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Abstract

An injective module is a module with the largest possible injectivity domain. A poor module is
described as the opposite of an injective module, in the sense that a poor module is one whose injectivity
domain is the smallest possible. A related concept to that of the poor module is that of a ring with no
middle class. A ring has no right middle class if every right module is either poor or injective. Although,
the concept we have the most interest on is that of the pauper module. A pauper module is a poor module
with no proper poor direct summand. We will expose the importance of pauper modules regarding the
characterization of poor modules over different rings. Furthermore, we shall characterize rings and their
structures in function of their injectivity domains, in particular, regarding their poor and pauper modules.
For any given ring, we have a particular interest in verifying certain conditions. The first condition being
the existence of pauper modules. The other condition is that of ubiquity, for which we present two distinct
cases. In the first one, every poor module contains a pauper direct summand. The second weaker one, is
that every poor module contains a pauper module as a pure submodule.

Keywords— injective module, injectivity domain, poor module, no middle class, pauper module



Resumo

Esta dissertagdo tem como principal objetivo expor os contetudos do artigo [3] de forma auto-contida.
Neste € introduzido o estudo de modulos paupérrimos. Os conceitos principais que serdo explorados
sao modulos pobres, anéis sem classe intermédia e modulos paupérrimos. Como veremos, as definigdes
destes conceitos sao derivadas da defini¢do de mddulos injetivos. Um modulo injetivo ¢ um modulo cujo
dominio de injetividade € maximo. Por outro lado, um moédulo pobre ¢ descrito como o oposto, isto é, um
modulo diz-se pobre se o seu dominio de injetividade ¢ minimo. Notemos que esta dissertagdo ndo ¢ um
estudo completo em relagdo aos modulos pobres, nem sobre anéis sem classe intermédia. Um estudo mais
abrangente ¢ feito em [1, 2, 5, 8, 15, 27]. No esforco de manter esta dissertacdo auto-contida, o primeiro
capitulo ¢ dedicado a apresentar defini¢cdes e resultados que variam entre resultados classicos da teoria
de moddulos e anéis e resultados mais especificos e necessarios relacionados com modulos injetivos.

O segundo capitulo ¢ dedicado ao estudo de modulos pobres e também anéis sem classe intermédia.
O estudo de modulos pobres foi iniciado em [1]. Nesse artigo comeca-se por notar que, se um R-modulo
N ¢ semisimples, entdo N pertence ao dominio de injetividade de qualquer outro R-moédulo (Proposicao
1.1.12). Também temos, para um anel arbitrario R, que a interse¢do dos dominios de injetividade de
todos os R-mddulos, sobre a categoria dos R-modulos, € precisamente a classe dos modulos semisimples
(Proposicdo 2.1.3). Por outras palavras, um modulo M ¢€ pobre se, para qualquer R-moddulo /N, quando
M ¢ N-injetivo, entdo N ¢ semisimples.

A seccdo 2.1 é dedicada a introduzir conceitos essenciais, relacionados com modulos pobres, e alguns
resultados mais ilustrativos, em relagdo a importancia dos mddulos pobres. Como por exemplo, o facto
de qualquer anel admitir um modulo pobre (Teorema 2.1.2), e uma maneira explicita de obter modulos
pobres (Proposigdo 2.1.7). Esta sec¢do termina com a demonstragdo de que, ®pepZyp, com P o conjunto
dos numeros primos, ¢ um Z-mddulo pobre.

Ainda em [1], define-se um anel R sem classe intermédia como um anel cujos R-modulos sdo todos
injetivos ou sdo todos pobres. O estudo aqui apresentado acerca destes anéis parte maioritariamente de
[15], mas também dos relevantes [5, 27]. Na seccdo 2.2, comecamos por relacionar algumas classes de
anéis com anéis sem classe intermédia. Por exemplo, um anel R ¢ semisimples e Artiniano se e so se
todos os R-modulos sdo pobres (Proposicao 2.2.1). Também provamos que, se um anel R ndo tem classe
intermédia, entdo qualquer anel quociente de R também ndo tem classe intermédia. Outro resultado
relevante diz-nos que um anel sem classe intermédia a direita é semiartiniano a direita, ou Noetheriano
a direita (Proposi¢do 2.2.8). Além disso, podemos separar o primeiro caso em outros dois casos, R ¢
Artiniano a direita, ou todos os R-moddulos simples sdo injetivos (Proposi¢ao 2.2.11). O teorema mais
importante desta sec¢ao oferece-nos uma caraterizagao da estrutura de um anel sem classe intermédia da
seguinte forma: se R é um anel sem classe intermédia, entdo R = S x T, onde S € um anel semisimples
e Artiniano e 7' = 0 ou 7" pertence a uma das classes descrita em (a), (b), (c) do Teorema 2.2.14. Uma
caracterizagdo semelhante ¢ dada na forma do Teorema 3.2.7. Terminamos esta sec¢cdo com o Corolario
2.2.23, que garante que um anel comutativo sem classe intermédia é Artiniano.

