicates with i,
i↔ j if i→ j and j → i.

Under this definition, communication forms an equivalence relation. They
have the reflexive property since for all i, j, k ∈ Ω, we have that every state
communicates with itself, and symmetric since i ↔ j implies that j ↔ i. A
quick argument for transitivity follows, since i↔ j and j ↔ k implies that

∃ m > 0, such that pmi,j > 0, and ∃ n > 0, such that pnj,k > 0.

Then we split up the transition from i to k into portions of m and n steps,
which gives

pn+m
i,k =

∑
l∈Ω

pni,lp
m
l,k ≥ pni,jp

m
j,k > 0,

by the communication of i↔ j and j ↔ k. Communicating classes partition
the states of a Markov chain, and many properties can be assigned to the
entire class.

Next we will discuss two important properties, irreducibility and aperiod-
icity, which are used to establish a property called ergodicity, meaning that
the Markov chain eventually “forgets” its initial state. These properties en-
able some rich analysis and classification of behaviour of Markov chains. The
first, irreducibility, is related to the communicating classes defined above.

Definition D.0.3. A Markov chain, {Xn}n∈Z+, is called irreducible if the
Markov chain consists of a single communicating class. That is, for every pair
of states, i, j ∈ Ω, there exists an integer m, such that the m-step transition
probability is positive, i.e.,

∀i, j ∈ Ω, pmi,j > 0.

Intuitively this property says that all states are reachable from all states,
and hence we can’t reduce the chain into disjoint connected smaller chains.
We can see that the simple random walk has this property, if we consider the
n-step probability from above and then consider a direct path from i to j,
where without loss of generality j > i and |i− j| = n, then

pni,j ≥ pi,i+1pi+1,i+2 . . . pj−1,j =

(
1

2

)n
> 0.

The next property is aperiodicity, which refers to the absence of periodic
behaviour in the state transitions. We define the period, d(i), of a state, i, to
be defined as the greatest common divisor of the set d(i) = {m ≥ 1 : pmi,i > 0}.
With the assumption of an irreducible Markov chain the following result
shows that the period is a property of the entire irreducible chain.
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Theorem D.0.1 (Lemma 1.6 [118]). For a Markov chain, {Xn}n∈Z+, with
i and j in the same communicating class, then the greatest common divisor
of d(i) is equal to the greatest common divisor of d(j).

This result easily generalises to irreducibility, by considering the entire
chain as the communicating class. We call properties that apply to all states
of a communicating class a class property. This leads to the following defi-
nition of aperiodicity, and for irreducible Markov chains the property is the
same for the entire chain.

Definition D.0.4. A Markov chain, {Xn}n∈Z+, is called aperiodic if every
state of the chain has period 1.

The simple random walk is not aperiodic, since the probability of being
in a state depends on whether you have taken an odd or even number of
steps. For example at step 0 we are in state 0 and then on step 1 we move to
an odd numbered state, either 1 or -1. Then in step 2 we move to either -2,
0 or 2, i.e., even numbered states. This informal argument generalises and
we see that starting at the origin we must be in an odd numbered state after
an odd number of steps and an even numbered state after an even number
of steps.

We can make a small change to the simple random walk to make it ape-
riodic, by adding a positive probability of remaining in the same state. In
general, for an irreducible Markov chain adding a self loop, i.e., pi,i > 0 for
any i ∈ Ω is sufficient to ensure that a Markov chain is aperiodic [58, pg. 76].
We call this the lazy random walk, and we define the following transitions

pi,i+1 = pi,i−1 =
1

4
and pi,i =

1

2
.

We define an ergodic Markov chain below, these conditions ensure that
there is a unique limiting distribution of a Markov chain on a finite number
of states.

Definition D.0.5. We call a Markov chain, {Xn}n∈Z+, ergodic if it is irre-
ducible and aperiodic.

Using this definition, we can see that the simple random walk is not an
ergodic Markov chain, but the lazy random walk is ergodic.

