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a b s t r a c t   

Islets transplanted for type-1 diabetes have their viability reduced by warm ischemia, dimethyloxalylglycine 
(DMOG; hypoxia model), oxidative stress and cytokine injury. This results in frequent transplant failures and the 
major burden of patients having to undergo multiple rounds of treatment for insulin independence. Presently 
there is no reliable measure to assess islet preparation viability prior to clinical transplantation. We investigated 
deep morphological signatures (DMS) for detecting the exposure of islets to viability compromising insults from 
brightfield images. Accuracies ranged from 98 % to 68 % for; ROS damage, pro-inflammatory cytokines, warm 
ischemia and DMOG. When islets were disaggregated to single cells to enable higher throughput data collection, 
good accuracy was still obtained (83–71 %). Encapsulation of islets reduced accuracy for cytokine exposure, but 
it was still high (78 %). Unsupervised modelling of the DMS for islet preparations transplanted into a syngeneic 
mouse model was able to predict whether or not they would restore glucose control with 100 % accuracy. Our 
strategy for constructing DMS' is effective for the assessment of islet pre-transplant viability. If translated into 
the clinic, standard equipment could be used to prospectively identify non-functional islet preparations unable 
to contribute to the restoration of glucose control and reduce the burden of unsuccessful treatments. 
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 

Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/li
censes/by-nc-nd/4.0/).   

1. Introduction 

In type-1 diabetes the destruction of insulin secreting beta-cells 
in pancreatic islets results in elevated blood glucose levels. This re
sults in the multiple morbidities, including heart, kidney, nerve and 
eye damage, leading to reduced quality of life and earlier mortality. 
Allogenic transplant of pancreatic islets can restore glucose control, 
however its efficiency as a therapy is low, with most patients re
quiring repeated transplants with high islet numbers to achieve 
insulin independence [1,2]. Islet viability is frequently compromised 
by pathological “insults” experienced by islets donated for trans
plantation. Examples of these include warm ischemia, hypoxia, 
oxidative stress and cytokine injury. The failure of transplantation 
often occurs due to this compromised viability [2]. As such, an assay 
for characterising islet preparations to inform clinical decision 
making prior to transfer as to whether a procedure has sufficient 
likelihood of success to be worth proceeding with, has long been 
identified as an area of need [3]. 
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Methodologies for estimating islet viability have been developed; 
including observer assessment of islet morphology, exposure to 
membrane impermeable fluorescent dyes for the detection of dead 
cells), comparison of the ATP/ADP ratio and measurement glucose 
stimulated insulin secretion (GSIS). However, none of these are 
strongly predictive of insulin independence after transplant [3–8]. 
This has been hypothesised to be due to pre-transplantation as
sessment of live/dead cells not apoptotic and pre apoptotic cells, as 
well as recovery of insulin secretion by quiescent beta-cells upon 
reintroduction to the physiological environment [3]. 

We recently demonstrated successful restoration of glucose 
control in diabetic mice could be predicted from the hyperspectral 
assessment of islet autofluorescence [9]. Cellular morphology is 
known to be strongly influenced by the cell’s microenvironment and 
responsive to biophysical and environmental factors [10]. As such, 
we have extended this program to use deep learning technology to 
discover specific morphological cell signatures, reflective of cell 
viability and quality, but hitherto imperceptible to human assess
ment from simple brightfield images. This would have the transla
tional advantage of enabling islet assessment without specialist 
equipment. A bottleneck in studying cell morphology has been the 
development of suitable automatic processing tools to extract the 
huge amount of information that is available in cell images. In recent 
years, however, there has been increasing interest in the application 
of artificial intelligence (AI) to biomedical image assessment for di
agnosis, quality assessment and disease monitoring. AI has enhanced 
precise treatment customization plans [11] and unlocked new in
formation in medical images which was previously overlooked due 
to natural human limitations in extracting comprehensive image 
features. In particular, deep learning techniques have been applied to 
interpret electrocardiogram (ECG), electroencephalogram (EEG), 
magnetic resonance imaging (MRI) and magnetoencephalography 
(MEG) where it showed excellent improvements in reliability and 
precision decision making [12]. 

