

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

SecRush – New Generation Vulnerability Management

Framework

Miguel Tomás Cabrita Santana

Mestrado em Segurança Informática

Dissertação orientada por:

Prof. Alan Oliveira de Sá

Agradecimentos

Este foi mais um desafio concretizado! Desde cedo que soube que a área da segurança informática

me interessava e queria aprofundar o tema. Não foi uma tarefa fácil e esta tese é fruto de muito esforço

ao longo deste ano. Um ano cheio de vulnerabilidades para este trabalho, em todos os sentidos! Fui

sacrificando algumas das coisas que gostaria de ter feito, mas todos os esforços têm recompensas, já que

pude aprofundar a temática da gestão de vulnerabilidades, da qual fiquei bastante fã.

Durante este perı́odo, muitas pessoas se cruzaram comigo e fizeram parte desta grande aventura que é

a dissertação do mestrado e tornaram esta experiência a melhor possı́vel. Esta é sempre uma árdua tarefa

de poder agradecer a todos os que contribuem positivamente para o nosso percurso sem nos esquecermos

de ninguém.

Quero, em primeiro lugar, agradecer aos meus pais, os meus sine qua non, não só por terem fi-

nanciado esta aventura, mas também por terem acompanhado de perto e estarem sempre presentes para

qualquer coisa, mesmo que isso significasse ter de me ouvir horas a fio ao telefone com as habituais con-

versas existenciais! Não me posso também esquecer dos meus avós que valorizam imenso a educação

que tenho tido oportunidade de receber e a motivação que me dão para continuar e ultrapassar desafios,

mesmo quando a vontade é pouca. Um beijinho especial para a avó Lili que durante este percurso se

tornou na estrela mais brilhante que ilumina os céus de noite.

Os amigos também foram extremamente importantes para a concretização deste grande projeto. Sem

eles não haveriam tantos momentos de lazer, essenciais para ultrapassar os momentos difı́ceis, mas

também para criar boas memórias. Um agradecimento especial a todos os amigos do Algarve (sem

exceção) e aos amigos de faculdade por todo o carinho e amizade que mantemos até hoje.

Eternamente grato ao professor Alan por ter lido e relido vezes sem conta o manuscrito deste do-

cumento e pelas minhas insistências em desejar terminar o quanto antes. Sei que apesar da minha

insistência, o brio profissional que leva permitiram que esta tese pudesse sair com a qualidade que a

apresentamos. Acompanhou de perto todo este trabalho e fomentou sempre um espı́rito propı́cio ao de-

senvolvimento desta tese e sempre com motivação para me guiar neste trabalho e juntos criarmos um

bom projeto. Agradeço todas as inúmeras horas que passámos nas mais variadas formas de comunicação

e o acompanhamento, também ele, quase 24/7, bem como todas as oportunidades para publicar o trabalho

aqui desenvolvido.

Aos professores Dinis Pestana e Fernando Sequeira que contribuı́ram com excelentes comentários

para a análise estatı́stica e me ajudaram a desenvincilhar uma boa análise, bem como a pyxyp, que

disponibilizou o acesso ao VulDB e que permitiu a recolha de informação bastante importante para este

trabalho.

i

Por fim, um agradecimento especial ao Banco de Portugal, que me proporcionou este desafio do qual

estou muito grato. Ao Luı́s Gonçalves, pela proposta inicial do tema que se revelou muito interessante,

ao Carlos Moura, à Filipa Lima e ao Paulo Martins, por abraçarem este projeto e ao Pedro Silva, que

acompanhou de perto este trabalho. Ao Eduardo Dias e à equipa da Plataforma Cliente por se terem

disponibilizado a realizar os testes que conduziram a excelentes resultados. Também a toda a equipa

da cibersegurança do Banco durante a minha passagem: Alexandre Barão, António Tavares, António

Teixeira, Filipe Quaresma, Ida Corrêa, João Silva, Joaquim Santos, Manoel Neto, Marcelo Lima, Mário

Anacleto, Rafael Ferreira, Ricardo Pires, Susana Fernandes e Tiago Neiva. Ao António Barros, um

agradecimento especial pelas inúmeras conversas ciberseguras que foram tendendo para a gestão de

vulnerabilidades e permitiram ideias interessantes neste projeto.

Esta tese é tanto minha como vossa.

A todos vós, sem exceção, o meu Muito Obrigado. Sejam felizes e mantenham-se ciberseguros!

Um bem-hajam.

ii

Aos meus pais.

Resumo

Atualmente não existe uma forma de poder calcular o impacto direto que uma vulnerabilidade traz

para a organização. A classificação dada é genérica e desprovida do risco associado para quem a possui.

O CVSS é o sistema de classificação mais usado até à data mas é falho na sua forma de calcular atual.

Várias crı́ticas são apontadas [19][13] à pouca variabilidade da classificação e da impossibilidade de ser

utilizado para priorizar vulnerabilidades de forma eficaz. Este sistema de classificação apresenta três

tipos de métricas: métricas de base, métricas temporais e métricas ambientais. As métricas temporais

são estanques e a classificação por elas dada é estática, não evoluindo com o tempo. Estas apenas são

alteradas quando se verifica uma mudança em pelo menos uma das suas componentes. Já as métricas

ambientais não avaliam a vulnerabilidade no contexto de uma organização com diversos ativos, com

diferentes impactos na continuidade do negócio e diferentes visibilidades para a rede exterior. Ambas

não representam o risco real da vulnerabilidade no contexto da organização. O risco que esta acarreta

deve variar de acordo com este e outros fatores relevantes, tendo em conta as topologias dos sistemas

informáticos e criticidade para a organização.

A somar a isto, os próprios planos de gestão de vulnerabilidades existentes encontram-se, por di-

versas vezes associados a empresas/produtos que vendem ferramentas de deteção de vulnerabilidades

[6, 4, 10, 44, 15, 11, 32, 14, 29], no qual, os seus planos se centram em torno dos resultados apenas por

elas produzido. Não só isto, como a literatura não tem apresentado outras perspetivas para um processo

de gestão de vulnerabilidades genérico e passı́vel de ser utilizado por qualquer organização, indepen-

dentemente das ferramentas escolhidas para o concretizar. Mais recentemente, ainda impulsionado por

estas empresas produtoras de ferramentas de deteção de vulnerabilidades, surgiu uma nova forma de

gestão de vulnerabilidades baseadas em risco [37, 17, 38, 5, 39, 30, 31, 33]. Esta visão é baseada numa

abordagem proactiva na mitigação de vulnerabilidades, orientada para as decisões baseadas no risco que

estas trarão para a organização, tendo em conta todos os ativos expostos que cumprem ou não os requi-

sitos de conformidade, através de uma descoberta contı́nua e dinâmica para exercer uma rápida ação.

Assim, esta dissertação propõe a criação do SecRush, uma framework de gestão de vulnerabilidades

de nova geração, orientada para o risco e capaz de ser aplicada em qualquer organização que necessite

de endereçar as suas vulnerabilidades. O SecRush possui um processo, com um conjunto de fases que

procedimentam a gestão de vulnerabilidades e o SecScore, um novo sistema de classificação de vulnera-

bilidades baseado no CVSS, com melhorias no aspeto temporal e ambiental, já que estes são os fatores

que provocam um maior número de crı́ticas a este sistema de classificação na literatura.

O processo proposto possui seis fases: Descoberta, Priorização, Reporte, Remediação, Verificação

e Balanço. Na Descoberta são identificados todos os ativos da organização, bem como as vulnerabi-

lidades a eles associadas. Na Priorização são classificadas e priorizadas as vulnerabilidades existentes

v

com o novo sistema de classificação proposto, ordenando as vulnerabilidades mais crı́ticas primeiro.

No Reporte, as vulnerabilidades são organizadas, documentadas e endereçadas aos donos dos ativos vul-

neráveis segundo um “rush” – um conjunto de vulnerabilidades a solucionar no espaço temporal definido

pela organização (sendo o perı́odo mı́nimo de uma semana), com vista a tornar o processo de gestão de

vulnerabilidades o mais ágil possı́vel – semelhante a um sprint no SCRUM. Na Remediação aplicam-se

as medidas e controlos necessários para a redução do risco de exposição da organização às vulnerabilida-

des reportadas na fase anterior, que está compartimentada pelas caracterı́sticas que cada vulnerabilidade

apresentará. Na Verificação, a equipa gestora do processo de gestão de vulnerabilidades garante que as

medidas e controlos aplicados na fase anterior perfazem os requisitos para reduzir o risco de exposição da

organização à vulnerabilidade, através de uma comunicação formal pelo responsável do ativo. Por fim,

o Balanço pretende garantir uma informação sobre o estado atual de risco em torno das vulnerabilidades

que a organização possui através da criação de relatórios táticos sobre as vulnerabilidades identificadas

e remediadas, bem como o progresso que a organização tem vindo a sofrer na própria gestão das vulne-

rabilidades e ainda o risco global da empresa, providenciando aos executivos um sumário sobre o estado

atual das vulnerabilidades.

O novo sistema de classificação, o SecScore, avalia a vulnerabilidade segundo as regras já estabe-

lecidas pelo CVSS, com a adição da variação do tempo na fórmula com o hipotético aumento de risco

da vulnerabilidade, que deve ser atualizada permanentemente para os casos onde as vulnerabilidades

possuem um código de exploração ativo com classificação Alta. A somar a isto, e porque a vulnera-

bilidade encontra-se sempre inserida num contexto, esta deverá ser alvo de avaliação para averiguar a

sua criticidade, através da priorização pela sua visibilidade para o exterior e importância para o negócio,

para priorizar e distinguir máquinas que dispõem de serviços disponibilizados para o público, como um

servidor, de uma estação de trabalho pessoal. A variação ao longo do tempo é definida por um ı́ndice

previamente calculado de acordo com o perfil de risco da organização. Sobre um conjunto de 40 vulne-

rabilidades publicadas entre abril de 2021 e março de 2022 com o parâmetro temporal “Maturidade do

Código de Exploração” com a classificação “Alta”, efetuou-se uma análise estatı́stica com o objetivo de

calcular o ı́ndice temporal adequado à organização a afetar o SecScore. Para cada uma destas vulnera-

bilidades foi calculada a diferença entre a data em que o CVE é publicado até à data em que a empresa

produtora do software vulnerável confirma a existência da vulnerabilidade e emite um aviso, muitas das

vezes, acompanhado de uma forma de mitigação. Através do cálculo de um diagrama de extremos e

quartis obtém-se três valores, que representam 25%, 50% e 75% da amostra ordenada, respetivamente.

Estes valores estão em concordância com os habituais três nı́veis de apetite ao risco possı́veis para as

organizações. Para comparar o CVSS com o SecScore foram realizados testes sobre um cenário nor-

mal de priorização de vulnerabilidades no perı́odo de 12 de abril a 19 de abril de 2021, para simular

uma semana normal de aplicação de mitigações. Escolheram-se seis vulnerabilidades para os testes, nos

quais o CVE do mesmo já tinha sido publicado, embora a divulgação da mitigação de segurança pela

empresa produtora do software ainda estivesse por divulgar. Com o CVSS, as vulnerabilidades rece-

biam classificações desprovidas de qualquer relação ou influência com o tempo que levariam a receber

uma solução oficial, tornando-se mais difı́cil tomar uma decisão sobre que vulnerabilidades priorizar pri-

meiro. Já com o SecScore, a maioria das vulnerabilidades vai tendencialmente decrescendo o seu risco

ao longo do tempo.

vi

Já sobre os resultados da avaliação do processo, com a execução deste e através das ferramentas de

deteção de vulnerabilidades foi possı́vel identificar e endereçar um total de 41544 vulnerabilidades no

espaço temporal de duas semanas.

O sucesso dos resultados obtidos deve-se à inclusão dos conceitos ágeis da gestão de projetos que

permitem uma produtividade muito maior e à automatização de algumas das fases do processo. O foco

passou a ser a mitigação rápida das vulnerabilidades, ou seja, o trabalho de cibersegurança toma uma

posição dominante para que este possa ser executado no menor tempo possı́vel e assim abranger mais

vulnerabilidades a serem mitigadas no mesmo espaço de tempo.

É compreensı́vel, através de todos os stakeholders envolvidos de que há necessidade de mudar o

rumo de como o CVSS está construı́do, graças às crı́ticas que lhe são apresentadas. Este método pro-

posto apresenta um ganho na priorização de vulnerabilidades, já que esta fica mais próxima ao ideal. A

priorização abandona a análise estática do CVSS, passando a garantir a flutuação das suas caracterı́sticas

ao longo do tempo, especialmente com a priorização de formas mais graves de vulnerabilidades, como

aquelas que possuem formas de exploração bastante desenvolvidas.

Palavras-chave: Vulnerabilidade, Gestão de Vulnerabilidades, Gestão de Vulnerabilidades Baseada em

Risco, CVSS

vii

Abstract

Vulnerabilities have been increasing over the years without signs of decreasing soon. With this ex-

ponential growth, it is important for organizations to define a vulnerability management plan to proceed

with what should be done if they encounter a vulnerability. However, existing plans and metrics do not

fit the current reality. Existing plans are not independent of vulnerability detection tools. The classifica-

tion systems currently used (the most common is CVSS) fail to provide information on the variation of

risk that a particular vulnerability entails for the organization. As this is not constant, being exception-

ally high when there is a form of active exploitation, as well as its location in the network and business

needs. SecRush presents itself as a new vulnerability management framework with a new risk-based

vulnerability management process. It has a set of procedures inspired by agile methodologies to mitigate

vulnerabilities and a new classification system - SecScore – able to provide a prioritization in context

with the organization. SecScore varies its ranking through temporal factors (specific risk index depend-

ing on the organization’s risk appetite and the availability of an exploit) and environmental factors (asset

visibility to the external network and importance of the asset to the organization’s mission). This project

intends not only to contribute with a set of procedures independent of the security tools used but also to

improve the currently existing classification systems for prioritization, which cannot adapt to the different

contexts in which they are found.

