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Peripheral artery disease (PAD) is caused by occluded or narrowed arteries

that reduce blood flow to the lower limbs. The treatment focuses on lifestyle

changes, management of modifiable risk factors and vascular surgery. In this

review we focus on how Endothelial Cell (EC) dysfunction contributes to PAD

pathophysiology and describe the largely untapped potential of correcting

endothelial dysfunction. Moreover, we describe current treatments and clinical

trials which improve EC dysfunction and o�er insights into where future

research e�orts could be made. Endothelial dysfunction could represent a

target for PAD therapy.
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Introduction

Peripheral artery disease (PAD) is defined by the partial or total blockage of the

arteries supplying the lower extremities. More than 200 million people world-wide are

affected with >6.5 million people living with PAD in the United Stated of America

(USA) alone (1). PAD has significant impact because of the frequent need for medical

and surgical treatment. Using 2014 data from National Inpatient Sample, Kohn and

colleagues recently identified that the cost burden of hospitalization for PAD patients

in the USA was∼$6.3 billion per year (2). This medical and economic cost will rise; PAD

prevalence is increasing due to the obesity and diabetes pandemic. People presenting with

PAD have a higher risk of all-cause and cardiovascular mortality than those presenting

with risk in coronary artery diseases (CAD) (3), but PAD has received limited attention

in the development of treatments.
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PAD may be classified into 3 clinical presentations—

asymptomatic or atypical, intermittent claudication, and chronic

limb-threatening ischemia (CLTI) (4). Most patients,∼20–50%,

are asymptomatic or display atypical symptomswhereas 10–30%

of patients display typical features of intermittent claudication

i.e., exertional leg pain in ≥1 muscle group(s), relieved by

rest (5). CLTI is the severe stage of PAD, including ischemic

foot pain at rest, non-healing wounds/ulcerations and in

severe cases, gangrene due to arterial insufficiency, necessitating

revascularization surgery or amputation. The presentation of

PAD may not reflect the severity of limb ischemia and because

of the varying presentations, many patients are misdiagnosed

or underdiagnosed.

PAD is generally viewed as a large vessel atherosclerotic

disease but studies report that its pathophysiology differs from

atherosclerosis in other vessel beds. Narula and colleagues

recently summarized histological differences of plaques in

patients with PAD and CAD (6). The authors suggested

that the blockage of the coronary vessels in acute coronary

syndromes was principally caused by luminal thrombus, with

65–75% suggested to be due to plaque rupture and 25–

35% to plaque erosion (defined as the presence of luminal

thrombosis in the absence of plaque rupture). In contrast,

∼66% of peripheral arteries from CLTI were occluded by

thrombosis in the absence of significant atherosclerosis, defined

as normal intima or adaptive intimal thickening (6). The

same authors also identified blood clots in the small distal

arteries, proposing that local changes in these vessels could

precipitate thromboembolic events, however it is unclear if

these events were due to the process of amputation or if they

occurred prior. The microvasculature also plays a significant

role in PAD pathophysiology since microvascular dysfunction

can increase amputation risk (7). These studies suggest that

our knowledge in PAD pathophysiology is limited. Endothelial

cell (EC) heterogeneity and plasticity has been confirmed in

different organs and vascular beds in peripheral arteries (8–

12), suggesting that EC dysfunction may represent a spectrum

of EC phenotypes (13). This isn’t surprising since the pattern

and behavior of ECs are shaped by their environment and

the tissues they reside in. Given ECs line the entire vascular

tree, the study of EC function and dysfunction in peripheral

arteries could be key to understanding some of these differences.

Certainly, a healthy endothelium not only acts as a barrier

between blood and surrounding tissues, but is considered an

endocrine organ, regulating exchanges between the blood stream

and tissues to control constriction and dilation and maintain

vessel tone. The endothelium also inhibits thrombosis, reduces

leukocyte adhesion and transmigration, limits atherogenesis,

and is responsible for the formation of new blood vessels

necessary for repair during damage.

In this review, we summarize EC function(s) that are altered

in PAD.We highlight current therapeutics and treatments being

investigated in clinical trials that impact EC function(s) as well

as offer insight into where future research efforts could be made.

Knowledge of how EC function and dysfunction contributes to

PAD pathophysiology could have significant implications for

therapeutic and diagnostic approaches for this disease.

EC dysfunction in pad

Inflammation

In homeostasis, leukocytes move in and out of the

vascular system and tissues and are in constant surveillance

of their microenvironment waiting for a signal. In response

to stimuli, these cells are recruited to inflamed tissues, where

they “clean up” the injury and contribute to repair. In

atherosclerosis, damage to the endothelium (e.g., increased

turbulence of blood flow, high blood pressure, high cholesterol,

high glucose, oxidation etc.,) can upregulate multiple mediators

governing leukocyte recruitment. Chemokines, cytokines, and

other inflammatory mediators regulate the expression of

adhesion molecules on both the endothelium, neutrophil,

and monocyte surface to influence the three-step process of

leukocyte recruitment: rolling, activation, and adhesion on the

endothelium which involves E-, L- and P-selectins. While rolling

is essential for leukocyte adherence, it does not necessarily lead

to firm adhesion; firm adhesion requires activation of integrins

(by selectin or chemokine engagement) and their interaction

with ICAM-1 and VCAM-1 (intercellular adhesion molecule-

1 and vascular cell adhesion molecule-1), which results in the

complete arrest of the leukocyte. Leukocytes then transmigrate

between the endothelium into the interstitial space toward a

chemotactic stimulus, such as, CC-chemokine ligand-2 (CCL-

2) (14).