O ultimo capitulo ¢ dedicada aos modulos paupérrimos. Um moédulo diz-se paupérrimo se € pobre e
ndo contém nenhuma parcela direta propria que seja pobre. O estudo de modulos paupérrimos ¢ inspirado
na necessidade de uma caracterizagio intrinseca de modulos pobres. Uma razdo para esta defini¢do ser
necessaria € o facto de o dominio de injetividade de uma soma direta entre dois modulos ser igual a
intersecdo dos dominios dessas parcelas (Lema 2.1.4). Isto implica que um moddulo ser pobre ¢ uma
espécie de propriedade absorvente em relagdo a soma direta, isto €, a soma direta de um R-moddulo pobre
com um outro R-moédulo qualquer ¢ também pobre. Isto implica, de forma geral, que ndo existe muito
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interesse em algumas parcelas, dai querermos encontrar parcelas que sejam inerentemente pobres.

O estudo de modulos paupérrimos exposto nesta dissertagdo passa por verificar que diferentes tipos
de anéis verificam duas propriedades. A primeira, e mais simples, consiste em verificar em que classes
de modulos € que existem modulos paupérrimos (Existéncia que representaremos por (E)). A segunda
propriedade passa por verificar que todos os modulos pobres numa dada classe de modulos admitem mo-
dulos paupérrimos como parcelas diretas (Ubiquidade que representaremos por (U')). No nosso contexto,
uma classe de modulos que satisfaga (U) esta totalmente caracterizada. No entanto, em geral, (U) ndo
¢ facil de verificar. Sendo assim, definimos uma condi¢do de ubiquidade mais fraca (representada por
(U")) da seguinte forma: todo o modulo pobre P contém um submodulo paupérrimo M tal que M ¢é
um submodulo puro de P. Para certos anéis, as condi¢des (U) e (U’) sdo equivalentes. Em particular,
iremos verificar tal equivaléncia para anéis Noetherianos (Teorema 3.3.2). Em geral, a classe de modulos
que consideramos ¢ a categoria de R-moddulos a direita. Neste caso, dizemos que R satisfaz (E), (U) ou
u”).

Ao contrario dos moédulos pobres, nem todos os anéis admitem modulos paupérrimos. Por exemplo,
um anel semiartiniano a direita, que néo seja semisimples, cujos R-modulos simples sejam injetivos, ndo
admite modulos paupérrimos (Proposicao 3.1.1). No terceiro capitulo, o nosso estudo de modulos paupér-
rimos inicia-se com alguns exemplos explicitos de modulos paupérrimos, como ®y,cpZ, € Hpep Ly, cOom
P o conjunto dos numeros primos (Exemplos 3.1.4(i) e (ii)). Dai continuaremos a dar outros exemplos
mais abstratos, de anéis que admitem mddulos paupérrimos, como anéis de dimensdo uniforme finita
(Proposicao 3.1.5) e anéis semilocais (Proposition 3.1.6). Um anel R sem classe intermédia admite um
modulo paupérrimo se e so se R é o produto direto de um anel semisimples S, com um anel Noetheriano
T (Corolario 3.1.10).

Na seccgao 3.2, combinamos de forma natural a definicdo de mddulo paupérrimo com a de anel sem
classe intermédia. Num anel sem classe intermédia, um moédulo é paupérrimo se e s6 se ndo ¢ injetivo e
¢ indecomponivel. Assim sendo, faz sentido definirmos um anel sem classe intermédia indecomponivel,
a direita, se todos os R-moddulos indecomponiveis, a direita, sdo pobres ou injetivos. Pela definicdo,
torna-se claro que qualquer anel sem classe intermédia também ¢ sem classe intermédia indecomponivel.
O reciproco ¢ verdade para anéis Noetherianos comutativos (Corolario 3.2.6) e também para anéis Ar-
tinianos seriais (Teorema 3.2.8).

