

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Hardware-Backed Confidential Blockchain

André Filipe Agostinho da Silva Cruz

Mestrado em Engenharia Informática

Dissertação orientada por:

Professor Doutor Bernardo Luís da Silva Ferreira

Agradecimentos

I would like to thank all of those that have supported me over this long and hard
journey, starting by my adviser, Bernardo, who has had the patience to accompany this
document from the very start. I am very grateful to my family, who has supported all of
my studies thus far, and helped me in the long days it took to finish this Thesis. Finally, I
would like to thank all of my close friends who have taken the steps next to me the entire
time, these include, but are not limited to, André Correia, Afonso Gonçalves, Rafaela
Rodrigues, Fábio Estanqueiro, Carolina Sá, André Mendes, Filipa Almendra and Rafael
Ramires. These and many more supported moments of work, but also much needed fun
interactions over this difficult year.

i

Dedico este estudo a todos os que me apoiaram e suportaram neste caminho difı́cil,a
quem devo toda a minha educação e formação.

Resumo

Nos últimos anos, a possibilidade de execução de sistemas computacionais em ambi-
entes de execução que não pertencem ao grupo que desenvolveu o sistema tornou-se cada
vez mais popular principalmente devido à sua total disponibilidade, que permite os seus
utilizadores de escalar os serviços às suas necessidades sem a necessidade dos elevados
custos à partida de construir os seus próprios servidores. No entanto, a utilização de infra-
estruturas de terceiros na forma de ”outsourcing”implica que os donos destes ambientes
de execução tenham completo controlo sobre os mesmos, que permite a possibilidade de
os donos destes ambientes de execução utilizem informação sensı́vel do sistema, como a
informação de possiveis clientes para o seu próprio benefı́cio. Os últimos anos já mostra-
ram que este conjunto de informação guardada em ambientes Cloud se encontra visı́vel
para os donos dos mesmos, que coloca os dados privados dos diversos utilizadores em
risco. Recentemente, com a passagem de computação para a Cloud com novos serviços
de IaaS (Infrastructure as a service), tornou-se cada vez mais importante a exploração de
possı́veis protocolos para computação distribuı́da confidencial, visto execução ser feita em
ambientes adversariais, devido à falta de controlo sobre os mesmos. Uma das principais
soluções propostas para este problema seria manter a informação totalmente encriptada
enquanto presente na Cloud, mas isso necessitaria de algoritmos de procura extremamente
eficientes e capazes de procurar informação sobre um dataset encriptado, ou então a ne-
cessidade de total desencriptação da informação do lado do cliente. Em sistemas com
grandes quantidades de informação ou grande quantidade de clientes, ambas as soluções
produzem uma grande quantidade de overhead, ao ponto de abrandar um sistema deste
tipo ao ponto de ser impossı́vel a sua utilização. Outras soluções propõem a possibilidade
do sistema desencriptar a informação apenas para execução de computações necessárias,
mas isso iria obrigar informação sensı́vel a estar visı́vel, mesmo que durante curtos prazos
de tempo. Isto torna-se especialmente um problema quando o grupo que desenvolve um
dado sistema não é o dono da infraestrutura que o suporta. Assim, tornam-se necessárias
garantias de integridade, disponibilidade, consistência forte e confidencialidade, mesmo
sob a possibilidade de utilizadores maliciosos. Assim, esta tese procura encontrar uma
possı́vel solução para este problema, visto que até agora todos os sitemas BFT-SMR com
garantias de confidencialidade demonstraram-se ineficientes para grande escala ou servi-
ram apenas como protótipos de nı́vel académico. Utilizando uma tecnologia fornecida

v

por parte da Intel nos seus processadores desde a 6ª Geração, Intel SGX, que permite
execução fiável e isolada de código escrito por um utilizador. Utilizando esta tecnolo-
gia, esta tese procura desenvolver um protocolo que seja o mais prático possı́vel para uso
diário, usando como base o protocolo de BFT-SMR conhecido como BFT-SMaRt. Fa-
zendo uma união entre um dos protocolos de BFT-SMR mais eficientes atualmente com
um ambiente de execução fiável, na forma da tecnologia Intel SGX, surge a possibilidade
de criar um sistema que disponibilize um protocolo BFT-SMR totalmente confidencial.
Este documento visa demonstrar a estrutura base de tal protocolo e o desenvolvimento
necessário para o mesmo, juntamente com as tecnologias usadas, avaliando também o
nı́vel de praticalidade da solução apresentada. Utilizando a Linguagem C + + para criar
o código utilizado pelo Enclave e a Framework Java Native Interface (JNI), passa a existir
a possibilidade de serem feitas chamadas nativas a código escrito utilizando a linguagem
C, capaz de fazer pedidos ao Enclave , sendo assim possı́vel passar informação fornecida
pelo utilizador para o Enclave, permitindo assim a utilização de primitivas de encriptação
dentro deste ambiente de execução fiável de modo a ser possı́vel garantir a confidenciali-
dade desta informação, visto que chaves associadas a esta tecnologia da Intel se encontram
fisicamente nos processadores, o que tornaria necessário ataques fı́sicos para revelar estas
chaves. Considerando que maioria dos ataques são feitos pela rede, esta tecnologia seria
capaz de minimizar este problema. Algoritmos de BFT-SMR acabam por não resolver
este problema, não garantindo a confidencialidade da informação que passe por sistemas
que utilizem estes algoritmos. Assim, desenvolvendo um algoritmo de BFT-SMR com
garantias de confidencialidade, passa a existir a possibilidade de abstrair a dificuldade de
desenvolvimento destes protocolos, poupando tempo e recursos a equipas de desenvol-
vimento. Para este objetivo, desenvolveu-se uma biblioteca ”Java-SGX”, que disponibi-
liza uma interface capaz de fazer chamadas nativas a código C que se encontra ligado
a um Enclave, permitindo assim programadores desenvolverem apenas os seus sistemas
sem este nı́vel de preocupação, sendo apenas necessário garantir a ligação à biblioteca
desenvolvida. Embora a utilização desta abstração aumente a latência envolvida com o
sistema, esta biblioteca foi desenvolvida com a usabilidade em mente, permitindo o de-
senvolvimento de sistemas distribuı́dos utilizando apenas a linguagem de programação
Java, omitindo a lógica de gestão de memória e ligação de bibliotecas nativas. Este tipo
de privacidade torna-se possı́vel devido à divisão feita entre lógica de negócio fiável e
não fiável, na qual a lógica de negócio fiável é apenas executada dentro do Enclave, lo-
cal onde as primitivas de uso possı́vel estão bastante restritas, devido a possiveis falhas
de segurança. Assim, o sistema pode apenas usar o Enclave para computações cujos
cálculos envolvam garantias de segurança, como encriptação ou gestão de chaves. As-
sim, esta tese apresenta o algoritmo CON-BFT, que se baseia na ligação do protocolo já
existente BFT-SMaRt a um Enclave Intel SGX, que será utilizado para fornecer garantias
de segurança ao sistema já existente. Este algoritmo fornece criação de chaves dentro

vi

do Enclave, e selagem de informação utilizando a chave especı́fica do processador, pe-
rimitindo que a informação seja guardada em memória não fiável de modo seguro, só
sendo possı́vel remover esta camada de proteção dentro do Enclave. Este protocolo visa
também garantir integridade da informação partilhada entre réplicas, usando encriptação
no modo Galois Counter Mode (GCM) de modo a permitir a réplicas verificar a integri-
dade da informação original durante desencriptação. Assim, fornecendo Diffie-Hellman,
encriptação AES, funcionalidades de MAC e HMAC juntamente com Hashing SHA-256,
a biblioteca ”Java-SGX”utilizada para garantir a ligação ao Enclave e a definição des-
tas primitivas de segurança e privacidade, foi também desenvolvida para esta tese com o
objetivo de abrir possibilidades para outros sistemas que queiram usar estas primitivas.
Desenvolvido com a divisão em área fiável e não fiável, torna-se possı́vel a utilização
da Java Virtual Machine (JVM) para criar um simples ficheiro header que será ligado
a ficheiros .C de modo a permitir as chamadas nativas. Isto permite utilizar o enclave
para adicionar integridade a todas as funcionalidades do sistema, desde simples escritas e
leituras a memória, até protocolos de state transfer para passar informação para réplicas
que necessitem de recuperação. Assim, esta tese foca-se na possibilidade de desenvolvi-
mento de um novo protocolo de BFT-SMR capaz de ser extendido com qualquer lógica de
negócio pretendida pela equipa de desenvolvimento, mas garantindo que as garantias de
confidencialidade de informação são mantidas sem a procupação por parte da equipa de
desenvolvimento, permitindo a mesma de não ter necessidade de programar em lingua-
gens de mais baixo nı́vel para manter o acesso a estas primitivas de segurança, Para isso,
avaliaram-se tecnologias que fornecessem ambientes de execução fiável de modo a per-
mitir execução isolada das bibliotecas desenvolvidas, permitindo esconder a informação
utilizada dentro deste ambiente isolado.

Palavras-chave: Intel SGX, BFT-SMaRt, BFT-SMR, Confidencialidade, ambiente de
execução fiável.

vii

Abstract

In the last few years, distributed computing has shifted towards execution using adver-
sarial environments, mostly due to the rising costs of owning proprietary data centers. Due
to privacy concerns, confidentiality guarantees are now es- sential to distribute computa-
tion of sensitive information. As such, this thesis focuses on those demands, delivering
Con-BFT, a SMR-BFT protocol with confidentiality guaran- tees, using Intel SGX prim-
itives, which allow for trusted execution. This trusted execution also allows for equivoca-
tion prevention, which can be used to improve the underly- ing consensus protocol, creat-
ing a more efficient SMR-BFT framework, while also providing a layer of confidentiality
over the stored user-driven information. This thesis focuses on a possible solution for
developing such a protocol, evaluating its overall level of usability for practical everyday
use, and how Intel SGX affects the development of similar systems.

Keywords: Intel SGX, BFT-SMaRt, BFT-SMR, Trusted execution environment,
Confidentiality

ix

Conteúdo

Lista de Figuras xv

Lista de Tabelas xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Objectives . 2
1.4 Contributions . 3

2 Related Work 5
2.1 BFT and SMR . 5

2.1.1 Byzantine Generals Problem and Byzantine Fault Tolerance . . . 5
2.1.2 State Machine Replication . 6
2.1.3 PBFT . 8
2.1.4 BFT-SMaRt . 11

2.2 Computing on Encrypted Data . 14
2.2.1 Secret Sharing . 14
2.2.2 Trusted Execution Environment 16

2.3 Confidential / Hardware-Based BFT-SMR 20
2.3.1 COBRA . 20
2.3.2 MINBFT . 21
2.3.3 BFT on Steroids (Hybster) . 24
2.3.4 Consensus-Oriented Parallelism 28

3 Con-BFT’s Protocol 31
3.1 Ensuring Privacy . 31
3.2 Performance of Consensus Algorithms 32

3.2.1 System Initialization . 33
3.3 Request Execution . 34
3.4 Data Storage and State Transfer . 35

xi

4 Development 39
4.1 Java-SGX . 39

4.1.1 Java-SGX’s Architecture . 40
4.1.2 Java-SGX’s Untrusted Area . 40
4.1.3 Java-SGX’s trusted Area . 42

4.2 Con-BFT . 45
4.2.1 System Startup . 45
4.2.2 Including Java-SGX in BFT-SMaRt 45

5 Evaluation 47
5.1 Experimental testing Environment . 47
5.2 Con-BFT’s Throughput . 47
5.3 Latency . 50
5.4 Comparison with BFT-SMaRt . 54
5.5 Timeouts . 55

6 Conclusion 59
6.1 Conclusion . 59
6.2 Intel SGX Vulnerabilities . 60
6.3 Future Work . 61

6.3.1 Parallelization of the System . 61
6.3.2 Making Java-SGX Multi-Threaded 61

Abreviaturas 64

Bibliografia 69

Índice 70

xii

xiv

Lista de Figuras

3.1 Con-BFT Storage of client-Information 32
3.2 Con-BFT Enclave Integrity Guarantees 33
3.3 Con-BFT Enclave Diffie-Hellman . 34
3.4 Con-BFT Request Logging . 35
3.5 State Transfer Algorithm . 37

4.1 Example of Java-SGX Workflow. 40

5.1 Operations per Second for an increasing number of Clients for 1000 ope-
rations. 48

5.2 Operations per second for an increasing number of Clients for 500 opera-
tions. 49

5.3 Operations per second for an increasing number of Clients for 100 opera-
tions. 50

5.4 Total average execution time per number of Clients. 50
5.5 Operations per second when executing 1000 operations. 51
5.6 Average Latency per request when executing 100 Requests per Client. . . 51
5.7 Average Latency per request when executing 500 Requests per Client. . . 52
5.8 Average Latency per request when executing 1000 Requests per Client. . 52
5.9 Average Latency per request . 53
5.10 Milliseconds per Operation for BFT-SMaRt (Red) versus Con-BFT (Blue). 54
5.11 Number of Timeouts for 1000 operations for an increasing number of

clients. 55
5.12 Number of Timeouts for 1000 operations for an increasing number of

clients. 56
5.13 Average number of timeouts per number of requests. 56
5.14 Average availability per number of requests. 57

xv

Lista de Tabelas

5.1 Operation Benchmarks for Clients requesting 1000 Operations. 48
5.2 Operation Benchmarks for Clients requesting 500 Operations. 49
5.3 Operation Benchmarks for Clients requesting 100 Operations. 49
5.4 Benchmarking for 1000 operations: Con-BFT vs BFT-SMaRt 54

xvii

Capı́tulo 1

Introduction

1.1 Motivation

In the last few years, Cloud applications have started to gain popularity at an exponen-
tial speed. As beneficial as cloud computing can be, in its ability to spread computing
power to multiple machines around the world, this also opens the possibility of sensitive
information being taken away by other parties, due to the computation of said information
being done in adversarial computers. This is even more problematic if we consider the
rising costs of owning proprietary data centers. As such, creating a cloud computing sys-
tem that can protect data from outside and inside threats is essential. With more and more
applications for the web executing in adversarial environments, i.e, cloud platforms, more
and more major corporations have been caught in some high-profile data breaches, to the
point of selling personal information to third parties [2, 14]. Any system whose objective
remains to be confidential currently has few options when it comes to cloud execution,
with the development of such a system becoming a necessity.