Some of these cellular interactions have been implicated

in PAD. For example, circulating levels of monocytes are

significantly and independently associated with PAD (15), with

high neutrophil-lymphocyte ratio a potential predictor of PAD

severity (16, 17). Circulating chemokines and inflammatory

markers expressed by leukocytes including high sensitivity

C-reactive protein (hs-CRP), interleukins (IL), and matrix

metalloproteinases (MMPs) are also upregulated in PAD

patients, and in some cases associate with severity of disease (18–

21). Indeed, a systematic review and meta-analysis of 47 studies

involving >21,000 PAD patients, identified high levels of hs-

CRP to predict the risk of major adverse cardiovascular events

and mortality (22). Platelets release low abundance, highly

active molecules including chemokines/chemokine ligands and

angiogenic factors including chemokine ligand-5 (CCL-5)

and platelet-derived growth factor (PDGF), which support

leukocyte-platelet interaction and migration of neutrophils and

monocytes to the developing atherosclerotic site (23). Indeed,

Barrett et al., recently identified that platelets induced the

migration of monocytes into atherosclerotic lesions of Ldlr−/−
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mice via upregulation of monocyte suppressor of cytokine

signaling 3 (SOCS3) (24). Thus, platelets also contribute to

inflammation, and with increased inflammatory burden, there is

an increase in PAD prevalence (25). Another cytokine important

for migration of leukocytes into the vessel wall is CCL-2. CCL-

2 infusion of the femoral artery of rabbits following hindlimb

ischemia increased monocyte accumulation in the vessel wall

(26); a finding that was inhibited with ICAM-1 monoclonal

antibody treatment (27), suggesting that monocyte adhesion

to the endothelium in ischemia involves CCL-2 and ICAM-

1. Importantly, circulating CCL-2 levels are increased in PAD

(18, 28), associating with increased CCL-2 protein expression

and macrophage content in limb tissues from patients (29).

Additional reports of the role of cell adhesion molecules

come from the Edinburgh Artery Study, which described

increased soluble levels of ICAM-1 associating with PAD

diagnosis (30). In another study, soluble VCAM-1 levels were

associated with worse PAD prognosis (31). From the selectins:

E-selectin is EC specific whereas P-selectin is expressed by

both ECs and platelets. Higher levels of soluble E-selectin

have been reported in PAD patients, particularly in diabetes,

and reflecting endothelial activation (32). Circulating P-selectin

levels are also associated with PAD severity (33–35) and

in the Multi-Ethnic Study of Atherosclerosis, a prospective

large cohort study involving >6,800 participants, P-selectin

levels were significantly associated with lower ankle-brachial

index ratios as well as PAD prevalence (36). P-selectin’s

involvement in leukocyte adhesion was confirmed in vitro;

human recombinant P-selectin increased neutrophil adhesion

to platelets in the presence of plasma from healthy individuals

(34), suggesting that neutrophil adhesion could also occur with

activated endothelium expressing P-selectin in PAD patients.

Moreover, a link between platelets and SOCS3-mediated

activation in PAD was observed, with the SOCS1:SOCS3 ratio

negatively correlating with IL-1β , but also with monocyte-

platelet aggregates, P-selectin and CD40 (24). Indeed, increased

circulating leukocyte-platelet aggregates are proposed as a

biomarker of PAD severity (17). An in-depth summary of

inflammatory biomarkers in PAD was recently reviewed (37).

Figure 1 summarizes the endothelial, leukocyte and platelet

contribution to inflammation in PAD.

Platelet activation and thrombosis

Under normal circumstances, the endothelium exquisitely

controls endothelial-platelet interactions and the balance

between coagulation and anticoagulation in the vessel wall.

ECs generate nitric oxide (NO) and prostacyclin, molecules

which directly inhibit platelet activation. They express tissue

factor pathway inhibitor, a potent anticoagulant, which limits

tissue factor-inducible activation of factor VII and X (38).

ECs also express co-factors for antithrombin III, or synthesize

thrombomodulin (a thrombin receptor), which can directly

reduce plasma thrombin levels upon thrombin binding, an

effect that can increase the activity of the anticoagulant, protein

C (39). Furthermore, ECs secrete tissue-type and urokinase-

type plasminogen activator (t-PA and u-PA, respectively) to

activate fibrinolysis and fibrin degradation. Because thrombosis

is strongly implicated in PAD (6), the EC-platelet interaction

may be more central to PAD pathogenesis. Indeed, PAD patients

have elevated levels of circulating platelets (40) and increased

platelet aggregability (41), with mean platelet volume increasing

with PAD severity (42). Circulating tissue factor (43), t-PA

(40) and factors IX and XI (44) are also increased, whereas

tissue factor pathway inhibitor (43) and protein C levels are

decreased (44); the latter associating with endothelial injury

(44). Elevated von Willebrand factor and fibrinogen levels are

also independently associated with the risk of development

of PAD (45), with increased fibrinogen and D-dimer levels

predictive of increased risk of mortality in PAD patients (22).

