
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE FÍSICA

Study of Tensor Network Applications in

Complex Networks

Francisco Santos Sousa e Costa

Mestrado Integrado em Engenharia Física

Dissertação orientada por:

João Carlos Caetano de Freitas Pires da Cruz

Hygor Piaget Monteiro Melo

2022

Resumo da Tese

Em F́ısica, problemas de muitos corpos são problemas que envolvem sistemas compostos por um
grande número de part́ıculas que interagem entre si e estão correlacionadas umas com as outras.
Resolver este tipo de problemas é bastante dif́ıcil uma vez que a quantidade de informação
necessária para descrever tal sistema aumenta exponencialmente com o número de part́ıculas
do sistema. Para além disso, a função de onda do sistema seria demasiado complexa para
ser calculada. Posto isto, é necessário arranjar métodos diferentes para resolver o problema.
Considerando um sistema de eletrões independentes uns dos outros e com dois estados posśıveis,
então, para descrever este sistema, seriam necessárias 2N dimensões, sendo que N corresponde
ao número de eletrões que compõem o sistema. No entanto, em sistemas reais as part́ıculas não
são independentes umas das outras. Existe correlacionamento entre as part́ıculas, o que faz com
que a dimensão necessária para descrever o sistema diminua. Em teoria, 2N estados totais seria
uma quantidade de informação intratável. Todavia, o correlacionamento entre as part́ıculas faz
com que os sistemas reais observáveis não explorem o espaço de Hilbert por completo, mas,
focam-se numa pequena parte deste espaço.

Este correlacionamento pode ser visto como uma generalização das coordenadas. Este conceito
proveniente da mecânica anaĺıtica permite fazer uma renormalização das unidades de forma a
descrever o mesmo sistema usando menos dimensões. O mesmo se passa em sistemas cujas
part́ıculas estão correlacionadas, uma vez que esse correlacionamente por si só, reduz as di-
mensões necessárias para descrever o sistema. Certas redes complexas têm propriedades que nos
permitem renormalizar a sua escala, obtendo-se a mesma rede, sem sofrer nenhuma alteração.
A este tipo de redes, chamam-se redes livre de escala e possuem uma geometria fractal, ou seja,
ao mudar-se a escala da rede, esta mantêm-se inalterada. De forma a estudar o método que
perde menos informação quando se renormaliza a escala de redes complexas, como por exemplo
uma rede Barabási, optou-se por utilizar redes de tensores, mais propriamente um algoritmo
denominado por Matrix Product State ou MPS. Escolheu-se utilizar o MPS pela sua habilidade
de descrever a função de onda de sistemas quânticos. Considerando um sistema de dois spins
correlacionados, sabe-se que a função de onda deste sistema é dada por ψn1n2 =∑

iA
n1
i A

n2
i , ou

seja pelo produto da amplitude de cada spin representada por cada Ai. A mesma expressão
representa também a MPS de um sistema de duas part́ıculas com spin. A área das redes tenso-
riais tem uma notação mais visual, ao contrário de outros métodos matemáticos. Esta notação
consiste em nós e ligações. Um vetor é representado por um nó com uma ligação enquanto uma
matriz é representada por um nó com duas ligações, como mostra a figura 1. O número de
ligações representa o rank do tensor em questão, isto é, um tensor de rank 3 terá três ligações,
onde cada uma simboliza um ı́ndice, como por exemplo i ou j. A vantagem desta notação é que

i

permite representar cálculos complexos de forma esquemática. A função de onda apresentada
anteriormente seria representada, nesta notação, como dois nós que partilham ambos a mesma
ligação, neste caso a ligação cujo ı́ndice é igual a i. Para além disso, ambos os nós possuem
também uma ligação que não é partilhada, sendo que cada uma representa um ı́ndice diferente
e mudo.

Figure 1: Representação gráfica de um vetor e de uma matriz.

Uma MPS pode ser vista como um comboio de tensores, onde, inicialmente não existe distinção
entre as carruagens, isto é, a função de onda do sistema é representada graficamente por um único
tensor compacto. De forma a transformar a MPS num conjunto de tensores correlacionados é
necessário realizar a decomposição em valores singulares (SVD) sucessivamente. À medida que
se aplica o SVD, está-se a “cortar” o tensor compacto. Tal como está representado na figura 2, o
tensor original transforma-se num conjunto de tensores representados por nós, onde cada site do
tensor original passa a dois tensores resultantes da aplicação do SVD. O tensor que representa
os vetores próprios e o tensor que representa os valores próprios. O tensor que representa cada
site da MPS tem duas ligações. A primeira representa a dimensão f́ısica do site e a segunda
representa a bond dimension e liga-se ao tensor dos valores próprios. A bond dimension é a
dimensão do espaço necessária para descrever o sistema e é a caracteŕıstica que iremos estudar.

Figure 2: Representação gráfica de uma MPS onde se está a aplicar o SVD.

Uma das vantagens de utilizar este algoritmo é o facto de o SVD poder ser aplicado a qualquer
tensor. Para além disso, parte da informação que compõe o tensor pode ser desprezada visto
que a aplicação do SVD numa matriz A origina uma matriz U, uma matriz Σ e uma matriz V.
A = UΣV t, onde a matriz A é uma matriz m×n, a matriz U é uma matriz m×m, a matriz
Σ é uma matriz m×n e a matriz V t é uma matriz n×n. A matriz U e V são denominadas
de matrizes de vetores próprios esquerdos e direitos, respetivamente. A matriz Σ é denominada
de matriz de valores próprios. Ao analisar a matriz dos valores próprios, consegue-se retirar
informação sobre a importância de cada valor próprio visto que estes se encontram organizados
por grau de importância . Posto isto, a informação mais relevante para descrever o sistema

ii

encontra-se nos primeiros valores próprio sendo que se pode truncar estas matrizes e desprezar
a informação negligenciável.

Ao utilizar a representação e a notação da MPS é posśıvel descrever o mesmo sistema usando
apenas N2m3 parâmetros ao invés de 2N parâmetros, onde N é o número de part́ıculas do
sistema e m é a bond dimension. Esta redução drástica do número de coeficientes necessários
para descrever o sistema permite resolver problemas de muitos corpos, onde a quantidade de
memória necessária é um factor fundamental. Esta compressão é valida sob a condição de que
a MPS está a representar os vetores próprios de baixa energia de Hamiltonians locais a uma
dimensão.

De forma a estudar o método que perde menos informação quando se renormaliza a escala de
uma rede complexa, utilizou-se uma rede Barabási. Escolheu-se um tipo de rede complexa uma
vez que estas representam naturalmente sistemas reais como por exemplo sistemas orgânicos,
ecológicos e sociais. Gerou-se este tipo de rede e retirou-se a conectividade de cada nó da rede,
isto é, se o primeiro nó se encontra ligado ao segundo, terceiro, até ao último. Se o nó partilhar
uma ligação com outro então regista-se o valor 1 na conectividade entre esses dois nós. Caso
não partilhem nenhuma ligação então deve registar-se um 0. Uma vez obtida a conectividade
de todos os nós, utilizou-se essa informação como input para a MPS. Para o mesmo input,
aplicou-se o algoritmo várias vezes, onde se fez variar o valor da bond dimension, visto que é a
caracteŕıstica que queremos estudar. Ao aplicar o algoritmo está-se a treinar a MPS com base
na conectividade dos nós da rede complexa. De forma a treinar a MPS, primeiro aplica-se o
SVD e depois o algoritmo DMRG. Neste algoritmo realizam-se vários varrimentos da MPS onde
os valores aleatórios que originalmente preenchiam a MPS são alterados de acordo com o input
utilizado. Uma vez treinada a MPS, é necessário avaliá-la, através de medições de cada site da
MPS. Dado vez que a dimensão f́ısica de cada site é 2, mede-se o primeiro site e obtém-se uma
dos dois posśıveis valores, 0 ou 1. De seguida, mede-se o segundo site com a condicionante do
valor obtido no primeiro site. Repete-se este processo até se ter medido todos os sites da MPS
e obtém-se um resultado de output. É necessário calcular a fidelidade do resultado e comparar
com a fidelidade original da MPS de forma a avaliar o estado de convergência da mesma.

Treinou-se a MPS utilizando o mesmo input, para diferentes valores da bond dimension, e conclui-
se que para valores da bond dimension superiores a 3, a MPS não converge. Para valores de 2 e 3,
a MPS convergiu e em ambos os casos obtiveram-se 2 resultados de output, o que faz com que seja
posśıvel concluir que o valor da bond dimension ideal é entre 2 e 3, corroborando o valor teórico de
2.7, para uma rede Barabási. O facto de se terem obtido 2 valores de output leva à conclusão de
que o espaço vetorial da MPS é composto por dois vetores linearmente independentes, os vetores
da base. Apesar de se ter cumprido o objetivo inicial, é de salientar que o ńıvel de complexidade
deste método é demasiado elevado face a outros métodos como modelos generativos ou redes
neuronais, que conseguem obter os mesmos resultados de formas mais simples, mas, no entanto,
mais devagar. Quando se passar para o dominio da computação quântica, os algoritmos baseados
em redes de tensores serão mais vantagosos visto que a complexidade desaparece, uma vez que
se está a computar em algoritmos de natureza quântica.

Palavras-Chave: Redes de Tensores, MPS, Bond Dimension, DMRG.

iii

Abstract

Many-body quantum problems are still very complex to solve and today’s solutions do not take
into account that the objects of the systems are entangled with each other. By using tensor
networks, we are able to describe the same system using drastically fewer coefficients. Instead
of 2N parameters, in certain systems, we only require N2m3. In the Matrix Product State
(MPS) algorithm, it is included the Singular Value Decomposition (SVD), which allows us to
truncate the tensors and keep only the crucial information about the system, and the Density
Matrix Renormalization Group (DMRG), which allows us to obtain the lowest energy MPS wave
function of our system. The goal was to study the optimal value for the bond dimension when
renormalizing the scale of a complex network. The connectivity of each node of a Barabási
network was used as the input for the algorithm and the MPS was trained based on whether
the nodes share a connection or not. When measuring each site after training, we obtained two
different outputs corresponding to the two linear independent vectors that form the space of the
MPS. The MPS was trained using different values for the bond dimension. Nevertheless, only
the values equal to 2 and 3 produced viable results since it did not converge for different values
of the bond dimension. The connectivity of a Barabási network follows a power law proportional
to x−p. When the Barabási network was characterized we obtained that its connectivity followed
a power law proportional to x−2.7, which is between the theoretical values of 2 and 3. The value
obtained for p = 2.7 further proves the value obtained for the bond dimension between 2 and
3, meaning that the dimension of the space needed to fully describe the system is between said
values. Finally, two different methods are suggested which obtain the same results in a simpler
and quicker way.

Keywords: Tensor Networks, MPS, Bond Dimension, DMRG.

iv

Acknowledgement

First and foremost, I would like to express my gratitude towards my advisors, João Cruz and
Hygor Melo, for all the effort and help they gave me. Without them, this dissertation would not
be possible.

Secondly, my family, that was there for me every day of my life, to help me with anything I
needed without hesitation.

Last, but not least, all my friends, past and present, that have been a part of my journey so far.

v

Content

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

2 State of the Art 3
2.1 Many-Body Quantum System Problem . 3
2.2 Complex Networks . 4
2.3 Tensor Networks . 6

2.3.1 Notation . 6
2.3.2 Matrix Product State . 7
2.3.3 Matrix Product Operator . 8
2.3.4 Projected Entangled Pair States . 9
2.3.5 Tree Tensor Networks . 10
2.3.6 Multiscale Entanglement Renormalization Ansatz 11

3 Problem Statement 12

4 Literature Review of MPS 15
4.1 Tensor Networks . 15

4.1.1 Low Entanglement States . 16
4.2 Matrix Product State . 16

4.2.1 Singular Value Decomposition . 17
4.2.2 MPS Gauge . 18
4.2.3 From a general quantum state to a MPS 19

4.3 Matrix Product Operator . 21
4.4 Ground state calculations with MPS . 23

5 Methods 25

6 Results 37

7 Discussion and Conclusion 41

Appendices 47

A Code 49

vi

List of Figures

1 Representação gráfica de um vetor e de uma matriz. ii
2 Representação gráfica de uma MPS onde se está a aplicar o SVD. ii

2.1 One configuration of the Ising model being re-scaled. On the left image, it is
represented one configuration of the Ising model; In the middle image, one is
re-scaling and forming groups of 9 spins; On the right image, one has the same
configuration in a different scale length. Figure taken from Ref. [8] 4

2.2 Example of a complex network. Figure taken from Ref. [12] 5
2.3 Diagram representation of N-rank tensors. Figure inspired by Ref. [18]. 6
2.4 Examples of tensor contractions. Figure inspired by Ref. [18]. 6
2.5 a)Graphical representation of ∂H

∂ψj
̸= 0; b) Graphical representation of a generic

partial derivation with respect to a tensor A. Figure inspired by Ref. [9]. 7
2.6 Graphical representation of the diagram notation of the vector T. Figure taken

from Ref. [20]. 7
2.7 Graphical representation of the MPS applied to a 4-party state. Figure taken

from Ref. [21]. 8
2.8 Graphical representation of a MPO. Figure taken from Ref. [22]. 9
2.9 Graphical representation of the product of two MPOs for a tensor ona single site

i. Figure taken from Ref. [23]. 9
2.10 Graphical representation of a 4x4 PEPS with open boundary conditions. Figure

taken from Ref. [25]. 10
2.11 Graphical illustration of a TNN. Figure taken from Ref. [28]. 10
2.12 Graphical illustration of a 1D MERA. Figure taken from Ref. [9]. 11

3.1 Example of a small complex network. Figure taken from Ref. [31]. 12
3.2 A simple pendulum of mass m and length l. Figure taken from Ref. [34]. 13