1.2 Problem Statement

BFT-SMR systems replicate user-driven data over multiple replicas, having each replica
execute deterministic functions independently, guaranteeing integrity (data not being alte-
red from its original state), availability (guarantee a system is functional to execute tasks
when requested) and strong consistency (all replicas contain the same updated informa-
tion at all times), even when faced with nodes that may have succumbed to byzantine
faults or malicious attackers. BFT-SMR systems with confidentiality guarantees are, usu-
ally, systems that are intended as prototypes for academic study or not efficient enough
to be used in commercial-scale systems[6]. Solutions using data encryption have been
developed, but secret-sharing mechanisms complicate said solutions[18]. Shared secrets
are required to be of the same size of the original secret the shares are trying to protect,
meaning that for large secrets and a sizeable number of replicas, there might be a large sto-

1

Capı́tulo 1. Introduction 2

rage overhead. Due to secrets being separated into shares over the network, it also means
that there will be a considerable message overhead in order to rebuild a large amount of
secrets. While encryption measures are efficient, these complicate searching over encryp-
ted information stored in adversarial environments. Unfortunately, encryption schemes
that are built in order to allow for searching or executing complicated computations over
encrypted information will either end up leaking said information or be too inefficient
for large systems, making this a complicated trade-off [12]. As such, a system that can
tolerate byzantine faults and protect the confidentiality of the information whilst not sacri-
ficing performance is essential, especially when taking into consideration the high costs
of owning proprietary data centers. This means that all information that is processed is
done so in machines and environments that are not under direct control of the developer,
running the risk of malicious attacks or data breaches by the very owners or administra-
tors of the data center holding the information. This thesis focuses on the possibility of
developing a distributed system that will be able to fully run in adversarial environments,
meeting the current demands for privacy and confidentiality of information. By using
Intel SGX, each node will be able to deploy its own enclave, creating a safe location for
all sensitive computation to be executed. Having this computation isolated, it becomes
possible to obfuscate what data and commands are processed inside the trusted execution
environment, which allows data to be protected even outside the isolated environment by
using the processor’s secret and unique key. This protection over the information makes
its unsealing impossible unless done by the same trusted execution environment, meaning
that stealing the information becomes useless. This is extremely important since it can be
used to safeguard against malicious attackers or even data breaches by the proprietaries
of the adversarial environment where the system is executed. By using Intel SGX, and
having each node deploy its own enclave, where all sensitive computation will be execu-
ted, it is possible to obfuscate what data and commands are processed inside this secure
area, safely storing the processed information using the processor’s secret unique key, in
order to safeguard against both malicious attackers and data breaches by large enterprises
that may control the adversarial environment where the system is being executed, making
possibly stolen information useless.

1.3 Objectives

This thesis was developed with the objective of developing a new confidential BFT-SMR
framework based on distributed network of Intel SGX enclaves. For this, a popular and
known non-confidential BFT-SMR framework known as BFT-SMaRt [6] will be used.
Another objective would be integrity guarantees for all messages, by having an Intel SGX
enclave run integrity checks on all of them. To develop, test and evaluate a functioning
prototype of such a system, comparing it to similar systems or frameworks.

Capı́tulo 1. Introduction 3

1.4 Contributions

The contributions of this document are considered the following:

1. CON-BFT. A Confidential BFT-SMR Protocol that is capable of executing similar
loads to BFT-SMaRt while mainting Integrity and Confidentialty guarantees due to
the inclusion of an Intel SGX Enclave.

2. Java-SGX. An external Library that can be imported by any Java project to make
native calls to C code connecting to the Enclave, allowing Enclave primitives to be
included in Java projects by matching libraries.

3. Development of a Con-BFT prototype, alongside its testing and experimental eva-
luation, with the results included in this document, such as throughput and latency.

4. A reflection on the future of protocols that use Intel SGX, considering the benefits,
drawbacks and whether said use in the future is one that should be employed, or if
different alternatives should be explored.

Capı́tulo 1. Introduction 4

Capı́tulo 2

Related Work

2.1 BFT and SMR

2.1.1 Byzantine Generals Problem and Byzantine Fault Tolerance

One of the oldest problems in Distributed Computing is known as the Byzantine Generals
Problem, originally defined by Lamport. For this problem, multiple Byzantine generals
that can only communicate through messengers face a large enemy army, and must all
decide together the next course of action, whether it be attack, or retreat. There may
be, however, disloyal generals, that seek to invent or omit some of the messages, to the
point of sending possible conflicting information. This problem is not only applicable in
real-life combat scenarios, however. This problem translates quite well into Distributed
computing. If we consider each general to be a node in a Distributed System, we can
possibly understand the problem at hand. Nodes giving out erroneous information to other
nodes in the system with the objective of corrupting the system’s current state is something
that needs to be taken into consideration when designing a Distributed System. Nodes that
fail in this way are considered faulty nodes. Byzantine Faults specifically are the ones that
are not detected with failure-detection mechanisms, and as such, a node may be faulty for
a plethora of reasons. The problem becomes then on how to ensure consensus on a value
considering the possibility of faulty processes. Byzantine consensus may vary depending
on a multitude of assumptions that we take from the system. Are all nodes connected
to each other? Are the communication delays bounded? Are the channels reliable and
secure? Are the messages in FIFO order? Note that these assumptions serve as constraints
of what a distributed System can and cannot do, meaning that these assumptions should
be carefully defined, in order for the wanted coverage in real-world problems to persist.

Any algorithm that has as an objective to solve the problem has a few requirements
that it has to follow, such as termination (All correct processes decide eventually), agre-
ement (All correct processes come to the same decision) and integrity (If commander is
a correct process, all other processes follow his proposal). The protocol used for this is
what is called Byzantine Agreement, which is an algorithm that works in multiple rounds

5

Capı́tulo 2. Related Work 6

of synchronous communication, with the generals, or nodes, sending messages to one
another. For this algorithm, the loyal nodes must all agree on a correct value, despite
whatever messages are sent by the disloyal generals, or faulty nodes. If we consider an
example with 3 different nodes, with one of them being a faulty node, if the faulty node
sends conflicting messages to the correct processes, this means that by going through with
a simple majority, the two correct processes would decide differently, and that would, the-
refore, break the agreement requirement of the algorithm. We can therefore conclude that
2f + 1 nodes are not enough to guarantee Byzantine Consensus. However, by adding
one correct process, and employing the idea of reliable broadcast, consensus can be gua-
ranteed. For every sender process p, the remaining processes will exchange process p’s
message in order to agree on its value and finish the algorithm. From this, there are two
possible outcomes from the algorithm, either the original sender is a correct process, or
the original sender is a faulty one. If the original sender is a correct process, the correct
conclusion would be the original sender’s proposal, which as long as the number of faulty
nodes does not exceed (n − 1)/3 will always be met. However, if the original sender
is a faulty sender that could send incoherent messages to the other processes, a correct
conclusion can only be reached by exchanging the values received by the other processes.
If it is found that a node has sent different values to different nodes for this algorithm, his
answers can be excluded, being therefore possible to find consensus.

2.1.2 State Machine Replication

When a server has the objective of serving customer requests, how do you make it By-
zantine fault tolerant? If we consider the server in question the previously mentioned
system, the easiest way to do so is by adding multiple replicas of the same service, all the
whilst making computation deterministic, in order for all replicas to have equal starting
and ending states, which means that all correct replicas will always keep the same infor-
mation and methods, i.e state. By using a State Machine to obtain fault tolerance, and
guaranteeing the replication of computation as a whole, it becomes a guarantee that the
computation is physically and electrically isolated, which allows to mask possible failu-
res in the replicas, since the system as a whole can bring outputs to a vote. This could
complicate the development of such a system, however, due to the fact that ordering mes-
sages, distributing inputs, collecting outputs and possibly putting them up to scrutiny in
the form of voting cannot significantly increase the completion times. This technique also
allows the developers to focus on the overall business logic of the system at hand, since
the abstraction of the objects used in such coding can be employed into a previously built
state machine. These state machines are nothing more than state variables, which contain
the state and commands of the system. These commands contain deterministic implemen-
tations of system functions, and are executed in an atomic way, being therefore separated
from any other commands. These commands are received in the form of requests, which

Capı́tulo 2. Related Work 7

are ordered consistently with causality. Clients of these systems can therefore assume
that requests issued by a single client to a given state machine are processed in the order
they were issued, and that any request r made to a state machine by a client c that could
cause a request r′ to be made by a client c′, will see the state machine process r before
r′.[21] But what defines state machines is the fact that it specifies deterministic primiti-
ves, transitioning to different states based on the sequence of requests it processes, being
independent of time or other variables. Any system will define a component as faulty as
soon as its behaviour is not consistent with its specification. There are two main types of
fault tolerance, Byzantine Fault-Tolerance and Fail-Stop Failures Tolerance, the former
having the challenge of Byzantine faults not being detectable by failure-detecting mecha-
nisms, as components can exhibit arbitrarily malicious or erroneous behaviour, possibly
causing faults to other components. With the latter being faults that change the state of the
component to make it easier to detect that a failure has occurred before stopping and res-
tarting entirely. Byzantine failures can be especially destructive, meaning that any system
development requires careful assumptions about how faulty components will behave and
impact the system, as if those assumptions are not correctly satisfied, could jeopardize the
entirety of the system. As such, the development of critical systems must tolerate Byzan-
tine faults. This means that being an f fault-tolerant system satisfies its specifications and
functions if no more than f of the system’s components fail during an arbitrary interval
of computation, with no guarantees if f or more components fail. An f fault-tolerant state
machine can be created by deploying copies of the code in each one of the available pro-
cessors for the Distributed System. Assuming that each copy is being run by a non-faulty
processor with the same initial state of all other copies and follows the same requests in
the same order, then all replicas will reach the same state and output. This means that
if any one failure affects only one processor, by combining the states of all replicas in
the form of consensus, the correct state for a f fault-tolerant state machine can always
be achieved. With this, we can conclude that an f fault-tolerant state machine must have
at least 2f + 1 replicas, with the output being ruled by the majority of the replicas. We
conclude this value due to the simple example of a given example state machine with 3
replicas. If one of them fails, the only way to guarantee majority rule with a consensus
algorithm is by having a minimum of 3 replicas, being equivalent to 2f + 1 replicas.
However, for the system to guarantee correct outputs there are assumptions that need to be
met. In this case, agreement, the fact that every non-faulty copy of the state machine recei-
ves every request in the same order, which would represent these request being executed
in said order [21]. Ordering is therefore extremely important in State Machine Systems,
in which to guarantee the proper functioning of the system, since two requests are not
necessarily interchangeable. This order can be implemented by clients assigning unique
id values to the requests, with the state machine using these to guarantee total order. For
agreement protocols, there is one arbitrarily chosen processor called the transmitter, to

Capı́tulo 2. Related Work 8

disseminate a value to the other processors in such a way that all non-faulty replicas agree
on the same value, and all the non-faulty replicas using the transmitter’s proposal con-
clude that the transmitter is a non-faulty replica. The protocol begins as soon as a client
makes a request, that ends up being sent to all the replicas of the state machine. From then
on, the replicas will deterministically finish the computation and find consensus amongst
themselves, not being required for the client to be the transmitter.
The client can be programmed to be simpler, by sending its request to one replica only, at
the risk of sending the request to a faulty replica. However, there are a few agreement pro-
tocols that can be used, with different costs. For example, if digital signatures are used and
processors can exhibit Byzantine failures with said signatures, then f+1 processors would
be enough to tolerate f faults, due to it being possible to ignore faulty nodes. Otherwise,
it becomes the problem of Byzantine Agreement, with a required 3f + 1 replicas

2.1.3 PBFT

PBFT stands as a replication algorithm capable of tolerating Byzantine Faults, which
assumes an asynchronous distributed system where nodes are connected by a network,
which may fail to deliver messages, delay them or deliver them out of order. PBFT
assumes that individual nodes may fail arbitrarily, which is only true if the all the re-
plica’s computations are independent from one another, i.e each replica works in different
machines, having different processors running the operating system and service imple-
mentation. PBFT uses cryptographic techniques to pevent spoofing and replays to detect
corrupted messages. Also using RSA primitives in the form of public-key signatures,
message authentication codes (MACs), with every replica having access to the other re-
plica’s public keys, in order to verify signatures. PBFT allows and supports the possibility
of very strong opponents that may be able to control or even coordinate faulty nodes to
delay requests or replicas in order to damage the replication service.

Its algorithm can be used to implement any deterministic replication service with sys-
tem state and multiple operations, not necessarily requiring them to be simple reads and
writes of portions of the system state. This replicated state is implemented by n replicas,
which are considered non-faulty if attackers cannot forge their signatures and if they exe-
cute the following algorithm [10]. PBFT’s algorithm provides both safety and liveness
if no more than (n − 1)/3 are faulty, meaning that this service behaves as a centralized
implementation that executes operations atomically one at a time [10].

The algorithm stands as a form of state machine replication, modeled as a state ma-
chine replicated across the existing nodes in the network. Each state will maintain its
service implementation and its operations. These replicas move through a succession of
configurations called views. For each of these views, one replica will be elected its lea-
der, with the remaining being considered backups. The primary replica of a view v is p,
where p = vmodn, being n the total number of available replicas in the system, with view

Capı́tulo 2. Related Work 9

changes being carried out when it appears that the leader has become faulty [10].PBFT’s
algorithm works as follows:

1. Clients will send requests to invoke system operations to the view v ’s primary
replica;

2. The primary replica will multicast said requests to the backups;

3. All replicas that receive said requests will execute them and return a reply to the
client;

4. The Client will await at least f + 1 from different replicas with the same result,
which if true, accepts it as the truly correct answer;

Like other State Machine Replication protocols, by ensuring that all messages are totally
ordered, the algorithm can ensure safety, since all request execution is deterministic, and
all replicas must start in an equal state.

A client c may request the execution of a given operation o by sending a request
< REQUEST, o, t, c > message to the primary replica. The timestamp t can be used to
help with totally ordering requests, ensuring that lower timestamps lead to requests being
executed earlier, with the mentioned timestamp possibly being the client’s clock time.
With every message, each replica will include the current view v on which the system
currently stands, allowing the client c to calculate the current primary, to which messages
will be sent. This primary replica will then atomically multicast each message for the
existent backup replicas. To reply to the request, a replica r communicates directly with
a given client c, with the format < REPLY, v, t, c, i, r >, containg the current view v,
the request’s timestamp t, the replica id i, and the request’s result r. The client will then
await f+1 valid signed replies from different replicas containing the same t and r, before
accepting r as the valid reply to the given request, considering that at most f replicas can
be faulty, as long as this stands true, the result will be valid [10].

However, a client may not receive its replies as fast as desired, if so, it broadcasts the
request to all replicas in the system. If the request has already been processed, the replicas
will just resend the reply, otherwise, they will relay the message back to the primary re-
plica and await the primary replica p’s multicast. If said multicast does not occur, backup
replicas will suspect p of being faulty and initiate a view-change algorithm[10].

In PBFT’s protocol, each replica’s state includes the service state, a message log, and
the replica’s current view, denominated by an integer. When a primary replica p receives
a client request, it will start a three-phase protocol in order to multicast the requests.
The primary replica p in the pre-prepare phase will assign a sequence number seq to the
request, and multicasts a pre-prepare message with the client’s request m attached to it
<< PRE − PREPARE, v, seq, d >,m >, transmitting the system’s current view v,
the sequence number, and m’s digest, in the form of d. These pre-prepare messages are

Capı́tulo 2. Related Work 10

used as proof that a given request was assigned a sequence number seq in view v . This
allows the total-order protocol to be decoupled from the protocol to transmit requests to
replicas. This means that the total-order protocol can be optimized for small messages and
a transmition protocol optimized for larger requests.[10]. After receiving a pre-prepare
message, a backup replica i accepts it if:

• The signatures in the request are valid;

• It is in the same view v as provided by the message;

• It has not accepted a pre-prepare message for the same sequence number in the
same view with a different digest d;

• The sequence number is between a lower water mark h and a higher water mark H .