As seccdes 3.3 e 3.4 sdo focadas em anéis Noetherianos e semiartinianos, respetivamente. Alguns
dos principais resultados permitem-nos concluir que, se um anel Noetheriano comutativo e hereditario
satisfaz (U’) (Teorema 3.3.10), entdo também satisfaz (U). A classe dos moddulos cujo radical ¢ zero,
sobre um anel semiartiniano comutativo, satisfaz (U’) (Proposi¢do 3.4.3). Além disso, qualquer anel
Artiniano serial satisfaz (U) (Proposicédo 3.4.8).

A ultima secg¢do ¢ dedicada a grupos abelianos, isto ¢, Z-mddulos. A classe de grupos abelianos de
tor¢do e a classe de grupos abelianos livres de tor¢do de dimensdo um satisfazem (U). Estas afirmagdes
seguem, respetivamente, da Proposicao 3.5.6 e do Corolario 3.5.12.

Remetemos para o apéndice conceitos necessarios, mas que foram menos aprofundados pelo autor.

Palavras-Chave— moédulo injetivo, dominio de injetividade, modulo pobre, anel sem classe inter-
média, médulo paupérrimo
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Introduction

The main objective of this dissertation is to expose the contents of [3] in a self-contained manner. In the
aforementioned article the concept of pauper modules is introduced, the main concepts to be explored
alongside it are those of, poor modules and rings with no middle class. We will see how these concepts
are all derived from the definition of injective module.

An injective module is a module with the largest possible injectivity domain. In [1] a poor module
was defined as being the opposite of an injective module, in the sense that a poor module is one with the
smallest injectivity domain. Still in article [1] the concept of ring with no middle class is also introduced.
A ring R has no right middle class, if its right R-modules are all injective or poor. It is important to
highlight that this dissertation is not a complete study of poor modules or rings with no middle class, a
more thorough study is done in [1, 2, 5, 8, 15, 27].

In the effort of maintaining this dissertation self-contained, Chapter 1 is dedicated to introducing
fundamental concepts and results regarding ring and module theory.

Chapter 2 is divided in two sections. The first section is dedicated to introducing poor modules and
some of its fundamental results such as proving the existence of a poor module for any ring (Theorem
2.1.2), as well as an explicit way to construct poor modules, Proposition 2.1.7. We end Section 2.1 with
a result that will follow us throughout, for p primes, ©,Z,, is a poor Z-module.

The second section of Chapter 2 is dedicated to rings with no middle class, and most of it follows
from [15] and less preeminent, but also relevant [5, 27]. In this section we start by seeing the relation
between classes of rings and rings with no middle class. For example, a ring R is semisimple Artinian
if and only if, all of its R-modules are poor, Proposition 2.2.1. As another example, we also prove that
if a ring has no middle class, then a factor rings has no middle class either. Another important result
states that, a ring with no right middle class is right semiartinian or right Noetherian, Proposition 2.2.8.
Furthermore, in the first case that the ring is semiartnian we can unfold the result in two other cases,
the ring is right Artinian, or a V-ring, Proposition 2.2.11. The main theorem of Section 2.2 offers as a
characterization of the structure of a ring R with no middle class as follows, R = S x T, where S is a
semisimple Artinian ring and 7" = 0, or is described as in (a), (b), (c) of Theorem 2.2.14. We finish this
section with a Corollary that states that, a commutative ring with no middle class is Artinian.

Chapter 3 is dedicated to pauper modules. The study of pauper modules is born of the necessity of
an intrinsic characterization of poor modules. We will prove that the injectivity domain of a direct sum
is the intersection of the injectivity domains, Lemma 2.1.4, and as a result it becomes clear that a poor
module acts as a sort of an absorption property regarding direct sums, which justifies the definition of
pauper module as follows. A module is pauper if, it is poor and no proper direct summand of it is poor.