4.1 Graphical representation of GG−1. Figure taken from Ref. [35]. 19
4.2 Insertion of GG−1 in between the first and second tensor of a general MPS. Figure

taken from Ref. [35]. 19
4.3 Graphical representation of the first tensor, the singular value and ψ after the

SVD. 20
4.4 Graphical representation of a construction of a MPS of an general quantum state

in an iterative way by successive applications of the SVD; Visual interpretation
of the equation 4.12. Figure taken from Ref. [42]. 21

4.5 Graphical representation of a MPO. Figure taken from Ref. [28]. 22

vii

LIST OF FIGURES

4.6 Graphical representation of a MPO of a 4 site system. 22

5.1 Example of a Barabási graph with 10 nodes and the code used to generate it. . . 26
5.2 Code used to extract the connections of each node in order to be used as an input

for the MPS. 26
5.3 Code used to extract the connections of each node in order to be used as an input

for the MPS. 27
5.4 Pseudo code for a randomized SVD. Figure taken from Ref. [50]. 27
5.5 (a) Code used to generate and fill the MPS with random values drawn from a

normal Gaussian distribution. (b) Example of the sampling MPS with 3 nodes. . 28
5.6 (a) Result of performing the SVD onto site 3 and absorbing UΣ into site 2; The

first site remains unaltered. (b) Result of performing the SVD in all 3 sites and
normalizing the first one. 29

5.7 Resulting sampling MPS after being filtered by our input. 30
5.8 Illustration of the DMRG being applied one time. After we reach (c), we need to

repeat (b) and (a) and that completes one run of the algorithm. 30
5.9 Summary of the DMRG in practise. A single run of the DMRG consists of

performing all 3 steps. Step 3 is illustrated in figure 5.10. 31
5.10 (a) Visualisation of the right sweep. Since we are working with the 3 sites MPS

example, the right sweep will only consist of doing the matrix multiplication
between sites 2 and 3. (b) Result of applying step 4 of the prototype shown in
figure 5.4 when the center is site number 1. 31

5.11 Calculation of the SVD applied to the normalized local tensor represented in
figure 5.2(b). 32

5.12 (a) Σ and V T being absorbed into a single tensor that is going to be absorbed
by the tensor representing site 2 of the sampling MPS. (b) Absorption of the
resulting tensor into the tensor representing the original site 2 of the sampling
MPS. 33

5.13 Result of the sampling MPS after performing steps 1 and 2 of the summary
shown in figure 5.9. Site 1 is represented by U, calculated in figure 5.11. Site 2
is represented by the tensor calculated in figure 5.12(b). Site 3 is represented by
the original tensor shown in figure 5.6(b) . 33

5.14 Resulting sampling MPS after 1 run of the DMRG algorithm. 34
5.15 Result of S×S†, where S is the tensor representing site 1 of the MPS after the

first run of the DMRG shown in figure 5.14. 35
5.16 Result of the contraction between the tensor representing site 1, [1 0], and the

tensor representing site 2, shown in figure 5.14. 35
5.17 Result of contraction between [1 0], that represents site collapsing to |0>, know-

ing that site 1 collapsed to |1 >, and the tensor that represents site 3, shown in
figure 5.14. 36

6.1 Graphic of the LN of the number of connections vs the LN of the number of nodes. 37

A.1 Code used to generate the Barabási network and extract the connectivity of each
node. 49

A.2 Code used to for the configurations of the algorithm. 50

viii

A.3 Code used to set up the Logger. 51
A.4 Code used to process the data. 52
A.5 Code used to generate the sampling MPS and the absorption of the result of the

SVD. 52
A.6 Code used to perform the SVD . 53
A.7 Code used to evaluate the MPS. 54
A.8 Code used to perform the DMRG algorithm. 55
A.9 Code used to perform the right sweep. 56
A.10 Code used to perform the left sweep. 56
A.11 Code used to calculate the local tensor. 57
A.12 (a) Performing the DMRG from the right to the left. (b) Performing the DMRG

from the left to the right . 57
A.13 (a) Code used to set the configurations. (b) Code used to run the DMRG. 58
A.14 Code used to set the path configuration and to start the code. 58
A.15 Code used to measure the MPS and evaluate the convergence of the MPS. . . . 59

Symbols and Acronyms

TN Tensor Networks
MPS Matrix Product State
SV D Singular Value Decomposition
DMRG Density Matrix Renormalization Group
MERA Multiscale Entanglement Renormalization Group
RN Renormalization Group
MPO Matrix Product Operator
PEPS Projected Entangled Pair States
TTN Tree Tensor Networks

x

Chapter 1

Introduction

1.1 Motivation

Tensor Networks (TN), have an increasing important role in the progress of understanding entan-
glement in many-body quantum systems. “Tensor Networks are mathematical representations
of quantum many-body systems based on their entanglement structure” and “different tensor
network structures describe different physical situations, such as low-energy states of gapped 1D
systems, 2D systems and scale-invariant systems” [1]. Moreover, TN are also relevant in areas
such as quantum gravity, where Multiscale Entanglement Renormalization Ansatz, (MERA),
can be linked to geometry space through the anti-de Sitter/conformal field theory, (AdS/CFT),
where AdS is a geometric space with negative curvature and CFT is a quantum field theory with
conformal symmetry which includes scale invariance [2].

Today’s challenges focus, mainly, on the application of machine learning to real systems, such as
text language [3]. However, this does not take into account that the components of the systems
are entangled with each other and for that reason, it violates the main principle of the appli-
cation of the industry’s most commonly used algorithms, neural networks, and decision trees.
These algorithms rely on the independence of the system’s components and the fulfilment of
Kolmogorov’s axioms for the space of probabilities. One possible way to overcome this limita-
tion is by using tensor networks, which are algorithms developed in Physics to study and explain
the ground states of many body quantum systems with entanglement.

Nowadays, Guifre Vidal and his research team are at the front of tensor networks applied to
many-body quantum systems. Using MERA to exploit the spacial structure of entanglement
allows them to produce an efficient description of the ground state of the system [4].

1

1.2. OBJECTIVES

1.2 Objectives

In this project we aim to study the minimization of information loss in scale renormalization
of complex networks using tensor networks. Primarily, in this work, the goal is to learn what
tensor networks are and only then, I will apply a tensor network to a complex network. In the
next phase, the objective is to apply this algorithm to a Barabási network, which is an example
of an inflationary system, in order to find the the minimum value of the dimension of the space
that describes the network and loses less information.

2

Chapter 2

State of the Art

2.1 Many-Body Quantum System Problem

The many-body quantum problem is a physics problem where one needs to describe the proper-
ties of quantum systems made of interacting particles. Considering that the particles have more
than one possible state, the wave function of the system has an enormous amount of information
and it is extremely difficult or even impossible to calculate.

The fact that the dimension of the space of possible configurations increases exponentially with
N, where N is the number of particles, it makes this problem very complex. Nonetheless, one
can use some analytical approximations and numerical methods to address the issue. Examples
are Hartree-Fock methods and approximations [5], the Monte Carlo methods [6] and numerical
methods based on the renormalization group (RG) paradigm [7].

A many-body quantum system has many quantum degrees of freedom. The square of the wave
function gives the amplitude of probability of each single system configuration, which means that
a generic state of the system is described by the N-rank tensor, ψ =∑

α⃗ψα1α2...αN |α1α2...αN >,
α⃗ = α1α2...αN . In the mean field approach, one assumes that the quantum correlations are
negligible, which means that wave function of the many-body system is a result of a tensor
product of N individual wave functions. This implies that, the dimension of space has an
exponential growth with N.

Another method is the Real-Space Renormalization Group. This method is an approximation
based on the hypothesis that the ground of a system is composed of low-energy states of the
system’s bipartitions. Using this hypothesis it is possible to describe the ground state properties
of many-body systems with large size N. To better understand RG, Ref. [8] uses the Ising
model as an example, where one re-scales the problem and obtaining the same result in different
lengths. In figure 2.1, it is shown one configuration of the Ising model in a certain scale, on the
left, and when one re scales the problem, middle figure, groups of nine spins are formed and
the dominant spin defines the spin of the group. In an Ising model, the critical temperature
represents the temperature at which there are no longer spontaneous magnetizations, meaning
that the atomic spins start to align with each other. If one is at the critical temperature, Tc,
then the system should be scale invariant.

3

2.2. COMPLEX NETWORKS

Figure 2.1: One configuration of the Ising model being re-scaled. On the left image, it is represented one
configuration of the Ising model; In the middle image, one is re-scaling and forming groups of 9 spins; On the
right image, one has the same configuration in a different scale length. Figure taken from Ref. [8]

Nonetheless, the base assumption of RG is not always true. In fact, there are important physical
systems that violate the hypothesis and in order to demonstrate why it fails, Ref. [9] uses a
simple example, the free particle in an infinite box potential, so that the reader can understand.
The reason why RG fails is because only keeping the lowest energy states sometimes is not
the best truncation method. In order to overcome this issue, the Density Matrix Renormalized
Group method, (DMRG), was developed. The main difference between the RG and DMRG is the
truncation rule. The DMRG method keeps the relevant degrees of freedom in a renormalization
procedure targeting low-energy eigenstates of 1D Hamiltonians, i.e. DMRG method attempts
to find the lowest-energy matrix product state wave function of the Hamiltonian.

2.2 Complex Networks

An arbitrary graph is a set of nodes (entities) and edges (connections) with any arbitrary topol-
ogy. The type of graph we are interested in is called a complex network and they are called
complex because one cannot predict their behavior based only on their individual components.
Figure 2.2 shows an example of a complex network. To understand complex networks one must
understand their structure and functionality. Despite all the different possibilities, real networks
have many characteristics in common. Real Networks are for example the nervous system and
the World Wide Web, where the nodes represent the individuals and the connections represent
social relationships or conversations [10]. A complex network can be a scale-free network. A
network is called free-scale if the connections per node of the network, or in other words, the
degree distribution, follows a power law [11].

4

CHAPTER 2. STATE OF THE ART

Figure 2.2: Example of a complex network. Figure taken from Ref. [12]

These systems are called complex because one cannot predict their collective behavior from
the individual components that form the system. A simple example that can help understand
networks in general, is given by Ref. [13], where they tackle the Konigsberg problem. The
Konigsberg problem askes how can one person cross the 7 bridges of a specific city without
crossing the same bridge twice. Instead of seeing the map of the city it is much easier to
represent the city in terms of a network, where each bridge is represented by the connections
and the land is represented by the nodes.

In complex networks, there are three basic concepts one must understand first: the average
path length, clustering coefficient and degree distribution. Suppose we have a network and two
of the nodes are labelled as i and j, then dij represents the distance between the two nodes
and is defined as the number of edges along the shortest path that connects both nodes. D
represents the diameter of the network and is defined as the maximum distance dij , where i and
j are any pair of nodes. Furthermore, the average path length is defined as the mean shortest
distance between all pair of nodes. The degree of a node is defined as the the total number of
connections/edges that the node has to other nodes. This means that, the higher the degree of
the node, the more connections to others nodes it has [14]. The degree of a node is one of the
centrality measures and it can translate the importance of the node to the network [15].

The clustering coefficient is defined as the the average pairs of neighbours of a node that are
also neighbours of each other. If two nodes are neighbours of a third node then there is a high
chance they share an edge.

One of the main reasons why complex networks is a successful framework is due to their nat-
ural ability to represent discrete systems. Complex networks are used in Communications and
Economy, Medicine, Linguistics and Social Networks. [16]

In the branch of linguistics, the use of linguistics data is crucial for automated systems such
as the Web search engines and machine translators. Some linguistic structures can be seen as
networks and complex networks play a role in this area where linguistics networks can be formed
to study the semantics between the words. Furthermore, the linguistics networks can also be
formed using the position of the words in a text instead of using dictionaries. These networks
are called superficial and the words are connected if they appear as neighbours in a text and it
can be used, for instance, to choose the synonym most expected in a given context [17].

5

2.3. TENSOR NETWORKS

2.3 Tensor Networks

2.3.1 Notation

An N-rank tensor is a mathematical object with N indexes and it takes the form in 2.1.

Tα1...αN (2.1)

An example of N-rank tensor is the vector, which is a 1-rank tensor and takes the form of vj .
A 2-rank tensor is a matrix, Mij and a third-rank tensor takes the form of Tijk for example.
In the figure 2.3, the diagram notation of this N-rank tensors is represented, from which it is
possible to conclude that a vector corresponds to a node with 1 edge, a matrix corresponds to
a node with 2 edges and a 3-rank tensor corresponds to a node with 3 edges. Meaning that the
notation of an N-rank tensor would be a node with N edges.

Figure 2.3: Diagram representation of N-rank tensors. Figure inspired by Ref. [18].

When talking about tensor diagrams there are 2 rules. The first one states that tensors are
notated by solid shapes and their indices are notated by lines that emerge from the solid shape.
The second rule states that when one connects two index lines it means that a contraction
or summation over those indices is being performed [19]. This idea is similar to the Einstein
convention. Some examples of contractions are given in the figure 2.4.

Figure 2.4: Examples of tensor contractions. Figure inspired by Ref. [18].

6

CHAPTER 2. STATE OF THE ART

Since it is always possible to choose a bipartition of n indexes in two disjoint groups, one can
recast the tensor in a matrix form and make use of the linear algebra operations in matrices.
One crucial operation is the Singular Value Decomposition (SVD), which states that a tensor
Tij is equal to ∑kSikVkkDkj , where V is a diagonal and positive matrix, S and D are unitary
matrices. This combined with the fast decay of singular values allows the truncation of the
matrices S and V.

Another useful operation is the differentiation. The derivative of a linear function of tensors
with respect to a particular tensor A is equal to the linear function where the tensor A has been
removed, as expected. Some examples of this operation are presented in figure 2.5 [9].

Figure 2.5: a)Graphical representation of ∂H
∂ψj

̸= 0; b) Graphical representation of a generic partial derivation
with respect to a tensor A. Figure inspired by Ref. [9].