With the final condition, the backup replicas prevent a faulty primary from consuming the
usable space of sequence numbers by selecting an extremely high value. If the backup
accepts the given pre-prepare message, it will advance to the prepare phase, by multicas-
ting a prepare message < PREPARE, v, seq, d, i > before adding both the pre-prepare
and prepare messages to the replica’s log [10]. All replicas, including the primary, must
accept the prepare messages and add them to their logs, provided their signatures are cor-
rect and their view numbers match. By ensuring that all replicas agree on the pre-prepare
and prepare messages, it ensures that non-faulty replicas agree on total order of the given
requests inside a view v. After this happens, each replica i will multicast a commit mes-
sage < COMMIT, v, seq,D(m), i > to the other replicas when prepared becomes true,
which starts the commit phase. Replicas accept commit messages and insert them in their
log as long as their signatures are valid, the view numbers match and the sequence num-
bers stand between h and H . After all commit messages are accepted, each replica i will
execute the operation requested by m. This ensures that all non-faulty replicas execute
requests in the same given order.

As mentioned previously, pbft also supports a view-change protocol. This provides
liveness by allowing the system to make progress when the primary fails. View-changes
are triggered by timeouts that prevent backups from waiting indefinitely for requests to
execute [10]. A backup replica starts a timer when it receives a request and is not execu-
ting it, if at any point, said request is being executed, the timer is stopped, but restarted
if it is awaiting some other request. If the timer of a given backup i in view v expires,
said replica i will request a view-change, in order to move to view v + 1. It multicasts a
< view−change, v+1, n, C, P, i > message to all other replicas. This message contains
the sequence number n of the last valid and stable checkpoint s known to i, a quorum of
2f + 1 valid messages proving the correctness of s, in the form of C, and P , standing
as a set Pm for each request m with a sequence number higher than n that was prepared
in replica i. Each one of these sets of Pm contains a valid pre-prepare message, and 2f

Capı́tulo 2. Related Work 11

matching, valid prepare messages signed by different backups with the same view v, same
sequence number seq and equal digest d of said request m. When the primary p of view
v + 1 receives 2f valid view − change messages for the same view v + 1, it will finally
multicast a new-view message to all other replicas, terminating the view-change protocol
[10].

2.1.4 BFT-SMaRt

BFT-SMART is a java Framework and Library developed in order to allow real-world
use of State Machine Replication primitives, considering that most projects relating to the
subject have been either not practical to use, or academic-developed prototypes. BFT-
SMaRt was developed to tolerate non-malicious byzantine faults, which is defined by a
pessimistic system model in which messages can be delayed, corrupted or even lost.[6]
BFT-SMaRt also allows replicas to behave abnormally and indulge in any unsupported
manners. The library was developed in order to take into consideration simplicity, avoi-
ding optimizations that would have otherwise brought extreme complexity to the system’s
development, such as techniques that focus on resource efficiency. Even with this design
choice, BFT-SMaRt is similar or even better than other highly-specialized and optimized
systems.[6] The library implements a modular protocol with a well defined consensus
protocol in its core, separating the SMR protocols from the consensus ones, which comes
as a strong contrast against monolithic systems like PBFT [10, 6] that have the consen-
sus protocols embedded into the SMR one, lacking clear separation between them. The
library assumes the regular system model for BFT-SMR, with n ≥ 3f + 1 replicas to
tolerate f byzantine faults, alongside an unbounded number of faulty-prone clients, and
synchrony during consensus protocols to ensure liveness. The system supports reconfi-
guration and state transfer primitives, being possible to change n and f at runtime. The
system will, however, require reliable point-to-point links between processes for commu-
nication. These links are implemented using message authentication codes (MACs), over
TCP/IP. The symmetric keys used for < Replica, Replica > communication channels are
generated using Signed Diffie-Helman. Diffie-Helman stands as a method of exchanging
cryptographic keys,having been one of the first examples of public key exchange imple-
mented in the realm of cryptography, which allows secret sharing over insecure networks,
by using the other’s public key to encrypt the key sent over the public network, requiring
the receiver’s private key for decryption. The keys for < Client, Replica > channels are
generated based on the ids of the given endpoints, in order for clients to not hold key pairs.
While still able to protect against non-malicious byzantine faults, client authentication can
still be enabled using signed requests, which serves as a strong deterrent against malicious
faults. BFT-SMaRt uses multiple protocols necessary to its correct functioning[6]:

• Total Order Multicast. This is achieved using Mod-SMaRt, which stands as a
modular protocol that is used to implement BFT-SMR using underlying consensus

Capı́tulo 2. Related Work 12

primitives. An extension of a leader-driven consensus protocol during which clients
send their requests to all replicas and await their replies, with the system then achi-
eving total order through a sequence of consensus instances, with each one of them
deciding over a batch of requests. Each consensus instance contains three commu-
nication steps, with the first one having the leader replica sending a PROPOSE

message to all other replicas, proposing the correct order of requests, containing the
batch of requests to be decided. Afterwards, replicas will flood the network with
WRITE and ACCEPT messages, containing only the cryptographic hash of said
request batch. For these consensus primitives, syncrhonization is required, if syn-
chronization is not satisified, in order to ensure liveness, Mod-SMaRt will switch
to its synchronization phase, in which a new consensus leader is decided, forcing
all the replicas to change to the consensus instance that is currently undergoing de-
cision. This change might, however, trigger the state transfer protocol if faults do
exist.

• State Transfer. Practical State Machine Replication will always require a state
transfer protocol, since replicas should be able to be repaired and reintegrated into
the system without restarting the system as a whole. The possibility of failures that
can bring down more than f replicas of the system at once will also require stable
storage to recover the system that has been affected. BFT-SMaRt implements these
durability techniques to deal with the recovery of replicas or the whole system. The
key ideas of such techniques would be to log the batches of request executions in a
single disk, meaning that every replica would have access to its request history to
share, taking snapshots at different execution points over the multiple replicas, and
sharing all the acquired information, be it the given snapshots or request logs in a
fully collaborative way, with all the replicas dividing the effort amongst them, to
split the cost of the state transfer protocol.

• Reconfiguration. Unlike most previously built BFT-SMR systems, BFT-SMaRt
does not assume a static system, assuming a system that can grow or shrink over
time to fit the needs of the developer, system administrators and clients. As such, it
provides a protocol to enable replicas to be added or removed from the system du-
ring runtime. Mod-SMaRt informs the replicas of the new replica that now requires
addition or removal from the system. All correct replicas will adopt the same view
as the system’s current view at any given point during execution of client operati-
ons. This function will require an administrator’s signature in order to ensure the
request was submitted by someone privileged enough to modify the system. The
view manager will then verify the administrator’s signature and after the current
view is updated, respective of whatever update came in the reconfiguration request.
If the view manager was successful, it will then notify the system replicas of the

Capı́tulo 2. Related Work 13

new updated view, before notifying the replica that was waiting to be added (or
removed) that it can start (or stop) its execution. By adding a new replica, this new
replica will trigger BFT-SMaRt’s State Transfer protocol to bring itself up to date.
Due to this, clients will require storing the system’s current view, meaning that no
replica will accept client requests made to outdated views

The biggest problem that was associated with BFT-SMaRt was how to break these
previously mentioned protocols into an efficient architecture, considering that the library
implements a high-throughput replication middleware. The system must be able to deal
with hundreds of clients, and , more importantly, be able to deal with malicious behaviour
from both clients and replicas. BFT-SMaRt manages client requests that are received
through a thread pool that is provided by the Netty framework, which stands as BFT-
SMaRt’s option to manage hundreds of connections in an efficient way, with requests
being separated between ordered and unordered requests, which are usually read-only
commands and are delivered directly to the service implementation. If the requests are
ordered ones, they are delivered to the client manager, which will then verify the request’s
integrity before adding them to the client’s respective queue. The Netty Framework, used
by BFT-SMaRt, is naturally a multi-threaded one, exploiting a processor’s capabilities for
higher throughput, splitting the work over multiple threads:

• Proposer Thread. This thread is responsible for assembling the request batch and
and transmiting the PROPOSE message of the consensus protocol, with BFT-
SMaRt filling the request batch with pending requests until there is none left, or
until there are no more requests to add. This Thread is only active in the replica
that stands as the leader of the current consensus instance, in order to have only one
replica proposing request batches.

• Sender Thread and Receiver Thread. The sender thread is tasked with getting
every message m from the out queue to be sent by one replica to another one, seria-
lizing it, producing its MAC to be attached to the respective message m and sending
it through TCP sockets. The receiver thread will then read the message, authenti-
cate it, by reading its mac, deserialize it and add it to the receiver replica’s in queue,
where messages received from other replicas are stored before being processed.

• Message Processor Thread. This thread is responsible for processing messages
from the BFT-SMR protocol. This thread will retrieve messages from the queue
and execute them if they belong to the current consensus instance. If not, they are
stored again and saved until the awaiting consensus instance is triggered, otherwise,
the message will be discarded.

• Delivery Thread. After finishing a consensus instance, the decided batch of mes-
sages is stored in the decided queue, the delivery thread will be the one tasked with

Capı́tulo 2. Related Work 14

getting batches from this queue, deserializing them, removing said requests from
the client’s queues and marking the current consensus instance as finished.

• Request Timer Thread. The request timer thread might be activated on ocasion
to verify pending requests remained more than pre-defined timeout time t in the
pending requests queue. If this timer expires, the request will be redirected to the
current consensus leader, if a the timeout t expires a second time , the current con-
sensus instance is terminated and the syncrhonization phase is triggered by Mod-
SMaRt. A timeout can expire due to a client that did not send the request to the
consensus leader or by a leader that did not order the client request. Due to the
existence of many more clients than servers, it is usually suspected that clients are
faulty, opposite to replicas, which are only suspected of being faulty if the problems
persist over more consensus instances.

As mentioned above, BFT-SMART tolerates non-malicious byzantine faults by default,
being able to be configured in order to tolerate other fault models.

• Crash Fault Tolerance. BFT-SMART is able to support configuration parameters
that make the system strictly crash-fault tolerant, by being able to tolerate f <

n/2 crashes, meaning that the system is able to support a simple minority of the
replicas crashing. This, however, means that quorums in the protocols will have to
be rearranged to take this into consideration, bypassing the WRITE step during the
consensus execution, keeping the remainder of the protocols intact.

• Malicious Byzantine Faults. The use of public-key signatures makes it impossi-
ble for clients to forge MACs for sent messages, allowing the protocol to ignore
false signatures, making the protocol much more resilient to malicious faults. BFT-
SMART does not use public-key signatures by default, with the exception of esta-
blishing symmetric keys between replicas during leader change. One of the attacks
that BFT-SMART cannot defend against are malicious view leaders degrading the
execution of the system, usually by stalling message exchange and request execu-
tion. However, nodes can use reconfiguration tactics in order to change the current
leader of a view in order to reduce the damage that is done by such malicious lea-
ders.

2.2 Computing on Encrypted Data

2.2.1 Secret Sharing

Secret Sharing schemes allow a distributed system to break a secret into many shares,
allowing it to be shared amongst the participants in the network. This secret is shared in a
way that it requires a threshold k of n shares in order to reconstruct the secret, creating a

Capı́tulo 2. Related Work 15

scene where less than n shares cannot recover it [9]. This scheme allows the system how
to divide a secret S into n shares in order to make S reconstructable using at minimum
a number of shares equal to a threshold k, giving away no information if k − 1 shares
are obtained [22]. Secret Sharing is an algorithm that was proposed in the late 1970’s
by the cryptographer Adi Shamir, which is an algorithm that by using polynomial inter-
polation, breaks secrets into multiple shares, requiring only a certain amount of shares,
known as the threshold t in order to correctly recreate the secret. This means that an ad-
versarial presence in the network would require s shares to meet the threshold t, making
it theoretically secure, meaning that it is secure against attackers with theoretically unli-
mited power, considering that it is impossible to brute-force the required shares to meet
the threshold [5]. This scheme is called (k, n)thresholdscheme. Protecting data can be
done with data encryption, however, protecting the encryption key becomes another large
problem, considering that using further encryption just escalates the problem rather than
solving it. Storing the keys in well-stored locations can be a problem, since the more
locations the key is stored in, the higher the risk of security breaches [22]. This method of
secret Sharing, by using a (k, n)thresholdscheme with n = 2k−1, a very robust key ma-
nagement system is obtained. Recovering the original key becomes impossible without
exposing more than half of the system’s replicas k = (n/2) + 1 [22]. Secret Sharing
mechanisms are especially good when used in distributed systems, since these threshold
methods are ideal where individuals (or replicas) with possibly conflicting interests must
cooperate [22]. The scheme is based on polynomial interpolation, if the algorithm is gi-
ven k points using 2-dimensional planes (xi, yi), ...(xk, yk), with distinct xi’s, there will
only be one polynomial q(x) of degree k − 1 such that q(xi) = yi, for all i. By picking a
random k − 1 degree polynomial q(x) = a0 + a1x + ...ak−1x

k−1 in which a0 = D, it’s
possible to allow the replicas to redo the interpolation process, as long as there is a subset
of k values containing each of the Di values and their identifying indices, considering that
D1 = q(1), ..., Di = q(i), ..., Dn = q(n), allowing the replicas to re-calculate the total
secret, considering that D = q(0) [22]. This technique is used to guarantee better security
and protection, alongside privacy, even if one of the shareholders is compromised, be it
by attack or fault, the revealed secret is useless on its own. This also means that requiring
all shares to reconstruct a secret is not only dangerous, but could be considered counter-
productive, considering that we are dealing with an untrusted network in which any of the
shareholders could possibly go rogue at any moment.

Galois Counter Mode for encryption

The Galois Counter Mode, or GCM for short, is a block cipher mode of operation that
is used to provide authenticated encryption. By taking a secret key K, an initialization
vector IV and a plaintext P it is able to output a ciphertext C with the exact same length
as P . This also produces an authentication tag T with a length t[16]. The authenticated

Capı́tulo 2. Related Work 16

decryption takes K, IV, C, T as input and returns an output with the original plaintext P ,
or a given symbol FAIL if the input is not authentic. This encryption mode also supports
authentication of important information that must be left unencrypted, such as addresses
or network ports [16].

2.2.2 Trusted Execution Environment

A Trusted Execution Environment is a secure, integrity-protected processing environ-
ment, consisting of secure memory and storage capabilities [1]. As such, it stands as a
tamper-resistant processing environment that runs on a separated kernel, guaranteeing the
authenticity of the executed code and the integrity of the current runtime state, such as
the CPU registers and memory [20]. It also provides remote attestation measures in order
to prove its trustworthiness to third-parties [20]. These environments were designed to
achieve secure computation, privacy, and data protection [20]. It isolates the execution,
prohibiting other processes, including the operating system, of acquiring or altering data
or code that is being executed. This execution environment runs alongside the operating
system, and was created with the goal of preserving confidentiality of all the information
that goes through it. It differs from the previous hardware solutions by introducing the
possibility of securely updating the code and data inside the isolated environment, which
improves from the previously available Trusted Platform Modules, which only supported
a set of API’s [20]. One of the foundations of the isolation provided by these environ-
ments is a separation kernel, introduced to enable the coexistence of multiple systems on
the same platform, dividing the system into multiple partitions, each with its own set of
privileges, guaranteeing isolation amongst them [20]. Unlike traditional kernels or Hy-
pervisors, separation kernels are built to be as simple as possible, with four main security
requirements [20]:

1. Spatial Data Separation, ensuring that data within one partition cannot be read or
modified by other partitions;

2. Temporal Sanitation, ensuring that shared resources are not used to leak information
into other partitions;

3. Control of information flow, ensuring that communication between the partitions is
prohibited unless explicitly permitted;

4. fault isolation, ensuring security breaches in one partition cannot spread to other
partitions;

All of these requirements can be attested by third-parties, usually by requiring signatures
using keys fused directly into the processor, to ensure that not third party can simulate this
process. This is especially important when a system that requires trustworthy computation

Capı́tulo 2. Related Work 17

in untrusted systems, such as smartphones. Due to the installation of multiple applications
and their accesses, mobile financial applications, or mobile banking requires the use of
a trusted execution environment, to make sure that there are no malicious participants
attacking the system execution. With the rise of cryptocurrency, these systems are used in
order to implement crypto-wallets, as these offer the ability to store information safely in
the computer memory, after being sealed with the embedded processor keys.

