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Abstract

Dispersal is a key component of life history that influences individual fitness, popu-
lation dynamics and range expansion. Morphological traits that are functionally
related to dispersal may change through the spatial sorting of phenotypes at popu-
lation range edges and invasion fronts. Generally, since larger invertebrates are
expected to have greater dispersal capacity, larger body size and mass is expected
to evolve in dispersers. Yet, different study systems exhibit a range of trait-specific
and sex-specific responses to spatial sorting. Furthermore, a persistent issue in this
field is that spatial sorting can be challenging to separate from natural selection
and population dynamics. To address this, here we investigated the responses of
dispersal and morphological traits to simulated spatial sorting into disperser and
non-disperser red flour beetles (Tribolium castaneum) using a controlled laboratory
dispersal system that isolated spatial sorting from natural selection and allowed
sex-specific dispersal traits to evolve independently. After seven generations of spa-
tial sorting, the time taken to disperse decreased in dispersers and increased in
non-dispersers, with males dispersing more quickly than females. In contrast to
expectations that dispersers would increase in body mass and size, we found the
opposite. Body mass and morphology diverged such that dispersers became smaller
and narrower, while non-dispersers became larger relative to the randomly selected
controls, but femur length did not change. The trait responses across generations
were also sex specific. Divergence between male dispersers and non-dispersers was
more substantial than females, both in dispersal and in some morphological traits.
We hypothesize that small individuals were more biomechanically efficient at dis-
persing through the dispersal apparatus and were therefore the ones that dispersed
more readily. We suggest that key differences in dispersal modes across biological
systems may impact the morphological and phenotypic trait changes from spatial
sorting processes in range expansions and biological invasions.

Introduction

Dispersal can be defined as any movement or behaviour with
potential consequences for spatial gene flow, which is typically
a process of departure from the local environment, movement
through a potentially hostile matrix and settlement in a new
habitat (Clobert et al., 2012; Ronce, 2007). During dispersal
and range expansion, individuals at the expanding edge or
invasion front of a population are subjected to strong selective
pressures from novel environments and changes to population
density, which can rapidly alter phenotypic traits (Shine

et al., 2011). As such, individuals at range edges may express
different morphological, physiological and behavioural traits
that facilitate effective dispersal. For example, highly disper-
sive individuals (dispersers) have been found to have longer
legs relative to body size (Phillips et al., 2006), larger body
size (Laparie et al., 2013; Yarwood et al., 2021) and larger
flight muscles (Heidinger et al., 2018) than less dispersive indi-
viduals (non-dispersers). Dispersers are a non-random sample
of phenotypes in a population that tends to accumulate at the
range edge, and they are constrained to mate with other highly
dispersive individuals by proximity (Shine et al., 2011; Travis
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et al., 2012). Therefore, reduced genetic heterogeneity at edges
is expected, but the evolution of dispersal-related traits such as
morphology may accelerate expansion rate until it is attenuated
by inbreeding depression or abiotic factors (Perkins
et al., 2013).
The evolutionary pressure at expanding edges is a combina-

tion of natural selection and spatial sorting. Recent theoretical
models have demonstrated that spatial sorting as a process is
analogous to selection acting through space rather than time,
where variation in dispersal ability will sort individuals spa-
tially (Peischl & Gilbert, 2019; Phillips & Perkins, 2019). Spa-
tial sorting may be a transient process in natural dispersal,
where dispersal rates and associated dispersal-related traits
increase during range expansion, thereby accelerating expan-
sion and potentially rescuing populations from deleterious
mutations that can accumulate at range edges (Peischl & Gil-
bert, 2019). Isolating the effects of spatial sorting and natural
selection is a significant challenge in natural populations or
under field conditions, as both processes are acting simulta-
neously (Phillips & Perkins, 2019). Nonetheless, growing evi-
dence suggests that spatial sorting of disperser phenotypes in
previous and contemporary range expansion has driven rapid
directional evolution of traits across many taxa (Hargreaves &
Eckert, 2014; Laparie et al., 2013; Shine et al., 2011; Yarwood
et al., 2021). Recent experimental mesocosm and laboratory
studies of spatial sorting in insects have shown that rapid evo-
lution of dispersal rates and demographic traits is possible
(Ochocki & Miller, 2017; Renault et al., 2018; Tung
et al., 2018; Weiss-Lehman et al., 2017). Such experiments
offer opportunities to explore spatial sorting effects on
dispersal-related traits in both sexes while controlling for fac-
tors such as environmental heterogeneity, population size and
natural selection.
Overall, larger invertebrates are expected to have enhanced