Soluble thrombomodulin levels are increased in symptomatic

PAD vs. asymptomatic age-matched control subjects (46), which

is significant since elevated levels may reflect EC dysfunction in

PAD (47, 48).

Interestingly, medial calcification and calcified nodules were

identified in 70% of CLTI peripheral arteries examined (6,

49). Calcified nodules, accompanied by fibrin could pierce or

disrupt the fibrous cap causing EC loss and plaque rupture

(50). This is important since vascular calcification may predict

poorer outcomes in PAD (51). However, reports suggest

that calcification may also stabilize plaque (52). The role

of calcification in PAD is not well established and requires

further study.

Vessel tone

To meet physiological demand and manage blood flow, the

endothelium dilates arteries by relaxing the underlying smooth

muscle via a range of mechanisms. The most well studied is

NO. Under normal physiological conditions, the formation of

NO is dependent on calcium facilitated calmodulin binding to

homodimeric endothelial nitric oxide synthase (eNOS). Bound

calmodulin then facilitates, 6R-tetrahydrobiopterin (BH4)-

dependent electron transfer across eNOS to catalyze the

conversion of L-arginine to NO and L-citrulline. However,

roles for cyclooxygenase (COX)-derived prostoglandins (53),

membrane hyperpolarization (54), epoxyeicosatrienoic acids

(55), myoendothelial gap junctions (56) and oxidants (57) can

also control arterial tone in an endothelial-dependent manner.

The specific mechanism of regulation differs depending on how

the artery is stimulated, sex, and the location of the artery in

the circulatory system. However, arguably the biggest variable

that dictates which mechanism is employed is the health state of

the artery.
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FIGURE 1

Leukocyte and platelet adhesion, recruitment to the endothelium, and contribution to inflammation in PAD. In atherosclerosis increased

inflammation upregulates the expression of VCAM-1 and ICAM-1 as well as E- and P- selectin on endothelial cells. These adhesion markers are

involved in the process of leukocyte recruitment (rolling, activation, and adhesion to the endothelium), with L-selectin also implicated in

adhesive interactions between leukocytes and endothelial cells. Once adhered, leukocytes migrate into the interstitial space toward a

chemotactic mediator such as CCL-2. Here, monocytes di�erentiate into macrophages. Monocytes are independently associated with PAD and

increased neutrophil: lymphocyte ratio is linked to PAD severity. Circulating chemokines, inflammatory markers (e.g., CRP, interleukins, and

matrix metalloproteinases), and adhesion molecules (ICAM and P-selectin) are up regulated in PAD and associated with disease severity.

Platelets also secrete molecules that support platelet-neutrophil and platelet-monocyte interaction and adhesion. Circulating platelet-leukocyte

interactions are considered a biomarker for PAD.

In PAD patients many of the above mechanisms become

dysfunctional. For instance, flow mediated dilation (FMD), a

surrogate for endothelial function, and commonly associated

with endothelial production of NO, is reduced (58). Consistent

with this, PAD patient plasma and urine showed decreased BH4,

cyclic guanosinemonophosphate (cGMP) and decreased NOX’s,

pointing toward a decrease in endothelial NO bioavailability

(59). Ismaeel et al. (60) has since shown a range of increased

oxidative stress markers in PAD, proposing these as mechanisms

by which NO bioavailability is lost, and is somewhat in

agreement with other studies. For example, administration

of L-arginine to patients to stimulate NO production, or

oxypurinol to decrease oxidative stress (and thus increase

NO bioavailability) increased FMD, restored blood flow and

decreased patient symptoms (61, 62). However, despite the

promise of these short-term studies, longer term clinical

trials over 6 months in the NO-PAIN study showed that

oral administration of L-arginine did not improve FMD or

improve any NO biochemical parameters in patients with

intermittent claudication (63). An additional strategy to increase

NO bioavailability is to modulate the eNOS enzyme directly.

In this regard the β-adrenergic receptors (βARs) may have

therapeutic potential, particularly the β3AR isoform. β3AR

agonists stimulate vasodilation via their ability to modulate

eNOS activity and NO production (64, 65). Moreover, we

showed that activation of β3AR restored NO and the redox

balance, improving vasodilation and EC function in a mouse

model of diabetic PAD (66).

The impact of PAD on other vasodilatory pathways is less

investigated but should not be overlooked. Evidence already

exists of other pathways such as the COX-dependent regulation

of vascular tone that may be disrupted in PAD models (67), and

that selective inhibition of COX-2 offers clinical improvement

in intermittent claudication (68). Given that the contribution to

vascular tone of NOdecreases as vessel size decreases (69), future

research should also investigate the effects of PAD on non-NO

mechanisms of arterial dilation. A summary of these pathways is

described in Figure 2.