ARM TrustZone

ARM TrustZone is one of the more popular Trusted Execution Environments, next to
Intel SGX, which separates any application developed with it into a Normal World and
Secure World. These worlds are seen as virtual processing cores, with every processing
core, being separated in two by the system, a trusted and an untrusted one. If an appli-
cation needs to change betwen the two, it will use a privileged instruction, SMC (Secure
Monitor Call), provided by a monitor component, ensuring storage of registers and pro-
tection of secure memory when switching from one world to another. Unlike SGX, which
separates an application into trusted and untrusted components, TrustZone creates a new
fully isolated environment to execute trusted applications. This fully isolated environ-
ment is guaranteed by a new CPU privileged mode, known as the monitor mode. When
the SMC is activated, the processor will remove all sensitive information is deleted from
the registers that are shared between worlds, since both worlds share a physical processor.

Due to TrustZone providing two different environments for execution, application de-
velopment for TrustZone is much more flexible than SGX’s enclave model. Whilst the
simplest designs with TrustZone can be similar to sgx’s primitives, with untrusted appli-
cations making synchronized calls into secure world libraries, TrustZone also supports a
secure OS kernel executing in parallel inside the Secure World, but also creates a difficult
problem for the programmer, leaving up to the developer on how to handle Secure World
resources.

TrustZone has its system separated into two virtual cores, one for each world, and
duplicated hardware models in order to provide physical isolation. The existence of phy-
sical memory management units, usually guaranteeing one for each virtual cores, allow
for each world to have its own memory mappings, which efficiently remove the need to
delete memory before switching worlds. Cache, however, is shared amongst the worlds,
creating the necessity of differentiating what areas each world can access. For this, an
additional bit is used in order to differentiate what memory is secure and what memory
is not, eliminating the need of deleting the cache when changing worlds. Unlike SGX,
TrustZone supports I/O access, in the form of a segregated bus, known as AMBA3 APB,
which is used for secure peripheral access, guaranteeing that a peripheral that was connec-
ted securely cannot be accessed from the normal world. In order to support this, interrupt
handling is provided inside the secure world, with exceptions being treated inside it.

Capı́tulo 2. Related Work 18

Intel Software Guard Extensions (Intel SGX)

Intel Software Guard Extensions (SGX) is another widely used Trusted Execution Envi-
ronment. Introduced with the skylake architecture a few years ago, the system allows the
untrusted component of the application to create an enclave that will execute the trusted
area of the application. This enclave will then be placed in protected memory. This me-
mory is always protected from external processes, by creating trusted functions that can
properly access the enclave. This enclave is a part of the process memory, however. This
means that the application has its own data and code, which includes the enclave, that con-
tains its own data and code as well. This means that any application that uses Intel SGX
for its design is therefore divided into a trusted and untrusted component, with the trusted
component being the aforementioned sgx-provided enclave. The processor will allocate
a portion of the memory, limited at 128 megabytes of memory, in order for it to become
enclave-specific memory, which will be then protected from external accesses, which also
include the operating system’s kernel. This memory is not impossible to access, however,
the untrusted component does contain primitives in the form of enclave-specific instruc-
tions in order to request the enclave to do some form of computation. These primitives
are known as enclave calls (ECALL), that are used in order to send information from
outside to the inside of the enclave, location where computation does not have access to
any external libraries, such as I/O, which would represent a possible security breach for
the enclave [11]. These functions are accessible through outside calls (OCALL), which
allows the enclave code to call on external libraries through the trusted component of the
system. These functions, however, do have some cost associated with them, considering
that the enclave will need to be exited in order to execute these functions, before the en-
clave is re-entered. These functions can be defined through specification files, commonly
known as EDL files (Enclave Definition Language), in which functions are defined as
trusted, meaning they belong to the enclave (ECALL), or untrusted, meaning they belong
to the untrusted component of the application (OCALL). Intel SGX does offer confiden-
tiality and integrity guarantees, using the enclave model. SGX also provides attestation
tools, in which a user can confirm whether a remote enclave is working correctly and has
not been tampered with [11].

The processor manages a memory region known as PRM (Processor Reserved Me-
mory), which is programmed to be isolated from the rest of the operating system, with
the processor being the only component connected to with. This memory region contains
all of the enclave’s data structures, data and code. In this memory region is also stored
the EPC (Enclave Protected Cache), which stand as memory pages awaiting assignment
to specific enclaves. With memory inside this area being limited, to allow multiple ap-
plications to work concurrently, sgx supports page swap between this area of protected
memory and untrusted memory, moment in which the memory is blocked, meaning that
no writes can occur over any of said memory addresses and encrypting said pages, so they

Capı́tulo 2. Related Work 19

can be stored in untrusted memory. These swapped pages contain integrity proofs, in the
form of Message authentication codes (MACs) and version numbers, in order to guaran-
tee they were not tampered with. In order to reload any of these swapped out pages, the
page will need copying back to the PRM before running any required security checks,
ensuring that there was no tampering, alongside with verification of the page version, to
ensure is the last one[11].

Attestation is also an SGX feature, which serves as intel’s option to verify that no tam-
pering has occurred with the newly deployed enclave. For this, a digest of the enclave’s
code and data is created and stored in the MRENCLAVE register, only after this register
is filled can the attestation take place. Attestation can take two forms, either local, or
remote:

• Local Attestation. A newly deployed enclave will perform an attestation request to
the enclave to be attested. This enclave will then create an attestation report, contai-
ning it’s identity, data structures, attributes and hardware it’s running on, producing
a MAC using a symmetric report key, which is owned by the processor and can be
requested by the enclave. The enclave to be attested will then reply to the enclave
attesting it with its attestation report. The attesting enclave can then use the report
key provided by the attested enclave in order to create its own attestation report.
Considering that the attestation is local and processor is the same, it means that the
produced MACs will then necessarily be the same. The attesting enclave will then
redo its attestation report and compare the MACs, before sending its report back to
the attested enclave.

• Remote Attestation. For this, a request is submitted to the untrusted part of the
remote application, which will connect to its enclave, requesting a report structure
from the enclave, which will be created and then sent to a newly deployed enclave
in said system, known as the quoting enclave which will sign said report with an
EPID (Enhanced Privacy ID), producing what is known as a quote, before returning
it to the request sender. This EPID serves as an asymmetric key owned by the
processor,which can then be verified by the request sender, using the public key
certificate of said EPID.

These are not all the primitives that are given by sgx. Sealing is a major one as
well, in which the enclave uses its own key, which in turn is owned by the processor,
to encrypt the information in a secure way, allowing it to be stored outside the enclave,
ensuring integrity of the information that is sealed, considering that even if the enclave or
the system as a whole shut down, a re-deployed enclave can always undo its seal over the
sealed information as long as the processor remains the same. This is especially important
when you consider that all information inside the enclave is destroyed if the application
is closed. Considering that preserving data is the end goal in this scenario, intel sgx was

Capı́tulo 2. Related Work 20

designed with mechanisms to ensure that the used and retrieved key are unique to said
enclave, meaning that the used key can only be retrieved by this one enclave using this
one processor. There are two options of this mechanism [11]:

• Sealing for the Current Enclave (MRENCLAVE). If this method is chosen, this
means that the current measurement of the enclave is used for the sealing opera-
tion, meaning that for future removal of the seal, an equal MRENCLAVE value is
required to generate the key used to seal the data. It is worth noting, however, that if
any attribute, data, or value related to the enclave has changed, the MRENCLAVE
will also change.

• Sealing to the Enclave Author (MRSIGNER). If this method is chosen, the iden-
tity of the enclave author is bound to a special enclave register (MRSIGNER) at
initialization time, with the product ID also being bound to the generation of the
sealing key at runtime. This means, therefore, that only enclaves with the same
author (MRSIGNER) and the same product ID can undo the sgx seal. This type of
sealing allows for enclaves written by the same author to share sealed data as long
as the two enclaves belong to the same processor.

2.3 Confidential / Hardware-Based BFT-SMR

2.3.1 COBRA

COBRA serves as a confidential State Machine Replication System that is tolerant to
Byzantine Faults. It was designed as a fully connected distributed system whose nodes
could be divided into two infinite subsets, the clients c = c1, c2, ...cn and the server re-
plicas r = r1, r2, ...rn. Requests are sent to the system by sending each of the requests
to a subset of the replicas (called a view). Each process, be it client or server, contains
a unique ID that can be verified by any other process belonging to the system, usually
through public key infrastructures. For this, each replica ri contains public-private key
pairs < pki, ski > , that is used for both message signature and encryption.

By design, it was assumed a partially synchronous model in which the entire network
may behave in an asynchronous manner up to an unknown instant t after which the system
changes to a synchronous one with time bounds for computation and communication.
This is done to ensure liveness of the consensus protocols, that cannot be guaranteed for
asynchronous systems.

It was considered as a fully dynamic system where any node is able to join or leave at
any point during execution by using reconfiguration techniques that can during execution
time re-install the sequence of views in the system, each containing a sequence of replicas
available at the time the reconfiguration algorithm is run. The reconfiguration request is
also considered as a regular request, and also goes under the total-order consensus same

Capı́tulo 2. Related Work 21

as all other requests. After the reconfiguration, all correct replicas will adopt the same
current view Vcurr, which represents the most recent view of the system. Until this is
done, the only view that may participate in the execution of client requests is Vcurr.

All of these replicas are prone to Byzantine faults, however. Any process that suc-
cumbs to any of these faults is from then on considered faulty. The system always con-
siders the possibility of a system being able to control the network, by corrupting an
unbounded number of clients or replicas in each view. A view can see a maximum of
(n− 1)/3 replicas corrupted, being n the total number of replicas in its view.

The state machine model defines that all correct replicas work with deterministic func-
tions and contain the same state after executing all received requests, provided they were
received in the same order. The use of secret sharing, however, means that no replicas
will have exactly the same state, due to shares being scattered throughout the network.
This is done in order to provide a confidentiality layer for a pratical BFT SMR system.
No system comes without downsides, the system requires secret resharing mechanisms,
in order to resupply any replica that has lost or compromised its own replicas, be in the
form of byzantine fault or otherwise. Any replica ri that recovers from failures will need
to obtain the public part of its state, which is also contained in other replicas, using the
state transfer protocol, and will also require an invocation of the share recovery protocol
for each data entry Di, in order to reconstruct its private state. Secret resharing is done
with distributed polynomial generation, which allows n ≥ 3f + 1 replicas to randomize
a polynomial P of degree f , encoding the point (x, y), with y being the value 0 in order
to maintain the secret. By the end of this protocol, every replica will maintain a point
(i, P (i)) of P . For this, each server locally generates a random polynomial and distribute
its shares to the group, with a set of these f + 1 polynomials being selected and byzan-
tine consensus is used to ensure all replicas agree on this set. To end the protocol, the
f + 1 selected polynomials are summed , resulting in the shares of a Polynomial P . This
protocol ensures that at least f +1 correct processes will obtain a valid point of the Poly-
nomial. This, above all, allows the system to maintain secrecy of user-given information ,
by spreading the shares required to retrieve the secret over the network, in order to ensure
that no faulty or compromised replica reveals sensitive information.

2.3.2 MINBFT

BFT protocols typically do require 3f + 1 replicas in order to tolerate f byzantine faults.
This is based on the idea that in the worst scenario, correct replicas can overcome faulty
replicas when outputs are put to a vote. Papers in the past have proven that Byzantine
Fault Tolerance algorithms cannot function with fewer than 3f + 1 replicas [8], howe-
ver, these proofs assume the possibility of faulty nodes sending conflicting information
with malicious intent. The new Trusted Execution environments do provide an option in
order to protect against these malicious attackers, by extending nodes with tamper-proof

Capı́tulo 2. Related Work 22

components that would continue to produce correct information even if the node itself
becomes faulty [25]. One of the most important metrics for for distributed systems is
the number of communication steps, considering that latency does play a role in slowing
down an algorithm. Tolerating disasters and DDoS attacks becomes increasingly difficult,
making it necessary to deploy replicas in different sites, increasing communication delays
[25]. In the algorithm proposed, MinBFT, the replicas will move through a succession of
configurations called views [25]. MinBFT allows its primary replica to use trusted coun-
ters to assign both order numbers and a certificate for that number assignment in order to
prove that the number was indeed assigned to said request, and not any other, while also
making sure the counter was incremented. By using this technique, it is guaranteed that
all replicas agree on the correct order for request execution [25]. For this protocol:

1. A client will send its request to all nodes;

2. The primary Replica will assign a sequence number to the client request, signing a
certificate to prove it before sending the request to all other servers in the form of a
PREPARE message;

3. Each server will then multicast a COMMIT message to the other servers as soon
as PREPARE message is received from the primary replica;

4. When a request is accepted, the request is executed locally and the reply sent to the
client;

5. To finish the request, the client will wait for at least f + 1 matching replies to
complete the operation.

By reducing the number of total replicas to 2f + 1, the client can safely await only for
f + 1 replies, since f replicas can indeed by faulty. This is possible due to MinBFT ha-
ving protections against duplicity, i.e the possibility of faulty replicas sending messages
with differing contexts to different replicas [25], more specifically, MinBFT can protect
the system against faulty replicas that may want to send differing messages with equal
identifiers. MinBFT uses a trusted subsystem, named USIG that prevents duplicity by as-
signing identifiers to different messages and does not assign the same number to different
messages. By assigning a sequence number, it also assigns a certificate to the request, in
order to prove that the sequence number was indeed given by the service.

The USIG (Unique Sequential Identifier Generator) service is a local service that
exists in every replica, with the objective of assigning the value of counters and signing
them. These subsystems ensure that USIG will never assign the same number to two diffe-
rent requests, i.e uniqueness, will never assign an identifier that is lower than a previously
assigned one, i.e monotonicity, and will never assign an identifier that is not the sucessor
of the immediately previously assigned one, i.e sequentiality [25]. These properties are

Capı́tulo 2. Related Work 23

ensured even if the replica is compromised, so the service has to be implemented in a
tamper-proof module. The interface provided contains two functions, one for creation of
a USIG certificate and one to verify said certificate. createUI(m) will return a new USIG
certificate containing a unique identifer (UI), ensuring that this UI was executed inside
the tamper-proof modlue. verifyUI(PK,UI,m) verifies the UI is valid for message m,
i.e if the certificate matches the message and the rest of the data in the UI .

This is important, because even if a faulty server decides to not send the message for
the consensus algorithm, or worse, decides to send wrong information, it will never be
able to send to conflicting information to different replicas, considering that two different
messages will always contain different UI’s. This means that the number of replicas
required for consensus may drop from 3f + 1 to 2f + 1, due to it being possible to
guarantee that a server will not send conflicting information to different replicas, meaning
that the threshold may now drop to n = 2f + 1, just like crash-fault tolerant systems.