Furthermore, the gauging operation is a useful operation in tensor network algorithms and
by using the definition of unitary operator, one can insert an unitary operator between two
contracted tensors and change the tensors entries without changing the tensor structure.

2.3.2 Matrix Product State

One of the most well-known tensor networks is the Matrix Product State or MPS and essentially
it is equivalent to the state produced by a DMRG [9]. A MPS or a train tensor can be expressed
as T s1s2s3s4s5s6 =∑

αA
s1
α1A

s2
α2A

s3
α3A

s4
α4A

s5
α5A

s6
α6 , for a tensor T with six indices or in the diagram

notation showed in figure 2.6 [20].

Figure 2.6: Graphical representation of the diagram notation of the vector T. Figure taken from Ref. [20].

In the MPS approach one can assume that the system can be described with an auxiliary
dimension that is bigger than one but does not grown exponential with N. This parameter is
called the bond dimension of the tensor and it can be thought of as the parameter that plays
the role of the cut dimension in the RG methods. If we consider a tensor with N indices, each
with d dimension, then normally one would need dN parameters to fully represent the tensor.

7

2.3. TENSOR NETWORKS

Nonetheless, if we represent the tensor using MPS networks with a m bond dimension then it
would only require Ndm3 parameters to represent the tensor. We can reduce even further the
computational cost by using MPS gauges. For more information on this subject consult [9].

The MPS representation of a tensor allows the efficient performance of operations on a large
tensor by manipulating much smaller factors that compose the MPS tensor. This algorithm is
very useful for dealing with ground states of the 1D gapped systems. For example, if we consider
a many-body quantum system of N 1/2 spin particles. This can be seen as a tensor with N
indices, where each index has two possible values. Hence, one would need O(2N) coefficients
to represent this tensor. The advantage of using MPS is that one can replace this tensor by a
network of connected tensors in order to reduce the number of coefficients needed drastically [9].

An example of the application of MPS to an arbitrary 4-party state |ψ > is given by [21] and
it states that the key component is to use SVD in an iterative way. As shown in figure 2.7, we
choose a bipartition that separates one edge from the others and so on until we end up with a
1D representation of the state.

Figure 2.7: Graphical representation of the MPS applied to a 4-party state. Figure taken from Ref. [21].

This examples is just an illustration since it is not practical. Normally, MPS-generating al-
gorithms are used. One example is, as mentioned before, the DMRG. More examples and
applications are given in [21] for the interested reader.

2.3.3 Matrix Product Operator

The Matrix Product Operator or MPO arises from the application of the concepts involved in
the MPS to operators, where one can use the concepts mention in 2.3.2 to represent operators
and apply the MPO to the wave function represented by the MPS. The MPO have the ability to
represent Hamiltonians in a very compact way making it easier to compute the energy expecta-
tion value. Moreover, MPO also describe very efficiently many-body quantum systems at finite
temperatures and can encode several operators that can be used to perform different tasks [9].

A MPO can takes the form of M s1s2s3s4s5s6
s

′
1s

′
2s

′
3s

′
4s

′
5s

′
6

= ∑
αA

s1α1
s

′
1

As2α2
α1s

′
2
As3α3
α2s

′
3
As4α4
α3s

′
4
As5α5
α4s

′
5
As6α6
α5s

′
6

or in the
diagram from represented in figure 2.8 [22].

8

CHAPTER 2. STATE OF THE ART

Figure 2.8: Graphical representation of a MPO. Figure taken from Ref. [22].

One can perform arithmetic operations with MPOs such as summation and products. Suppose
one has two MPOs, Â and B̂ and we want to know the sum Â+ B̂ = R̂. Considering the
MPO components Ai, Bi and Ri, where i ranges from 1 to L, and treating them as matrices of
operators one obtains the following equations.

R1 =
(
A1 B1

)
(2.2)

R1<i<L =
(
Ai 0
0 Bi

)
(2.3)

RL =
(
AL
BL

)
(2.4)

When making the product of two MPOs, Â and B̂, where ÂB̂ = R̂. In this operation, the lower
index of each Ai is contracted with the upper index of each Bi. The left and the right index of
the tensors are merged into one and it results in a MPO with bond dimensions wri =wai ∗wbi . A
graphical representation is shown in figure 2.9.

Figure 2.9: Graphical representation of the product of two MPOs for a tensor ona single site i. Figure taken from
Ref. [23].

2.3.4 Projected Entangled Pair States

Projected Entangled Pair States or PEPS are 2D array tensors and they are a generalization of
MPS tensor networks from 1D. PEPS tensor networks present a way of parameterizing many-
body wave functions on any lattice which provides a way of writing a complex wave function in
a compress form, similarly to MPS. However, the main difference is that PEPS can represent a
diversity of ground states of interacting systems. This means that higher dimensions correlated

9

2.3. TENSOR NETWORKS

many-body systems can be represented by PEPS. Many examples of PEPS such as the String-
net model and The RVB state are given in [24]. An example of a 2D PEPS is given in figure
2.10.

Figure 2.10: Graphical representation of a 4x4 PEPS with open boundary conditions. Figure taken from Ref.
[25].

For higher dimension systems, i.e., for PEPS there is the necessity to impose that all the spacial
directions of the lattice are translational invariant. Furthermore, PEPS also satisfy the area-
law scaling of the entanglement theory, where the entropy of the ground states of the local
Hamiltonians of spin scales with the boundary of the block instead of being an extensive property
[26].

In order to extract information from the TN, one must compute the expectation values of the
local variables. In PEPS it is necessary to use approximations to compute the expectation values
such as the DMRG methods or finite systems or the Boundary MPS methods for infinite systems
[25]. One downside of PEPS is that they have an exponential computational cost. More ensign
on PEPS is given by [24]-[27].

2.3.5 Tree Tensor Networks

Tree Tensor Networks or TTN are structures that have a shape of a tree and have a finite
correlation length and they satisfy the 1D area-law. In other words, TNN is also a generalization
of MPS but, unlike PEPS, it is a graph with no loops, like a tree. This tree shape brings some
advantages such as the capacity to efficiently compute the partition function. An example of a
TNN is given in figure 2.11 [28].

Figure 2.11: Graphical illustration of a TNN. Figure taken from Ref. [28].

10

CHAPTER 2. STATE OF THE ART

2.3.6 Multiscale Entanglement Renormalization Ansatz

Multiscale Entanglemnet Renormalization Ansatz or MERA are structures very similar to TNN
but they include disentanglers as shown in figure 2.12, which are unitary operators that account
for entanglement amongst neighbouring sites. This disentanglers give MERA the capacity to
handle the entanglement entropy of 1D systems [9].

Figure 2.12: Graphical illustration of a 1D MERA. Figure taken from Ref. [9].

A MERA is a network of isomorphic tensors in D+1 dimensions, where the extra dimension
is related to the RG flow,[29] and is very useful to solve problems such as finding the ground
state of a strongly correlated Hamiltonian, finding a quantum circuit in quantum computing
and finding the time evolution of a given quantum state.

AdS/CFT is a conjecture correspondence between D-dimensional conformal field theories (CFT)
in Minkowski space and D+1-dimensional asymptotically anti-de Sitter (AdS) spacetimes. As
mention before, tensor networks play a crucial roll in the study of many-body systems, in
MERA’s case CTFs. More about this subject can be found in [30]. In conclusion, MERA provides
a concrete implementation of the emergence of spacetime, in the form of a correspondence
boundary and bulk regions reminiscent of AdS/CFT. One can think of the tensor network as a
quantum circuit that can start running from the top, where it starts with a simple input state
and it builds the boundary state, or from the bottom, where the boundary state is renormalized
by coarse-graining [30].

11

Chapter 3

Problem Statement

When attempting to describe a quantum many body system, one must take into account the
dimensionality of the problem. If we consider that all particles of the system are independent
of each other then the problem in hands has a dimension D = vN , where v is the physical
dimension of the single-particle phase space, i.e., the single-particle degree of freedom, and N
the number of particles in the system, meaning we would need D dimensions to explain our
system. Considering the system shown in figure 3.1, since we have a system with 8 particles,
one would need D = v8 to explain it.

Figure 3.1: Example of a small complex network. Figure taken from Ref. [31].

Nonetheless, in real quantum systems, the particles can be dependent of each other and have
entanglement. This entanglement by itself reduces the dimensions required to describe the
system and these quantum systems get grouped in a small part of the Hilbert space. To better
understand this phenomenon one must first understand the concept of generalized coordinates
from analytical mechanics.

In analytical mechanics, when one is studying the dynamics of bodies, the choice of the right
set of coordinates is very important in order to simplify the problem at hands. “Generalized

12

CHAPTER 3. PROBLEM STATEMENT

coordinates are defined to be a set of convenient coordinates, usually independent of one another,
used to describe the configuration of a particular system” [32]. One can think of a simple example
such as the motion of a pendulum.

Suppose we have a particle of mass m in free fall. It is considered that the particle is moving in
the y-direction. As a consequence, it is only needed one coordinate, the height of the particle,
to describe the motion of the particle and obtain the gravitational potential for example. In this
case, the number of degrees of freedom of our system is equal to 2, one space coordinate and
its time derivative. Considering now the case of the pendulum with length l and a bob mass
m which is a very well known case studied in any classical mechanics classroom and suppose
one is using the Cartesian coordinates to obtain the Lagrangian of the system, then the desired
result would be given by equation 3.1, with the constrain on the motion of the system given by
x2 +y2 = l2 [33].

L = T −U = 1
2mẋ

2 + 1
2mẏ

2 −mgy (3.1)

As it can be seen, this system requires 2 coordinates to be described in Cartesian coordinates.
Nevertheless, as seen in [34], to describe the motion of a pendulum, it is more useful to work
with the angle, θ, that the pendulum makes with the y axis, as shown in figure 3.2.

Figure 3.2: A simple pendulum of mass m and length l. Figure taken from Ref. [34].

Making the following substitutions x= lsinθ and y = l(1−cosθ) and deriving x and y, then the
Lagrangian becomes the equation shown in 3.2

L = 1
2ml2θ̇2 −mgl(1− cosθ) (3.2)

13

Analyzing 3.2, one can conclude that even thought the number of degrees of freedom remains
the same, the complexity of the problem is reduced [45]. Similarly to this example, in our
system with N entangled particles, the entanglement actually reduces the degrees of freedom of
the system and consequently the dimensionality of our problem.

Now that we know how to reduce the number of dimensions needed, the next step in solving the
problem in hands is to find a way to translate our network, for example, the one shown in figure
3.1, in a low-dimension space. The way to do it is through the connectivity of each particle
represented by the nodes in the network.

The connectivity of a node is given by how many connections that node has. Figure 3.1 gives
a good example to understand the connectivity of a complex network. The nodes 4, 6, 7 and 8
have connectivity equal to one while the first, second and third node have a connectivity equal
to 3. The node with the biggest connectivity is number 5 with five connections. By using the
connectivity of each particle, one is projecting the network into the desired low dimension space
since the dimensions of this particular space only depend on this connectivity.

If one has N nodes, each one can have v states. For example, if our system is formed by N
1
2 spin electrons, then, each electron can be up or down meaning the v = 2 possible states for
each particle and one would need D = 2N dimensions to describe the desired network. Similarly
to the generalized coordinates in the pendulum, by using the connectivity, one is reducing
the dimension of the space in which we are projecting the complex network leaving it with a
dimension b, also known as the bond dimension.

Considering the case where the particles of the system are not entangled with each other and
v = 1, then one would have 2N space. Nonetheless, since we are dealing with entangled particles
our space becomes b dimensional, M b. The only problem now is that we do not know the value
of b.

Through entanglement between the particles and the decomposition of any given matrix using
the SVD method into UΣV T , where both U and V T are unitary matrices, we transform our
space from a 2N space to a 2b space.

14

Chapter 4

Literature Review of MPS

4.1 Tensor Networks

First of all, before entering the algorithm itself, one must understand and study the basics of
tensor networks. A quick introduction was given in chapter 2.3. Nonetheless, in this chapter,
we aim to fully explain and understand tensor networks.

As stated by the motivation behind this project, despite us knowing the equations to solve most
of the quantum mechanics problems, solving those equations is much harder and complex since
the wave function, regardless of the system, has very high dimensions which requires exponential
complexity. Be that as it may, this high level of complexity is, to a limit, an illusion, since,
despite of the infinite dimensions of the Hilbert space, physical systems in nature do not explore
all these possibilities but rather focus on a small part of this space as it was stated in the first
part of chapter 3. According to the Principle of Locality [35], the lower energy states of a
physical system, or the grounds states, have very little entanglement, meaning this correlation
only influences the nearby neighbors of each particle. Considering a general wave function,
|ψ >=∑

n1n2n3 ψ
n1n2n3 |n1n2n3 >, where |n > can represent spins 1

2 e.g. | ↑>,| ↓>, or particles,
e.g. |1>, |0>. This wave function can be represented through a tensor in its algebraic form by
ψn1n2n3 or in its graphical form by the left side of the image 2.6, where, in this case, we would
only have three legs since our tensor has only three indices.

Tensor networks provide a language that allows us to work only with the relevant physical states
of a quantum system. As presented in chapter 2, there are different types of tensor networks with
different geometries of entanglement. A tensor is a mathematical concept that generalizes the
idea of functions of multiple parameters that are linear to each other. A tensor network is simply
a collection of tensors that are connected by contractions, that simplify a complicated quantum
state essentially through the compression of data that preserves the most salient properties of
the quantum state [36].

15

4.2. MATRIX PRODUCT STATE

4.1.1 Low Entanglement States

Considering a system of two spins, then, one can say that it has no entanglement if the wave
function of the system can be factorized into the product of amplitudes for the first and second
spin.

ψn1n2 =An1An2 (4.1)

If one thinks about it in a physical way, then, this can be translated into doing measurements
on either the first or the second spin and obtaining a result that has zero correlations or, in
other words, the measurements can be done independently of each other. In general, a quantum
system has low entanglement, therefore, one cannot factorize the amplitudes of the wave function
simply into their product. Nonetheless the wave function amplitude can be written as a sum of
the product of amplitudes as shown in the equation 4.2.