dispersal capacity thus body size is usually hypothesized to
increase with range expansion (Renault, 2020). There is also
strong evidence from field studies that phenotypic trait
responses to spatial sorting can be sex-specific, where differ-
ences in resource allocation, ecological roles, fitness landscapes
and physiology between the sexes can explain some of these
differences (Breuker et al., 2007; Cote et al., 2017; Ducatez
et al., 2012). Sex-specific dispersal behaviour can arise depend-
ing on many factors, including mate and resource availability,
and the biased dispersal of either sex can also alter sex ratios
and mate availability (Trochet et al., 2016). Theoretical models
predict that in natural conditions, dispersal should evolve to
converge between the sexes through feedbacks on mate avail-
ability (Meier et al., 2011). Separating the effects of spatial
sorting from sex, by allowing each sex to evolve dispersal and
dispersal-related traits independently, could provide insight into
these dynamics.
There are several examples of morphological changes due to

spatial sorting or dispersal behaviour, many of which have noted
sex-specific changes. In an invasive ground beetle species (Meri-
zodus soledadinus), elytron length, femur length, pronotum
length and width, and body mass all increased as residence time
at the location decreased (i.e. invasion-front individuals were
larger) (Laparie et al., 2013). In another ground beetle species

(Carabus hortensis), pronotum width and body condition were
increased at the expansion front (Yarwood et al., 2021), but nota-
bly, these changes were only significant in males. Body size in
the kudzu bug (Megacopta cribraria) increased with proximity to
the invasion front in a similar manner for both sexes in one study
(Lovejoy & Lozier, 2021), but pronotum width decreased with
proximity to the invasion front in a different study, which was
largely explained by sex differences (Merwin, 2019). The body
mass of an organism and the size of their relevant morphology to
support locomotion (e.g. thorax muscles, wings or legs) can be
strong predictors of dispersal ability (Arnold, Cassey, &
White, 2017; Ducatez et al., 2012; Laparie et al., 2013; Phillips
et al., 2006). These relationships may reflect a biomechanical
association between morphology and movement performance, for
example where larger individuals or those with longer limbs will
inherently have longer stride lengths or improved locomotor abil-
ity (Losos, 1990; Matsumura & Miyatake, 2019; Phillips
et al., 2006). Therefore, moving greater distances in shorter time
periods with lower energetic investment may reduce the signifi-
cant time and energy costs associated with dispersal (Bonte
et al., 2012). The diversity of responses across these examples
(largely field studies) highlights the need for further exploration
of sex-specific morphological trait responses to spatial sorting in
the absence of landscape and abiotic heterogeneity and other con-
flated ecological processes.
Red flour beetles (Tribolium castaneum), an invasive cosmo-

politan pest beetle species, are an ideal model system for
studying dispersal and population dynamics. Although
T. castaneum can fly to disperse across a landscape (Daglish
et al., 2017), they generally do not disperse great distances and
do so relatively infrequently (Ridley et al., 2011). Rather, their
primary modes of locomotion for dispersal (as defined earlier)
are typically walking and climbing (Campbell, 2012; Cline &
Highland, 1976). Laboratory apparatuses to simulate dispersal
have been used in studies of Tribolium species for many
decades (Arnold, Rafter, et al., 2017; Łomnicki, 2006; Matsu-
mura & Miyatake, 2015, 2018, 2019; Morrison III et al., 2018;
Naylor, 1959; Ogden, 1970a; Prus, 1963; Renault, 2020; Zieg-
ler, 1976), and some have be used specifically to test spatial
sorting theory (Melbourne & Hastings, 2009; Ochocki &
Miller, 2017; Sz}ucs et al., 2017; Weiss-Lehman et al., 2017).
Although male Tribolium sometimes disperse more rapidly than
females (Ogden, 1970b; Prus, 1966), both sexes readily dis-
perse (Arnold, Rafter, et al., 2017; Ziegler, 1976).
In the present study, we established a laboratory spatial sort-

ing protocol to sort individuals as non-dispersers (philopatric
or range-core) and dispersers (invasion front or range edge)
using microcosm dispersal apparatuses (Arnold, Rafter,
et al., 2017). We then quantified the effect of spatial sorting on
a suite of morphological traits frequently associated with dis-
persal in invertebrates: body mass, pronotum length and width,
elytron length and width, and femur length. We used simulated
spatial sorting processes to select lines based on individuals
dispersing quickly through the apparatus (dispersers) and for
individuals remaining philopatric for the longest (non-
dispersers). This approach allowed us to identify morphological
traits that significantly diverged between dispersers and non-
dispersers, and to test for sex differences, after seven

2 Journal of Zoology �� (2023) ��–�� ª 2023 The Authors. Journal of Zoology published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Spatial sorting changes morphology P. A. Arnold, P. Cassey and C. R. White