Because of the previously mentioned mechanism, from now on f + 1 correct replicas
are enough to achieve consensus on anything that the system may require [25]. For this
system, all client requests are signed with client private keys K, allowing for the server to
identify and discard requests with invalid keys, since the system stores the requests with
a sequence number larger than the last executed, creating a queue of requests. The client
will then await the matching f + 1 replies. As previously mentioned, a primary Replica
gives a request r a sequence number, guaranteeing that no two requests have the same
sequence number. The main replica will create a PREPARE message with the sequence
number of the request and broadcast it to all the other replicas, these may however fail,
and if the sender is faulty, it may happen that the other replicas receive COMMIT and
not PREPARE messages. If the sequence numbers are valid, the servers that receive the
COMMIT message will replicate and broadcast it.

However, if primary Replicas are faulty, this could possibly hinder the algorithm, since
these could possibly not assign sequence numbers to requests. As such, the algorithm
allows for a change of primary replica in case this one is detected as being faulty. This
is usually done throught timeouts. When a backup replica receives a request from one
of the clients, it starts a timer which would end after Texec, if the request is accepted
using the previously mentioned mechanism, the timer is stopped. If the timer is exceeded,
the replica will suspect a faulty primary and will start a view change. To start a view
change, a backup will multicast a change-view message from view v to v′ = v + 1 and
to change states to the latest stable checkpoint clast. As soon as it receives a total of
f + 1 total change-view messages, it will fully change its view from v to v′, moment in
which it stops accepting messages directed towards view v. This change-view messages
takes a unique identifier UIi, in order to prevent faulty servers to send to different servers
of the system messages with different checkpoints Clast and different server subsets for
the new view. The servers will therefore only consider messages that are consistent with

Capı́tulo 2. Related Work 24

the system state, meaning that the checkpoint certificate contains at least f + 1 valid UI

identifiers.

2.3.3 BFT on Steroids (Hybster)

BFT replication services have come to employ 3f+1 replicas in order to ensure that a ser-
vice is capable of accepting arbitrary faults from any of its replicas at any point. Hybster
is presented with a hybrid fault-model where trusted replicas are assumed to fail only by
crashing, with the number of required replicas therefore dropping to 2f+1[4]. This means
that any hybrid replication protocol can require less diversification of the system and re-
quire a smaller amount of resources. Hybster stands as one of the first hybrid replication
protocols to not depend fully on sequential processing, which has hindered systems so far,
by prohibiting systems from taking advantage of multi-threading primitives, which could
help BFT protocols reach new optimization levels. With new generation processors, new
programming models can be used, taking full advantage of the enclave model proposed
by intel SGX. Hybster is therefore a new hybrid-state machine replication protocol that is
parallelizable. Ordering protocols of most existing state-machine replication systems is
based consensus instances that are sequentially processed, which restrict the performance
of such systems on most modern platforms. Most hybrid systems prevent equivocation by
cryptographically binding sensitive messages to a unique monotonically increasing times-
tamp by means of the trusted subsystem. If faulty replicas make conflicting statements by
sending multiple messages to different replicas in the same phase of the protocol, they can
only do so by creating different timestamps for each message, meaning that other replicas
are able to detect such behaviour. These unique timestamps, however, establish a time-
line for each replica, which allows for induction of the sequential nature of these hybrid
protocols. Hybster instead of having one single virtual timeline, proposes a system with
each replica being equipped with a plethora of independent timelines, one for each trusted
subsystem, that are as many as the level of parallelization required. This concept where
each processing unit is assigned a subset of consensus instances prevents the opportunity
for equivocation[4].

For this, Hybster was proposed as hybrid replication protocol designed around two-
phase ordering and multiple trusted subsystems realized using Intel SGX. Opposite to
other options, hybster does not force faulty replicas during a view-change to reveal all
consensus instances for which they sent an order message, being based on the idea that
it suffices to ensure that reveal is only required for consensus instances that are not gua-
ranteed to be propagated by correct replicas, but have possibly led to execution of said
requests. This means that Hybster allows faulty replicas to not present their messages as
long as they are not critical to system safety. This not only significantly reduces histories,
but also the complexity of the view-change protocol. Hybster is also capable to perform
consensus instances in parallel, benefiting from modern multi-core platforms, opposite

Capı́tulo 2. Related Work 25

to existing options that focus on sequential ordering of requests. As such, the hybster
protocol can be divided into three parts, the trusted subsystem tasked with providing the
mechanisms used by the protocol to prevent faulty replicas from making conflicting state-
ment, the basic unparallelized replication protocol, which is the protocol that is performed
amongst the replicas, and the parallelized realization, which right now serves as a view
of the internal protocols that are performed by the concurrent cores from each replica’s
processor[4]. Hybster develops over a trusted subsystem called TrInc, developing its
own subsystem, called TrInx, which tailored TrInc to increase performance. Considering
that Intel SGX supports the creation of multiple trusted enclave instances, in conjunction
with the hybster protocol, this allows a multiplication of the entire subsystem, therefore
allowing a parallelization of execution of said trusted environments, bringing forth an
increase in efficiency whilst not interfering with the trusted components.

As long as trusted environments are deployed by a trusty source, i.e a trusted adminis-
trator, before the group of available replicas is brought to life. These trusted instances are
assigned unique identifiers, the number of trusted counters and a shared key amongst all
the trusted components, the counters are set to 0. After being set up, these TrInx instances
can create certificates for each message, with many ways of doing so [4]:

• Continuing Counter Certificates A TrInx instance can create a certificate for a
message m using specified trusted counters tc, producing the new counter value
tv′. When a certificate is requested , the TrInx instance tssi will accept a new tv′

value that is greater than or equal to the current tv of the counter tc, meaning that
tv′ ≥ tv. It will then calculate a new MAC based on the secret key shared by
all the trusted instances in the system, its own instance ID, the id of the counter
tc, the new value tv′, the current value tv and the message m itself. After doing
as much, it will set the counter tc to the new value tv′ and will return the newly
calculated MAC. This means that a message will only have its certificate attached
to it if said certificate is unique. Other instances of TrInx can be used in order to
verify said certificates, requiring the id of the issuing instance, and the expected
values of tc,tv,tv′, alongisde the message m. The verifying instance can then use
these values to redo the MAC calculation using the shared key, meaning that if the
produced MACs do indeed match, the produced certificate is valid, considering that
only these TrInx instances have access to the provided shared key.

• Independent Counter Certificates. In order to be able to verify a continuing cer-
tificate, the previous counter value tv has to be known to the trusted subsystem,
but for a lot of the protocol’s communication, it is often enough to ensure that the
certificate is unique, meaning that it is often enough to make sure that there are no
other certificates with the same value tv′. For this, the TrInx subsystem offers in-
dependent counter certificates that lack the previous counter value tv, but are only
issued with new tv′ values greater than the previous counter value tv.

Capı́tulo 2. Related Work 26

• Multi-Counter Certificates. If a trusted subsystem is, at any point, required to
prove the validity of more than one certificate, it is more efficient to issue certificates
that encompass more than one counter instead of issuing individual certificates,
which is an option that is provided by the TrInx subsytsems.

• Trusted MAC Certificates. While regular MACs can be used in order to guarantee
the authenticity of messages, they do not provide non-repudiation. Since more than
one party possesses the secret key, this means that a party can deny that it sent the
message.With a digital signature envolved, this becomes impossible. The downside
is the time required for computation, considering that private keys are far more
expensive to compute than MACs. However, by including the secret key and its
unique ID, TrInx can provide certificates that provide non-repudiation, which come
as a middle-ground between MACs and digital signatures, only being slightly more
computationally expensive due to the cost of switching to the trusted execution
enviroment provided by TrInx. By mapping trusted MACs to continuing certificates
where tv = tv′, it becomes possible to save on running time.

Hybster’s basic protocol is a combination of other widely used core subprotocols for
state machine replication protocols. Total-order, checkpointing, state-transfer and view-
change protocols.

1. Total-Order. To establish total-order for requests pending execution, one of the
replicas will be selected as the current leader l, which assigns order numbers for
the given requests and proposes this assignment to all others, by awaiting for a
sufficient number of replicas to accept to follow the proposal, consensus is reached
and the requests can be executed. The system goes through consecutively numbered
views v, in which the leader l = vmodn. If a leader is detected to be faulty, the
view-change protocol will be invoked in order to elect a new leader.

2. Check-pointing. Hybster assumes that the network is unreliable, assuming that the
network may lose or delay messages, and considering that byzantine-faults are very
hard to detect, it is very hard to ensure if a replica is faulty or if the network itself
is just slow or failing. When required, the system may resend messages that were
lost or delayed, the system will keep a log of said ordered requests during a certain
pre-defined amount of consensus instances, while deleting older messages when
there is proof that enough replicas executed said requests. Replicas will regularly
execute said protocols in order to achieve proof that the system indeed executed said
requests. By sending CHECKPOINT messages to one another, at some point, at
least one of the replicas will be able to collect a quorum of said messages with equal
checkpoints, said checkpoint becomes stable. It will then delete order messages
to preserve memory storage, not affecting view-change protocol messages in the
process.

Capı́tulo 2. Related Work 27

3. View-Change. If at any point a leader is suspected of being faulty or fails to get
its required quorum for whatever proposals it does, the current view is aborted, and
a new view is created in which a sufficient amount of replicas follow the leader in
order to make progress, i.e ordering said requests. It is worth noting, however, that
this view-change protocol must ensure that any request with the order number o
that has already been executed in a previous view, no request with that same order
number can be executed. Assume that consensus has been reached with the previ-
ously mentioned checkpoint algorithm, with the replicas already having discarded
their order messages, saved snapshots of the current system state and possessed a
quorum certificate of CHECKPOINT messages proving the correctness of the
state. As soon as a client tries to issue a request r to the view’s leader r0 and has
that message lost, after a timer has expired, the client will resend said request r.
The client will have no way to know if the leader r0 is faulty and refused to propose
the client’s request, or said request was just lost in the network. When the request
r is sent, the request is sent via multicast to all the replicas in the view. Let us
assume that r0 is correct and that another replica, r1 had temporarily disconnected
and had not received r0’s order proposal. Even if other replicas received said order
proposals, r1 will now suspect that the leader r0 is faulty, due to having received
the request directly from the client via multicast instead of the leader’s proposal.
When this happens, r1 will send a V IEW − CHANGE request to the other re-
plicas. These other replicas will announce to the system that they have abandoned
the view vfrom = 0 with the leader r0 and want to join the new view vto = 1 with
the new proposed leader r1. Due to View-change certificates, Hybster can rely on
single correct replicas within quorums to announce consensus instances that have
been executed by replicas that are not members of the aforementioned quorum.

Consensus-oriented parallelism schemes allow replicas that are composed of various
similar processing units to communicate asynchronously using memory messaging only,
operating independently from one another. With regard to ordering requests, this is achi-
eved by letting each of the processing units responsible for executing a share of order
numbers. Considering Hybster’s design, this wouldn’t be very effective, considering that
like other hybrid protocols, no consensus instance o′ > o can be processed unless the
consensus instance o has been concluded. By binding messages to of the protocol to va-
lues of trusted counters that can only directly increase ends up playing into this sequential
limitation. In order to handle this limitation, Hybster allows replicas to certify messa-
ges for particular phases of the protocol with different trusted counters,therefore allowing
the workload to be split amongst multiple independent processing units, each equipped
with its own instance of the TrInx subsystem. Hybster allows a replica r to create mes-
sage certificates of the format c(r(u), ..) where r(u) is the ID of the TrInx instance of the
processing unit u in the replica r. By using consensus-oriented parallelization, consen-

Capı́tulo 2. Related Work 28

sus instances are split over the processing units in a predefined manner, meaning that it
is known before-hand which processing unit will process each consensus instance. This
means that an order message with the certificate c will only be accepted if the associated
TrInx instance is the one associated with the processing unit u that is responsible for the
consensus instance o. Considering that both the number of processing units to be used
per replica and the IDs associated to each TrInx instance are part of the system’s configu-
rations, it becomes possible to stop faulty replicas from using different TrInx instances to
create conflicting order messages[4].

To keep the processing units all in the same page, checkpointing in a design with
consensus-oriented parallelization has to be carried amongst all of them. The processing
unit that will execute the protocol for the kth checkpoint is determined in cyclical fashion,
using the round-robin algorithm to distribute additional load over the available processing
units.

Using the parallelized version of Hybster, information about a currently ongoing con-
sensus instance is distributed amongst processing units and each replica will contain mul-
tiple multiple trusted counters in order to certify order messages. However, the view-
change protocol must still ensure that faulty replicas are forced to reveal the consensus
instances that have been processed, and will not be able to explicitly work on views that
have already been aborted. In order to achieve this while still maintaining access to the
trusted subsystems local to each processing unit, hybster will split the view-change mes-
sages into multiple others, such as V IEW − CHANGE, NEW − V IEW ,NEW −
V IEW − ACK, resulting in each of these partial messages arriving to each processing
unit. Still, replicas are only allowed to abort a view completely, meaning that if a replica
abandons a view, all of its processing units must abandon it too. Therefore, receiving
replicas only consider a view-change message only upon receiving all of its parts, with
the number of parts necessary for view-change being equal to the replica’s total number
of processing units configured by the replica. As for ordering, partial messages must
only contain PREPARE messages for order numbers the processing unit is responsible
for. As such, the system can ensure that the set of PREPARE messages received by
the replica are complete. Due to parallelized ordering, the combined sets can, however,
contain gaps. As such, a proposed leader will fill the gaps by proposing empty consensus-
instances.

2.3.4 Consensus-Oriented Parallelism

The execution of the instances of the consensus protocol can be parallelized, and not
necessarily the execution of the tasks that have to be performed is the current state of the
art [3]. Using the consensus-oriented parallelization, consensus instances are assigned to
pillars, with each one of these being assigned to a specific thread with copies of all the
functional requirements to perform the entire consensus protocol and client handling. This

Capı́tulo 2. Related Work 29

allows the pillars to be separated and far away as possible from one another. For example,
if a pillar from the leader replica r receives a new client request or enough requests to
form a batch it will initiate a new consensus instance by informing all other replicas via
its connections. [3]. Once finished, the outcome can be propagated to the still existing
execution stage. Considering that the aforementioned pillars are executed in parallel,
these cannot provide total order on their own, meaning that total order has to be enforced
by using the instances’ sequence numbers before invoking service implementation.

However, one possible extension allows to partition the service implementation, eli-
minating therefore, the execution stage. Creating Symmetry between the pillars helps
not only with evenly distributing the computation over the threads, but also simplifies the
system complexity [3]. However, asymmetry was presented in the previously mentioned
solution, at least with the execution stage. With traditional state machines relying on de-
terministic executions to provide service implementations, parallelization of the service
execution is therefore prevented [3]. But when parallelization of the consensus protocol
is achieved, as soon as a consensus instance is complete, the requests belonging to this
consensus instance are now eligible for execution. The problem is that total order has
not yet been enforced. Meaning that until the pillar’s result is propagated to the execution
stage, the total order will not be enforced. [3]. At this point, requests can be pre-processed
without losing the order that required to be recreated, this is done by using the pillars to
process requests that do not rely on total order. Parsing requests and pre-validating them
is work that a thread can do in order to save time. With client connections being handled
by the pillars themselves, a the execution stage will not send replies itself, but instead
delegate them to the pillar maintaining the connection with the specific client. In order to
the alleviate the execution stage even further, a service implementation can carry out only
the tasks within total order that are essential to ensure consistency, i.e when the request
modifies state, leaving the the preparation of the final returns and replies to the pillars
responsible for said connections [3].