In this study, we defined a deep morphological signature (DMS) 
based on a novel combination of advanced AI methods including 
deep learning, and swarm intelligence followed by discriminative 
analysis applied to brightfield microscopy images of whole and 
disaggregated islets for their quality assessment. DMS, an auto
mated, quantitative approach for extracting information, was ap
plied to segmented images of islets to extract morphological 
information using deep structured nets that capture features such as 
shapes and textures. This approach is sensitive to image differences 
at perceptible and imperceptible levels. The other elements of our 
analytic strategy enable the development of accurate models from 
relatively limited sample sizes (deep learning approaches normally 
require many thousands of samples to adequately train) and has 
previously been successfully applied to the assessment of oocyte 
quality where it was able to accurately detect advanced maternal age 
and was sensitive to the mitigatory effects of a geroprotective in
tervention [13]. Bright-field microscopy was used in this study as it 
is the simplest of all the optical microscopy illumination techniques, 
requires only basic equipment, and therefore has high translatability. 

Our aim was to develop DMS' able to accurately detect the ex
posure of islets to viability compromising insults, including reactive 
oxygen species (ROS), dimethyloxalylglycine (DMOG; a hypoxia mi
metic that stabilises hypoxia inducible factor as a model of exposure 
to a low oxygen environment), pro-inflammatory cytokines and 
warm ischemia (modelling potential delays in the clinical collection 
of organs from consenting donors) from brightfield images of islets. 
Furthermore, although imaging whole islets hypothetically provides 
inherent information on their viability through their structure and 
composition, we also investigated the application of this metho
dology to single cells from disaggregated islets as it is a far higher 
throughput approach which is still representative of the full sample. 
We also investigated whether a DMS could still be developed if islets 

were encapsulated in a conformal coating as is being investigated for 
the avoidance of immune detection. Finally, we investigated whe
ther our demonstrated sensitivity to exposure to viability compro
mising insults would enable prediction of whether islet preparations 
would be successful or unsuccessful at restoring glucose control in 
diabetic mice. The use of unsupervised assessment here was im
portant as by not “instructing” the algorithm to differentiate viable 
from non-viable preparations, and instead allowing it to sort like 
with like according to emergent differences, we obviated the issue of 
model overfitting. 

2. Methods 

Brightfield images used in this study were taken alongside hy
perspectral images whose assessment was previously reported in 
Campbell et al. 2022 [9]. Ethics approval was from the Garvan In
stitute of Medical Research Animal Research Authority (20_18). 

2.1. Islet collection and culture 

Pancreatic islets were collected from mice (2–3 C57BL/6Ausb 
mice (Australian BioResources) per experiment (mixed sex)) and 
cultured as described in [9]. In brief, exposures were 2 h 30 µM 
menadione (ROS clearance inhibition) followed by 24 h normal 
culture, 16 h 0.5 mM/L DMOG followed by immediate imaging, 24 h 
200 U/µL TNF-α, 200 U/µL IFNγ, and 25 U/µL IL-1β (pro-inflammatory 
signalling) followed by immediate imaging, or 60 min delayed col
lection of pancreases (warm ischaemia) followed by 24 h culture. In 
all cases, control islets were maintained in culture media for an 
identical time-courses. Islets from different mice were pooled for the 
ROS, DMOG and inflammatory models prior to being sorted into the 
different treatment groups. This ensured that differences were not a 
consequence of animal or extraction specific factors. In the warm 
ischemia experiment the intervention had to be carried out at the 
animal level. As such three mice were used for the control and in
tervention groups. For single cell assessment islets were dis
aggregated in 0.5 mM EDTA. For the encapsulation experiment a 
hydrogen-bonded (PVPON/TA)n multilayer film was applied as de
scribed in [9]. Disaggregation of islets was performed with 
0.5 mM EDTA. 

2.1.1. Islet transplantation 
Transplant recipients were 8–10 week old C57BL/6Ausb mice 

who had diabetes induced by intravenous injection of 20 mg/ml 
alloxan tetrahydrate (Sigma-Aldrich) per 110 mg/kg body weight. A 
blood glucose of ≥ 20 mmol/l on consecutive readings was required 
to be eligible to be a transplant recipient. Islets were isolated from 
pooled pancreata of three donor mice (to ensure adequate numbers 
per preparation) and transplanted into syngenic recipients [14]. One 
hundred islets (hand counted) were transplanted into recipient 
mice. Islets were either isolated immediately (control) or exposed to 
60 min of warm ischemia. The transplantation surgical procedure 
was performed as described in [9]. Post-transplant follow up was 
carried out for 30 days. Islet preparations were defined as restoring 
blood glucose control is mice had blood glucose at ≤20 mmol/l at the 
end of this period. 