 14697998, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1111/jzo.13062 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [26/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



generations of spatial sorting in controlled environments. By
selecting on dispersal each generation, this design isolates spa-
tial sorting because the population dynamics in each line are
controlled, such that natural selection on growth rate should be
identical. Furthermore, our approach kept sexes separately,
which allowed dispersal and its related morphological traits to
change independently in males and females. We tested the fol-
lowing predictions: (1) Dispersal behaviour would change over
generations in accordance with the direction of spatial sorting
(i.e. individuals from disperser lines would disperse faster and
non-dispersers would disperse less and/or slower after genera-
tions of spatial sorting); (2) males would disperse faster than
females due to their more active dispersal driven by mate-
seeking behaviour; (3) dispersers would increase body mass
and size compared with non-dispersers to facility dispersal
capacity; and (4) morphological responses to generations of
spatial sorting would differ between sexes, due to fundamental,
innate differences in the dispersal behaviour of the sexes. By
removing environmental heterogeneity and testing for morpho-
logical changes driven by spatial sorting in isolation and with
sexes kept separately, here we identify underlying differences
in dispersal responses between the sexes and due to spatial
sorting in controlled laboratory dispersal apparatuses.

Materials and methods

Study system

A laboratory population of T. castaneum (QTC4 (Bengston
et al., 1999); Postharvest Grain Protection Team; Department
of Agriculture, Fisheries and Forestry; Brisbane, QLD, Austra-
lia) was used to establish experimental lines. The stock popula-
tion was maintained on 210 g of media (95% wholemeal
stoneground wheat flour, 5% torula yeast) in a 1 L container.
The same media was used throughout experiments in 70 mL
dispersal apparatus containers. Animals and experiments were
maintained at 29.5 � 1°C and 40–60% relative humidity.
Eight founding groups of 50 beetles (200 male and 200

female in total) were collected and sexed as pupae (Hal-
stead, 1963) from the stock population. Pupae that were newly
pupated or close to eclosion were not used, to maintain a con-
trolled age structure within and among cohorts (adult beetles
were aged 13–15 days post-eclosion when they were pheno-
typed). Founding groups represent four replicate lines for each
sex that were paired for mating and generating subsequent gen-
erations. Each of these groups were housed in a 70 mL con-
tainer with 15 g of flour for 6 days after initial collection.
Lines were maintained as single-sex throughout dispersal
assessment to prevent breeding during dispersal, which
improved the efficacy of selection and allowed for clearer com-
parisons of sex-specific responses in isolation.

Dispersal apparatus

The dispersal apparatus is described in detail in Arnold, Raf-
ter, et al. (2017). Apparatuses consisted of three containers (A,
B and C) connected by tubing inserted through the lids,

containing cotton twine allowing one-way movement by
climbing (Fig. 1a). Containers were 70 mL, and the tubing
was flexible silicone 185 mm in length (4 mm internal diame-
ter), arched over a 165 mm distance between lids that con-
tained a single looped strand of cotton twine. Containers A
and C held 15 g of flour, and B had a layer of paper to facili-
tate grip but no flour, representing an unsuccessful intermedi-
ate dispersal state (i.e. a hostile matrix). In container A, twine
rested on the flour surface allowing beetles to climb up and
into the tubing; the twine terminated 15–25 mm above the
paper in B so that beetles could not return to A, and similarly,
from B to C. Dispersal of T. castaneum through this apparatus
design was consistent and repeatable (Arnold, Rafter,
et al., 2017).
Containers housing each group of 50 beetles were connected

to their respective apparatus (as container A) when beetles
reached 2–5 days post-eclosion. The position of each apparatus
within the room was randomized at each generation. Once con-
tainer A was connected to each apparatus, beetles could dis-
perse for up to 4 days. Counts of individuals within the
dispersal apparatuses (in tubing: A–B and B–C, in containers:
B and C) were conducted at 0900 h and 1700 h daily, until
criteria were met (see Spatial sorting criteria and breeding
design). Container C was detached, tipped into a dish so that
the beetles could be counted, before being refilled and reat-
tached. The number of beetles in container A was estimated as
the starting number of individuals (n = 50) minus the sum of
beetles in all other containers and tubing, as to not disturb the
individuals that had not yet dispersed. Mortality in the appara-
tus across all lines and throughout the experiment was negligi-
ble (<1%).