Keywords: Vulnerability, Vulnerability Management, Risk-based Vulnerability Management, CVSS.

ix

Contents

List of Figures xiii

List of Tables xvi

Acronyms xvii

1 Introduction 1
1.1 Motivation . 2

1.2 Goals . 3

1.3 Contributions . 4

1.4 Document Structure . 4

2 Related Works 5
2.1 Vulnerability Management Process . 5

2.1.1 Vulnerability Management Process in Four Stages 5

2.1.2 Vulnerability Management Process in Five Stages 6

2.1.3 Vulnerability Management Process in Six Stages 6

2.2 Vulnerability Prioritization . 8

2.2.1 CVSS: Common Vulnerability Scoring System 8

2.2.2 EPSS: Exploit Prediction Scoring System . 10

2.2.3 Other scoring systems . 11

2.3 Risk-Based Vulnerability Management . 11

2.4 Vulnerability Management Systems (VMSs) . 12

3 Proposed Framework 13
3.1 Process . 13

3.1.1 Discovery . 13

3.1.2 Prioritization . 16

3.1.3 Report . 17

3.1.4 Remediation . 19

3.1.5 Verification . 21

3.1.6 Retrospective . 23

3.2 SecScore - Scoring Method . 27

3.3 Vulnerability Management System . 30

xi

4 Results 33
4.1 SecScore . 33

4.1.1 Analysis on the temporal modification . 35

4.1.2 Discussion on the environmental modification 37

4.2 Process . 38

4.3 Vulnerability Management System . 40

5 Conclusions 45
5.1 Future Work . 46

Bibliography 47

A CVSS Metrics 51
A.1 Base Metrics . 51

A.2 Temporal Metrics . 51

A.3 Environmental Metrics . 51

B SecScore Dataset 55

xii

List of Figures

3.1 Representation of the process stages . 14

3.2 Representation of the Discovery stage . 14

3.3 Representation of the Report stage . 18

3.4 Representation of the Remediation stage . 20

3.5 Representation of the Verification stage . 22

3.6 Representation of the Retrospective stage . 24

4.1 Data grouped by software vendor. 33

4.2 Boxplot between the publication of the CVE and the confirmation of the vulnerability by

the software vendor. 34

4.3 Sample data grouped by quarter. 35

4.4 One-week demo of vulnerability prioritization. 36

4.5 Temporal variation of a subset of vulnerabilities from 2021 with SecScore. 36

4.6 Analysis of V (1 + I) for 20 levels of V and 5 levels of I 37

4.7 Heatmap for the results of V (1 + I) for 20 levels of V and 5 levels of I 38

4.8 Main dashboard . 40

4.9 Active vulnerabilities page . 41

4.10 In Progress Vulnerabilities page . 41

4.11 Archived vulnerabilities page . 42

4.12 Vulnerability page . 42

4.13 CVE page . 43

xiii

List of Tables

2.1 Summary of the CVSS Metrics . 8

3.1 Input and output of the Discovery stage . 14

3.2 Asset inventory . 15

3.3 Vulnerability Discovery . 15

3.4 Vulnerability Discovery - Manual Report . 16

3.5 User Evaluation . 16

3.6 Input and output of the Prioritization stage . 17

3.7 Automatic Prioritization . 17

3.8 Input and output of the Report stage . 17

3.9 Prepare Rush . 18

3.10 Prepare Emergency Rush . 18

3.11 Send action report . 19

3.12 Send emergency action report . 19

3.13 Input and output of the Remediation stage . 19

3.14 Critical Vulnerability Remediation with patch . 20

3.15 Normal Vulnerability Remediation with patch . 20

3.16 Misconfiguration Vulnerability Remediation . 21

3.17 Vulnerability Management without patch . 21

3.18 Input and output of the Verification stage . 21

3.19 Communication from the asset owner . 22

3.20 Confirmation of vulnerability resolution . 22

3.21 Normal vulnerability scanning . 23

3.22 On-demand vulnerability scanning . 23

3.23 Input and output of the Retrospective stage . 23

3.24 Lessons learned . 24

3.25 Retrospective Meeting . 24

3.26 Executive report creation . 25

3.27 Contributions of each revised process to SecRush . 26

4.1 Vulnerabilities chosen for testing . 36

4.2 Identified vulnerabilities that posed the greatest risk . 39

A.1 CVSS - Base Metrics . 52

xv

A.2 CVSS - Temporal Metrics . 52

A.3 CVSS - Environmental Metrics . 53

B.1 SecScore Dataset . 55

Acronyms

AI Artificial Intelligence

AC Attack Complexity

AR Availability Requirement

AV Attack Vector

AVI Attack, Vulnerability, Intrusion

DNS Domain Name System

CDC Centers for Disease Control and Prevention

CMDB Configuration Management Database

CPI Consumer Price Index

CR Confidentiality Requirement

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

EPSS Exploit Prediction Scoring System

FIRST Forum of Incident Response and Security Teams

GDP Gross Domestic Product

IoT Internet of Things

IP Internet Protocol

IR Integrity Requirement

ISS Impact Sub-Score

IT Information Technology

LVU List of Vulnerable Users

MA Modified Availability

xvii

MAC Modified Attack Complexity

MAV Modified Attack Vector

MC Modified Confidentiality

ME Modified Exploitability

MI Modified Impact

MInt Modified Integrity

MISS Modified Impact Sub-Score

MPR Modified Privileges Required

MS Modified Scope

MUI Modified User Interaction

NIST National Institute of Standards and Technology

NVD National Vulnerability Database

NVL Normalized Vulnerability List

OS Operating System

OSINT Open Source Intelligence

PR Privileges Required

PVL Prioritized Vulnerability List

RBAC Role-Based Access Control

RC Report Confidence

RL Remediation Level

SIG Special Interest Group

UI User Interaction

URL Uniform Resource Locator

VMS Vulnerability Management System

xviii

Chapter 1

Introduction

Over time, vulnerabilities have grown exponentially in the digital world [12, 20], and with that, security

efforts have accompanied this change in the security landscape in organizations. A vulnerability is a flaw

in a computer system that can be exploited with malicious intent [43]. In software security, a vulnerability

is a specific flaw or omission in software that allows attackers to perform a malicious action - to expose

or alter confidential information, disrupt or destroy a system, or take control of a system or a computer

software program [8]. For Michael Whitman [49], a vulnerability is an identified weakness in a controlled

information asset resulting from the absence or inadequacy of controls. However, a vulnerability should

be understood as a weakness (identified or not) present in an IT asset (in software or hardware) likely

to be the target of a successful intrusion. The attacker that conducts the intrusion may be internal or

external to the organization.

The AVI (Attack, Vulnerability, and Intrusion) model [43] is commonly used to explain the impor-

tance and interconnection of vulnerabilities with systems, which must be fault tolerant. This model

assumes vulnerability as an internal fault and attack as an interaction fault that, by joining both, directly

results in intrusion and, therefore, in component failure.

It is easy to see that the vulnerability only materializes in an intrusion when an attack exploits a

vulnerability. When it exists but is not exploited, there is no intrusion. However, the existence of a

vulnerability, by itself, constitutes a risk for the systems that have it, so it must be removed as soon as

possible. In the presence of multiple vulnerabilities, it is necessary to reduce the risk of exposure by

taking into account: their criticality, the form of the intrusion, the importance of the affected assets, and

the impact on the organization’s operation. Hence, it becomes vital to create a vulnerability management

plan that, in addition to helping to prioritize the vulnerabilities to be mitigated, defines the entire action

process, from detecting vulnerabilities to confirming their correction and mitigation.

For the sake of standardization, vulnerabilities are globally identified through a Common Vulner-

abilities and Exposures (CVE) code. This code is assigned primarily by MITRE but also by a CVE

Numbering Authority (CNA) [26, 27], an international group of vendors and researchers from numerous

countries. Each CVE can be found in different databases with different Common Vulnerability Scoring

System1 (CVSS) [23] scores. This difference can occur due to different risk interpretations, depending

on who assesses the vulnerability. This CVSS score classifies a vulnerability on a scale from 1 to 10,

with 10 being a critical vulnerability. It has a set of pre-established metrics to help analysts classify the

1CVSS is maintained by FIRST through its Special Interest Group (SIG) [22]

1

Chapter 1. Introduction 2

vulnerabilities in a standardized way.

In addition, these classification systems have a very one-sided view, given that the metric obtained

may not be the same in all organizational contexts. Just think that the vulnerability has an exploit code

published on the internet, and any attacker can reproduce it on every organization. It needs to be prior-

itized above the others that do not present the same criticality. Also, the asset holding the vulnerability

may not have the same external visibility (exposure of the IT asset to the network outside the organi-

zation), so the risk it represents for the organization will also differ. The risk this entails should vary

according to this and other relevant factors for organizations, considering the topologies and asset or-

ganization structures. These factors are something that CVSS lacks in its evaluation and need to be

improved, as it is the most used prioritization scoring system.

Although the existence of other classification systems [19], created to improve the prioritization and

classification of vulnerabilities, these end up not succeeding as they are more theoretical and difficult

to reproduce. Also, there are specific certifications of high weight worldwide. These certifications

are the case of the banking sector [7, 13], which requires the use of CVSS to classify and prioritize

vulnerabilities. Besides the certification requirements, the main problem with CVSS is its ability to

continually evaluate the characteristics that change over time (temporal metrics) and the vulnerability

inside its context in the organization (environmental metrics).

Any vulnerability management process must be specific to the organization, as each has its priorities

and the process must address them [29]. In the banking scenario, for example, a vulnerability in the

transfer service’s operating system could jeopardize its main activity and bring a tremendous financial

impact. However, the same vulnerability in the email marketing service of a supermarket chain will not

wholly stop its operation, although it will still be a vulnerability to be addressed soon, never with the

same urgency as a bank.

However, vulnerability management plans do not have a follow-up that focuses more on adapting

to the current reality, so much of the information becomes obsolete and inconsistent. The vulnerability

management plans that are publicly available are attached to a vulnerability detection tool and, most of

the time, are only available through their paid platform. Vulnerability management plans are evolving to

a more recent approach to introduce risk assessment in their prioritization. This approach brings a more

comprehensive analysis of the real risk that vulnerabilities pose to organizations.

This work proposes a solution for the organization’s vulnerability problem with a new vulnerability

management framework that includes a new risk-based process and modified CVSS’s temporal and envi-

ronmental metrics. The motivation of this work is presented in Section 1.1 and the goals in Section 1.2.

Also, the contributions of this work are in Section 1.3, and this document’s structure is in Section 1.4.

1.1 Motivation

There is currently no way to calculate a vulnerability’s direct impact on the organization. The classifi-

cation is generic and devoid of the associated risk for those with it. CVSS itself is flawed in its current

way of calculating. Several criticisms are made [13, 19] of the low variability of classification and the

impossibility of being used to prioritize vulnerabilities effectively. The temporal metrics are watertight,

and their classification is static, not evolving over time.

Chapter 1. Introduction 3

Additionally, environmental metrics do not assess a vulnerability in the context of an organization

with several assets, with different impacts on business continuity and visibility to the external network.

Both do not represent the actual risk of vulnerability in the organization’s context. The risk it entails

must vary according to relevant factors, taking into account the topologies of the computer systems and

criticality for the organization.

CVSS is widely used for prioritizing vulnerabilities to mitigate in vulnerability management systems.

Therefore, it is imperative to improve the current CVSS calculation to allow its use to be maintained.

The challenge of creating a new formula or improving an existing one is to be able to transform the static

calculation into a dynamic calculation. This improvement should not only characterize the vulnerability

in the context of the asset and the organization but also the temporal aspects inherent to its evolution,

particularly regarding the maturity of the code for its exploitation and the availability of a mitigation. So

this work’s first motivation goes toward improving the CVSS scoring system. Taking measures as soon

as possible can define a greater or lesser degree of an organization being the target of a cyberattack since

the time from the creation of a CVE and its publication in the NVD [28] (a public vulnerability database)

is still high. However, it has decreased immensely over the years [34].

In addition to this, the existing vulnerability management plans are often associated with compa-

nies/products that sell vulnerability detection tools [4, 6, 10, 11, 14, 15, 29, 32, 44], in which their

plans are centered around its detection tools. Not only that, but the literature has not presented other

perspectives for a generic vulnerability management process that can be used by any organization,

regardless of the tools chosen to implement it. More recently, still driven by these companies pro-

ducing vulnerability detection tools, a new form of risk-based vulnerability management has emerged

[5, 17, 30, 31, 33, 37, 38, 39]. This new system is based on a proactive approach to mitigate vulnera-

bilities, oriented toward the risk-based decisions they will bring to the organization. They will be taking

into account all exposed assets that meet or do not meet compliance requirements through continuous

and dynamic discovery to take quick action. The second motivation for this work results from seeking a

complete and comprehensive vulnerability management plan that fits most organizations. By merging the

best practices of the revised plans, it is possible to obtain a risk-based management plan that combines

the advantages of the different existing models.

1.2 Goals

This dissertation’s general objective is to create a new generation vulnerability management framework

taking into account the temporal and environmental aspects during the vulnerability evaluation. The

specific objectives are defined below:

I) Development of a new classification method capable of taking into account all the relevant factors

in the current security of organizations, with the reformulation of the CVSS calculation method, to

better address the temporal and environmental aspects in the vulnerabilities’ classification;

II) Development of a common repository of vulnerabilities, with the respective web interface;

III) Design of a vulnerability management process, adopting the new classification proposed in I) and

the repository developed in II).

Chapter 1. Introduction 4

1.3 Contributions

This dissertation proposes a new vulnerability management framework, of which the following contri-

butions are listed:

I) A reformulation of the CVSS classification, capable of identifying and prioritizing vulnerabilities

based on the importance of the vulnerable asset to the business and its external visibility. The

reformulation of the classification also managed to make this classification more dynamic, allowing

the vulnerability score to vary over time as its exploitation likelihood grows. This contribution is

published in [35];

II) A new generation, risk-based vulnerability management process with six phases that track each

vulnerability from its discovery to the end of its mitigation confirmation. This process promotes

the rapid resolution of vulnerabilities by being inspired by agile project management methodolo-

gies. The process was built by merging different existing processes in order to bring together in a

framework with the existing best practices on vulnerability management;

III) A vulnerability repository for near-real-time monitoring of vulnerabilities detected in the organiza-

tion. This repository allows the listing of the various vulnerable assets associated with their asset

owners, as well as monitoring and changing the vulnerability’s resolution status. Due to the limited

time imposed for this dissertation, only a subset of assets was considered for vulnerability analysis,

namely desktops. Servers, IoT devices, or other vulnerable organization assets were not considered.

The developed platform has a TRL of 3.

1.4 Document Structure

This document is organized into five chapters. Chapter 2 explains the related works, focusing on vulner-

ability management processes and vulnerability prioritization. Chapter 3 discusses the proposed frame-

work in detail. Chapter 4 presents the results and a discussion about the experiments used to validate the

proposed framework, including the modified CVSS calculation method and the vulnerability manage-

ment tool. Finally, Chapter 5 presents the conclusions of this work and possible future works.

Chapter 2

Related Works

This chapter carries out a bibliographic analysis of vulnerability management, focusing on vulnerability

management processes (addressed in Section 2.1), vulnerability prioritization (addressed in Section 2.2),

risk-based vulnerability management (addressed in Section 2.3) and vulnerability management systems

(addressed in Section 2.4).

2.1 Vulnerability Management Process

A vulnerability management process presupposes the creation of stages and mechanisms for effective

management of the vulnerabilities that the organization may come across. These processes have un-

dergone some changes over time to foresee all possible scenarios. However, the literature produced by

companies in information technology and computer security (commonly known as whitepapers) is not

consensual. Depending on the product they intend to sell and how the vulnerability management process

can be integrated into them, the number of stages that the process imposes varies.

These processes are generally modeled in four, five, or six stages. To facilitate the organization

and comparison between the different works presented here, this section is organized in the following

subsections according to the number of stages in each of them.

2.1.1 Vulnerability Management Process in Four Stages

In the four-stage process, presented by Exabeam [14] and Rapid7 [32], the following stages are listed:

“Identify”, to identify vulnerabilities; “Evaluate”, to determine the impact of each of the vulnerabilities;

“Treat”, to correct the targeted vulnerability; and, “Report”.

This model is quite simple and rudimentary, as it does not consider many of the current problems

that vulnerabilities entail, namely the impact of fixing all vulnerabilities, nor the confirmation that the

risk has been mitigated by fixing the vulnerability. Furthermore, in its evaluation stage, this model does

not reflect the existence or not of exploits.

The Exabeam process [14] was the shortest of all analyzed. In addition, the process already refers to

other metrics to be analyzed with the CVSS classification, such as threat intelligence or the organization’s

business risk information, to evaluate better and prioritize vulnerabilities. This conjunction allows a more

holistic and appropriate view of the organization. Moreover, the final Report stage has as its primary

objective the creation of the idea of “Lessons Learned”, something beneficial for situations where the

team reencounters similar problems. However, there is only one “Report” stage, without any stage for

5

Chapter 2. Related Works 6

delegation of mitigation and transmission of the necessary information to the vulnerable asset owner.

This “Report” stage is equivalent to a “Lessons Learned” stage, where the team reports vulnerabilities

after remediation to help improve the organization’s security and responses in the future. The reporting

of this information is also important. However, there needs to be a stage where the team starts delivering

the mitigation tasks to the responsible vulnerable asset owners. Even the identification of vulnerabilities,

which is done in the “Discovery”, is not done continuously, only once or on request. The Rapid7 [32]

process is identical with the same stages name and order, and the stages present the same tasks.

2.1.2 Vulnerability Management Process in Five Stages

The five-step process is the most common and transversal and also the most adopted by technology

companies that develop software for computer security [4], or even academic institutions [25, 41]. In this

process, the stages of “Discovery”, “Assessment” or “Prioritization”, “Report” (sometimes alternated

with “Planning”), “Correction”, “Verification” are listed.

This model encompasses a more holistic view of vulnerabilities since, in addition to confirming vul-

nerability mitigation, they have the formal prioritization of vulnerabilities, which is highly crucial to

attack the highest priority vulnerabilities and, consequently, more critical to maintain the organization’s

business continuity. It is also worth noting the importance of reporting discovered and prioritized vul-

nerabilities before taking corrective measures. In a large organization, it is not always the responsibility

of the same company unit to discover vulnerabilities and manage the system to resolve and mitigate

detected vulnerabilities.