2.2. Image collection and data analysis 

Brightfield microscopy was performed using an Olympus IX83 
microscope with a NuVu electron multiplying charge coupling de
vice camera (EMCCD, hnu1024). To define the DMS we combined 
deep learning, swarm intelligence and discriminative analysis as 
shown in Fig. 1. First, brightfield images of islets or cells were seg
mented to define regions of interest. Images were augmented to 
artificially expand the dataset through the addition of versions 
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intuitively equivalent to the originals [15]. Cell images were then 
provided to deep learning nets constructed to extract deep features. 
Further, the data set were cross validated to training (80 %) to dis
cover DMS and testing (20 %) subsets for later DMS validation [16]. 
Through iterative application of swarm intelligence (SI) and dis
criminative analysis, DMS is discovered incorporating a predefined 
number of deep learning features [17]. In a loop, SI proposed features 
candidate and discriminative analysis defines the DMS by re
presenting data points in a 2-D discriminative space spanned by the 
two canonical variables [18]. These canonical variables were optimal 
linear combinations of selected features and provides the highest 
separation of data clusters as measured by the Fisher Distance (FD)  
[19–21]. FD is the criterion function of the DMS strength and is 
evaluated in each iteration. Iteration between swarm intelligence 
and discriminative cluster analysis continues until the satisfactory 
maximization of FD archives and optimal DMS is discovered [22,23]. 
Finally, the DMS was used to train a support vector machine (SVM) 
classifier for distinguishing islets/cells by group membership (pris
tine or compromised) [24,25]. Full technical details of this analytic 
strategy, including data augmentation, are described in [13]. 

2.3. Unsupervised assessment 

In the transplantation experiment, where it was investigated 
whether the DMS could be used to predict restoration of glucose 
control, a fully unsupervised methodology was applied in order to 
minimize risk of overfitting. Unsupervised principal component 
analysis (PCA) [26] was applied to the same multidimensional fea
ture vectors defined by the DMS in order to sort like with like by 
emergent factors, rather than sorting by known group membership. 

This approach is known to be suboptimal in constructing an accurate 
model, but it provides a strong proof of concept as there can be no 
overfitting. Data was considered at the per islet level as well as the 
potential for the resultant "viability score" to categorize whole 
preparations. 

3. Results 

The application of the DMS was evaluated to differentiate whole 
islets based on discriminative cluster analysis shown in Fig. 1. The 
data distribution for each cluster was shown by an ellipse which 
covers one standard deviation from the median. Cluster separation 
robustness was measured by quantifying the overlap of the ellipses 
using intersection over union (IoU) values which vary from 0 % to 
100 % for fully separated to fully overlapped. Representative images 
of pristine, ROS exposed and ischemia exposed islets (Fig. 2). ROS 
exposure resulted in a clear visible change in islet morphology 
compared to controls (Fig. 2A and B) – accounting for the very high 
level discrimination achieved (Fig. 3a) while the impact of ischemia 
(Fig. 2C) was not perceivable. A brightfield image of an islet with a 
conformal coating is shown in Fig. 2D. 

IoU showed that DMS of whole, single islets (Fig. 3), was suc
cessfully able to identify ROS damage (Fig. 3a), inflammatory cyto
kines (Fig. 3b), DMOG (Fig. 3c) and warm ischemia (Fig. 3d) with IoU 
found to be 0 %, 3 %, 21 %, 36 %, respectively. When islets were en
cased in a conformal coating – a procedure which is being advanced 
for the protection of transplanted islets from assault by the immune 
system, exposure to pro-inflammatory cytokines was still detectable  
Fig. 3e) with IoU equal to 21 %. The DMS robustness was successfully 
validated using the testing data points (further details in  
Supplementary material, Supplementary Figure 1) put aside during 
the training process. 