Angiogenesis

In hemostasis, injury to blood vessels (e.g., ischemia)

activate ECs, which then sprout, migrate, proliferate, and

form EC tubules, driven by hypoxia-induced mediators, the

most characterized being vascular endothelial growth factor

(VEGF). Interestingly, in clinical practice and in animal

models of cardiovascular disease, the endogenous angiogenic

responses are impaired, particularly with aging (70, 71),

in diabetes (72–74) or in dyslipidemia (71, 75, 76). Thus,
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FIGURE 2

Regulation of vessel tone in healthy arteries and in PAD. Left hand side shows three mechanisms of arterial relaxation in healthy arteries. (1) Nitric

oxide induced arterial relaxation, endothelial calcium binds calmodulin which in turn facilitates eNOS mediated oxidation of L-Arginine forming

NO and citrulline. NO then di�uses from the endothelial cell (EC) to the vascular smooth muscle cell (VSMC) where it activates soluble guanylate

cyclase (sGC). sGC then converts guanosine triphosphate (GTP) into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase

G1a (PKG1α) which lowers smooth muscle calcium through potassium channel mediated hyperpolarization of smooth muscle cells. (2)

Increased endothelial calcium binds calmodulin which in turn activates small and intermediate conductance calcium activated potassium

channels. Potassium e	ux through these channels hyperpolarizes vascular smooth muscle via direct spreading of membrane potential or via

activation of smooth muscle ion channels. (3) Endothelial calcium increases and increases arachidonic acid formation from membrane

phospholipids. Arachidonic acid is the metabolized via cyclooxygenase 1 or 2 (COX) to form prostaglandins. The dominant prostaglandin

formed is prostacyclin (PGI2). PGI2 then activates the IP receptor (IPR) which converts adenosine triphosphate (ATP) into cyclic adenosine

monophosphate (cAMP) in an adenylyl cyclase (AC)-dependent manner, cAMP then activates protein kinase A (PKA) which lowers smooth

muscle calcium through potassium channel mediated hyperpolarization of smooth muscle cells. Right hand side shows how peripheral artery

disease a�ects arterial relaxation. (4) Increased endothelial calcium increases production of superoxide (O2
−•) via stimulation of uncoupled

eNOS or stimulation of other oxidant sources such as NADPH oxidases (NOX’s). Any NO that has been produced may be ine�ective as its target

sGC has been oxidized or become heme free. (5) Mechanisms of potassium channel induced hyperpolarization have not been investigated. (6)

arachidonic acid breakdown results in increased thromboxane A2 (TXA2α) or increased activation of thromboxane receptor (TPR) activation.

stimulating angiogenesis in local ischemic tissues could be

beneficial in PAD and other vascular diseases. However, to

date, all large clinical trials delivering angiogenic factors,

including VEGF to people suffering from ischemic diseases

such as PAD have shown little benefit (77). Furthermore,

the role of angiogenesis in atherosclerosis is conflicting. For

example, in a rabbit carotid artery collar model of intimal

hyperplasia, adenoviral delivery of VEGF-A, -B, -C and -D

increased intimal thickening which was positively correlated

with neovascularisation (78). VEGF and other angiogenic

molecules including fibroblast growth factor (FGF) were shown

to accelerate atherosclerosis in animal models (79, 80), whereas

anti-angiogenic therapies reduced atherosclerosis development

(81). In contrast, systemic inhibition of the VEGF receptor

attenuated established atherosclerosis in high fat diet-fed

Apoe−/− mice (82). Interestingly, plasma concentrations of

VEGF-A, but not VEGF receptor-1, are significantly elevated

in PAD patients vs. healthy controls (83). In support of this, a

significant increase in plasma VEGF was observed in patients

with intermittent claudication vs. CLTI, suggesting that VEGF

may act as a biomarker or causal factor in disease (83).

Indeed, Stehr et al. found increased VEGF levels associated with

increased PAD severity (84). What is clear from these studies

is that our knowledge of the complex angiogenic pathways and

responses to ischemia in PAD is limited.

Other molecules of interest that can promote angiogenesis

include TNF-related apoptosis-inducing ligand (TRAIL) and

β3AR. TRAIL is a protein discovered for its ability to selectively

kill tumor cells but leave normal cells resistant to its cytotoxic

actions (85, 86). Interestingly, in ischemic cardiovascular

diseases including PAD, TRAIL levels in the circulation are

suppressed (87–90) and in the cardiovascular system TRAIL
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appears to have homeostatic rather than cytotoxic properties.

For example, the presence of TRAIL attenuated atherosclerosis

in mice (87, 91), in part by resolving inflammation and

improving macrophage function (87), reducing oxidative-stress-

induced EC dysfunction (92), and increasing eNOS activity

to stimulate intracellular NO production in ECs (93). In the

latter study, TRAIL stimulated NO production via a NOX-

4-dependent mechanism (93). Furthermore, we and others

showed that exogenous TRAIL treatment stimulated in vitro

EC processes of angiogenesis (proliferation, migration and

tubule formation) (93–95) and promoted stable collateral vessels

in the ischemic limb of mice (93). Activation of the β3AR

can also stimulate processes of angiogenesis. For example,

the specific β3AR agonist BRL37344 increased retinal EC

proliferation and migration in vitro, whereas stimulation of the

β1 isoform, β1AR had no effect (96). Furthermore, nebivolol-

induced angiogenesis in a mouse model of aortic sprouting was

abrogated with β3AR deletion, demonstrating the importance

of β3AR in neoangiogenesis (97). More recently, we showed

that administration of CL316,243, a specific β3AR agonist,

stimulated human umbilical vein EC migration and tubule

formation in a NOS-dependent manner in vitro, and crucially,

CL316,243 improved blood perfusion and angiogenesis in a

mouse model of diabetic PAD (98). These findings support

TRAIL and β3AR agonist modulators as promising new

therapeutic agents for the treatment of PAD.