In the Team Ascend [4] process, the “Discovery” stage tries to get all connected devices continu-

ously, which allows you to identify all the assets present on the network without carrying out a manual

inventory. There is a focus on gathering as much information as possible about the equipment. This

focus allows knowing its importance, the tasks performed, and the identification of criticality for the

business. One of the relevant positive points is the “Report” stage before “Remediation”, which allows

an organization to create a report with instructions for quick remediation (step-by-step). However, this

process lacks a final reporting stage for management and does not refer to the ongoing discovery of assets

and vulnerabilities.

For the Fordham University process [41], a minimum deadline for addressing vulnerabilities is de-

fined, which allows the establishment of a deadline for each vulnerability criticality. However, the “Dis-

covery” process only follows technological tools, one of which is Qualys, which defines the priority of

the security levels to be addressed. In addition, mitigation always needs approval, which can be seen as

an increased risk in more urgent situations.

The University of Miami [25] process was the least detailed of all those analyzed, derived mainly

from the “Discovery” stage, which is periodic and not continuous, and the actions to be taken according

to the possible scenarios are not parameterized.

2.1.3 Vulnerability Management Process in Six Stages

The six-stage process is the most extensive, having been the one presented by relevant international

organizations, whether in public administration, such as the CDC [9], or in significant technology and

Chapter 2. Related Works 7

telephone companies, such as AT&T [6]. This process describes the stages of “Discovery”, “Prioritiza-

tion”, “Assessment”, “Remediation”, “Verification” and “Report”.

The “Report” stage may come at the end of [6] or in the middle of the process [9]. This difference

will depend on the organization that proposed the process. It all boils down to the importance and activity

developed at this stage within each vulnerability management process.

In this model, there is already a clear distinction between prioritization and assessment. The former

prioritizes all vulnerabilities discovered in the first stage of the process. The latter aims to establish

a threshold value for the risk. In this case, any vulnerability exceeding the defined threshold should be

mitigated according to the prioritization process. For vulnerabilities that do not reach this risk value, they

must be abandoned and not addressed, as the organization assumes the entire risk that the vulnerability

may entail, should it become successful.

One of the significant advantages of this six-stage process by AT&T [6] is that the “Discovery”

is a continuous, regular and automatic stage. This automation, in addition to saving human resources

in carrying out the tasks, also makes the information produced more up-to-date and adequate to the

temporal reality when consulting the data due to the ease of performing tasks over the network than

when performed manually by humans. The other advantage would be the inclusion of a “Verification”

stage after the “Remediation” stage, as it is vital to ensure that the controls and the resolution carried out

are correctly implemented to mitigate and eliminate the risk of treated vulnerability. As the authors of

this AT&T process demonstrate, the “Prioritization” stage prioritizes assets in groups. The prioritization

is based on its business criticality. This prioritization is because not all assets are of equal importance

to the organization, or their absence does not compromise business continuity. Also, the risk level is

continuously evaluated. This continuous evaluation ensures the limit for which the risks of the detected

vulnerabilities are accepted or treated. The evaluation also ensures that the agreement with the possible

changes to the organization’s risk appetite is always present. However, this process has a significant

flaw: failing to monitor vulnerabilities without a patch. These types of vulnerabilities, as they can pose

a high risk to the organization, must have a form of action previously stipulated in the process. Still,

the “Report” stage produces artifacts only aimed at executive managers, without any concern for middle

managers, which can become flawed for large organizations.

In the six-stage process of CDC [9], in the “Discovery” stage, the inventory of all assets with their

respective vulnerabilities is carried out. This approach can be pretty interesting and relevant to this

process, as it allows vulnerabilities to be automatically prioritized. Factors such as the risk they produce

or the affected assets are essential so that later, in the “Remediation” stage, this is done based on the

loss of risk that this produces for each group of business assets. For the same reasons as AT&T [6], the

periodic review of the risk threshold can be good for updating the organization’s risk appetite. However,

the “Discovery” stage of the CDC process [9] is cyclic and not continuous, which does not allow the

permanent update of existing vulnerabilities, and this update is subject to change only when a cycle is

closed. Furthermore, the prioritization refers to assets and not vulnerabilities; this will not make much

sense, as the process focuses on vulnerabilities, which in turn may affect the assets and not the other way

around, as what can affect the targeted assets are, in fact, the vulnerabilities. The described “Report”

stage is not intended to guarantee any help to the stage that follows it, making it a waste of time since the

content constructed here did not serve to improve and facilitate the subsequent work.

Chapter 2. Related Works 8

Table 2.1: Summary of the CVSS Metrics

Base Metrics

Exploitability Metrics

Attack Vector (AV)
Attack Complexity (AC)
Privileges Required (PR)
User Interaction (UI)

Scope

Impact Metrics
Confidentiality (C)
Integrity (I)
Availability (A)

Temporal Metrics
Exploit Code Maturity (E)
Remediation Level (RL)
Report Confidence (RC)

Environmental Metrics Security Requirements (CR, IR, AR)
Modified Base Metrics

2.2 Vulnerability Prioritization

The prioritization of vulnerabilities is a problem continuously presented in the literature, where several

solution proposals exist.

Miura-Ko et al. [21] presented a proposal based on computing infrastructure, in which they presented

three methods to prioritize vulnerabilities and assets : density prioritization - the nodes are prioritized by

the number of neighbors they have; source prioritization - a higher priority is given to nodes that serve as a

source for an attack; and, finally, type prioritization - vulnerabilities are categorized as low/medium/high

risk, and priority is given to high risk.

However, it was necessary to assume that the known vulnerabilities revealed how easily a node could

be attacked and penetrated. The global importance of a node is indicative of the damage it could entail

if a vulnerability is exploited, and also the network topology, which also influences the vulnerability of a

particular node, given that more vulnerable nodes make neighboring nodes more vulnerable.

Currently, prioritization has been achieved through the CVSS classification, which describes a nu-

merical value intended to assist organizations in assessing vulnerabilities to be corrected first [22].

The numerical value obtained is based on three major types of metrics: base metrics, temporal met-

rics, and environmental metrics, as summarized by the Table 2.1, according to the FIRST specification

[23], and detailed in Appendix A.

The CVSS classification, however, is considered outdated and ineffective nowadays [13, 19, 36]

because it lacks several criteria that are important for organizations and are not reflected in the final

classification, making the value obtained little coherent with the organizational reality.

2.2.1 CVSS: Common Vulnerability Scoring System

CVSS presents a classification and prioritization system capable of reflecting the severity of vulnerabil-

ities. The final numerical classification it produces can be qualitatively represented in four categories:

low, medium, high, and critical [22]. It has three groups of extensive metrics: base metrics, temporal

metrics, and environmental metrics [23].

In the base metrics, those that unequivocally characterize a vulnerability get split into exploitability

Chapter 2. Related Works 9

metrics (Attack Vector, Attack Complexity, Privileges Required, and User Interaction), impact metrics

(Confidentiality, Integrity, and Availability Impact), and Scope.

Temporal metrics measure the current state of exploit techniques or code availability, the existence

of patches or a workaround, or the certainty of the vulnerability description. It includes three metrics:

Exploit Code Maturity (E), Remediation Level (RL), and Report Confidence (RC).

Environmental metrics allow the customization of the CVSS score, depending on the importance of

the affected IT asset to a user’s organization, measured in terms of implemented complementary and al-

ternative security controls, confidentiality, integrity, and availability. These include security requirements

(Confidentiality, Integrity, and Availability Requirements) and Modified Base Metrics, which allow in-

dividual base metrics to be replaced by the specific characteristics of a user’s environment.

Today, the CVSS assesses the time factor through the previously mentioned static metrics (Exploit

Code Maturity, Remediation Level, and Report Confidence). This assessment can not always be accurate

since, over time, the vulnerability context can evolve and represent a greater (or lesser) risk [13]. The

value should vary and increase when a vulnerability poses a greater risk to the organization. This situation

occurs when the vulnerability has an exploit code whose maturity is high or unknown. When high,

it can bring very high risk to the organization, and it is more likely to be attacked. The absence of

information on the maturity of this code should always be treated as high maturity (E) since, in principle,

it is considered the worst-case scenario, in line with the existing coefficients of the CVSS.

On the other hand, the environmental metrics possess more information and can reassess the infor-

mation security properties for each vulnerability. However, it is not enough since it is still necessary to

prioritize vulnerabilities for their visibility to a user of the external network (the network where most

cyberattacks occur). It is also necessary to prioritize vulnerabilities by their degree of importance to the

organization, namely the criticality that assets have for the maintenance of the business and operation of

its activity.

Considering these CVSS constraints, Howland presents that “there are no indicators of effectiveness

tests to be carried out” [13] for CVSS and that “the standard is poorly maintained”. In his article, where

he criticizes CVSS as a way of prioritizing vulnerabilities and how it produces values for the criticality of

vulnerabilities, he presents the importance of the vulnerability context. The change to CVSS in version

3.1 no longer considers it a risk score, making it a “clear attempt to shirk CVSS’s responsibility as a

means of measuring risk, not because it is not a risk score, but because it performs poorly”, as stated

by Howland. His work provides an example of a pharmaceutical company that assigns a “High” rating

to two assets that support different business areas for the Availability parameter. However, one asset

belongs to the drug manufacturing operation and another to a web server component. In a real context,

there would be a natural prioritization to prefer business continuity through the core business. With

CVSS, this becomes opaque, and both vulnerabilities would take the same category. The present work

considers the need to adapt the CVSS in order to better address the aforementioned constraints identified

in the literature. To this end, it proposes an improvement in the computation of the CVSS temporal and

environmental components.

Spring et al. [36] confirm that there is no evidence that CVSS takes into account relevant contextual

information, such as the type of data processed, the system’s operation, the context of the use of the

vulnerable asset, and the material consequences of an attack in case of success. According to them, since

Chapter 2. Related Works 10

2007, the major criticisms presented have been grouped as “Failure to account for context (both technical

and human-organizational)”, “Failure to account for material consequences of vulnerability (whether life

or property is threatened)” and “Operational scoring problems (inconsistent or clumped scores, algorithm

design quibbles)”.

The discredit given to the rating [38, 39, 45] is due to the fact that currently, there are 76% of

vulnerabilities with a CVSS rating of 7 or higher, especially without published code to exploit the vul-

nerability [37]. Despite the same high-risk classification, some of these vulnerabilities may represent

little risk to the business, making it important to evaluate each vulnerability in its context.

Luca Allodi [1] justifies this phenomenon by presenting evidence that the exploitation of vulner-

abilities is described by a heavy-tailed statistical distribution and hypothesizes that the vulnerability

distribution may follow the Power Law model, comparing it with the Log-Normal and Exponential. The

vulnerabilities that his investigation focused on were just vulnerabilities exploited in the wild. In ad-

dition, he verified that a small fraction of vulnerabilities is responsible for a large majority of attacks

against software, confirming what is present in [39]. The hypothesis presented was inconclusive due to

the low number of vulnerabilities present in the dataset, despite being, according to the author, the most

comprehensive at the time of publication. Therefore, it becomes a priority to define alternative ways of

calculating an organization’s vulnerability risk.

2.2.2 EPSS: Exploit Prediction Scoring System

The literature also presents some proposals for new classification systems. However, the one that stands

out the most is the Exploit Prediction Scoring System (EPSS) [19]. This new scoring system is presented

as being more “simple to implement”, more understandable, objective, and transparent. The data used

are all public and allow the exploitability’s prediction of a vulnerability within 12 months after the

confirmation of the exploit from the software vendor. It is the first open and data-driven framework

for vulnerability assessment.

According to the authors, precision measures the efficiency of the remediation strategy. It is com-

puted as the number of true positives divided by the level of effort. The level of effort is the sum

between true positives and false positives. Compared to CVSS, EPSS’s efficiency is extremely high for

the highest-rated vulnerabilities. Ratings starting at 4 on the CVSS scale, the effort is reduced to amounts

greater than 60%. At the last level of the same scale (10), it reaches a reduction of 86%.

However, even though the calculation of the coefficients and the formula are entirely transparent,

their understanding and applicability require a robust knowledge of statistics, as the metrics the authors

use to prove their improved capacity against CVSS are advanced.

In addition, its implementation depends on creating and maintaining machine learning models to

obtain better results in predicting the exploitability of each vulnerability. A mandatory CVE identifies

each vulnerability. This dependency makes it difficult to use and apply zero-day vulnerabilities, internal

vulnerabilities, misconfigurations, or no official identification of a CVE. This new form of calculation

presented by the authors is helpful for companies that only use third-party software and can prioritize

the patches to be applied with a CVE identifier linked to it, provided that the data collected corresponds

to the organization’s reality. There is the possibility of dealing with and distinguishing threats that are

not so obvious to the organization’s business. The authors indicate that this is an “open, data-driven

Chapter 2. Related Works 11

effort”. However, there is little of being open since it does not document which sources were used.

More specifically, the authors do not specify the data used to train the machine learning models, the

parameters used, and the code necessary to generate the exploitability prediction models. All the essential

operational details are a “black box” of information that remains to be clarified, and they are necessary

to put this new form of calculation into practice.

Like CVSS, EPSS also has a Special Interest Group (SIG) in FIRST [24], which follows the devel-

opment of this new alternative model to CVSS.

2.2.3 Other scoring systems

Debricked, a Swedish cybersecurity solutions company, has a scoring system in one of its products for

analyzing secure code in Git repositories, debAI [3]. Note that this is a different approach when compared

to CVSS, in which the score of a vulnerability remains the same for any organization, regardless of its

context. In this classification, the priority levels of “Confidentiality”, “Integrity”, and “Availability”

can be changed, as well as the “Attack Vector” (where it is indicated which of the possible values the

organization pays more attention to), “Exploitability” and “Required Privileges”. All parameters except

the “Attack Vector” can take values between 0 and 10.

Jacobs et al. [18] presented a proposal to prioritize vulnerabilities by predicting their exploit. Unlike

other literature, the analyzed variable is “exploits in the wild” instead of “published exploits” in line with

[1]. The proposed model presented three practical strategies for vulnerability remediation: CVSS scores,

published exploits, and vulnerability attributes. They evaluated each strategy using a rules-based ap-

proach and a machine learning model. Ultimately, they built a machine learning model with the obtained

dataset. The proposal presented good accuracy, efficiency, and coverage results compared to CVSS.

However, it does not demonstrate an easy reproducibility for any organization to apply in its vulnerabil-

ity management process. In addition, the transparency of the construction of the machine learning model

and the data used to train the model are other negative factors. Only the sources used are mentioned, but

all the processing and how the authors got there are completely opaque.

2.3 Risk-Based Vulnerability Management

The most recent articles indicate a change in the vulnerability management paradigm. The old approach

followed a prioritization based on the value of the CVSS classification, and now, the focus shifts to the

impact that vulnerabilities have on business continuity and, therefore, the risk they produce in organiza-

tions.

According to [37], a risk-based vulnerability process can be described generically in five stages:

• Discovery: The discovery stage consists of the discovery of assets and the vulnerabilities of these

same assets, in a continuous way, similar to the discovery stage of the configuration and manage-

ment of systems, which only identifies the assets connected to the network [42].

• Assess in context: Assessing each vulnerability allows the organization to assess them in context

with the business as well as the overall threat landscape. In addition to classifying them in context,

Chapter 2. Related Works 12

the potential for exploitation is also evaluated. Then, the likelihood of the intrusion occurring

(exploit) is determined, and the impact on the business is considered.

• Prioritization: Through automation and possibly artificial intelligence (AI) solutions, prioritizing

vulnerabilities is facilitated when determining which ones pose the highest risk for the organiza-

tion.

• Remediation: Remediation presupposes sending a short list of vulnerabilities to be corrected by

the vulnerable asset owners. It is even articulated with these asset owners what is the most critical

thing to be completed first.

• Measurement: It forces the metrics calculation to know what to improve and what positive or

negative changes have occurred.

The vulnerability management process proposed in this work can be classified as risk-based. How-

ever, the proposed process has six stages, unlike the definition found in [37]. The additional stage aims

at delegating the responsibility of the mitigation actions to the vulnerable asset owners and informing

them.

