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Abstract

An injective module is a module with the largest possible injectivity domain. A poor module is
described as the opposite of an injective module, in the sense that a poor module is one whose injectivity
domain is the smallest possible. A related concept to that of the poor module is that of a ring with no
middle class. A ring has no right middle class if every right module is either poor or injective. Although,
the concept we have the most interest on is that of the pauper module. A pauper module is a poor module
with no proper poor direct summand. We will expose the importance of pauper modules regarding the
characterization of poor modules over different rings. Furthermore, we shall characterize rings and their
structures in function of their injectivity domains, in particular, regarding their poor and pauper modules.
For any given ring, we have a particular interest in verifying certain conditions. The first condition being
the existence of pauper modules. The other condition is that of ubiquity, for which we present two distinct
cases. In the first one, every poor module contains a pauper direct summand. The second weaker one, is
that every poor module contains a pauper module as a pure submodule.

Keywords— injective module, injectivity domain, poor module, no middle class, pauper module
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Resumo

Esta dissertação tem como principal objetivo expor os conteúdos do artigo [3] de forma auto-contida.
Neste é introduzido o estudo de módulos paupérrimos. Os conceitos principais que serão explorados
são módulos pobres, anéis sem classe intermédia e módulos paupérrimos. Como veremos, as definições
destes conceitos são derivadas da definição de módulos injetivos. Um módulo injetivo é um módulo cujo
domínio de injetividade é máximo. Por outro lado, ummódulo pobre é descrito como o oposto, isto é, um
módulo diz-se pobre se o seu domínio de injetividade é mínimo. Notemos que esta dissertação não é um
estudo completo em relação aos módulos pobres, nem sobre anéis sem classe intermédia. Um estudomais
abrangente é feito em [1, 2, 5, 8, 15, 27]. No esforço de manter esta dissertação auto-contida, o primeiro
capítulo é dedicado a apresentar definições e resultados que variam entre resultados clássicos da teoria
de módulos e anéis e resultados mais específicos e necessários relacionados com módulos injetivos.

O segundo capítulo é dedicado ao estudo de módulos pobres e também anéis sem classe intermédia.
O estudo de módulos pobres foi iniciado em [1]. Nesse artigo começa-se por notar que, se umR-módulo
N é semisimples, entãoN pertence ao domínio de injetividade de qualquer outroR-módulo (Proposição
1.1.12). Também temos, para um anel arbitrário R, que a interseção dos domínios de injetividade de
todos osR-módulos, sobre a categoria dosR-módulos, é precisamente a classe dos módulos semisimples
(Proposição 2.1.3). Por outras palavras, um móduloM é pobre se, para qualquer R-módulo N, quando
M é N -injetivo, então N é semisimples.

A secção 2.1 é dedicada a introduzir conceitos essenciais, relacionados commódulos pobres, e alguns
resultados mais ilustrativos, em relação à importância dos módulos pobres. Como por exemplo, o facto
de qualquer anel admitir um módulo pobre (Teorema 2.1.2), e uma maneira explícita de obter módulos
pobres (Proposição 2.1.7). Esta secção termina com a demonstração de que, ⊕p∈PZp, com P o conjunto
dos números primos, é um Z-módulo pobre.

Ainda em [1], define-se um anel R sem classe intermédia como um anel cujos R-módulos são todos
injetivos ou são todos pobres. O estudo aqui apresentado acerca destes anéis parte maioritariamente de
[15], mas também dos relevantes [5, 27]. Na secção 2.2, começamos por relacionar algumas classes de
anéis com anéis sem classe intermédia. Por exemplo, um anel R é semisimples e Artiniano se e só se
todos osR-módulos são pobres (Proposição 2.2.1). Também provamos que, se um anelR não tem classe
intermédia, então qualquer anel quociente de R também não tem classe intermédia. Outro resultado
relevante diz-nos que um anel sem classe intermédia à direita é semiartiniano à direita, ou Noetheriano
à direita (Proposição 2.2.8). Além disso, podemos separar o primeiro caso em outros dois casos, R é
Artiniano à direita, ou todos os R-módulos simples são injetivos (Proposição 2.2.11). O teorema mais
importante desta secção oferece-nos uma caraterização da estrutura de um anel sem classe intermédia da
seguinte forma: se R é um anel sem classe intermédia, então R ∼= S × T, onde S é um anel semisimples
e Artiniano e T = 0 ou T pertence a uma das classes descrita em (a), (b), (c) do Teorema 2.2.14. Uma
caracterização semelhante é dada na forma do Teorema 3.2.7. Terminamos esta secção com o Corolário
2.2.23, que garante que um anel comutativo sem classe intermédia é Artiniano.

O último capítulo é dedicada aos módulos paupérrimos. Um módulo diz-se paupérrimo se é pobre e
não contém nenhuma parcela direta própria que seja pobre. O estudo de módulos paupérrimos é inspirado
na necessidade de uma caracterização intrínseca de módulos pobres. Uma razão para esta definição ser
necessária é o facto de o domínio de injetividade de uma soma direta entre dois módulos ser igual à
interseção dos domínios dessas parcelas (Lema 2.1.4). Isto implica que um módulo ser pobre é uma
espécie de propriedade absorvente em relação à soma direta, isto é, a soma direta de umR-módulo pobre
com um outro R-módulo qualquer é também pobre. Isto implica, de forma geral, que não existe muito
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interesse em algumas parcelas, daí querermos encontrar parcelas que sejam inerentemente pobres.
O estudo de módulos paupérrimos exposto nesta dissertação passa por verificar que diferentes tipos

de anéis verificam duas propriedades. A primeira, e mais simples, consiste em verificar em que classes
de módulos é que existem módulos paupérrimos (Existência que representaremos por (E)). A segunda
propriedade passa por verificar que todos os módulos pobres numa dada classe de módulos admitem mó-
dulos paupérrimos como parcelas diretas (Ubiquidade que representaremos por (U)).No nosso contexto,
uma classe de módulos que satisfaça (U) está totalmente caracterizada. No entanto, em geral, (U) não
é fácil de verificar. Sendo assim, definimos uma condição de ubiquidade mais fraca (representada por
(U ′)) da seguinte forma: todo o módulo pobre P contém um submódulo paupérrimo M tal que M é
um submódulo puro de P. Para certos anéis, as condições (U) e (U ′) são equivalentes. Em particular,
iremos verificar tal equivalência para anéis Noetherianos (Teorema 3.3.2). Em geral, a classe de módulos
que consideramos é a categoria de R-módulos à direita. Neste caso, dizemos que R satisfaz (E), (U) ou
(U ′).

Ao contrário dos módulos pobres, nem todos os anéis admitem módulos paupérrimos. Por exemplo,
um anel semiartiniano à direita, que não seja semisimples, cujosR-módulos simples sejam injetivos, não
admite módulos paupérrimos (Proposição 3.1.1). No terceiro capítulo, o nosso estudo demódulos paupér-
rimos inicia-se com alguns exemplos explícitos de módulos paupérrimos, como⊕p∈PZp e

∏
p∈P Zp, com

P o conjunto dos números primos (Exemplos 3.1.4(i) e (ii)). Daí continuaremos a dar outros exemplos
mais abstratos, de anéis que admitem módulos paupérrimos, como anéis de dimensão uniforme finita
(Proposição 3.1.5) e anéis semilocais (Proposition 3.1.6). Um anel R sem classe intermédia admite um
módulo paupérrimo se e só se R é o produto direto de um anel semisimples S, com um anel Noetheriano
T (Corolário 3.1.10).

Na secção 3.2, combinamos de forma natural a definição de módulo paupérrimo com a de anel sem
classe intermédia. Num anel sem classe intermédia, um módulo é paupérrimo se e só se não é injetivo e
é indecomponível. Assim sendo, faz sentido definirmos um anel sem classe intermédia indecomponível,
à direita, se todos os R-módulos indecomponíveis, à direita, são pobres ou injetivos. Pela definição,
torna-se claro que qualquer anel sem classe intermédia também é sem classe intermédia indecomponível.
O recíproco é verdade para anéis Noetherianos comutativos (Corolário 3.2.6) e também para anéis Ar-
tinianos seriais (Teorema 3.2.8).

As secções 3.3 e 3.4 são focadas em anéis Noetherianos e semiartinianos, respetivamente. Alguns
dos principais resultados permitem-nos concluir que, se um anel Noetheriano comutativo e hereditário
satisfaz (U ′) (Teorema 3.3.10), então também satisfaz (U). A classe dos módulos cujo radical é zero,
sobre um anel semiartiniano comutativo, satisfaz (U ′) (Proposição 3.4.3). Além disso, qualquer anel
Artiniano serial satisfaz (U) (Proposição 3.4.8).

A última secção é dedicada a grupos abelianos, isto é, Z-módulos. A classe de grupos abelianos de
torção e a classe de grupos abelianos livres de torção de dimensão um satisfazem (U). Estas afirmações
seguem, respetivamente, da Proposição 3.5.6 e do Corolário 3.5.12.

Remetemos para o apêndice conceitos necessários, mas que foram menos aprofundados pelo autor.
Palavras-Chave— módulo injetivo, domínio de injetividade, módulo pobre, anel sem classe inter-

média, módulo paupérrimo
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Introduction

The main objective of this dissertation is to expose the contents of [3] in a self-contained manner. In the
aforementioned article the concept of pauper modules is introduced, the main concepts to be explored
alongside it are those of, poor modules and rings with no middle class. We will see how these concepts
are all derived from the definition of injective module.

An injective module is a module with the largest possible injectivity domain. In [1] a poor module
was defined as being the opposite of an injective module, in the sense that a poor module is one with the
smallest injectivity domain. Still in article [1] the concept of ring with no middle class is also introduced.
A ring R has no right middle class, if its right R-modules are all injective or poor. It is important to
highlight that this dissertation is not a complete study of poor modules or rings with no middle class, a
more thorough study is done in [1, 2, 5, 8, 15, 27].

In the effort of maintaining this dissertation self-contained, Chapter 1 is dedicated to introducing
fundamental concepts and results regarding ring and module theory.

Chapter 2 is divided in two sections. The first section is dedicated to introducing poor modules and
some of its fundamental results such as proving the existence of a poor module for any ring (Theorem
2.1.2), as well as an explicit way to construct poor modules, Proposition 2.1.7. We end Section 2.1 with
a result that will follow us throughout, for p primes, ⊕pZp is a poor Z-module.

The second section of Chapter 2 is dedicated to rings with no middle class, and most of it follows
from [15] and less preeminent, but also relevant [5, 27]. In this section we start by seeing the relation
between classes of rings and rings with no middle class. For example, a ring R is semisimple Artinian
if and only if, all of its R-modules are poor, Proposition 2.2.1. As another example, we also prove that
if a ring has no middle class, then a factor rings has no middle class either. Another important result
states that, a ring with no right middle class is right semiartinian or right Noetherian, Proposition 2.2.8.
Furthermore, in the first case that the ring is semiartnian we can unfold the result in two other cases,
the ring is right Artinian, or a V-ring, Proposition 2.2.11. The main theorem of Section 2.2 offers as a
characterization of the structure of a ring R with no middle class as follows, R ∼= S × T, where S is a
semisimple Artinian ring and T = 0, or is described as in (a), (b), (c) of Theorem 2.2.14. We finish this
section with a Corollary that states that, a commutative ring with no middle class is Artinian.

Chapter 3 is dedicated to pauper modules. The study of pauper modules is born of the necessity of
an intrinsic characterization of poor modules. We will prove that the injectivity domain of a direct sum
is the intersection of the injectivity domains, Lemma 2.1.4, and as a result it becomes clear that a poor
module acts as a sort of an absorption property regarding direct sums, which justifies the definition of
pauper module as follows. A module is pauper if, it is poor and no proper direct summand of it is poor.

The study of pauper modules done in this dissertation can be summed up to which rings satisfy the
following two properties. The first one is existence, which we will represent by (E), meaning, which
classes of modules admit pauper modules. The second one is Ubiquity, represented by (U), which states
that for every poor module P contained in a class of modulesA there exists a pauper moduleM inA such
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thatM is a direct summand of P. In our context, this means thatA is completely characterized. However
proving (U) is no trivial matter, so we define a weaker version of ubiquity, represented by (U ′) as follows,
if for every poor module P in A there exists a pauper moduleM such thatM is a pure submodule of P
inA. In general the class of modules we will be considering is the category of rightR-modules, meaning
we omit A and simply state that a ring R satisfies (E), (U) or (U ′). For certain rings we will see that
(U) and (U ′) coincide, we will see this is true for Noetherian rings, Theorem 3.3.2.

Unlike poor modules, not every ring admits pauper modules. For example, Proposition 3.1.1, shows
us that right semiartinian right V-rings that are not semisimple do not admit pauper modules. In Section
3.1 we give explicit examples of pauper modules such as,⊕pZp e

∏
p Zp, for primes p (Examples 3.1.4(i)

e (ii)). Finite uniform dimensions modules also admit pauper summands (Proposition 3.1.5), and so do
semilocal rings (Proposition 3.1.6).

In Section 3.2 we combine in a natural way the definitions of pauper module and ring with no middle
class. In a ring with no middle class, a module is pauper if and only if it is not injective and it is inde-
composable. Therefore, it makes sense to define a ring with no right indecomposable middle class by
saying that, every indecomposable rightR-module is poor or injective. By definition it is clear that a ring
with no middle class is in particular, a ring with no indecomposable middle class. The other way around
is also true for commutative Noetherian rings and serial Artinian rings, by Corollary 3.2.6 and Theorem
3.2.8 respectively.

The remaining sections are fairly self-explanatory by their name. Some of the most important results
are that a commutative hereditary Noetherian ring satisfies (U ′) (Theorem 3.3.10), then it also satisfies
(U). Any Artinian serial ring satisfies (U), by Proposition 3.4.8. Furthermore, both the class of torsion
abelian groups satisfies, and the class of torsion-free rank one groups satisfy (U), by Proposition 3.5.6
and Corollary 3.5.12 respectively.

The Appendix is dedicated to necessary concepts that were not as fully developed by the author.
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Chapter 1

Basic Definitions, notations and results

This chapter is dedicated to establishing notations, definitions and necessary results in order to study poor
and subsequently pauper modules. Most of the concepts and results presented here are well-known in the
theory of modules over rings, and can be found in [4, 17, 18, 22, 23, 24, 25, 30]. When appropriate we
present some group related concepts as well. The title of each section is fairly self-explanatory, with the
last section being dedicated to the remaining needed classes of modules/rings that did not fit elsewhere
in a natural way.

We represent the set of all prime numbers by P.
By an abelian groupG we mean a commutative group under addition with ”0” (zero) representing its

identity.
We shall always consider a ring R to be unitary and unless otherwise stated we will assume every

module to be a right R-module, which we denote byM ∈Mod-R (orMR), where Mod-R represents the
category of all right modules over R.

We write N ≤M to say N is a submodule of the R-moduleM.

The setHomR(M,N) corresponds to all theR-homomorphisms fromM toN . In particular,EndR(M)

represents all the R-homomorphisms fromM to itself.
Given a family of modules (Mi)i∈I , we define the direct product of modules as follows∏

i∈I
Mi = {(xi)i∈I : xi ∈Mi, i ∈ I}.

Furthermore we represent the direct sum by⊕
i∈I

Mi = {(xi)i∈I ∈
∏
i∈I

Mi | xi = 0, for all but finite i ∈ I}.

Given a moduleM, the setM (I) =
∑

i∈IM represents the direct sum of I copies ofM , whileM I

represents the direct product of I copies ofM.

1.1 Semisimple and Injective Modules

These are the core building blocks of what is to come, so we dedicate this section to exploring these two
classes of modules and presenting important correlations between them.

The fundamental idea of a semisimple module is that it can be uniquely decomposed (up to isomor-
phism) as a direct sum of its simple submodules. Recall that a module is simple if it is non-zero and it
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contains no proper submodules.

Definition. We say that amoduleM is semisimple, if for any submoduleN ofM there exists a submodule
K ofM such thatM = N ⊕K, that is N is a direct summand ofM.

A ringR is said to be a right (resp. left) semisimple ring, if the right moduleRR (resp.RR) is semisim-
ple.

SSMod-R represents the class of all semisimple modules over the ring R.

The following characterization is interchangeable with the definition.

Proposition 1.1.1. [25, Theorem 2.4] For a right R-moduleM, the following properties are equivalent:

(a) M is semisimple.

(b) M is the direct sum of a family of simple submodules.

(c) M is the sum of a family of simple modules.

Proof. (a)⇒ (c) LetM1 be the sum of all simple submodules ofM. AsM is semisimple, for a suitable
submodule M2 of M, we have M = M1 ⊕ M2. If M2 6= 0, then M2 contains a simple submodule,
because every non-zero semisimple module contains a simple module. But then such submodule is in
M1, a contradiction. Thus,M =M1.

(c) ⇒ (a) TakeM =
∑

i∈IMi, where eachMi is a simple submodule ofM. For notation purposes,
we writeMJ =

∑
j∈JMj , for every J ⊆ I. TakeN an arbitrary submodule ofM.Wewant to prove that

N is a direct summand ofM.ConsiderΩ the set of all subsets J ⊆ I with the following properties: MJ is
a direct sum, andN ∩MJ = 0.We can apply Zorn’s Lemma toΩ (note that the empty set is module ofΩ)
so we can choose a maximal subset J ∈ Ω. Thus, for such J, letM ′ = N +MJ = N ⊕ (⊕j∈JMj).We
are left to show thatM =M ′. It is enough to checkMi ≤M ′, for all i ∈ I. If there is someMi 6≤M ′,

thenM ′ ∩Mi = 0, becauseMi is simple. Now

M ′ +Mi = N ⊕ (⊕j∈JMj)⊕Mi

which contradicts the maximality of J.
(c)⇒ (b) Take N = 0, in the previous step.
(b)⇒ (c) Tautology.

Remark. By the implication (c)⇒ (a) we have that, ifM =
∑

i∈IMi, for a family of simple submodules
ofM, then, for any N ≤M, there exists a subset J ⊆ I such thatM = N ⊕ (⊕j∈JMj).

The following proposition describes the structure of semisimple rings.

Proposition 1.1.2. A ring R is right semisimple, if and only if it is a finite direct sum of some of its right
minimal ideals R1, · · · ,Rt i.e., R = R1 ⊕ · · · ⊕Rt.

Proof. Let R be a right semisimple ring, that is RR is semisimple. Therefore we can write RR =⊕
i∈I Ri, where {Ri : i ∈ I} are simple submodules of RR. Note that these are minimal right ide-

als over the ring. So it is enough to prove that the set I is finite. SinceR =
∑

i∈I Ri, there exists a finite
subset J ⊆ I such that 1 =

∑
j∈J aj , where aj ∈ Rj for j ∈ J. Let us assume I is infinite and take

i ∈ I \ J.

4



For any 0 6= a ∈ Ri, we have

a = 1.a = (
∑
j∈J

aj)a =
∑
j∈J

aja ∈
∑
j∈J

Rj

therefore
a ∈ Ri ∩ (

∑
j∈J

Rj) = 0

and we have arrived at a contradiction. Hence I is finite.

Lemma 1.1.3. (Schur) [25, Lemma 3.6] Let V be a simpleR-module. ThenEndR(V ) is a division ring.

Proof. Let 0 6= φ ∈ EndR(V ). Then imφ 6= 0 and kerφ 6= V. Since V is simple and kerφ and imφ are
submodules of V, we infer that imφ = V and kerφ = 0. This means that any non-zeroR-endomorphism
admits an inverse, thus EndR(M) is a division ring.

The following will be used without mention. It gives us a fairly useful and straightforward charac-
terization of the relation between simple modules.

Proposition 1.1.4. For any simple R-modules V1, V2 we have HomR(V1, V2) 6= 0 if and only if V1 and
V2 are isomorphic.

Proof. (⇐) If V1 ∼=R V2 then clearly there is a non-zero homomorphism.
(⇒) Let 0 6= φ : V1 → V2. By a similar argument done for Schur’s Lemma and by the fact that both

modules are simple we are able to infer that imφ = V2 and kerφ = 0. Now by the First Isomorphism
Theorem we conclude that V1/0 ∼= V2.

The Wedderburn-Artin Theorem is fundamental in the study of semisimple rings/modules, since it
allows us to determine the class of (right or left) semisimple rings. We skip this proof since it is not
particularly important in this work.

Theorem 1.1.5. (Wedderburn-Artin) [25, Theorem 3.5] Let R be any right semisimple ring. Then we
have a ring isomorphism R ∼= Mn1(D1) × · · · ×Mnt(Dt), for suitable division rings D1, . . . , Dt and
positive integers n1, . . . , nt. The number t is uniquely determined, as are the pairs (n1, D1), . . . , (nt, Dt)

(up to permutation). There are exactly t mutually non-isomorphic right simple modules over R.

Remark. A consequence of the Wedderburn-Artin Theorem is that the condition of a ring being right
semisimple is equivalent to it being left semisimple. This is true becauseMn1(D1)× · · · ×Mnt(Dt) is
both right and left semisimple, so we often omit the “right/left” condition and simply state that a ring is
semisimple.

Now we must introduce some notions regarding R-homomorphisms.

Definition. A finite (or infinite) sequence of R-modules and R-homomorphism

. . .
fn−1−→ Mn−1

fn−→Mn
fn+1−→ Mn+1 −→ . . .

is said exact if for every pair of successiveR-homomorphisms (fi, fi+1) we have that im fn = ker fn+1.

An exact sequence of the form

0 → K
f→M

g→ N → 0

5



is called a short exact sequence.
It is well-understood that a sequence of this form is exact if and only if, ker g = im f, g is surjective

and f is injective.

Lemma 1.1.6. [4, Lemma 5.1] Let f : M → N and f ′ : N → M be R-homomorphisms such that
ff ′ = 1N . Then f is an epimorphism, f ′ is a monomorphism andM = ker f ⊕ im f ′.

Proof. For any n ∈ N we have ff ′(n) = n, so ff ′(N) = N, hence f must be an epimorphism.
Now if we take n ∈ N such that f ′(n) = 0, then n = ff ′(n) = f(0) = 0, therefore f ′ is injective.
To prove the remainder, take m ∈ M and it follows that f(m − f ′f(m)) = f(m) − f(m) = 0 and
m = (m− f ′f(m) + f ′f(m)) ∈ ker f + im f ′. Now ifm = f ′(n) ∈ ker f ∩ im f ′, then 0 = f(m) =

ff ′(n) = n andm = f ′(n) = f ′(0) = 0. Thus ker f ∩ im f ′ = 0.

If f : M → N and f ′ : N → M are R-homomorphisms with ff ′ = 1N , we say that f is a split
epimorphism and that f ′ is a split monomorphism.

Definition. A short exact sequence

0 → K
f→M

g→ N → 0

is split or split exact in case f is a split monomorphism and g is a split epimorphism.

Lemma 1.1.7. [4, Proposition 5.2] The following statements about a short exact sequence

0 → K
f→M

g→ N → 0

in Mod-R are equivalent:

(a) The short exact sequence splits.

(b) The monomorphism f : K →M splits.

(c) The epimorphism g :M → N splits.

(d) im f = ker g is a direct summand ofM.

(e) Every homomorphism h : K → X factors through f (i.e., there exists a homomorphism t :M → X

such that h = tf.)

(f) Every homomorphism h : X → N factors through g (i.e., there exists a homomorphism v : X →M

such that h = gv.)

Proof. It is clear that (a) implies (b) and (c) by definition. Furthermore, by the previous lemma, (b) and
(c) imply (d). So it is enough to prove (d)⇒ (e)⇒ (b) and (d)⇒ (f)⇒ (c).

(d)⇒ (e) AssumeM = im f ⊕L, where L ≤M, and let h : K → X be a homomorphism. Since f
is a monomorphism, then for eachm ∈M there exists a unique k ∈ K and l ∈ L such thatm = f(k)+l.

Now define t :M → X,m = f(k) + l 7→ h(k). It is clear that t is a homomorphism and that h = tf.

(e) ⇒ (b) Since (e) is true for every homomorphism, then in particular take h = 1K and X = K, so
f splits.

(d) ⇒ (f) Suppose M = ker g ⊕ L, where L ≤ M, and let h : X → N be a homomorphism. By
definition of direct sum it follows that L ∩ ker g = 0 and g(M) = g(L), hence g|L : L → N is an
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isomorphism and let g′ : N → L be its inverse. Therefore v = g′h : X → M is a homomorphism such
that h = gv.

(f)⇒ (c) Take h = 1N and X = N, thus g splits.

The following proposition tells us that every submodule and every factor module of a semisimple module
is semisimple.

Proposition 1.1.8. [4, Proposition 9.4] LetM be a semisimple module with semisimple decomposition
M = ⊕ATα. If

0 → K
f→M

g→ N → 0

is an exact sequence, then this sequence splits and bothK and N are semisimple.
Furthermore, there is a subset B ⊆ A and isomorphisms

N ∼= ⊕BTβ andK ∼= ⊕A\BTα.

Proof. Since im f is a submodule ofM, then by the proof of Proposition 1.1.1, there is a subset B ⊆ A

such thatM = (im f)⊕ (⊕BTβ), which means that the sequence as defined above splits and N ∼= M/

im f ∼= ⊕BTβ .We also haveM = (⊕A\BTα)⊕ (⊕BTβ), henceK ∼= im f ∼= ⊕A\BTα.

Before we shift our attention towards injective modules, we introduce the fundamental concept of
essential submodule.

Definition. A module M is said to be an essential extension of a submodule N or N is said to be an
essential submodule of M, if for every submodule H of M such that H ∩ N = 0, then H = 0. We
denote this by N ≤e M.

The following two lemmas explore the properties of essential submodules and will be utilized often.

Lemma 1.1.9. [4, Lemma 5.19] A submoduleN ≤M is essential inM if and only if, for each x ∈M\0,
there exists an r ∈ R such that xr ∈ N\0.

Proof. (⇒) If N ≤e M and x ∈M\0, then xR ∩N 6= 0.

(⇐) Take x ∈ L\0, with L ≤ M. Now there is an r ∈ R such that 0 6= xr ∈ N, which implies that
0 6= xr ∈ N ∩ L.

Proposition 1.1.10. [23, Proposition 1.1] LetM,N,K,K ′, N ′ ∈ Mod-R. Then we have the following:

1. IfK ≤ N ≤M , thenK ≤e M if and only ifK ≤e N ≤e M ;

2. IfK ≤e N ≤M andK ′ ≤e N
′ ≤M, thenK ∩K ′ ≤e N ∩N ′;

3. If f : N →M is an R-homomorphism andK ≤e M, then f−1(K) ≤e N ;

4. If {Ki}i∈I is an independent family of submodules ofM, and if Ki ≤e Ni ≤ M, for each i ∈ I,

then {Ni}i∈I is an independent family and ⊕i∈IKi ≤e ⊕i∈INi.