Spatial sorting criteria and breeding design

In generation 1, the eight founding lines were run through the
dispersal apparatus and used to establish four replicate lines
for each of the sexes across three treatments: control, non-
dispersers and dispersers. Spatial sorting of individuals in gen-
eration 1 was different to all subsequent generations. Dispersal
within generation 1 was monitored and ceased when approxi-
mately 15 individuals remained in container A and approxi-
mately 15 individuals reached container C. This ensured that
15 individuals could be classified as non-dispersers and dis-
persers, respectively, and the remaining 15–20 individuals were
randomly sampled from the apparatus to establish control (ran-
domly assorted) lines. From the 15 classified individuals, five
were randomly sampled to be paired with five individuals from
their matching replicate line of opposite sex. These individuals
were transferred to a 70 mL container with 5 g of flour to cop-
ulate for 5 days. Following this period, the 10 individuals were
placed on 3 g of fresh flour and allowed 5 days to oviposit,
after which time the adults were removed to allow offspring to
develop over 23 days before collection as pupae. From these
pupae, 50 of each sex were randomly sampled to establish the
next generation of each line, and this process was repeated for
seven generations in total. In generations 2–7, beetles could
disperse until the following criteria were met for each of the
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assorted lines. For non-disperser lines, dispersal was ceased
when 15–25 individuals had not yet emigrated from container
A. If, after six counts (see Dispersal apparatus), the number of
beetles remaining in container A exceeded 25, we sampled
from these as non-dispersers. For disperser lines, dispersal was
stopped when 15–25 individuals had successfully emigrated to
container C. For control lines, dispersal was stopped after five
counts; then, individuals were removed from the apparatus,
mixed together, and were then randomly sampled from as con-
trols. Up to 10 individuals from each line were phenotyped in
generations 1 and 7 (Fig. 1b); therefore, sample sizes were
n = 36–40 in each sex, dispersal and generation combination
(Table S1).

Time taken to disperse and proportion of
dispersers

Population-level rate of dispersal was assessed as the time
taken for 15 beetles to successfully disperse to container C (h),
matching the criteria for the breeding design as above. We
controlled for population size effects on dispersal rate by run-
ning each dispersal apparatus from an initial population size of
50 in container A. In non-disperser lines, although only indi-
viduals remaining in container A were selected and pheno-
typed, the population-level dispersal rates of these lines were
still quantified. The proportion of successful dispersers was
calculated at each time count, where a binary score of ‘0’ was
assigned when <15 beetles had dispersed to container C, and

‘1’ where ≥15 beetles had dispersed to container C, again
matching the criteria for the breeding design.

Body mass and morphometrics

Individuals were weighed for fresh mass on a precision micro-
balance (�0.01 mg, XS3DU; Mettler-Toledo, Columbus, OH,
USA). Morphological measurements were taken by capturing
dorsal, and ventral images using a microscope-mounted camera
(PL-B686; PixeLINK, Ottawa, ON, Canada). Length and width
of the elytron and the pronotum were measured from dorsal
images, and length of the hind femur segment as a proxy of
leg length was measured from ventral images using ImageJ
software v1.46r (Schneider et al., 2012).

Statistical analyses

Data were analysed using the R software environment for sta-
tistical and graphical computing version 4.0.3 (R Core
Team, 2020). Descriptive statistics of morphological traits are
provided in Table S1. We statistically tested for change in dis-
persal and trait responses between generation 1 and generation
7. The spatial sorting was applied in parallel for males and
females (i.e. sexes were kept separated); therefore, their
responses were also analysed separately to reflect the physical
separation during the experiment. For plotting proportions of
dispersers across time, we fitted Bayesian generalized linear
mixed effects regression models with binomial distribution and

(a) (b)

Figure 1 Microcosm dispersal apparatuses used to simulate spatial sorting of T. castaneum adults into dispersers, non-dispersers and controls.

(a) Dispersal apparatuses consist of three containers (patches) connected by tubing that contained string, allowing one-way movement from

patch A to C. Patches A and C contained flour and patch B contained paper as a surface but no food resource (a hostile matrix). Colours repre-

sent the state of dispersal for individuals in each container (orange = dispersers, blue = non-dispersers and grey = intermediate, unsuccessful

dispersal). (b) Individuals sampled from each line for phenotyping where beetle colours represent the container that the individuals were sourced

from. After dispersal, individuals from disperser lines in patch C were measured, individuals from non-disperser lines in patch A were measured,

and a mixed sample of individuals from control lines in all patches was measured.
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logit link function using the bayesglm function from the R
package arm (Gelman & Su, 2018). We fitted generalized lin-
ear mixed effects regression models using brms
(B€urkner, 2018). All brm models were run using four chains,
each with 10 000 iterations, 5000 of which were sampling,
with adapt_delta = 0.99 and max_treedepth = 15 to ensure
effective chain mixing. Significance was assessed when the
95% credible intervals (CI) around the posterior mean estimate
of a predictor variable did not overlap zero, which is indicated
in bold. All response traits were calculated as relative values
to the respective paired control lines, to test whether the dis-
perser and non-disperser lines diverged from respective con-
trols lines where beetles were selected randomly from a
dispersal apparatus. Predictor variables were dispersal (i.e. dis-
persers or non-dispersers), generation, and the interaction
between dispersal and generation, with line replicate included
as a random effect. The interaction term is of key interest,
where a significant interaction term identifies that the dis-
persers and non-dispersers diverged in trait responses between
generations 1 and 7 of spatial sorting on dispersal behaviour.