2.4 Vulnerability Management Systems (VMSs)

Some solutions for vulnerability management systems were presented recently. The VMC [47] was the

closest to the objectives of this work. The authors of this tool even carried out an analysis of selected

metrics to facilitate the detection of critical vulnerabilities [46]. This tool integrates with vulnerability

detection tools directly for greater automation; it connects to a Configuration Management Database

(CMDB), where you can view all the organization’s assets and integrate the asset management process

with vulnerability management. In addition, VMC already has dashboards and reports ready for a clear

overview of vulnerability management. However, despite being very promising, this tool proved to be

quite challenging to deploy, and the integrations were very time-consuming for the limited time of this

project, so this work followed up with a customized solution.

There were two more VMS solutions, ArcherySec [2] and Orchestron [48]. Both were good tools,

but they focused on application security and not on managing all possible organizational vulnerabilities.

Only ArcherySec gets maintained until the publication of this dissertation. Orchestron does not receive

a code update since 2020.

Chapter 3

Proposed Framework

The simultaneous use of several vulnerability management tools produces a technology overload, ulti-

mately resulting in unaddressed vulnerabilities, lack of prioritization, high costs, disruptions, and man-

agement challenges [40]. With this in mind, the vulnerability management plan presented in this chapter

is a generic plan suitable for any institution that intends to manage its vulnerabilities. As discussed in

Chapter 2, the CDC [9] plan seems, at the moment, to be the most appropriate to establish itself as a

basis for this project. Not only because it is the most complete in the stages it presents but because of its

suitability regarding the order of its stages to most organizations. By adopting the CDC plan, the model

will have six stages. This plan aims to improve some aspects of its microstructure that lack activities to

create a full risk-based vulnerability management. Regardless of the processes reviewed and their ex-

tension of stages, most of them provided positive characteristics in their contexts. These characteristics

improve the construction of a comprehensive model with a flexible structure for any organization and

meet the necessary conditions.

3.1 Process

The proposed vulnerability management process has six stages, in the following order, according to

Figure 3.1. Each stage is considered a domain and has a set of tasks to be carried out. They cannot start

if the previous stage has not terminated and provided an output. In the following subsections, each stage

will be fully detailed.

3.1.1 Discovery

The vulnerabilities that affect an organization’s services and corresponding assets are pervasive and vari-

able. Thus, in the initial stage, Discovery will allow better identification of vulnerabilities and provide a

quick resolution since the vulnerable asset is already identified.

It is essential to be aware of the different components of information systems and their configuration.

Without suitable discovery mechanisms, it is not possible to successfully and effectively manage and

administer a vulnerability management process. These mechanisms are crucial for its excellent perfor-

mance, and because it is the initial stage, it will affect all the others.

Discovery is the process of identifying all assets managed by an organization and associating them

with each of these assets’ vulnerabilities. These assets can be of two types, physical assets (for example,

13

Chapter 3. Proposed Framework 14

Discovery

Prioritization

Report

Remediation

Verification

Retrospective

Figure 3.1: Representation of the process stages

computers or servers) or virtual assets (for example, machines virtualized on servers, either on an organi-

zation’s premises or in the cloud). The information collected should focus on both types of information:

the identification of all hardware and software assets and the topology of these assets – that is, how they

are interconnected. The discovery procedure should be the same for all machines. The responsibility

should be associated with whoever manages these assets in the organization (aka “owner of the asset”).

Figure 3.2 presents a representation of the Discovery stage. Table 3.1 specifies the inputs and outputs

typically expected in this stage.

Table 3.1: Input and output of the Discovery stage

Input N/A
Output Normalized Vulnerability List (NVL). List of Vulnerable Users (LVU).

Discovery

Asset inventory User Evaluation

Vulnerability
Discovery

Vulnerability
Discovery -

Manual Report

Figure 3.2: Representation of the Discovery stage

In this first stage, the cybersecurity and IT teams must collect information about which devices are

Chapter 3. Proposed Framework 15

connected to the network. For the assets that belong to the organization, it is necessary to collect infor-

mation about them1, the software and hardware that those machines have and their respective versions

so that it is possible to identify vulnerabilities, as described in Table 3.2.

After this information is cataloged, data collection must be continuous. The continuous collection

means always, at all times, and not periodically with defined time intervals. The continuous collection

makes it possible to deal with rapid changes and, consequently, reduce the time in which possible vul-

nerabilities may be in assets that would only be detected in a future analysis. In this project, which is

based on the CDC [9] macrostructure, the idea of making the process continuous, regular, and automatic

derives from the design of the equivalent stage in the AT&T process [6].

Table 3.2: Asset inventory

Sub-activity Asset inventory
Scheduling Continuous activity
Description All network assets must be inventoried, preferably in an automated and con-

tinuous way, so that new assets can be detected on the network in the shortest
possible time and, consequently, be able to adapt to the change (in the topol-
ogy) quickly.

Output Asset’s list on the organization’s network

Then, still in the first stage, and based on the information already collected, Vulnerability Discovery

must be initiated, as described in Table 3.3. For this purpose, vulnerabilities must be identified by the

vulnerability detection systems and centralized in a single repository. This repository will also include

information collected based on communications or notifications from the manufacturers, emails from

software vendors, secure code analysis, penetration tests, internal audit findings, automated scanning

tools, risk management, reports produced, and Open Source Intelligence (OSINT). The entire list of vul-

nerabilities with the associated assets will be passed on to the next stage of the vulnerability management

process, the Prioritization.

Table 3.3: Vulnerability Discovery

Sub-activity Vulnerability Discovery
Scheduling Continuous activity
Input Assets list on the organization’s network
Description Based on the asset list, conduct continuous tests that allow the identification

of vulnerabilities in each asset. This information can be collected manually
or with the help of commercial or open-source tools. If the organization has
more than one of those mentioned above, the information must be standard-
ized to a central database, with identical fields to be prioritized later.

Output Normalized Vulnerability List (NVL)

There may be vulnerabilities that cannot be discovered by automated means, and the organization

is subject to the information it receives from vendors/providers or software manufacturers. In this sit-

uation, because there are several IT assets, and information about their vulnerabilities does not always

go to the same channel, the asset owner is responsible for communicating this information to the entity

1Using SNMP or similar protocols.

Chapter 3. Proposed Framework 16

responsible for the vulnerability management process and, consequently, carrying out the sub-activity

3.4 - Vulnerability Discovery - Manual Report.

Table 3.4: Vulnerability Discovery - Manual Report

Sub-activity Vulnerability Discovery - Manual Report
Scheduling Punctual activity
Input Assets list on the organization’s network
Description It may be impossible to automate data collection, and this may be the case

for audit findings, risk management, internal reports, penetration tests, code
reviews, emails from service providers, or notifications from software manu-
facturers. In these cases, the asset owner must publish the information into a
central database and, like the other vulnerabilities, get it prioritized.

Output Normalized Vulnerability List (NVL)

Finally, to ensure the safety of those considered the most critical assets of the organization - the

people - the entity responsible for the vulnerability management process conducts at least a quarterly

awareness activity. User Evaluation aims to assess the ability of an organization’s employees to be aware

of the dangers of the digital world and sensitize them to possible computer attacks intended to steal data,

money, or both. Table 3.5 describes this sub-activity in detail.

Table 3.5: User Evaluation

Sub-activity User Evaluation
Scheduling Quarterly activity
Input Assets list on the organization’s network
Description It is important to pay attention and importance to the Social Engineering to

which users are subject since, despite being the organization’s most important
assets, they are the most vulnerable to this type of attack. Thus, users must
be evaluated against different types of possible attacks to find out if, in a real
situation, they would know how to react correctly (for example, clicking on
links from unknown or dubious sources). If not, employees must undergo
practical training to prevent real-scale hazards.

Output List of Vulnerable Users (LVU)

3.1.2 Prioritization

Prioritization is the second stage of the vulnerability management process and aims to prioritize the

vulnerabilities found at the end of the Discovery stage. Many current systems already allow a link

between the existing vulnerability and its registration in an open catalog. An example is the Common

Vulnerabilities and Exposures (CVE) of the “MITRE Corporation”.

However, the growing number of high-risk vulnerabilities ends up discrediting the current process

of attributing risk to vulnerabilities. Therefore, it is necessary to assign a new risk classification for

the vulnerabilities that could affect the organization through a classification system. This classification

system takes into account the different information collected in different systems of the organization to

classify each vulnerability according to the risk it produces.

At this stage, the vulnerability management process presented here will have its classification system,

Chapter 3. Proposed Framework 17

which will take into account the various information collected in the different systems of the organization

to classify each vulnerability in order to reflect the risk that it produces specifically in the organization

where the vulnerability is present. This idea is based on the work also presented by AT&T [6], which

prioritizes the organization’s assets by groups, similar to organizing assets by recovery groups. However,

the interest in this stage becomes even broader since, in addition to the asset’s criticality, vulnerability

is analyzed in context with the asset itself and the system as a whole. Table 3.6 specifies the inputs and

outputs typically expected in this stage.

Table 3.6: Input and output of the Prioritization stage

Input Normalized Vulnerability List (NVL).
Output Prioritized Vulnerability List (PVL).

Previously identified and classified vulnerabilities should be ordered based on their risk to the orga-

nization. Currently, the ordering follows the CVSS [22] classification in most organizations. However,

as Exabeam [14] proposes, it is important to go further since this classification has already proven inef-

ficient. The ordering obtained here is based on a specific classification system that is defined by its own

equations, described in Section 3.2. These equations will calculate the risk of vulnerability (singular)

for the organization. For that, it must be applied to all vulnerabilities. The result obtained is a list of

vulnerabilities ordered to be remedied. Table 3.7 describes this sub-activity.

Table 3.7: Automatic Prioritization

Sub-activity Automatic Prioritization
Scheduling Continuous activity
Input Normalized Vulnerability List (NVL)
Description Vulnerabilities are prioritized based on their risk to the organization. The

ordering is based on a specific classification system defined by equations in
Section 3.2.

Output Prioritized Vulnerability List (PVL)

3.1.3 Report

The Report stage is the third stage of the vulnerability management process. It intends to gather the

vulnerabilities already prioritized by the previous stage - Prioritization - to organize and document them

so that the teams responsible for the targeted assets can act and solve the vulnerabilities. Figure 3.3

presents a representation of the Report stage. Table 3.8 specifies the inputs and outputs typically expected

in this stage.

Table 3.8: Input and output of the Report stage

Input Prioritized Vulnerability List (PVL).
Output Report for the Asset Owner. Emergency Report for the Asset Owner.

Chapter 3. Proposed Framework 18

Report

Prepare Rush
Prepare Emer-

gency Rush

Send action report
Send emergency

action report

Figure 3.3: Representation of the Report stage

This stage introduces the concept of rush, a set of vulnerabilities to be resolved within a specified

timeframe measured in weeks to make the current vulnerability management process as agile as possible.

Each rush will be associated with a group/department, so the assignment of tasks is done only with the

vulnerabilities whose owner(s) of the asset(s) are in the group/department. Table 3.9 describes the sub-

activity of the rush preparation.

Table 3.9: Prepare Rush

Sub-activity Prepare Rush
Scheduling Weekly activity
Input Prioritized Vulnerability List (PVL)
Description Each period, each team will have allocated a set of vulnerabilities to carry

out the rush. This list will be based on the Prioritized Vulnerability List and
strip the most critical vulnerabilities from a particular group/department. For
consistency, all periods should have the same number of new vulnerabilities
to mitigate. All the vulnerabilities that may have been left in the previous rush
are back in the new one.

Output Vulnerabilities to add in the action report

For situations of extreme urgency, when the period of a normal rush is insufficient to resolve and

reduce the organization’s exposure to the risk of one or more specific vulnerabilities, an emergency rush

must be prepared, which has increased priority, overriding a normal rush, as described in Table 3.10.

Table 3.10: Prepare Emergency Rush

Sub-activity Prepare Emergency Rush
Scheduling Punctual activity
Input Prioritized Vulnerability List (PVL)
Description In exceptional situations, an emergency rush can be prepared when the criti-

cality of the vulnerability(s) is so high that it can severely affect the organiza-
tion’s activity if corrected within a period equal to that of a normal rush.

Output Vulnerabilities to add in the emergency action report

Each rush will materialize in a report containing identified vulnerabilities and the highest priority

to be resolved. These reports should be as succinct as possible so that the document is easy to put into

practice and valuable to anyone addressing it. Each report, like the rush, only contains the vulnerabilities

of the assets assigned to each asset owner, with a recommended step-by-step risk mitigation plan. This

Chapter 3. Proposed Framework 19

is described in Table 3.11, for a regular rush, and in Table 3.12 for an emergency rush.

Table 3.11: Send action report

Sub-activity Send action report
Scheduling Periodic activity
Input Vulnerabilities to add in the action report
Description Prepare a report based on the vulnerabilities indicated by the rush, which

should include the recommended plan to mitigate the risk step-by-step.
Output Action Report for the specific group/department

As before, the emergency report contains the vulnerability(s) identified in the emergency rush and

will override the normal report.

Table 3.12: Send emergency action report

Sub-activity Send emergency action report
Scheduling Punctual activity
Input Vulnerabilities to add in the action report
Description Prepare a report based on the vulnerabilities indicated by the emergency rush,

which should include the recommended plan to mitigate the risk step-by-step.
Output Emergency Action Report for the specific group/department

3.1.4 Remediation

Remediation is the fourth stage of the vulnerability management process and is intended to mitigate and

reduce the risk of an organization’s exposure to vulnerabilities.

This stage, represented in Figure 3.4, comprises four types of vulnerabilities, critical and normal with

a patch, without a patch, and the ones for misconfiguration. As for the first two, these may have a patch,

so their operationalization will differ. Table 3.13 specifies the inputs and outputs typically expected in

this stage.

Table 3.13: Input and output of the Remediation stage

Input Action Report for the specific group/department. Emergency Action Report for the
specific group/department.

Output Remedied Vulnerability(ies).

Chapter 3. Proposed Framework 20

Remediation

Critical Vulnera-
bility Remediation

with patch

Normal Vulnera-
bility Remediation

with patch

Misconfiguration
Vulnerability
Remediation

Vulnerability
Management
without patch

Risk Management

Figure 3.4: Representation of the Remediation stage

Table 3.14: Critical Vulnerability Remediation with patch

Sub-activity Critical Vulnerability Remediation with patch
Scheduling Punctual activity
Input Emergency Action Report for the specific group/department
Description A critical vulnerability with an enforceable patch must have its remediation

completed within the maximum timeframe provided by the Rush. A critical
vulnerability is considered to have a rating equal to or greater than 9 or, in
general, an extremely high risk to the organization’s Information Systems or
the entity’s image and external reputation.

Output Remedied Vulnerability

Table 3.15: Normal Vulnerability Remediation with patch

Sub-activity Normal Vulnerability Remediation with patch
Scheduling Punctual activity
Input Action Report for the specific group/department
Description A normal vulnerability with an enforceable patch should see its remediation

completed within the maximum timeframe provided by the Rush and, if possi-
ble, coordinate its remediation in conjunction with the current patching cycle.
A normal vulnerability is considered to have a rating lower than or equal to
9 or, in general, low risk to the organization’s Information Systems or the en-
tity’s image and external reputation. Still, consideration should be given to
the possibility that the vulnerability could be exploited before the organiza-
tion remedies it or that an exploit exists with a significantly reduced difficulty
for the attacker.

Output Remedied Vulnerability

The teams responsible for the affected asset(s) must follow the information provided in the Report

stage. Instructions for installing a compatible patch that resolves the vulnerability must be followed in

the case of patched vulnerabilities, as described in Tables 3.14 and 3.15. The same goes for miscon-

figurations that pose security problems, as described in Table 3.16. As for unpatched vulnerabilities,

they must be monitored as well as the affected system(s) to prevent the problem from escalating, always

controlling and preventing the worst-case scenario, as described in Table 3.17.