Current treatments and clinical trials
which target and improve EC
function

Current gold-standard treatment of PAD includes the

management of symptoms such as exercise therapy, medical

therapy (e.g., lipid control, blood pressure control, anti-platelet

therapy and diabetes control), and revascularization to reduce

the risk of myocardial infarction (MI) and stroke. Interventions

for PAD are guided by disease stage; guidelines for management

have been published by the European Society of Vascular Surgery

and European Society of Cardiology in 2018 (99), the AHA

and American College of Cardiology (ACC), 2016 (100), the

Global Vascular Guidelines in 2019 (4) and the Asia-Pacific

Consensus Statement on PAD Project Committee (APPADC)

(101). These guidelines are summarized in Table 1. Below, we

focus our attention on some of these therapies as well as describe

emerging therapies known to impact EC functions.

Exercise

Exercise training has positive effects on endothelial function.

This is particularly evident in CAD where exercise training

improved endothelium-dependent vasodilation that resulted in

a 4-fold phosphorylation of eNOS1,177 from isolated arteries 4

weeks later (102). Increased endothelial function after exercise is

also observed in patients with hypertension (103), and in type-1

and type-2 diabetes (104, 105). Furthermore, moderate-intensive

exercise (>10 h/week) stimulated coronary collateral blood

flow and improved diastolic heart function in CAD patients

(106). In this prospective study, 60 patients were randomly

assigned to high intensity exercise, moderate intensity exercise

or control for 4 weeks. Angiography identified significantly

increased coronary flow index in the exercise treated groups

(39 and 41%, respectively) vs. control which was associated

with increased VO2 peak (maximal oxygen uptake; measure of

aerobic fitness) (106). The authors proposed two mechanisms:

recruitment of pre-existing vessels or improved EC function

of small intramyocardial vessels (106). Because supervised or

home exercise programs are first-line therapy for PAD (101),

these mechanisms may also be relevant in limbs. Indeed,

exercise training improved brachial artery dilator function in

older sedentary females, (107) but these findings are not as

apparent in PAD. There is also potential for long-term exercise

therapy to improve systemic inflammation since an inverse

correlation between exercise, inflammation and plasma CRP

levels exist (108). The role of exercise treatment on inflammation

in PAD and its effect on EC function is unclear and requires

further elucidation.

Cilostazol

Phosphodiesterases (PDE) play important role(s) in barrier

function by inactivating the messenger cyclic nucleotides cyclic

adenosine monophosphate (cAMP) and cGMP and ECs express

5 PDEs, namely, PDE1, PDE2, PDE3, PDE4, and PDE5.

Cilostazol is a PDE3 inhibitor and antiplatelet medication

used to relieve PAD patients from symptoms of intermittent

claudication, which improves walking distance (109), in part

by acting as a vasodilator and its ability to stimulate NO

release. The most recent Cochrane review, which included 8

placebo-controlled randomized controlled trials involving 2,360

participants with PAD, reported that cilostazol significantly

increased maximum walking distance (mean difference 39.6m.

95% CI 21.8, 57.3; GRADE criteria very low certainty evidence)

(110). However, cilostazol was associated with an increased odds

of headache which is a common reason for discontinuation. It

was suggested that the effects of cilostazol may vary depending

on its ability to convert into its active metabolite via the

cytochrome P450 system (111). Interestingly, cilostazol may

have sex-dependent effects in ECs since female ECs express

more Pde3b mRNA than male cells (112). However, no

reports of differing responses in men and women have been

identified. How cilostazol effects EC function(s) in PAD is not

fully established.
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TABLE 1 Summary of Class I PAD treatment guidelines.

Recommendation Level of evidence

AHA/ACC

2016

ESC/ESVC

2018

GVG 2019 APPACD

2021

Lipid lowering drugs for all PAD patients A A A A

Antihypertensive therapy exclusively for hypertensive PAD patients to reduce chance of

MI, stroke, heart failure or cardiovascular death

A B B A

Diabetes therapies to maintain C C B B

Smoking cessation for PAD patients who smoke cigarettes or other forms of tobacco A B A A

Antiplatelet therapy to reduce risk of MI or stroke A C A A

Antithrombotic therapy to reduce risk of MI or stroke A A A A

Exercise therapy to improve claudication symptoms A C N/A A

Annual influenza shot C N/A N/A C

Healthy diet N/A C N/A N/A

Endovascular treatment for claudication N/A C B B

AHA/ACC, AmericanHeart association and American College of Cardiology; ESC/ESVS, European Society of Vascular Surgery and European Society of Cardiology; GVG, Global Vascular

Guidelines; APSAVD, Asia-Pacific Society of Atherosclerosis and Vascular Disease. A, data derived from multiple randomized control trials or meta data; B, data derived from a single

randomized clinical trial or large non-randomized clinical trials; C, consensus of expert opinion and/or small studies, retrospective studies and registries; N/A, not applicable.

Mirabegron

Mirabegron is a second generation β3AR agonist used to

treat overactive bladder. The STAR-PAD trial is a Phase II,

multicenter, double-blind, randomized, placebo-controlled trial

of mirabegron vs. placebo on walking distance in patients

with PAD that is currently recruiting by Figtree and colleagues

(ACTRN12619000423112) (113). A total of 120 patients aged

≥40 years with stable PAD and intermittent claudication will

be randomly assigned (1:1 ratio) to receive either mirabegron

(50mg orally once a day) or matched placebo for 12 weeks.