Capı́tulo 3

Con-BFT’s Protocol

Con-BFT is a new Byzantine-fault tolerant system built on top of BFT-SMaRt that uses
Intel SGX in order to guarantee privacy, integrity and availability of the information that
is given by a user and all computation that is done using said information. Intel SGX
can also be used in order to provide privacy and confidentiality guarantees using an Intel
SGX enclave and its sealing key. By using an Intel SGX Enclave it is also possible to
ensure equivocation prevention, i.e preventing replicas from sending conflicting mesages
to different replicas within th system, since Intel SGX can be used to create a trusted
subsystem to attach message certificates.

3.1 Ensuring Privacy

By using an Intel SGX enclave, it becomes possible to protect the confidentiality of the
information and computation done inside said enclave, considering that Intel SGX en-
claves can be used to isolate the enclave’s code and data from the outside environment
and code [11]. Therefore, by creating a system where all sensitive computation and han-
dling of information is shifted towards the inside of an Intel SGX enclave, it becomes
possible to ensure obfuscation of client-driven information. For any given client request
R, after being subject to total order, can have its sensitive computation handled inside
of the enclave, using what Intel defines an enclave call (ECALL), which can be used
to guarantee that all information given to the enclave is not visible outside of the en-
clave, even if said information needs to be stored outside of the enclave, as shown below.

Since Intel SGX enclaves contain what Intel defines as Sealing keys, i.e enclave-
specific keys that are derived from the processor’s key, these enclaves are able to ensure
that information can be encrypted with these Sealing keys in order to be stored outside
of the enclave. This enclave-specific primitive is known as sealing. This means that only
the enclave that sealed a piece of information will be able to reveal it, allowing for reli-
able long-term storage, all whilst being protected by the symmetric key obtained inside

31

Capı́tulo 3. Con-BFT’s Protocol 32

Figura 3.1: Con-BFT Storage of client-Information

the enclave with Intel’s sgx-specific instruction EGETKEY [11]. As such, as long as
the information safely reaches the trusted environment, i.e the enclave, there is a safe as-
sumption that the information will stay private, since all outside access to enclave data
and code are protected. This means that information can be safely decrypted inside of the
enclave, since the enclave allows confidentiality of information both inside and outside
said enclave.

Therefore, by using Intel SGX, BFT-SMaRt’s functions can be slightly altered in order
to ensure this required privacy. For the development of this system, a simple Key-Value
store was used:

• Put Operation. By including an Intel SGX enclave, the system can, through an
ECALL, request the enclave to decrypt the incoming information, and seal it using
the enclave specific key, which would force an attacker to physically attack the CPU
in order to retrieve this information.

• GET Operation. By including an Intel SGX enclave, the system can do the exact
opposite of the Put Operation, unsealing the information stored in unsafe memory
and encrypting it with the given AES-Key for the connection being used at the
moment.

3.2 Performance of Consensus Algorithms

By using Trusted Execution environments, it becomes possible to use trusted counters in
order to reduce the number of messages required by a fault-tolerant system in order to
achieve consensus. If trusted counters are introduced inside an Intel SGX Enclave, faulty
replicas will not be able to falsify message sequences, due to being possible to associate
each message with a verifiable HMAC and unique ID [4, 11]. This means that by using
an Intel SGX Enclave to validate all messages that are sent between replicas, the num-
ber of required messages to ensure consensus can be reduced, due to wrongful messages
being detected and ignored. These trusted counters are able to create and validate HMAC
and counter values using previously exchanged keys, which then other replicas can verify

Capı́tulo 3. Con-BFT’s Protocol 33

using their own enclave’s trusted counters.

Figura 3.2: Con-BFT Enclave Integrity Guarantees

By using this trusted hardware in order to attach message certificates for all replica
connections, it becomes possible to ensure that a faulty replica can no longer send con-
flicting information to different replicas with the objective of introducing wrongful infor-
mation to the system [4]. By introducing a MAC (Message authentication code) with a
symmetric key created inside the enclave or encrypting information with Galois-Counter
Mode (AES-GCM), this means that information sent between replicas contains integrity
guarantees. This means that in the case of a MAC, any enclave that contains the symme-
tric key used for the calculation of this MAC could use said symmetric key to verify it, or
in the case of the AES-GCM encryption, any enclave that contains the encryption key, can
therefore use said encryption key for the decryption and verification of the information.
As such, by having a message sender use a MAC algorithm with a secret symmetric key
and a message m, a trusted MAC tag will be produced that cannot be changed, since only
the trusted environments contain access to these symmetric keys, which can then be used
to reconstruct the MAC and verify the integrity of the message [11, 4]. This means that
whenever a leader l proposes a request, it will need to either produce a MAC using its own
symmetric key, or encrypt the information using the Galois-Counter Mode (AES-GCM)
inside the enclave , which means that in either scenario, in no point will there be a visible
key outside of said trusted environment, i.e the enclave. This means that by using trus-
ted environments, it is possible to implement equivocation prevention, which remained
as the reason that consensus algorithms required 3f + 1 replicas in order to guarantee
consensus[4]. This allows the 3f + 1 replica requirement to drop to a 2f + 1 replicas in
order to guarantee consensus, only requiring the client to await a total of f+1 necessarily
correct messages [4, 3]

3.2.1 System Initialization

For the system to be initialized, a configurations file will have to be produced by the
developer. This file will contain how many replicas r will need to be initiated for any ope-
rations to be executed by the replicas, and information required for replicas to connect to
each other, like BFT-SMaRt. Each replica will then initiate its own Enclave, with these en-
claves calculating Diffie-Hellman parameters for key-exchange between them as shown in

Capı́tulo 3. Con-BFT’s Protocol 34

3.3.

Figura 3.3: Con-BFT Enclave Diffie-Hellman

These keys will then be used for AES-GCM encryption, allowing the enclave to ensure
integrity and authenticity for each message produced by an Enclave. Other keys can then
be produced and exchanged if at any point Message Authentication Codes (MACs) need
to be produced in order to certify any message. This key-exchange protocol allows these
replicas to create a secure TLS channel for each < Replica,Replica > pair, which also
means that if at any point any Symmetric Key is compromised, only one communication
channel is compromised, instead of the whole network. All of these keys are sealed by
their respective enclaves in order to be safely stored, guaranteeing integrity, confidentiality
and persistence for these keys, in case the enclave is destroyed or the system is abruptly
shutdown.

3.3 Request Execution

In order to support client requests, clients will need to sign said requests before sending
them for the system to process it, i.e being propagated to every replica r available on the
system. This allows replicas to be protected against malicious clients, a feature already
supported by BFT-SMaRt. The leader l of the current view will propose requests by atta-
ching an order number o to each of the requests, before proposing them to other replicas in
the form of a consensus message PREPARE. As soon as a quorum of f+1COMMIT

messages are available with the leader-given order number o for the replicas, the replicas
that have received said COMMIT messages will start executing them. This is done by
passing the requests toward the inside of the Enclave for execution. The overhead for
ECALLS whilst not possible to ignore, is not significant to make the system unfeasible.
After executing said request, the log file will be updated with the request information se-
aled with the Enclave key, to ensure that reading the log file is only possible inside the
Enclave.

Capı́tulo 3. Con-BFT’s Protocol 35

3.4 Data Storage and State Transfer

Considering that memory inside the enclave is limited, the system will need to store sen-
sitive information outside of the enclave, i.e the Untrusted area. For this, Intel SGX con-
tains a primitive known as sealing. By using this primitive, it becomes possible to encrypt
information with the enclave’s specific encryption key. This allows the use of sealing
primitives in order to encrypt information that requires storage, be it in disk or memory,
which means that the enclave ensures the persistence of information, even if the enclave
shuts down unexpectedly. This application will manage a Key-Value store, allowing it to
store information and current values provided by any client. The untrusted area of the
system will be responsible for keeping this key-value store intact, by storing sealed in-
formation that can only be retrieved inside the trusted area, i.e the enclave. For this, the
Key-Value store will support basic operations, such as PUT, GET and CONTAINS:

• PUT. When the Enclave reads the request, and will service it, it will start by
sealing the value in question, using an OCALL, the enclave will return the pair
< Key, SealedV alue > for it to be stored in the Key-Value store.

• GET. When the Enclave reads the request, it will service it by using an OCALL
in order to retrieve the SealedV alue that is corresponding to the provided Key.
After retrieving said value, it will undo its sealing and encrypt it using the client’s
symmetric Key, in order to return the correct value to the user.

In order to keep state of the current key-value store, considering that it is impossible to
bring a key-value store into consensus, a log file containing all the totally-ordered requests
a replica has executed will be used, delivering all the requests the replicas have received by
their correct order.
By doing this, a new replica that has joined the system (or a recovering one), can achi-

Figura 3.4: Con-BFT Request Logging

eve the same state that the other replicas currently hold. Just like BFT-SMaRt, this
would be a combined effort, having the multiple replicas all contributing resources to
the state transfer effort [6]. Symmetric keys will also require storage outside of the
enclave. Considering that each replica will need to store a singular symmetric key for

Capı́tulo 3. Con-BFT’s Protocol 36

each < Replica, Replica > connection, this means that all the system’s information
that is sent through the network is encrypted using these keys, therefore, storing these
keys outside of the Enclave becomes important in order to ensure persistence of infor-
mation. As such, sealing said symmetric keys for external storage outside of the en-
clave becomes essential. By creating a simple Hash Table, it would be possible to store
< ReplicaID, SealedSymmetricKey > outside of the enclave, guaranteeing persis-
tence. Considering that Symmetric keys are unique to each < Replica,Replica > con-
nection, these would not be considered part of the state-transfer algorithm, considering
that either a new or recovering replica would need to create new symmetric keys, ensu-
ring no leakage of information.

Capı́tulo 3. Con-BFT’s Protocol 37

For the state-transfer algorithm, BFT-SMaRt’s state transfer algorithm was used, chan-
ging the structure of the log file. By having request information sealed using the Enclave’s
unique key and then written in the replica’s log file, it becomes possible to restore a re-
plica’s state even if the replica unexpectedly crashes, guaranteeing persistence, and confi-
dentiality. As such, when state transfer is required, each replica will retrieve an equal slice
of the total number of requests, encrypt them inside the enclave for safe communication,
and send them to the recovering replica, which will then execute these requests in order.

Figura 3.5: State Transfer Algorithm

Capı́tulo 3. Con-BFT’s Protocol 38

Capı́tulo 4

Development

4.1 Java-SGX

Intel SGX is restricted to C or C ++ applications, meaning that adapting BFT-SMaRt in
order to accept C/C++ code required the use of external frameworks. The development
was based on the Java Native Interface (JNI), which allows native calls to C/C + +

APIs. The C code was split into trusted and untrusted sections, with the trusted section
corresponding to the given Intel SGX enclave. The API was developed with the objective
of each replica in the system containing its own Enclave for sensitive computation. With
this in mind, the Java-SGX API (which contained the Enclave code and can be called by
any Java project) was developed with the functionalities that follow:

1. Sealing and Unsealing of information;

2. SHA-256 Hashing;

3. MAC and HMAC functions;

4. Diffie-Hellman (With both EC and RSA);

5. 256 bit AES-GCM encryption;

6. Swapping between Sealing and AES encryption for communication;

These functions were developed with the goal of attaining confidentiality of user-
driven information, with all sensitive computation being executed inside of an Intel-SGX
Enclave. Due to the complexity of binding Intel SGX to a given project, especially when
a project is not built with the C programming language in mind, this API was built with
the objective of easily binding Intel SGX to a Java project, by matching C functions to an
interface that can be called by Java functions.

39

Capı́tulo 4. Development 40

4.1.1 Java-SGX’s Architecture

With usability being the most important factor when designing Java-SGX, this means that
ease of use had to be the priority during development. By using the Java Native Interface
(JNI), the single use of the shell command javah, the Java virtual Machine creates a
simple header file that can be matched with C files that contain the code written for the
functions to be called from the Java class. These C functions would then be able to make
ECALLS towards the inside of the enclave, which would then await results from the inside
of the given enclave in order for these results to be returned for the Java code.

Figura 4.1: Example of Java-SGX Workflow.

As seen above, the JNI allowed for a streamlined workflow, allowing Java functions
to make calls to native functions, which would then be responsible for the encapsulation
of code that takes care of conversion of data and preparation of the ECALL in order to
send information towards the enclave and code responsible in order to send the response
back to the Java code.

4.1.2 Java-SGX’s Untrusted Area

Due to incompatibilities between Java and C, such as charsets or Objects, the untrusted
area was built with the objective of preparing information to be sent for the enclave and
allocating memory addresses for enclave responses. These incompatibilites did cause
some problems in development, considering that Java uses UTF-16 charset, versus the
UTF-8 charset used by the C programming Language, and the modified UTF-8 charset
used by the Java Native Interface. Considering that the JNI is considerably old, this did
slow development.

As such, the untrusted area was built to serve as a bridge between the Java application
and the Intel SGX enclave. By creating function signatures with the native keyword,

Capı́tulo 4. Development 41

the javah command allows for the creation of header files that can then be matched and
developed in either C or C++ files. These files were then compiled into dynamic libraries
that could be linked during runtime using makefile.

Listing 4.1: SgxFunctions.java file containing native functions for JNI calls.

p u b l i c c l a s s S g x F u n c t i o n s {
s t a t i c {

System . l o a d L i b r a r y (” Sgx ”) ;
}

p u b l i c n a t i v e i n t j n i i n i t i a l i z e e n c l a v e (i n t
e n c l a v e I d , b y t e [] e n c l a v e F i l e P a t h) ;

p u b l i c n a t i v e vo id j n i s g x d e s t r o y e n c l a v e () ;

p u b l i c n a t i v e b y t e [] j n i s g x s e a l i n f o (b y t e []
t o S e a l) ;

p u b l i c n a t i v e b y t e [] j n i s g x c r e a t e D i g e s t (b y t e []
toHash) ;

p u b l i c n a t i v e b y t e [] j n i s g x u n s e a l i n f o (b y t e [] c) ;

p u b l i c n a t i v e b y t e [] j n i s g x c r e a t e R S A p a i r () ;

p u b l i c n a t i v e b y t e [] j n i s g x b e g i n e c d h () ;

p u b l i c n a t i v e b y t e [] j n i c a l c u l a t e s h a r e d d h (b y t e []
dh params) ;

p u b l i c n a t i v e b y t e [] j n i s g x a e s d h e n c r y p t (b y t e []
sea ledKey , b y t e [] t o E n c r y p t) ;

p u b l i c n a t i v e b y t e [] j n i s g x a e s d h d e c r y p t (b y t e []
sea ledKey , b y t e [] t o D e c r y p t) ;

p u b l i c n a t i v e b y t e [] j n i s g x c r e a t e h m a c (b y t e []
sea l ed hmac , b y t e [] i n p u t) ;

p u b l i c n a t i v e i n t j n i s g x v e r i f y h m a c (b y t e []
sea l ed hmac , b y t e [] hmac , b y t e [] i n p u t) ;

p u b l i c n a t i v e b y t e [] j n i s g x g e n e r a t e h m a c k e y () ;

p u b l i c n a t i v e b y t e [] j n i s g x s w a p s e a l e d a e s (b y t e []
s e a l e d k e y , b y t e [] s e a l e d i n p u t) ;

Capı́tulo 4. Development 42

p u b l i c n a t i v e b y t e [] j n i s g x s w a p a e s s e a l e d (b y t e []
s e a l e d k e y , b y t e [] s e a l e d i n p u t) ;

}

4.1.3 Java-SGX’s trusted Area

The enclave requires multiple files in order to create the required dynamic library for
linking, each with its own objective:

• The Enclave Definition Language file (.edl), which contains the definition of all
ECALLs and OCALLs. This file can be structured inside two areas, trusted and
untrusted, containing the signature and parameters of each function. This file is
then used by Intel SGX, using the Edger8r tool to generate edge routines, these
routines provide the interface between the untrusted application and the enclave.
This tool will then generate four files by default:

– *t.h, which contains the declarations for trusted code;

– *t.c, which contains the definitions of the trusted code;

– *u.h, which contains declarations for the untrusted code;

– *u.c, which contains definitions of the untrusted code;

• Enclave xml configuration file;

• Enclave linker Script (.lds);

Java-SGX Enclave Definition File and access to the Trusted memory

Due to Intel SGX’s restrictions, memory inside the enclave cannot be accessed directly
from the untrusted area. As such, in order to retrieve information from the enclave, me-
mory is allocated outside of it and a pointer is given to the enclave to populate with the
result of the computation to be done inside the enclave. These enclave functions, both
Enclave Calls (Ecalls) and Outside calls (Ocalls) are defined previously inside an en-
clave definition language file (.edl), inside the trusted and untrusted section, respectively.
Which in compile time, the Edger8r tool will then create trusted and untrusted header
files to be matched to the application file and the enclave file, respectively. This allows
for trusted and untrusted code to be called from the opposite section of the code through
header declarations.