Chapter 3. Proposed Framework 21

Table 3.16: Misconfiguration Vulnerability Remediation

Sub-activity Misconfiguration Vulnerability Remediation
Scheduling Punctual activity
Input Action Report for the specific group/department or Emergency Action Report

for the specific group/department
Description A lousy configuration can lead to a larger window of vulnerabilities. In partic-

ular and previously identified situations, it is necessary to change the current
settings. Examples of this are origin or weak passwords. Thus, this type of
vulnerability remediation intends to act on the current settings and change
them to remove the vulnerability from the affected asset(s).

Output Remedied Vulnerability

Table 3.17: Vulnerability Management without patch

Sub-activity Vulnerability Management without patch
Scheduling Punctual activity
Input Action Report for the specific group/department or Emergency Action Report

for the specific group/department
Description A vulnerability that does not have a patch to be applied is complex, as it

requires constant monitoring of the affected asset(s) and, possibly, service
failure or temporary unavailability of the same whenever it is plausible and
justifiable to proceed in this way. The actions to be taken when monitoring
are very focused on the behavior of the affected asset(s) and on the control of
their access to them. However, it is not possible to establish a directive/norm
on how to proceed, as vulnerabilities are multiform. Nevertheless, follow-
ing the organization’s best practices, recommendations and well-established
and tested standards for this purpose is a way of proceeding in these types of
vulnerabilities. This sub-activity is only considered complete when the man-
ufacturer of the affected asset(s) implements and makes available a patch for
this vulnerability.

Output Remedied Vulnerability

3.1.5 Verification

Verification is the fifth stage of the vulnerability management process. It aims to ensure that the measures

applied in the previous stage, Remediation, have been successfully implemented and that the organiza-

tion’s cybersecurity team validates these implementations.

Communication is of utmost importance in this stage, as it will drive the rapid resolution of vulnera-

bilities. Figure 3.5 presents a representation of the Verification stage. Table 3.18 specifies the inputs and

outputs typically expected in this stage.

Table 3.18: Input and output of the Verification stage

Input Remedied Vulnerability(ies).
Output Remedied and Validated Vulnerability(ies).

Chapter 3. Proposed Framework 22

Verification

Communication
from the as-

set owner

Confirmation
of vulnerability

resolution

Normal vulner-
ability scanning

On-demand vul-
nerability scanning

Figure 3.5: Representation of the Verification stage

Table 3.19: Communication from the asset owner

Sub-activity Communication from the asset owner
Scheduling Punctual activity
Input Remedied Vulnerability
Description In order to complete the remediation task, the asset owner must communicate

to the entity responsible for the vulnerability management process that the
vulnerability(s) are resolved, providing evidence of the change.

Output Remediated Vulnerability Notification

Table 3.20: Confirmation of vulnerability resolution

Sub-activity Confirmation of vulnerability resolution
Scheduling Punctual activity
Input Remediated Vulnerability Notification
Description After sending the evidence(s) of the asset owner to the entity responsible for

the vulnerability management process, the latter will validate whether it is
valid to resolve the vulnerability(s). If so, this entity will confirm the resolu-
tion, and the vulnerability(s) will be considered solved.

Output Vulnerability to Confirm

In the Verification, the cybersecurity team members, and those responsible for the vulnerability man-

agement process, will verify the remediation of the identified vulnerabilities, according to Figure 3.5.

Table 3.19 presents the sub-activity “Communication from the asset owner” in detail. Table 3.20 de-

scribes what should be done to confirm a vulnerability’s resolution. For that, the cybersecurity team can

go two separate ways: normal vulnerability scanning, described in Table 3.21 or on-demand vulnerability

scanning, described in Table 3.22.

Chapter 3. Proposed Framework 23

Table 3.21: Normal vulnerability scanning

Sub-activity Normal vulnerability scanning
Scheduling Daily activity
Input Vulnerability to Confirm
Description This sub-activity includes all assets whose criticality for the business is

medium or lower (like the ones treated in a normal rush), and the vulnera-
bility does not present a high risk to the organization. Thus, the scan can be
performed on its next scheduled occurrence (usually daily), and if it does not
identify the vulnerability addressed, it is considered remedied and validated.

Output Remedied and Validated Vulnerability

Table 3.22: On-demand vulnerability scanning

Sub-activity On-demand vulnerability scanning
Scheduling Punctual activity
Input Vulnerability to Confirm
Description This sub-activity must be requested by the owner of the asset(s), when appli-

cable, using the internal processes to request a new scan. This sub-activity
is only valid for assets whose criticality is very high or the vulnerability also
has a high risk for the organization. Hence the need to quickly confirm that
the vulnerability previously identified and resolved by the asset owner(s) is
no longer identified by the vulnerability detection and active monitoring tools
of the person responsible for the vulnerability management process.

Output Remedied and Validated Vulnerability

3.1.6 Retrospective

The retrospective, represented in Figure 3.6, is the sixth and final stage of the vulnerability management

process. It intends to guarantee information about the current state of risk around the organization’s

vulnerabilities, being highly relevant to all elements of the IT team, executives, or managers. Table 3.23

specifies the inputs and outputs typically expected in this stage.

The creation of tactical reports on identified and remedied vulnerabilities, the organization’s progress

in its vulnerability management, and the company’s global risk provide executives with a summary of

the current state of vulnerabilities.

Table 3.23: Input and output of the Retrospective stage

Input Remedied and validated vulnerability(s)
Output Documented Vulnerability(s). Procedural improvements. Final metrics report. Self-

assessment of the vulnerability management cycle for possible improvements. The vul-
nerability’s documentation, from its discovery to its mitigation, for further self-reflective
analysis.

Chapter 3. Proposed Framework 24

Retrospective

Lessons learned
Retrospective

Meeting
Executive

report creation

Figure 3.6: Representation of the Retrospective stage

The team will have to document the entire procedure, from the beginning to the end (described in

Table 3.24). This aims to create a stage where it is in the organization’s interest to carry out a self-

reflective analysis of the challenges faced, as well as a self-assessment of the vulnerability management

cycle, with a meeting as described in Table 3.25.

Table 3.24: Lessons learned

Sub-activity Lessons learned
Scheduling Punctual activity
Input Remedied and Validated Vulnerability
Description The entire process, from the identification of vulnerabilities to their mitiga-

tion, must be documented to create a knowledge base for future situations and
ensure that the organization can respond to all incidents that it encounters, in
terms of cybersecurity, in a faster and more agile way.

Output Documented Vulnerability

Table 3.25: Retrospective Meeting

Sub-activity Retrospective Meeting
Scheduling Monthly activity
Description The retrospective meeting is intended to be as informal as possible, as it only

aims to incorporate the continuous improvement of this vulnerability man-
agement process. The meeting must be conducted by the entity responsible
for this vulnerability management process, together with all the stakeholders.
All stakeholders must answer the questions: “What should we have done/do
more?”, “What should we have done/do less?”, “Should we start doing X?”
or “Should we end up with Y?”. Other questions with reflexive and self-
assessment power for the vulnerability management process are accepted.

Output Procedural improvements

Finally, it will be necessary to produce a report with a minimum monthly frequency, where all the

information related to metrics will be exposed, to deliver it to the team of top or intermediate managers

(C-Level). This sub-activity is described in Table 3.26.

Table 3.27 summarizes the contribution of the various vulnerability management processes presented

in Chapter 2 to the proposed process.

Chapter 3. Proposed Framework 25

Table 3.26: Executive report creation

Sub-activity Executive report creation
Scheduling Monthly activity
Input Information obtained in the collection of metrics of the vulnerability manage-

ment process
Description In order to complete the vulnerability management process, a final report

should be generated with all the vulnerabilities detected and corrected, be-
ing only essential to portray the quantities of these, which were addressed,
instead of explaining, in detail, which they are. For a better understanding,
vulnerabilities can be classified according to a standard classification. This
report should indicate as many metrics as possible to understand the perfor-
mance and ability to resolve the vulnerabilities the organization is targeting
and the risk metrics of vulnerabilities that could not be corrected according to
the risk management process in place.

Output Final metrics report

C
hapter3.

Proposed
Fram

ew
ork

26

Table 3.27: Contributions of each revised process to SecRush

Stage Exabeam Ascend Technologies Fordham University AT&T
Discovery N/A As in Ascend Technologies, the

Discovery stage is carried out con-
tinuously, where all devices con-
nected to the network are identified,
with no need for manual inventory.

N/A As in AT&T, the Discovery
stage is continuous, regular,
and automatic, allowing the
rapid updating of informa-
tion.

Prioritization The Exabeam process takes into ac-
count other metrics, in addition to
CVSS. As the Exabeam, in this work,
the prioritization stage does not rely
on the CVSS. It follows a new scor-
ing method herein proposed (the Sec-
Score).

N/A N/A N/A

Report N/A As in the Ascend Technologies
model, this work creates an inter-
mediate step to document and ac-
count for vulnerabilities to be ad-
dressed.

N/A N/A

Remediation N/A N/A As in the Fordham Univer-
sity model, this work sets
a minimum deadline to ad-
dress vulnerabilities.

N/A

Verification N/A N/A N/A As the AT&T model, this
work include tasks to verify
that the controls applied to
mitigate the vulnerability(s)
are correctly applied.

Retrospective Like the Exabeam model, this work
includes the concept of “Lessons
Learned” in case the team reencoun-
ters the same problem.

N/A N/A N/A

Chapter 3. Proposed Framework 27

3.2 SecScore - Scoring Method

SecScore is based on CVSS. Nevertheless, it proposes improvements to circumvent some CVSS limita-

tions [13, 36, 37, 38, 39, 45], especially in calculating its temporal and environmental components. The

CVSS score is given in three components: base score, temporal score, and environmental score. They all

use intermediate values and coefficients for their calculation, which are described in [23].

The CVSS’s base score usually varies according to the Scope (S), a metric that captures whether

a vulnerability in a vulnerable component affects resources in other components beyond its security

context. Its formula can go three ways, depending on the given base metrics, according to Equation 3.1.

If the resulting value from the Impact score is less than or equal to zero, then the base score is also zero.

If the Scope is Unchanged, the scoring follows the second formula, and if the Scope is Changed, the

scoring follows the third formula. The Impact sub-score follows the same principle as the Base equation,

as it can go two separate ways, depending on the S value, as stated in Equation 3.2. The Exploitability

score only has one equation that uses the remaining base metrics: Attack Vector (AV), Attack Complexity

(AC), Privileges Required (PR), and User Interaction (UI), as displayed in Equation 3.3.

Base =

0 if Impact <= 0

Round (Min [(Impact+ Exploitability) , 10]) if S = Unchanged
Round (Min [1.08× (Impact+ Exploitability) , 10]) if S = Changed

(3.1)

Impact =

{
6.42× ISS if S = Unchanged
7.52× (ISS − 0.029)− 3.25× (ISS − 0.02)15 if S = Changed

(3.2)

Exploitability = 8.22×AV ×AC × PR× UI (3.3)

Note that the Impact Sub-Score (ISS) must be calculated first to calculate the Impact score. Accord-

ing to Equation 3.4, this sub-score will take all impact metrics: Confidentiality, Integrity, and Availability.

ISS = 1− [(1− Confidentiality)× (1− Integrity)× (1−Availability)] (3.4)

For the sake of completeness, the base metrics equations are presented here, but the base component

of SecScore does not get changed. As stated above, there will only be changes to the temporal and

environmental components of CVSS.

The calculation of the temporal score is currently computed in the original CVSS as shown in the

equation 3.5:

Temporal = Round(Base × E ×RL ×RC), (3.5)

wherein E is Exploit Code Maturity, RL is Remediation Level and RC is Report Confidence.

Most vulnerabilities do not have an exploit code, in line with [37]. However, for those that have it,

its invariability over time, especially for the parameters contained in the temporal metrics (Exploit Code

Maturity, Remediation Level, and Report Confidence), does not represent this change when it should be

significant. There are three determining factors: the identified vulnerability, an indication of the existence

Chapter 3. Proposed Framework 28

of code to exploit it, and no possession of the code for its exploitation. There may be cybercriminals in

possession of that information with the ability to exploit it. The risk of this vulnerability should increase.

Currently, the CVSS classification equation concerning temporal metrics does not refer to any factor

that varies over time but to characteristics that may change. Even if an exploit for the vulnerability is not

yet public, it is reasonable to assume that an attacker is already developing it. Therefore, it is necessary

to consider the possibility that the risk increases as time passes. However, the CVSS never reflects a real

temporal factor, that is, the variation of time in the formula with the hypothetical increase in vulnerability

risk. Since it is a metric based on time and the evolution of the vulnerability’s state over time, it must be

updated permanently, particularly in cases where vulnerabilities have an active exploit code with a High

rating.

Based on this information, the original CVSS temporal equation (3.5) was modified in order to take

into account the time elapsed since the vulnerability was discovered. Therefore, the temporal metrics

formula for vulnerabilities whose exploit code is unknown or has a High classification is rewritten as in

the equation 3.6.

Min

(
Round

(
Base ×

(
1 +

W

R/7

)
× E ×RL×RC

)
, 10

)
(3.6)

The change is the inclusion of the
(
1 + W

R/7

)
component that promotes the variability of the temporal

classification over the time of the vulnerability’s existence. This value considers the time it takes for

a vulnerability whose exploit code maturity has the highest rating or is undefined to see an official

publication. It will continually increase until it sees its mitigation applied. The value W defines the

number of weeks elapsed since the CVE was published (first official vulnerability date). It would be

compelling and closer to reality to define this parameter with a zero-day date. However, this value

is difficult to access and is conditioned by the acquisition of vulnerability intelligence services. The

variable R expresses the estimated number of days the vulnerability will see its communication by the

software vendor and can be adjusted according to the risk appetite of the organization that intends to

prioritize the vulnerabilities. The number 7 aims to normalize the final value in weeks, as this is the time

resolution of this equation, and thus, it remains the same value over a week.

This R value must be tabulated and chosen according to the risk profile of the organization that applies

it. Like GDP (Gross Domestic Product) or CPI (Consumer Price Index), possible values for the R value

should be published by a central entity (e.g., NIST, which produces the NVD, or MITRE, which assigns

the CVE numbers). These values, such as GDP or CPI, would be reviewed annually or quarterly based on

current vulnerabilities relative to the period under review. In other words, the analysis produced here in

this work could be performed every year by these central entities to ensure harmonization in calculating

this new value, which would eventually become an index to be applied by organizations in calculating

risk. It is essential to make this value variable, as the risk that vulnerabilities pose tends to change over

time.

One of the ways to statistically estimate R is through a sample’s quartiles. These statistics can provide

R values considering the first, second, and third quartiles (25%, 50%, and 75% of the vulnerabilities).

As in a risk matrix, there are only three levels of risk that organizations can accept, according to their risk

appetite. So the R values obtained from these quartiles would correspond to these levels of risk. Further

Chapter 3. Proposed Framework 29

on, in the Section 4.1, in Figure 4.2, it is possible to verify the results obtained for an analysis period of

twelve months.

Environmental metrics allow customization of the CVSS score depending on the importance of the

affected IT asset to a user’s organization, measured in terms of implemented complementary or alterna-

tive security controls, confidentiality, integrity, and availability.

In the original CVSS, the calculation of environmental metrics is performed with the equation 3.7. If

the Modified Scope (MS) is unchanged, it follows the first equation; otherwise, the second one is used.

The “Round” denominates the mathematical rounding operation. Modified Impact (MI) and Modified

Exploitability (ME) come from the original CVSS formulation, and their computation are described in

Equations 3.8 and 3.9, respectively:

Environmental =

Round(Arr [Min ([MI +ME] , 10)]×

E ×RL ×RC)
if MS = Unchanged

Round(Arr [Min (1, 08 × [MI +ME] , 10)]×
E ×RL ×RC)

if MS = Changed

(3.7)

Modified Impact =

6.42×MISS if MS = Unchanged
7.52× (MISS − 0.029)− 3.25 ×

(MISS × 0.9731− 0.02)13
if MS = Changed

(3.8)

Modified Exploitability = 8.22×MAV ×MAC ×MPR×MUI, (3.9)

wherein MAV is Modified Attack Vector, MAC is Modified Attack Complexity, MPR is Modified

Privileges Required, and MUI is Modified User Interaction.