ψn1n2 =
∑
i

An1
i A

n2
i (4.2)

Equation 4.2 is a generalisation of 4.1, where in 4.1 the sum only has one term meaning the
system has no entanglement. In equation 4.2, there is a sum over i terms. A state that has a
low entanglement only has a few terms on the sum since it is the index i that is generating the
entanglement, consequently a system with low entanglement has a small number of terms in the
sum.

4.2 Matrix Product State

The equation 4.2 actually represents the matrix product state of a system with 2 spins. However,
the matrix product state of a general system with l spins would be represented as the sum of
products of amplitudes on each of the subsystems as it is shown by 4.3

ψn1n2n3...nl =
∑
i

An1
i1
An2
i1i2

An3
i2i3

...Anl
il

, (4.3)

where the additional indexes i1,i2, ..., il are called bond dimension, which is the dimension of
the space where one is projecting the network in a MPS form as stated in chapter 3. In order to
calculate the components of |ψ > one simply needs to calculate the product of matrices, hence
the name matrix product state.

This particular representation implies a one dimension structure and each site can be entangle
either to the right or to the left with the exception of the first and last, that can only be entangle
to the right and to the left, respectively, as it was explained in 2.3.2. One could argue that,
in this representation, there is no entanglement between site 1 and site 3. Nevertheless, since
site 1 and site 2 are entangled, and site 2 and site 3 are also entangled, then there is some
entanglement communicated along [35].

16

CHAPTER 4. LITERATURE REVIEW OF MPS

It is important to stress out that a tensor is just a group of numbers where its indexes are
defined as the labels labeling the elements. Considering the explanation given in 2.3.1 about
the diagram representation of tensors, one is now ready to understand tensor networks, which
is defined as the contraction of many tensors [28].

4.2.1 Singular Value Decomposition

Recalling the conclusion of chapter 3, the way to transform the space in which we are projecting
the network into 2b is through the Singular Value Decomposition. Hence, one starts with a tensor
that is untreatable in regards to dimensions and transforms it into a tensor that is computable
by decomposing it through the application of the SVD into each site of the tensor. Naturally, the
first thing one must learn and understand in order to study the MPS algorithm is the singular
value decomposition, SVD, also known as Schmidt decomposition. The Spectral Theorem for
symmetric matrices states that an m×n symmetric matrix can be written as A= UΣV t for an
orthogonal matrix U and a diagonal matrix Σ with entries σi. In linear algebra, the SVD is the
decomposition of a matrix, real or complex and it seeks to generalize the Spectral Theorem to
nonsymmetric matrices. Given the matrix A, one can then rewrite it as

A=
m∑
j=1

σjuiv
t
j = UΣV t , (4.4)

for unitary U and V matrices and for a diagonal matrix. The SVD can be applied to any given
matrix A and the proof can be found at [37]. If A is a m×n matrix, therefore U would be m×m
matrix, Σ a m×n matrix and V a n×n matrix. The SVD of the matrix A would then become
the expression shown in 4.5

A= (u1, . . . ,uk,uk+1, . . . ,um)



σ1 . . . 0 0 . . . 0
...

...
0 . . . σk 0 . . . 0
0 . . . 0 0 . . . 0
...

...
0 . . . 0 0 . . . 0





vt1
...
vtk

vtk+1
...
vtn


, (4.5)

where it is assumed that k <min(m,n) [37]. Since the matrix A only has k linear independent
columns, there will only be k nonzero values in the Σ matrix due to the fact that the rank of
the A matrix has to be k. The vectors of the matrix U are called the left singular vectors and
this vectors are hierarchically arranged meaning that the vector σ1 is more important than the
rest of the vectors that make up the U matrix in terms of its ability to describe variance in the
columns of the matrix A. The vectors of the matrix V are called the right singular vectors and
contains information about the row of the matrix A.The scalars σ that make up the matrix Σ are
called the singular values and are also hierarchically ordered where its magnitude decreases, i.e.
σ1 ≥ σ2 ≥ σk ≥ 0. Accordingly, the first column of U and the first column of V that corresponds
to σ1 are more important than the other columns in describing the information in the matrix
A, and this relative importance is given by the respective singular value σ [38].

17

4.2. MATRIX PRODUCT STATE

If one actually expands the expression 4.5, it can easily be seen that the matrix A, that is equal
to UΣV , as stated in 4.4, is also equal to Û Σ̂V̂ t, as one can see in 4.6

A= σ1u1v
t
1 +σ2u2v

t
2 + · · ·+σkukv

t
k +0 , (4.6)

where Û is a m×k matrix,Σ̂ is a k×k matrix and V̂ t is a k×n matrix. This SVD form is known
as the reduced SVD or the “economic” SVD.

Nonetheless, if most of the information of A is captured in the first few singular values, i.e. if
we have negligibly σ, with low energy, then one can truncate the SVD at a rank R where we
would remain with the first R columns of U and the first R rows of V and a R×R sub-matrix of
Σ. In this case, the best approximation of A with a rank R would be given by 4.7

A≈ Ũ Σ̃Ṽ T , (4.7)

where Ũ is a m×R matrix, Σ̃ is a R×R matrix and Ṽ is a R×n matrix [39].

This approximation is known as the Eckart-Young Theorem and it guarantees that the best R
approximation to the matrix A, i.e., the best approximation of rank R of the matrix A, is given
by the first R columns of the resulting matrices from the SVD. For the more curious reader,
the proof can be found in 9.2.3 of [37]. The question now is how do we choose our R in order
to truncate the SVD without compromising the accuracy, but at the same time, reducing the
complexity or the dimensions of our SVD [40]. In this thesis, we will not go into further detail.
However, the goal is to choose R in a way that we keep all the relevant information about A
without keeping the noise and there is an optimal value for R that is explored in [41]. An
example of the application of the SVD is given in the chapter 2.2.1 of [28], where the truncation
error in tensor networks algorithms is also mentioned and is given by 4.8

ϵ=

√√√√√χ−1∑
a=χ′

λ2
a , (4.8)

where χ is the rank of the matrix, χ′ the optimal rank approximation and λ is called the singular
value spectrum.

4.2.2 MPS Gauge

If one introduces an arbitrary matrix G and its inverse, G−1, it becomes obvious that GG−1 = 1,
as represented in the figure 4.1. In the graphical form this just becomes a line or the Kronecker
Delta.

18

CHAPTER 4. LITERATURE REVIEW OF MPS

Figure 4.1: Graphical representation of GG−1. Figure taken from Ref. [35].

Now if one considers a general MPS, like the one shown in the figure 4.2, one can insert an
arbitrary product of GG−1 in between any two tensors and it would still be the same product.
This is called the gauge degree of freedom. Nonetheless, now one can multiple G onto the left
or the first tensor, and multiple G−1 onto the right or the second tensor and obtain a different
matrix product state representation of the same state.

Figure 4.2: Insertion of GG−1 in between the first and second tensor of a general MPS. Figure taken from Ref.
[35].

4.2.3 From a general quantum state to a MPS

Since our quantum state is represented by the connectivity of the complex network, now one
must transform it into a MPS in order to obtain 2b and as we saw in the previous chapter, the
way to do it is through the SVD. Nevertheless, the algorithm itself is not enough, so here we
give a general example of how to obtain a MPS from a general quantum state.

Considering one has a one dimensional lattice of L sites, each one with a dimension d, then the
quantum state is described by 4.9

|ψ >=
∑

σ1,...,σL

cσ1,...,σL |σ1, . . . ,σL > , (4.9)

where cσ1,...,σL represent the coefficients associated with each site. Assuming this state is nor-
malized, one has essentially four ways of writing an MPS. The one we will describe in detail is
the Left-canonical matrix product state. The first step is to reshape the vector that represents
the state and has dL components and transform it into a d×dL−1 matrix, ψ. The coefficients of
the state relate to ψ through ψσ1,...,σL = cσ1,...,σL . The second step is to apply the SVD to the

19

4.2. MATRIX PRODUCT STATE

matrix ψ. Recalling 4.4, one would get the following SVD when applied to ψ 4.10.

cσ1,...,σL = ψσ1,(σ2,...,σL) =
r1∑
a1

Uσ1,a1Sa1,a1(V t)a1,(σ2,...,σL) (4.10)

The rank, r1, is smaller or equal to the original rank, d. Nevertheless, now the matrix ψ has a
dimension of r1d×dL−2. One must do this process in a repetitively way, i.e., do a set of singular
value decomposition in order to arrive at the MPS. After all the SVDs are applied the result one
gets is represented in 4.11. A much more detail demonstration of this derivation is presented in
[42].

cσ1,...,σL =
∑

a1,...,aL

Aσ1
a1A

σ2
a1,a2 . . .A

σL−1
aL−2,aL−1A

σL
aL−1 (4.11)

And replacing 4.11 into 4.9, one gets the final result 4.12.

|ψ >=
∑

σ1,...,σL

Aσ1Aσ2AσL−1AσL |σ1, . . . ,σL > (4.12)

In other words, by applying the SVD to the original vector that represents the quantum state,
ψ, one is basically cutting the system between the first site of the lattice and the rest of the
vector. The SVD pulls apart this first site from the tensor and originates the first site of the
MPS. After the first SVD, one gets one tensor isolated from the rest of ψ, connected by the
singular value from the SVD, as shown in the figure 4.3

Figure 4.3: Graphical representation of the first tensor, the singular value and ψ after the SVD.

By applying consecutively the SVD, this process is repeated and the result would be a train of
tensors labeled as 1,. . . , L, since we have a lattice with L sites and i between these tensors there
would be the singular values. This form of representing the MPS is called the “Vidal” form.
Nonetheless, the singular values work as a gauge, hence one could just absorb them into the
tensors itself. That means these singular values are absorbed to the right, meaning the singular
value represented in the figure 4.3 would be absorbed into ψ or into the second tensor if one
has already done more iterations of the SVD. This form of representing the MPS is called the
left-canonical matrix product state and its graphical representation is shown in the figure 4.4.

20

CHAPTER 4. LITERATURE REVIEW OF MPS

Figure 4.4: Graphical representation of a construction of a MPS of an general quantum state in an iterative way
by successive applications of the SVD; Visual interpretation of the equation 4.12. Figure taken from Ref. [42].

Similarly to the process described above, one can start applying the SVD from the right instead
of the left and obtain an equivalent MPS. This form of representing the MPS is called the right-
canonical form. The fourth way is called the mixed-canonical matrix product state and one uses
both the left-canonical and the right-canonical form mixing both of them. In the mix-canonical
MPS, the final form of the MPS is similar to the one shown in the figure 4.4. Nonetheless, since
it is a mix of both right and left canonical form, one gets the same train of tensors, but with a
diamond shape in the middle, that represents the diagonal singular value matrix. Furthermore,
the matrices to the left of the diamond are left-normalized and the matrices to the right are
right-normalized according to the type of canonical form it was used to obtain the MPS. A
graphical representation of the mix-canonical form can be found at 4.1.3. of [42]. Moreover, in
the DMRG form, which is very similar to the mix-canonical form, one chooses a particular site,
normally in the middle, i.e. if the MPS has three sites, one would choose the site number 2 and
every singular value to the left would be absorbed into the first site, and every singular value to
the right would be absorbed into the third site. When using this form, every tensor to the left
or to the right of the chosen site gives the Kronecker Delta when contracted with themselves.

One way to make tensor networks and MPSs less abstract and more practical is to use MPSs
to represent non-trivial physical states such as the Affleck-Kennedy-Lieb-Tasaki state, which is
a model that is a generalization of a spin-1 Heisenberg model. Since it falls out of the scope of
the project, we will not go into further detail. However, the curious reader will be redirected to
2.2.3. of [28].

4.3 Matrix Product Operator

As stated in chapter 2.3.3, the concept of the Matrix Product Operator emerges from the
concepts involved in MPS’s. Analogous to the MPS, where one can write down a state as a

21

4.3. MATRIX PRODUCT OPERATOR

product of amplitudes of each site, one can also write down an general operator, acting on L
sites, as a product of operators acting on each individual site. A MPO can be viewed as a way
of writing a general operator as an entangled product of operators. Instead of using equation
4.3 to represent a wave function, one can an useful generalization to represent a MPO as shown
in equation 4.13 [43].

∑
si;s′

i

Ms′
1s1Ms′

2s2 . . .Ms′
LsL

|s′
1 >< s1|⊗ |s2>< s2| . . . (4.13)

The figure 4.5 shows a graphical representation of a Matrix Product State, where one can clearly
see two vertical lines. These lines represent the physical states of M, one for the ingoing physical
state and one for the outgoing state. MPO’s can be used to represent several non-trivial physical
models such as an Hamiltonian or time evolution operators. In [44], the construction of the MPO
for the Ising Hamiltonian is shown in a transverse field.

Figure 4.5: Graphical representation of a MPO. Figure taken from Ref. [28].

Considering the Heisenberg Hamiltonian as an example given by equation 4.14, in which the
sum, ∑ij , is over every site of the lattice and the factor 1

2 is a correction factor [45].

H = 1
2
∑
ij

JijS⃗i⃗̇Sj (4.14)

Writing this Hamiltonian as a MPO, where i and j represent the spins of the nearest neighbors
that are coupled together, and writing it as a sum of products of terms in each of the sites, then
the bond dimension of the MPO would be equivalent to the number of terms in the Hamiltonian
acting with each other.Considering one has a system with 4 sites, then the MPO of this system
would be the one shown in figure 4.6.

Figure 4.6: Graphical representation of a MPO of a 4 site system.