We discuss some properties of the time to reach and return to states.
First we define a random variable, called the hitting time, intuitively used to
analyse the time from beginning until reaching a certain state.
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Definition D.0.6. The hitting time of a set A ⊂ Ω, is the random variable,
TA : Ω→ {0, 1, 2, . . .} ∪ {∞} defined as

TA = inf{n ≥ 0 : Xn ∈ A}.

A closely related concept is the return time, similar to the hitting time
adding restriction on the starting state.

Definition D.0.7. The return time to a state i ∈ Ω, is the random variable,
Ti,i : Ω→ {1, 2, . . .} ∪ {∞} defined as

Ti,i = inf{n ≥ 1 : Xn = i,X0 = i}.

We define the probability of the first return to state i occurring on at the
nth step, as

fni,i = P (Ti,i = n) .

Then the probability of ever returning to the ith state is

fi,i = P(Ti,i <∞) =
∞∑
n=1

fni,i.

We use these quantities to define the concepts of recurrence and transience,
describing whether the Markov chain returns to a particular state.

Definition D.0.8. A state, i, is called recurrent if fi,i = 1, or transient if
fi,i < 1.

Since the Markov chain depends on the past through its current state only,
any return with probability 1 ensures that the chain returns to the state
infinitely often, so each return can be considered independently.

Another characterisation of recurrence and transience can be made by
the n-step transition probabilities, where recurrent states have the property

∞∑
n=1

pni,i =∞,

and transient states having the property
∞∑
n=1

pni,i <∞,

by Proposition 21.3 [118].
Recurrence is a class property, classifying all states into communication

classes, as shown by the following theorem.
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Theorem D.0.2 (Theorem 5.3.16 [34]). For an irreducible Markov chain,
{Xn}n∈Z+, all states are either transient or recurrent.

This is an extremely useful result, as we can use knowledge about an
individual state to apply to all states within an irreducible Markov chain.

The simple random walk is recurrent, which we show by the following
argument from Bremard [22, Example 7.1.6]. From Theorem D.0.2, we only
need to show the recurrence of one state, the origin. For odd numbers of steps
the random walk cannot be at the origin, i.e., pn0,0 = 0 when n = 2m+1,m ∈
Z+. The probability of being at the origin after even steps, n = 2m, is given
by

p2m
0,0 =

(
2m

m

)(
1

2

)2m

,

since for a path 2m steps long, we take m steps in both directions to be at
the origin, and any individual path occurs with probability

(
1
2

)2m.
We have by Stirling’s approximation, n! ∼

√
2πn

(
n
e

)n [63, pg. 52], that

p2m
0,0 ∼

1√
πm

.

Then taking the partial sum of n-step transition probabilities as n→∞,
∞∑
n=1

pn0,0 ∼
∞∑
m=1

1√
πm

=∞,

and by Theorem D.0.2 the random walk is recurrent.
The Markov chains we consider in this section will be irreducible, aperi-

odic and recurrent. We make a further classification of the recurrent states
into positive or null recurrence, by the finiteness of the expected return time
to a state i. The expected return time of of a Markov chain to state i is given
by

E[Ti,i] =
∞∑
n=1

nP(Ti,i = n).

Definition D.0.9. An irreducible Markov chain, {Xn}n∈Z+, is called positive-
recurrent if

E[Ti,i] <∞,

and called null-recurrent if

E[Ti,i] =∞.
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Remark. Theorem D.0.2 also applies to null-recurrence and positive-recurrence,
and a recurrent state must be in one of these classes.

This may seem like a counter-intuitive distinction, however simple random
walks demonstrate how recurrence does not ensure that the expected time to
return is finite. We use a probability generating function approach adapted
from Ash [6, pg. 193], for the probability fni,i,. We define the probability
generating function of the return time probability as

Gi(z) =
∞∑
n=1

znfni,i = E[zTi,i ].