Proof. 1. First assumeK ≤e N ≤e M and consider 0 6=M0 ≤M. SinceN ≤e M we haveM0 ∩N 6=
0. AsK ≤e N, so (M0 ∩N)∩K 6= 0, thusM0 ∩K 6= 0. ThereforeK ≤e M. Conversely, assume that
K ≤e M. Then any non-zero submodule of M has a non-trivial intersection with K. In particular, we
have N ≤ M, so any non-zero submodule of N has non-zero intersection with K, hence K ≤e N. For
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0 6= M0 ≤ M, again by hypothesis,M0 ∩K 6= 0 and K ≤ N so we infer thatM0 ∩N 6= 0. Therefore
N ≤e M.

2. Consider B a non-zero submodule of N ∩ N ′. Since by hypothesis K ≤e N, then B ∩K 6= 0.

Furthermore, sinceK ′ ≤e N
′, then (B ∩K) ∩K ′ 6= 0. HenceK ∩K ′ ≤e N ∩N ′.

3. By contradiction, assume that f−1(K) is not an essential submodule of N. Then N admits a
submodule A 6= 0 such that A ∩ f−1(K) = 0. In particular A ∩ ker f = 0, so A ∼= f(A) and 0 6=
f(A) ≤M. However A ∩ f−1(K) = 0, hence f(A) ∩K = 0, a contradiction.

4. First consider the case where the index set is finite. Assume I = {1, 2}. By 2., K1 ∩ K2 =

0 ≤e N ∩ N2, hence N1 ∩ N2 = 0, therefore {N1, N2} is independent. Now consider the projections
π1 : N1⊕N2 → N1 and π2 : N1⊕N2 → N2. By 3.,K1⊕N2 ≤e N1⊕N2 andN1⊕K2 ≤e N1⊕N2.

Again by 2.,K1⊕K2 ≤e N1⊕N2.Now by induction, consider #I = n and assumeK1⊕· · ·⊕Kn−1 ≤e

N1⊕· · ·Nn−1.By the same argument done above, (N1⊕· · ·⊕Nn−1)∩Nn = 0.Therefore {M1, . . . ,Mn}
is independent, and (K1 ⊕ · · · ⊕ Kn−1) ⊕ Kn ≤e (N1 ⊕ · · · ⊕ Nn−1) ⊕ Nn. We are left to prove
the case where I is an arbitrary index set. In general, a family {Ni}i∈I is independent if every finite
subfamily is independent. However, that is what we have just shown. So take 0 6= n ∈ ⊕i∈INi. Then
n ∈ ⊕i∈JNi, for some J ⊆ I finite. By the first part of the proof, it follows that ⊕i∈JKi ≤e ⊕i∈JNi,

and 0 6= nR ∩ (⊕i∈JKi) ⊆ nR ∩ (⊕i∈IKi). This shows that the intersection of a non-zero submodule
of ⊕i∈INi and ⊕i∈IKi is different from zero. Hence ⊕i∈IKi ≤e ⊕i∈INi.

Definition. We say that K ≤ M is a closed submodule ofM, if K has no proper essential extension in
M. This means that given L a submodule ofM such thatK ≤e L, thenK = L.

We are now ready to define injective modules.

Definition. Given right R-modulesM andN , we say thatM isN -injective if, for each monomorphism
f : K → N of right R-modules (equivalently, for each submodule K of N with f the inclusion), and
each R-homomorphism h : K →M , there exists an R-homomorphism h′ : N →M such that h = h′f ,
i.e. the follow diagram commutes.

M

0 // K
f //

h

OO

N

h′
``

When this is the case h′ is said to be an extension of h or that h can be extended to h′.

Definition. We define the injectivity domain of M as follows

Jn−1(M) = {N ∈ Mod-R :M is N -injective}.

We sayM is an injective module (over R) if its injective domain is the class of all right R-modules. We
say that R is injective on the right (resp. left) if RR (resp. RR) is an injective module.

The following is an important structural equivalence. It allows us to reduce the study of a semisimple
module to that of cyclic submodules of factor modules. Its proof is beyond the scope of this thesis.

Proposition 1.1.11. [11, Corollary 7.14] A moduleM is semisimple if and only if every cyclic submodule
of a factor ofM isM -injective.

The following shows that SSMod-R ⊆ Jn−1(M), for every moduleM.
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Proposition 1.1.12. LetM be an arbitrary module, and N an arbitrary semisimple module. ThenM is
N -injective.

Proof. LetK be a submodule ofN and let h : K →M be a homomorphism. SinceN is semisimple, we
have N = K ⊕N1, for some submodule N1 of N . Define an extension h′ : N → M as h′(x) = h(x),

if x ∈ K and h′(x) = 0, if x ∈ N1. ThereforeM is N -injective.

Let us present some fundamental properties of injective modules. The next result, also known as
Baer’s Test, tells us that in order to verify if a moduleM is injective, it is enough to take N = RR.We
skip this proof, as we intend to prove a generalization of this result in the form of Proposition 1.1.16.

Theorem 1.1.13. (Baer’s Criterion) [24, Theorem 3.7] A right R-moduleM is injective if and only if,
for any right ideal I of R, any R-homomorphism h : I →M can be extended to h′ : R→M.

Proposition 1.1.14. [30, Lemma 1.2] LetM andN be arbitrary modules. IfM isN -injective, then any
monomorphismM → N splits.

Proof. Suppose M is N -injective and take an arbitrary monomorphism g : M → N. Since M is N -
injective. Take h = idM : M → M, then there exists h′ : N → N such that idM = h′g. Thus g
splits.

Proposition 1.1.15. [30, Proposition 1.3] LetM be N -injective and N1 ≤ N. ThenM is N1-injective
and (N/N1)-injective

Proof. It is clear thatM isN1-injective. Now takeX/N1 a submodule ofN/N1, and a homomorphism
φ : X/N1 → M. Furthermore we take the canonical epimorphisms π : N → N/N1 and π1 = π|X :

X → X/N1. SinceM is N -injective, there is a homomorphism θ : N →M that extends φπ1, because
X ≤ N. Now we have θ(N1) = φπ1(N1) = φ(0) = 0, meaning N1 = kerπ ≤ ker θ. Therefore, there
exists ψ : N/N1 → M such that ψπ = θ. For any x ∈ X, ψ(x + N1) = ψπ(x) = θ(x) = φπ1(x) =

φ(x+N1). To better illustrate this we define the diagram.

M

X/N1
//

ϕ

OO

N/N1

ψ
dd

X

π1

OO

// N

θ

[[

π

OO

Therefore ψ extends φ, henceM is (N/N1)-injective.

Proposition 1.1.16. [30, Proposition 1.4] A moduleM is N -injective if and only ifM is nR-injective,
for every n ∈ N.

Proof. (⇒) Follows from Proposition 1.1.15.
(⇐) Now assume M is nR-injective for every n ∈ N. Take N0 ≤ N and φ : N0 → M an R-

homomorphism. By Zorn’s Lemma we can find a maximal submoduleN1 and a homomorphism ψ such
that N0 ≤ N1 ≤ N and ψ : N1 → M extends φ, so we have N1 ≤e N. Assume that N1 6= N and
consider an element n ∈ N\N1 and define K = {r ∈ R : nr ∈ N1}. By Lemma 1.1.9, nK 6= 0.

We consider µ = ψ|nK : nK → M, which by our assumption can be extended to a homomorphism
σ : nR → M. Let ε : N1 + nR → M, ε(n1 + nr) = φ(n1) + σ(nr). If n1 + nr = 0, then we
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have r ∈ K and φ(n1) + σ(nr) = ψ(n1) + µ(nr) = ψ(n1) + ψ(nr) = ψ(n1 + nr) = 0. So ε is
well-defined. However the pair (N1 +nR, ε) contradicts the maximality of (N1, ψ). ThereforeN1 = N

and ψ : N →M extends φ. ThusM is N -injective.

Proposition 1.1.17. [30, Proposition 1.5] A module M is (⊕i∈INi)-injective if and only if M is Ni-
injective for every i ∈ I.

Proof. (⇒) Follows from Proposition 1.1.15.
(⇐)Assume thatM is (⊕i∈INi)-injective for all i ∈ I. LetN = ⊕i∈INi and take a submoduleX of

N, also consider a homomorphism φ : X →M.Now by Zorn’s Lemma we may assume that φ cannot be
extendend to any homomorphism Y → M, where Y ≤ N,Y 6= N. Therefore X ≤e N. Now we want
to show thatX = N. By contradiction assume there exists j ∈ I and n ∈ Nj such that n 6∈ X. SinceM
is Nj-injective,M is also nR-injective, again by Proposition 1.1.15. By a similar argument done in the
previous proposition, we can extend φ to a homomorphism ψ : X + nR → M, which contradicts the
maximality of φ. Therefore X = N, which meansM is N -injective.

We skip the proof of the following results.

Proposition 1.1.18. [30, Proposition 1.6] Let N and {Mi : i ∈ I} be modules. Then
∏
i∈IMi is N -

injective if and only ifMi is N -injective, for every i ∈ I.

Proposition 1.1.19. [4, Proposition 18.6] Every right R-module can be embedded in an injective right
R-module.

The previous proposition leads us to the definition of the injective envelope of a module. It is a
“minimal” embedding ofM in an injective module.

Definition. A module E is called an injective hull or injective envelope of a module M , if E is an
essential extension ofM (i.e. M ≤e E) and E is injective.

We denote the injective hull ofM by E(M).

Theorem 1.1.20. [4, Theorem 18.10] Every module has an injective envelope. It is unique to within
isomorphism.

The following result will be fairly useful.

Lemma 1.1.21. [4, Proposition 18.12] In the category Mod-R we have the following statements:

1. M is injective if and only ifM = E(M);

2. IfM ≤e N , then E(M) = E(N);

3. IfM ≤ Q, with Q an injective module, then Q = E(M)⊕ E′;

4. If
⊕
α∈A

E(Mα) is injective, then E(
⊕
α∈A

Mα) =
⊕
α∈A

E(Mα).

Proof. 1. This is immediate from the definition of injective hull.
2. By definition N ≤e E(N) and by hypothesis M ≤e N. Then M ≤e E(N), by Proposition

1.1.10(1). Now by definition E(N) is injective, thus E(N) is an injective envelope ofM.
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3. Since Q is injective, there is a morphism g : E(M) → Q making the following commute

Q

M

f

OO

i // E(M)

g

bb

where f is the inclusion. AsM ≤e E(M), g is also a monomorphism. Since E(M) is injective, then g
splits, by Proposition 1.1.14. Therefore Q = E(M)⊕ E′, where E′ is some submodule of Q.

4. Assume that
⊕

α∈AE(Mα) is injective. Take the injective envelopes E(Mα), for each α ∈ A.

By Proposition 1.1.10(4), ⊕AMα ≤ ⊕AE(Mα). Thus ⊕AE(Mα) = E(⊕AMα).

The following is a useful characterization of injectivity in terms of its essential extensions.

Proposition 1.1.22. [24, Lemma 3.28] A moduleM is injective if and only if it has no proper essential
extensions.

Proof. Assume M is injective and consider a proper extension, M � E. By Proposition 1.1.14, the
inclusionM → E splits, hence E = M ⊕ N, for some 0 6= N ≤ E. Then N ∩M = 0 andM is not
essential in E.

Conversely, assumeM has no proper essential extensions, and embedM in an injective module J, by
Proposition 1.1.19. Take φ :M → J to be such an embedding. By Zorn’s Lemma there exists a maximal
submodule S ⊆ J such that S∩φ(M) = 0.Note that for any non-zero quotient submodule S′/S of J/S
we have (S′/S) ∩ ((φ(M) ⊕ S)/S) 6= 0. Then (φ(M) ⊕ S)/S ≤e J/S. However by assumption of
no proper essential extension, this only holds if (φ(M) ⊕ S)/S = J/S. Therefore J = φ(M) ⊕ S and
since J is injective, by a particular case of Proposition 1.1.18 we conclude that φ(M) is injective, and so
isM.

The definition of injectivity is given in function of homomorphisms between modules, while the
definition of semisimple modules is given in terms of direct summands of submodules. The follow-
ing proposition shows us that short exact sequences and splitting homomorphisms offer a much needed
correlation regarding a semisimple ring.

Proposition 1.1.23. LetK,M,N ∈ Mod-R. The following are equivalent:

(a) R is semisimple.

(b) [4, Proposition 13.9] Every short exact sequence

0 → K →M → N → 0

of right R-modules splits.

(c) [4, Proposition 13.9] Every right R-module is semisimple.

(d) [4, Corollary 13.10] Every monomorphism in Mod-R splits.

(e) [4, Corollary 13.10] Every epimorphism in Mod-R splits.
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Proof. Since RR is a right module (c)⇒ (a) is clear.
(a)⇒ (c) A finite (or infinite) direct sum of semisimple modules is itself semisimple. It will be shown

in Proposition 1.3.1, that every module is the epimorphic image of a direct sum of copies of RR. So by
hypothesis this sum is semisimple.

(c)⇒ (b) By Proposition 1.1.8.
(b) ⇒ (c) LetM be a module and let K ≤ M. Consider the short exact sequence, 0 i→ M

π→ M/

K → 0, where i is the inclusion and π is the canonical epimorphism. By hypothesis, this sequence splits
and soK = im i = kerπ is a direct summand ofM.

(b)⇔ (d)⇔ (e) Follows from Lemma 1.1.7.

Corollary 1.1.24. [4, Corollary 18.8] A ringR is semisimple if and only if every right module is injective.

Proof. (⇐) Assuming every right R-module is injective, by Proposition 1.1.14, every monomorphism
in Mod-R splits. Then, by Proposition 1.1.23, R is semisimple.

(⇒) By the previous proposition we know thatM ↪→ E(M) splits, for everyR-moduleM. SoM is
a direct summand of E(M). Since E(M) is injective. Then by Proposition 1.1.18,M is injective.

Much like the name indicates the following definition is a weaker form of injectivity. We will see a
fair amount of use for it later on, especially in Chapter 2.

Definition. A moduleM is said to be quasi-injective ifM isM -injective.
A ring R is said to be a quasi-injective ring (QI-ring) if all its quasi-injective modules are injective.

Definition. Let M be a module and N ≤ M. We say that N is a fully invariant submodule of M if
f(N) ≤ N, for every f ∈ EndR(M), i.e., EndR(M)N ≤ N.

The following proposition gives us a fairly useful way of looking at quasi-injective modules regarding
the injective hull of a module.

Proposition 1.1.25. [23, Proposition 2.13] A module M is quasi-injective if and only if M is a fully
invariant submodule of E(M).

Proof. Let A = EndR(E(M)).

(⇐) Assume that AM ≤ M and let N be a submodule ofM. Any R-homomorphism f : N → M

can be extendend to some endomorphism g in A. Note that g|M is an endomorphism ofM that extends
f. Thus by definition we conclude thatM is quasi-injective.

(⇒)Now assume thatM is quasi-injective, and let g ∈ A.Nowwe restrict the domain of g to beM∩
g−1M,meaning we get a map fromM∩g−1M toM,which can be extended to a map h ∈ EndR(M), by
quasi-injectivity. Thus h can be extended to f ∈ A such that f(M) ≤M and (f − g)(M ∩ g−1M) = 0.

Since f(M) ≤M , this implies that

M ∩ (f − g)−1M ≤M ∩ g−1M ≤ ker(f − g)

and from this we infer that (f − g)M ∩M = 0. Since M ≤e E(M), then it follows by definition of
essential extension that (f − g)M = 0. Finally gM = fM ≤M, thus AM ≤M.

The following definition is fundamental in the theory of modules over rings.
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Definition. We define the right annihilator of a moduleM (over R) as follows

annR(M) = {a ∈ R : xa = 0, x ∈M}.

If annR(M) = 0, M is said to be a faithful module.

When there is no ambiguity about the ring we simply write ann(M).When we consider an element
a ∈ R (resp. a subsetX ofR) it may not be clear if ann(a) (resp. ann(X)) represents the right annihilator
or the left annihilator. So we denote the right annihilator of a overR (resp. the right annihilator of I over
R), by annr(a) (resp. annr(X)), and the left annihilator of a over R (resp. the left annihilator of X
over R), by annl(a) (resp. annl(X)).

Now we introduce the last major concept of this section that directly relates to injectivity, the notion
of divisibility.

Definition. LetM be a right R-module, if x ∈M and a ∈ R, we say that x is divisible by a if x ∈Ma,

i.e., there exists an element y ∈M such that x = ya.

The moduleM is divisible if, for any x ∈M and a ∈ R, x is divisible by a.

Remark. As described in the definition above, for such an element y ∈M to exist we have the necessary
following condition: For b ∈ R, ab = 0 implies that xb = 0.We represent this in terms of the annihilators
by annr(a) ⊆ ann(x). So x is divisible by a, only if annr(a) ⊆ ann(x).

Proposition 1.1.26. [24, Proposition 3.17] For any moduleM the following statements are equivalent:

(a) M is a divisible module.

(b) For any a ∈ R, any homomorphism f : aR→M extends to a homomorphism from RR toM.

Proof. (a) ⇒ (b) Let a ∈ R, f ∈ HomR(aR,M), and x = f(a) ∈ M. Then u ∈ annr(a) implies that
au = 0 and xu = f(a)u = f(au) = f(0) = 0. Therefore u ∈ ann(x).Now by definition of divisibility,
x = ya for some y ∈M. Hence f extends to RR →M by 1 7→ y.

(b) ⇒ (a) Let x ∈ M and a ∈ R be such that annr(a) ⊆ ann(x). The morphism f : aR → M,

f(as) = xs, for all s ∈ R, is a well-defined homomorphism. By hypothesis, f extends to a homomor-
phism g : R→M. Let y = g(1) ∈M. Clearly, x = f(a) = g(a) = g(1.a) = g(1).a = ya.

Corollary 1.1.27. [24, Corollary 3.17’] If M is an injective module, then it is divisible. The converse
holds if R is a principal right ideal ring.

Proof. If a moduleM is injective, the condition (b) in Proposition 1.1.26 is obviously true and the first
part becomes clear. In caseR is a principal right ideal ring, the converse follows by Baer’s Criterion.

Remark. It is well known that the structure of abelian groups coincides with that of Z-modules. So
naturally let us define divisible abelian group.

Definition. An abelian groupG is divisible if for all x ∈ G and for all n ∈ Z\0, there exists y ∈ G such
that ny = x.We represent this by n | x. Thus G is divisible if G = nG, ∀n ∈ Z\0.

For a prime p, we have that G is p-divisible if G = pG.

Remark. From the definition above, note that:

1. An abelian group is divisible if and only if it is p-divisible for every p prime. This is clear since
every positive integer n can be factored as the product of primes i.e., n = pk11 p

k2
2 ...p

kn
n , with primes

pi and natural numbers ki.
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1.2 Noetherian and Artinian Modules

The concepts of Noetherian andArtinianmodules are essential and unavoidable inmodule and ring theory.
We shall present some of the most well-known results, as well as proving some meaningful relations to
injectivity and semisimplicity.

Let us start by presenting the rigorous definitions of generated and cogenerated.

Definition. LetA be a class of modules. A moduleM is (finitely) generated byA orA (finitely) gener-
atesM , in case there is a (finite) indexed set (Ui)i∈I in A and an epimorphism⊕

i∈I
Ui →M → 0.

A module M is (finitely) cogenerated by A or A (finitely) cogenerates M , in case there is a (finite)
indexed set (Ui)i∈I in A and a monomorphism

0 →M →
∏
i∈I

Ui.

Definition. Let M be a module, we denote the lattice of all submodules of M by (Sub(M),≤). Now
we say that

•M is Noetherian if Sub(M) satisfies the ascending chain condition (ACC) i.e., an ascending chain
M0 ≤ M1 ≤ · · · ≤ Mp ≤ · · · of submodules is stable (there is a p ∈ N such that for all n ≥ p, Mp =

Mn).

•M is Artinian if Sub(M) satisfies the descending chain condition (DCC) i.e., a descending chain
M0 ≥ M1 ≥ · · · ≥ Mp ≥ · · · of submodules is stable (there is a p ∈ N such that for all n ≥ p, Mp =

Mn).

A ring R is said to be right Artinian (resp. Noetherian) if the module RR is Artinian (resp. Noethe-
rian).

The upcoming Propositions 1.2.1 and 1.2.2 will be used as interchangeable with the definitions of
Noetherian and Artinian modules, respectively.

Proposition 1.2.1. [4, Proposition 10.9] LetM be a module. The following are equivalent:

(a) M is Noetherian.

(b) Every non-empty subset of Sub(M) has a maximal element.

(c) All submodules ofM are finitely generated.

Proof. The first three implications are done by negation.
(b) ⇒ (a) Assume thatM is non-Noetherian, meaning there is a chain of submodulesM0 ≤ M1 ≤

· · · ≤Mn ≤ · · · that is not stable. Then it is clear that the set {Mn : n ∈ N} has no maximal element.
(a) ⇒ (b) Assume there is a non-empty set S of submodules ofM without maximal element. Take

M0 ∈ S. AsM0 is not maximal in S, there existsM1 ∈ S such thatM0 < M1. Since S has no maximal
element we can choose a submodule M2 ∈ S such that M0 < M1 < M2. By recursion we obtain an
infinite chain

M0 < M1 < · · · < Mn < · · ·
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which does not stablize. ThereforeM is not Noetherian.
(a) ⇒ (c) Assume thatM has a submodule N that is not finitely generated. By recursion we define

a sequence x1, . . . , xn, . . . of elements in N has follows: first take x1 ∈ N, secondly for each n ≥ 2,

choose xn ∈ N such that xn does not belong to the submodule ofM generated by {x1, x2, . . . , xn−1}.
Note that the choice of such xn is possible since N is not finitely generated. Now for each n ≥ 1, we
defineMn to be generated by {x1, . . . , xn}. By construction we infer that the chainM1 < · · ·Mn < · · ·
does not stabilize. HenceM is non-Noetherian.

(c)⇒ (a) Assume every submodule ofM is finitely generated and letM0 ≤M1 ≤ · · ·Mn ≤ · · · be
a chain of submodules. DefineH =

∪
n∈NMn and supposeH is generated by {x1, x2, . . . , xr}.Now for

each i ∈ {1, . . . , r}, let ki be a positive integer such that xi ∈Mki . Take k = max{k1, . . . , kr}, so that
{x1, . . . , xr} ⊆Mk. Therefore for all n ≥ k, we have H ≤Mk ≤Mn ≤ H, soM is Noetherian.

The proof of the following proposition is done by analogous arguments.

Proposition 1.2.2. [4, Proposition 10.10] LetM be a module. The following statements are equivalent:

(a) M is Artinian.

(b) Every non-empty subset of Sub(M) has a minimal element.

(c) Every factor module ofM is finitely cogenerated.

Proposition 1.2.3. LetM ∈ Mod-R. The following hold:

1. If we have an R-homomorphism f : M → M ′ andM is Noetherian (resp. Artinian), then f(M)

is Noetherian (resp. Artinian);

2. [25, Result 1.20] Let N ≤M . ThenM is Noetherian (resp. Artinian) if and only if N andM/N

are Noetherian (resp. Artinian);

3. [25, Result 1.20] IfM1,M2 are Noetherian (resp. Artinian) submodules ofM, thenM1 ⊕M2 is
Noetherian (resp. Artinian).

Proof. We will only prove the Noetherian case.
1. Assume M is Noetherian, let f ∈ HomR(M,M ′) and take M ′

1 ≤ · · · ≤ M ′
n ≤ · · · a chain of

submodules of f(M). Then
f−1(M ′

1) ≤ · · · ≤ f−1(M ′
n) ≤ · · ·

is a chain of submodules inM . SinceM is Noetherian there exists a p ∈ N such that for alln ≥ p,we have
f−1(M ′

p) = f−1(M ′
n). Now for each n ∈ N we haveM ′

n ≤ f(M), so we infer that ff−1(M ′
n) = M ′

n.

We have just shown that for each n ≥ p, M ′
p =M ′

n, therefore f(M) is Noetherian.
2. (⇒)Any chain inN is in particular a chain ofM . SinceM is Noetherian any ascending chain inN

also stabilizes. For the second part, define the canonical epimorphism π :M →M/N, so π(M) =M/

N is Noetherian by 1.
(⇐) Conversely, letM1 ≤ · · · ≤Mn ≤ · · · be a chain of submodules ofM, then

M1 ∩N ≤ · · · ≤Mn ∩N ≤ · · · and (M1 +N)/N ≤ · · · ≤ (Mn +N)/N ≤ · · ·
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are chains ofN andM/N respectively. By hypothesis these chains stabilize for some p ∈ N so for every
n ≥ p, it follows that

Mp ∩N =Mn ∩N and (Mp +N)/N = (Mn +N)/N.

Take x ∈ Mn, then x + N ∈ (Mn + N)/N = (Mp + N)/N, so there exist y ∈ Mp and n ∈ N such
that x+N = (y + n) +N = y + (n+N) = y +N, so x− y ∈ Mn ∩N = Mp ∩N. Now x ∈ Mp,

thereforeMn =Mp. HenceM is Noetherian.
3. Assume M1 and M2 are Noetherian. We have the homomorphism q : M1 → (M1 ⊕ M2)/

M2, x 7→ x+M2, so by 1. q(M1) = (M1⊕M2)/M2 is Noetherian and by 2. M1⊕M2 is Noetherian.

Proposition 1.2.4. [30, Theorem 1.7] Given a module M and a family of modules {Ni : i ∈ I} the
following statements are equivalent:

(a) ⊕i∈INi isM -injective.

(b) ⊕i∈JNi isM -injective for every countable subset J ⊆ I.

(c) Ni isM -injective for every i ∈ I, and for every choice of xn ∈ Nin(n ∈ N) for distinct in ∈ I such
that ann(a) ⊆ ∩∞

n=1ann(xn), for some a ∈M, the ascending chain

∞∩
n=1

ann(xn) ⊆
∞∩
n=2

ann(xn) ⊆ · · · ⊆
∞∩
n=k

ann(xn) ⊆ · · ·

becomes stationary.