The primary endpoint is change in peak walking distance

assessed by a graded treadmill test. Secondary endpoints

include: (i) initial claudication distance; (ii) average daily step

count and total step count and (iii) functional status and

quality of life assessment. Mechanistic sub-studies will examine

potential effects of mirabegron on vascular function, including

brachial artery FMD, arterial stiffness and angiogenesis. Given

that mirabegron is well-tolerated and clinically available

for alternative purposes, a positive study is positioned to

immediately impact patient care.

Medications used for coronary
microvascular dysfunction (CMD)

Large vessel blockages may not be the only mechanism

contributing to PAD pathogenesis. Interestingly, microvascular

dysfunction in the limb can increase amputation risk by ∼20-

fold, even in the absence of large vessel atherosclerosis

(7). This is somewhat reminiscent of female patients

with CMD who present with dysfunction of the small

coronary vessels in the absence of atherosclerosis.

These women have worse heart function and blood

perfusion (114), with EC dysfunction the primary

cause (115). Similar mechanisms may be at play with

PAD, given majority of patients do not present with

typical symptoms.

Central mechanisms thought to govern CMD include

enhanced vasoreactivity at both epicardial and microvascular

levels, impaired coronary vasodilator capacity, and increased

microvascular resistance; effects of dysfunctional ECs (116).

The mainstay of therapies for CMD are β-blockers, statins,

calcium channel blockers and angiotensin converting enzyme

(ACE)-inhibitors. These are also recommended as secondary

prevention for PAD (Table 1). β-blockers and calcium channel

blockers reduce severity of anginal symptoms and improve

exercise stress test performance (117) and this may be

due, in part, to the fact that they also block oxidative

stress, improve EC survival (118), reduce EC activation

and inflammation, and stimulate eNOS production (119,

120). Furthermore, β-blockers reduce FMD in people with

cardiovascular diseases (121) whereas ACE-inhibitors have

only showed modest improvement in FMD in patients with

CAD (122), even though they modulate survival of ECs

(123). Statins not only reduce cholesterol synthesis, but also

dampen inflammation. They also do this via their direct

effect on ECs. For example, low dose statins improved

viability, reduced VCAM-1 and ICAM-1 expression, and

atherosclerosis in pre-clinical models (124, 125). They also

promoted NO release and repair mechanisms following EC

injury (126). Although these medications are recommended

for PAD treatment, adherence to these is variable amongst

patients (127).
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Anti-inflammatory treatment

As described earlier, inflammation contributes to

atherosclerosis pathophysiology, in part, via endothelial

activation, and recruitment of leukocytes to the vessel wall. The

Canakinumab Anti-inflammatory Thrombosis Outcome Study

(CANTOS), a randomized double-blind, placebo-controlled

trial of canakinumab, a monoclonal antibody targeting IL-

1β showed that 150mg of canakinumab reduced recurrent

cardiovascular events in patients with stable CAD when

compared to placebo (128). Thus, anti-inflammatories could

also hold promise for PAD therapy not only in their ability to

reduce inflammation, but also since many anti-inflammatories

impact EC function(s). For example, anakinra, an inhibitor

of IL-1, reduced endothelial dysfunction in diabetic rats; a

finding that was associated with decreased NOX and circulating

inflammatory cytokines including IL-1β and TNFα (129).

Anakinra treatment for 30-days also improved FMD in patients

with rheumatoid arthritis (130). Similar findings were also

observed with TNFα inhibitors (131). More recently, colchicine

has shown considerable promise as a relatively safe, inexpensive

dedicated agent which targets inflammation by attenuating

NLRP3 activity and IL-1β expression; a recent meta-analysis

demonstrating reduced MACE, MI, stroke, and the need for

coronary revascularization in patients with coronary disease

(132). Data on direct effects of colchicine on ECs is limited,

however an older study showed that colchicine reduced the

number of E-selectin molecules on the endothelium and

subsequent adhesiveness of the ECs to IL-1 or TNFα (133).

Although one recent study found no difference in FMD between

low-dose colchicine and placebo in patients with CAD (134),

another study showed improvement in FMD in patients with a

white blood cell count ≥7,500 mm3 (135). Never-the-less, these

studies suggest that anti-inflammatory agents could be used to

reduce inflammation in PAD and have potential direct effects

on EC dysfunction.

Platelet and thrombosis inhibitors to
prevent PAD complications

As described earlier PAD is associated with dysregulated

platelet activation and coagulation, which could precipitate

major thrombotic events, observed not only in large vessel

disease, but also in small vessels with microthrombi resulting

in reduced tissue perfusion. Although current guidelines

recommend the use of antiplatelet and antithrombotic

medication to reduce the risk of MI or stroke (4, 99–101)

there is a significant lack of guideline adherence (136),

especially for newly-diagnosed PAD patients (137). Generally

speaking, aspirin and clopidogrel are the two most studied

antiplatelet medications. Aspirin inhibits COX and subsequent

thromboxane A2, which is not only vasoconstrictive, but also

activates platelets. Clopidogrel on the other hand prevents

platelet activation by blocking the P2Y12 receptor on the surface

of the platelet. Both have direct effects on ECs. For example,

aspirin protected ECs against oxidized low-density lipoprotein,

high glucose, angiotensin II, and H2O2-induced injury

(138, 139). It also improved impaired acetylcholine-induced

vasodilation in patients with atherosclerosis (140) and in pre-

clinical models of aging (141). LPS-induced mRNA expression

of inflammatory cytokines was attenuated with clopidogrel,

associating with improved EC viability, migration, proliferation,

and angiogenesis (142). Clopidogrel also prevented endothelial

dysfunction in hypertensive rats (143).