Finally, Modified Impact Sub-Score (MISS) is calculated according to Equation 3.10. It combines the

Confidentiality, Integrity, and Availability Requirements (CR, IR, AR) with the same modified properties

- Modified Confidentiality, Integrity, and Availability (MC, MInt, MA).

MISS = Min (1− [(1− CR×MC)× (1− IR×MInt)× (1−AR×MA)] , 0.915) (3.10)

Note that, regarding environmental metrics, the CVSS already has some information to assess this

vulnerability in a given environmental context. One example of this information is the criticality of the

security properties of each asset where the vulnerability exists. However, this is not enough, and it is

necessary to prioritize its visibility to the outside (i.e., distinguish machines that have services available

to the public, such as a server, from a personal workstation).

Regarding the proposed environmental metrics formula, there are two new parameters. The param-

eter V considers the visibility of the vulnerable asset, and I represents the asset’s importance to the

organization. Both parameters vary in the continuous range between]0, 1]. The visibility of the asset

is a value that intends to characterize the asset’s exposure to the outside environment (not controlled by

the organization), and it will be higher the greater its exposure. On the other hand, the importance to the

organization characterizes the importance of the asset to the business. That is, the value will be higher

Chapter 3. Proposed Framework 30

for the greater importance of keeping the asset in operation without disruption so as not to impact the

organization.

A maximum V value implies that this asset will have great visibility to the outside and can be ac-

cessed by any user. However, a V value tending to 0 already indicates that it can only be accessed by

restricted users in the company’s network. A value of I equal to 1 implies that the importance of this asset

to the company’s business is maximum. It cannot have disruptions that impact the normal functioning of

the organization. In contrast, the same parameter, with a value close to 0, indicates lower importance and

that it will not affect any particular area of the organization for a long time or that there are alternative

solutions already foreseen by the organization to solve the problem.

In SecScore, all vulnerabilities will be classified, in their environmental aspect, with the equation

3.11. Vulnerabilities whose Modified Scope (MS) remains unchanged will use the first equation. Other-

wise, they will use the second one. In both equations, it is crucial to keep the expression V × (1 + I),

as these parameters can be any value from the continuous range]0, 1]. Since it can take decimal values,

the calculated value would necessarily be smaller, so the unit in parentheses is vital to balance the result

to be determined:

Environmental =

Min(V × (1 + I)×Round ([Min (

[MI +ME] , 10× E ×RL×RC, 10);
if MS = Unchanged

Min(V × (1 + I)×Round ([Min (1, 08

× [MI +ME] , 10× E ×RL ×RC, 10);
if MS = Changed

(3.11)

where V, I ∈]0, 1].
In the formula, visibility multiplies by importance, leading to the belief that one overlaps the other.

However, the interpretation is that visibility weighs more in the severity of the vulnerability classification

since external exposure is more dangerous and likely to lead to an attack.

At first, adding more parameters for calculating a security score could make it counterproductive,

as it would be another value to consider when assessing vulnerabilities. However, the impact of this

addition is minimal since these values are factual and observable, or else, in the case of R, they may be

provided in advance by external organizations or statistically estimated by the organization. For example,

the W in equation 3.6 is the number of weeks since the publication of the CVE code, which is observable

by recording the publication date. R is always a stable value unless there is a need to diversify the risk

appetite for different assets. Finally, the organization usually defines the value I through an initial risk

analysis, where the asset’s criticality for its mission is determined.

3.3 Vulnerability Management System

The vulnerability management system is implemented in Python with Django, aiming at building the

most likely usage scenarios to test the process and the proposed scoring equation for prioritizing vulner-

abilities. This system has the following requirements:

• Congregate all vulnerabilities from all detection sources on the same system;

Chapter 3. Proposed Framework 31

• Collect and organize vulnerability information according to a standardized structure for the orga-

nization;

• Manage the vulnerabilities of the organization’s information systems with asset owners directly

through the platform;

• Be able to monitor the vulnerabilities treatment status, dividing them into untreated vulnerabilities,

vulnerabilities in treatment, and mitigated vulnerabilities;

• Identify the machines affected by a particular vulnerability;

• Be aware of all the base, temporal (and environmental) variables on the vulnerability description

page, as well as the respective SecScore classification;

The project has two data structures: Assets and Vulnerabilities. The asset table describes the compo-

sition and identification of each asset and is composed of the following parameters:

• DNS Name;

• User;

• OS;

• Version;

• Build;

• Last IP;

• Last External IP;

• RBAC Group ID;

• RBAC Group Name;

• Asset Owner;

• Last Updated.

The table of vulnerabilities identifies all the parameters related to the vulnerability classification,

allowing its analysis and prioritization. This table is composed of the following parameters:

• CVE;

• Description;

• Attack Vector;

• Attack Complexity;

• Privileges Required;

Chapter 3. Proposed Framework 32

• User Interaction;

• Scope;

• Confidentiality;

• Integrity;

• Availability;

• Exploit Code Maturity;

• Remediation Level;

• Report Confidence;

• URL;

• State;

• Public Exploit;

• Exploit Verified;

• Exploit URL;

• Reported On;

• Asset;

• Last Update.

The interface of the developed Vulnerability Management System is composed by four main pages:

• Home page: description of the organization’s current status in vulnerability management, showing

the organization’s total number of vulnerabilities and its composition of monitored assets;

• Vulnerabilities: shows vulnerabilities that must be addressed in the organization’s systems. By

default, the vulnerabilities are prioritized by SecScore;

• In Progress: shows vulnerabilities that transitioned from “Untreated” to “Under Treatment” sta-

tus;

• Archive: shows vulnerabilities that have seen their mitigation measures implemented.

Chapter 4

Results

This chapter details the results of the experiments carried out to validate the proposal presented in Chapter

3. It is divided into three subsections: in Section 4.1, the results of the tests carried out to validate the

SecScore proposal are presented; followed by Section 4.2, where the results of the tests of the SecRush

process are presented and, finally, in Section 4.3, a brief presentation of the vulnerability management

system created specifically for this work.

4.1 SecScore

The analysis of the SecScore classification method was carried out using a dataset obtained in VulDB

[16]. There were selected vulnerabilities classified as High in the temporal parameter “Exploit Code

Maturity”, whose notice of the vulnerable software producer was published between April 2021 and

March 2022. The dataset used is available in Appendix B. In this period, 40 vulnerabilities with this

Exploit Code Maturity classification were published in the database used as a reference in this work

(VulDB).

As shown in Figure 4.1a, among the vulnerabilities analyzed, most were Apple vulnerabilities, fol-

lowed by Google. All the others represent between 3% to 5% individually, i.e. about 1 to 2 vulnerabilities

from each vendor in the analyzed period.

In this section, the number of days always represents the time elapsed between the publication of the

Apple

57%

Google

15%

Others

28%

(a) Vulnerabilities distribution

Apple Google Outros
Software Vendor

0

25

50

75

100

125

150

Da
ys

(b) Boxplot between the publication of the CVE and the confirmation
of the vulnerability

Figure 4.1: Data grouped by software vendor.

33

Chapter 4. Results 34

Dataset Sample

0

25

50

75

100

125

150

Da
ys

29.0

95.0

13.0

Figure 4.2: Boxplot between the publication of the CVE and the confirmation of the vulnerability by the software vendor.

CVE and the confirmation of the vulnerability. Figure 4.1b shows the mean number of days between

the publication of the CVE and the confirmation of the vulnerability for each vendor1. Considering all

vulnerabilities obtained from the database according to the aforementioned criteria, the mean, mode,

and standard deviation are 55 days, 20 days, and 55 days. Note that it is not trivial to extract much

information from these measures of central tendency since the mean is equal to the standard deviation.

This is primarily caused by the dispersion of data and the disparity in the treatment of vulnerabilities by

the different software producers. Therefore, it is impossible to define an R directly from, for example,

the average number of days of the entire sample.

From the exact information of the number of days between the publication of the CVE and the

confirmation of the vulnerability, a diagram of extremes and quartiles was produced for the entire sample,

as shown in Figure 4.2. In this figure, it is already possible to extract some information, namely that 25%

of vulnerabilities are discovered and recognized by software-producing companies within 13 days, and

50% of these same vulnerabilities suffer the same action within 29 days. From the median to the highest

value is a large difference in the number of days. This analysis makes it possible to conclude that half of

the vulnerabilities in the analyzed sample should be mitigated in less than a month, with 25% of them in

less than two weeks. Figure 4.1b shows the same information of Figure 4.2 segmented by each software

producer.

To better understand the dataset, it was also analyzed by quarters, as shown in Figure 4.3a. The first

quarter is the period from April to June 2021, with values of 21, 41, and 104 days for the first, second,

and third quartiles. In the second quarter, the values were 44, 87, and 87 days for the first, second, and

third quartiles; in the third quarter, the values were 3.8, 6.5, and 9.2 days for the first, second, and third

quartiles; and finally, in the fourth quarter, the values of 0.8, 3, and 37 days for the first, second, and third

quartiles, respectively.

The vulnerabilities’ frequency in each of the quarters was also analyzed in Figure 4.3b. The first

quarter of the sample contains the most vulnerabilities - 23, followed by the last quarter of the analysis

with 8. The second has only three, and the third has two quantities of little relevance for the individual

analysis.

Based on the analyzed data, the R value could be 13, 29, or 95 days (corresponding to the first,
1Each vendor issues a warning, often accompanied by a form of mitigation.

Chapter 4. Results 35

1 2 3 4
Quarter

0

25

50

75

100

125

150

Da
ys

(a) Boxplot

1 2 3 4
Quarter

0

5

10

15

20

25

Fr
eq

ue
nc
y

(b) Vulnerability frequency

Figure 4.3: Sample data grouped by quarter.

second, and third quartiles), according to the company’s risk appetite. However, the temporal analysis

done here by quarter, over a year, shows that the statistics on vulnerabilities can change over time. It is

necessary to follow up and update R when necessary.

4.1.1 Analysis on the temporal modification

Tests were performed on a typical vulnerability prioritization scenario from April 12 to April 19, 2021,

to simulate a typical week of mitigation application and validate the proposed modification.

For this purpose, six vulnerabilities were chosen for the assessment. The condition was that the

CVE of the same had already been published. However, the disclosure of the security mitigation by the

company producing the software was still to be announced. Table 4.1 shows the vulnerabilities, with

the number of days it took for the responsible company to issue a security warning, the base CVSS

classification, the SecScore classification, and its variation compared to CVSS. It should be noted that

each row of this table denotes a vulnerability with its corresponding security mitigation disclosure by the

software company. Hence why there is a repetition for “CVE-2021-30663” as, in this case, the advisory

from Apple – the software manufacturer with this CVE – was released at different dates for iOS, macOS

and Safari (21 days) and tvOS (41 days).

The information in the Table 4.1 was organized graphically by CVSS in the Figure 4.4a and by Sec-

Score in the Figure 4.4b. In both figures, the x-axis designates the days that the software manufacturer

took to disclose the security mitigation and the y-axis designates the classification of CVSS and Sec-

Score, respectively. In the CVSS graph, it is possible to observe that the vulnerabilities are distributed

throughout the rectangle of the figure, with no great relationship between them. When it is necessary

to prioritize vulnerabilities, it becomes difficult to decide. In the SecScore graph, most vulnerabilities

tend to decrease along the x-axis (days). It is important to note that this information is calculated for a

particular date (April 12) and that these vulnerabilities today would not have the same computed value.

Graphically, the interest is that the vulnerabilities form a line as similar as possible to a line with a

negative slope.

In Figure 4.5, where the horizontal axis designates the week number of 2021, it is clear to see how the

new prioritization formula affects vulnerabilities over time, allowing an evaluation on how the SecScore

evolves since the vulnerability has its CVE published. With the original CVSS computation, we would

Chapter 4. Results 36

Table 4.1: Vulnerabilities chosen for testing

CVE Days until disclosure CVSS SecScore Variation
CVE-2021-30665 21 6,3 8,5 -34,9%
CVE-2021-30663 21 6,3 8,5 -34,9%
CVE-2021-30663 41 6,3 8,5 -34,9%
CVE-2021-30713 41 5,3 7,6 -43,4%
CVE-2021-24219 88 5,5 5,7 -3,5%
CVE-2021-24220 88 6,3 6,6 -4,6%

20 30 40 50 60 70 80 90
Days

5

6

7

8

9

10

CV
SS

CVE
CVE-2021-30665
CVE-2021-30663
CVE-2021-30713
CVE-2021-24219
CVE-2021-24220

(a) CVSS priorization

20 30 40 50 60 70 80 90
Days

5

6

7

8

9

10

Se
cS
co
re

CVE
CVE-2021-30665
CVE-2021-30663
CVE-2021-30713
CVE-2021-24219
CVE-2021-24220

(b) SecScore priorization

Figure 4.4: One-week demo of vulnerability prioritization.

14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0
Weeks

4

5

6

7

8

9

10

Se
cS
co
re

CVE
CVE-2021-30116
CVE-2021-30807
CVE-2021-30860
CVE-2021-30858
CVE-2021-30661
CVE-2021-30713

Figure 4.5: Temporal variation of a subset of vulnerabilities from 2021 with SecScore.

Chapter 4. Results 37

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
V

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V(
1+

I)

I = 0 <=> V
I = 0.2
I = 0.4
I = 0.6
I = 0.8
I = 1

Figure 4.6: Analysis of V (1 + I) for 20 levels of V and 5 levels of I .

only obtain the initial value (which in the graph is represented by the initial point). With SecScore, in

turn, we get a value that increases towards ten at different speeds. Take CVE-2021-30116 as an example.

This vulnerability was the first to appear; however, CVE-2021-30661 or CVE-2021-30860 started with

lower values than the first mentioned vulnerability but quickly surpassed it as time passed. In a strategy

in which an organization is faced with vulnerability mitigation organized in weeks, it would likely try to

mitigate the first vulnerability to appear (in the 14th week of 2021). However, this graph shows that this

is not always the correct form of prioritization, requiring this variation in the much-needed time.

4.1.2 Discussion on the environmental modification

As previously presented in Section 3.2, V represents the visibility of the vulnerable asset and I represents

the asset’s importance to the organization. In the example shown in Figure 4.6, there are twenty levels of

V and five levels of I defined. The value of V (1+ I) is plotted for each level of I . It is possible to verify

that the value of V (1 + I) gets bigger the greater the value of V . However, as expected, as the value of

I increases, the greater the parameter to be added in the final calculation of the environmental metrics. It

should be noted that with this parameter, the value can depreciate when V (1+I) is less than 1 and inflate

if the opposite occurs, being possible to reach the minimum value close to 0 and a maximum value of 2.

In line with what was said in [37, 38, 39, 45], an issue that could be asked when presenting this

Chapter 4. Results 38

I = 0 <=> V I = 0.2 I = 0.4 I = 0.6 I = 0.8 I = 1
I

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1.0

V
0.05 0.06 0.07 0.08 0.09 0.10
0.10 0.12 0.14 0.16 0.18 0.20
0.15 0.18 0.21 0.24 0.27 0.30
0.20 0.24 0.28 0.32 0.36 0.40
0.25 0.30 0.35 0.40 0.45 0.50
0.30 0.36 0.42 0.48 0.54 0.60
0.35 0.42 0.49 0.56 0.63 0.70
0.40 0.48 0.56 0.64 0.72 0.80
0.45 0.54 0.63 0.72 0.81 0.90
0.50 0.60 0.70 0.80 0.90 1.00
0.55 0.66 0.77 0.88 0.99 1.10
0.60 0.72 0.84 0.96 1.08 1.20
0.65 0.78 0.91 1.04 1.17 1.30
0.70 0.84 0.98 1.12 1.26 1.40
0.75 0.90 1.05 1.20 1.35 1.50
0.80 0.96 1.12 1.28 1.44 1.60
0.85 1.02 1.19 1.36 1.53 1.70
0.90 1.08 1.26 1.44 1.62 1.80
0.95 1.14 1.33 1.52 1.71 1.90
1.00 1.20 1.40 1.60 1.80 2.00

0.00

1.00

1.01

2.00

Figure 4.7: Heatmap for the results of V (1 + I) for 20 levels of V and 5 levels of I .

parameter would be the tendency to obtain an inflated value compared to the CVSS classification since

the proposed formula presents this possibility. However, this is not always the case. With this addition

to the environmental metrics formula, there is an attenuation of the values previously computed by the

temporal metrics, as seen on Figure 4.7. This attenuation depends on the need and criticality of the

vulnerability and the asset where the vulnerability is present.