Proof. (a)⇒ (b) Immediate from Proposition 1.1.18.
(b) ⇒ (c) Again Proposition 1.1.18 implies that Ni is M -injective for every i ∈ I. Consider x =

(xn) ∈
∏∞
n=1Nin and φ : aR →

∏∞
n=1Nin , ar 7→ xr. Take J = ∪∞

n=1(∩j≥nann(xj)) and let
φ̄ = φ|aJ . Therefore φ̄ is a homomorphism from aJ into

⊕∞
j=1Nij . Since

⊕∞
j=1Nij is M -injective,

then it is also aR-injective, meaning φ̄ extends to some ψ : aR →
⊕∞

j=1Nij . Thus xJ = φ̄(aJ) =

ψ(aJ) ≤ ψ(aR) = ψ(a)R ≤
⊕

f∈F Nif , where F is a finite subset of N. Let F = {1, 2, . . . , k − 1},
so that xjJ = 0, for j ≥ k and hence J = ∩j≥kann(xj), meaning the sequence ∩j≥nann(xj)(n ∈ N)
becomes stationary.

(c) ⇒ (a) By contradiction, assume that
⊕

i∈I Ni is not M -injective. Then by Proposition 1.1.16
we infer that

⊕
i∈I Ni is not aR-injective, for some a ∈ M. Therefore there exists a right ideal K of

R and a homomorphism f : aK →
⊕

i∈I Ni that cannot be extended to aR. Since
⊕

i∈F Ni is M -
injective, for all finite subsets F ⊆ I, by Proposition 1.1.18, then f(aK) 6≤

⊕
i∈F Ni, for any finite

subset F ⊆ I. However f can be extended to g : aR→
∏
i∈I Ni, because

∏
i∈I Ni isM -injective. Now

let x = g(a), then ann(a) ≤ ann(x) = ∩i∈Iann(xi), where xi is the i-component of x ∈
∏
i∈I Ni.

Define Sk = {i ∈ I : xik 6= 0}, k ∈ K. Then for every k ∈ K, Sk is a finite subset of I. However
J = ∪k∈KSk is not finite, since xK = f(aK) 6≤

⊕
i∈F Ni, for any finite subset F ⊆ I. Now by

induction take kn ∈ K (n ∈ N) and indices il ∈ I such that il ∈ Skl and il 6∈ ∪l−1
n=1Skn . We denote

the in-component of x by xn. Therefore ann(m) ⊆ ∩∞
n=1ann(xn) and the sequence ∩i≥nann(xn) is

strictly increasing, which contradicts our assumption. So we conclude
⊕

i∈I Ni isM -injective.

The following theorem tells us that any direct sum of injective R-modules is injective if and only if R is
Noetherian.
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Proposition 1.2.5. [30, Theorem 1.11] The direct sum of any family of N -injective right R-modules is
N -injective if and only if every cyclic (or finitely generated) submodule of N is right Noetherian. In
particular, the direct sum of every family of injective right R-modules is injective if and only if R is right
Noetherian.

Proof. (⇐) Assume that nR is Noetherian for every n ∈ N, and consider a direct sum ⊕α∈AMα of N -
injective modulesMα. LetN1 ≤ nR and φ : N1 → ⊕α∈AMα be a homomorphism. SinceN1 is finitely
generated, then φ(N1) ≤ ⊕α∈FMα for F ⊆ A finite. By Proposition 1.1.18, ⊕α∈FMα is N -injective.
Therefore φ can be extended to ψ : nR → ⊕α∈FMα. Hence ⊕α∈AMα is N -injective, by Proposition
1.1.16.

(⇒) Assume that the direct sum of any family of N -injective modules is N -injective. Take an ar-
bitrary n ∈ N. We will prove that nR is right Noetherian, this means we will prove that an ascending
sequence ann(n) = N0 ≤ N1 ≤ N2 ≤ · · · of right ideals ofR is stationary. LetMi = E(R/Ni), i ∈ N.
Since eachMi is N -injective, then by hypothesis ⊕∞

i=1Mi is N -injective. Now consider the set {mi =

1 + Ni : i ∈ N}. By Proposition 1.2.4, we infer that the ascending sequence ∩i≥kann(mi)(k ∈ N)
becomes stationary. As ann(mi) = Ni for every i ∈ N, Nk = ann(mk) = ∩i≥kann(mi). Therefore
the sequence N1 ≤ N2 ≤ · · · becomes stationary. Hence nR is Noetherian.

Definition. LetM be a non-zero module. A finite chain of n+ 1 submodules ofM

{0} =M0 �M1 � · · · �Mn =M

is called a composition series of length n forM, if each quotientMi/Mi−1 is simple, this is to say each
Mi−1 is maximal inMi.

Definition. If a moduleM admits two composition series of the form 0 = M0 � M1 � · · ·Mn = M

and 0 = N0 � N1 � · · · � Np = M, then these composition series are said to be equivalent if n = p

and there is a permutation σ of {1, 2, . . . , n} such that

Mi/Mi+1
∼= Nσ(i)/Nσ(i)+1, for i = 1, 2, . . . , n.

Theorem 1.2.6. (Jordan-Hölder) [4, Theorem 11.3] Given a ring R, if an R-moduleM has a composi-
tion series, then every pair of composition series forM are equivalent.

Remark. By the Jordan-Hölder Theorem if a module has a composition series, then all composition series
are equivalent and, in particular have the same length. Therefore we can define the composition length
of a module as the length of its composition series (when they exist).

We denote the composition length ofM by cl(M). IfM = 0, then cl(M) = 0. IfM has a composi-
tion series of length n, we write cl(M) = n. IfM does not have a composition series, then cl(M) = ∞.

The following proposition tells us that the composition series condition is equivalent to the descending
and ascending chain conditions combined.

Proposition 1.2.7. [4, Proposition 11.1] A non-zero moduleM has a composition series if and only ifM
is Noetherian and Artinian.

Proof. (⇐) SupposeM is Noetherian and Artinian. Recursively choose an ascending chain (Mn)n∈N0

of submodules ofM as follows. TakeM0 = 0. If n ≥ 1 andMn−1 = M, takeMn = M. Otherwise, if
Mn−1 6=M, letMn be a minimal element in the set of all submodules ofM that containMn−1 properly.
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Note that suchminimalMn exists by Artinian assumption. Now byNoetherian hypothesis, there is n ∈ N
such that Mn = M. Let k be the lowest index such that Mk = M. Finally by our construction of the
submodulesMn we have, 0 =M0 �M1 � · · · �Mk =M.

(⇒) Now assume thatM has a composition series. The proof is done by induction on the length of
the composition series. If n = 1, thenM is simple and the series is trivial. Take a composition series of
length n ≥ 2

0 =M0 �M1 � · · · �Mn =M,

henceMn−1 has a composition series of length n−1 andM/Mn−1 is simple. Now by Theorem 1.2.3(2)
we conclude the proof.

Corollary 1.2.8. Any semisimple ring is right and left Noetherian and Artinian.

Proof. LetR be a semisimple ring, then by Proposition 1.1.2 there exist right minimal idealsR1, . . . ,Rt

of R such that
R = R1 ⊕ · · · ⊕Rt.

Note that the right minimal ideals of R are simple submodules of RR. Therefore the following chain of
submodules is a composition series of RR

0 � R1 � R1 ⊕R2 � · · · � R1 ⊕ · · · ⊕Rt = RR

and by the previous proposition we get the desired result.

1.3 Free, Projective and Uniform Modules

The concept of free module is the one that most closely resembles the structure of vector spaces, that is
not to say they coincide or that they behave in the same way, but they do admit a basis.

Definition. A moduleM with a subsetX = {ei : i ∈ I} is called free, withX as its basis, if and only if
the following “linear extension property” holds: for any family of elements {ni : i ∈ I} in a module N
there exists a unique R-homomorphism f :M → N such that f(ei) = ni, for all i ∈ I .

An equivalent way to define a freeR-module is to say thatM is isomorphic to a direct sum of copies
of RR i.e.,M ∼=

⊕
i∈I RR.

Proposition 1.3.1. [4, Theorem 8.1] If a right R-moduleM has a spanning setX ⊆M, then there is an
epimorphism R(X) →M. Moreover, R finitely generatesM if and only ifM has a finite spanning set.

Proof. Let X be the spanning set for M. For each x ∈ M, the left multiplication ρx : r 7→ xr is a
right R-homomorphism RR → M. Let ρ = ⊕Xρx be the direct sum of these homomorphisms. Then
ρ : R(X) → M and im ρ =

∑
X im ρx =

∑
X xR = M. Thus ρ is an epimorphism. The last statement

is clear.

Now we introduce the dual concept to the injective module.

Definition. Given right R-modulesM and N, we say thatM is N -projective, if for each epimorphism
π : N → K and each homomorphism h :M → K there exists a homomorphism h′ :M → N such that
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h = πh′ i.e., the follow diagram commutes

M

h
��

h′

~~
N

π // K // 0

.

Definition. We define the projectivity domain ofM as follows

Pr−1(M) = {N ∈ Mod-R :M is N-projective}.

We sayM is a projective module (over R) if its projectivity domain is the class of all right R-modules.
The ring R is self-projective on the right (resp. left) if RR (resp. RR) is projective.

Proposition 1.3.2. Every free module is projective.

Proof. Let F be a free module with basis B. Take f : F → N and π :M → N to be a homomorphism
and an epimorphism respectively. Now for each b ∈ B we choose mb ∈ M such that π(mb) = f(b).

By linear extension, there exists a uniquely determined homomorphism g : F → M, such that ∀b ∈
B, g(b) = mb. Thus πg(b) = π(mb) = f(b) and so by linear extension πg = f. Therefore F is
projective.

Proposition 1.3.3. [4, Proposition 17.2] Let R be a ring and P a module. Then the following are equiv-
alent:

(a) P is projective.

(b) Every R-epimorphismM → P → 0 splits.

(c) P is isomorphic to a direct summand of a free right R-module.

Proof. (a)⇒ (b) Take an epimorphism f :M → P. Since P is projective, there exists a homomorphism
g : P →M such that fg = idp. Hence the epimorphism splits.

(b) ⇒ (c) Let X be a spanning set for P. By Proposition 1.3.1, we have an epimorphism f from the
free module F = ⊕XRR onto P. Then by hypothesis F f→ P → 0 is a splitting epimorphism and ker f
is a direct summand of F. Therefore, P is isomorphic to a direct summand of F.

(c) ⇒ (a) By Proposition 1.3.2 and the fact that a direct summand of a projective module is also
projective.

Now we introduce a notion of dimension for modules, but of course this is not as straightforward as it
is for vector spaces, where we characterize dimension in function of the cardinality of a basis. With
modules, we often lack a basis to begin with, so we will define uniform dimension.

Definition. Let M be a module. We define M to be an uniform module, if for any two non-zero sub-
modules N,N ′ ≤ M we have N ∩ N ′ 6= 0. Equivalently, M is uniform if every non-zero submodule
ofM is an essential submodule ofM. A ring R is a right (resp. left) uniform ring if RR (resp. RR) is
uniform.

Lemma 1.3.4. [24, Theorem 6.1] LetU = U1⊕· · ·⊕Um and V = V1⊕· · ·⊕Vn be essential submodules
of a right R-moduleM, where the U ′

is and V ′
j s are uniform modules. Thenm = n.
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Proof. Assume that n ≥ m.We claim that Ū = U2 ⊕ · · · ⊕ Um intersects some Vj trivially. Otherwise,
Ū ∩ Vj ≤e Vj (1 ≤ j ≤ n), because Vj is uniform. Furthermore, by Proposition 1.1.10(4) it would
follow that

(Ū ∩ V1)⊕ · · · ⊕ (Ū ∩ Vn) ≤e V1 ⊕ · · · ⊕ Vn = V,

and also Ū ∩ V ≤e V ≤e M. Again, by Proposition 1.1.10(1) Ū ≤e M, a contradiction. Therefore
without loss of generality we can assume that Ū ∩ V1 = 0. Let U ′ = Ū ⊕ V1. We have U ′ ∩ U1 6= 0,

otherwise U1 +U2 + · · ·+Um + V1 would be a direct sum, but this contradicts U ≤e M. Now we have

(U ′ ∩ U1)⊕ U2 ⊕ · · · ⊕ Um ≤e U1 ⊕ · · · ⊕ Um ≤e M.

Since (U ′ ∩ U1) ⊕ U2 ⊕ · · · ⊕ Um ≤ U ′, then U ′ ≤e M.We have “replaced” the summand U1 by V1.
Repeating this process for V2 we can go from U ′ to U ′′ = V1 ⊕ V2 ⊕ U3 ⊕ · · · ⊕ Um ≤e M. After m
steps, U (m) = V1 ⊕ · · · ⊕ Vm ≤e M. However we also have V = V1 ⊕ · · · ⊕ Vn ≤e M, som = n.

Definition. We say that amodule has uniform dimension n orGoldie dimension n, denoted byu.dim(M) =

n, if there is an essential submodule V ≤e M that is the direct sum of n uniform submodules, i.e., if
for a set of uniform submodules {Ui}ni=1 we have that V = ⊕n

i=1Ui is an essential submodule ofM. If
no such positive integer n exists, we write u.dim(M) = ∞. A ring has right uniform dimension n, if
u.dim(RR) = n.

The lemma above justifies that the uniform dimension is well-defined.

Lemma 1.3.5. [24, Proposition 6.3] Given a right R-mdouleM, suppose u.dim(M) = n < ∞. Then
any direct sum of non-zero submodules N = N1 ⊕ · · · ⊕Nk ≤M has k ≤ n summands.

Proof. If n = 1 the result is clear. Assume n ≥ 2 and let V ≤e M be such that it is the direct sum of
n uniform submodules. Now N ′

i = Ni ∩ V 6= 0 and N ′
i ⊕ · · · ⊕N ′

k ≤ V.We can assumeM = V, say
M = U1 ⊕ · · · ⊕ Un, where the U ′

is are uniform. Let N̄ = N2 ⊕ · · · ⊕ Nk. Analogous to the proof of
Lemma 1.3.4, we may assume N̄ ∩ V1 = 0. Now projectM onto V2 ⊕ · · · ⊕ Vn. Therefore we have an
embedding of N̄ into V2 ⊕ · · · ⊕ Vn. Now by induction in n, we have k − 1 ≤ n− 1, hence k ≤ n.

Proposition 1.3.6. [24, Proposition 6.4] We have u.dim(M) = ∞ if and only ifM contains an infinite
direct sum of non-zero submodules.

Proof. The “if” part follows from Lemma 1.3.5.
For the “only if” part assume thatM does not contain an infinite direct sum of non-zero submodules.

We claim that any non–zero submoduleN ≤M contains a uniform submodule. If this is not true, thenN
cannot be uniform, meaning it contains someA1⊕B1 withA1 6= 0 6= B1. ThenB1 is not uniform either.
Hence it contains someA2⊕B2,withA2 6= 0 6= B2.Repeating this process, we arrive at an infinite direct
sum A1 ⊕A2 ⊕ · · · ≤M, a contradiction. Now take U1 ≤M uniform. If U1 is not essential inM, then
U1⊕U2 ≤M, for some U2 6= 0 that we can assume to be uniform. IfU1⊕U2 is not essential inM, again
we can take a non-zero uniform submodule U3 such that U1 ⊕ U2 ⊕ U3 ≤M. However, by assumption,
we can only repeat this process a finite number of times. Eventually we have U1 ⊕ · · · ⊕Un ≤e M, with
all U ′

is uniform submodules ofM. Therefore, by definition, u.dim(M) = n.

Corollary 1.3.7. [24, Corollary 6.6] For a right R-moduleM, the uniform dimension ofM is the supre-
mum of the set:

{k :M contains a direct sum of k non-zero submodules}.
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Proof. Let k ≤ ∞ be such supremum. If k = ∞, then by Lemma 1.3.5, u.dim(M) = ∞. If k < ∞,

then by the previous proposition, u.dim(M) must be finite, and again by Lemma 1.3.5 we conclude that
u.dim(M) = k.

Let us relate the notion of uniform dimension with Noetherian and Artinian modules.

Proposition 1.3.8. [24, Corollary 6.7] LetM be a right R-module.

(a) IfM is a Noetherian or an Artinian module, then u.dim(M) <∞.

(b) IfM has a composition series of length n, then u.dim(M) ≤ n. This is an equality if and only ifM
is semisimple.

Proof. (a) If the module is Noetherian or Artinian, then either of the chain conditions rules out the exis-
tence of an infinite direct sum of non-zero submodules inM.

(b) Assume we have a composition series of length n. If M contains N1 ⊕ ... ⊕ Nk, where every
Ni 6= 0, then

k ≤
k∑
i=1

length(Ni) ≤ length(M) = n.

This implies that u.dim(M) ≤ n. IfM is semisimple then u.dim(M) = n.

Conversely, if u.dim(M) = n, then N1 ⊕ ... ⊕ Nn ⊆ M, for some Ni 6= 0, and by the inequality
above for k = n, it follows that M = N1 ⊕ ... ⊕ Nn, with length(Ni) = 1, for every i. Thus M is
semisimple.

The following lemma tells us that the uniform dimension ofM is equal to the uniform dimension of its
injective hull. This fact holds for both the finite and infinite cases.

Lemma 1.3.9. [24, Corollary 6.10(2)] Let N ≤ M. Then u.dim(N) ≤ u.dim(M), and they coincide
when N ≤e M.

Proof. Immediate from Corollary 1.3.7. The equality follows from the definition of uniform dimension.

Proposition 1.3.10. [24, Proposition 6.12] The following statements are equivalent:

(a) A moduleM has finite uniform dimension n.

(b) The injective hull ofM, E(M) is a direct sum of n many indecomposable injective modules Ei.

Proof. (a)⇒ (b) Assume that u.dim(M) = n. ThenM contains an essential submodule V = U1⊕· · ·⊕
Un, where each Ui is uniform. By Proposition 1.1.21 we have E(M) = E(V ) = E(U1 ⊕ · · · ⊕ Un) =

E(U1) ⊕ · · · ⊕ E(Un). So we are done if we manage to prove that E(Ui) is indecomposable, for each
Ui. Assume E(Ui) = K ⊕ N, with K,N 6= 0. Then, as Ui ≤e E(Ui), we have Ui ∩K,Ui ∩ N 6= 0.

But Ui is uniform, so U1 ∩K,U1 ∩N ≤e Ui, contradicting (U1 ∩K) ∩ (Ui ∩N) = 0.

(b)⇒ (a) By the previous lemma u.dim(M) = u.dim(E(M)), so without loss of generality we may
assumeM is injective such thatM =M1 ⊕ · · · ⊕Mn, where eachMi is indecomposable and injective.
Now by the definition of uniform module, eachMi is uniform. Therefore u.dim(M) = n.
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1.4 Torsion Subgroups and Singular Submodules

In this section we introduce and develop the notions of torsion subgroup and singular submodule.

Definition. Let G be an (additive) abelian group. The order of an element g in G is the smallestm ∈ N
such thatmg = 0. In this case we say that g has finite order, and represent this by o(g) = m. Otherwise,
o(g) = ∞, and we say g has infinite order.

Definition. The (maximal) torsion subgroup, T (G) of G, consists of all elements of finite order. If
G = T (G) we say G is a torsion group.

Definition. A subgroup ofG is said to be torsion-free if all it elements, with the exception of zero (order
1), have infinite order.

Definition. If every non-zero element of a group G has order pn for some n ∈ N, we say that G is a
p-group or a p-primary group.

Definition. Given a group G, for each prime p we define the p-primary component of G by

Tp(G) = {a ∈ G : pka = 0, for some k ∈ N}.

Lemma 1.4.1. [20, Chapter 2, Lemma 1.1] Let G = 〈g〉 be a finite cyclic group where o(g) = m =

pr11 . . . prkk with different primes pi. ThenG has a decomposition into a direct sumG = 〈g1〉⊕ · · ·⊕〈gk〉,
where o(gi) = prii , with uniquely determined summands.

Proof. For i = 1, . . . , k, definemi = mp−rii and gi = mig. Then allm′
is are relatively prime, so there

exist si ∈ Z such that s1m1 + · · ·+ skmk = 1. Hence g = s1m1g+ · · ·+ skmkg = s1g1 + · · ·+ skgk,

so the g′is generate G. Furthermore, 〈gi〉 has order prii and is disjoint from 〈g1, . . . , gi−1, gi+1, . . . , gk〉
which has ordermi. ThusG = 〈g1〉⊕ · · ·⊕〈gk〉. The uniqueness of the summands 〈gi〉 follows from the
fact that 〈gi〉 is the only subgroup of G containing all the elements whose orders are powers of pi.

The following proposition has a fundamental role in the study of abelian groups. It gives us a char-
acterization of a torsion group in function of the direct sum of its p-primary components.

Proposition 1.4.2. [20, Chapter 2, Theorem 1.2] A torsion group G is the direct sum of its p-groups
Tp(G) with different primes p, i.e., T (G) =

⊕
p∈P Tp(G).

Proof. LetG be a torsion group. Clearly for each p prime, Tp(G) is non-empty, because 0 ∈ Tp(G).Now
take a, b ∈ T (G), so pna = 0 = pmb, for some m,n ∈ N. Then pn+m(a − b) = 0, so a − b ∈ Tp(G).

This implies that Tp(G) is a subgroup of G. Now take p1, . . . , pj distinct primes different from p. By
definition, every element of Tp1(G) + · · ·+ Tpj (G) is annihilated by a product of powers of p1, . . . , pj .
Therefore Tp(G) ∩ (Tp1(G) + · · ·+ Tpj (G)) = 0. Thus the Tp(G)′s generate their direct sum in G. By
the previous lemma, this must be the whole G.

If G has a different decomposition, into p-groups (for different primes p), say
⊕

p∈P Sp(G), then
by the maximality of Tp, we have that Sp(G) ≤ Tp(G), for each p ∈ P. If we had Sp(G) strictly
contained in Tp(G), then

⊕
p∈P Sp(G)would not be equal toG. Therefore this decomposition is uniquely

determined.

Definition. Given a right R-module M, the following subset of M is a submodule of M called the
singular submodule ofM :

Z(M) = {m ∈M : ann(m) ≤e RR} = {m ∈M : mI = 0, for some I ≤e RR}

22



A moduleM is said to be a singular module if Z(M) =M. If Z(M) = 0, M is said to be nonsingular.
A ring R is right nonsingular, if RR is a nonsingular module.

The following result is clear from the definition.

Lemma 1.4.3. Let N be a submodule ofM. Then Z(N) = N ∩ Z(M).

Remark. By this lemma it follows that ifM is nonsingular (resp. singular), then all its submodules are
nonsingular (resp. singular).

Definition. We define the second singular submodule or Goldie torsion submodule of M, Z2(M), by
the equality Z2(M)/Z(M) = Z(M/Z(M)).

Lemma 1.4.4. Let M be a module over a ring R. Then Z(M) ≤e Z2(M). Furthermore, Z2(M) is a
closed submodule ofM.

Proof. Let H ≤ Z2(M) such that H ∩ Z(M) = 0. Then H is nonsingular. On the other hand, H ∼=
(H ⊕ Z(M))/Z(M) ≤ Z2(M)/Z(M) = Z(M/Z(M)). Then H is both singular and nonsingular, so
H = 0.

Proposition 1.4.5. [22, Proposition 1.5] LetM be an R-module.

(a) M is singular if and only ifM ∼= N/K, whereK ≤e N.

(b) IfK ≤ N and Z(N) = 0, then N/K is singular if and only ifK ≤e N.

Proof. (a) (⇒) Assume M is a singular module, and take an arbitrary x ∈ M. As M is singular, x ∈
Z(M), and there exists Ix ≤e RR such that xIx = 0. Let N = ⊕x∈MR and let f : N → M be the
epimorphism defined in Proposition 1.3.1. TakeK = ker f. Clearly

⊕
x∈M Ix is a submodule ofK, and

so by Proposition 1.1.10(4) it follows that⊕Ix ≤e N. ThereforeK ≤e N.Now by the First Isomorphism
Theorem we conclude thatM ∼= N/K.

(⇐) SupposeM ∼= N/K withK ≤e N.We take x ∈ N and define the homomorphism, f : R→ N,

f(r) = xr and by Proposition 1.1.10(3) we infer that f−1(K) ≤e R. Now we have x(f−1(K)) ≤ K,

and so N/K is singular, meaningM is singular.
(b) Assume N/K is singular and take x ∈ N\0, As N/K is singular, xI ≤ K, for some I ≤e RR.

But since N is nonsingular it follows that xI 6= 0, and by Lemma 1.1.9 K ≤e N. The converse is clear
by (a).

Lemma 1.4.6. [22, Proposition 1.6] For any moduleM over a nonsingular ring R, Z(M/Z(M)) = 0.

Proof. By Lemma 1.4.4, Z(M/Z(M)) = Z2(M)/Z(M) with Z(M) ≤e Z2(M) Now assume there
exists x ∈ Z2(M)\Z(M). This would mean that ann(x) is not essential in R, meaning there exists a
non-zero right ideal I of RR such that ann(x)∩ I = 0. Now xI ∼= I. Then xI 6= 0 must be nonsingular
as well, so xI ∩ Z(M) = 0. However this contradicts the fact that Z(M) is an essential submodule of
Z2(M).We have shown that Z2(M) = Z(M), and I is nonsingular, becauseR is nonsingular, therefore
Z(M/Z(M)) = 0.

Proposition 1.4.7. [22, Proposition 1.7] Let R be a nonsingular ring.

(a) A moduleM is singular if and only ifHomR(M,B) = 0, for every nonsingular module B.

(b) A module B is nonsingular if and only if HomR(M,B) = 0, for every singular moduleM.

Proof. (a) By the previous lemma,M/Z(M) = 0, and HomR(A,A/Z(A)) = 0, only if A is singular.
(b) If HomR(M,B) = 0, then B must be nonsingular.
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1.5 The Socle

Definition. The socle of an R-moduleM is the sum of all simple submodules ofM,and is denoted by
Soc(M).

Remark. Note thatM is semisimple if and only ifM = Soc(M). Furthermore, the socle of a module is
semisimple, by Proposition 1.1.1.

We will use the following proposition as an analogous to the definition.

Proposition 1.5.1. [4, Proposition 9.7] LetM be a module over R. Then

Soc(M) =
∩

{L ≤M : L is essential inM}.

Proof. Let T be a simple submodule ofM. If we take another arbitrary submodule L such that L ≤e M,

then by definition of essential submodule it follows that T ∩L 6= 0 and so T ≤ L. Therefore Soc(M) is
contained in every essential submodule ofM.