22

CHAPTER 4. LITERATURE REVIEW OF MPS

In order to determine the bond dimension of this MPO, one divides it in the middle, i.e. between
site 2 and site 3. Consequently, one would end up with two systems, the left system and the right
system. There would be a left Hamiltonian describing the left system and a right Hamiltonian
describing the right system and, because we spited the system between the second and third
site there would also be a term representing the coupling between the left and the right system.
To describe this system, one would need 5 terms as it is shown in equation 4.15, making clear
that the bond dimension of the MPO is equal to 5.

HL⊗1R+1L⊗HR+
∑

α=x,y,z
Sα2 S

α
3 (4.15)

An operator acting on a state or in other words a MPO acting on a MPS, gives simply a MPS.
Nonetheless, the dimension of the MPS is not the same as the original MPS. If the MPO has a
dimension D1 and the MPS has a dimension D2, then the dimension of the resulting MPS, D3, is
going to be the product of both dimensions, D3 =D1 ×D2, which means that the entanglement
of the original state increased.

Since operating on a MPS increases its bond dimension, for example adding two MPSs or ap-
plying an operator to it, one must find a way to decrease the bond dimension and as mention in
4.2.1 one way to do it is by SVD compression. One must write the MPS in the Vidal form and
truncate the singular values. Another way to achieve the desired result is through variational
compression, where one solves a minimization problem following the gradient algorithm. Never-
theless, if one works with the MPS in the mixed canonical form, there is no need to differentiate
the sites of the MPS and follow the gradient, one just uses the Density-Matrix Renormalization
Group or DMRG built in the sweep algorithm where the DMRG is applied site by site [46].
The difference between the SVD compression and the variational compression is that, in the
latest one, the optimization of each site depends on the values of the remaining sites, i.e., this
optimization uses the full environment, while in the SVD compression, the tensors are optimized
independently meaning one is doing a local update. Despite not being the optimal choice, the
SVD compression is preferred since it has less computational cost.

4.4 Ground state calculations with MPS

In order to find the ground state of an Hamiltonian, one must find the best approximation to
that state through the MPS that minimizes the energy, given in equation 4.16.

E = < ψ|Ĥ|ψ >
< ψ|ψ >

(4.16)

The first step would be to represent the Hamiltonian as a MPO, which we saw in the previous
section. Nonetheless, a richer approach to the subject is given in chapter 6 of [42]. Once the
Hamiltonian is represented in a MPO form, one applies the MPO to the MPS in a mixed canon-
ical state. To find the MPS that minimizes E. As stated in [47], by introducing a Lagrangian
multiplier E, one must solve the minimization of the function shown in equation 4.17

23

4.4. GROUND STATE CALCULATIONS WITH MPS

E[|ψ >] =< ψ|Ĥ|ψ >−E < ψ|ψ > (4.17)

where |ψ > will be the ground state and E the ground state energy. Solving this minimization is
a NP-hard problem, meaning it would be possible, given the answer, to verify it in polynomial
time. By using the MPS notation, it is possible to use an algorithm based on the DMRG
described in chapter 3 of [47] to find the ground state of a given Hamiltonian, where |ψ > will
be the ground state and E the ground state energy.

24

Chapter 5

Methods

As we progressed in understanding the library and all its potential, we got closer to the goal,
which was to generate a Barabási network. Before getting into the Barabási network, we gen-
erated a Erdős–Rényi network. We first understood what a Erdős–Rényi network was and
developed our own code to generate this type of network and only then did we used the library’s
function.

The Erdős–Rényi model is a model used for generating random graphs. In this model, one
can choose the number of nodes of the graph and the probability of creating a connection,
independently from the rest of the connections. We proceeded to study this model since it
provides a random graph and it was a way to slowly understand and get to the free scaled
graphs, which is the case of a Barabási network.

The Barabási-Albert model is a model that generates free scaled random graphs and has a
power-law degree distribution. This model differs from simpler networks and resemble real life
one’s, like the internet, for its growth and preferential attachment characteristics. In this model,
the nodes are added one by one and the added node has a certain probability of connecting to
the existing nodes. In other words, a new node has a certain probability of connecting with one
of the already existing nodes and that probability scales with the number of connections the
node already has. As it is expected, if a node already has a high number of edges, then the new
node will connect to it with a higher probability than the remaining nodes. As it can be seen in
figure 5.1, the node labeled 2 has the most edges, hence, if a new node is added it would connect
with it with a probability given by p2 = k2∑

j
kj

, where k2 is the degree of node 2 and the sum is
over all nodes [48].

25

Figure 5.1: Example of a Barabási graph with 10 nodes and the code used to generate it.

Once the graph is generated, we must extract the right information out of it. The characteristic
we are interested in is the connectivity of the nodes, as it was explained in chapter 3. In 5.1
the nx.scale free graph() function was used. However, to generate the one used to obtain the
connectivity, we opted for nx.barabasi albert graph(). Out of the generated network, we used
the code showed in figure 5.2 to obtain a list of the connections for each node. The idea behind
it was to use the connectivity of each node as an input for the MPS. Theoretically, we would
obtain the connections adjacent to node number 1 and run the MPS algorithm and repeat the
process for the other nodes. Nonetheless, we obtain the connectivity of all nodes at once and
store the information in a text file to be processed later.

Figure 5.2: Code used to extract the connections of each node in order to be used as an input for the MPS.

Once we obtain the input, we started working on the MPS algorithm itself. The original code
was taken from [49] and we first understood it and adapted it to our goals. All the code used
can be found in appendix A As mentioned the first step is to process the data, in this case the
connectivity, in order to mold it in such a format that it can be used as an input. Before running
the algorithm, one must first set some configurations such as defining the number of sites our

26

CHAPTER 5. METHODS

MPS is going to have, the respective bond dimension, the fraction of our data that is going to
be used for train and test and the number of sweeps of the DMRG. Some of these configurations
came already filled up with the algorithm such as the number of sweeps. Nevertheless, the
number of sites had to be change in order to match the number of nodes of our complex network,
in this case it was 600 nodes, the test fraction had to be adapted. The bond dimension was the
characteristic we studied in order to determine how it influences the output of the algorithm.

Since the connectivity of each node in regard to the others is either 0, if the node is not connected,
or 1, if the nodes indeed share an edge, the dimension of each site of the MPS is going to be
2. This dimension can be seen as a physical dimension, where, in the case of electrons, it would
represent either the spin up or the spin down. After importing the data, it was split into 3
sections, the train, cv and test, using the test fraction configuration and the number of sites.

Figure 5.3: Code used to extract the connections of each node in order to be used as an input for the MPS.

As it can be seen in the code shown in figure 5.3, the data was split into train, cv and population,
which later gets renamed to test. Regarding the train batch, and taking into account that the
fraction was defined to be 1, i.e. we use all our data from the complex network, the data gets
divided it into 3. Which means that the train is composed by the connectivity of the first 200
nodes, and since each node has 600 values, we end up with a list of 200 lists, one for each
node, each list with 600 values. In other words, each list of 600 values that corresponds to the
connectivity of a single node will become one MPS and the same process occurs with the cv and
the population.

Figure 5.4: Pseudo code for a randomized SVD. Figure taken from Ref. [50].

Now that our input data is properly processed, we can enter the algorithm itself. We start
by building a MPS with a given length, number of sites and bond dimension. Recalling 4.9,
our input would be represented as the coefficients σ1, ...,σ600. For very large-scale matrices,
instead of applying the typical truncated SVD, as it was mention in chapter 4.2.1, one applies
the randomized SVD. The randomized SVD will reduce the original matrix into a smaller one by

27

multiplying it with a sampling matrix [51]. Since we are missing the sampling matrix, generating
one was the following goal. In the algorithm, to apply the randomized SVD, we use a variation
of the prototype showed in 5.4.

Similarly to stage A of the prototype, we start by generating the test matrix. The test matrix is
going to have the same length as our MPS, 600 sites. The way to do it is by creating a tensor,
analogous to the one showed in the first step of figure 4.4. This tensor is going to have a length
of 600 sites and each site will be represented by a (2,3), (3,2,3) or (3.2) tensor depending on
whether it is the left site, the middle sites or the right site, accordingly. The 3 corresponds to the
bond dimension chosen and the 2 refers to the physical dimension of each site, which translates
the total number of possible states each site can be in, i.e. 0 and 1 or, in terms of connectivity,
means that a pair of nodes is connected or not.

(a)

(b)

Figure 5.5: (a) Code used to generate and fill the MPS with random values drawn from a normal Gaussian
distribution. (b) Example of the sampling MPS with 3 nodes.

After creating this sampling tensor, one must fill it with random values using the ran-
dom.normal() function of the numpy library. This function will draw random samples from
a normal Gaussian distribution. For demonstration purposes and in order to first understand
the algorithm better a test run was made using only 3 nodes. The sampling MPS would be
similar to the one shown in the figure 5.5, with the respective code used to generate it.

The next step, following the prototype shown in 5.4 would be to construct the matrix Q and
the way we do it is by taking the sampling matrix and apply the SVD to it. As explained in
4.2.1 and recalling the chapter 4.2.3, we built a MPS from the sampling tensor by performing
the SVD starting from the right which will result in a MPS in the right-canonical form. Similar
to the example given, the singular values of the sampling tensor will be carried out through the
process onto the ψ tensor as they get absorbed, in this case to the left.

28

CHAPTER 5. METHODS

Looking back on the figure 4.4, after applying the SVD to the sampling matrix for the first time,
one would obtain UΣV T . As we carry on applying the SVD multiple times, and since we are
leaving the MPS in a right-canonical form, the V T is going to be the tensor that represents the
site in question of our MPS and the UΣ is going to be absorbed by the following site of ψ, which
is the remaining sampling tensor we did not yet decompose.

After applying the SVD to all sites of the sampling tensor, we end up with the last stage of
figure 4.4, with the exception that the first site still needs to be normalized, since all the singular
values and left singular vectors were absorbed. While applying the SVD, one must reshape the
local tensor in order to decompose the site, as mentioned in 4.2.3, and reshape it afterwards, in
order to restore the original shape. The figure 5.6 (a) shows the resulting sampling MPS after
applying the SVD to site number 3. By comparing it with 5.5 (b), one can conclude that site
number 1 remains unaltered, while site 3 corresponds to V T and site 2 is simply the matrix
product between UΣ and the original tensor representing the site. On the other hand, the figure
5.6 (b) shows the final form of the sampling MPS after applying the SVD to all the sites and
normalizing the first one.

(a)

(b)

Figure 5.6: (a) Result of performing the SVD onto site 3 and absorbing UΣ into site 2; The first site remains
unaltered. (b) Result of performing the SVD in all 3 sites and normalizing the first one.

Recalling the prototype shown in the figure 5.4, we finished stage A and enter stage B, which
consists of performing the DMRG algorithm. Before step 4, we first need to filter our sampling
MPS by using the input from the complex network. The addition of an extra step that does the
matrix product between the sampling MPS and the train batch achieves that goal. The tensor
A is going to represent the train batch. Taking the 3 sites MPS as an example once again, the
matrix A would be a tensor with 3 values of either 1 or 0. Taking A to be A= [100] and Q to
be the sampling matrix in the MPS form shown in the figure 5.6 (b), by performing the matrix
product between both tensors, one is filtering the sampling tensor using the connectivity of the
nodes. In this particular example, one would take the second line of the tensor representing site

29

1 and the first lines of the tensors representing sites 2 and 3. This process is illustrated in figure
5.7 and it can be seen as choosing one of the two possible physical dimensions. In the example
of the spin of electrons, we would be choosing one of the dimensions of each individual site of
the MPS, according to the spin up, 1, or the spin down, 0.

Figure 5.7: Resulting sampling MPS after being filtered by our input.

Now that we filtered the sampling MPS, we are ready to perform the sweeps of the DMRG
algorithm. Recollecting the explanation given about leaving a MPS in the DMRG form in the
end of chapter 4.2.3, we choose a site to be the “center” of the MPS. Every singular value to
the left of the center gets absorbed into the tensor representing the site on the left of it. The
same happens to the singular values on right of the center. The DMRG is going to be applied
a certain number of times, according to the configuration we chose beforehand. Each time we
apply the DMRG algorithm, we are performing several sweeps, as many as double the number
of sites our MPS has.

Since we start by choosing the center to be the first site, we do steps 4 to 6 of the prototype
and then change the center to be the second site and go all the way until we reach the last
site. After that, we circle back repeating the same process until the center is yet again the first
site. When we reach the first site again, we have completed a single run of the DMRG and the
process is repeat for as many times as we defined in the configurations, in this case 100 times.
This process is illustrated in figure 5.8.

Figure 5.8: Illustration of the DMRG being applied one time. After we reach (c), we need to repeat (b) and (a)
and that completes one run of the algorithm.

A single sweep consists of a combination of a right sweep and a left sweep. In the DMRG form,
one chooses a site from the MPS, for example X, and performs a sweep from the first site until
the site before X and a sweep from the last site until the one right after X. In the example with
a MPS with only 3 sites, when performing a sweep on site number 1, there is no left sweep, since
there are no sites to the left of site number 1. The right sweep goes from site number 3 until we
reach site number 1, as it is shown in figure 5.8.

After filtering the sampling MPS based on the input, we start doing the sweeps. Besides the
sweeps, computing the DMRG also includes steps 4 to 6 of the prototype represented in 5.4, as
mentioned before. A table summing up the steps involved in the application of the DMRG is
represented in figure 5.9. The process shown represents a single run of the algorithm and it is
to be repeated 100 times. It is important to note that the sampling MPS does not suffer any

30

CHAPTER 5. METHODS

alterations as it is being filtered. Instead, we filter it while performing the sweep and store the
resulting tensor, leaving the original sampling MPS unaltered. In other words, it would be as if
we created a copy of the original sampling MPS, filtered it, as it was explained in figure 5.7 and
performed the sweeps.

Figure 5.9: Summary of the DMRG in practise. A single run of the DMRG consists of performing all 3 steps.
Step 3 is illustrated in figure 5.10.