4.2 Process

The process described in Section 4.2 was tested in its entirety to collect information on its suitability in

the organization, the identified vulnerabilities, its extent and described procedures, and the performance

that this agile methodology promotes through its potential to increase.

In the tests developed, the organization’s cybersecurity and IT Administration teams were included

since the sources of the chosen vulnerabilities were monitored. They identified the vulnerabilities of the

employees’ workstations. The IT Administration Team is in charge of the management and maintenance

of these assets.

Bearing in mind that the process developed had six phases, all of them were listed in the sequence

shown in Figure 3.1.

The Discovery was carried out in an automated and continuous way, as expected, by the internal

tool. The vulnerability detection systems were already active, and they collected the information in an

automated way for the assets targeted in these tests. Hence, no additional step was necessary to what was

already being conducted internally.

Chapter 4. Results 39

Table 4.2: Identified vulnerabilities that posed the greatest risk

Software Identified CVE’s Vulnerable assets Total of vulnerabilities
Cisco Jabber 6 1907 11442
Cisco Webex Meetings 12 1751 21012
Adobe Reader DC 203 32 6496
PuTTY 11 19 209
Flash 53 45 2385
Total 41544

Then, in Prioritization, the vulnerability management system, created for the purpose, aggregated all

the information collected by the vulnerability detection tool and prioritized it according to the SecScore

classification. In this phase, the information collected by the detection tool and the information in the

NVD databases were added to the information collected in VulDB, particularly the temporal metrics of

each vulnerability. For the parameter R, essential for the calculation of SecRush, the value of 13 days

was named. Until this stage, the entire process has remained automated, as foreseen in Section 4.2.

The third phase, the Report, was the first that saw human intervention. According to Table 4.2,

the cybersecurity team prepared a brief report with the most critical vulnerabilities, synthesizing and

aggregating this information in five different software, each one having their own CVE’s and identified

vulnerable assets, capping in a total of 41544 identified vulnerabilities. The software mentioned were the

ones that, to date, had the greatest potential for an intrusion threat, not only because they had a higher

SecScore rating but because they had one or more active forms of exploitation. In order to quickly resolve

the vulnerabilities detected, a two-week rush was prepared for the IT Administration team, as these are

the owners of the assets targeted in this vulnerability detection. As foreseen in the process, this rush

was accompanied by an action report identifying these vulnerabilities and the recommended mitigation

method.

Afterward, the IT Administration team proceeded with Remediation. Of the four types of remedi-

ation foreseen in the process, all vulnerabilities fall under the same category – Normal Vulnerability

Remediation with a patch for the current rush. All had an official way of remediation, updating to a

newer version and not being critical, given the criteria that define the need for a critical vulnerability or

an emergency rush.

In the fifth phase, Verification, the team carrying out the mitigation of vulnerable assets commu-

nicated the conclusion of the mitigations to the cybersecurity team, confirming it. Confirmation was

performed at the end of the rush, two weeks after it started, through the normal vulnerability scan pro-

vided for in the process. This scan was done daily, and it was possible to see a constant decrease in the

number of vulnerabilities previously detected in the organization’s assets.

Finally, in the Retrospective, the group held a retrospective meeting. The meeting got some sug-

gestions on improving the process and adapting it to the workflow of both teams. This adjustment was

needed so each team is synchronized with the process and to improve the mitigation’s response effec-

tiveness. No content was built to save in “Lessons Learned” because there was no anomalous situation

that the team had encountered when solving this rush. The creation of the executive report was also not

carried out, not only because there was only a rush and there was no previous data with the same units to

compare, but there was also no executive need to carry it out.

Chapter 4. Results 40

Iterating the process by creating this rush proved successful as it managed, within two weeks, to

resolve 41544 vulnerabilities on the organization’s workstations. Including agile project management

concepts in this process is essential to achieving these results. These results happen for several reasons:

1/3 of the process was automated to perform these tests (Discovery and Prioritization). However, half of

the process can be automated since the construction of action reports in rush preparation is built with con-

tent previously collected from other sources, as mentioned above. The focus shifts to the rapid mitigation

of vulnerabilities, as opposed to creating documentation; that is, the cybersecurity work takes a dominant

position so that it can be executed in the shortest possible time and thus cover more vulnerabilities to be

mitigated in the same amount of time. From the beginning of the process, the roles were well defined

and grouped by the different areas/departments of the organization, that is, there is a clear responsibility

and distribution of tasks for what a rush will contain; the collaboration between the cybersecurity team

and the other teams responsible for vulnerable assets facilitates the process in order to make it faster,

as the cybersecurity team is aware of the vulnerabilities and risks that this implies in IT terms and the

impact that these will bring to the business, while the other teams responsible for the assets are more

knowledgeable about the features they have and can, with greater ease, carry out a mitigation action in

the shortest possible time; this collaboration ends up increasing the dependence between the two teams,

forcing them to work towards a common goal, which will bring about an increase in productivity; finally,

as in an agile methodology, the process is scalable – what happened with just two teams could increase

to be able to incorporate the various teams responsible for the organization’s IT assets and thus lead

vulnerability management on a much larger scale.

4.3 Vulnerability Management System

In order to carry out the process in Section 4.2, with the calculation formula in Section 3.2, a vulnerability

management system was created, as mentioned in Section 3.3. The solution was carried out through the

creation of a Web interface that presents a structure with four main pages:

• Home page: description of the organization’s current status in vulnerability management, showing

the organization’s total number of vulnerabilities and its composition of monitored assets;

Figure 4.8: Main dashboard

• Vulnerabilities: all vulnerabilities present in the organization’s systems that must be addressed.

Vulnerabilities are prioritized by default by SecScore. This page presents a table that shows some

Chapter 4. Results 41

of the data indicating the vulnerabilities, such as the CVE, the description, and the SecScore;

Figure 4.9: Active vulnerabilities page

• In Progress: All vulnerabilities that have transitioned from “Untreated” to “Under Treatment”

status. As on the “Vulnerabilities” page, the same data are displayed;

Figure 4.10: In Progress Vulnerabilities page

• Archive: all vulnerabilities that have already seen their mitigation measures implemented. Similar

to the “Vulnerabilities” and “In Progress” pages, the same data characteristic of vulnerabilities are

also presented.

Chapter 4. Results 42

Figure 4.11: Archived vulnerabilities page

• Vulnerability: characterizes a particular vulnerability associated with a CVE and identified in a

known asset. All the information presented is the same as the “CVE” page and with the same

options for the user.

Figure 4.12: Vulnerability page

Chapter 4. Results 43

• CVE: characterization of a vulnerability publicly identified and classified by external entities. It

presents information about vulnerability identification, description, SecScore ratings, vulnerable

assets associated with this CVE, baseline metrics, temporal metrics, information about creating

and updating information, and links to external content in more detail. At the end of the page, the

user is given the option to change the vulnerability status;

Figure 4.13: CVE page

Chapter 4. Results 44

Chapter 5

Conclusions

In this thesis, SecRush was presented, a new generation risk-based vulnerability management framework

that aims to standardize vulnerability management through well-defined processes and procedures, in-

dependent of the tools used for its execution. This framework includes a new vulnerability management

process and a new classification method that aims to improve the CVSS scoring system when prioritizing

vulnerabilities. The process has six phases and monitors the vulnerability from when it is detected in the

organization’s IT infrastructure until the implemented mitigation is confirmed.

The thesis presents an alternative way to calculate the CVSS. It is understandable, across all the

stakeholders involved, that there is a need to change the direction of how the CVSS is built, thanks to its

criticisms. The classification method herein proposed offers a gain in prioritizing vulnerabilities since it

addresses some of the CVSS constraints. Prioritization abandons the static analysis of CVSS, starting

to guarantee the fluctuation of its characteristics over time. Especially with the prioritization of more

severe forms of vulnerabilities, such as those with well-developed forms of exploitation. The assignment

of variable parameters opens the possibility of calculating new coefficients taking into account what will

be the natural evolution of the discovery and mitigation of vulnerabilities in the future. Thus, the new

classification formulas change the temporal and environmental metrics, introducing new variables for the

prioritization of vulnerabilities: the R, a risk factor defined statistically and in line with the company’s

risk appetite; the I , a coefficient that describes the importance of the asset for the organization; and

V , the visibility of an asset to the organization’s external network, that is, in other words, the level of

exposure.

This framework brings some significant improvements over what already exists in terms of vulnera-

bility management. In addition to the aforementioned changes, the framework is inspired by agile project

management methodologies, namely SCRUM. This agile inspiration makes the central work – mitigation

– much more privileged, and all the additional work for the vulnerability management process can be

typified rather than eliminated, as in SCRUM. The framework is also expected to be as automated as

possible, ensuring a continuous line of action for detecting and mitigating vulnerabilities. An example

of this is the first three phases of the vulnerability management process proposed here: Discovery, Prior-

itization, and Report can (and should) be fully automated, ensuring much more efficient workflows and

in line with the inherent agility of the process.

The results obtained from the experimental period of vulnerability management verified what was

estimated in the construction of the model. The process conquered a large number of mitigated vul-

45

Chapter 5. Conclusions 46

nerabilities, namely 41544 vulnerabilities mitigated in the time frame of two weeks. The vulnerability

prioritization also abandoned the organization’s old technique. The new and better prioritization mea-

sures the risk it promotes to the organization.

This work did not present known limitations during the project’s development, either in its ideation,

implementation, or results extraction. However, it would be highly fruitful to apply the test scenarios to

more than one organization, preferably from different sectors of activity, to assess the adequacy of this

plan and a new formula for managing and prioritizing vulnerabilities.

5.1 Future Work

Given the limited number of human resources to manage vulnerabilities in an organization, in addition to

this plan, it would be helpful to create a function to calculate the time needed to apply to the mitigation

of vulnerabilities. This function would make it possible to define and plan the efforts needed to mitigate

particular vulnerabilities – such as those that appear in a rush – and to adapt better parallelization.

In addition to this, it would be essential to assess the vulnerabilities prioritized with SecScore, namely

to assess the reliability in detecting the results obtained with this new calculation formula and respective

mechanisms for reducing possible outliers.

Often, vulnerabilities in IT systems are associated with active forms of exploitation that allow the

attacker to intrude through ransomware. In order to better prioritize vulnerabilities, organizations that

want to define a monetary value associated with the hypothetical loss would be helpful to associate the

financial risk of the attack, which could be evaluated based on the ransomware asking value (known or

trend of previous values).

Finally, creating a machine learning model for the best prioritization of vulnerabilities and even

an improvement to the current SecScore. Here, care must be taken not to make the same errors as

[19] and [18]. It is imperative to make clear the procedure for obtaining data, training the model, and

its reproducibility by organizations. It is the only way to make the model easy to reproduce by all

organizations and thus create a viable alternative to CVSS.

Bibliography

[1] Luca Allodi. The Heavy Tails of Vulnerability Exploitation, pages 133–148. Springer International

Publishing Switzerland, 2015.

[2] ArcherySec. Archerysec. https://github.com/archerysec/archerysec, 2021.

[3] Debricked AS. User settings — documentation — debricked. https://debricked.com/

docs/administration/user-settings.html#debai, 2021.

[4] Team Ascend. The five stages of vulnerability management. https://blog.teamascend.

com/stages-of-vulnerability-management, 2019.

[5] Balbix. A deeper look into risk-based vulnerability management. Technical report, Balbix, Inc.,

2018.

[6] Nick Cavalancia. Vulnerability management explained. https://cybersecurity.att.

com/blogs/security-essentials/vulnerability-management-explained,

2020.

[7] PCI Security Standards Council. PCI Security Standards. https://www.

pcisecuritystandards.org/index.php, 2022.

[8] Mark Dowd, John Mcdonald, and Justin Schuh. The art of software security assessment : identify-

ing and preventing software vulnerabilities. Addison-Wesley, 2007.

[9] Center for Disease Control and Prevention. Vulnerability management life cycle. https://www.

cdc.gov/cancer/npcr/tools/security/vmlc.htm, 2021.

[10] Recorded Future. Patch what matters with vulnerability management. Technical report, Recorded

Future, Inc.

[11] Ayala Goldstein. Vulnerability management – what you need to know. https://www.

whitesourcesoftware.com/resources/blog/vulnerability-management/,

2020.

[12] Jonathan Greig. With 18,378 vulnerabilities reported in 2021, NIST records fifth straight

year of record numbers. https://www.zdnet.com/article/with-18376-

vulnerabilities-found-in-2021-nist-reports-fifth-straight-year-

of-record-numbers/, 2021.

47

https://github.com/archerysec/archerysec
https://debricked.com/docs/administration/user-settings.html#debai
https://debricked.com/docs/administration/user-settings.html#debai
https://blog.teamascend.com/stages-of-vulnerability-management
https://blog.teamascend.com/stages-of-vulnerability-management
https://cybersecurity.att.com/blogs/security-essentials/vulnerability-management-explained
https://cybersecurity.att.com/blogs/security-essentials/vulnerability-management-explained
https://www.pcisecuritystandards.org/index.php
https://www.pcisecuritystandards.org/index.php
https://www.cdc.gov/cancer/npcr/tools/security/vmlc.htm
https://www.cdc.gov/cancer/npcr/tools/security/vmlc.htm
https://www.whitesourcesoftware.com/resources/blog/vulnerability-management/
https://www.whitesourcesoftware.com/resources/blog/vulnerability-management/
https://www.zdnet.com/article/with-18376-vulnerabilities-found-in-2021-nist-reports-fifth-straight-year-of-record-numbers/
https://www.zdnet.com/article/with-18376-vulnerabilities-found-in-2021-nist-reports-fifth-straight-year-of-record-numbers/
https://www.zdnet.com/article/with-18376-vulnerabilities-found-in-2021-nist-reports-fifth-straight-year-of-record-numbers/

Bibliography 48

[13] Henry Howland. CVSS: Ubiquitous and Broken. Digital Threats: Research and Practice, 2021.

[14] Sam Humphries. 4 stages of vulnerability management: A process for risk miti-

gation. https://www.exabeam.com/information-security/vulnerability-

management/, 2020.

[15] Digital Defense Inc. Vulnerability Management: What is It? Process, Best Prac-

tices. https://www.digitaldefense.com/blog/vulnerability-management-

program-basics/.

[16] Pyxyp Inc. Vuldb - vulnerability database. https://vuldb.com/, 2022.

[17] TechTarget Inc. How to achieve risk-based vulnerability management. Technical report, AT&T,

2020.

[18] Jay Jacobs, Sasha Romanosky, Idris Adjerid, and Wade Baker. Improving vulnerability remediation

through better exploit prediction. Journal of Cybersecurity, 6, 1 2020.

[19] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Idris Adjerid, and Michael Roytman. Exploit

Prediction Scoring System (EPSS). Digital Threats: Research and Practice, 2:1–17, 7 2021.

[20] Information Technology Laboratory. CVSS Severity Distribution Over Time.

https://nvd.nist.gov/general/visualizations/vulnerability-

visualizations/cvss-severity-distribution-over-time, 2021.

[21] R. A. Miura-Ko and N. Bambos. Securerank: A risk-based vulnerability management scheme

for computing infrastructures. In 2007 IEEE International Conference on Communications, pages

1455–1460. IEEE, 6 2007.

[22] Forum of Incident Response and Security Teams. Common Vulnerability Scoring System SIG.

https://www.first.org/cvss/.

[23] Forum of Incident Response and Security Teams. Common Vulnerability Scoring System v3.1:

Specification Document. https://www.first.org/cvss/v3.1/specification-

document, 2019.

[24] Forum of Incident Response and Security Teams. Exploit Prediction Scoring System (EPSS).

https://www.first.org/epss/, 2022.

[25] University of Miami. Vulnerability management. https://security.it.miami.edu/

services/vulnerability-management/index.html.

[26] National Institute of Standards and Technology. CVEs and the NVD Process. https://nvd.

nist.gov/general/cve-process.