For the other inclusion, let H be the intersection of all essential submodules of M. Take N ≤ H

and N ′ a complement submodule of N inM (a complement submodule of N is a maximal submodule
of M such that N ∩ N ′ = 0). Now let us prove that N ⊕ N ′ is an essential submodule of M. Take
0 6= S ≤ M such that (N ⊕ N ′) ∩ S = 0. It follows that N ∩ (N ′ + S) = 0 and this contradicts the
maximality of N ′, hence N ⊕ N ′ ≤e M. Note that N ≤ H ≤ N ⊕ N ′ and by Modular Law we have
H = H ∩ (N ⊕N ′) = N ⊕ (H ∩N ′). ThereforeN is a direct summand ofH,meaningH is semisimple
and we conclude thatH ≤ Soc(M).

Proposition 1.5.2. [4, Corollary 9.9] Let K be a submodule of M. Then Soc(K) = K ∩ Soc(M). In
particular, Soc(Soc(M)) = Soc(M).

Proof. The simple submodules ofK are exactly the simple submodules ofM that lie inK, so Soc(K) ≤
Soc(M). Since Soc(M) is semisimple, then by Proposition 1.1.8, K ∩ Soc(M) is semisimple, and
therefore contained in Soc(K).

We now present some relevant results relating the Noetherian and Artinian conditions to the socle.

Proposition 1.5.3. [4, Corollary 10.11(1)] LetM be an non-zero module. IfM is Artinian, thenM has
a simple submodule. In fact, Soc(M) is an essential submodule ofM.

Proof. By Proposition 1.2.2 we are guaranteed aminimal submodule. Now takeN a non-zero submodule
of M such that N ∩ Soc(M) = 0. Again by the Artinian hypothesis, if N is not itself minimal then
it admits a minimal submodule H. However since H is minimal, it is contained in Soc(M). Hence
H ∩ Soc(M) 6= 0. Therefore N = 0. Thus Soc(M) is an essential submodule.

Lemma 1.5.4. [22, Proposition 1.2] LetM be a module. ThenM is semisimple if and only ifM has no
proper essential submodules.

Proof. (⇒) Since M is semisimple, then M = Soc(M). Hence M does not admit a proper essential
submodule.

(⇐) First we prove that given a submodule N of M and K a maximal submodule of M such that
N∩K = 0, thenN⊕K is essential inM. TakeL ≤M such that (N⊕K)∩L = 0, soN∩(K⊕L) = 0.

Now by the maximality of K we know that L ≤ K, hence L = (N ⊕ K) ∩ L = 0. By the definition
of essential submodule we infer that N ⊕ K ≤e M and by hypothesis N ⊕ K = M. Thus M is
semisimple.
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The concept of semiartinian will prove itself important in the latter chapters.

Definition. A moduleM is said to be semiartinian, if each of its non-zero factor modules has a simple
module. A ring R is said to be right semiartinian if RR is semiartinian.

Proposition 1.5.5. LetM be a module. IfM is Noetherian and semiartinian, thenM is Artinian.

Proof. Assume M 6= 0. By hypothesis, Soc(M) 6= 0, meaning there is a simple non-zero submodule
S1 ofM. If S1 = M we are done. Otherwise,M/S1 is non-zero, so there exists a non-zero submodule
S2 of M such that S2/S1 is simple. Now we may assume there is a non-zero submodule Sn such that
Sn/Sn−1 is simple. If Sn 6= M, then Sn+1/Sn is simple, for some non-zero submodule Sn+1 such that
Sn+1/Sn is simple. Now we have a proper ascending chain S0 < S1 < · · · < Sn < · · · , where each Si
is Artinian, by Proposition 1.2.3(2). By the Noetherian hypothesis, this chain must eventually stabilize,
i.e. M = SN , for some N ∈ N. ThereforeM is Artinian.

Definition. Given a commutative right R-moduleM. The set

X(M) = {x ∈M : every prime ideal containing ann(x) is maximal}

is the maximal component ofM. IfM = X(M) we say thatM has maximal orders.

The proof of the proposition is beyond the scope of this thesis.

Proposition 1.5.6. [29, Proposition 3] Let R be a commutative Noetherian ring andM a module. Then
the following are equivalent:

(a) M is Artinian

(b) M is a submodule of E1 ⊕ . . .⊕ En, where Ei = E(R/Ii) with Ii a maximal ideal of R.

(c) M has maximal orders and finitely generated socle.

The following is a way of “horizontally slicing” a module using its socle.

Definition. We define the socle series of a moduleM as follows:

0 ≤ Soc1(M) ≤ Soc2(M) ≤ · · ·

where Socn is defined recursively by

Soc1(M) = Soc(M) and Socn+1(M)/Socn(M) = Soc(M/Socn(M)), forn ≥ 1.

Remark. This series can be finite and does not need to be stable.

Proposition 1.5.7. [12, Lemma 4] For any module M, any submodule Socn(M) in the socle series of
M is fully invariant.

Proof. Suppose by contradiction that the result does not hold. Then there existsn ≥ 1 such thatSocn(M)

is not fully invariant. Let φ ∈ End(M), so φ(Socn−1(M)) ≤ Socn−1(M) and we have the induced ho-
momorphism φ′ :M ′ →M ′, withM ′ =M/Socn−1(M). Now φ′(Soc1(M

′)) ≤ Soc1(M
′). Therefore

φ(Socn(M)) ≤ Socn(M), meaning Socn(M) is fully invariant, a contradiction.
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1.6 The Radical and the Jacobson Radical

We start by introducing the dual definition of essential submodule.

Definition. Let R be a ring and N a submodule of M. The submodule N is said to be superfluous or
small inM , if for every L ≤M such that N + L =M, impliesM = L.We denote this by N ≤s M.

Dual to the socle we have the following notion.

Definition. Let M be an R-module. The radical of the module M is the intersection of all maximal
submodules ofM, denoted by Rad(M).

The following is interchangeable with the definition.

Proposition 1.6.1. [4, Proposition 9.13] For a moduleM,

Rad(M) =
∑

{L ≤M | L is superfluous inM}.

Proof. Let L ≤s M and take K a maximal submodule ofM. If L 6≤ K, thusM = K + N. However
by the superfluous condition we must have M = K,which means K is not maximal, a contradiction.
So every superfluous submodule ofM is contained in Rad(M). For the other inclusion, take x ∈M. If
K ≤M with xR+K =M. ThereforeK =M, or there exists a maximal su bmoduleN ofM such that
K ≤ N and x 6∈ N. If x ∈ Rad(M). Then the maximal submodule N cannot exist in these conditions,
thus xR ≤s M.

The following propositions is clear by definition, and it tells us that the radical of a module is fully
invariant.

Proposition 1.6.2. [4, Proposition 9.14] LetM and N be modules and f : M → N a homomorphism.
Then

f(Rad(M)) ≤ Rad(N).

Proposition 1.6.3. [4, Proposition 9.15] If f : M → N is an epimorphism and ker f ≤ Rad(M), then
Rad(N) = f(Rad(M)). In particular, Rad(M/Rad(M)) = 0.

Proof. To prove the first part, by Proposition 1.6.2, it is enough to prove that Rad(N) is a submodule of
f(Rad(M)).We start by proving that for a maximal submoduleK ofM, we have f−1(f(K)) = K. In
general, f−1(f(K)) = K+ker f, and by hypothesis ker f ≤ Rad(M) ≤ K. ThereforeK+ker f = K.

Now we show f(K) is a maximal submodule of N. Assume f(K) is not proper, i.e., f(K) = N. Then
K = f−1(f(K)) = f−1(N) =M, a contradiction. Now takeL a submodule ofN such that f(K) ≤ L.

Then K ≤ f−1(L), and so f−1(L) is K orM. Hence L = f(f−1(L)) is f(K) or f(M) = N. Thus,
f(K) is a maximal submodule of N.

Take y ∈ Rad(N). Since f is an epimorphism, there exists y ∈M such that y = f(x).We claim that
x ∈ Rad(M). Let K be a maximal submodule ofM.We have already proved that f(K) is a maximal
submodule of N, so that y ∈ f(K). Therefore x ∈ f−1(f(K)) = K.We conclude that x ∈ Rad(M)

For the second half, take the canonical epimorphism f : M → M/Rad(M), by the first half we
know that Rad(M/Rad(M)) = f(Rad(M)). But ker f = Rad(M), hence f(Rad(M)) = 0.

Proposition 1.6.4. [4, Proposition 9.18] If every proper submodule of M is contained in a maximal
submodule ofM, then Rad(M) is the unique largest superfluous submodule ofM.
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Proof. Let L be a proper submodule ofM and let K be a maximal submodule such that L ≤ K. Then
by Proposition 1.6.1, L+Rad(M) ≤ K 6=M.

The proof of the proposition is beyond the scope of this thesis.

Proposition 1.6.5. [17, Proposition 7.32 A] The following statements are equivalent:

(a) Each simple right R-module is injective.

(b) Each right ideal is the intersection of maximal right ideals.

(c) Rad(M) = 0, for allM ∈ Mod-R.

Definition. A ring R is a right V-ring if every simple right R-module is injective.

The Jacobson radical is the radical of RR (or RR).

Definition. We define the Jacobson radical of a ring R as follows

J(R) =
∩

{Ii : Ii is a maximal right ideal of R}.

If we want to define this in terms of the radical, it is simply, Rad(RR) = J(R).

Claim. To be precise we should define the left and right Jacobson radical. However the left and right
Jacobson radicals coincide even in the non-commutative case. See [25, §4 ] for the development of this
equivalence.

Next we obtain an equivalent characterization for the Jacobson radical in function of the annihilator.
However we require the following lemma.

Lemma 1.6.6. [25, Lemma 4.1] For y ∈ R, the following statements are equivalent:

(a) y ∈ J(R).

(b) 1− yx is right invertible, for any x ∈ R.

(c) My = 0, for any simple R-moduleM.

Proof. (a)⇒ (b) Assume y ∈ J(R). If 1−yx is not right invertible, for some x ∈ R, then (1−yx)R ( R

is contained in a maximal right ideal I of R. However 1− yx ∈ I and y ∈ I, together imply that 1 ∈ I.

Hence I = R, which is a contradiction.
(b)⇒ (c) Assumemy 6= 0, for somem ∈M\0, then (my)R =M. In particular, for some x ∈ Rwe

havem = (my)x, som(1− yx) = 0. But, by hypothesis, (1− yx) is right invertible, thereforem = 0,

a contradiction.
(c)⇒ (a) Let I be a right maximal ideal ofR, then (R/I)-module is simple. Therefore, by hypothesis,

(R/I)y = 0 thus y ∈ I. By definition y ∈ J(R).

If we combine the definition and (c) of the previous lemma, the Jacobson radical of a ringR becomes the
intersection of the annihilators ofM , whereM is any simple R-module.
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Corollary 1.6.7. [25, Corollary 4.2] Let R be a ring andM a module. Then

J(R) =
∩

{ann(M), M is simple}.

In particular, J(R) is an ideal of R.

The proof of the following is clear.

Lemma 1.6.8. [25, Proposition 4.6] Let R be a ring and I ⊆ J(R) an ideal. Then J(R/I) = J(R)/I.

In particular, J(R/J(R)) = 0.

The following useful result combines the Artinian condition and the Jacobson radical.

Proposition 1.6.9. [25, Theorem 4.14] A ring R is semisimple if and only if R is right Artinian and
J(R) = {0}.

Proof. (⇒) Let us assume R is semisimple. By Corollary 1.2.8 we know that R is Artinian, meaning
we are left to prove that J(R) = 0. Since R is semisimple there exists a right ideal I of R such that
R = J(R)⊕ I. If J(R) 6= 0, then I 6= R so there exists a maximal right ideal I ′ of R such that I ⊆ I ′.

Now since J(R) ⊆ I ′ it follows that R ⊆ I ′, so we have arrived at a contradiction, therefore J(R) must
be trivial.

(⇐) Now assume that R is right Artinian and that J(R) = {0}. Let I1 be a minimal right ideal
of R (note that this ideal exists since the ring is Artinian). Now, since J(R) = {0}  I1, then there
exists a right maximal ideal I∗1 of R such that I∗1 ∩ I1 = {0}. Otherwise the minimality of I1 implies
that I1 = I1 ∩ I∗ ⊆ I∗, for all right maximal ideals I∗of R, and therefore I1 ⊆ J(R) = 0. From the
maximality of I∗1 it follows that R = I1 ⊕ I∗1 . If I∗1 = {0} then R = R1 and R is semisimple and we
conclude the proof. If I∗1 6= {0} then again by the Artinian hypothesis there exists a right minimal ideal
I2 of R such that I2 ⊆ I∗1 . Repeating the same argument there exists a right maximal ideal I∗2 of R such
that R = I2 ⊕ I∗2 . Therefore

I∗1 = I∗1 ∩ (I2 ⊕ I∗2 ) = I2 ⊕ (I∗1 ∩ I∗2 )

and
R = I1 ⊕ I2 ⊕ (I∗1 ∩ I∗2 ).

If I∗1 ∩ I∗2 = {0}, then R = I1⊕ I2 and R is semisimple, otherwise we keep repeating the process. After
repeating this process, we obtain I1, I2, ..., In minimal right ideals, and I∗1 , I∗2 , ..., I∗n maximal right ideals
such that Im ⊆ I∗m−1 and R = I1 ⊕ I2 ⊕ ...,⊕Im ⊕ (I∗1 ∩ I∗2 ∩ ...∩ I∗m), for everym ≤ n. Furthermore
we have the descending chain of ideals

I∗1 ) I∗1 ∩ I∗2 ) · · · ) I∗1 ∩ · · · ∩ I∗n ⊇ · · ·

which is stable, since R is Artinian. Therefore R = I1 ⊕ I2 ⊕ · · · ⊕ In, for some n ∈ N. Hence by
Proposition 1.1.2, we conclude R is semisimple.

Definition. A ring R is said to be semiprimary, if J(R) is nilpotent (J(R)n = 0, for some n ∈ N) and
R/J(R) is semisimple.

Semiprimary rings do not show anywhere else in this dissertation, so with the intent of not introducing
more results we leave the following as a claim.
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Claim. [25, Theorems 4.12 and 4.14] Any Artinian ring is semiprimary.

We are now ready to establish an important relation between Artinian and Noetherian rings.

Theorem 1.6.10. (Hopkins-Levitzki) [25, Theorem 4.15] Let R be a semiprimary ring. Then for any
M ∈ Mod-R the following statements are equivalent:

(a) M is Noetherian.

(b) M is Artinian.

(c) M has a composition series.

In particular, (i) R is right (resp. left) Artinian if and only if it is right (resp. left) Noetherian and
semiprimary. (ii) Any finitely generated right module over a right Artinian ring has a composition series.

Proof. We have already seen in Proposition 1.2.7 that (c) implies (a) and (b), so it is enough to show
(a), (b) ⇒ (c).

AssumeM is Noetherian or Artinian. By hypothesis, we fix an n ∈ N such that J(R)n = 0.Consider
the chain

M ≥M.J(R) ≥M.J(R)2 ≥ · · · ≥M.J(R)n = 0.

It is enough to show that every factorM.J(R)i/M.J(R)i+1 admits a composition series, but each factor
is either Noetherian or Artinian as aR/J(R)-module. Now by assumptionR/J(R) is semisimple, so that
each factorM.J(R)i/M.J(R)i+1 is the direct sum of simpleR/J(R)-modules. By the chain condition,
this direct sum must be finite, meaningM.J(R)i/M.J(R)i+1 admits a composition series as aR/J(R)-
module.

To prove (i) consider the equivalence between (a) and (b) applied toRR (resp. RR). For (ii), observe
that a finitely generated (right) module over a (right) Artinian ring is also Artinian.

Remark. This result implies that a right Artinian ring is always right Noetherian.

We finish this section by defining local and semilocal rings, whose definitions strongly correlate with
the Jacobson radical.

Proposition 1.6.11. [25, Theorem 19.1] Let R 6= 0 a ring. The following are equivalent:

(a) R has a unique maximal right ideal

(b) R has a unique maximal left ideal.

(c) R/J(R) is a division ring.

Proof. By symmetry, it is enough to show that (a) and (c) are equivalent.
(a) ⇒ (c) By hypothesis J(R) is the unique maximal right ideal of R. Therefore R/J(R) has two

right ideals, the zero ideal and itself. Hence R/J(R) is a division ring.
(c) ⇒ (a) By definition, J(R) is contained in any maximal right ideal. Now since R/J(R) is a

division ring, the only maximal right ideal must be J(R).

Definition. A non-zero ring R is local if it has a unique maximal right or left ideal.

Definition. A ring R is semilocal if R/J(R) is semisimple. Equivalently, R is semilocal if R/J(R) is
right (or left) Artinian.
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Remark. By Proposition 1.6.9, we know thatR/J(R) is semisimple if and only ifR/J(R) is Artinian and
J(R/J(R)) = 0. This equality always holds by Lemma 1.6.8, therefore the definitions are equivalent.

Artinian and local rings are both semilocal. If R is Artinian, then R/J(R) is Artinian. If R is local,
then by the previous proposition R/J(R) is a division ring, hence simple, thus Artinian.

1.7 More Classes of Modules and Rings

This section aims to gather the definitions and results regarding rings andmodules that do not fit elsewhere
in a natural way.

We begin with the definition of hereditary ring, as the class of hereditary Noetherian rings will prove
itself fundamental in Section 3.3.

Definition. A ring R is said right hereditary, if all of its right ideals are projective. If R is both left and
right hereditary, we say that R is hereditary.

Definition. A ring R is right semihereditary, if all of its right ideals are finitely generated. If R is both
left and right hereditary, we say that R is semihereditary.

Remark. Let R be an arbitrary ring. We have the following:

(a) A right semisimple ring R is right hereditary, because its right ideals are summands of R, hence
projective.

(b) A right Principal Ideal Domain is also a right hereditary ring. Note that in an integral domain for
any x ∈ R we can define the isomorphism, R → xR, r 7→ xr, so any principal right ideal is free,
hence projective. In particular Z is an hereditary ring.

(c) Clearly any semihereditary ring is hereditary.

We have a particular interest in the class of Artinian serial rings, as we will see in Sections 3.2 and 3.4.

Definition. A module M is said to be a uniserial module if all its submodules are totally ordered by
inclusion i.e., for any submodules A and B ofM, either A ⊆ B or B ⊆ A.

Definition. A module is said to be serial if it is the direct sum of uniserial modules. A ring R is right
(resp. left) serial if RR (resp. RR) is a serial module. If both conditions hold we say R is a serial ring.

Remark. It is trivial that a simple module is uniserial, so a semisimple module is a serial module.

The following proposition gives us an important characterization. Its proof is beyond the scope of
this thesis. Note that by the following proposition indecomposable modules are uniserial.

Proposition 1.7.1. [16, Theorem 5.6] Let R be an Artinian serial ring. Then every moduleM is a direct
sum of cyclic uniserial modules, and any two direct sum decompositions ofM into direct sums of non-zero
uniserial modules are isomorphic.

We now move onto the concept of the dual module, but first let us state this clear result.

Lemma 1.7.2. Let R be a ring and M a right R-module. The additive group HomR(M,R) is a left
R-module, with the following scalar multiplication: if f ∈ HomR(M,R) and r ∈ R we have rf :

M → R, (rf)(x) = rf(x).
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The left R-module as defined above is said to be the dual module of M (over R) and we denote it
by M∗ = HomR(M,R). Its elements are said to be the linear forms on M. For every ordered pair of
elements x ∈M and f ∈M∗, the element f(x) of R is denoted by < x, f > .

Definition. Consider a moduleM and its dualM∗ = HomR(M,R).An element x ∈M and an element
f ∈M∗ are said orthogonal, if < x, f >= 0.

A subset N ofM and a subset N∗ofM∗ are orthogonal sets if, for all x ∈ N, f ∈ N∗, x and f are
orthogonal.

Definition. Two modules are called orthogonal if they have no non-zero isomorphic submodules.

We define yet another important class of rings, present throughout Chapter 2.

Definition. A ring R is said to be a right SI-ring if all its singular right R-modules are injective.

Proposition 1.7.3. [22, Proposition 3.1] For a ring R, the following are equivalent:

(a) R is a right SI-ring.

(b) All singular right R-modules are semisimple.

(c) R/I is semisimple, for all essential ideals I.

Proof. (a)⇒ (b) LetM be an arbitrary singular right R-module. Then by definition of right SI-ring,M
is injective, and all of its submodules are also injective, meaning they are all summands ofM. HenceM
is semisimple.

(b)⇒ (c) Since I ≤e R, it follows that R/I is singular, hence by hypothesis R/I is semisimple.
(c) ⇒ (a) Suppose thatM is a singular right R-module and let us prove thatM is R-injective, and

therefore injective. Let I be an esssential ideal and f : I → M a homomorphism. Note that I/ ker f
is singular, because it is isomorphic to f(I) ≤ M. Then ker f is an essential ideal, which means by
hypothesis that R/ ker f must be semisimple. Thus I/ ker f is a summand of R/ ker f and this means
that f can be extended to some f̄ : RR →M and we are done.

Proposition 1.7.4. [22, Proposition 3.6] If R is a right SI-ring, then R/Soc(RR) is right Noetherian.

Proof. It is enough to prove that if J = Soc(RR) and J ≤ I ≤ RR, then I/J is finitely generated.
We choose K ≤ I such that J ⊕K ≤e I. Then I/(J ⊕K) is singular and by SI hypothesis injective,
hence a summand of R/(J ⊕ K). Therefore I/(J ⊕ K) is cyclic, and we are done if we manage to
prove that K is finitely generated. Let us start by seeing that K has finite dimension, otherwise there
exists an infinite sequence {K1,K2, . . .} of independent non-zero submodules of K. Since K ∩ J = 0,

this means none of the Ki ≤ K are semisimple, and by Lemma 1.5.4 each Ki has a proper essential
submodule that we represent by Hi. Since Hi ≤e Ki for every i, then ⊕Hi ≤e ⊕Ki, by Proposition
1.1.10(4). Now by Proposition 1.4.5(a), (⊕Ki)/(⊕Hi) is singular, so (⊕Ki)/(⊕Hi) is injective, and
so a summand of R/(⊕Hi). Thus it is cyclic, contradicting the fact that it is an infinite direct sum of
non-zero modules. Hence K has finite dimension. Now take a maximal independent family {Ei}i∈I of
non-zero cyclic submodules of K, so E = ⊕i∈IEi is finitely generated, since K has finite dimension.
Furthermore, from the maximality of {Ei}i∈I we infer that E ≤e K. Thus K/E is singular, once again
injective, and we conclude thatK/E is a summand of R/E. ThereforeK/E is cyclic, meaningK must
be finitely generated.
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The proof of the following is beyond the scope of this thesis. Furthermore, for the definition ofMorita
equivalent, see A.3.

Proposition 1.7.5. [22, Theorem 3.11] A ring R is a right SI-ring if and only if there is a ring decom-
position R = K × R1 × . . . × Rn such that K/Soc(KK) is a semisimple ring and each Ri is Morita
equivalent to a right SI-domain.

Definition. A ring R is said to be a right PCI-ring if every cyclic right module not isomorphic to R is
injective.

Claim 1.7.6. If R is a domain, then the notion of right PCI-domain and right SI-domain are equivalent.

A ring that satisfies any of the following conditions is said to be a quasi-Frobenius ring, which we
represent by QF-ring.

Theorem 1.7.7. [24, Theorem 15.1] For any ring R the following conditions are equivalent

(a) R is right Noetherian on one side and right self-injective.

(b) R is left Noetherian and right self-injective.

(c) R is right Noetherian and satisfies the following conditions:

(i) annr(annl(I)) = I, for any right ideal I ⊆ R.

(ii) annr(annl(J)) = J, for any left ideal J ⊆ R.

(d) R is Artinian on both sides and satisfies (i) and (ii).
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Chapter 2

Poor Modules

The main focus of this work is to study pauper modules, a concept directly derived from poor modules.
With that in mind, this chapter does not present a full study of poor modules, instead being dedicated to
presenting necessary and/or illustrative results for the next chapter.

Another way to state that a (right) R-module is injective is to say that its injectivity domain is maxi-
mum, i.e., Jn−1(M) = Mod-R. In this case, the injectivity domain ofM is “wealthy”, so the notion of
“poor” modules arises from the injectivity domain of a module being minimum. In Proposition 1.1.12
we have established that SSMod-R is contained in the injectivity domain of any module. It turns out the
intersection of all injectivity domains in Mod-R is indeed SSMod-R, by Proposition 2.1.3.

The first section is dedicated to develop these ideas, while providing some useful results going for-
ward. The second section justifies in a way our pursuit of the study of poor modules, illustrating the
usefulness of this concept in the characterization of different classes of rings.

2.1 Definitions and general results

The results and definitions in this section follow from [1, 3, 8, 15]. Please note that some authors use the
term "semisimple" to mean the ring has a trivial Jacobson radical. For Artinian rings, Proposition 1.6.9
guarantees that this notion coincides with the notion of semisimple we introduced in Chapter 1. Therefore,
we will use "semisimple Artinian ring" to eliminate that ambiguity, as in the papers referenced.

Poor modules are in their essence opposite to injective modules.

Definition. A right moduleM is poor if Jn−1(M) = SSMod-R.

Lemma 2.1.1. A moduleM is poor if and only if every cyclic module xR ∈ Jn−1(M) is semisimple.

Proof. (⇒) This implication follows from the definition of poor module.
(⇐) Take an arbitrary module N ∈ Jn−1(M). By Proposition 1.1.16 we know that M being N -

injective is equivalent toM being xR-injective for all of the cyclic submodules of N. Now since every
module is spanned by the set of its cyclic submodules and these are semisimple by hypothesis, then so
must be N. ThereforeM is poor.

Naturally, we are concerned with the existence of poor modules.

Theorem 2.1.2. [15, Proposition 1] Every ring R has a poor module.

Proof. We start by considering a complete set {Mω | ω ∈ Ω} of representatives of isomorphism classes
of non-semisimple cyclic right R-modules. For everyω ∈ Ω, sinceMω is not semisimple, then by Lemma
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1.5.4 we can choose a proper essential submodule Nω ofMω. Now take S = ⊕ω∈ΩNω. If S is not poor,
by Lemma 2.1.1 we can chooseA to be a non-semisimple cyclic module such that S isA-injective. Since
the set defined above is complete, then for some ω ∈ Ω we have that A ∼= Mω. So A admits a proper
essential submodule K �e A, which is isomorphic to Nω. As Nω is a direct summand of S, so K is
also A-injective. ThusK is a direct summand of A, contradictingK �e A. Therefore S must be a poor
module.

The following proposition justifies the definition of poor modules and establishes SSMod-R as the
lower bound for the injectivity domain of an arbitrary right R-module.

Proposition 2.1.3. [1, Proposition 3.1] We have.∩
M∈ Mod-R

Jn−1(M) = SSMod-R.