As we begin the DMRG algorithm, and after completing the right sweep, we do step 4, where we
calculate the tensor product between Q[1]T and A[1]. Recalling when we filtered the MPS, we set

A to be A= [100]. Hence, A[1] is going to be equal to |1> or

0
1

, in the 3 sites MPS example.

Q[1] is going to be the tensor representing the right sweep. We obtain B[1] by doing A[1]⊗Q[1]T

and the result can be found in figure 5.10(b). Figure 5.10(a), shows the tensor obtained when
performing the right sweep from site number 3 until site number 1. It is important to note that
both tensors, Q[3] and Q[2] do not have the right dimensions in order to be multiple. Therefore
an extra dimension is added to Q[3] and later removed from the final result. In figure 5.10(a)
the result is presented with that extra dimension while in figure 5.10(b), the same result is used
to perform step 4 without said extra dimension.

(a)

(b)

Figure 5.10: (a) Visualisation of the right sweep. Since we are working with the 3 sites MPS example, the right
sweep will only consist of doing the matrix multiplication between sites 2 and 3. (b) Result of applying step 4 of
the prototype shown in figure 5.4 when the center is site number 1.

31

In the example shown with 3 sites, there is only 1 MPS, but, as it was mentioned in the processing
data, we start with an input of 600 lists, each one representing the connectivity of each node.
Only the first 200 are used in the training of the MPS. Nevertheless, it means we are working
with 200 MPSs. Each individual MPS uses the connectivity of a single node as input, therefore,
all the steps performed until this point happen simultaneously in all 200 MPSs. The same
sampling MPS is used for all of them, but rather it is the input that varies, i.e. it is the filter
that changes.

When the algorithm finishes step 4, shown in figure 5.10, it presents the local tensor presented in
(b). Since the algorithm is operating on the 200 MPS at the same time, this local tensor is going
to be calculated 200 times. In step 5, the sampling MPS is going to be altered, meaning, when
we change the center to be site 2, it is going to be a different tensor representing the site. The
local tensor that was calculated is going to be used to alter the sampling MPS. Consequently,
all 200 local tensors are going to be summed up and it will need to be normalized.

∥local tensor∥ =
√

(−0.08342974)2 +(0.78730159)2 +(0.35059243)2 = 0.8658633643785765
(5.1)

 0 0 0
−0.08342974 0.78730159 0.35059243


0.8658633643785765 (5.2)

Returning to the example with 3 sites. No sum is going to take place because there only exists
one MPS. Nonetheless, the local tensor calculated in figure 5.10 (b) is still going to be normalized.
The calculation of the norm of the local tensor shown in figure 5.10(b) is represented in equation
5.1 and in 5.2 it is shown the normalization of the local tensor, which is going to be used in step
5 and forward.

Step number 5 involves applying the SVD to this tensor, as it can be seen in stage B the
prototype in figure 5.4. Using the normalized local tensor calculated, we use np.linalg.svd() to
obtain the SVD. Figure 5.11 shows the result of the SVD.

Figure 5.11: Calculation of the SVD applied to the normalized local tensor represented in figure 5.2(b).

Once we obtain the matrices U, Σ and V T , we are going to replace the tensor that was repre-
senting site 1 of the sampling MPS with the matrix U. Σ and V T are going to be absorbed by
the tensor representing site number 2 of the sampling MPS. In figure 5.12, the resulting tensor
of site 2 can be found, complemented with the respective calculation, as well as the full sampling
MPS. This is the first time that the sampling MPS is indeed altered.

32

CHAPTER 5. METHODS

(a)

(b)

Figure 5.12: (a) Σ and V T being absorbed into a single tensor that is going to be absorbed by the tensor
representing site 2 of the sampling MPS. (b) Absorption of the resulting tensor into the tensor representing the
original site 2 of the sampling MPS.

The final tensor represented in figure 5.12(b) is calculated as shown in the list below.

• 0.76600916 = −0.0963544 × −0.04592905 + 0.9092677 × 0.8062753 + 0.40490503 ×
0.07029699;

• −0.45574983 = −0.0963544 × 0.13498442 + 0.9092677 × −0.05582921 + 0.40490503 ×
−0.96807834;

• −0.09967017 = −0.0963544 × −0.96573316 + 0.9092677 × −0.17258426 + 0.40490503 ×
−0.08840965;

• 0.44225322 = −0.0963544 × −0.21686216 + 0.9092677 × 0.56304343 + 0.40490503 ×
−0.22375519.

As mentioned before, this is the first time the sampling MPS is being altered since it was
decomposed using the SVD. The sampling MPS after the SVD is shown in figure 5.7 and it is
the tensor representing site 2 that is going to absorb Σ and V T . Figure 5.13, represents the
sampling MPS after steps 1 and 2 of the summary shown in 5.9. As it can be seen, site number
1 is represented by U shown in figure 5.11. The tensor representing site 2 is the consequence of
absorbing Σ and V T , as explained, and site 3 remains unaltered.

Figure 5.13: Result of the sampling MPS after performing steps 1 and 2 of the summary shown in figure 5.9. Site
1 is represented by U, calculated in figure 5.11. Site 2 is represented by the tensor calculated in figure 5.12(b).
Site 3 is represented by the original tensor shown in figure 5.6(b)

We now repeat steps 1, 2 and 3 of the summary represented in figure 5.9 until the center is again
site 1, which 1 run of the DMRG. In figure 5.14, one can find the resulting sampling MPS after

33

one run of the DMRG. Once the algorithm was understood, we run it with our original input,
using the complex network generated instead of the example with the 3 sites MPS. Since that
MPS has 600 sites, it is not viable to show it here.

Figure 5.14: Resulting sampling MPS after 1 run of the DMRG algorithm.

Before starting the next run of the DMRG, we need to evaluate the MPS first. Using the
train batch and the cv batch, that were mentioned in the processing data, the algorithm cal-
culates the fidelity of the MPS and compares it with the previous one. In the first run of the
DMRG there is not a previous fidelity to compare it with. Nevertheless, from the second run
forward, the new fidelity and the previous one are compared, where the former fidelity gets
subtracted to the new one. If the difference is bigger than zero, i.e. if the new fidelity is better
than the last one, the DMRG keeps running. However, if the change in the parameter is not
greater than zero, it means either the fidelity is exactly the same and we neither improved nor
worsen the MPS, or it got slightly worse. If indeed the fidelity got worse, in the next run, when
it gets compared again, it will likely be improved.

For this reason, the algorithm has a parameter named patience, and every time the difference is
equal or smaller than zero, this parameter increases. If the patience reaches a certain number,
the algorithm stops, even if it has not yet completed the 100 runs. Nonetheless, if the difference
in fidelity keeps being equal or less than zero and in the next run it is verified that it improves,
then, the patience gets reset. In order for it to reach said number and stop the algorithm, the
difference in the fidelity needs to be constantly equal or less than zero.

Another way to evaluate the MPS is by starting at the final MPS of each run and try to obtain
the connectivity of the nodes in the complex network. We start with the final MPS after the
first run of the DMRG shown in figure 5.14 and we will extract the probability of each singular
value out of each site. While extracting the probability out of the second site, we cannot do it
independently of the result of the first site because there are correlations among the sites.

We start by going to the first site and calculate the amplitude of probability of the tensor by
multiplying the tensor, lets assume S, with its conjugate transpose, S†. The result of S×S†,
where S is the tensor representing the first site of the MPS, can be found in figure 5.15.

34

CHAPTER 5. METHODS

Figure 5.15: Result of S×S†, where S is the tensor representing site 1 of the MPS after the first run of the DMRG
shown in figure 5.14.

Now that we obtained |S|2, we take the values in the diagonal, in this case 0 and 1. These
values represent the coefficients c01 and c11, respectively. Assuming we were working with
|φ>= α|0>+β|1>, then, in this case, α= 0 and β = 1. Consequently, by measuring the state,
we would obtain |1 > 100% of the times. In this case it is simple because α = 0. Nonetheless,
if α was different than zero and always respecting |α|2 + |β|2 = 1, we would obtain |0 > with a
probability |α|2 and |1> with a probability of |β|2. For that reason, we perform the measurement
10 times simultaneously, as if we have 10 MPSs exactly the same.

We obtained 1 as the measurement of the first site and we store that value in a list so we can
compare it to the input later. As we move to the second site of the MPS, we already altered
the first site since we performed a measurement and the system collapsed to |1 > or, as it is

shown in figure 5.15, [1 0]. The tensor representing the first site no longer is

0 0
1 0

, but rather

it is [1 0], and before measuring the second site, we need to obtain the tensor representing the
second site, knowing the result of the measurement of the first site. What we are aiming to do
now, is obtain the measurement of site 2 under the condition that site 1 is |1>.

Following the same method used in figure 5.12(b) and the list used to explain it, we are going
to contract [1 0] with the tensor representing site 2, shown in figure 5.14. The result of the
contraction between both tensors can be found in figure 5.16.

Figure 5.16: Result of the contraction between the tensor representing site 1, [1 0], and the tensor representing
site 2, shown in figure 5.14.

After obtaining the tensor shown in figure 5.16 that represents site 2 knowing the measurement

of site 1, we repeat the process shown in figure 5.15 to said tensor. By doing

1 0
0 0

×

1 0
0 0

=

1 0
0 0

 , we obtain |S2|2. Consequently, we obtain α= 1, the system collapsed to |0> and the

tensor in that site becomes [1 0].We store 0 as the result of the measurement in site 2 knowing

35

that the measurement in the first site was 1. Following the same logic, we now must calculate
the tensor representing site 3 under the condition of the resulting measures of both sites 1 and
2. As we move to the third site, we have already changed both the tensor representing the first
and second site. [1 0] represents the first site of the MPS and [1 0] represents the second site
of the MPS under the condition of the first measurement.

We are now going to obtain the tensor that represents the measurement in site 2 under the
condition of the measurement in site 1. To obtain this tensor we contract the tensor representing
the collapsed site, [1 0], with the tensor representing the collapsed site 2, [1 0]. The resulting

matrix,

1 0
0 1

, represents both measurements, i.e., this tensor is going to be used to calculate

the tensor in site 3 knowing that site 1 collapsed to |1> and site 2 collapsed to |0> . In figure
5.17, we calculate said tensor.

Figure 5.17: Result of contraction between [1 0], that represents site collapsing to |0 >, knowing that site 1
collapsed to |1>, and the tensor that represents site 3, shown in figure 5.14.

Since it is the last site of the MPS, before calculating |S3|2, we first need to do the outer product

of the site with itself. By calculating
[
1 0

]
⊗outer

[
1 0

]
, we obtain

1 0
0 0

. The resulting |S3|2

of this matrix returns α= 1 and the system collapses to |0>.

Recalling that site 1 collapsed to |1> and site 2 and site 3 collapsed to |0>, we obtain the list
shown in 5.3, representing the connectivity of the nodes used as input.

[1 0 0] (5.3)

This result corresponds to the input used to train the 3 sites MPS. This happened because it is
a very simple example with only 3 sites and, as mentioned before, when performing the sweeps,
since there was only one MPS, there was no need to calculate the mean of the resulting tensor
from the sweeps. In addition, the MPS in the example was trained using only the connectivity of
the first node, which explains the recovered result being an exact match. Nevertheless, with the
600 sites MPS, the MPS will be trained with the connectivity of the first 200 sites, which will
imply that the resulting measurement on the MPS will possibly translate the Barabási network.
Furthermore the values of α and β will not be exactly zero or one, but will rather be a value in
between. For that reason, when we perform the measurements on the MPS, we do it multiple
times simultaneously.

36

Chapter 6

Results

The first goal was to characterize the Barabási network and since we use the connectivity of
the nodes as an input, we opted to characterize it by using the distribution of the connectivity.
knowing that the connectivity of a Barabási network follows a power law P (k) ≈ k−γ , where k
is the connectivity and theoretically γ is a value between 2 and 3, we can calculate γ for the
Barabási network.

In order to obtain γ from the original network, we need to know how many connections each
node has. Once we obtain that information, we count how many nodes have the same number
of connections vs the logarithm of the number of nodes that have said number of connections.
By integrating P(k) from a fix value x to infinity and after applying the logarithm, we obtain
that the slope of the line will correspond to the value of −(γ− 1), i.e., γ = −slope+ 1. Figure
6.1, represents the graphic of the LN of the number of connections as a function of the LN of
the number of nodes.

Figure 6.1: Graphic of the LN of the number of connections vs the LN of the number of nodes.

37

By analysing the graphic 6.1 and using the excel tools to calculate the linear regression, we can
conclude that the slope of the line is , which corresponds to the value of γ. Consequently, the
Barabási network used has a connectivity distribution that follows the power law P (k) ≈ k−2.7,
which is between the theoretical values.

Once the Barabási network was characterized, we started analysing the output of the algorithm
as explained in the final paragraph of chapter 5. As mentioned, the MPS was trained using the
connectivity of the first 200 nodes and when performing a measurement in all 600 sites, the MPS
will collapse to one possible configuration. To conclude if we can characterize the network based
on 1 single node, i.e., if my measuring one site we can obtain the configuration of the remaining
sites, we will measured the MPS multiple times, and compare the output.

Recalling the explanation given in the end of chapter 5, the output of measuring the MPS is
similar to the one shown in 5.3, but instead of having 3 sites, it has 600. The first result we
obtained can be found in 6.1.

[101010010000100110000001000011000000000000000000000000000100010000000100000
000100001001000000010010000000000100000100000000000010000101000100000000000
001000000010001101000000001000000000000000000000000000100000000000000000000
0010010000000000000000000000001
000000000000100000000000001000000001000000000000000000000000100000000000010
000000000000000001000000000000000100000000000000000000001000000000000000000
000001000000000000000000000000000101000000000000000000000000000000000000000
000000000000000000000000000100000000010000000010000000000000000100000100000]

(6.1)

After measuring the MPS another time, we noticed, as expected that the result was different.
Nonetheless, after hundreds of measurements, we compared all the measurements and, for this
particular Barabási network, we found only 2 possible outputs. The one shown in 6.1 and the
one shown in 6.2, where it can be seen that the first value shifts from a 1 to a 0. This result
implies that, for this particular Barabási network, we are only required to measure the first node
in order to obtain the result of the complete MPS, if we know the full configuration a priori.