Unlike anti-platelet medications, anti-coagulants inhibit the

coagulation cascade and the formation of fibrin. An example is

Rivaroxaban, a specific inhibitor of factor Xa. In the COMPASS

trial which included >27,000 patients with stable CAD or

PAD, patients were given low-dose rivaroxaban (5mg, twice

daily) and aspirin (100mg, once daily), or aspirin alone.

Patients assigned to low-dose rivaroxaban plus aspirin had better

cardiovascular outcomes after ∼2 years, including reduction

in the combined risk of cardiovascular death, stroke, and MI

(144). However, the risk of major bleeding events increased

(144). In a sub-study, rivaroxaban plus aspirin reduced the

incidence of major adverse limb events including amputations,

when compared to aspirin alone (145). While the risk of major

bleeding events was increased, the risk of fatal bleeding was

not (145). In the more recent VOYAGER PAD trial (146),

>6,500 PAD patients undergoing revascularization received

either rivaroxaban (2.5mg, twice daily) plus aspirin (100mg,

once daily), or aspirin alone for 3 years (147). A significant

reduction in ischemic limb events including acute limb ischemia,

amputation as well as cardiovascular outcomes (death, MI,

stroke) were observed (147). Despite women having higher total

cholesterol and greater prevalence in hypertension, diabetes and

chronic kidney disease, the net clinical benefit of rivaroxaban

plus aspirin was similar with sex, with comparable rates

for cardiovascular outcomes and bleeding between men and

women (148). The risk of major bleeding was still higher with

rivaroxaban treatment.

Interestingly, rivaroxaban also has direct effects on ECs

and the endothelium. Rivaroxaban administration improved

vasodilation in diabetic wildtype mice, in part by increasing

aortic eNOS activity (149). Forearm blood flow was also

improved in diabetic patients administered rivaroxaban for 20

weeks, although treatment was associated with higher bleeding

events (150). In vitro, rivaroxaban reduced ROS (reactive oxygen

species), improved DNA repair (151) and reduced inflammatory

gene expression in ECs exposed to hydroxycholesterol (152,

153). Rivaroxaban also stimulated blood flow and increased

capillary density in a mouse model of diabetic PAD (154).

The same group demonstrated improvement in endothelial

progenitor cell migration and senescence, associating with
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increased eNOS activity in a hyperglycemic environment (154),

suggesting that rivaroxaban has pleiotropic functions in ECs.

These findings demonstrate that antiplatelet and anticoagulants

may improve EC dysfunction in PAD, however additional

studies are needed to fully characterize these effects.

Glucose lowering treatments

It is well established that diabetes mellitus increases the risk

of PAD and accelerates atherogenesis. Although it is unclear

if intensive glucose control reduces the risk of PAD, studies

describe positive outcomes in lower-extremity events including

a 31% reduction in risk of amputation with intensive glucose

lowering (155). As such, glucose lowering is a recommended

PAD guideline pharmacotherapy; its impact on PAD has been

reviewed (156). Because hyperglycemia and insulin resistance

can facilitate EC dysfunction (157), many glucose-lowering

therapies can impact ECs directly. Insulin for example can

directly regulate eNOS expression and NO release to cause

vasodilation (158), and also via this pathway, inhibit platelet

hyperactivity (159). Further, insulin has regenerative and

healing capacity in ECs by stimulating angiogenesis (160).

Similarly, metformin was shown to improve endothelial-

dependent vasodilation in diabetic atherosclerotic mice (161),

however, its role in angiogenesis is conflicting (162, 163). More

recent studies demonstrate that diabetic patients treated with

glucagon-like peptide agonists, sodium-glucose co-transporter-

2 inhibitors or in combination, showed improved systolic blood

pressure, endothelial glycocalyx thickness and cardiac function

(164). This may in part be due to the direct effect of these

therapies on EC functions. For example, glucagon-like peptide

1 and sodium-glucose co-transporter-2 inhibitors reduce EC

ROS production, reduce adhesion molecule expression and

inflammation, improve vasodilation, and stimulate angiogenesis

(165, 166). Additional studies are needed to fully comprehend

the effect of glucose-lowering agents on EC functions and their

cardioprotective effects.

Emerging diagnostics and therapies

MicroRNAs (miRNAs) are small ∼20–25 nucleotide long

endogenous non-coding RNA sequences; their main function to

regulate protein expression post-transcriptionally. miRNAs are

emerging as a biomarker and potential PAD therapeutic. Using

next generation genome-wide sequencing, a recent study led by

Syed and colleagues identified miRNA-1827 to be significantly

upregulated in the blood and plasma of patients with CLTI

(167). miRNA-1827 was shown to inhibit cell proliferation

and tumor angiogenesis in zebrafish (168) and may in part,

contribute to impaired angiogenesis and EC function observed

in PAD. miRNA-503 is also upregulated in amputated ischemic

limb tissues from diabetic CLTI patients, in ischemic tissues of

diabetic mice as well as in ECs exposed to diabetic conditions

in vitro (169). Indeed, the authors found that miRNA-504

overexpression inhibited glucose-induced in vitro processes

of angiogenesis, whereas inhibition of miRNA-503 improved

blood perfusion and increased EC capillary density in diabetic

mice following ischemic injury (169). These findings imply

that miRNA-503 could be targeted for improving EC function

in PAD. Other miRNAs are also altered in PAD patients

including miRNA-130a,−27b and−210. Interestingly, miRNA-

130a suppression was shown to increase angiogenesis and

improve neurological function in ischemic stroke (170) and

miRNA-27b inhibited human umbilical vein EC proliferation,

migration and tubulogenesis by directly suppressing VEGF-

C (171). In contrast, miRNA-210 stimulated pro-angiogenic

processes in hypoxia in the brain and in ECs in vitro (172).