Proof. We have already seen that SSMod-R is contained in the injectivity domain of any R-module.
For the other inclusion, take N in the intersection of the injectivity domains of everyM ∈ Mod-R and
T ≤ N. Then in particular T is N -injective, so the inclusion T → N splits, by Proposition 1.1.14, and
T is a direct summand of N. Thus N is a semisimple right R-module.

The following proposition makes it apparent that direct sums are fundamental in the study of poor
modules.

Lemma 2.1.4. The injectivity domain of the direct sum of two modules is the intersection of the injectivity
domains of the summands, i.e., for arbitrary right R-modulesM1,M2 we have

Jn−1(M1 ⊕M2) = Jn−1(M1) ∩ Jn−1(M2).

Proof. When a set of indexes I is finite, we know that the direct product and the direct sum coincide.
Therefore the result follows directly from Proposition 1.1.18.

The next result is not just a useful consequence of the previous proposition, it also shows that when
it comes to direct sums the poor condition acts as a sort of absorption property. In fact this corollary is
the inspiration behind the definition of a pauper module (see Chapter 3).

Corollary 2.1.5. [1, Remark 2.4] IfM is a poor module, then for any moduleN we have thatM ⊕N is
poor.

Proof. Let K ∈ Jn−1(M ⊕ N). By Lemma 2.1.4, we have K ∈ Jn−1(M) ∩ Jn−1(N). Thus K ∈
Jn−1(M) and sinceM is poor,K must be semisimple. HenceM ⊕N is poor.

In general, the corollary above is not an equivalence. When one of the summands is an injective
module, we have the following result.

Proposition 2.1.6. [3, Lemma 2.4] Let M be an arbitrary module and E an injective module. Then
E ⊕M is poor if and only ifM is poor.

Proof. The “if” part is immediate from the corollary above. For the converse, suppose E ⊕M is poor
and takeN ∈ Jn−1(M).AsE is injective,N ∈ Jn−1(E). By lemma 2.1.4,N ∈ Jn−1(E⊕M).Hence,
by hypothesis, N is semisimple. Therefore,M is poor.
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The proof of Theorem 2.1.2 already gave us a “hint” on how to build poor modules, and the following
proposition gives us an explicit way to do so.

Proposition 2.1.7. [15, Proposition 2] LetM = ⊕N∈ΓN, where Γ is any complete set of representatives
of cyclic right R-modules. ThenM is poor.

Proof. Let K be an arbitrary module such thatM is K-injective. Then all cyclic submodules of factors
of K are K-injective. Thus, by Proposition 1.1.11, it follows that K must be semisimple. ThereforeM
is poor.

The following is the first example of the usefulness of poor modules as a tool to characterize a ring.

Proposition 2.1.8. [1, Proposition 3.7] If a (right) nonsingular ring R has a nonsingular poor module,
then R is an SI-ring.

Proof. LetM be a nonsingular poor module and take an arbitrary singular module N . Lemma 1.4.7(a)
tells us we have HomR(N,M) = 0, so N ∈ Jn−1(M). Since M is poor, N must be semisimple.
Therefore by the equivalence established in Proposition 1.7.3, we conclude that R is a right SI-ring.

Proposition 2.1.9. [8, Proposition 5.1] Let R be a semilocal ring. Then R/J(R) is a poor module.

Proof. Let I = R/J(R) and suppose that B ∈ Jn−1(I), where B is a cyclic right R-module. We
want to prove that Rad(B) = 0. So, by contradiction, suppose there is a non-zero x ∈ Rad(B). Let
f : xR → I be a non-zero homomorphism. So, f can be extended to a homomorphism g : B → I,

because I is B-injective. Then we have that f(xR) = g(xR) ≤ g(Rad(B)) ≤ Rad(I), by Proposition
1.6.2, but also Rad(I) = 0, by Proposition 1.6.3. However this would imply that f(xR) = 0, which
contradicts our assumption. Therefore Rad(B) = 0, hence BJ(R) = 0 and J(R) ⊆ ann(B). Now by
the semilocal hypothesis, IR is semisimple. As B = bR ∼= R/ann(b), for some b ∈ B, then B is also
semisimple. Therefore I is poor.

The following example is a direct application of the previous proposition.

Example 2.1.10. Z/6Z is a poor Z/12Z-module.
We take R = Z/12Z which is Artinian, because it is finite. By the remark following the definition

of semilocal we know this ring is semilocal.
Let us compute J(R). It is easy to see that the maximal ideals of R are 2Z/12Z and 3Z/12Z. So by

definition J(R) = (2Z/12Z) ∩ (3Z/12Z) = 6Z/12Z. Now by the Third Isomorphism Theorem

R/J(R) = (Z/12Z)/(6Z/12Z) ∼= Z/6Z.

The two following results lead us to a fundamental example of a poor module. Its proof is beyond
the scope of this thesis.

Proposition 2.1.11. [1, Proposition 3.4] Let R be an hereditary Noetherian domain and let M be a
semisimple module that contains exactly one copy of each simple R-module. ThenM is either poor or
injective.

In particular, if R admits only one simple module (up to isomorphism), then that module is either
injective or poor. If a ring R and module M satisfy these conditions, then M is poor unless R is a
V -ring.
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Corollary 2.1.12. [1, Corollary 3.5] Let R be an hereditary Noetherian domain. If there exists a non-
simple and non-zero uniserial module U, then every semisimple module M that contains every simple
R-module is poor.

Proof. Take modules M and U as above. By the previous proposition, M is injective or poor. By hy-
pothesisU contains a simple submoduleN � U.Also by hypothesis we can embedN intoM.Assuming
M is injective, then N is U -injective. Now by Proposition 1.1.14, N is a direct summand of U, which
contradicts the uniserial hypothesis. Therefore,M is poor.

This example is fundamental in the study of pauper abelian groups.

Example 2.1.13. Let R = Z, andM = ⊕p∈P(Z/pZ) ∼= ⊕p∈PZp.
Note that by definitionM contains exactly one copy of each of its simple R-modules. Furthermore,

we have already seen that Z is an hereditary domain, and it is also well known that Z is Noetherian. So
by the previous corollary it follows thatM is a poor module.

2.2 Rings with no middle class

This section presents important results that hold their own significance, although their importance will
become more clear in Chapter 3. Most of the results presented here are from [15]. They are utilized in
order to prove the main result of this section, Theorem 2.2.14.

Definition. For a class of right R-modules A, we say that R has no A-middle class, if every module in
A is either poor or injective.

So we have two extreme cases:

• When all modules in A are poor we say that the ring R is A-destitute.

• When no module in A is poor we say that the ring R is an A-utopia.

IfA = Mod-R in one of the cases described above, we omitA and simply state that the ringR is destitute
(resp. utopia). If we take A = {simple R-modules} we say R is simple-destitute (resp. simple-utopia),
and analogous for other classes of rings.

An immediate application of the definition.

Proposition 2.2.1. [1, Remark 2.3] For a ring R, the follow conditions are equivalent:

(a) R is semisimple Artinian.

(b) R is destitute.

(c) There exists an injective poor module.

(d) {0} is a poor module.

Proof. (a) ⇒ (b) From Proposition 1.1.23 we infer that every right R-module is semisimple. Take M
and N arbitrary right R-modules such thatM is N -injective. Since N is semisimple,M is poor. By the
arbitrary choice ofM,Mod-R is destitute.

(b)⇒ (d) Obvious by definition.
(d)⇒ (c) It is clear, since {0} is injective.
(c) ⇒ (a) LetM be an injective poor module. ThenM is R-injective and, becauseM is poor, R is

semisimple.
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Most of the following results are fairly self-explanatory, in terms of the characterization they offer for
certain classes of rings. They also illustrate the “strength” of the no middle class condition.

Proposition 2.2.2. [1, Proposition 3.2] Let R be a right PCI-domain. Then R has no middle class and
RR is a poor module.

Proof. If R is a division ring, then RR is a simple module. By Proposition 2.2.1, R is destitute and all
modules are poor.

Now let us assume that R is not a division ring. Then, by definition of PCI-domain, the only cyclic
modules that are not injective are isomorphic to RR. Now by Claim 1.7.6, the injective cyclic modules
are all singular, therefore semisimple by Proposition 1.7.3. Hence N is a non-injective moduleM must
be poor.

Proposition 2.2.3. [1, Theorem 4.1] LetR be a semilocal ring such that J(R) is simple and an essential
right ideal of R. Then R has no middle class. In particular, J(R) is a poor R-module.

Proof. Let R be a ring in the conditions described above. Also takeM a module which is not injective
and aR a cyclic module. IfM is aR-injective and sinceM is not injective, it follows that ann(a) 6= 0.By
hypothesis of J(R) being essential and simple it follows that 0 6= J(R) ≤ ann(a).Now by the semilocal
hypothesis, we have that aR is semisimple, since aR ∼= R/ann(a) ≤ (R/J(R))/(ann(a)/J(R)).

ThereforeM is poor and R has no middle class. In particular, J(R) is a poor module.

The following is an useful structural result.

Lemma 2.2.4. [15, Lemma 1] The property of having no middle class is inherited by factor rings.

Proof. LetR be a ring with no right middle class and take I an ideal ofR. LetM be a right (R/I)-module
which is not poor. Thus, there exists a non-semisimple module NR/I such thatMR/I is NR/I -injective.
So MR is NR-injective. Now NR is non-semisimple and R has no middle class, then MR is injective.
ThereforeMR/I is injective.

Note that (i) is a sort of complementary result to Proposition 1.7.3(b), by adding the no (right) middle
class condition.

Lemma 2.2.5. [15, Lemma 2] Let R be a ring with no middle class that is not a right SI-ring. Then the
following conditions hold:

(i) Every nonsingular right R-module is injective (hence semisimple).

(ii) The second singular submodule splits in any right R-module.

(iii) There exists a ring direct sum R = S ⊕ T such that S is a semisimple Artinian ring and TT has
essential socle with Z(TT ) = Soc(TT ).

(iv) Soc(RR) is an essential submodule of RR.

Proof. (i) Assume that R is not a right SI-ring and that it has no right middle class. Then there exists a
singular right module which is not injective. So by Proposition 1.1.22,MR �e E(M). Furthermore, by
Proposition 1.5.4 we infer thatE(M) is not semisimple. So every nonsingular module isE(M)-injective.
Then by hypothesis, every nonsingular module is injective, as well as semisimple.
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(ii) Let M be a module. We have shown in Lemma 1.4.4, that Z(M) is essential in Z2(M), and
Z2(M) is a closed submodule ofM. This means that there exists a submodule N ≤ M such that (N ⊕
Z2(M))/Z2(M) is essential inM/Z2(M). Now by (i)N must be injective, as it is nonsingular. Finally
M = N ⊕ Z2(M) i.e., Z2(M) splits inM.

(iii) From (ii) we have RR = IR ⊕ Z2(RR), for some right ideal I of R. So I ∼= R/Z2(R), thus IR
is nonsingular, and by (i) it follows that IR is injective and semisimple. Note that for any r ∈ R there
is an isomorphism between rI and a direct summand of IR, hence rI is also nonsingular, which implies
that Z2(RR)I = 0. Therefore I is a two-sided ideal. Now by contradiction, assume that Z(RR) is not
semisimple. Again by (i) this implies that Z(RR) 6= 0. thus Z(E(RR)) is not semisimple either. In
general the singular submodule is a fully invariant submodule of a module. In particular Z(E(RR)) is a
fully invariant submodule of E(RR). Now by Proposition 1.1.25, Z(E(RR)) is quasi-injective, thus not
poor. By the nomiddle class hypothesis,Z(E(RR))must be injective. ThereforeZ(RR) = Z(E(RR))∩
RR is a closed submodule of RR. From this we infer that Z2(RR) = Z(RR), which by (ii) implies that
Z(RR) splits in RR. This leads us to conclude that Z(RR) = 0, which is a contradiction. So Z(RR)
must be semisimple. Take S = IR and T = Z2(RR), so R = S ⊕ T and Z(TT ) = Z(RR) = Soc(TT ).

Hence, by Proposition 1.4.4 we have Soc(TT ) ≤e TT .

(iv) Consequence of (iii), since Soc(R) = Soc(S)⊕ Soc(T ) = S ⊕ Soc(T ) ≤e S ⊕ T = R.

Lemma 2.2.6. [15, Lemma 3] Let R be a ring with no right middle class such that Soc(R) is singular
and essential. Then R is an indecomposable ring.

Proof. By contradiction, assume that R = I1 ⊕ I2, with I1, I2 6= 0 ideals. Also let J1 and J2 be ideals
contained in I1and I2 respectively. If the map f : J1 → J2 is an R-homomorphism, then we have
f(J1) = f(J1)I2 = f(J1I2) = f(0) = 0, which implies that every right ideal contained in I2 is I1-
injective. In particular, Soc(I2) is I1-injective. Now by the no middle class hypothesis we have that,
either soc(I2) is injective or I1 is semisimple. In the first case, the sum of simple submodules of I2 is
injective, hence I2 is semisimple. In the latter case, we conclude that R has a simple direct summand,
contradicting the fact that Soc(RR) is singular. Therefore I1 = 0 or I2 = 0, soR is indecomposable.

Lemma 2.2.7. [15, Lemma 4] Let R be a ring with no middle class. If R has a non-semisimple and
Notherian right module, then R is a right Notherian ring.

Proof. Let M be a Noetherian and non-semisimple module. Take a set of injective right R-modules
{Ei | i ∈ I}. Then by Proposition 1.2.4 we have that

⊕
i∈I Ei is M -injective. Now since M is non-

semisimple andR has no middle class, we infer that
⊕

i∈I Ei is injective. Therefore by Proposition 1.2.5,
we conclude R is right Noetherian.

The following proposition reduces the study of no rightmiddle class rings to the following two classes.

Proposition 2.2.8. [15, Lemma 5] Any ring with no right middle class is either right semiartinian or
right Noetherian.

Proof. AssumeR is not a right semiartinian ring. Take I to be the non-zero union of the right socle series
ofR, and consider the union ringR/I.Now by the hypothesis of not being semiartinian, for somemodule
M in the socle series we have that Soc(M) = 0, hence Soc(R/I) = 0. Furthermore, by Lemma 2.2.4
we also know that R/I has no middle class. Now, if R/I was not an SI-ring, then by Lemma 2.2.5(iv)
we would have Soc(RR) ≤e RR, so we infer thatR/I is a right SI-ring. Therefore by Proposition 1.7.4,
we conclude that R/I is a right Noetherian ring. Thus R/I is a Noetherian right R-module, as well as
non-semisimple. By the previous lemma, R is a right Noetherian ring.
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Lemma 2.2.9. [15, Lemma 6] A ring R with no right middle class that has singular right socle is right
Noetherian.

Proof. Assume that R is in the conditions as described. In order to see that R is right Noetherian, we
know it is enough to show that it is not semiartinian, by the previous proposition. Let us assume the
contrary, that R is semiartinian. This means that for every non-zero module Soc(M) 6= 0. In particular,
we know there exists a simple right ideal I ⊆ R.Note that since Soc(RR) is singular, I cannot be a direct
summand of RR and hence is not injective. Therefore we have that I is properly contained in E(I), so
E(I)/I admits a simple submodule. Then I is maximal in a submodule I ′ of E(I). Hence I ′ is clearly
Noetherian, and non-semisimple. Now by Lemma 2.2.7, we conclude that R is right Noetherian.

Lemma 2.2.10. [15, Lemma 7] Let R be a ring with no middle class, with non-zero singular right socle.
Then R is right Artinian.

Proof. By the previous lemma we know that R is right Noetherian. To prove that R is Artinian we
know that by Proposition 1.5.5, it is enough to prove that R is semiartinian. Let us assume R is not
right semiartinian and reach a contradiction. We denote the union of the right socle series of R by U,
and take R̄ = R/U. By the not semiartinian assumption, we have Soc(R̄R) = 0 and R̄ 6= 0, this
implies that Soc(R̄R) is not an essential submodule of R̄. So, by Proposition 1.5.3, R̄ is not Artinian.
Now by the no middle class assumption and Lemma 2.2.4 we know R̄ = R/U has no middle class
either, hence R̄R is injective or poor. If R̄R is injective, then the ring R̄ is self-injective. Also R̄ is right
Noetherian, by Proposition 1.2.3(1). This means R̄ is a QF-ring, hence R̄ is Artinian, by Proposition
1.7.7, a contradiction. Thus R̄ is poor.

Now we restrict our focus to a cyclic submodule. Assume we have a non-semiartinian cyclic N
module. We take V to be the union of the socle series ofN and let N̄ = N/V.Again we have Soc(N̄R) =

0 and N̄ 6= 0.

First we claim that N̄ has a submodule W̄ = W/V, whereW a submodule of N containing V such
that N̄/W ∼= N/W is not semiartinian. By contradiction, assume that every factor N̄/X is semiartinian,
with 0 6= X ≤ N̄ . Then R̄ is N̄/X-injective, and poor, by the previous paragraph, hence N̄/X is
semisimple. Take K to be a simple right ideal of R, which exists by the non-zero socle assumption.
Furthermore, since Soc(RR) is singular, K cannot be injective. Therefore by no right middle class
assumption,K is poor.

Now we claim thatK is N̄ -injective. Let G be a submodule of N̄ , and let f : G→ K be a non-zero
homomorphism. As Soc(N̄), then Soc(G) = 0, hence ker f 6= 0. By the argument done above, we infer
that N̄/ ker f is semisimple, and so N̄/ ker f ∼= (G/ ker f) ⊕ (Y / ker f), for some Y ≤ N̄. Now take
the projections g1 : N̄ → N̄/ ker f, g2 : (G/ ker f) ⊕ (Y / ker f) → N̄ , and the induced isomorphism
f̄ : G/ ker f → K. Therefore f̄g1g2 : N̄ → K extends f, henceK is N̄ -injective. However,K is poor,
so N̄ must be semisimple, a contradiction. We have just proven the claim of the previous paragraph.
Now if we take N = R, we have a non-zero right ideal A1 of R such that R/A1 is not semiartinian.
If N = R/A1, then there is a non-zero right ideal A2 of A1 such that R/A2 is not semiartinian. By
recursion, we obtain an infinite strictly ascending chain A1, A2, . . . of right ideals of R, where each R/
Ai is not semiartinian. But this contradicts the fact that R is Noetherian, thus R is semiartinian, hence R
is Artinian.

Building upon Proposition 2.2.8 we have.

Proposition 2.2.11. [15, Lemma 9] Let R be a right semiartinian ring with no right middle class. Then
R is either a right V-ring or a right Artinian ring.
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Proof. Assume R is not a right V-ring. So there exists a simple right submodule N ≤ RR which is
not injective. But since N is not injective, as in the proof of Lemma 2.2.9, we infer that there exists a
simple submodule of E(N)/N, hence R is right Noetherian. Therefore by the semiartinian hypothesis
we conclude that R is Artinian, by Proposition 1.5.5.

Definition. The socle of a module M is said to be homogeneous if all of its simple submodules are
isomorphic to one another. In other words, for arbitrary simple submodules, V1, V2 in Soc(M) we have
V1 ∼= V2.

Lemma 2.2.12. [15, Lemma 8] Let R be a right nonsingular ring with no right middle class. Then there
exists a ring direct sum of the form R = S ⊕ T , where S is a semisimple Artinian ring and T is a ring
with homogeneous right socle (that can be zero).

Proof. Assume thatR is a right nonsingular ring with no right middle class. We want to start by showing
that Soc(RR) does not contain a submodule of the formA⊕B, where bothA andB are infinitely gener-
ated orthogonal submodules (see Section 1.7). So with a contradiction in mind let us assume that A and
B do exist in these conditions. AsA andB are infinitely generated, thenA andB must be non-injective.
Now becauseA andB are orthogonal, it follows that for any f ∈ HomR(E(B), E(A)) we have f(B) =

0. Since B ≤ ker f ≤ E(B), then by Proposition 1.1.10(1), ker f ≤e E(B). Furthermore, im f ∼=
E(B)/ ker f, hence im f is singular, by Proposition 1.4.5. Thus f = 0, since R is nonsingular. There-
foreA isE(B)-injective. SinceE(B) is non-semisimple, because it is infinitely generated, thenA cannot
be poor, which by the no middle class hypothesis means it is injective, contradicting our assumption.

Now consider two non-isomorphic simple modules S1and S2 contained in Soc(RR). By the same
argument above, we can assume without loss of generality that E(S1) is E(S2)-injective and vice-versa.
So at least one of them would have to be injective. The same argument also applies to a simple right ideal
S which is orthogonal to an infinitely generated semisimple right ideal I.

From this we are able to conclude that Soc(RR) can only have a finite number of homogeneous
components, where only one of them may be infinitely generated. Once again by the same argument
we are able to conclude that every other components must be injective. This allows us to construct a
summand of the form R = S ⊕ T, as stated in the lemma.

Lemma 2.2.13. [15, Lemma 10] LetR be a non-semisimple right SI-ring with no right middle class such
that R/Soc(RR) is semisimple. Then R has a unique simple singular right R-module.

Proof. Assume that R is a non-semisimple right SI-ring with no middle class and that R/Soc(RR)
is semisimple. Note that 0 6= Soc(RR) ≤e RR and R is semiartinian. By hypothesis we have R/
Soc(RR) =

⊕n
i=1(Bi/Soc(RR)) for some right ideals Bi, where each Bi/Soc(RR) is a simple sub-

module of R/Soc(RR). Since R is not semisimple Artinian, we can infer by Lemma 1.5.4 that R admits
an essential maximal right ideal. Now by Proposition 1.4.5 there exists a simple singular module S. Since
S is simple, it must be generated by a single element, s ∈ S, such that S = sR. By definition of singular
module, for this generator swe have that ann(s) ≤e RR.Now by Proposition 1.5.1, Soc(RR) ≤ ann(s).

Since S = sR =
∑n

i=1 sBi and S is simple, we must have that S = sBi, for some i ∈ {i, . . . , n}, there-
fore S ∼= Bi/Soc(RR). By the arbitrary choice of S it follows that, any other simple singular module
would be isomorphic to some Bi/Soc(RR). So if we manage to prove that all the modules of the form
Bi/soc(RR) are isomorphic to each other we are done.

Let i 6= j. There exists a ∈ Bj , such that Bj = aR+ Soc(RR).We already know that Soc(RR) ≤e

RR, so by Proposition 1.1.10(1), eachBk is also essential. By Lemma 1.1.21(2) this implies thatE(RR) =
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E(Bk).Now sinceBi is not semisimple andR has no middle class, we infer that the quasi-injective mod-
ule
∑

f∈HomR(Bj ,E(Bj))
f(B) is not semisimple, because it cointains Bj , and coincides with E(Bj) =

E(RR). This means that Bi generates E(RR). Thus there exists an epimorphism f : B
(Γ)
j → E(RR),

for some index set Γ. Now choose an element x in a finite subsum of B(Γ)
i such that f(x) = a ∈ Bj .We

now restrict f ′s domain to this finite subsum of B(Γ)
i ,obtaining a homomorphism of the form g : Bm

j →
E(RR), for some m ∈ N, such that aR ≤ im g. Let C = g−1(aR). Since R is a right SI-ring, then it
is right hereditary, by [22, Proposition 3.3]. The right ideal aR is projective, so by Proposition 1.3.3 we
know that g|C splits, thus aR can be embedded in C, as well as embedded in Bm

i .

Let a = (b1, . . . , bm) with bk ∈ Bi, for every k ∈ {i, . . . ,m}. Now aR ⊆ b1R ⊕ . . . ⊕ bmR, and
since aR is not semisimple we have for some z ∈ {1, . . . ,m} that bz 6∈ Soc(RR). Therefore Bj =

bzR + Soc(RR). Since annr(a) ⊆ annr(bz), then by the hereditary condition it follows that we have
a splitting epimorphism h : aR → bzR, hence aR = kerh ⊕ L with L a submodule of aR. From
this sum we extrapolate that (kerh/soc(kerh)) ⊕ (L/Soc(L)) ∼= (aR/Soc(aR)). Now applying The
Second Isomorphism Theorem we have aR/Soc(aR) ∼= (aR+Soc(RR))/(Soc(RR)) and this is clearly
isomorphic toBj/Soc(RR). Since L is not semisimple andBj/Soc(RR) is simple, we deduce that kerh
is semisimple. Therefore L + Soc(RR) = Bj . Again by the Second Isomorphism Theorem we obtain
(Bj/Soc(RR)) = (L+ Soc(RR))/Soc(RR) ∼= L/Soc(L) and also (L/Soc(L) ∼= (bzR/Soc(bzR)) ∼=
(Bi/soc(RR).We have just shown that any two simple singular modules are isomorphic, this means that
a simple singular module is unique up to isomorphism.

We now proceed to the main result of this section, whose proof we shall split into two propositions.

Theorem 2.2.14. [15, Theorem 2] If R is a ring with no right middle class, then R ∼= S × T , where S is
a semisimple Artinian ring, and T is zero or it belongs to one of the following classes:

(a) T is Morita equivalence to a right PCI-domain, or

(b) T is an indecomposable right SI-ring satisfying the following conditions:

(i) T is either a right Artinian or a right V-ring,

(ii) T has homogeneous essential right socle and

(iii) there is a unique simple singular right T -module up to isomorphism, or

(c) T is an indecomposable right Artinian ring satisfying the following conditions:

(i) Soc(TT ) = Z(TT ) = J(T ),

(ii) T has homogeneous right socle, and

(iii) there is a unique non-injective simple right T -module up to isomorphism.

In (c) T is either a QF -ring with J(T )2 = 0, or poor as a right module.

Proposition 2.2.15. [15, Proposition 3] Let R be a ring with no middle class such that R is not right
SI-ring. Then R is the direct sum of a semisimple Artinian ring S and a ring T satisfying the conditions
of Theorem 2.2.14(c).

Proof. Immediately applying Lemma 2.2.5(iii) we have thatR = S⊕T,where S is semisimple Artinian
and T has essential right socle with Z(TT ) = Soc(TT ). By Lemma 2.2.4 we know T has no middle
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class. Assume that T 6= 0.We have that T is indecomposable as a ring and that it must be right Artinian,
by Lemmas 2.2.6 and 2.2.10 respectively.

Now let E be an injective T -module. We have seen in Proposition 1.6.2 that Rad(E) is a fully
invariant submodule of E. Thus by Proposition 1.1.25, Rad(E) is quasi-injective. Since T is Artinian,
then by Hopkins-Levitzki Theorem, it is also Noetherian. Therefore by Proposition 1.6.4,Rad(E) ≤s E.

Now by no middle class assumption Rad(E) must be semisimple. Note that J(T ) ≤ Rad(E(TT )) is
also semisimple as a T -module. As Z(TT ) = Soc(TT ), every simple right ideal of TT is contained in
J(T ). And we conclude that J(T ) = Z(TT ) = Soc(TT ).