In order to understand the meaning of the outputs, lets suppose our MPS represents text, so
each site would be representing a word from the text used to train the MPS. The measurements
on the sites indicate Whether the words that are being represented by site 1 and 2 are related or
not, i.e., the 1 measured in site 1 indicates that both words are correlated while the 0 measured
in site 2 indicates that the words being represented by site 2 and 3 do not share a correlation.
Analogously, the 1 measured in site 1 indicates that the first and second node of our Barabási
network are connected while the 0 measured in site 2 indicates that nodes 2 and 3 are not
connected.

If our network represented text, then it would be probable that the word being represented by
the first site is correlated with more than 1 word, which would lead to different outputs when
measuring the MPS.

38

CHAPTER 6. RESULTS

[011101011111010010000100000100000000001000010100100000001000000100000000010
0000000100000000100000000010000000000110100000000000000100000000001000000000
0000000000000000000000000000000000010000010000000000001010010000000000000000
0000000000001001000000010010000000000000100000000000001000000000000000000000
0000000100000100110000000000000000000010000000100000000000000100010000000000
0000100000000000000000000010000000000000000000000000001000000000000000000000
0000000000000000000000000010000000000010000000000000000000000000000000000000

000000000000000000000000000001100000000000000000000000000000000000000]

(6.2)

After measuring the MPS 600 times, we analysed the frequency at which each possible outcome
appears. For the output shown in 6.1, we obtain a frequency of 295

600 that corresponds to ≈
49.17%. Consequently, the frequency of the output shown in 6.2 is given by 100−49.17 = 50.83%.
Moreover, we can conclude that, by measuring the first site, we can automatically know the result
for the rest of the MPS. Suppose we have a system of 600 entangled electrons, with either spin
up or down, then, measuring the spin of the first electron and depending if its up, 1, or down,
0, we know the remaining spins of the other electrons. In addition, we also know with what
frequency we are going to measure a 0 or a 1 as the result of the first spin.

As explained in the chapter 5, we first set the bond dimension to be 3 and the previous results
uses that value. Changing the bond dimension, we verify that, despite the input being the same,
the output itself is different. Besides that, we also noticed that, the output went from being 2
possible sequences to 3. This happens since the sampling MPS itself changed when the bond
dimension changed from 3 to 4. Recalling the data processing of chapter 5, the dimension of
the tensors that compose the sampling MPS directly depend on the bond dimension, which will
make the MPS different in dimensions and with more random values, since the tensors are going
to have dimensions (2,4), (4,2,4) and (4,2), for the first site, the middle sites and the last site,
respectively. Table 6.1, shows the bond dimension used, the number of different outputs said
dimension produces, and the frequency of each output. Note that all these results are produced
using the same Barabási network.

Bond dimension 2 3 4 5
Number of different outputs 2 2 3 4

Frequency of the outputs 48.70% 51.30% 49.17% 50.83% 29.17% 32.33% 38.50% 24.67% 23.00% 27.33% 25.00%

Table 6.1: Table displaying for each bond dimension used, the respective number of different outputs and the
frequency of each output.

Comparing the different outputs from different bond dimensions, we found that the output
shown in 6.1 appears across all bond dimensions, with a probability of 51.30%, 49.17%, 38.50%
and 25.00% for bond dimensions 2, 3, 4 and 5, respectively. The output shown in 6.2 was
obtained using a bond dimension equal to 3 and appears just one other time with a frequency
of 24.67% for a bond dimension equal to 5. All remaining outputs are unique outputs.

Up to this point, we only used one of the methods described in the evaluation of the MPS.

39

As mentioned before, the algorithm uses the train batch and the cv batch to determine the
fidelity of the MPS and depending on the value obtained, it runs for a longer period of time or
it converges more rapidly. In order to determine the value of the bond dimension that better
describes the Barabási network, i.e., the value of the dimension of the space required that best
describes the Barabási network, we compared the number of runs of the DMRG necessary for
the MPS to converge. Table 6.2 shows the number of runs of the DMRG necessary for the MPS
to converge.

Bond dimension 2 3 4 5
Number of runs of the DMRG 21 21 100 100

Table 6.2: Table displaying the necessary number of runs of the DMRG in order for the MPS to converge.

By analysing table 6.2, we can conclude that the minimal dimension of the space that best
describes the Barabási network is between 2 and 3, which are also the values of the bond
dimension that produces only 2 outputs. Furthermore, we believe that, the fact that one output
appears for all values of the bond dimension, means that, it represents the system’s configuration
that is most likely to be encountered. In addition, we can also conclude that, for bond dimensions
4 and 5, the MPS did not converge, but rather the algorithm stopped at the designated 100
runs.

From table 6.1, we can conclude that, for both bond dimensions 2 and 3, by measuring only one
of the sites we are capable of obtaining the value of the remaining sites. For bond dimensions
equal to 4 and 5, in order to obtain the configuration of the collapsed system, we need to measure
2 sites. To verify if this occurrence was a particularity of this Barabási network configuration
we generated other Barabási networks and checked if the outputs of the measurements were
enough to describe the system based on just 1 or 2 sites. By repeating this process, we can
deduce that, although the number of outputs varies for different Barabási networks, using the
same bond dimension, the system always collapsed to a limited number of outputs, lower than
5. For example, using a different Barabási network, the system collapsed to 4 different outputs
instead of 3, when we set the bond dimension to 4.

The last characteristic we wanted to study is whether we can describe the system based only
on the result of 1 site, for other types of networks such as the Erdős–Rényi network. We obtain
the same type of result, where the system collapsed to a few outputs with a certain frequency,
for different bond dimensions. Similarly to the Barabási network, for bond dimensions 2 and 3,
the system collapsed to 2 outputs. For bond dimensions 4 and 5 the system collapsed to 3 and
4 outputs, respectively. Nevertheless, in contract to what we obtain for the Barabási network,
there was not an output that appears across all bond dimensions. Furthermore, for a bond
dimension equal to 3, when using the Barabási network as input, the MPS converge after 21
runs of the algorithm. However, when using the Erdős-Rényi network as input, the MPS took
longer to converge for said bond dimension.

40

Chapter 7

Discussion and Conclusion

The goal of this project was to study the minimization of information loss when re-normalizing
complex networks. Our first approach was to use the MERA algorithm. However, we opted to
use the Matrix Product State algorithm since it did not use the disentangler operators, which
fell out of the scope of this project. Using the MPS algorithm allowed us to start with a space
with a dimension equal to vN , where v is the physical dimension and N is the number of particles
of the system in question, and reduces the dimension of the space needed in order to describe
the system to 2b.

Similarly to general coordinates from analytical mechanics, we use the entanglement between the
particles and the SVD in order to find the set of coordinates that best describes our system or,
in our case, to reduce the dimension of the space. By using the Singular Value Decomposition,
which is one main part of the DMRG algorithm, we are truncating the singular value matrix
and the right and left singular vectors matrices to an optimal value where the information lost
is negligible. This optimal value is called the bond dimension.

We started with a general quantum state, a complex network to be precise, and transformed it
into a MPS by applying the SVD in a repetitive way. Once we obtained the MPS, we performed
several sweeps and by measuring each individual site of the MPS, we arrived at an output.
Using the algorithm explained in chapter 5, we were able to understand the full potential of
the algorithm itself and we realized that we could apply it to a Barabási network and study
the optimal value that still allowed us to describe the system. By studying the best value for
the bond dimension necessary for the MPS to converge, we came to the conclusion that, for a
Barabási network, a bond dimension between 2 and 3 is the best value for the dimension of the
space required to describe the complex network, where the truncated information is negligible.

For bond dimensions higher than 3, the MPS did not converge. When we measure the MPS
and it collapses to one of the outputs, we obtain one of the linearly independent vectors that
form the base of the space. Since we obtained two different outputs, we can conclude that our
space is composed of 2 linear independent vectors and those vectors are represented in 6.1 and
6.2. We started with an input of 360000 zeros and ones and ended up with an output of 600
zeros and ones, resulting in a reduction of the information needed. We could not compare the
bond dimension values bigger than 3 since the algorithm did not converge for those values of
bond dimension. Nevertheless, for bond dimensions equal to 2 and 3, we concluded that, for

41

both values, the MPS converges with the same speed, and both values resulted in two linear
independent base vectors. Furthermore, the theoretical value obtain was p≈ 2.7, which further
corroborates the results for the value of the bond dimension obtained.

Throughout this project, we studied the potential of tensor networks and realized that it, indeed,
solves the problem we aimed to solve. Nonetheless, it is a method where the complexity level
is not justified since we can achieve the same result using simpler methods such as generative
models or graph neural networks. However, it is proved to be a quicker method, when compared
with the ones mentioned before. Furthermore, the fact that tensor networks have a quantum
nature makes it a great candidate for quantum computation, outperforming other methods with
a classical nature. The statement that tensor networks is more complex than graph neural
networks and generative models is only valid when working with classical computers. If the
day comes when we are able to work in a quantum computer, then tensor networks will be
simpler since it is being applied in its natural environment. In [36], the reader can find a book
already explaining how to use tensor networks to simulate quantum systems and circuits using
tensor networks to represent operators and gates, such as the Hadamard operator and the Pauli
matrices. Moreover, there are already algorithms to make use of this operators such as the
Shor’s algorithm, the Bernstein–Vazirani algorithm and the Deutsch–Jozsa algorithm [52].

42

Bibliography

[1] R. Orús. “Tensor networks for complex quantum systems”. In: Nature Reviews Physics 1.9
(Aug. 2019), pp. 538–550. doi: 10.1038/s42254-019-0086-7. url: https://doi.org/
10.1038%5C%2Fs42254-019-0086-7.

[2] G. Vidal. “Class of Quantum Many-Body States That Can Be Efficiently Simulated”. In:
Physics Review Letters 101(11) (Sept. 2008), p. 110501. doi: 10.1103/PhysRevLett.101.
110501. url: https://link.aps.org/doi/10.1103/PhysRevLett.101.110501.

[3] M. Stoudenmire. “Introduction to Tensor Networks for Machine Learning”. In: Condensed
Matter Physics In the City (June 2020). url: https://www.youtube.com/watch?v=
vgd0J4VujBE.

[4] G. Vidal. “Entanglement Renormalization”. In: Understanding Quantum Phase Transi-
tions. Series: Condensed Matter Physics. 2010, pp. 31–58. doi: 10.1201/b10273-7.

[5] C. Fischer. “General Hartree-Fock program”. In: Computer Physics Communications
43.3 (1987), pp. 355–365. issn: 0010-4655. doi: https : / / doi . org / 10 . 1016 / 0010 -
4655(87)90053-1. url: https://www.sciencedirect.com/science/article/pii/
0010465587900531.

[6] R. Rubinstein and D. Kroese. Simulation and the Monte Carlo method. 3rd ed. Wiley,
2011.

[7] S. White. “Density matrix formulation for quantum renormalization groups”. In: Physics
Review Letters 69 (19 Nov. 1992), pp. 2863–2866. doi: 10.1103/PhysRevLett.69.2863.
url: https://link.aps.org/doi/10.1103/PhysRevLett.69.2863.

[8] D. Ashton. The Renormalisation Group. 2022. url: https://blog.dougashton.net/
2012/04/the-renormalisation-group/.

[9] S. Montangero. Introduction to tensor network methods. Springer, 2018.

[10] H. Sayama and C. Laramee. “Generative Network Automata: A Generalized Framework
for Modeling Adaptive Network Dynamics Using Graph Rewritings”. In: Understanding
Complex Systems 2009 (Feb. 2009). doi: 10.1007/978-3-642-01284-6_15.

[11] P. Mistani, S. Pakravan, and F. Gibou. “Towards a tensor network representation of com-
plex systems”. In: Oct. 2018.

[12] V. Parigi. Quantum Complex Networks — Quantum Optics group. 2022. url: http://
www.lkb.upmc.fr/quantumoptics/quantum-complex-networks.

[13] A. Mata. “Complex Networks: a Mini-review”. In: Brazilian Journal of Physics 50.5 (2020),
pp. 658–672. doi: 10.1007/s13538-020-00772-9.

43

https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1038%5C%2Fs42254-019-0086-7
https://doi.org/10.1038%5C%2Fs42254-019-0086-7
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.101.110501
https://link.aps.org/doi/10.1103/PhysRevLett.101.110501
https://www.youtube.com/watch?v=vgd0J4VujBE
https://www.youtube.com/watch?v=vgd0J4VujBE
https://doi.org/10.1201/b10273-7
https://doi.org/https://doi.org/10.1016/0010-4655(87)90053-1
https://doi.org/https://doi.org/10.1016/0010-4655(87)90053-1
https://www.sciencedirect.com/science/article/pii/0010465587900531
https://www.sciencedirect.com/science/article/pii/0010465587900531
https://doi.org/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://blog.dougashton.net/2012/04/the-renormalisation-group/
https://blog.dougashton.net/2012/04/the-renormalisation-group/
https://doi.org/10.1007/978-3-642-01284-6_15
http://www.lkb.upmc.fr/quantumoptics/quantum-complex-networks
http://www.lkb.upmc.fr/quantumoptics/quantum-complex-networks
https://doi.org/10.1007/s13538-020-00772-9

BIBLIOGRAPHY

[14] M. Ahuja and K. Sharma. “Complex Networks: A Review”. In: International Journal of
Computer Applications 101.15 (2014), pp. 31–35. doi: 10.5120/17765-8882.

[15] F. Bloch and M. Jackson. “Centrality Measures in Networks”. In: SSRN Electronic Journal
(2016). doi: 10.2139/ssrn.2749124.