Capı́tulo 4. Development 43

Listing 4.2: .EDL file for the Java SGX Project with parameters removed for legibility.
t r u s t e d {

/ / S e a l i n g F u n c t i o n s
p u b l i c s g x s t a t u s t s e a l () ;

p u b l i c s g x s t a t u s t u n s e a l () ;

p u b l i c s g x s t a t u s t i n i t m b e d () ;

p u b l i c s g x s t a t u s t d e s t r o y m b e d () ;

/ / EC F u n c t i o n s
p u b l i c s g x s t a t u s t c r e a t e e c k e y p a i r () ;

p u b l i c s g x s t a t u s t c r e a t e e c d h s h a r e d () ;

/ / RSA F u n c t i o n s :
p u b l i c s g x s t a t u s t c r e a t e r s a p a i r () ;

p u b l i c s g x s t a t u s t c o m p u t e r s a s h a r e d () ;

p u b l i c s g x s t a t u s t m b e d t l s c l o s e c o n t e x t s () ;

/ / AES F u n c t i o n s :
p u b l i c s g x s t a t u s t a e s d h e n c r y p t () ;

p u b l i c s g x s t a t u s t a e s d h d e c r y p t () ;

p u b l i c s g x s t a t u s t s w a p s e a l i n g t o a e s e n c () ;

p u b l i c s g x s t a t u s t s w a p a e s e n c t o s e a l i n g () ;

/ / Hashing F u n c t i o n s :
p u b l i c s g x s t a t u s t p roduce hmac key () ;

p u b l i c s g x s t a t u s t c r e a t e D i g e s t () ;

p u b l i c s g x s t a t u s t p r o d u c e h m a c d i g e s t () ;

p u b l i c s g x s t a t u s t v e r i f y h m a c d i g e s t () ;

p u b l i c s g x s t a t u s t c r e a t e s h a 2 5 6 d i g e s t () ;
} ;

Capı́tulo 4. Development 44

Above we have the trusted functions that can be executed inside the enclave. These
functions were split into different sections for better readability if needed, right now, these
stand as:

• Sealing (Which include both Sealing and Unsealing of information);

• Diffie-Hellman functions (That allow for the creation of Diffie-Hellman parameters
for key-exchange using elliptic curves or using RSA primitives);

• AES encryption (Which allow for encryption and decryption of information using
the previously calculated keys using the Diffie-Hellman protocol);

• Message Digest and Hashing Functions (Which support SHA-256 Hashing, MAC
and HMAC calculation).

These primitives serve as the primary computations behind the necessities that a con-
fidential system requires. If we assume that each server replica contains an Intel SGX
enclave, each replica can use the Java-SGX library in order to provide these functions,
with no necessity of code written in C/C++.

Java-SGX in practice

In order to simplify the usage of Java-SGX, a .jar file was exported containing the class
that imports the native library and exposes the native interface for JNI calls inside the Java
code. If the paths are set correctly and the native library is found, all is required is that the
Intel SGX Enclave is initiated, and all other functions can be called at any point from the
Java code.

After two server replicas connect to one another, these replicas can use the Diffie-
hellman functions in order to exchange symmetric keys. For this, each replica will request
to its enclave the creation of an Elliptic curve and have its public parameters exported
and delivered to the Java application in the form of a byte array so that these can be
shared with other replicas so that the Diffie-Hellman protocol is completed. As soon as
a replica receives a byte array containing the exported public parameters, it requests the
enclave to finish the calculations for the shared key. From then on, these keys can be used
for AES-GCM encryption, which guarantees not only privacy, but also integrity. Due
to using Galois/Counter Mode, this means that if at any point information is corrupted
during communication, this can be verified during decryption. This library also supports
Hashing and HMACs if any java project requires it in the future.

By using the Galois Counter Mode (GCM) of encryption for Java-SGX , this means
that all encryption stands as authenticated encryption, which guarantees integrity of the
encrypted information. This could be protection versus bit-flipping attacks, for example

Capı́tulo 4. Development 45

[16]. By having each replica contain access to an Intel SGX enclave through the Java-
SGX library, this will allow replicas to ensure integrity of information by using AES-
GCM encryption, without the requirement of Message authentication codes in order to
ensure the integrity of a given piece of information.

4.2 Con-BFT

BFT-SMaRt uses Gradle as its automation build tool. BFT-SMaRt’s build scripts already
contained options for local deploymeent, building multiple copies of the project locally in
order to use and test the system. The build scripts had to be changed in order to include
the required Java-SGX files, alongside the class dependency that invokes the JNI calls
for the project. The changes to the build script force the inclusion of multiple external
scripts, mostly for the signing and inclusion of the Intel SGX enclave. In essence, Intel
SGX requires all enclaves to be signed in order to be used, which forced BFT-SMaRt to
undergo some changes when it comes to replica startup.

4.2.1 System Startup

For a replica to execute its startup, it is required that an Intel SGX Enclave is initiated.
For this, the shared libraries have to be correctly matched in the gradle build script. If
they have been correctly matched, the java program will be executing a shell call to a
bash script that will then use the Intel primitives to sign an Enclave in order for it to be
initiated. After a signed shared object (.so) file is created by the bash script, the enclave
can finally be initiated. For this, Java-SGX includes a native call that takes the path to the
signed shared object file and the given id for the Enclave. This happens since a CPU can
initiate multiple Enclaves and requires a unique id for each enclave it instantiates.

After initiating an Enclave, it will then calculate elliptic curve diffie-hellman parame-
ters in order for them to be exchanged with other replicas upon connection. Only after
these steps are executed can the rest of the BFT-SMaRt system startup code be executed.
From then on, the SGX interface can be used in conjunction with the JNI for any required
Ecalls for functions available inside the enclave.

4.2.2 Including Java-SGX in BFT-SMaRt

After the system finishes its usual startup and the various replicas exchange symmetric
keys using the diffie-hellman algorithm, replicas can use these keys for communication
at any point by requesting said information to be encrypted by the Enclave. The given
encryption key is also encrypted by the Enclave’s Sealing key. Since this key can only
be acquired inside of the enclave, this can be used to ensure the confidentiality of the
encrypted information, since it can only be decrypted inside the Enclave, which ensures

Capı́tulo 4. Development 46

that third parties whose objective is to listen in on communications cannot decipher them.
If we also take into consideration the fact that the encryption is AES-GCM, we also know
that the encryption functions also ensure the integrity of the information, which means
that the enclave can be used to ensure both authenticity and integrity of a given message,
alongside its confidentiality.

Capı́tulo 5

Evaluation

After implementing Con-BFT, it became imperative to understand what was the actual
impact of an Intel SGX Enclave over the system, comparing it to the BFT-SMaRt version
used to build Con-BFT. These tests consists mostly of:

1. Operation Benchmarking in order to evaluate the raw throughput of the system;

2. Calculate System’s latency;

3. Performance comparison with the Original BFT-SMaRt;

4. Availability testing, ensuring that the addition of an Intel SGX Enclave does not
affect system availability.

5.1 Experimental testing Environment

For the experiments described in the following sections a testing environment was assem-
bled of two SGX-enabled computers, using Intel i5-6440HQ CPU and Intel i5-7400 CPU
respectively, with both machines containing 8 gigabytes of RAM at their disposal. Both
computers were running version 20.04 of Ubuntu for ease of use, whilst being deployed
in a local network. Each of these machines contained two Con-BFT replicas ready for
request execution.

5.2 Con-BFT’s Throughput

To evaluate Con-BFT a Java Class was created which started a new Thread for every client
that was to execute requests. By having a number of Clients C execute a number N of
random operations PUT , GET , DELETE, GETKEY S, each execution of this script
executes a total of C.N operations, which allows the calculation of the average time a
request takes to execute. Results were organized in sets from 1 to 100 simultaneous

47

Capı́tulo 5. Evaluation 48

Number of Clients Number of Operations ops/s Total Time (Seconds)
1 1000 126 7.8833

10 1000 179 55.6238
25 1000 434 57.5405
50 1000 820 60.9532
100 1000 1606 62.2664

Tabela 5.1: Operation Benchmarks for Clients requesting 1000 Operations.

clients, all executing N operations ranging from 100 to 1000 operations. The average
time for the execution of these requests was then calculated, with the results in 5.1.

The first test was based on the execution of this script for 1000 operations over multi-
ple simultaneous clients, with the results in table 5.1. By calculating the total time requi-
red to execute the script in its completion and averaging said time over the total amount
of requests allowed for the calculation of throughput by calculating the time taken to exe-
cute one operation. The same was then done for 500 and 100 operations respectively, with
results in 5.2,5.2, 5.3 and 5.3 respectively.

0 20 40 60 80 100
0

500

1,000

1,500

Number of Clients

O
pe

ra
tio

ns
pe

rS
ec

on
d

Figura 5.1: Operations per Second for an increasing number of Clients for 1000 operati-
ons.

Graph 5.1 was produced so that it is possible to evaluate how the average execution
time per operation scales with a larger pool of operations to execute due to the larger
client count connected to the system. Similar graphs were produced for different number
of operations N 5.2,5.3,5.1.

Capı́tulo 5. Evaluation 49

Number of Clients Number of Operations ops/s Total Time
1 500 123 4,0632

10 500 92 54,1246
25 500 222 56,3287
50 500 428 58,3691

100 500 841 59,4171

Tabela 5.2: Operation Benchmarks for Clients requesting 500 Operations.

0 20 40 60 80 100

200

400

600

800

Number of Clients

O
pe

ra
tio

ns
pe

rS
ec

on
d

Figura 5.2: Operations per second for an increasing number of Clients for 500 operations.

Number of Clients Number of Operations ops/s Total Time
1 100 88 1.1375

10 100 18 55.4165
25 100 43 57.3486
50 100 82 60.7327

100 100 160 62.3005

Tabela 5.3: Operation Benchmarks for Clients requesting 100 Operations.

By looking at the graphs produced from the execution of the script, regardless of N
random operations, the average time per operation remains somewhat consistent, which
seems to indicate the system is capable of handling a somewhat higher number of requests
from concurrent clients at the expense of higher execution times with a lower loads. This
is further emphasized by the total execution time of this test script, in which, on average,
answering requests from 100 concurrent clients will take close to 4 seconds longer than
10 concurrent clients, which translates to an extra 4 seconds of execution to deal with a
load of ten times the total number of requests.

The graph 5.5 represents the average value for the system’s throughput in operations
per second. Ignoring the scenario of a single client, which stands as a clear outlier, this

Capı́tulo 5. Evaluation 50

0 20 40 60 80 100

50

100

150

Number of Clients

M
ill

is
ec

on
ds

pe
rO

pe
ra

tio
n

Figura 5.3: Operations per second for an increasing number of Clients for 100 operations.

0 20 40 60 80 100

20

40

60

Number of Clients

A
ve

ra
ge

to
ta

le
xe

cu
tio

n
tim

e

Figura 5.4: Total average execution time per number of Clients.

graph supports the idea that Con-BFT can deal with a larger number of clients, considering
that the throughput falls by a very small amount between 10 and 100 active clients.

5.3 Latency

The same script used for throughput testing could be used in order to calculate latency for
requests. This was done in order to measure the average time taken by the system to give
a response to a given user request.

Latency calculation results were obtained using the aforementioned testing script.
And while possible to observe a trend of increased latency when the number of clients
increases, by looking at absolute values with increased number of requests per client, the

Capı́tulo 5. Evaluation 51

0 20 40 60 80 100

20

40

60

80

100

120

Number of Clients

O
pe

ra
tio

ns
pe

rS
ec

on
d

Figura 5.5: Operations per second when executing 1000 operations.

0 20 40 60 80 100

0

50

100

150

200

250

Number of ClientsA
ve

ra
ge

la
te

nc
y

pe
rr

eq
ue

st
(M

ill
is

ec
on

ds
)

Figura 5.6: Average Latency per request when executing 100 Requests per Client.

numbers support the idea that increased loads on the system also increase overall effici-
ency, due to taking advantage of BFT-SMaRt’s multithreaded capabilities.

It is possible to see that the average latency per request goes down when the number of
requests per client increase, something that could be correlated with the system’s through-
put, since it was shown that the total execution time for the system remained somewhat
constant, meaning that the system and especially the enclave are somewhat inefficient for
low request counts.

Capı́tulo 5. Evaluation 52

0 20 40 60 80 100
0

20

40

60

Number of ClientsA
ve

ra
ge

la
te

nc
y

pe
rr

eq
ue

st
(M

ill
is

ec
on

ds
)

Figura 5.7: Average Latency per request when executing 500 Requests per Client.

0 20 40 60 80 100
0

10

20

30

40

Number of ClientsA
ve

ra
ge

la
te

nc
y

pe
rr

eq
ue

st
(M

ill
is

ec
on

ds
)

Figura 5.8: Average Latency per request when executing 1000 Requests per Client.

Capı́tulo 5. Evaluation 53

200 400 600 800 1,000
20

40

60

80

100

120

140

Requests per ClientA
ve

ra
ge

la
te

nc
y

pe
rr

eq
ue

st
(M

ill
is

ec
on

ds
)

Figura 5.9: Average Latency per request

Capı́tulo 5. Evaluation 54

5.4 Comparison with BFT-SMaRt

Con-BFT adds an Intel SGX Enclave to BFT-SMaRt’s protocol in order to add confi-
dentiality guarantees. However, even though the original objective in mind with the En-
clave was to add these confidentiality guarantees, the enclave became an essential part
of Con-BFT’s communication, considering that the AES-GCM encryption that Java-SGX
provides with the help of the Intel SGX enclave is used to ensure integrity in messages
between the replicas. This means that the enclave will slow down the system heavily,
since all communications use it. This means that Con-BFT will stand as an alternative to
BFT-SMaRt’s protocol, exchanging efficiency with confidentiality.