The mRNA expression of all 3 miRNAs were increased in serum

from atherosclerotic obliterans/PAD patients at I-III Fontaine

stages (173), however, their role in EC functions in PAD is

unclear. miRNAs could be the future in PAD diagnostics and

gene therapy [reviewed in (174–176)].

In addition to miRNAs, dysfunction to the endothelium

can stimulate the release of endothelial-derived microvesicles

(EMVs). These are small vesicles (∼0.5–2µm) released by

activated ECs during inflammation to regulate multiple cellular

and vascular functions (177), playing a role in immunity,

inflammation, and thrombosis (178). They can also carry

miRNAs (178, 179). Because of these functions, EMVs are

emerging biomarkers with therapeutic potential, particularly

in atherosclerosis. For example, EMVs isolated from patients

with CAD stimulated permeability and increased the mRNA

expression of ICAM-1, VCAM-1, and CCl-2 in ECs in vitro

(180). The role of EMVs in PAD is not elucidated, however,

similar mechanisms may be at play. Further study is needed to

understand their role in PAD.

Future perspectives and concluding
remarks

The etiology of PAD is multifactorial, and the endothelium

may hold clues into pathogenesis. From its anti-inflammatory,

anti-thrombotic, anti-atherogenic and pro-repair and

regeneration role, the endothelium is critical in mediating

cardiovascular homeostasis. Currently, there are limited

treatments for limb ischemia. Alternate or novel treatments

that could restore EC function(s) could have significant

therapeutic implications for PAD given that EC dysfunction

is a common factor facilitating pathogenesis. New therapies

reducing symptoms and the risk of amputation could be life

changing for these patients.

Many questions remain. For example, is the pathogenesis of

PAD and other atherosclerotic disease distinct? What triggers
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thrombosis in PAD patients? How does the spectrum of EC

phenotypes affect EC function in PAD pathogenesis? What

about the potential role of antioxidants in PAD therapy or

EMVs and microRNAs? What about epigenetic changes which

involve miRNAs, histone modification and DNA methylation

(176)? Can biomarkers such as hs-CRP, fibrinogen and D-dimer

(amongst others), recently identified to predict major adverse

cardiovascular outcomes in PAD (22) be used for treatment

selection? For example, could PAD patients with fibrinogen

levels ≥446.35 mg/L, increasing risk of cardiovascular mortality

(22) be given more intensive treatment with anti-coagulants?

Indeed, biomarkers could potentially be used to identify PAD

patients with greater risk of adverse outcomes and those patients

who may show benefit from intensive treatment (22).

Sex-dependent differences are also emerging in PAD. PAD

appears to be more prevalent in women >20 years of age

(181), with women more likely to be asymptomatic and have

worse outcomes to treatment (182). How EC dysfunction

contributes to sex-dependent differences is completely unknown

and it is tantalizing to speculate that mechanisms occurring

in CMD may also play a role in women with PAD. More

studies are needed to identify whether EC dysfunction and the

spectrum of EC phenotypes reflect sex-dependent differences

in pathogenesis. Since many patients are asymptomatic or with

atypical symptoms, also raises the question of identifying a

non-invasive technique to measure EC functions in the clinic,

particularly those that may be high risk of CLTI. FMD is used

as a current strategy, however, more improved assessments

with greater sensitivity and specificity are needed to take into

consideration macrovascular vs. microvascular effects of ECs

in PAD. Indeed, a universal method for FMD measurements

and newer technologies for assessing EC functions were recently

proposed in a position statement by the European Society of

Cardiology Working Groups (13).

There is also a gap in knowledge in our understanding of the

interaction of the endothelium with the cellular and humoral

immune system in PAD, which requires further investigation.

Medical therapy and secondary risk prevention for PAD

described earlier include statins, antiplatelets, antihypertensives,

control of diabetes, and cessation of smoking, with many of

these directly affecting EC functions(s), however there is a

substantial lack of guideline adherence, with only ∼11–67%

reported to adhere to PAD recommended guideline therapy

(136). Surprisingly, PAD patients are also less likely to receive

these medications than patients with CAD (127), thus, the

benefit and impact of these on PAD pathogenesis including

effects on EC function(s) is not fully established and requires

greater study.

Finally, a greater understanding of PAD pathogenesis

and mechanisms of EC dysfunction are essential. Multi-omic

approaches, combining genomics, proteomics, metabolomics

with phenotypic data and network biology analysis, are

underway to decipher these mechanisms in PAD. Pathogenic

characterization at the molecular and cellular levels could

identify strategic targets leading to improvements in diagnosis,

management, and treatment of PAD.
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