To define islet labels a SVM classifier was constructed [19] and 
trained using associated DMS. Classifier performances were re
presented in (Fig. 4) by the receiver operating characteristic (ROC) 
graphs and 95 % confidence interval calculated through boot
strapping methodology [27]. DMS extracted from images of whole, 
single islets was successfully able to identify ROS damage with 98.8 
% accuracy (Fig. 4a), inflammatory cytokines with 88.5 % accuracy 
(Fig. 4b), DMOG with 76 % accuracy (Fig. 4c) and warm ischemia 
with 66.8 % accuracy (Fig. 4d). When islets were encased in a con
formal coating exposure to pro-inflammatory cytokines was still 
detectable with 78 % accuracy Fig. 4e). 

The same analysis was applied to single cell images from dis
aggregated islets. For the assessment of single islet cells (Fig. 5) re
sults were mixed, with superior accuracy being obtained for warm 
ischemia (71 %; Fig. 5D), similar for DMOG (72 %; Fig. 5C), and in
ferior for inflammatory cytokines (71 %; Fig. 5B) and ROS (80 %;  
Fig. 5A). 

To investigate the translatability of the DMS we transplanted four 
preparations of control islets and five preparations of islets exposed 
to warm ischemia to syngeneic diabetic mice. All of the control islet 
preparations restored glucose control, compared to two of the is
chemic preparations. An aliquot of islets were taken from the 
transplant preparations and imaged. We then analysed these images 
using an unsupervised methodology of principal component analysis 
where the algorithm was not "told" which groups to separate, but 
simply to maximally spread the data based on the islets native 
characteristics. The principal component analysis was able to sepa
rate islets from functional preparations which restored glucose 
control (Supp Fig. 2) from non-functional preparations which did 
not, with an ROC AUC of 0.75 (Fig. 5A, C). Importantly, when the 
median values from the second-highest ranked PCA variable – 'via
bility score 2′ – were calculated for each preparation (Fig. 6D) a 
threshold line could be drawn which divided viable from non-viable Fig. 1. Data analysis flowchart used in this study.  
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preparations. The resulting classification allowed us to accurately 
predict of transplant success in pristine and ischemic islets. 

4. Discussion 

The prediction of islet function post-transplantation would be of 
great utility to inform clinical decision making, however there are no 
options with sufficient reliability and accuracy for widespread up
take [3–8]. Our DMS enabled individual islets and islet cells to be 
sensitively categorised according to their exposure to ROS damage, 
inflammatory cytokine signalling, DMOG and warm ischemia com
pared to those maintained in pristine resting conditions. The forms 
of damage that could be most accurately detected varied between 
whole islets and single cells, with ROS and inflammatory cytokine 
exposure being most accurately detected in whole islets compared 
to ROS and DMOG in single cells. Accuracy for both systems was 
comparable to our success with the hyperspectral assessment of 
autofluorescence [9]. 

Changes in islet morphology, detectable to assessors at their 
most extreme expression, could explain why the forms of damage 
most clearly detected in whole islets were reduced in single cells, 
even as accuracy for warm ischemia – the form of damage detected 
with lowest accuracy in whole islets – was improved for single cells. 
The interventions most clearly detected (in islets) are likely to be 
those which produce the greatest damage. These are therefore the 
interventions which would induce the greatest shift in the macro- 
structure of the islet which the DMS would only be able to take 
advantage of in the assessment of whole islets. When the islets were 

disaggregated to single cells this information was lost – primarily to 
the disadvantage of the assessment of the interventions where it 
was most relevant (i.e. those where damage and therefore initial 
accuracy were highest). However, disaggregation enabled the col
lection of more data points, which would have been most advanta
geous in attempts to detect the lightest forms of damage. In those 
cases (warm ischemia, DMOG) the additional resources for algo
rithm training may have offset the loss of the macrostructural in
formation. Successful application to single cells additionally shows 
that this technology could be applied for novel β-cell replacement 
strategies (e.g. assessing efficiency of stem cell culture and differ
entiation [28]). 

Additionally, we showed that the DMS could be applied to islets 
treated with a conformal coating with a small loss of accuracy (89 % 
down to 73 %) in the discrimination of pristine islets from those 
subjected to inflammatory cytokine treatment. This could be due the 
conformal coating interfering with the image (for instance, severely 
damaged islets lose compaction, an effect that is constrained by 
conformal coating) alternatively, the coating may provide partial 
protection from the cytokine treatment, reducing the size of the 
effect for the DMS to detect. 