Note that this function has the property that E[Ti,i] = G′i(1) [34, pg. 31],
which we use to show that this quantity is infinite. We analyse the return
to the origin only, since positive and null recurrence are class properties [34,
Theorem 5.3.16]. We define a second generating function for the n-step
probability transitions, i.e., for the probability pn0,0 = P(Sn = 0)

F0(z) =
∞∑
n=0

pn0,0z
n.

We partition the probability of being at the origin after n steps, pn0,0, via
the first return time probabilities. Since if a first return occurs at a time, k,
between 0 and n, then the probability of being at the origin at n is pn−k0,0 fk0,0.
Therefore

pn0,0 =
n∑
k=0

pn−k0,0 fk0,0, ∀n ∈ Z+,

where f 0
0,0 = 0 and p0

0,0 = 1. We define another generating function

H(z) = F0(z)G0(z),

which is a convolution of the previous two [6, pg. 192]. However, note that
hn = pn0,0 for n ≥ 1, and h0 = 0 = p0

0,0 − 1. This implies that

H(z) = F0(z)− 1.

Combining the two expression and putting in terms of G0(z), we get

G0(z) = 1− 1

F0(z)
.
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Given knowledge of p2n
0,0, we get the following expression

F0(z) =
∞∑
n=0

pn0,0z
n =

∞∑
n=0

p2n
0,0z

2n =
∞∑
n=0

(
2n

n

)(
1

2

)2n

z2n.

From equation 5.72 of Graham et. al. [76], we see

∞∑
n=0

(
2n

n

)(
1

2

)2n

z2n =
1√

1− z2
.

Which implies that the generating function of the return time is

G0(z) = 1−
√

1− z2.

Therefore, we calculate the derivative and hence the expected value of the
time to return to the origin as

G′0(z) = z
(
1− z2

)− 1
2 .

As z → 1, this implies that G′0(z) → ∞, and therefore the expected hit-
ting time is infinite, i.e., E[T0,0] = ∞ and the simple random walk is null-
recurrent.

These properties enable us to classify the long-term behaviour of the
Markov chain. We will introduce the stationary distribution, giving the long-
term probabilities of the Markov chain, i.e., P(Xn = j).

Theorem D.0.3 (Theorem 6.2.1 [34]). For an irreducible and aperiodic
Markov chain, {Xn}n∈Z+, all states are positive-recurrent if and only if there
is a solution to the set of linear equations

πj =
∑
i∈Ω

πipi,j, ∀j ∈ Ω,

and, ∑
j∈Ω

πj = 1.

If there exists a solution π, then it is strictly positive, the solution is unique
and,

πj = lim
n→∞

pni,j,

for all i, j ∈ Ω.
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We call this distribution the stationary distribution, also known as the
limiting or invariant distribution, πj = P(Xn = j). Once the chain becomes
stationary, the chain remains stationary as seen from Theorem D.0.3, where
the stationary probability of a state j can be decomposed into the probability
of being in any state and taking a step to state j.

An example of calculating the stationary distribution is given for the fol-
lowing 2-state Markov chain. We define the Markov chain via the transition
probabilities,

p0,0 = 1− p, p0,1 = p,

and, p1,0 = q, p1,1 = 1− q.

From Theorem D.0.3, we have the following equations for the stationary
probabilities, π0 and π1,

π0 = (1− p)π0 + qπ1,

π1 = pπ0 + (1− q) π1,

and, π0 + π1 = 1.

Substituting the second equation into the first, results in

π0 = (1− p)π0 + q (pπ0 + (1− q) π1) ,

=⇒ p (1− q)π0 = q (1− q) π1,

=⇒ π0 =
p

q
π1.

Which by substitution into the expression, π0 + π1 = 1, gives

π0 =
q

p+ q
, π1 =

p

p+ q
,

the long run probabilities of being in the states 0 and 1.
Informally, we can see that irreducibility and aperiodicity are needed for a

unique solution. If a Markov chain had states that didn’t communicate then
the limit of the n-step probabilities would depend on which communication
class the chain started in, and would not be unique, hence the requirement for
irreducibility. If there is periodicity then the limits of the n-step probabilities
will not exist, as the limit will depend on the particular n.