[16] Jinhu Lü et al. “Theory and applications of complex networks: Advances and challenges”.
In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS). 2013, pp. 2291–
2294. doi: 10.1109/ISCAS.2013.6572335.

[17] L. Oliveira et al. “Analyzing and modeling real-world phenomena with complex networks:
a survey of applications”. In: Advances in Physics 60.3 (June 2011), pp. 329–412. doi:
10.1080/00018732.2011.572452. url: https://doi.org/10.1080%5C%2F00018732.
2011.572452.

[18] Flatiron Institute. The Tensor Network. 2022. url: https : / / tensornetwork . org /
diagrams/.

[19] B. Schutz. Geometrical methods of mathematical physics. World Publishing Corporation,
2009.

[20] Flatiron Institute. The Tensor Network. 2022. url: https://tensornetwork.org/mps/.

[21] J. Biamonte and V. Bergholm. Tensor Networks in a Nutshell. 2017. doi: 10.48550/
ARXIV.1708.00006. url: https://arxiv.org/abs/1708.00006.

[22] Flatiron Institute. The Tensor Network. 2022. url: https://tensornetwork.org/mpo/.

[23] C. Hubig, P. McCulloch, and U. Schollwöck. “Generic construction of efficient matrix
product operators”. In: Physics Review B 95 (3 Jan. 2017), p. 035129. doi: 10.1103/
PhysRevB.95.035129. url: https://link.aps.org/doi/10.1103/PhysRevB.95.
035129.

[24] J. Cirac et al. “Matrix product states and projected entangled pair states: Concepts,
symmetries, theorems”. In: Reviews of Modern Physics 93.4 (Dec. 2021). doi: 10.1103/
revmodphys.93.045003. url: https://doi.org/10.1103%5C%2Frevmodphys.93.
045003.

[25] R. Orús. “A practical introduction to tensor networks: Matrix product states and projected
entangled pair states”. In: Annals of Physics 349 (Oct. 2014), pp. 117–158. doi: 10.1016/
j.aop.2014.06.013. url: https://doi.org/10.1016%5C%2Fj.aop.2014.06.013.

[26] F. Verstraete, V. Murg, and J. Cirac. “Matrix product states, projected entangled pair
states, and variational renormalization group methods for quantum spin systems”. In:
Advances in Physics 57.2 (Mar. 2008), pp. 143–224. doi: 10.1080/14789940801912366.
url: https://doi.org/10.1080%5C%2F14789940801912366.

[27] Y. Pang et al. Efficient 2D Tensor Network Simulation of Quantum Systems. 2020. doi:
10.48550/ARXIV.2006.15234. url: https://arxiv.org/abs/2006.15234.

[28] S. Ran et al. Tensor Network Contractions: Lecture Notes in Physics. SpringerOpen, 2020.

[29] G. Vidal. “Entanglement Renormalization”. In: Physics Review Letters 99(22) (Nov. 2007),
p. 220405. doi: 10.1103/PhysRevLett.99.220405. url: https://link.aps.org/doi/
10.1103/PhysRevLett.99.220405.

44

https://doi.org/10.5120/17765-8882
https://doi.org/10.2139/ssrn.2749124
https://doi.org/10.1109/ISCAS.2013.6572335
https://doi.org/10.1080/00018732.2011.572452
https://doi.org/10.1080%5C%2F00018732.2011.572452
https://doi.org/10.1080%5C%2F00018732.2011.572452
https://tensornetwork.org/diagrams/
https://tensornetwork.org/diagrams/
https://tensornetwork.org/mps/
https://doi.org/10.48550/ARXIV.1708.00006
https://doi.org/10.48550/ARXIV.1708.00006
https://arxiv.org/abs/1708.00006
https://tensornetwork.org/mpo/
https://doi.org/10.1103/PhysRevB.95.035129
https://doi.org/10.1103/PhysRevB.95.035129
https://link.aps.org/doi/10.1103/PhysRevB.95.035129
https://link.aps.org/doi/10.1103/PhysRevB.95.035129
https://doi.org/10.1103/revmodphys.93.045003
https://doi.org/10.1103/revmodphys.93.045003
https://doi.org/10.1103%5C%2Frevmodphys.93.045003
https://doi.org/10.1103%5C%2Frevmodphys.93.045003
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016%5C%2Fj.aop.2014.06.013
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080%5C%2F14789940801912366
https://doi.org/10.48550/ARXIV.2006.15234
https://arxiv.org/abs/2006.15234
https://doi.org/10.1103/PhysRevLett.99.220405
https://link.aps.org/doi/10.1103/PhysRevLett.99.220405
https://link.aps.org/doi/10.1103/PhysRevLett.99.220405

BIBLIOGRAPHY

[30] N. Bao et al. “Consistency conditions for an AdS multiscale entanglement renormalization
ansatz correspondence”. In: Physics Review D 91(12) (June 2015), p. 125036. doi: 10.
1103/PhysRevD.91.125036. url: https://link.aps.org/doi/10.1103/PhysRevD.91.
125036.

[31] Y. Meng and X. Liu. “Finding Central Vertices and Community Structure via Extended
Density Peaks-Based Clustering”. In: Information 12.12 (2021). issn: 2078-2489. doi: 10.
3390/info12120501. url: https://www.mdpi.com/2078-2489/12/12/501.

[32] F. Amirouche and F. Amirouche. Fundamentals of multibody dynamics. Birkhäuser, 2006.

[33] E. Neil. “Classical Mechanics and Math Methods II. Generalized Coordinates”. In: (2020).

[34] R. Serway and J. Jewett. Physics for scientists and engineers. 9th ed. 2013.

[35] G. Chan. Matrix product states, DMRG, and tensor networks. Youtube, Cornell Labora-
tory of Atomic and Solid State Physics. 2015. url: https://www.youtube.com/watch?
v=Q8bFmV6tHBs.

[36] J. Biamonte. Lectures on Quantum Tensor Networks. 2019. doi: 10.48550/ARXIV.1912.
10049. url: https://arxiv.org/abs/1912.10049.

[37] K. Lange. “Singular Value Decomposition”. In: Numerical Analysis for Statisticians (2010),
pp. 129–142. doi: 10.1007/978-1-4419-5945-4_9.

[38] S. Brunton. Singular Value Decomposition (SVD): Mathematical Overview, Singular Value
Decomposition. Youtube, Steve Brunton. 2020. url: https://www.youtube.com/watch?
v=nbBvuuNVfco.

[39] S. Brunton. Singular Value Decomposition (SVD): Matrix Approximation, Singular Value
Decomposition. Youtube, Steve Brunton. 2020. url: https://www.youtube.com/watch?
v=xy3QyyhiuY4t=2s.

[40] S. Brunton. SVD and Optimal Truncation, Singular Value Decomposition. Youtube, Steve
Brunton. 2020. url: https://www.youtube.com/watch?v=9vJDjkx825k.

[41] M. Gavish and D. Donoho. The Optimal Hard Threshold for Singular Values is 4/sqrt(3).
2013. doi: 10.48550/ARXIV.1305.5870. url: https://arxiv.org/abs/1305.5870.

[42] U. Schollwöck. “The density-matrix renormalization group in the age of matrix product
states”. In: Annals of Physics 326.1 (Jan. 2011), pp. 96–192. doi: 10.1016/j.aop.2010.
09.012. url: https://doi.org/10.1016%5C%2Fj.aop.2010.09.012.

[43] I. McCulloch. “From density-matrix renormalization group to matrix product states”. In:
Journal of Statistical Mechanics: Theory and Experiment 2007.10 (Oct. 2007), P10014–
P10014. doi: 10.1088/1742-5468/2007/10/p10014. url: https://doi.org/10.1088/
1742-5468/2007/10/p10014.

[44] B. Pirvu et al. “Matrix product operator representations”. In: New Journal of Physics
12.2 (Feb. 2010), p. 025012. doi: 10 . 1088 / 1367 - 2630 / 12 / 2 / 025012. url: https :
//doi.org/10.1088/1367-2630/12/2/025012.

[45] A. Pires. “Theoretical Tools for Spin Models in Magnetic Systems”. In: (2021). doi: 10.
1088/978-0-7503-3879-0.

45

https://doi.org/10.1103/PhysRevD.91.125036
https://doi.org/10.1103/PhysRevD.91.125036
https://link.aps.org/doi/10.1103/PhysRevD.91.125036
https://link.aps.org/doi/10.1103/PhysRevD.91.125036
https://doi.org/10.3390/info12120501
https://doi.org/10.3390/info12120501
https://www.mdpi.com/2078-2489/12/12/501
https://www.youtube.com/watch?v=Q8bFmV6tHBs
https://www.youtube.com/watch?v=Q8bFmV6tHBs
https://doi.org/10.48550/ARXIV.1912.10049
https://doi.org/10.48550/ARXIV.1912.10049
https://arxiv.org/abs/1912.10049
https://doi.org/10.1007/978-1-4419-5945-4_9
https://www.youtube.com/watch?v=nbBvuuNVfco
https://www.youtube.com/watch?v=nbBvuuNVfco
https://www.youtube.com/watch?v=xy3QyyhiuY4t=2s
https://www.youtube.com/watch?v=xy3QyyhiuY4t=2s
https://www.youtube.com/watch?v=9vJDjkx825k
https://doi.org/10.48550/ARXIV.1305.5870
https://arxiv.org/abs/1305.5870
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016%5C%2Fj.aop.2010.09.012
https://doi.org/10.1088/1742-5468/2007/10/p10014
https://doi.org/10.1088/1742-5468/2007/10/p10014
https://doi.org/10.1088/1742-5468/2007/10/p10014
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1088/978-0-7503-3879-0
https://doi.org/10.1088/978-0-7503-3879-0

BIBLIOGRAPHY

[46] U. Schollwöck. “The density-matrix renormalization group”. In: Reviews of Modern
Physics 77.1 (Apr. 2005), pp. 259–315. doi: 10.1103/revmodphys.77.259. url: https:
//doi.org/10.1103%5C%2Frevmodphys.77.259.

[47] M. Wall and L. Carr. “Out-of-equilibrium dynamics with matrix product states”. In: New
Journal of Physics 14.12 (Dec. 2012), p. 125015. doi: 10.1088/1367-2630/14/12/125015.
url: https://doi.org/10.1088/1367-2630/14/12/125015.

[48] R. Albert and A. Barabási. “Statistical mechanics of complex networks”. In: Reviews of
Modern Physics 74(1) (Jan. 2002), pp. 71–75. doi: 10.1103/RevModPhys.74.47. url:
https://link.aps.org/doi/10.1103/RevModPhys.74.47.

[49] url: https://github.com/TunnelTechnologies/DMRG-exact.

[50] N. Halko, P. Martinsson, and J. Tropp. “Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions”. In: (2009). doi: 10.
48550/ARXIV.0909.4061. url: https://arxiv.org/abs/0909.4061.

[51] A. Cichocki et al. “Tensor Networks for Dimensionality Reduction and Large-scale Op-
timization: Part 1 Low-Rank Tensor Decompositions”. In: Foundations and Trends® in
Machine Learning 9.4-5 (2016), pp. 249–429. doi: 10.1561/2200000059. url: https:
//doi.org/10.1561%5C%2F2200000059.

[52] A. Harrow, A. Hassidim, and S. Lloyd. “Quantum Algorithm for Linear Systems of
Equations”. In: Physics Review Letters 103(15) (Oct. 2009), p. 150502. doi: 10.1103/
PhysRevLett.103.150502. url: https://link.aps.org/doi/10.1103/PhysRevLett.
103.150502.

46

https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1103%5C%2Frevmodphys.77.259
https://doi.org/10.1103%5C%2Frevmodphys.77.259
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.1088/1367-2630/14/12/125015
https://doi.org/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://github.com/TunnelTechnologies/DMRG-exact
https://doi.org/10.48550/ARXIV.0909.4061
https://doi.org/10.48550/ARXIV.0909.4061
https://arxiv.org/abs/0909.4061
https://doi.org/10.1561/2200000059
https://doi.org/10.1561%5C%2F2200000059
https://doi.org/10.1561%5C%2F2200000059
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502

Appendices

47

Appendix A

Code

Figure A.1: Code used to generate the Barabási network and extract the connectivity of each node.

49

Figure A.2: Code used to for the configurations of the algorithm.

50

APPENDIX A. CODE

Figure A.3: Code used to set up the Logger.

51

Figure A.4: Code used to process the data.

Figure A.5: Code used to generate the sampling MPS and the absorption of the result of the SVD.

52

APPENDIX A. CODE

Figure A.6: Code used to perform the SVD

53

(a)

(b)

Figure A.7: Code used to evaluate the MPS.

54

APPENDIX A. CODE

Figure A.8: Code used to perform the DMRG algorithm.

55

Figure A.9: Code used to perform the right sweep.

Figure A.10: Code used to perform the left sweep.

56

APPENDIX A. CODE

Figure A.11: Code used to calculate the local tensor.

(a)

(b)

Figure A.12: (a) Performing the DMRG from the right to the left. (b) Performing the DMRG from the left to
the right

57

(a)

(b)

Figure A.13: (a) Code used to set the configurations. (b) Code used to run the DMRG.

Figure A.14: Code used to set the path configuration and to start the code.

58

APPENDIX A. CODE

(a)

(b)

Figure A.15: Code used to measure the MPS and evaluate the convergence of the MPS.

59

	Introduction
	Motivation
	Objectives

	State of the Art
	Many-Body Quantum System Problem
	Complex Networks
	Tensor Networks
	Notation
	Matrix Product State
	Matrix Product Operator
	Projected Entangled Pair States
	Tree Tensor Networks
	Multiscale Entanglement Renormalization Ansatz

	Problem Statement
	Literature Review of MPS
	Tensor Networks
	Low Entanglement States

	Matrix Product State
	Singular Value Decomposition
	MPS Gauge
	From a general quantum state to a MPS

	Matrix Product Operator
	Ground state calculations with MPS

	Methods
	Results
	Discussion and Conclusion
	Appendices
	Code