We were additionally successful at using an unsupervised algo
rithm to classify whether or not an islet preparation would restore 
glucose control in diabetic mice. Unsupervised analysis provides 
especially strong 'proof of concept' as it carries no risk of over-fitting 
due to the analytic methodologies being blind to group membership 
and instead classifying by emergent differences. Translational work 
would be better undertaken using more powerful supervised 

Fig. 2. Brightfield images of islets exposed to A) no insult (pristine); B) ROS treatment; C) Warm ischemia treatment; D) Encapsulation.  
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assessment with islets from a larger number of (human) examples to 
maximise accuracy and reliability, and to investigate the impact of 
cold ischemia across multiple samples. Further, exposure to cold 
ischemia, which presents with high potential clinical variability, can 
be investigated for its impact on the performance of the model. 
Further work could also involve the impact of exposure to actual 
hypoxia (1–5 % oxygen) which occurs frequently and for long periods 
in the clinical environment. 

The unsupervised assessment was also able to classify individual 
islets by whether or not they came from a preparation that would be 
functional on transplantation. Unlike the classification of whole 
preparations accuracy was not perfect (Fig. 4C), however, not all 
islets in a functional preparation will be functional, nor visa versa. 
These "misclassifications" may therefore indicate the DMS' ability to 
non-invasively identify functionality at an individual islet level, 
which could be developed as a tool to enable the study of the cellular 
basis of transplant failure. 

This communication demonstrated the power of computer vision 
to discover morphological characteristics specific to islet viability 
that are not noticeable to human visual evaluation of microscopic 
images. The technique described here does not utilise hand-de
signed features, which potentially enhances its generalizability be
cause morphology does not require parameterization. The 
translatability of this approach is reinforced by the fact that it uses 
basic brightfield microscopy which is widely available. Furthermore, 
the approach can be non-invasively applied to encapsulated islets – 
an emerging technology for preventing immune rejection – and 
single cells from disaggregated islets – a much higher throughput 
methodology. Finally, it showed sensitivity in distinguishing islet 
preparations which were capable of restoring glucose control in 
diabetic mice from those which were not. Future research should 
involve the collection of brightfield images of human islets being 
used for transplantation for the treatment of type-1 diabetes, as well 
as relevant patient (and donor factors) and treatment outcomes. In 

Fig. 3. Cluster separation graphs for whole islet DMS with paired ROC curves for a) ROS AUC= 0.99 Accuracy = 98 %, B) inflammatory cytokines AUC= 0.95, accuracy = 89 %, C) 
DMOG AUC= 0.83 Accuracy= 76 %, D) warm ischemia AUC= 0.76 Accuracy= 68 %, E) encapsulation AUC= 0.86 Accuracy= 73 %. Individual points on graphs do not represent different 
cells due to the application of the image augmentation approach to image analysis. 
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Fig. 4. ROC curve representing DMS classification performance of whole islets. a) ROS AUC= 0.99  ±  0.01 Accuracy = 98.8 %, b) inflammatory cytokines AUC= 0.95  ±  0.01, accuracy 
= 88.5 %, c) DMOG AUC= 0.82  ±  0.03 Accuracy= 76 %, d) warm ischemia AUC= 0.75  ±  0.02 Accuracy= 66.8 %, E) encapsulation AUC= 0.86 Accuracy= 73 %. Individual points on graphs 
are non-unique due to the application of the image rotation approach to image analysis. 
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Fig. 5. Cluster separation graphs for single cell DMS with paired ROC curves for a) ROS IoU= 13 %, AUC= 0.89  ±  0.01 Accuracy = 80 %, B) inflammatory cytokines IoU= 30 %, 
AUC= 0.78  ±  0.03, Accuracy = 71 %, C) IoU= 20 %, DMOG AUC= 0.84  ±  0.01 Accuracy= 72 %, D) warm ischemia IoU= 32 %, AUC= 0.79  ±  0.02 Accuracy= 71 %. Individual points on 
graphs are non-unique due to the application of the image augmentation (rotation approach) to image analysis. 
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this way a DMS can be trained and tested on human data for 
eventual clinical translation upon adequate demonstration of accu
racy, generalisability and reliability. This would enable the identifi
cation of islet preparations with insufficient potential to restore 
glycaemic function, thereby sparing patients from unsuccessful 
transplant attempts and significantly reducing patient burden. 
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% accuracy for the classification of islets at the group level. Islet preparations labelled as treatment group (C or I), replicate number: preparation number within replicate. 
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