Results

Population-level dispersal responds to
spatial sorting

Populations of beetles were spatially sorted based on their dis-
persal propensity. The time that 15 beetles took to disperse rel-
ative to the control (randomly chosen) lines differed
significantly after seven generations (Fig. 2a,d). Initially, the
male and female beetles in generation 1 dispersed at similar
rates and all beetles did not disperse within the 80 h (Fig. 2b,
e). By generation 7, both females and males moved through
the dispersal apparatus significantly faster than in generation 1,
and as was expected, dispersers were significantly faster than
non-dispersers relative to the control populations (Fig. 2c,f;
Table 1). The divergence in responses between dispersers and
non-dispersers was far more compelling in males (Fig. 2f) than
in females (Fig. 2c), though the disperser divergence in both
sexes was significant considering the change from generations
1–7 (interaction terms in Table 1 and Fig. 2a,d).

Significant body mass and morphological
changes differ between sexes

Overall, body mass and several morphological traits diverged
such that dispersers became smaller and narrower, while non-
dispersers became larger relative to the randomly selected con-
trols across the seven generations of spatial sorting. Body mass
responded strongly to spatial sorting on dispersal behaviour
(Fig. 3a), resulting in clear divergence between dispersers and
non-dispersers relative to the control group (significant dis-
persal 9 gen. 7 interaction terms, Table 2a). To compare, the
relative change in body mass within a given sex between dis-
persers and non-dispersers from generation 1 to 7 was then
calculated from raw mass (mg) values (rather than relative to
control values). Over seven generations, body mass decreased

in dispersers in both males (�5.98%) and females (�2.17%),
whereas body mass increased in non-dispersers in both males
(+3.24%) and females (+4.32%). Changes in the absolute trait
values are presented in Figure S1 and relative percentage
changes in morphological traits are presented in Table S2.
Male and female beetles had diverging responses in pronotum
traits (Fig. 3b,c). In females, pronotum length and width dif-
fered significantly between generations 1 and 7 (Table 2b,c),
but divergence between dispersers and non-dispersers was not
clear (Fig. 3b,c), whereas in males, pronotum width diverged
significantly (Table 2c; Fig. 3c). Elytron width diverged signifi-
cantly between dispersers and non-dispersers in both males and
females, as did elytron length in males but not females
(Table 2d,e; Fig. 3d,e). Femur length only differed significantly
between generations 1 and 7 in females, but it did not diverge
between dispersers and non-dispersers, and therefore did not
respond to spatial sorting (Table 2f; Fig. 3f).

Discussion

Rapid changes in phenotypic traits in response to selective
pressures at range edges or invasion fronts have been predicted
from differences observed among natural populations. The dis-
tribution of phenotypes within a population can be altered by
spatial sorting, a spatial analogue of natural selection (Phillips
& Perkins, 2019), of individuals along a continuum from non-
dispersers to dispersers (Shine et al., 2011). We used a labora-
tory dispersal system to apply the isolated process of spatial
sorting on both sexes individually, thereby excluding spatially
autocorrelated abiotic variables while controlling for population
size and dynamics. We confirmed our first two predictions that
spatial sorting can stimulate changes to dispersal behaviour
and morphological trait changes over seven generations, where
males did indeed disperse faster than females. However, con-
trary to our third prediction that dispersers should increase in
size, body mass and size appreciably increased in non-
dispersers of both sexes over the seven generations, and some-
what decreased in dispersers. Yet, our fourth prediction that
there should be sex-specific changes in morphology was con-
firmed, albeit not coupled with the expected increase in body
size in dispersers. Rather, significant increases in body mass,
pronotum and elytron lengths and widths were apparent in
non-dispersers, with different responses between males and
females. Here, we discuss the implications of these findings in
the context of spatial sorting and microcosm dispersal studies.
Theory predicts that spatial sorting should accelerate range

expansion by favouring individuals with life history and phe-
notypic traits that promote dispersal (Peischl & Gilbert, 2019;
Phillips & Perkins, 2019). Experimental invertebrate systems in
laboratory conditions have been used to study fundamental
ecological and evolutionary dynamics that occur during spatial
sorting of phenotypes through range expansions (Melbourne &
Hastings, 2009; Ochocki & Miller, 2017; Sz}ucs et al., 2017;
Weiss-Lehman et al., 2017). By spatial sorting T. castaneum in
experimental landscapes across eight generations in the labora-
tory, Weiss-Lehman et al. (2017) found that the probability of
dispersal increased in range-edge populations at low density.
However, they also observed that the intrinsic population

Journal of Zoology �� (2023) ��–�� ª 2023 The Authors. Journal of Zoology published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5

P. A. Arnold, P. Cassey and C. R. White Spatial sorting changes morphology

 14697998, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1111/jzo.13062 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [26/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



growth rate was lower in the edge compared with core or shuf-
fled populations, but that the evolution of both traits was
highly variable. Another study using T. castaneum that allowed

or constrained evolution over six generations of experimental
dispersal found that evolving populations grew faster and dis-
persed farther, which was density-dependent (Sz}ucs
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Figure 2 Population-level dispersal behaviour after spatial sorting in laboratory dispersal apparatuses. (a) Time taken for 15 beetles to disperse to

container C in females in generations 1 and 7, where points represent means of four replicate lines, relative to their paired control lines. The pro-

portion of replicate female disperser and non-disperser lines that had 15 beetles successfully dispersed to container C after 80 h in (b) generation

1 and (c) generation 7. (d) Time taken for 15 beetles to disperse to container C in males in generations 1 and 7. The proportion of replicate male

disperser and non-disperser lines that had 15 beetles successfully dispersed to container C after 80 h in (e) generation 1 and (f) generation 7.