[27] National Institute of Standards and Technology. CVE FAQs - What is the CVE Lifecycle? https:

//nvd.nist.gov/general/FAQ-Sections/CVE-FAQs#faqLink1, 2022.

https://www.exabeam.com/information-security/vulnerability-management/
https://www.exabeam.com/information-security/vulnerability-management/
https://www.digitaldefense.com/blog/vulnerability-management-program-basics/
https://www.digitaldefense.com/blog/vulnerability-management-program-basics/
https://vuldb.com/
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://www.first.org/cvss/
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/epss/
https://security.it.miami.edu/services/vulnerability-management/index.html
https://security.it.miami.edu/services/vulnerability-management/index.html
https://nvd.nist.gov/general/cve-process
https://nvd.nist.gov/general/cve-process
https://nvd.nist.gov/general/FAQ-Sections/CVE-FAQs#faqLink1
https://nvd.nist.gov/general/FAQ-Sections/CVE-FAQs#faqLink1

Bibliography 49

[28] National Institute of Standards and Technology. National Vulnerability Database. https://

nvd.nist.gov/, 2022.

[29] Bill Olson. Five steps to building a successful vulnerability management program. Technical report,

Tenable Network Security, Inc., 2017.

[30] Outpost24. Reduce time to remediation with predictive risk-based vulnerability management. Tech-

nical report, Outpost24.

[31] John Pescatore. From SANS: How to Show Business Benefit by Moving to Risk-Based Vulnera-

bility Management. Technical report, Tenable, Inc., 2020.

[32] Rapid7. Vulnerability management process: Scanning, prioritizing, and remediat-

ing. https://www.rapid7.com/fundamentals/vulnerability-management-

and-scanning/.

[33] Rapid7. 4 key pillars of modern vulnerability risk management. Technical report, 2021.

[34] Jukka Ruohonen. A look at the time delays in CVSS vulnerability scoring. Applied Computing and

Informatics, 15:129–135, 7 2019.

[35] Miguel Santana, Alan Oliveira de Sá, and Pedro Silva. SecScore - Priorização de Vulnerabilidades

de Nova Geração. INForum: Simpósio de Informática, pages 357–368, 2022.

[36] Jonathan Spring, Eric Hatleback, Allen D. Householder, Art Manion, and Deana Shick. Towards

Improving CVSS. Technical report, Carnegie Mellon University, 2018.

[37] Tenable. How to implement risk-based vulnerability management. Technical report, Tenable, Inc.,

2020.

[38] Tenable. Risk-based vulnerability management: Focus on the vulnerabilities that pose the greatest

risk. Technical report, Tenable, Inc., 2020.

[39] Tenable. Your answer to the vulnerability overload problem: Risk-based vulnerability management.

Technical report, Tenable, Inc., 2020.

[40] Tenable. Overcoming challenges created by disparate vulnerability management tools. Technical

report, Tenable, Inc., 2021.

[41] Fordham University. Vulnerability management procedure. https://www.fordham.edu/

info/29071/vulnerability_management_procedure, 2021.

[42] Dinesh Chandra Verma. Principles of Computer Systems and Network Management. Springer US,

2009.

[43] Paulo Esteves Verı́ssimo, Nuno Ferreira Neves, and Miguel Pupo Correia. Intrusion-tolerant archi-

tectures: Concepts and design. In Rogério de Lemos, Cristina Gacek, and Alexander Romanovsky,

editors, Architecting Dependable Systems, pages 3–36. Springer Berlin Heidelberg, 2003.

https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.rapid7.com/fundamentals/vulnerability-management-and-scanning/
https://www.rapid7.com/fundamentals/vulnerability-management-and-scanning/
https://www.fordham.edu/info/29071/vulnerability_management_procedure
https://www.fordham.edu/info/29071/vulnerability_management_procedure

Bibliography 50

[44] Vulcan. Justify your vulnerability management program. Technical report, Vulcan Cyber Ltd.

[45] Vulcan. Vulnerability management 2020: Navigating to new heights. Technical report, Vulcan

Cyber Ltd., 2019.

[46] Michal Walkowski, Maciej Krakowiak, Marcin Jaroszewski, Jacek Oko, and Slawomir Sujecki.

Automatic CVSS-based Vulnerability Prioritization and Response with Context Information. Inter-

national Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages

1–6, 2021.

[47] Michał Walkowski. VMC (OWASP Vulnerability Management Center). https://github.

com/DSecureMe/vmc, 9 2022.

[48] we45. Orchestron community. https://github.com/we45/orchestron-community,

2020.

[49] Michael E Whitman and Herbert J Mattord. Management of information security. Cengage Learn-

ing, 2014.

https://github.com/DSecureMe/vmc
https://github.com/DSecureMe/vmc
https://github.com/we45/orchestron-community

Appendix A

CVSS Metrics

A.1 Base Metrics

The Base Metrics of CVSS are all metrics that serve as a basis for the preliminary vulnerability assess-

ment. In Table A.1, these metrics are described in full detail.

A.2 Temporal Metrics

Temporal metrics measure the current state of exploit techniques or code availability, the existence of

patches or workarounds, or the certainty of the vulnerability description. In Table A.2, these metrics are

described in full detail.

A.3 Environmental Metrics

Environmental metrics allow customization of the CVSS score depending on the importance of the af-

fected IT asset to a user’s organization, measured in terms of implemented complementary or alternative

security controls, confidentiality, integrity, and availability. In Table A.3, these metrics are described in

full detail.

51

Appendix A. CVSS Metrics 52

Table A.1: CVSS - Base Metrics

Exploitability
Metrics

The exploitability metrics reflect values related to the affected components and
properties of a vulnerability that would carry out a successful attack.
Attack Vector
(AV)

The context in which exploiting the vulnerability is possible -
the value will be greater the more an attacker can reach (logi-
cally and physically) to exploit the vulnerable component.

Attack Com-
plexity (AC)

Conditions beyond the attacker’s control that must exist to ex-
ploit the vulnerability.

Privileges
Required (PR)

Level of privileges an attacker must have before successfully
exploiting the vulnerability – the fewer privileges required, the
higher the score.

User Interac-
tion (UI)

Captures the need for a human user, other than the attacker, to
participate in the successful compromise of the vulnerable com-
ponent

Scope Captures whether a vulnerability in a vulnerable component affects resources
in other components beyond its security context.

Impact Met-
rics

Captures the effects of a successfully exploited vulnerability on the component
that suffers the worst outcome that is most directly and predictably associated
with the attack.
Confidentiality
(C)

Measures the impact on the confidentiality of information re-
sources managed by a software component thanks to a success-
fully exploited vulnerability – the rating is higher when the loss
to the affected component is greater.

Integrity (I) Measures the integrity impact of a successfully exploited vul-
nerability – the rating is higher when the consequence for the
affected component is greater.

Availability (A) Measures the impact on the availability of the affected compo-
nent resulting from a successfully exploited vulnerability. As
availability refers to the accessibility of information resources,
attacks that consume network bandwidth, processor cycles, or
disk space impact the availability of the affected component –
the rating is higher when the consequence for the impacted com-
ponent is greater.

Table A.2: CVSS - Temporal Metrics

Exploit Code Maturity
(E)

Measures the likelihood that the vulnerability will be attacked and is
typically based on the current state of exploit techniques, availability of
exploit code, or active in-the-wild exploitation.

Remediation Level (RL) It is an important factor for prioritization - the less official (from the
vendor) and permanent a fix, the higher the vulnerability’s score.

Report Confidence (RC) Measures the degree of confidence that the vulnerability exists and the
credibility of known technical details - the more a vulnerability is vali-
dated by the vendor or other trusted sources, the higher the score.

Appendix A. CVSS Metrics 53

Table A.3: CVSS - Environmental Metrics

Security Requirements
(CR, IR, AR)

Allows the analyst to customize the CVSS score depending on the im-
portance of the affected IT asset to a user’s organization, measured in
terms of confidentiality, integrity, or availability - each security require-
ment has three possible values: Low, Medium, or High.

Modified Base Metrics Allows the analyst to override individual baseline metrics based on spe-
cific user environment characteristics. These include Modified Attack
Vector (MAV), Modified Attack Complexity (MAC), Modified Priv-
ileges Required (MPR), Modified User Interaction (MUI), Modified
Scope (MS), Modified Confidentiality (MC), Modified Integrity (MI)
or Modified Availability (MA).

Appendix A. CVSS Metrics 54

Appendix B

SecScore Dataset

This dataset was used to calculate the R value from the temporal metrics of SecScore. Table B.1 is a

summarized version of the dataset with only the essential data. The full dataset is available on this thesis

entry in ULisboa’s repository.

Table B.1: SecScore Dataset

Created in
VulDB

Vulnerable
Product

Exploit
Code
Maturity
(E)

Remediation
Level (RL)

CVE Reserved
CVE (date)

Advisory
disclosed
(date)

07/03/2022 Mozilla
Fire-
fox/Firefox
ESR/Thunderbird
XSLT

High Official Fix CVE-
2022-
26485

04/03/2022 07/03/2022

07/03/2022 Mozilla
Fire-
fox/Firefox
ESR/Thunderbird
WebGPU
IPC Frame-
work

High Official Fix CVE-
2022-
26486

04/03/2022 07/03/2022

11/02/2022 Apple
iOS/iPadOS
WebKit

High Official Fix CVE-
2022-
22620

05/01/2022 11/02/2022

11/02/2022 Apple
macOS
WebKit

High Official Fix CVE-
2022-
22620

05/01/2022 11/02/2022

11/02/2022 Apple Sa-
fari WebKit

High Official Fix CVE-
2022-
22620

05/01/2022 11/02/2022

15/02/2022 Google
Chrome
Animation

High Official Fix CVE-
2022-
0609

14/05/2022 15/02/2022

18/02/2022 RigoBlock
Dragos set-
MultipleAl-
lowances

High Not Defined CVE-
2022-
25335

18/02/2022 18/02/2022

55

Appendix B. SecScore Dataset 56

Created in
VulDB

Vulnerable
Product

Exploit
Code
Maturity
(E)

Remediation
Level (RL)

CVE Reserved
CVE (date)

Advisory
disclosed
(date)

14/01/2022 NUUO
NVR-
Mini2 TAR
Archive
han-
dle import user.php

High Official Fix CVE-
2022-
23227

14/01/2022 14/01/2022

19/10/2021 Apple
watchOS
IOMobile-
Frame-
Buffer

High Official Fix CVE-
2021-
30807

13/04/2021 26/07/2021

19/10/2021 Apple
macOS
IOMobile-
Frame-
Buffer

High Official Fix CVE-
2021-
30807

13/04/2021 26/07/2021

23/10/2021 SuiteCRM
Log File
Name
Setting

High Official Fix CVE-
2021-
42840

22/10/2021 23/10/2021

23/10/2021 BQE Bil-
lQuick
Web Suite
xp cmdshell

High Official Fix CVE-
2021-
42258

11/10/2021 23/10/2021

29/10/2021 Google
Chrome

High Official Fix CVE-
2021-
38000

03/08/2021 29/10/2021

29/10/2021 Google
Chrome V8

High Official Fix CVE-
2021-
38003

03/08/2021 29/10/2021

07/09/2021 Zoho Man-
ageEngine
ADSelfSer-
vice Plus
REST API

High Official Fix CVE-
2021-
40539

06/09/2021 07/09/2021

14/09/2021 Apple
iOS/iPadOS
Core-
Graphics
FORCE-
DENTRY

High Official Fix CVE-
2021-
30860

13/04/2021 13/09/2021

15/09/2021 Google
Chrome V8

High Official Fix CVE-
2021-
30632

13/04/2021 15/09/2021

Appendix B. SecScore Dataset 57

Created in
VulDB

Vulnerable
Product

Exploit
Code
Maturity
(E)

Remediation
Level (RL)

CVE Reserved
CVE (date)

Advisory
disclosed
(date)

15/09/2021 Google
Chrome
Indexed DB
API

High Official Fix CVE-
2021-
30633

13/04/2021 15/09/2021

21/09/2021 Apple
macOS
WebKit

High Official Fix CVE-
2021-
30858

13/04/2021 13/09/2021

24/09/2021 Apple
iOS XNU
Kernel

High Official Fix CVE-
2021-
30869

13/04/2021 24/09/2021

25/09/2021 Apple ma-
cOS XNU
Kernel

High Official Fix CVE-
2021-
30869

13/04/2021 24/09/2021

06/07/2021 Kaseya Vir-
tual System
Administra-
tor

High Official Fix CVE-
2021-
30116

02/04/2021 06/07/2021

17/07/2021 Google
Chrome V8

High Official Fix CVE-
2021-
30563

13/04/2021 17/07/2021

27/07/2021 Apple
iOS/iPadOS
IOMobile-
Frame-
Buffer

High Official Fix CVE-
2021-
30807

13/04/2021 26/07/2021

30/06/2021 Western
Digital WD
My Book
Live/WD
My Book
Live Duo
Admin-
istrator
API

High Workaround CVE-
2021-
35941

29/06/2021 30/06/2021

06/05/2021 Apple iOS
WebKit

High Official Fix CVE-
2021-
30666

13/04/2021 03/05/2021

06/05/2021 Apple
iOS/iPadOS
WebKit

High Official Fix CVE-
2021-
30665

13/04/2021 03/05/2021

06/05/2021 Apple iOS
WebKit
Storage

High Official Fix CVE-
2021-
30661

13/04/2021 03/05/2021

06/05/2021 Apple
iOS/iPadOS
WebKit

High Official Fix CVE-
2021-
30663

13/04/2021 03/05/2021

Appendix B. SecScore Dataset 58

Created in
VulDB

Vulnerable
Product

Exploit
Code
Maturity
(E)

Remediation
Level (RL)

CVE Reserved
CVE (date)

Advisory
disclosed
(date)

06/05/2021 Apple
watchOS
WebKit

High Official Fix CVE-
2021-
30665

13/04/2021 03/05/2021

06/05/2021 Apple
macOS
WebKit

High Official Fix CVE-
2021-
30665

13/04/2021 03/05/2021

06/05/2021 Apple
macOS
WebKit

High Official Fix CVE-
2021-
30663

13/04/2021 03/05/2021

06/05/2021 Apple Sa-
fari WebKit

High Official Fix CVE-
2021-
30665

13/04/2021 04/05/2021

06/05/2021 Apple Sa-
fari WebKit

High Official Fix CVE-
2021-
30663

13/04/2021 04/05/2021

25/05/2021 Apple tvOS
WebKit

High Official Fix CVE-
2021-
30663

13/04/2021 24/05/2021

25/05/2021 Apple
macOS
TCC

High Official Fix CVE-
2021-
30713

13/04/2021 24/05/2021

12/04/2021 Thrive Opti-
mize Plugin
REST API

High Official Fix CVE-
2021-
24219

14/01/2021 12/04/2021

12/04/2021 Thrive
Legacy
Rise Theme
REST API
Endpoint

High Official Fix CVE-
2021-
24220

14/01/2021 12/04/2021

27/04/2021 Apple
macOS
WebKit
Storage

High Official Fix CVE-
2021-
30661

13/04/2021 26/04/2021

27/04/2021 Apple tvOS
WebKit
Storage

High Official Fix CVE-
2021-
30661

13/04/2021 26/04/2021

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Goals
	Contributions
	Document Structure

	Related Works
	Vulnerability Management Process
	Vulnerability Management Process in Four Stages
	Vulnerability Management Process in Five Stages
	Vulnerability Management Process in Six Stages

	Vulnerability Prioritization
	CVSS: Common Vulnerability Scoring System
	EPSS: Exploit Prediction Scoring System
	Other scoring systems

	Risk-Based Vulnerability Management
	Vulnerability Management Systems (VMSs)

	Proposed Framework
	Process
	Discovery
	Prioritization
	Report
	Remediation
	Verification
	Retrospective

	SecScore - Scoring Method
	Vulnerability Management System

	Results
	SecScore
	Analysis on the temporal modification
	Discussion on the environmental modification

	Process
	Vulnerability Management System

	Conclusions
	Future Work

	Bibliography
	CVSS Metrics
	Base Metrics
	Temporal Metrics
	Environmental Metrics

	SecScore Dataset