Choose an arbitrary simple right ideal T1 of T. Then clearly T1 is also a singular right ideal, hence it
is non-injective. Now let us verify uniqueness (up to isomorphism). Let T2 be an arbitrary non-injective
simple right T -module. Since T is a right Artinian ring, it admits a chain T2 ⊆ T ′

2 ⊆ E(T2) of modules
such that T2 is maximal, and essential in T ′

2. Since T1 is non-injective it is poor, thus T1 is a proper
submodule of

∑
f∈HomR(T ′

2,E(T1))
f(T ′

2) by Proposition 1.1.25. So there exists a T -homomorphism
f : T ′

2 → E(T1) such that f(T ′
2) 6⊆ T1. Hence T1 is a proper submodule of f(T ′

2), implying that
the composition length of f(T ′

2) is greater than one, which means that f is clearly a monomorphism.
From this it is clear that T1 ∼= T2. Therefore we have found a unique (up to isomorphism) non-injective
simple right T -module and that Soc(TT ) is homogeneous.

Proposition 2.2.16. [15, Proposition 4] Let R be a right SI-ring with no right middle class. Then R is
the ring direct sum of a semisimple Artinian ring S and a ring T, which is Morita equivalent to a right
PCI-domain or is as described in Theorem 2.2.14(b).

Proof. Let us assume R is a right SI-ring with no right middle class. Now by Lemma 2.2.12 we have
R = S ⊕ T, where S is a semisimple Artinian ring, and T is a ring such that Soc(TT ) is homogeneous
(it can be zero). Since R has no middle class, neither does T, by Lemma 2.2.4. Assume T = T1 ⊕ T2,

where T1 and T2 are ideals of T such that T1 is not a semisimple Artinian ring. Then every right ideal
of T2 is T1-injective, as a T -module, and by the no middle class asusmption, it is injective. Therefore
T2 must be semisimple Artinian. This means that T cannot be decomposed into two rings that are not
semisimple Artinian.

Since R is a right SI-ring, then T is also a right SI-ring (we are just restricting the condition from R

to a subring T ). Now by Proposition 1.7.5, and since T cannot be decomposed into two rings that are
not semisimple Artinian, we infer that T is Morita equivalent to a right PCI-domain, or T/Soc(TT ) is
semisimple. The first case is exactly Theorem 2.2.14(a).

AssumeT/Soc(TT ) is semisimple. HenceT is right semiartinian. Now let us prove, by contradiction,
that under these conditions T is indecomposable. So assume T = T1 ⊕ T2, where T1, T2 6= 0 are two-
sided ideals. Since Soc(TT ) is essential, then for each i = 1, 2, there is a simple right ideal Ui of T
contained in Ti. Now we have U1T2 = 0 and V2T2 = V2, but this would imply that Soc(TT ) is not
homogeneous, a contradiction. Therefore T must be indecomposable. Now by Proposition 2.2.11 we
know that T is either a right V-ring or a right Artinian ring. If T is a semisimple Artinian V-ring we are
done. So assume T is not semisimple Artinian. It follows by Lemma 2.2.13 that T admits a unique (up
to isomorphism) simple singular right module, concluding the proof.

Example 2.2.17. We will now take and develop a bit further examples given in [15] that illustrate the
three possibilities of Theorem 2.2.14.

(i) By Proposition 2.2.2, it is clear that any right PCI-domain is in the conditions of Theorem 2.2.14(a).
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(ii) Let R =

(
K K
0 K

)
, where K is a field and take e1 =

(
1 0

0 0

)
and e2 =

(
0 0

0 1

)
. Let M be a

module such thatM is A-injective, where A is a non-semisimple cyclic module. It is not hard to
see thatR is Artinian and serial. Then by Proposition 1.7.1 we haveA = A1⊕ . . .⊕An, whereAi
are cyclic uniserial modules. Thus each Ai is isomorphic to e1R, e2R, or e1R/Soc(e1R). Since
A is non-semisimple, then for some i ∈ {1, . . . , n} we have Ai ∼= e1R. ThereforeM is injective.
By the arbitrary choice ofM we conclude that R has no middle class. Now R admits two simple

R-modules, e2R =

(
0 0

0 K

)
and S = R/

(
0 K
0 K

)
, so Soc(RR) =

(
0 K
0 K

)
is homogeneous

and essential and e2R is singular. Thus R satisfies Theorem 2.2.14(b).

(iii) Choose R = Z/p2Z, for a prime p. It is straightforward to see that R has a unique maximal ideal,
J(R) = pZ/p2Z. This ideal is clearly simple (semisimple) and essential. Now R/J(R) = Z/pZ
is also simple (semisimple), hence R is semilocal. Then by Proposition 2.2.3, R is a ring with no
middle class in the conditions of Theorem 2.2.14(c).

We have proven the main result of this section. We will end this section by showing that a commutative
ring with no middle class is Artinian. We shall skip the proof of most of the remaining results, whose
purpose is to prove Theorem 2.2.22.

Lemma 2.2.18. [15, Proposition 7] LetR be a right Artinian ring with unique (up to isomorphism) local
module of length two, and homogeneous Soc(RR) = J(R). Then R has no (right) middle class. In
particular R is in the conditions of Theorem 2.2.14(c).

Lemma 2.2.19. [27, Corollary 2.14] Let R be a right Artinian ring. Then, R has no right middle class if
and only if J(R) contains no non-trivial ideal of R.

Lemma 2.2.20. [5, Lemma 2.4] Suppose that we have a ring of the form R = S ⊕ T, a direct sum of
two rings, where S is semisimple Artinian. Then R has no (simple) middle class if and only if T has no
(simple) middle class.

The following proposition shows us the strength of the no middle class condition.

Proposition 2.2.21. [5, Proposition 4.2] IfR is a commutative Notherian ring with no middle class, then
R is Artinian.

Remark. The purpose of [9] is self-explanatory by its title “A right PCI ring is right Noetherian”. We shall
use the fact that a ring that is Morita equivalent to a PCI–ring (domain) is a Noetherian ring (domain).

Theorem 2.2.22. [5, Theorem 4.3] A commutative ring R has no middle class if and only if there is a
ring decomposition R = S ⊕ T, where S is semisimple Artinian and T is zero or a local ring whose
maximal ideal is minimal.

Proof. (⇒) Under these conditions, we apply Theorem 2.2.14. So we have a ring decomposition R =

S ⊕ T, with S semisimple Artinian and T is either zero (we would be done if that were the case), or it
fits one of the following cases.

(i) T is Morita equivalent to a right PCI-domain T ′. In this case, T ′ is a right Noetherian domain by
[9]. Now, since R is commutative with no middle class, by the previous proposition T ′ is also Artinian,
which implies it is a simple ring. A commutative simple ring is a field, concluding the proof.
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(ii) T is an indecomposable SI-ring, which is either Artinian or a V-ring. Let us start by assuming
T is Artinian. Then T is a finite product of local rings. Now the indecomposable hypothesis allows us
to infer that T is a commutative Artinian local ring. If T is not a field, then there is a minimal non-zero
ideal I of T, and by the local hypothesis I ∼= T/J(T ) is a division ring. Since T is an SI-ring and
T/J(T ) is singular as a T -module, it follows by the SI-ring hypothesis that I is injective, meaning that
I is a direct summand of T. However this contradicts the indecomposable assumption of T. So, under
these conditions, as T is Artinian it would have to be a field. Now assume T is a V-ring, and without
loss of generality that T is not Noetherian. Note that, if it was Noetherian we would just be going back
to Case (i). Since we have no middle class we infer that T is semiartinian, by Proposition 2.2.8. Let I be
a non-zero minimal ideal of T. Now since J(T ) = 0, then T admits a maximal idealM which does not
contain I . Thus T is a sum of the form I ⊕M, but since T is indecomposable we conclude that T = I.

Therefore T is a field.
(iii) T is an indecomposable Artinian ring, with Soc(TT ) = J(T ). In this case, R is once again a

local ring. Then we know by Corollary 2.2.19, that the maximal ideal J(T ) is also minimal.
(⇐) For the converse, assume T is a commutative local ring whose maximal ideal is simple, then

T has a unique (up to isomorphism) local module of length two, which is itself. Furthermore, it also
has homogeneous socle, which is equal to J(T ). Now from Proposition 2.2.18, it follows that T has no
middle class. Finally we apply Lemma 2.2.20 and we are done.

We have already seen that a no middle class ring is either Noetherian or semiartinian, in the latter
V-ring or Artinian. So by the previous Theorem and Proposition 2.2.21 we have the following.

Corollary 2.2.23. [5, Corollary 4.4] Any commutative ring R with no middle class is Artinian.
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Chapter 3

Pauper Modules

Throughout the previous chapter we have developed the concept of poor module. Furthermore, we have
studied several classes of modules regarding their injectivity domains. Now we seek to do the same for
indecomposable poor modules. Most of what wewill do in this chapter is seeing which classes of modules
satisfy certain conditions.

As in Chapter 2, please note that some authors use the term "semisimple" to mean the ring has a
trivial Jacobson radical. For Artinian rings, Proposition 1.6.9 guarantees that this notion coincides with
the notion of semisimple we introduced in Chapter 1. Therefore, we will use "semisimple Artinian ring"
to eliminate that ambiguity, as in the papers referenced.

Unless otherwise stated the results in this chapter follow from [3].

3.1 Definitions and general results

We have seen in Corollary 2.1.5 that the sum of a poor module with any arbitrary module is itself poor,
meaning there may not be much interest in the study of these types of sums. Therefore the need of an
intrinsic characterization of poor modules, and the notion of pauper module arises.

Definition. A module is said to be pauper, if it is poor and no proper direct summand of it is poor.

Remark. An indecomposable poor module is pauper. However this does not mean a pauper module is
necessarily indecomposable, or that it even has finite dimension. In fact, Examples 3.1.4(i) and (ii) are
counterexamples of just that.

We want to characterize rings and different classes of modules in terms of their (or lack thereof)
pauper modules.

Let R be a ring and A a class of right R-modules.

• (Existence) We say the class of modules A satisfies (E) if it contains pauper modules.

• (Ubiquity) We say the class of modulesA satisfies (U) if for every poor module P inA there exists
a pauper moduleM in A such thatM ⊆⊕ P, i.e.,M is a direct summand of P.

Finding out if a class of modules satisfies (U) is in general not something easy to accomplish. In light of
that we define a weaker property (U ′) that under certain conditions is equivalent to (U) as we will see.

• A class of modules A satisfies (U ′) if for every poor module P in A there exists a pauperM ∈ A
such thatM is a pure submodule of P (see Section A.2 for the definition of pure submodule).
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When A =Mod-R, we say that R satisfies (E), (U) or (U ′) when A does.
We have shown in Proposition 2.1.2 that every ring has at least one poor module. The next question

seems to be if all rings have at least one pauper module. The answer is no, as shown in the following
counterexample.

Proposition 3.1.1. Let R be a (non-semisimple) right semiartinian right V-ring. Then R has no pauper
right module.

Proof. By Theorem 2.1.2 we know there exists a a poor R-moduleM. Since R is semiartinian we have
Soc(M) 6= 0. Take a simple submodule N ofM. By the V-ring hypothesis, N is injective, henceM =

N ⊕N ′ for someN ′ ≤M. Furthermore,N ′ is poor, by Lemma 2.1.6. We have just shown that any poor
R-module contains a proper poor direct summand. Therefore R has no pauper modules.

Corollary 3.1.2. LetR be a (non-semisimple) right V-ring. IfR has a pauper moduleM, thenSoc(M) =

0. Furthermore, every semiartinian right module is semisimple.

Proof. LetM be a pauper module. We must have Soc(M) = 0, otherwiseM would not be pauper as we
have shown in the previous proposition. Take an arbitrary semiartinian moduleN andK a submodule of
N.ClearlyHomR(K,M) = 0. ThereforeM isN -injective. SinceM is poor, thenN is semisimple.

The following theorem is fundamental in the study of pauper abelian groups. Its proof will be done
in Section 3.5, where it is more thematically appropriate. Recall that P denotes the set of prime numbers.

Theorem 3.1.3. [2, Theorem 3.1] An abelian group G is poor ( as a Z-module) if and only if its torsion
part T (G) has a direct summand isomorphic to ⊕p∈PZp.

Example 3.1.4. Going forward we will represent ⊕p∈PZp by G0.

(i) It is clear that T (G0) = G0, by Proposition 1.4.2. ThereforeG0 is poor by the previous theorem, and
pauper since no direct summand of it is poor.

(ii) Define G =
∏
p∈P Zp, again by Proposition 1.4.2 and the previous theorem, we infer that T (G) =

G0, andG is poor. Now assume thatG = H⊕K, for some poor submoduleH ≤Z G. Once again
by Theorem 3.1.3, G0 is contained inH. Furthermore,H ∩K = 0, implies thatK ∩G0 = 0.We
have G/G0

∼=
⊕

i∈I Qi divisible and Rad(G) = 0. Now G/G0
∼= (K ⊕ H)/G0

∼= K ⊕ (H/

G0). Therefore K is also divisible. This means that for every n ∈ Z\0 we have nK = K. Hence
Rad(K) = K. Since Rad(K) = K ⊆ Rad(G) = 0, we infer that K = 0. Finally we conclude
that G = H is pauper.

(iii) Take the ringR = Z30. Since Z30 is finite, then it is clearly Artinian. It is also clear that its maximal
ideals are 〈2〉, 〈3〉 and 〈5〉. Therefore J(Z30) = {0}, and by Proposition 1.6.9, we conclude Z30 is
semisimple. Now Z30 is semisimple Artinian, then the trivial module {0} is poor, by Proposition
2.2.1. It is also clear that {0} is indecomposable, so that it is pauper. This falls under a general
case. A ring R is semisimple Artinian if and only if {0} is pauper. Therefore semisimple Artinian
rings satisfy (U).

Remark. By the previous theorem the ring of integers satisfies condition (U ′).

Let us see more classes of modules that satisfy (E).
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Proposition 3.1.5. Over arbitrary rings, finite uniform dimensional poor modules have pauper direct
summands.

Proof. Let M be a finite uniform dimensional poor module and assume M is not pauper. Then there
exist non–zero submodulesN1,K1 ≤M such thatM = N1 ⊕K1, whereN1 is a poor module. IfN1 is
pauper we are done, otherwise there exist non-zero submodulesN2,K2 ≤ N1 such thatN1 = N2 ⊕K2,

with N2 poor. As u.dim(M) <∞, by Corollary 1.3.7,M does not contain an infinite direct summand.
This means that after a finite number of repetitions of this process, we must reach a pauper submodule of
M.

Proposition 3.1.6. Let R be a semilocal ring. Then the right R-module R/J(R) has a pauper direct
summand.

Proof. We have already seen in Proposition 2.1.9 thatR/J(R) is poor. Now by the semilocal hypothesis,
R/J(R) is semisimple. Hence it has finite uniform dimension, which by the previous proposition lets us
conclude that R/J(R) admits pauper direct summands.

Example 3.1.7. In light of the two previous propositions.

(i) By Proposition 1.3.8(a), Noetherian (resp. Artinian) modules have finite uniform dimension, hence
Noetherian (resp. Artinian) poor modules admit pauper direct summands.

(ii) Take R = Z and M = Z/mZ ∼= Zm (m > 0). In this case the uniform dimension of M is
characterized by the number of distinct prime divisors of m. This means the Z-module Zm that is
poor, admits pauper direct summands.

(iii) We have already seen that Z30/J(Z30) ∼= Z30 is semisimple, hence semilocal. In general, any finite
ring or any finite dimension algebra over a field K is semilocal. Therefore, it admits pauper direct
summands.

(iv) If R is a semilocal ring, then A = Mn(R) is also semilocal. This follows from the fact that
Rad(A) =Mn(Rad(R)). So now we get

A/Rad(A) ∼=Mn(R/Rad(R)).

By hypothesis, R/Rad(R) is semisimple. SoMn(R/Rad(R)) is also semisimple. ThereforeA is
semilocal, thus A/J(A) admits pauper direct summands, by Proposition 3.1.6.

The following theorem is a strong indicator of the significance of the existence of pauper modules.

Theorem 3.1.8. Let R be a ring with no right middle class. The following statements are equivalent:

(a) R is right Noetherian.

(b) R has a pauper right module.

(c) Every non-injective right R-module has a pauper submodule.

(d) Every non-injective right R-module has a cyclic pauper submodule.
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Proof. (d)⇒ (c)⇒ (b) are immediate.
(b)⇒ (a) Assume that R is not right Noetherian. Then by Proposition 2.2.8, R must be right semiar-

tinian. Furthermore, by Proposition 2.2.11, R is either a V-ring or Artinian. However R cannot be right
Artinian, because this would implyR is right Noetherian, by the Hopkins-Levitzki’s Theorem. Therefore
R is a right semiartinian right V-ring. In Proposition 3.1.1 we have shown that this specific class of rings
does not satisfy (E), a contradiction. Thus R must be Noetherian.

(a) ⇒ (d) Assume R is right Noetherian, and let M be a non-injective R-module. By Proposition
1.2.5, we may assume thatM does not have any non-zero injective submodule. Let 0 6= N ≤ M be a
cyclic submodule ofM. Now, by the no right middle class hypothesis,N must be poor. It is clear thatN
has finite uniform dimension, so by Proposition 3.1.5, N has a pauper direct summand, which must be
cyclic, since it is a submodule of a cyclic module.

Theorem 3.1.8 has the following clear consequence.

Theorem 3.1.9. Let R be a right V-ring with no right middle class. The following are equivalent:

(a) R is semisimple Artinian.

(b) R has a pauper right R-module.

(c) Every right R-module contains a pauper submodule.

The following is a Corollary combining Theorem 2.2.14 and the previous two theorems.

Corollary 3.1.10. Let R be a ring with no right middle class. Then R has a pauper right module if and
only if R = S × T, where S is semisimple and T is Noetherian.

3.2 Rings with no indecomposable middle class

It seems natural to combine what was done in Section 2.2 with the indecomposable condition.
If R has no right middle class, a moduleM is pauper if and only ifM is indecomposable and non-

injective.

Definition. A ringR has no indecomposable right middle class if, every indecomposable rightR-module
is poor or injective.

Remark. From the definition it is clear that a ring with no (right) middle class is, in particular, a ring with
no indecomposable (right) middle class.

Remark. A semisimple V-ring is a somewhat trivial example of a ring with no indecomposable middle
class, since over a semisimple ring every indecomposable module is simple. We have the following
weaker condition.

Note that indecomposable modules are simple and injective, so we have the following result.

Proposition 3.2.1. LetR be a right semiartinian V-ring. ThenR is a ring with no indecomposable middle
class.

Similar to Lemma 2.2.4 we have.

Proposition 3.2.2. LetR be a ring with no indecomposable right middle class and I an ideal ofR. Then
the ring R/I has no indecomposable right middle class.
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Proof. Let M be an indecomposable right (R/I)-module. Then M is also indecomposable, as a right
R-module. Since by hypothesis R has no indecomposable right middle class, thenMR is either injective
or poor, thusMR/I is injective or poor.

Lemma 3.2.3. Let R be a commutative ring, and A and B be R-modules of composition length two and
isomorphic simple socle V. Then A/V ∼= B/V ∼= V and, in fact, A ∼= B. Moreover, A is A-injective.

Proof. Since A has a chain of length two, it is of the form {0} ( K ( A such that K is simple, so
K = Soc(A) ∼= V. This means that A is not a semisimple R-module, otherwise the socle of A would be
itself. The same is valid for B. Assume that A/V ∼= U and U 6∼= V, for some simple submodule U of A.
Define P = annR(V ) and Q = annR(U). Now we have PQA = 0 and A is a (R/PQ)-module. Also
note that R/P and R/Q are simple (R/PQ)-modules, so that R/PQ ∼= (R/P )⊕ (R/Q) is semisimple
as an (R/PQ)-module, and by Proposition 1.1.23(c),A is also a semisimple (R/PQ)-module. However
this would imply that A semisimple as a R-module, which is a contradiction. Hence A/V ∼= V, we have
V ≤e A and V ≤e B, and by Proposition 1.6.4, Rad(A) = V ≤s A and Rad(B) = V ≤s B. This
implies that A = aR and B = bR, for some a ∈ A and b ∈ B, in other words A and B are cyclic
modules. Clearly annR(A) = annR(B) and we conclude that A = aR ∼= R/I ∼= bR = B for some
ideal I of R. Hence A ∼= B.

We are left to prove thatA isA-injective. It is enough to show that for a submoduleX ofA such that
X ∼= V, then any homomorphism f : X → A can be extended to a homomorphism g : A→ A. Assume
without loss of generality, that X = V. We have already seen that A and V are cyclic modules, which
we represent by A = aR and V = xR. Now since f(V ) ≤ V, then for some s ∈ R we have f(x) = xs.

Therefore it is enough to define g : A → A, by g(b) = bs, for each b ∈ A. Thus g(x) = xs = f(x), so
g extends f.

Lemma 3.2.4. For a simple module V over a commutative Noetherian ring, the properties of injectivity,
projectivity and flatness are equivalent.

Proof. The necessity of the commutative condition follows from [36, Lemma 2.6], which states that if
V is a simple module, then V is flat if and only if it is injective. Note that finitely presented modules are
in particular finitely related, so combining Lemmas A.2.4 and A.2.5 we conclude that for a Noetherian
ring, flatness and projectivity are equivalent.

Theorem 3.2.5. Let R be a commutative Noetherian ring. Then R has no indecomposable middle class
if and only if R = S × T, where S semisimple Artinian and T = 0 or T is a local ring whose maximal
ideal is minimal. In other words, R is the direct product of finitely many fields and at most one ring of
composition length two.

Proof. Let us start with the “Only if” part. Assume R has no indecomposable middle class. Take S =∑
i∈I Ji,where Ji are the injective minimal ideals ofR. SinceR is Noetherian, then by Proposition 1.2.5,

S is injective. Hence R = S ⊕ T, for some ideal T of R. Suppose T 6= 0, then T cannot be semisimple,
otherwise it would be contained in S.

Let us show that T is a local ring. By contradiction, assume T is not local. By Lemma 3.2.4 and
S ∩ T = 0, we infer that T has no injective (projective) simple factor. Take K1 and K2 two distinct
maximal ideals of T. Thus U = T/K1 and U ′ = T/K2 are non-injective simple modules. So by the
no indecomposable middle class assumption, U and U ′ must be poor. Now by Proposition 1.5.6, the
injective hull of U is Artinian, hence Soc(E(U)/U) 6= 0, which means there exists V ≤ E(U) such
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that V /U is simple. We also know U and U ′ are not isomorphic, which by Proposition 1.1.4 implies
Hom(U,U ′) = 0. So U ′ is V -injective, contradicting the poorness of U ′. Therefore T is a local ring.

Let U be the unique simple T -module and V as defined above. Then by Lemma 3.2.3, V is V -
injective. Furthermore, since V indecomposable, it must also be injective, by hypothesis. Since E(U)

is the smallest injective module containing U, we have V = E(U). Now we want to show that T is
Artinian. Since T is Noetherian, by Propositon 1.5.5, we know it is enough to see that T is semiartinian.
Again we shall do this by contradiction. Assume Soc(M) = 0, withMT a cyclic module. Furthermore,
considerM to be a non-injective module (note that ifM is injective we can take a non-injective cyclic
submodule ofM ). SinceM is generated by a single element, then by the Noetherian hypothesis, it must
be indecomposable as well, which by hypothesis, means that M is poor. However, we also know that
Hom(V,M) = 0, because Soc(M) = 0, which implies thatM is V -injective. ThusM is injective, a
contradiction becauseM is poor. Therefore T is semiartinian, hence Artinian.

NowT is Artinian, so by Proposition 1.5.6 it follows thatSoc(TT ) is finitely generated, soSoc(TT ) ∼=
Un, for some n ∈ N. We have shown in Proposition 1.5.3 that Soc(TT ) is essential, i.e., Soc(TT ) ≤e

T ≤ V n. Henceforth, the quotient module T/Soc(TT ) can be embedded in (V /U)n, which is clearly
semisimple, thus T/Soc(TT ) is semisimple. Since T is local and V /U ∼= U, then T/Soc(TT ) ∼= U,

therefore J(T ) = Soc(TT ). Now by this equality and Lemma 1.6.6(c) we have 0 = J(T ).Soc(TT ) =

(Soc(TT ))
2. We have already seen that V is non-semisimple and has composition length two, so it is

cyclic, V = vT with v ∈ V.Note that, V = vT ∼= T/annR(v), so if wemanage to prove that annR(v) =
0, then V ∼= T. Let t ∈ T\0 such that tv = 0. A left zero divisor can never be a unit, so t ∈ Soc(T ).

As T is local and its socle is homogeneous, tT = Un, for some n ∈ N. Therefore Uv = 0, and
Soc(T ).v = 0. Hence V is a T/Soc(T )-module. Now since T/Soc(T ) is simple, V is semisimple,
which is a contradiction. Thus ann(v) = 0 and so f : T → V, f(t) = vt is an isomorphism.

Let us prove the “If” part. Take M a non-injective and indecomposable right R-module. So by
hypothesis M = M1 ⊕M2, where M1 is an S-module and M2 is a T -module. Now since M is inde-
composable and non-injective,M1 must be trivial. HenceM = M2

∼= U, where U is the unique (up to
isomorphism) simple T -module. Clearly every local ring is in particular semilocal, by Proposition 3.1.6
we conclude thatM is poor and indecomposable.

The following two results establish that for commutative Noetherian rings and Artinian serial rings,
the “no middle class” condition is equivalent to the “no indecomposable middle class” condition.

Corollary 3.2.6. Let R be a commutative Noetherian ring. Then R has no middle class if and only if R
has no indecomposable middle class.

Proof. By the previous theorem and Theorem 2.2.22.

The proof of the following theorem will not be done here. It is the combination of several results of
[15] and [27, Corollary 3.2].

Lemma 3.2.7. [5, Theorem 3] LetR be a ring. ThenR has no right middle class if and only ifR ∼= S⊕T,
where S is semisimple Artinian and T satisfies one of the following conditions:

(a) T is Morita equivalent to a right PCI-domain, or

(b) T is a right SI-ring, V-ring with the following properties:
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(i) T has essential homogeneous right socle and

(ii) for any submodule A of QT , which does not contain the right socle of T as a proper
submodule, QA = Q, where Q is the maximal right quotient ring of T, or

(c) T is a right Artinian ring, such that J(T ) properly contains no non-zero ideals.