Dispersers are coloured in orange non-dispersers in blue, and females are represented by circles and males by triangles. Error bars and shaded

areas of fitted curves are both SE.

Table 1 Parameter estimates from model outputs for the relative time taken for 15 beetles to disperse between female and male

T. castaneum, comparing generations 1 and 7 after selection for and against dispersal

Time taken to disperse

Female Male

Posterior mean 95% CI Posterior mean 95% CI

Intercept (non-dispersers, Gen. 1) 0.345 (�6.154, 7.145) 0.352 (�11.610, 12.833)

Dispersal (dispersers) 1.997 (�7.610, 11.766) �0.003 (�17.410, 17.702)

Gen. 7 7.971 (0.206, 15.770) 15.937 (1.177, 30.993)

Dispersal (dispersers) 9 Gen. 7 �15.966 (�26.830, �5.147) �35.875 (�56.846, �15.203)

Bold indicates that posterior means have 95% CI that do not overlap zero.
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et al., 2017). In similar experiments using bean beetles (Callo-
sobruchus maculatus), Ochocki and Miller (2017) found that
10 generations of spatial sorting significantly increased dis-
persal rate, which was highly variable among replicates. Col-
lectively, these studies used experimental landscapes where
dispersal mode is entirely walking between patches without
any between-patch hostile matrix. In contrast, our study used
multiple patches where dispersal among patches included verti-
cal pathways to and through tubing (requiring both walking
and climbing modes) and included a hostile matrix with poten-
tial failure during dispersal (Arnold, Rafter, et al., 2017). Our
approach also isolated spatial sorting by controlling population
dynamics such that any selection on population growth rate
and density effects should be identical among our replicate dis-
perser and non-disperser lines. We note that we found greater
relative changes in the non-dispersers, which suggests that the
founding and control populations may have already been

highly dispersive. Therefore, the responses of non-dispersers to
spatial sorting may have been stronger than that of dispersers
due to greater genetic variation in the direction of lower dis-
persal. We also explicitly allowed dispersal behaviour to
change independently between the sexes. These key differences
may partially explain why our study found that dispersal rate
responded more strongly in males than females.
Both sexes of T. castaneum exhibit dispersal but differ in

specific behaviours associated with reproduction (Arnaud &
Haubruge, 1999; Arnold et al., 2016; Ziegler, 1976). The sig-
nificantly higher dispersal rate of males in the single-sex dis-
persal apparatuses in our study is likely driven by mate-
seeking behaviours, which occur earlier in males than females
(Ogden, 1970b; Prus, 1966), although females also disperse to
lay eggs due to cannibalism of larvae and eggs (Flinn &
Campbell, 2012). Pheromones and olfactory cues may play a
role in dispersal since the presence of individuals in flour
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Figure 3 Morphological changes between generations 1 and 7 of spatial sorting for disperser and non-disperser red flour beetles, where all

values are means � SE calculated relative to mean trait values of paired randomly selected control lines. (a) Relative body mass, (b) relative pro-

notum length, (c) relative pronotum width, (d) relative elytron length, (e) relative elytron width and (f) relative femur length. Dispersers are

coloured in orange and non-dispersers in blue, and females are represented by circles and males by triangles. Points have connected lines to

highlight the direction of the morphological change and are offset within each generation to minimize point overlap and aid interpretation.
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medium they inhabit can also ‘condition’ the medium by
chemical secretions and frass accumulation over time, which
can increase dispersal similarly to increasing density
(Ogden, 1970b). Dispersers may have become more sensitive
to pheromones, or these individuals could exhibit stronger
mate-finding behaviours. Sex-specific dispersal behaviour is
near universal, often male-biased in arthropods, due to different
benefits and costs between the sexes (Trochet et al., 2016). By
separating the sexes, here we found that dispersal changes in a
sex-specific manner.
Spatial sorting and artificial selection on movement behav-

iour have resulted in changes to dispersal propensity and
capacity across generations in T. castaneum (Matsumura &
Miyatake, 2015, 2018; Weiss-Lehman et al., 2017) and
C. maculatus (Ochocki & Miller, 2017). Studies on various
species including cane toads (Rhinella marina), ground beetles
(Merizodus soledadinus and Carabus hortensis) and eels
(Anguilla spp.) have also found structural changes to body size
and morphological traits when populations were spatially
sorted (Hudson et al., 2016b, 2016; Laparie et al., 2013; Yar-
wood et al., 2021). Most of these field studies found that