The limiting behaviour of the n-step transition probabilities is very differ-
ent in the case of a null-recurrent Markov chain, illustrated by the following
theorem.
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Theorem D.0.4 (Theorem 21.17 [118]). For a null-recurrent Markov chain,
{Xn}n∈Z+, for all i, j ∈ Ω,

lim
n→∞

pni,j = 0.

So in contrast to the positive recurrent case, the limit of the n-step tran-
sition probabilities tends to 0 as n→∞, e.g., the simple random walk.

In the next theorem we discuss the link between the limits of the n-step
transition probabilities and the expected return time.

Theorem D.0.5 (Theorem 7.4.1 [6]). For an irreducible and aperiodic Markov
chain, {Xn}n∈Z+,

pni,i →
1

E[Ti,i]
, as n→∞.

This theorem demonstrates that in the case of the positive-recurrent
Markov chains that the stationary probability for a state is the reciprocal
of the expected time between visits between the state. Note that Theo-
rem D.0.5 also applies to null-recurrent chains, given the infinite expected
time between visits the limiting probability is 0.

In this thesis, we only be consider positive-recurrent Markov chains, due
to the existence of a stationary distribution. We investigate the entropy rate
of Markov chains with long range dependence, as we saw in Chapter 2 the
entropy rate of a Markov chain depends on the stationary distribution. We
will introduce a final result in this section, the ergodic theorem for Markov
chains.

Theorem D.0.6 (Theorem 4.16 [118]). Let g be a real-valued function de-
fined on a state space, Ω. For an irreducible Markov chain, with any starting
distribution, α,

P

(
lim
n→∞

1

n

n−1∑
k=0

g(Xk) = Eπ (f)

)
= 1,

where Eπ (g) =
∑

i∈Ω lim
n→∞

pni,ig(i).

This theorem shows that the time average of a function applied to a
Markov chain equals the space average, independent of the starting distribu-
tion. This is, a Markov chain “forgets” its initial state.
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Appendix E

Estimation Theory

In this section we will introduce some of the key concepts in estimation, and
assessing the quality of estimators. These will be used in the discussion of the
estimation techniques, to be able to compare the strengths and weaknesses
of different approaches.

For some context, we will introduce the estimation problem that we are
looking solve generally. That is, given a sample of data, x1, . . . , xn we are
aiming to define a function, Tn, such that we generate an estimate of a
quantity, θ, as θ̂ = T (x1, . . . , xn) = Tn. Since the data is being generated
randomly, we view the estimator, θ̂ as a random variable. We will introduce
some properties that quantify how the estimator performs with respect to
the true value and to describe the behaviour of the estimator. First we
define some convergence properties, that are used to describe and compare
estimation techniques.

E.1 Convergence
To describe the convergence of random variables we will introduce three dif-
ferent types of convergence used in probability theory, convergence in prob-
ability, convergence in distribution and almost sure convergence. First we
define convergence in probability [115, pg. 332]

Definition E.1.1. A sequence of random variables, Yn converges in proba-
bility to a constant, c, if for every ε > 0,

lim
n→∞

P {|Yn − c| > ε} → 0.

Another common type of convergence is convergence in distribution, com-
monly called weak convergence [115, pg. 336].
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Definition E.1.2. A sequence of random variables, Yn with cumulative dis-
tribution function,

Fn(y) = P(Yn ≤ y),

and there exists a cumulative distribution function, F , such that

lim
n→∞

Fn(y)→ F (y),

for all points y for which F is continuous. Then we say that the distribution
functions Fn converge in distribution to F .

A final mode of convergence that is discussed is called almost sure con-
vergence or strong convergence [23, Definition 10.8.1].

Definition E.1.3. A sequence of random variables, Yn, is said to converge
to a random variable, Y , almost surely if

P (Yn = Y ) = 1.