Theorem 3.2.8. Let R be an Artinian serial ring. The following characterizations are equivalent:

(a) R has no indecomposable middle class.

(b) R has no right middle class.

(c) R = S × T, where S is semisimple Artinian and T is a ring such that J(T )2 = 0.

Proof. (a)⇒ (b) Take a non-injective right moduleM. SinceR is a serial ring, Proposition 1.7.1 gives us
a characterization of the formM = ⊕i∈IUi, with Ui uniserial modules for i ∈ I. AsM is non-injective,
then for some i0 ∈ I we must have some Ui0 non-injective. Thus by no indecomposable middle class
assumption Ui0 is poor, which by Corollary 2.1.5, means thatM is poor.

(b)⇒ (a) Evident.
(b)⇔ (c) Follows from Lemma 3.2.7.

Proposition 3.2.9. [8, Proposition 5.7] Let R be a right semiartinian ring with no simple middle class.
Then R is a right V-ring or, there is a ring direct sum R = S ⊕ T, where S is semisimple Artinian and T
has a unique non-injective simple right module up to isomorphism, and Soc(T ) is homogeneous.

Proof. Let us assumeR is not a V-ring. Take UR to be a non-injective simple module. By the hypothesis
of no simple middle class, U is poor. Now by a similar argument to the one done in Proposition 2.2.15,
we infer that R has a unique non-injective simple right module (up to isomorphism). Let S be the sum
of the injective simple right ideals of R. By contradiction, assume that S is not injective, and consider
its injective hull E(S). By semiartinian hypothesis it follows that Soc(E(S)/S) 6= 0. Now takeX/S to
be a simple submodule of E(S)/S. Note that S ≤e X, by Proposition 1.1.10(1). Let us show that U is
X-injective. Choose 0 6= Y ≤ X, and let f : Y → U be a homomorphism. If Y ≤ S, then since Y
is semisimple, and U is poor (non-injective), so HomR(Y, U) = 0. Therefore f extends to X trivially.
Now if Y 6⊆ S, since S is a maximal submodule ofX, it follows that Y +S = X, and S is semisimple, so
S = Y ∩S⊕S′, where S′ is a submodule of S. Since Y does not intersect S it follows thatX = Y ⊕S′.

Considering the projection π : X → Y we infer that fπ : X → U extends f. Hence U is X-injective.
However we have already seen that U is poor. Thus X is semisimple. so S is a direct summand of X.
But this implies that S is not essential in X, a contradiction. Thus R = S ⊕ T, for some right ideal T
of R. By the choice of S we have that Hom(S, T ) = 0 and Hom(T, S) = 0. Therefore, both S and
T are two-sided ideals, hence R = S ⊕ T is a ring direct sum. Since R admits a unique non-injective
simple module, T also has a unique non-injective simple right module, which implies that Soc(TT ) is
homogeneous.

Theorem 3.2.10. Let R be a right Artinian ring. Suppose R has no indecomposable middle class. Then
R× S, where S is semisimple Artinian, Soc(TT ) is homogeneous, J(T ) = Soc(TT ) and J(T )2 = 0.

Proof. Let R be a right Artinian ring with no indecomposable middle class. By the previous proposition
we have R = S × T, where S is semisimple Artinian and T has a unique non-injective simple module,
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and Soc(TT ) is homogeneous. Consider U to be the non-injective simple T -module and takeE(U) to be
its injective hull. By the proof of the previous proposition we are able to infer that no simple submodule
of T is a direct summand of T. Therefore Soc(TT ) ≤ J(T ).Now by the Artinian hypothesis, Soc(E(U)/

U) = A/U 6= 0. Then by Propositions 1.5.7 and 1.1.25, we infer that A is quasi-injective. Since A is
indecomposable inR, thenAmust be injective. HenceA = E(U), andE(U)/U is semisimple. Again by
the Artinian condition, theSoc(TT ) is finitely generated, thusSoc(TT ) ∼= Un, for somen ∈ N.Therefore
T/Soc(TT ) can be embedded in the semisimple module (E(U)/U)n, which means T/Soc(TT ) is also
semisimple, so J(T ) is a submodule of Soc(TT ). Therefore J(T ) = Soc(TT ) and (J(T ))2 = 0.

3.3 Over Noetherian Rings

We have seen in Corollary 2.2.23 that commutative rings with nomiddle class are Artinian, hence Noethe-
rian, by the Hopkins–Levitzki Theorem. The two major result of this section are Theorems 3.3.2 and
3.3.10. The first establishes that for Noetherian rings the conditions (U) and (U ′) are equivalent, while
the latter shows that commutative hereditary Noetherian rings satisfy (U ′).

The following lemma is valid over any ring.

Lemma 3.3.1. [21, Lemma 8.4] Let R be any ring and A,B,C,H, F,M be right R-modules. Suppose

0 / / H
γ //

ϕ
��

F
δ //

ψ
��

σ

~~

M //

η

��

ρ

~~

0

0 // A
α // B

β // C // 0

is a commutative diagram with exact arrows. There exists a map σ : F → A making the upper triangle
commute (i.e., σγ = φ) if and only if there is a map ρ : M → B making the lower triangle commute
(i.e., βρ = η).

Proof. (⇒) Assume the upper triangle commutes. Then (ψ−ασ)γ = αφ−αφ = 0 implies there exists
a homomorphism ρ :M → B such that ρδ = ψ − ασ. Hence βρδ = βψ − βασ = ηδ, thus βρ = η.

(⇐) Now assume βρ = η. Then for τ = ψ − ρδ we have βτ = βψ − βρδ = ηδ − ηδ = 0. Now
there exists a homomorphism σ : F → A such that ασ = τ. Therefore ασγ = ψγ − ρδγ = αφ, hence
σγ = φ.

Theorem 3.3.2. Let R be a right Noetherian ring andM be a right R-module. If P is a pure submodule
ofM and P is poor, thenM is poor.

Proof. Assume thatM is N -injective, with N an arbitrary cyclic module. It is enough to prove that P
is also N -injective. Let N1 be a submodule of N, and take a homomorphism f : N1 → P. Now by
definition ofN -injective, we can take a homomorphism g : N →M such that g|N1

= f. Hence we have
the following diagram where both rows are exact

0 // P //M
π1 //M/P // 0

0 // N1
//

f

OO

N

g

OO

π2
//

v

``

N/N1
//

h

OO

u

bb

0.

Since R is Noetherian and N is cyclic, then N1 must be finitely generated. Thus N/N1 is finitely
presented. Furthermore, the top row is pure exact, so by Lemma A.2.3 there exists a homomorphism
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u : N/N1 → M such that π1u = h. Now by the previous lemma, there exists a homomorphism
v : N → P such that v|N1

= f. Therefore P is N -injective.

In a commutative Noetherian ring, the irredundant complete sum of non-injective simples is pauper.

Proposition 3.3.3. Let R be a commutative Noetherian ring and Γ be a complete set of representatives
of non-injective simple R-modules. Then S = ⊕Si∈ΓSi is pauper. Moreover, for any poor R-moduleM ,
the singular submodule, Z(M) contains a copy of S.

Proof. Let us start by proving that S is poor. Suppose that S isA-injective, withA a cyclic module. Then
we haveA ∼= R/I where I is some ideal ofR.LetS∗ be the direct sum of a complete set of representatives
of non-injective simpleR/I-modules, By definitionS∗ is isomorphic to some direct summand ofS. Since
S is A-injective, S∗ is also A-injective, thus S∗ is R/I-injective, a contradiction, unless S∗ = 0. If R/I
has no non-injective simple submodules, thenR/I must be a commutative Noetherian V-ring. Therefore
by Proposition 1.1.11, R/I is semisimple. Hence A is semisimple, and we can infer that S is poor.

Now let us show thatS is pauper. Take a proper direct summandN ofS. So there exists a non-injective
simple R-module T such that HomR(T,N) = 0. By Proposition 1.5.6 we know that the injective hull
of T is Artinian. Since T is non-injective, thenE(T )must contain a submoduleB of composition length
two. Then B is not semisimple and N is B-injective. Thus N is not poor, hence S is pauper.

Finally let M be a poor R-module. By an analogous argument done in the previous paragraph,
HomR(V,M) 6= 0, for some non-injective simple module V. Now by Lemma 3.2.4, V is not projective,
so V ⊆ Z(M), thus S ⊆ Z(M).

Corollary 3.3.4. LetR be a commutative Noetherian ring. Then anymoduleN such thatS = ⊕Si∈ΓSi ≤
N ≤

∏
Si∈Γ Si is poor.

Proof. Let N be in the conditions described above. We have seen in Proposition 3.3.3, that S is poor.
Furthermore, we also know that S is a pure submodule of

∏
Si∈Γ Si. Thus S is also pure submodule of

N. Then by Theorem 3.3.2 we are done.

Lemma 3.3.5. Let R be a commutative Noetherian ring and A = {Si}i∈I be a complete set of represen-
tatives of non-isomorphic simple R-modules. Then the moduleM =

∏
i∈I Si/⊕i∈I Si has no maximal

submodules, i.e., Rad(M) =M.

Proof. TakeK = ⊕i∈ISi, and let I be an arbitrary maximal ideal of R. Then for some Si ∈ A we have
I = annR(Si), and ISj = Sj for all Sj ∈ A such that Si 6∼= Sj . Therefore I(

∏
i∈I Si) =

∏
j ̸=i Sj .Now

by the Second Isomorphism Theorem,M = (
∏
i∈I Si +K)/K, thus IM = (

∏
j ̸=i Sj +K)/K = M,

and Rad(M) =
∩
QM = M where Q ranges over the set of maximal ideals of R. Hence M has no

maximal ideals.

Proposition 3.3.6. LetR be a commutative hereditary Noetherian ring, and let {Si}i∈I be a complete set
of representatives of non-isomorphic simple R-modules. Then any module N such that ⊕i∈ISi ≤ N ≤∏
i∈I Si and Rad(N/(⊕i∈ISi)) = N/(⊕i∈ISi) is pauper. In particular,

∏
i∈I Si is pauper.

Proof. Since all S′
is are simple, then Rad(

∏
i∈I Si) = 0. Assume N = A ⊕ B, where A is poor. By

Proposition 3.3.3, it follows that ⊕i∈ISi ⊆ A. Now let π : N → B be the natural projection. Then
⊕i∈ISi ⊆ kerπ. So we have the epimorphism π̄ : N/(⊕i∈ISi) → B. Now by Proposition 1.6.2 and
hypothesis it follows that im π̄ ⊆ Rad(B) = 0, thus B = 0. Therefore N is pauper. For the last state-
ment, we know by Lemma 3.3.5 that

∏
i∈I Si/(⊕i∈ISi) has no maximal submodules, i.e,Rad(

∏
i∈I Si/

(⊕i∈ISi)) =
∏
i∈I Si/(⊕i∈ISi).
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Proposition 3.3.7. LetM be a right R-module. Suppose that for every non-injective simple module V,
M has a direct summand isomorphic to V. ThenM has a pure submodule isomorphic to S, where S is
the irredundant complete direct sum of non-injective simple R-modules.

Proof. Let U and V be two non-isomorphic, non-injective simple R-modules, that are direct summands
ofM. SoM = U ⊕N, withN ≤M. Now define the natural projection π :M → U, where kerπ = N.

SinceU 6∼= V, then by Proposition 1.1.4, π(V ) = 0, hence V ≤ N.Now for some submodule Y ofM,we
have thatM = V ⊕Y andN = (U⊕Y )∩N = V ⊕(Y ∩N), so V is a direct summand ofN. Therefore
M = U ⊕V ⊕K, for someK ≤M. Furthermore, we can extend this argument, by induction, to a finite
set of simple all non-isomorphic submodules ofM. Let {Ui}i∈I be a complete set of representatives of
the non-injective simple R-modules of M, with each Ui a direct summand of M. Therefore for every
finite J ⊆ I we have NJ = ⊕i∈JUi is a direct summand ofM, hence a pure submodule ofM as well.
As NJ is pure, then S = ⊕i∈ISi = lim

→
NJ is pure, since the direct limit of a pure submodule is itself

pure.

Lemma 3.3.8. Let R be a commutative hereditary Noetherian ring. Let M be an R-module and V a
simple submodule ofM. The following are equivalent.

(a) V is a closed submodule inM.

(b) QV = V ∩QM for each maximal ideal Q of R.

(c) V is a direct summand ofM.

Proof. (a)⇔ (b) In the effort of not introducing even more notation we refer the reader to [35, Theorem
4.5.1].

(b) ⇒ (c) Define P = annR(V ). So by hypothesis, 0 = PV = V ∩ PM, thus V 6⊆ PM. Since
M/PM is a semisimple, then PM must be an intersection of maximal submodules of M. Then there
exists a maximal submoduleK ≤M such that V +K =M. As V is simple, we infer that V ∩K = 0,

henceM = V ⊕K.

(c)⇒ (a) Obvious.

Proposition 3.3.9. Let R be a commutative hereditary Noetherian ring. An R-moduleM is poor if and
only if, for every non-injective simple module V, M has a direct summand isomorphic to V.

Proof. (⇐) By Proposition 3.3.7,M admits a pure submoduleN,which is isomorphic to the irredundant
complete sum of non-injective simple R-modules S. Now by Proposition 3.3.3, N is pauper (poor). So
by Proposition 3.3.2 we conclude thatM is poor.

(⇒) By negation, assume that V is a non-injective simple module such that M has no summand
isomorphic to V . As V is non-injective we can take a submodule A of E(V ) with a composition series
of length two such that V ≤e A and A/V ∼= V. Now we must distinguish between two cases:

Case 1. If HomR(V,M) = 0, as 0 ≤ V ≤ A is a composition series for A with A/V ∼= V, then for
every A1 ≤ A we have HomR(A1,M) = 0. HenceM is A-injective, thusM is not poor, a
contradiction.

Case 2. If HomR(V,M) 6= 0, let A1 be a non-trivial submodule of A, and let f : A1 → M be any
non-zero homomorphism. Without loss of generality, we may assume that A1 = V. Now
if f(V ) is a closed submodule of M, then it follows by the previous proposition, that f(V )
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is a direct summand of M. This means that M has a direct summand isomorphic to V, a
contradiction. So f(V ) cannot be a closed submodule ofM. Then there is a submodule N of
M, with composition length two such that V ≤e N. Thus by Lemma 3.2.3 A ∼= B, and B is
A-injective. ThereforeM is clearly B-injective, a contradiction.

We are finally ready to prove the main result of this section. Note that the following result is a general-
ization of Theorem 3.1.3.

Theorem3.3.10. A commutative hereditary Noetherian ringR satisfies (U ′) and the following statements
are equivalent, for every R-moduleM :

(a) M is poor.

(b) Z(M) is poor.

(c) For every non-injective simple module V, M has a direct summand isomorphic to V.

(d) M has a pure submodule isomorphic to S, where S is the direct sum of non-isomorphic and non-
injective simple R-modules.

Proof. (a) ⇒ (b) Let us assume that M is poor, and let V be a non-injective simple module. Then by
the previous proposition, M admits a direct summand U which is isomorphic to V. Furthermore, by
Proposition 3.3.3 we know that U ≤ Z(M). So U is also a direct summand of Z(M), and again by
Proposition 3.3.9, Z(M) is poor.

(b)⇒ (a) By the hereditary hypothesis, we apply Lemma A.2.6, so thatM/Z(M) is flat. By defini-
tion (M/Z(M)⊗R−) is exact, thus Z(M) is a pure submodule ofM. Therefore, by Theorem 3.3.2,M
must be poor.

(a)⇔ (c) This is the previous proposition.
(c)⇒ (d) By Proposition 3.3.7.
(d)⇒ (c) By Proposition 3.3.3, S is poor. Now since S is a pure submodule ofM, then by Proposition

3.3.2 we conclude the proof.

3.4 Over Semiartinian Rings

We will prove in Proposition 3.4.2 that the irredundant complete sum of non-injective simple modules
is pauper, over commutative semiartinian ring, Furthermore, commutative semiartinian rings with zero
radical satisfy (U ′), by Proposition 3.4.3. This section will be concluded by proving that Artinian serial
rings satisfy (U).

Lemma 3.4.1. [8, Lemma 5.9] Let R be a commutative ring and let V be a simple R-module. If V is
N -injective for some R-module N, then V (I) is N -injective for every index set I.

Proof. Let P = ann(V ), and I an index set. Since V is N -injective, then by Proposition 1.1.18, V I is
also N -injective. Furthermore, R is commutative and V IP = 0. Therefore V I is an (R/P )-module,
and P is maximal, hence R/P is a field, which implies that V I is a semisimple (R/P )-module. Then
V I is also semisimple as a R-module. Therefore V (I) is a direct summand of V I . Thus V (I) is also
N -injective.
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Proposition 3.4.2. Let R be a commutative semiartinian ring. Then the irredundant complete sum of
non-injective simple right R-module, S is pauper. Moreover, any poor module contains an isomorphic
copy of each non-injective simple R-module.

Proof. Take M to be an arbitrary cyclic R-module, and assume the irredundant complete sum of non-
injective simple R-modules S isM -injective. By the proof of Proposition 1.5.3, we know that the semi-
artinian condition is sufficient in order for us to have Soc(M) ≤e M. Furthermore, assume thatM is not
semisimple. Now by contradiction, suppose that Soc(M) has infinite length. So either M contains an
infinite direct summand of S, denoted by N, or it contains a direct summand isomorphic to V (I), where
V is a non-injective simple module and I is an infinite index set. In the first case, N is M -injective.
Then by Proposition 1.1.14, the inclusion N → M splits, a contradiction. In the latter case, since V
is M -injective, by Lemma 3.4.1 we have that V (I) is also M -injective. Again by Proposition 1.1.14,
the inclusion V (I) ↪→ M splits, a contradiction. Therefore Soc(M) has finite length, thus Soc(M) is
M -injective. Once again, by Proposition 1.1.14, Soc(M) is a direct summand of M, a contradiction.
ThusM must be semisimple, hence S is poor.

The last part follows by analogous arguments of those used in Proposition 3.3.3.

The equivalence between (a) and (b) in the following proposition is exactly the fact that for a com-
mutative semiartinian ring R, the class of R-modules for which the radical is zero satisfies condition
(U ′)

Proposition 3.4.3. LetR be a commutative semiartinian ring andM a rightR-module such thatRad(M) =

0. Then the following are equivalent:

(a) M is poor.

(b) M has a pure submodule isomorphic to S, where S is the direct sum of non-injective simple modules.

(c) For every non-injective simple R-module V, M has a direct summand isomorphic to V.

Proof. (a) ⇒ (b) By the previous proposition, we know the irredundant complete sum of non-injective
simpleR-modules is pauper. Moreover,M contains a summand isomorphic to some non-injective simple
module in S. Therefore by Proposition 3.3.7,M admits a pure submodule isomorphic to S.

(b)⇒ (a) Analogous proof to the first paragraph of the previous proposition. As S is pauper it follows
thatM is poor.

(b) ⇒ (c) Let V be a non-injective simple R-module. As Rad(M) = 0, then there exists a maximal
submodule N ofM such that V +N =M. Now V ∩N = 0, because V is simple. ThusM = V ⊕N.

(c)⇒ (b) Immediate from Proposition 3.3.7.

Corollary 3.4.4. Let R be a commutative semiartinian ring and Γ a complete irredundant set of non-
injective simple modules. Then

∏
Si∈Γ Si is poor. Moreover, any submodule N of

∏
Si∈Γ containing

⊕Si∈ΓSi is poor.

Corollary 3.4.5. LetR be a commutative ring. SupposeR is Noetherian or semiartinian. Then any poor
module has a pauper subm odule.

Proof. In Propositions 3.3.3 and 3.4.2, we have shown that the irredundant complete sum of non-injective
simple R-modules S, is a pauper module, over commutative Noetherian rings and commutative semiar-
tinian rings respectively. In either case, any poor module has a submodule isomorphic to S.
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Now we turn our attention to Artinian rings.

Theorem 3.4.6. LetR be a right Artinian ring. Then every non-injective right module contains a pauper
module if and only if there is a ring decomposition R = S ⊕ T, where S is semisimple and T = 0, or T
has a unique simple right module. In the case where T 6= 0, R has a unique pauper right module, namely
the unique simple submodule of T.

Proof. We start with the necessity condition. Since R is Artinian it follows that R = e1R ⊕ e2R ⊕
· · · ⊕ enR⊕ f1R⊕ · · · ⊕ fmR, where e1R, e2R, . . . , enR are the injective pauper right ideals of R. Let
S = e1R⊕ e2R⊕· · ·⊕ enR and T = f1R⊕· · ·⊕ fmR. ThereforeHomR(T, S) = HomR(S, T ) = 0,

which implies S ∩ T = 0. Hence R = S ⊕ T is a ring direct summand. If T = 0, then R = S is
semisimple, and we are done. Let T 6= 0. Now by contradiction, assume T admits two non-isomorphic
simple right T -modules, U and V. By hypothesis, both U and V admit pauper submodules. If 0 is pauper,
then T = 0, a contradiction. Therefore U and V must be both pauper. Now take a submoduleA ofE(U)

with composition length two. Then, V is A-injective. However, V is poor and A is not semisimple, a
contradiction. Hence T has a unique simple submodule.

Now for the sufficiency. Assume T = 0. ThusR is semisimple and Artinian and by Proposition 2.2.1
we are done. Now assume that T 6= 0 and take U to be its unique simple right T -module. An Artinian
ring is semilocal, so it follows by Proposition 2.1.9 that T/J(T ) ∼= Un is poor. as a T -module and as an
R-module as well. Therefore U is a poor R-module. We takeM a non-injective module, soMT 6= 0.

ThereforeM contains a simple submodule isomorphic to U. As U is poor and simple we are done.

Lemma 3.4.7. LetR be an Artinian serial ring andM,N indecomposable rightR-modules. If cl(M) ≤
cl(N), then N isM -injective.

Proof. Take A a submodule ofM, let f : A→ N be a homomorphism, consider the inclusion i : N ↪→
E(N), and define h = if. Then there is a homomorphism g : M → E(N) such that g|A = h. Now
by hypothesis, cl(g(M)) ≤ cl(M) ≤ cl(N). Since N is uniserial, E(N) is also uniserial. Therefore
g(M) ≤ N. Hence g extends f. Thus N isM -injective.

Proposition 3.4.8. LetR be an Artinian serial ring. Then the irredundant complete sum of non-injective
simple right modules, S, is a pauper module. Moreover, any poor right R-module has a direct summand
isomorphic to S. That is, any poor module has a pauper direct summand.

Proof. Let us start by noting that any Artinian ring is in particular semilocal. So R/J(R) is semisimple,
which by Proposition 3.1.6 implies that S is poor. Now by contradiction, assume S is poor but not pauper.
Then S admits a proper poor direct summand S′. Thus for some non-injective simple module U we have
thatHomR(U, S

′) = 0, by Proposition 1.1.4. AsR is Artinian, there exists a non-semisimple submodule
Y of E(U) such that Y /U is simple. Furthermore, S′ is Y -injective, but this contradicts the poorness of
S′. Hence S must be pauper.

LetM be a poor module. By Proposition 1.7.1,M = ⊕i∈IUi with each Ui a cyclic uniseral module.
Let us prove that M has a summand isomorphic to S. This is equivalent to seeing that for each non-
injective simple module K, there is a i0 ∈ I such that K ∼= Ui0 . Again by contradiction, assume there
exists a non-injective simple module T such that T 6∼= Ui, for all i ∈ I. By the non-injective assumption,
there exists X � E(T ) such that X/T is simple and cl(X) = 2. As T is not isomorphic to any Ui,
then for each Uj it follows that HomR(T, Uj) 6= 0. From this we infer that cl(X) ≤ cl(Uj). Hence by
Lemma 3.4.7, Uj isX-injective. SinceX is finitely generated, thenM is alsoX-injective. However this
contradicts the hypothesis thatM is poor, soM must have a direct summand isomorphic to S.
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3.5 Pauper Abelian Groups

In Corollary 1.1.27 we established an equivalence between divisibility and injectivity for abelian groups.
We start by pondering what does it mean for a group to be semisimple, the first definition and lemma
offer an answer. After introducing some necessary concepts we will prove Theorem 3.1.3. Throughout
this section the importance of Examples 3.1.4(i) and (ii) will become clearer.

The definitions and structural general results regarding abelian groups follow from [20]. In particular,
Proposition 3.5.3 is key in the characterization of abelian groups. It gives us a decomposition of abelian
groups in terms of its reduced and divisible (injective) subgroups.

In this section we will be showing that the class of torsion groups satisfies (U), (Corollary 3.5.6).
The last result of this section is dedicated to proving that the class of abelian groups with torsion-free
rank one also satisfies (U).

Definition. A positive integer is said to be square-free if it is not divisible by any element of the form
p2, with p ∈ P.

Definition. An abelian group G is said to be elementary, if every element has a square-free order.
Naturally, an elementary p-group is an elementary group, whose elements all have order p, for some

p ∈ P

The following justifies why elementary groups are “semisimple” groups.

Lemma 3.5.1. [20, Chapter 2.1, Theorem 1.4] An elementary group G is a direct sum of cyclic groups
of prime orders (i.e. elementary p-groups).

Proof. It is clear that an elementary group is a torsion group. Thus by Proposition 1.4.2 it is enough
to consider the elementary p-subgroups of G. Note that an elementary p-group is a Z/ppZ-vector space.
Therefore it is the direct sum of one dimensional spaces, i.e., groups of order p.

Definition. A group G is bounded if nG = 0, for some n ∈ Z\0.

Remark. Clearly Zp is bounded.

Lemma 3.5.2. [20, Chapter 3.5, Theorem 5.2] A bounded group is a direct sum of cyclic groups.

Proof. Take a bounded group A. Since A is bounded, then so are its p-primary components. Now [20,
Theorem 5.1] states that an arbitrary p-group is a direct sum of cyclic groups if and only if, it is the union
of an ascending chain of bounded subgroups

A1 ≤ A2 ≤ . . . ≤ An ≤ . . . , A =
∞∪
n=1

An

Thus if we take the A′
is to be the p-primary components of A we are done.

Definition. A groupG is said to be a reduced group ifG has no divisible subgroups different from zero.

Definition. A subgroupH ofG is said to be a pure subgroup inG, if an equation nx = h ∈ H is solvable
in G, this implies it is also solvable inH, i.e., if nH = H ∩ nG, for every n ∈ N.

Remark. In general, the torsion subgroup of a groupG is pure. Take g0 ∈ T (G). For some x ∈ G and n ∈
N we have g0 = nx. Now by definition of torsion subgroup, it follows that g0 has finite order, which
implies by the equality that x also has finite order, i.e., x ∈ T (G).
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Remark. The sum of divisible groups is itself divisible. So the maximal divisible subgroup of G, D is
the subgroup generated by all divisible subgroups of G. So if we take a reduced subgroup N of G, then
N ∩D = 0.