dispersers or those individuals closer to the range edge or
expansion front were larger than non-dispersers (but see Mer-
win, 2019; Messager & Olden, 2019), in line with theoretical
predictions (Renault, 2020). In contrast, we found that dis-
persers became smaller and non-dispersers larger over seven
generations. Greater body mass is often associated with
increased movement ability, endurance and energetic capacity
to disperse (Forsman et al., 2011; Llewelyn et al., 2010;
Renault, 2020), but may be unfavourable for certain types of
dispersal.
One explanation for the divergence of body mass and size

in opposing directions to our expectation is that spatial sorting
could have also altered developmental rate or resource alloca-
tion during development. Our experimental design constrained
the variance of pupal age and developmental stage at the time
of collection to minimize differences in adult emergence time
and to ensure that adults had matured prior to dispersal. Yet,
since T. castaneum are holometabolous insects, the body size
prior to pupation is indicative of adult size, hence those indi-
viduals that develop faster are also typically smaller (Arnaud
et al., 2005; Davidowitz & Nijhout, 2004). Conversely,

Table 2 Parameter estimates from model outputs for the relative morphological traits across seven generations of spatial sorting for and against

dispersal and between sexes

Female Male

Posterior mean 95% CI Posterior mean 95% CI

(a) Relative body mass

Intercept (non-dispersers, Gen. 1) �0.017 (�0.407, 0.208) �0.041 (�0.232, 0.145)

Dispersal (dispersers) �0.039 (�0.141, 0.062) 0.040 (�0.065, 0.147)

Gen. 7 0.200 (0.101, 0.300) 0.148 (0.040, 0.256)

Dispersal (dispersers) 9 Gen. 7 �0.153 (�0.298, �0.014) �0.227 (�0.375, �0.077)

(b) Relative pronotum length

Intercept (non-dispersers, Gen. 1) 0.002 (�0.020, 0.025) 0.003 (�0.017, 0.022)

Dispersal (dispersers) �0.009 (�0.024, 0.005) �0.011 (�0.028, 0.005)

Gen. 7 0.019 (0.005, 0.033) �0.006 (�0.023, 0.010)

Dispersal (dispersers) 9 Gen. 7 �0.011 (�0.031, 0.009) �0.004 (�0.027, 0.019)

(c) Relative pronotum width

Intercept (non-dispersers, Gen. 1) �0.009 (�0.046, 0.029) �0.001 (�0.032, 0.033)

Dispersal (dispersers) 0.000 (�0.020, 0.020) 0.013 (�0.009, 0.035)

Gen. 7 0.045 (0.026, 0.064) 0.022 (�0.001, 0.044)

Dispersal (dispersers) 9 Gen. 7 �0.025 (�0.052, 0.002) �0.059 (�0.090, �0.028)

(d) Relative elytron length

Intercept (non-dispersers, Gen. 1) �0.025 (�0.208, 0.042) �0.032 (�0.127, 0.060)

Dispersal (dispersers) 0.007 (�0.034, 0.048) 0.019 (�0.026, 0.064)

Gen. 7 0.083 (0.040, 0.123) 0.065 (0.020, 0.110)

Dispersal (dispersers) 9 Gen. 7 �0.052 (�0.109, 0.004) �0.078 (�0.141, �0.016)

(e) Relative elytron width

Intercept (non-dispersers, Gen. 1) �0.000 (�0.035, 0.033) �0.007 (�0.038, 0.025)

Dispersal (dispersers) 0.003 (�0.016, 0.022) 0.013 (�0.009, 0.034)

Gen. 7 0.037 (0.018, 0.056) 0.023 (0.001, 0.044)

Dispersal (dispersers) 9 Gen. 7 �0.038 (�0.065, �0.012) �0.063 (�0.093, �0.033)

(f) Relative femur length

Intercept (non-dispersers, Gen. 1) 0.003 (�0.019, 0.024) �0.005 (�0.035, 0.024)

Dispersal (dispersers) �0.004 (�0.022, 0.015) �0.004 (�0.026, 0.018)

Gen. 7 0.025 (0.007, 0.042) 0.019 (�0.003, 0.041)

Dispersal (dispersers) 9 Gen. 7 �0.013 (�0.038, 0.012) �0.016 (�0.047, 0.014)