All of these modes of convergence are subtly different and results stated
in the thesis are with respect to specific types of convergence. Although
many results do generalise across different modes of convergence, we have to
be careful to ensure we refer to the correct type of convergence in theorems
used for the construction of estimators.

E.2 Estimation Properties
We will describe some important properties of estimators. These will be used
in the assessment and discussion of the quality of estimation techniques.

An important concept that we introduce here is the consistency of an
estimator, which informally states that an estimator will converge to the
true value, given n data points, as n→∞.

Definition E.2.1. An estimator, Tn, of a quantity, θ, is called consistent if
it converges to the true value in probability, i.e.,

lim
n→∞

P {|Tn − θ| > ε} → 0.

This definition is often called weak consistency, for strong consistency we
replace the mode of convergence of Tn to almost sure convergence.

An important property of an estimator concerns the form of the asymp-
totic distribution of the estimator. If the asymptotic distribution follows
a normal distribution, then we say the estimator has asymptotic normal-
ity. The theory is related to the central limit theorem, and forms a natural
extension, with some conditions on the data [115, pg. 336]
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Definition E.2.2. An estimator, Tn, of a quantity, θ, is asymptotically nor-
mal if

√
n (Tn − θ) ∼ N

(
0, σ2

)
,

in distribution, where N (0, σ2) is a normally distributed random variable and
σ2 is the variance.

We are going to define a measure of the quality of an estimator, called
efficiency, which quantifies the variance of the estimator with respect to the
lowest possible variance. First we define a quantity, the Fisher information,
and a lower bound for the variance called the Cramer-Rao bound. The
Fisher information, I(θ), quantifies the amount of information that a random
variable, X, carries about a parameter, θ, where f (X|θ) is the probability
mass, or density, that is a parametric model of X.

Definition E.2.3. The Fisher information, I(θ), of an estimator, Tn for a
quantity, θ, is defined as

I(θ) = E

[(
∂

∂θ
log f (X|θ)

)2 ∣∣∣∣θ
]
,

=

∫ (
∂

∂θ
log f (x|θ)

)2

f(x|θ)dx.

The Cramer-Rao bound for estimators links the variance to a lower bound
of the reciprocal of the Fisher information [43, pg. 480].

Theorem E.2.1 (Cramer-Rao Bound). The variance of an estimator, Tn,
of a parameter, θ, has the following bound,

Var (Tn) ≥ 1

I (θ)
.

This result gives the lowest possible variance for an estimator. The con-
cept of efficiency measures how an estimator performs against its best possible
value, that is equality in Theorem E.2.1.

Definition E.2.4. The efficiency of an unbiased estimator, Tn is defined as

e(Tn) =

1
I(θ)

Var (Tn)
.
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We analyse the errors of estimators by considering the deviation of the
estimate from its true value, Tn − θ. We define a quantity that measures
the deviation from the true value, the mean-squared error, which has large
weighting on outliers and is used to assess the quality of estimation.

Definition E.2.5. The mean-squared error, MSE(Tn), of an estimate is
defined as

MSE (Tn) = E
[
(Tn − θ)2] .

This is related to the variance and bias of the estimator, however this
quantifies the squared deviation of the estimates and the deviation from the
true value respectively.

Definition E.2.6. The variance of an estimator, Tn, is given by

Var (Tn) = E
[
(Tn − E[Tn])2] .

Then we define the bias, the difference between the true value and ex-
pected value of the estimator.

Definition E.2.7. The bias of an estimator, Tn, is defined as

Bias (Tn) = E[Tn]− θ.

These three are related by the bias-variance tradeoff, or the mean-squared
error decomposition [85, pg. 24]. Which is the statement that

MSE (Tn) = E
[
(Tn − θ)2] ,

= E[(Tn − E[Tn])2] + (E[Tn]− θ)2 ,

= Var (Tn) + Bias (Tn)2 .

In the context of estimation, this means we can achieve better mean-squared
error estimators in some cases by utilising biased estimators, depending on
the performance goals.
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