The following results is essential in understanding the structure of abelian groups.

Proposition 3.5.3. [20, Chapter 4.2, Theorem 2.5] Every group G is the direct sum of a divisible group
D and a reduced group N, G = D ⊕ N, where D is a uniquely determined subgroup of G and N is
unique up to isomorphism.

Proof. By the remark above, it is enough to show thatD is a direct summand ofG. LetD be an arbitrary
divisible subgroup of G. Then by Corollary 1.1.27,D is injective, in particularD is G-injective. There-
fore the identity map idD : D → D extends to a homomorphism f : G→ D. Hence G = ker f ⊕D, so
D is a direct summand of G.

Now to prove the last statement. If G = N ⊕ D, with D divisible and N reduced. Then D must
be the unique maximal divisible subgroup of G. Note that N is the complement of D, which is always
unique up to isomorphism.

Combining the definitions of pure and p-group we have the following.

Definition. A subgroup H of G is p-pure if pkH = H ∩ pkG, for every k ∈ N.

Definition. Let p ∈ P. A subgroup H ≤ G is said to be a p-basic subgroup of G if it satisfies the
following conditions:

1. H is a direct sum of cyclic p-groups and infinite cyclic groups;

2. H is p-pure in G;

3. G/H is p-divisible.

Lemma 3.5.4. [20, Chapter 5.2, Lemma 2.1] Let H be a subgroup of G such that H is a direct sum of
cyclic groups, of the same order pk. The following are equivalent:

(a) H is a pure (p-pure) subgroup of G.

(b) H ∩ pkG = 0.

(c) H is a direct summand of G.

Proof. (a)⇒ (b) AssumeH is a p-pure subgroup of G. ThereforeH ∩ pmG = pmH, for everym ∈ N.
If we choose k = m, then pkH = 0.

(b)⇒ (c) LetK be a maximal subgroup ofG such that pkG ≤ K andK ∩H = 0. Let us prove that
G = H ⊕K. Suppose that g ∈ G\(H ⊕K). Then we also have pg ∈ H ⊕K, thus pg = h + k, with
h ∈ H and k ∈ K. Hence pk−1h + pk−1k = pkg ∈ K, which implies that pk−1h = 0. By hypothesis
there exists h′ ∈ H such that ph′ = h. Furthermore, by the maximality of K, the subgroup 〈K, g − h′〉
contains h0 ∈ H\0. Thus, for some k′ ∈ K and integermwe have h0 = k′+m(g−h′). SinceH∩K = 0

and p(g − h′) = k ∈ K, it follows that the greatest common divisor betweenm and p is 1. This implies
that bothm(g−h′) = h0−k′ and p(g−h′) = k are inH⊕K. Therefore g−h′ ∈ H⊕K,so g ∈ H⊕K,
a contradiction. Hence G = H ⊕K.

(c)⇒ (a) is trivial by definition of p-pure subgroup.
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The following is a good illustration of the fact that certain types of pure subgroups are summands.

Lemma 3.5.5. [20, Chapter 5.2, Theorem 2.5] A pure bounded subgroupH of G is a direct summand of
G.

Proof. Let H be a bounded subgroup of G. Then by Lemma 3.5.2, we have H = H1 ⊕ C, where H1

is a direct sum of cyclic groups of order pk, for some k ∈ N. Furthermore, the least upper bound of the
orders of elements inC are lesser than the orders of the elements ofH.AsH is pure inG, thenH1 is also
pure, by Lemma 3.5.2. Once again by the previous lemma, G = H1 ⊕G1 for some G1 ≤ G. Therefore,
H = H1 ⊕ C1, with C1 = H ∩ G1

∼= C. Thus C1 is pure in G1. Now by induction, C1 is a direct
summand of G1. Therefore H is a direct summand of G.

We are now ready to prove Theorem 3.1.3.

Theorem. An abelian group G is poor ( as a Z-module) if and only if its torsion part T (G) has a direct
summand isomorphic to ⊕p∈PZp.

Proof. We start with the “Only if” part. Assume that a group G is poor and p is an arbitrary prime.
If Tp(G) = 0, then for all k ∈ N0 : pka = 0, if and only every divisible p-subgroup H of G is a
divisible. Therefore by Corollary 1.1.27 we have that G is H-injective, for every p-group H. However
this contradicts the poorness of G. Thus Tp(G) 6= 0. If every element g ∈ G of order p is divisible by
p, then G is Zp2-injective, because the only non-trivial subgroup of Zp2 is pZp. So there exists element,
ap ∈ G of order p that is not divisible by p, i.e., o(ap) = p and a - p. Therefore the cyclic group
generated by 〈ap〉 is a p-pure subgroup of Tp(G), and a pure (bounded) subgroup of Tp(G) as well. Now
by Lemma 3.5.5, it follows that 〈ap〉 is a direct summand of Tp(G).Hence⊕p∈P〈ap〉 is a direct summand
of ⊕p∈PTp(G) = T (G). Therefore ⊕p∈P < ap >∼= G0.

For the “If” part, assume that T (G) contains a direct summand that is isomorphic to G0.We take A
to be a summand of T (G) such thatA ∼= Zp (A is bounded). As T (G) is pure inG, so must beA. Again
by Lemma 3.5.5, A is a direct summand in G. So G has a direct summand isomorphic to Zp. Now let
us assume G is H-injective, for some group H. Then for each p ∈ P, Zp is also H-injective. Now by
contradiction, suppose that H is not elementary (semisimple). Thus there exists h ∈ H such that h has
infinite order, or o(h) = pn, with p ∈ P and n > 1. If h has infinite order, then 〈h〉 = Z. If o(h) = pn,

this implies that 〈h〉 = Zpn . Therefore by Proposition 1.1.16 we infer that Zp is either Z-injective, or
Zpn-injective. Now a homomorphism f : pZ → Zp such that f(p) = 1, does not admit an extension
g : Z → Zp. Because if it did, we would have that 1 = f(p) = g(p) = pg(1) = 0. On the other hand,
the subgroup of Zpn , generated by pn−1 is isomorphic to Zp. However 〈pn−1〉 is not a direct summand of
Zpn . So in either case we arrive at a contradiction. HenceM must be semisimple. Thus G is poor.

The following result is a consequence of Theorem 3.1.3. This corollary tells us that the class of torsion
groups satisfies (U).

Corollary 3.5.6. [2, Corollary 3.2] For an abelian group G, the following are equivalent:

(a) G is poor.

(b) The reduced part of G is poor.

(c) T (G) is poor.

(d) For each prime p, G has a direct summand isomorphic to Zp.
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Proof. (a)⇒ (b) By Proposition 3.5.3 a groupG is of the formN ⊕D, withN a reduced subgroup, and
D a divisible subgroup. Since G is poor this means that N or D (or both) must be poor. However, D is
divisible (injective), so by Lemma 2.1.6, N must be poor.

(b) ⇒ (a) Again by Proposition 3.5.3 we know the reduced part of G is a summand of G. Hence we
are done, by Corollary 2.1.5.

(a)⇔ (c) Immediate by Theorem 3.1.3.
(c)⇒ (d)We have already established in Proposition 1.4.2 that T (G) = ⊕p∈PTp(G). Furthermore, by

Theorem 3.1.3 we know that the torsion group T (G) admits a direct summand isomorphic to⊕p∈PTp(G),

which we know to be poor.
(d) ⇒ (c) For each prime p, let Gp be a direct summand of G isomorphic to a summand of Tp(G).

Furthermore, each p-primary component Tp(G) is isomorphic to Zp. Hence T (G) = ⊕p∈PTp(G) ∼= G0,

since G0 is poor we are done.

Theorem 3.5.7. Let G be a pauper abelian group. Then T (G) ∼= G0.

Proof. Let Tp(G) be a p-primary component of G. As G is poor, then by Corollary 3.5.6, Tp(G) has a
direct summand V isomorphic to Zp. Furthermore, Tp(G) = V ⊕ H, for some H ≤ Tp(G). We want
to prove that H = 0, by contradiction assume that H 6= 0. Let A be a p-basic subgroup of H. Now by
definition, 0 6= A is a direct sum of cyclic p-groups. LetB be a cyclic direct summand ofA. ThereforeB
is a pure bounded subgroup ofG. Thus by Lemma 3.5.5,B is a direct summand ofG.HenceG = B⊕C
where C is poor, because by Theorem 3.1.3, T (C) has a direct summand isomorphic to G0. We have
arrived at a contradiction. ThereforeH = 0, so Tp(G) = K, which implies that T (G) ∼= G0.

The following is an n obvious consequence of the previous theorem.

Corollary 3.5.8. A torsion abelian group is pauper if and only if it is isomorphic to G0.

Lemma 3.5.9. Let G be a group. Suppose that T (G) = G0 and G/G0 is indecomposable. If G0 is not
a direct summand in G, then G is pauper.

Proof. By hypothesis, T (G) = G0, thus G is poor, by Theorem 3.1.3. Now take H to be a poor direct
summand of G. Since G0 is not a direct summand, then G0 ⊆ H. Furthermore, H/G0 is a direct sum-
mand of G/G0. However, G/G0 is indecomposable. Hence H = G or H = G0. In either case G is
indecomposable, so G is pauper.

Remark. A pure subgroup of a divisible group is also divisible. Take a pure subgroup H of a divisible
group G. Then by definition of divisibility, H 3 h = nx, with n ∈ N has a solution in G. Now since
H is pure, h = nx also has a solution in H. This holds for every h ∈ H and n ∈ N. Therefore H is
divisible.

Proposition 3.5.10. Let G be a pure subgroup of
∏
p∈P Zp that contains G0. Then G is pauper.

Proof. Let A =
∏
p∈P Zp, and assume G is a pure subgroup of A. Then nG = G ∩ nA, for every

n ∈ N. If we take the quotient nG/G0 = (G∩ nA)/G0, it follows that n(G/G0) = G/G0 ∩ n(A/G0).

Therefore G/G0 is a pure subgroup of A/G0.We have already shown in Example 3.1.4(ii), that A/G0

is divisible. Furthermore, since G/G0 is pure, then by the previous remark, G/G0 is also divisible, and
Rad(G/G0) = G/G0. Now the result follows from Proposition 3.3.6.

Let us switch our focus to torsion-free rank one groups, so we must give some definitions.
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Definition. An abelian groupG is said to be a torsion-free if all its elements, except for 0, are of infinite
order.

Definition. The torsion-free rank of a group G,is the cardinality of a maximal linearly independent set.

Remark. The non-zero subgroups ofQ are the torsion-free rank one groups. In other words, a torsion-free
rank one group is a Q-vector space.

Definition. We define the p-height of any g ∈ G\0 as the largest number k for which g ∈ pkG\pk+1G.

We denote this by hp(g). If no such p exists we denote the p-height by hp(g) = ∞.

Definition. Given a torsion-free group G. The sequence of p-heights of g ∈ G,

χ(g) = (hp1(g), hp2(g), ..., hpn(g), ...),

is called the characteristic of g.

Remark. [20, Chapter 12] Consider an arbitrary rational group G of torsion-free rank one. Then A =

G/G0 is a rational group, because G is of rank one. An element a ∈ G is of the form a = m
n b,

with m
n ∈ Q and b ∈ G. So we can describe any a ∈ A\0 in terms of its characteristic χ(a) =

(h2(a), h3(a), . . . , hpn(a), . . .).

The proof of the following result is beyond the scope of this dissertation.

Theorem 3.5.11. Let G be a torsion-free rank one subgroup of
∏
p∈P Zp containing G0 and χ(a) =

(h2(a), h3(a), ..., hp(a), ...), for some 0 6= a ∈ A = G/G0. We have the following hypothesis:

(i) If hp(a) = 0, for a finite number of primes p, then G is pauper.

(ii) If hp(a) 6= 0, for a finite number of primes p, then G0 is a direct summand of G, so G is not pauper.

(iii) If hp(a) = 0, for an infinite number of primes p and hp(a) 6= 0 for an infinite number of primes p,
then G may or may not be pauper.

Proof. [3, Theorem 6.6].

Although we have seen that the ring of integers satisfies (U ′). It is still unknown if it satisfies (U). The
last result of this section justifies the focus on the class of abelian groups of torsion-free rank one.

Corollary 3.5.12. Let G be an abelian group in the conditions of the previous theorem such that G is
not pauper. Then G = G0 ⊕H, for some 0 6= H ≤ G. It follows that, the class of torsion-free rank one
groups satisfies (U).

Proof. Suppose G is not pauper. Thus G = K ⊕ H, where K is a proper and poor submodule of G.
SinceK is poor, then by Theorem 3.1.3 it follows that G0 ≤ K. ThusH ∩G0 = 0. If G0 � B, then G/
G0

∼= (K/G0)⊕H.HenceG/G0 is the sum of two non-zero groups. HoweverG/G0 is indecomposable,
soK = G0.
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Appendix

A.1 Categories and Functors

The following definitions and results follows from [4].
Note that if A is a set and C is a class, then the indexed class (AC)C∈C in P(A) has a union and an

intersection in A. Let C be a class, for each pair A,B ∈ C , letmorC(A,B) be a set; write the elements
ofmorC(A,B) as “arrows” f : A → B for which A is called the domain and B the codomain. Finally,
suppose that for each triple A,B,C ∈ C there is a function

◦ : morC(B,C)×morC(A,B) → morC(A,C).

We denote the arrow assigned to a pair

g : B → C f : A→ B

by the arrow gf : A → C. The system, C = (C ,morC , ◦), consists of the class C , the map morC :

(A,B) 7→ morC(A,B) and the rule, ◦ is a category if:

(C.1) For every triple h : C → D, g : B → C, f : A→ B,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(C.2) For eachA ∈ C , there is a unique 1A ∈ morC(A,A) such that if f : A→ B and g : C → A, then

f ◦ 1A = f and 1A ◦ g = g.

If C is a category, then the elements of the class C are called the objects of the category, the “arrows”
f : A→ B are called morphisms, the partial map ◦ is called the composition, and the morphisms 1A are
called the identities of the category.

A category D = (D ,morD, ◦) is a subcategory of C = (C ,morC , ◦) provided D ⊆ C ,morD(A,B) ⊆
morC(A,B) for each pair A,B ∈ D , ◦ in D is the restriction of ◦ in C. If in addition morD(A,B) =

morC(A,B) for each A,B ∈ D , then D is a full subcategory of C.
Informally a functor is a morphism between categories.

Definition. Let C = (C ,morC , ◦) and D = (D ,morD, ◦) be two categories.
A pair of functions F = (F ′, F ′′) is a covariant functor from C toD if F ′ is a function from C to D ,

F ′′ is a function from the morphisms of C to those of D such that for allA,B,C ∈ C and all f : A→ B

and g : B → C in C,
(F.1) F ′′(f) : F ′(A) → F ′(B) in D;

66



(F.2) F ′′(g ◦ f) = F ′′(g) ◦ F ′′(f);

(F.3) F ′′(1A) = 1F ′(A).

A contravariant functor is a pair F = (F ′, F ′′) satisfying;
(F.1)* F ′′(f) : F ′(B) → F ′(A) in D;

(F.2)* F ′′(g ◦ f) = F ′′(f) ◦ F ′′(g);

(F.3) F ′′(1A) = 1F ′(A).

So a contravariant functor is “arrow reversing”.

The category of abelian groups is represented by Ab. Furthermore, given a ring R we represent the
category of leftR-modules by R-Mod. We have a special interest in functors between module categories.

Definition. Let C be a full subcategory of R-modules and that D is a full subcategory of S-modules.
Then a functor T from C to D is additive if for eachM,N,modules in C and each pair f, g :M → N in
C,

T (f + g) = T (f) + T (g).

In particular, if T is additive and covariant, then the restriction

T : HomR(M,N) → HomS(T (M), T (N))

is an abelian group homomorphism. If instead T is additive and contravariant, then the restriction

T : HomR(M,N) → HomS(T (N), T (M))

is an abelian group homomorphism.

Definition. Let C andD be full subcategories of categories of modules and let F : C → D be a covariant
functor. If for every short exact sequence in C

0 → K →M → N → 0

the sequence
0 → F (K) → F (M) → F (N)

is exact in D, then F is said to be left exact. If

F (K) → F (M) → F (N) → 0

is exact in D, then F is said to be right exact. In the contravariant case

0 → G(N) → G(M) → G(K)

for left exact and
G(N) → G(M) → G(K) → 0

for right exact. A functor that is both left and right exact is called an exact functor.

We may now construct the Hom functor.
Let U =R US be a bimodule. Let f :R M →R N be an R-homomorphism in RM. Then for each
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γ ∈ HomR(U,M), we have fγ ∈ HomR(U,N).We claim that

Hom(U, f) : γ 7→ fγ

is an S-homomorphism.

HomR(U, f) : HomR(U,M) → HomR(U,N).

For if γ1, γ2 ∈ HomR(U,M) and s1, s2 ∈ S, then for all u ∈ U,

f ◦ (s1γ1 + s2γ2)(u) = f(γ1(us1) + γ2(us2)

= fγ1(us1) + fγ2(us2)

= (s1(fγ1) + s2(fγ2))(u).

Thus, we do have a functionHomR(U,−) : R-Mod → S-Mod defined by

HomR(U,−) :M 7→ HomR(U,M)

HomR(U,−) : f 7→ HomR(U, f).

The notation HomR(U, f) can be akward, so if there is no ambiguity with the module U, we are
likely to abbreviate

f∗ = HomR(U, f).

Note that if f :M → N in R-Mod, then f∗ is characterized by

M
f // N

U

γ

``AAAAAAAA f∗(γ)

>>~~~~~~~~

Now it’s an easy matter to check thatHomR(U,−) is actually an additive covariant functor from R-Mod
to S-Mod. On the other hand, we can define a mapping

f∗ = HomR(f, U) : HomR(N,U) → HomR(M,U)

via
HomR(f, U) : γ 7→ γf.

It is straightforward to show that f∗ = HomR(f, U) is an S-homomorphism. For f∗ we have

M
f //

f∗(γ)   A
AA

AA
AA

A N

γ~~~~
~~
~~
~~

U

here then we have a functionHomR(−, U) : R-Mod → Mod-S defined by

HomR(−, U) :M 7→ HomR(M,U)

HomR(−, U) : f 7→ HomR(f, U).
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Proposition A.1.1. [4, Theorem 16.1] Let R and S be rings and let U =R US be a bimodule. Then

HomR(U,−) : R-Mod → S-Mod

is an additive covariant functor and

HomR(−, U) : R-Mod → Mod-S

is an additive contravariant functor.

A.2 Tensor Product and Flat Modules

The definitions and constructions of this section follow from [4] until otherwise stated.

Definition. Given a right R-moduleM and a left R-module N and an abelian group A, a function

β :M ×N → A

is said to be R-balanced if for allm,mi ∈M, n, ni ∈ N and r ∈ R

1. β(m1 +m2, n) = β(m1, n) + β(m2, n);

2. β(m,n1 + n2) = β(m,n1) + β(m,n2);

3. β(mr, n) = β(m, rn).

There is a natural way to trade each R-balanced map in for a linear map by using the concept of a tensor
product. LetMR and RN be modules. A pair (T, τ) consisting of an abelian group T and anR-balanced
map τ : M × N → T is a tensor product ofMR and RN in case for every abelian group A and every
R-balanced map β :M ×N → A there is a unique Z-homomorphism f : T → A such that the diagram

M ×N
τ

{{ww
ww
ww
ww
w

β

##H
HH

HH
HH

HH

T
f // A

commutes. If (T, τ) is a tensor product of MR and RN, then clearly, f ◦ τ is R-balanced for each
homomorphism f : T → A. Thus (T, τ) is a tensor product of MR and RN if and only if for each
abelian group A

f ↔ f ◦ τ

defines a one-to-one correspondence between HomZ(T,A) and the set of R-balanced maps β : M ×
N → A.

The tensor product exists and is unique up to isomorphism. For the uniqueness we have the following.

Proposition A.2.1. [4, Proposition 19.1] If (T, τ) and (T ′, τ ′) are two tensor products of (MR,RN) then
there exists a Z-isomorphism f : T → T ′ such that τ ′ = fτ.

Now let us construct a tensor product of (MR,RN) over R. Take F = Z(M×N) the free abelian
group on M × N. Then F has free basis (xα)α∈M×N . For notational convenience let us simply write
(m,n) for x(m,n). Then

F = ⊕M×NZ(m,n).
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Now letK be the subgroup of F generated by all the elements of the form

(m1 +m2, n)− (m1, n)− (m2, n),

(m,n1 + n2)− (m,n1)− (m,n2),

(mr, n)− (m, rn),

and set T = F/K. Define τ :M ×N → T via

τ(m,n) = (m,n) +K.

Proposition A.2.2. [4, Proposition 19.2] With T and τ defined as above, (T, τ) is a tensor product of
(MR,RN) over R.

Given (MR,RN), let (T, τ) be the tensor product constructed above, we write T = M ⊗R N and
for each (m,n) ∈M ×N,

τ(m,n) = m⊗ n.

We tend to be somewhat loose with our terminology and callM ⊗R N the tensor product ofM and
N.

Enroute to the tensor functors we next develop a theory of a tensor product f⊗g of twoR-homomorphisms.
LetM,M ′ be right R-modules and let N,N ′ be left R-modules. Suppose further that f :M →M ′ and
g : N → N ′ are R-homomorphisms. Define a map (f, g) :M ×N →M ′ ⊗R N

′ via

(f, g)(m,n) = f(m)⊗ g(n).

It is evident that (f, g) is R-balanced, so there is a unique Z-homomorphism, which we shall denote by
f ⊗ g, fromM ⊗R N toM ′ ⊗N ′ such that the following diagram commutes:

M ×N

τ

xxqqq
qqq

qqq
q

(f,g)

&&MM
MMM

MMM
MMM

M ⊗R N
f⊗g

//M ′ ⊗R N
′

Thus, in particular, f ⊗ g is characterized via

(f ⊗ g)(m⊗ n) = f(m)⊗ g(n).

Now we are ready to construct the tensor functor.
Let U =S UR be a bimodule. Then it follows by [4, Propositions 19.7 and 19.8] that there is an

additive covariant functor
(U ⊗R −) :R M →Z M

defined by
(U ⊗R −) :M 7→ U ⊗RM

(U ⊗R −) : f 7→ 1U ⊗ f.

By [4, Propositions 19.5] each U ⊗RM is a left S-module. We claim moreover that if f : M → M ′ is
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an R-homomorphism, then
U ⊗R f :S U ⊗RM → SU ⊗RM

′

is an S-homomorphism. It is sufficient to check this on the generators u⊗m of U ⊗RM. But for each
s ∈ S, u ∈ U, andm ∈M.

(U ⊗R f)(su⊗m) = (1U ⊗ f)(su⊗m)

= su⊗ f(m) = s(u⊗ f(m))

= s((U ⊗R f)(u⊗m))

as claimed. Thus we may view this as an additive functor from R-Mod to S-Mod and write it

(SU ⊗R −) : R-Mod → S-Mod.

Similarly, there is an additive covariant functor

(−⊗S UR) : Mod-S → Mod-R

defined by
(−⊗S UR) : N 7→ N ⊗S UR

(−⊗S UR) : g 7→ g ⊗ 1U .

The remaining definitions of this section follow from [24].

Definition. A module PR is said to be finitely related (abbreviated f.r.) if there exists an exact sequence

0 → K → F → P → 0

in Mod-R, where F is free (of arbitrary rank) andK is finitely generated.
A module PR is said to be finitely presented (abbreviated f.p.) if there exists an exact sequence

0 → K → F → P → 0

in Mod-R, where F is free of finite rank andK is finitely generated (or equivalently, there exists an exact
sequence Rm → Rn → P → 0 withm,n ∈ N).

Definition. A (short) exact sequence ε : 0 → A
φ→ B → C → 0 in Mod-R is said to be pure (exact) if

ε⊗RC
′ is an exact sequence (of abelian groups) for any leftR-moduleC ′. (Of course only the injectivity

of A ⊗R C
′ → B ⊗R C

′ is at stake.) If this is the case, we say that ϕ(A) is a pure submodule of B (or
that B is a pure extension of ϕ(A)).

Remark. Every direct summand of a moduleM is pure inM.

Lemma A.2.3. [33, Lemma 3.70] Let 0 → B′ i→ B
p→ B′′ → 0 be a pure exact sequence, where i is

the inclusion. IfM is a finitely presented left R-module, then p∗ : HomR(M,B) → HomR(M,B′′) is
surjective.

Lemma A.2.4. [24, Proposition 4.29] A ringR is right Noetherian iff all finitely generated (resp. cyclic)
right R-modules are f.p.
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Definition. A right module PR is said flat (or R-flat) if the functor (P ⊗R −) is exact on the category
of left R-modules.

Lemma A.2.5. [24, Theorem 4.30] Let P be a f.r. right module over any ring R. Then P is flat iff it is
projective.

Lemma A.2.6. [22, Proposition 2.3] Let R be a commutative ring. Then all nonsingular R-modules are
flat if and only if R is semihereditary.

A.3 Morita Equivalences

The definitions and results of this section follow from [4].
Since every ring R has a natural R-module structure on itself, we often study a ring R by studying

the category of R-modules. Two rings are said to be Morita equivalent if their module categories are
equivalent. Let us define what we mean by equivalent categories.

Let C andD be arbitrary categories. Then the covariant functor F : C → D is a category equivalence,
in case there is a functor (necessarely covariant) G : D → C and natural isomorphisms GF ∼= 1C and
FG ∼= 1D.

A functor G with this property is called an inverse equivalence of F. Two categories are equivalent
in case there exists a category equivalence from one to the other. We write C ≈ D in case C and D are
equivalent. It is easy to check that this defines an equivalence relation on the class of all categories.

We restrict our interest to module categories, so the functors between such categories are additive.
Thus for two such categories to be equivalent there must be an additive equivalence from one to the other.

Two rings R and S are said to be Morita equivalent, abbreviated R ≈ S, if R-Mod ≈ S-Mod,
i.e., in case there are additive equivalences between these categories of modules. In [4, Corollary 22.3]
it is shown that the categories R-Mod and S-Mod are equivalent if and only if Mod-R and Mod-S are
equivalent.

These categorial equivalences, preserve many properties such as, projectivity, injectivity, simplicity,
semisimplicity, finitely generated, finitely cogenerated, Artinian, Noetherian, indecomposable, as shown
in [4, Proposition 21.6 & 21.8].
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