Bold indicates that posterior means have 95% CI that do not overlap zero.
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individuals that develop slower and allocate more resources
into growth during development would emerge larger, mature
later and would therefore not disperse quickly. If movement
behaviour in larvae reflects that of the adults, non-dispersers
may have also increased their body size due to consuming rel-
atively less energy by limiting movement compared with dis-
persers. To assess the contribution of developmental rate or
resource allocation to body mass divergence, trait measure-
ments would need to be made on earlier life stages. If dis-
persal rate is correlated with development rate, then
development represents an underexplored aspect of spatial sort-
ing and range expansion.
An alternative hypothesis for the body mass and size diver-

gence is that small individuals are biomechanically and energeti-
cally better suited to dispersal by climbing than large individuals.
For example, in Anolis lizards, selection pressure for increasing
perch height led to significant shifts in morphology over 20 gen-
erations to facilitate better climbing (Stuart et al., 2014).
Although body mass scales isometrically with energy stores and
musculature (Lease & Wolf, 2011), it scales allometrically with
metabolic rate (White, 2011), such that larger individuals have a
lower resting and moving energy cost relative to their mass and
energy stores (Reinhold, 1999). However, the absolute cost of
transport is considerably lower for smaller animals (Halsey, 2016;
White et al., 2016), and this difference is exacerbated when mov-
ing up an incline (Halsey & White, 2016). The work required to
move a unit of body mass against gravity is the same irrespective
of body mass (Halsey & White, 2016; Lipp et al., 2005); there-
fore, climbing is ultimately less costly for individuals with less
mass to move. When climbing steep inclines, animals will also
adjust their locomotor mechanics to reduce stride length and
become more crouched (Birn-Jeffery & Higham, 2014). Smaller
individuals can hold their centre of mass closer to the climbing
surface and have an intrinsically shorter stride length than large
individuals (Birn-Jeffery & Higham, 2014). Pronotum size can
represent the room available for locomotor muscles and elytron
size the amount of energy stores available in beetles (Laparie
et al., 2013). However, the dispersal mode of climbing (particu-
larly in our dispersal apparatuses) may be more limited by physi-
cal size than by energetics or muscularity.
In our study, males and females also differed in the slope

and sometimes direction of their responses to spatial sorting,
particularly the pronotum and elytron widths relative to the
control population responses (Fig. 3) and in absolute terms
between male and female dispersers (Figure S1). Although we
cannot say definitively why these differences were observed,
we generate hypotheses based on biomechanics of dispersal in
the microcosm dispersal apparatuses. The overall lighter and
smaller males also dispersed through the apparatus faster than
did females, with male dispersers having reduced pronotum
length, pronotum width and elytron width. These findings sug-
gest that individuals with lighter and more narrow bodies were
more biomechanically effective climbers that had the capacity
to transport themselves more easily through the tubes between
the patches in the dispersal apparatus. Hence, spatial sorting
processes through these dispersal apparatuses may have par-
tially filtered dispersal behaviour by size and shape.

We did not find any change in femur length between dis-
persers and non-dispersers. This contrasts with a study in
T. castaneum that were artificially selected based on anti-
predatory behaviour, which found relatively longer legs
evolved in both sexes that were selected for greater mobility
(Matsumura & Miyatake, 2019). We hypothesize that this dif-
ferent finding is likely because our dispersing animals were
required to climb, and animals with longer legs may not neces-
sarily be better climbers. For example, invasion-front
R. marina that have longer limbs relative to their body size
exhibit increased rates of dispersal on the ground (Hudson
et al., 2016; Phillips et al., 2006), but do not have enhanced
climbing ability (Hudson et al., 2016a). Generally, animals that
are efficient at climbing are not necessarily efficient when
walking (Pontzer, 2016), and this decoupling between different
dispersal modes (e.g. walking and climbing) may be an impor-
tant difference among empirical studies on dispersal
(Renault, 2020). Future studies on spatial sorting processes
should also investigate whether different or mixed modes of
dispersal, including flight, affect similar patterns of change to
dispersal and dispersal-related traits and assess these at the
individual-level as well as population-level.
Our experiment provides evidence that morphological traits

can change considerably in response to spatial sorting on dis-
persal over just a few generations, altering the phenotypes of
both dispersers and non-dispersers. The decrease in body mass
and size of dispersers and notable increase in non-dispersers
suggests that developmental processes and biomechanical effi-
ciency may play key roles in determining which individuals
have increased dispersal ability. The sex-specific responses to
spatial sorting processes and potential involvement of develop-
ment warrant further exploration into the energetics and alloca-
tion of resources across life stages and between the sexes of
non-dispersers and dispersers.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Figure S1. Morphological changes between generations 1
and 7 of spatial sorting for disperser and non-disperser red
flour beetles. Absolute trait values (means � SE) for (a) body
mass, (b) pronotum length, (c) pronotum width, (d) elytron
length, (e) elytron width and (f) femur length. Dispersers are
coloured in orange and non-dispersers in blue, and females are
represented by circles and males by triangles. Points have con-
nected lines to highlight the direction of the morphological
change and are offset within each generation to minimize point
overlap and aid interpretation.
Table S1. Summary of mean morphological trait values in

each generation, dispersal and sex combination.
Table S2. Summary of relative change (%) in morphological

traits from generations 1 to 7 in each dispersal and sex
combination.
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