Number of Clients Number of Operations Con-BFT Total Time BFT-SMART Total Time
1 1000 7.8833 5.2827
10 1000 55.6238 43.3547
25 1000 57.5405 43.9184
50 1000 60.9532 46.7362

100 1000 62.2664 46.6115

Tabela 5.4: Benchmarking for 1000 operations: Con-BFT vs BFT-SMaRt

0 20 40 60 80 100
0

20

40

60

Number of Clients

M
ill

is
ec

on
ds

pe
rO

pe
ra

tio
n

Figura 5.10: Milliseconds per Operation for BFT-SMaRt (Red) versus Con-BFT (Blue).

As we can see in the data displayed in 5.10 and 5.11, the enclave still has a considera-
ble impact in the system’s efficiency, which can be mostly, if not completely, attributed to
the newly added Intel SGX Enclave. The fact that Java-SGX is not a multi-threaded API,
the original BFT-SMaRt will have multiple threads awaiting enclave results. The larger
the amount of requests, the larger the difference in execution time between Con-BFT and
BFT-SMaRt, due to exactly this fact.

Capı́tulo 5. Evaluation 55

Another overlooked fact during development, is the amount of replicas. If the system
manager desires to add more replicas to the system, this could severely affect the system’s
efficiency, considering that for every replica that is added, every other replica will require
one extra diffie-hellman execution to ensure a new secure connection, but every replica
will need to encrypt every message sent one extra time, since there will be an extra replica
in the system. This means that the system’s architecture did not take into account higher
numbers of replicas, considering that the somewhat-high overhead that comes with using
Enclave Calls to make multiple request to the Enclave.

5.5 Timeouts

One large factor that increases total execution time, are timeouts. For every N.C combi-
nation, with N being the number of Requests and C the number of clients connected to 4
different replicas, it was possible to see 0 Timeout executions, in which the total time was
far below the calculated average total execution time. As we can see in 5.11, the average
number of timeouts increases with the number of active clients, regardless of number of
requests executed by these same active clients.

0 20 40 60 80 100

0

5

10

15

20

Number of Clients

N
um

be
ro

fT
im

eo
ut

s

Figura 5.11: Number of Timeouts for 1000 operations for an increasing number of clients.

After testing for both 25 and 50 simultaneously active clients, it’s possible to verify
that the variance between the number of timeouts with these numbers is the largest. This
shows that the system gets more resilient to timeouts as the number of clients increases,
as we can see by the number of timeouts by total requests executed, as seen in the graph
5.11 .

The total number of timeouts increases as the number of requests increases, as would
be expected of a distributed system dealing with larger numbers of requests. However,
when taken into consideration that each client contributes a high number of requests, this

Capı́tulo 5. Evaluation 56

0 20 40 60 80 100

0

5

10

15

20

Number of Clients

M
ill

is
ec

on
ds

pe
rO

pe
ra

tio
n

Figura 5.12: Number of Timeouts for 1000 operations for an increasing number of clients.

means that timeouts per client decrease as the number of clients increases, something that
was measured in 5.13.

200 400 600 800 1,000

8

10

12

14

Number of Requests per Client

A
ve

ra
ge

nu
m

be
ro

fT
im

eo
ut

s

Figura 5.13: Average number of timeouts per number of requests.

As we can see, the total timeouts in relation to the total number of requests, on ave-
rage, decrease when requests increase. Which allows us to conclude that the system’s
architecture, based on BFT-SMaRt’s architecture, gets more efficient with a higher num-
ber of clients, possibly due to its multi-threaded nature, which benefits when used with
processors with high number of physical cores, that may take advantage of such an ar-
chitecture. As we can see in this graph 5.13, just like with the throughput, it becomes
apparent that the system is more resilient, since the system will, on average, hit a lower
number of timeouts when the number of requests is increased, which means that average
availability increases as the number of requests increases. As possible to see in the graph

Capı́tulo 5. Evaluation 57

5.14, average availability increases sharply when the total amount of requests increases,
which seems to support that the system points to a higher availability with higher worklo-
ads.

200 400 600 800 1,000
99.6

99.7

99.8

99.9

100

Total number of requests

A
ve

ra
ge

av
ai

la
bi

lit
y

Figura 5.14: Average availability per number of requests.

Capı́tulo 5. Evaluation 58

Capı́tulo 6

Conclusion

As mentioned previously, keeping information private has become more important in the
last few years, especially when taken into consideration breaches of private information
for multiple distributed systems, especially in the cloud. A few options were explored,
with the option of using trusted hardware being the selected option.

6.1 Conclusion

Right now, when using infrastructure as a service solutions, this means that the developers
are outsourcing execution to adversarial environments to which they do not have physi-
cal access. This means that there are no guarantees that information is not stolen during
request execution, since client information is usually visible in those moments. This me-
ans that the system either performs its computations over encrypted information, or uses
trusted execution environments that hide this information during request execution. This
however, contains its own drawbacks. These systems are closed source and hardware-
dependant. This means that the developed solution, Con-BFT, will only work with Intel
processors that support Intel SGX. Considering that Intel SGX is not open-source, this
means that there is no community to support development and virtually no guides for new
developers to get adapted to the technology. Considering that this technology has a high
barrier of entry, alongside its dependency of hardware and most importantly, requires trust
in the technology, this means that from a practical point of view, it is very unlikely for
systems to be developed alongside these trusted-hardware technologies, considering that
when they are, they need to build specifically with these in mind. The Java-SGX library
built for this project helps alleviate this problem, by allowing developers who have no
experience with Intel SGX to match the shared libraries in order to add Intel SGX to their
projects. However, Intel SGX has been found to have more vulnerabilities than originally
thought CITATIONS., which makes the trade-off between efficiency and scalability
harder to justify, considering that any adaptation or new functions that developers want to
add will require programming with a totally different language with most of its libraries

59

Capı́tulo 6. Conclusion 60

restricted due to the Enclave’s security measures. This means that in order to develop
for trusted area, i.e the enclave, a team will be dependant on usually outdated libraries
compatible for Intel SGX, or develop a lot of useful functions from scratch. All of these
problems led to Intel to no longer support the Intel SGX project, with the 10th genera-
tion of Intel processors being the last generation of processors that supports Intel SGX,
this means that projects that are built with this technology in mind could be short-lived,
as older hardware gets replaced for newer processors. Unfortunately for this project as
well, the Java Native Interface was unofficially deprecated mid-development, with Ora-
cle announcing an alternative to JNI in the form of the new project Panama. With all of
these factors combined, it’s hard to believe that any real and production-use will come
for Con-BFT, considering it is now build on top of two unsupported technologies, which
force developers into hardware-specific builds.

6.2 Intel SGX Vulnerabilities

In ”A Survey of Published Attacks on Intel SGX”[17] by Alexander Nilsson, it is possible
to review the published attacks on Intel SGX Enclaves broken down into multiple catego-
ries, exposing the extreme difficulty of writing secure software for these enclaves. [17]. In
fact, in ”Hacking in Darkness: Return-oriented Programming against Secure Enclaves”,
by Jaehyuk Lee and Jinsoo Jang [15], it was possible to completely ”disarm”Intel SGX
Enclaves, exfiltrating secure enclave data, bypassing both local and remote attestation,
and successfuly decrypting the sealed data. This was done by finding buffer overflow
vulnerabilities in secure enclave code. Since the Enclave program runs as a user-level
program, it cannot handle processor-level exceptions, meaning that when these excepti-
ons happen, control is handed back to the untrusted operating System in what is called
an Asynchronous Enclave exit, which can be used to bypass security of an Intel SGX
Enclave. [15].

One popular type of attack versus Intel SGX would be cache-timing attacks [17], of
which one of the most concerning was [13], a scientific article where it was proven that
the AES-encryption protocol could be broken when running inside an Intel SGX Enclave
, as done for this project, in which secure encryption keys were found by attackers [13].
Considering that this project is built on the assumption that keys built and sealed by the
enclave are secure, this means that Intel SGX might not be the way to finish a project with
confidentialty guarantees.

Capı́tulo 6. Conclusion 61

6.3 Future Work

6.3.1 Parallelization of the System

As previously mentioned, the number of replicas can be dropped to a total of 2f + 1,
with every replica r being composed of equal processing units, which other systems have
called pillars. These processing units do not share state, and only communicate via asyn-
chronous in-memory message passing, whilst operating completely independently [4, 3].
This scheme of consensus-oriented parallelization supports the ordering of the requests
by splitting the available order numbers by the pillars, making each pillar responsible
for the execution of the consensus instances for predefined set of order numbers, decided
by a developer-provided formula. The disadvantage of this method is the fact that order
number o′ can only be executed if all order numbers o < o′ have been executed already
[4]. This is not without solution however, as proven by hybster, by certifying messages
with different trusted counters for different protocol phases, it allows the system to split
the work amongst multiple independent pillars.

As such, our system will allow each replica r to create message certificates denoting
the ID of the of trusted instance of the processing unit p inside replica r, in the format
C(r(p), ..). This becomes enough to prevent faulty replicas from conflicting order messa-
ges, since consensus instances will be distributed over the processing units in a predefined
way, meaning that the system knows which processing unit is responsible for each ins-
tance. As such, an order message from replica r will only be accepted if the attached
certificate C was issued by the trusted counter belonging to the processing unit p respon-
sible for the current order number o [3, 4].

By giving each replica r’s processing unit p a set of order numbers to process, the
parallelization becomes complete. The leader l of a view (Assuming view v = 0, for
simplicity), decides to propose three requests in parallel with order numbers o = 0, 1, 2

in its processing units p0, p1, p2. The leader l will issue PREPARE messages equipped
with the aforementioned certificates C, awaiting them to be accepted by other replicas.
Other replicas will only accept these certificates if the given order number o is an order
number associated with the processing unit pi and the signed MAC tag is valid. Once a
processing unit collects a quorum of COMMIT messages with the original certificate for
a certain instance, it will finally send the request to its replica’s execution stage, where it
will await the execution of all previous requests before being executed inside the replica’s
enclave.[4, 3]

6.3.2 Making Java-SGX Multi-Threaded

For this system, the Enclave clearly stands as the bottleneck. Based on BFT-SMaRt,
Con-BFT takes advantage of a multi-threaded architecture in order to efficiently deliver
the results of Enclave computations. These may range from encrypting and decrypting

Capı́tulo 6. Conclusion 62

messages to sealing information to be stored in untrusted memory. However, due to the
high amount of threads and connections, the higher the number of replicas, the higher the
number of requests that will be made towards the enclave, considering that the Enclave
is used to ensure integrity of all communication between the replicas. If we consider that
the Enclave operations are executed sequentially, this means that the higher the number
of Replicas, the higher these will have to wait for resource time. Adding a Thread pool
to work with Java-SGX and the Enclave would allow to optimize this and would help
mitigate this problem.

Capı́tulo 6. Conclusion 64

Capı́tulo 6. Conclusion 66

Bibliografia

[1] N Asokan, Jan-Erik Ekberg, Kari Kostiainen, Anand Rajan, Carlos Rozas, Ahmad-
Reza Sadeghi, Steffen Schulz, and Christian Wachsmann. Mobile trusted compu-
ting. Proceedings of the IEEE, 102(8):1189–1206, 2014.

[2] Ethan Baron. Google selling users’ personal data despite promise, federal court
lawsuit claims. Tampa Bay Times, 2021.

[3] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Consensus-oriented paralleliza-
tion: How to earn your first million. In Proceedings of the 16th Annual Middleware
Conference, pages 173–184, 2015.

[4] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hybrids on steroids: Sgx-
based high performance bft. In Proceedings of the Twelfth European Conference on
Computer Systems, pages 222–237, 2017.

[5] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui. A
verifiable secret sharing approach for secure multicloud storage. In International
Symposium on Ubiquitous Networking, pages 225–234. Springer, 2017.

[6] Alysson Bessani, Joao Sousa, and Eduardo EP Alchieri. State machine replication
for the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Confe-
rence on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[7] Guilherme Rosas Borges. Practical isolated searchable encryption in a trusted com-
puting environment. Master’s thesis, Faculdade de Ciências e Tecnologia (FCT),
2018.

[8] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proce-
edings of the third annual ACM symposium on Principles of distributed computing,
pages 154–162, 1984.

[9] Renato M. Capocelli, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the
size of shares for secret sharing schemes. Journal of Cryptology, 6(3):157–167,
1993.

67

Bibliografia 68

[10] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[11] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptol. ePrint
Arch., 2016(86):1–118, 2016.

[12] Fulano, Cicrano, and Beltrano. A paper on something. In The 7th Conference on
Things and Stuff (CTS 2009), Lisbon, Portugal, May 2009. Accepted for publication.

[13] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache
attacks on intel sgx. In Proceedings of the 10th European Workshop on Systems
Security, pages 1–6, 2017.

[14] Mireya Jurado and Geoffrey Smith. Quantifying information leakage of determi-
nistic encryption. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud
Computing Security Workshop, pages 129–139, 2019.

[15] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking in dark-
ness: Return-oriented programming against secure enclaves. In 26th USENIX Secu-
rity Symposium (USENIX Security 17), pages 523–539, 2017.

[16] David McGrew and John Viega. The galois/counter mode of operation (gcm). sub-
mission to NIST Modes of Operation Process, 20:0278–0070, 2004.

[17] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of pu-
blished attacks on intel sgx. arXiv preprint arXiv:2006.13598, 2020.

[18] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. Cryptdb: Protecting confidentiality with encrypted query processing. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
pages 85–100, 2011.

[19] Dominic Rushe. Google: don’t expect privacy when sending to Gmail. The Guar-
dian, 2013.

[20] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted exe-
cution environment: what it is, and what it is not. In 2015 IEEE Trustcom/BigData-
SE/ISPA, volume 1, pages 57–64. IEEE, 2015.

[21] Fred B Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[22] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

Bibliografia 69

[23] Joao Sousa and Alysson Bessani. From byzantine consensus to bft state machine
replication: A latency-optimal transformation. In 2012 Ninth European Dependable
Computing Conference, pages 37–48. IEEE, 2012.

[24] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. Cobra:
Dynamic proactive secret sharing for confidential bft services. In submission., 2021.

[25] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk
Lung, and Paulo Verissimo. Efficient byzantine fault-tolerance. IEEE Transacti-
ons on Computers, 62(1):16–30, 2011.

	Lista de Figuras
	Lista de Tabelas
	Introduction
	Motivation
	Problem Statement
	Objectives
	Contributions

	Related Work
	BFT and SMR
	Byzantine Generals Problem and Byzantine Fault Tolerance
	State Machine Replication
	PBFT
	BFT-SMaRt

	Computing on Encrypted Data
	Secret Sharing
	Trusted Execution Environment

	Confidential / Hardware-Based BFT-SMR
	COBRA
	MINBFT
	BFT on Steroids (Hybster)
	Consensus-Oriented Parallelism

	Con-BFT's Protocol
	Ensuring Privacy
	Performance of Consensus Algorithms
	System Initialization

	Request Execution
	Data Storage and State Transfer

	Development
	Java-SGX
	Java-SGX's Architecture
	Java-SGX's Untrusted Area
	Java-SGX's trusted Area

	Con-BFT
	System Startup
	Including Java-SGX in BFT-SMaRt

	Evaluation
	Experimental testing Environment
	Con-BFT's Throughput
	Latency
	Comparison with BFT-SMaRt
	Timeouts

	Conclusion
	Conclusion
	Intel SGX Vulnerabilities
	Future Work
	Parallelization of the System
	Making Java-SGX Multi-Threaded

	Abreviaturas
	Bibliografia
	Índice