The study of pauper modules done in this dissertation can be summed up to which rings satisfy the
following two properties. The first one is existence, which we will represent by (E), meaning, which
classes of modules admit pauper modules. The second one is Ubiquity, represented by (U), which states
that for every poor module P contained in a class of modules A there exists a pauper module M in A such



that M is a direct summand of P. In our context, this means that A is completely characterized. However
proving (U) is no trivial matter, so we define a weaker version of ubiquity, represented by (U”) as follows,
if for every poor module P in A there exists a pauper module M such that M is a pure submodule of P
in A. In general the class of modules we will be considering is the category of right R-modules, meaning
we omit A and simply state that a ring R satisfies (E), (U) or (U’). For certain rings we will see that
(U) and (U’) coincide, we will see this is true for Noetherian rings, Theorem 3.3.2.

Unlike poor modules, not every ring admits pauper modules. For example, Proposition 3.1.1, shows
us that right semiartinian right V-rings that are not semisimple do not admit pauper modules. In Section
3.1 we give explicit examples of pauper modules such as, ©,Z;, ¢ Hp Ly, for primes p (Examples 3.1.4(i)
e (i1)). Finite uniform dimensions modules also admit pauper summands (Proposition 3.1.5), and so do
semilocal rings (Proposition 3.1.6).

In Section 3.2 we combine in a natural way the definitions of pauper module and ring with no middle
class. In a ring with no middle class, a module is pauper if and only if it is not injective and it is inde-
composable. Therefore, it makes sense to define a ring with no right indecomposable middle class by
saying that, every indecomposable right R-module is poor or injective. By definition it is clear that a ring
with no middle class is in particular, a ring with no indecomposable middle class. The other way around
is also true for commutative Noetherian rings and serial Artinian rings, by Corollary 3.2.6 and Theorem
3.2.8 respectively.

The remaining sections are fairly self-explanatory by their name. Some of the most important results
are that a commutative hereditary Noetherian ring satisfies (U’) (Theorem 3.3.10), then it also satisfies
(U). Any Artinian serial ring satisfies (U), by Proposition 3.4.8. Furthermore, both the class of torsion
abelian groups satisfies, and the class of torsion-free rank one groups satisfy (U), by Proposition 3.5.6
and Corollary 3.5.12 respectively.

The Appendix is dedicated to necessary concepts that were not as fully developed by the author.



Chapter 1

Basic Definitions, notations and results

This chapter is dedicated to establishing notations, definitions and necessary results in order to study poor
and subsequently pauper modules. Most of the concepts and results presented here are well-known in the
theory of modules over rings, and can be found in [4, 17, 18, 22, 23, 24, 25, 30]. When appropriate we
present some group related concepts as well. The title of each section is fairly self-explanatory, with the
last section being dedicated to the remaining needed classes of modules/rings that did not fit elsewhere
in a natural way.

We represent the set of all prime numbers by P.

By an abelian group G’ we mean a commutative group under addition with ”0” (zero) representing its
identity.

We shall always consider a ring R to be unitary and unless otherwise stated we will assume every
module to be a right R-module, which we denote by M € Mod-R (or Mp), where Mod-R represents the
category of all right modules over R.

We write N < M to say N is a submodule of the R-module M.

The set Homp (M, N') corresponds to all the R-homomorphisms from M to N. In particular, Endg (M)
represents all the R-homomorphisms from M to itself.

Given a family of modules (M;);cr, we define the direct product of modules as follows

HMZ' = {(xi)ie[ X € Mi; 1 E I}.
el

Furthermore we represent the direct sum by

@Mi = {(zj)ier € HMZ | z; = 0, for all but finite ¢ € I}.
i€l icl
Given a module M, the set M) = > icr M represents the direct sum of I copies of M, while M I
represents the direct product of I copies of M.

1.1 Semisimple and Injective Modules

These are the core building blocks of what is to come, so we dedicate this section to exploring these two
classes of modules and presenting important correlations between them.

The fundamental idea of a semisimple module is that it can be uniquely decomposed (up to isomor-
phism) as a direct sum of its simple submodules. Recall that a module is simple if it is non-zero and it



contains no proper submodules.

Definition. We say that amodule M is semisimple, if for any submodule N of M there exists a submodule
K of M such that M = N & K, thatis N is a direct summand of M.

Aring R is said to be a right (resp. left) semisimple ring, if the right module Ry (resp.r R) is semisim-
ple.

SSMod-R represents the class of all semisimple modules over the ring R.

The following characterization is interchangeable with the definition.
Proposition 1.1.1. [25, Theorem 2.4] For a right R-module M, the following properties are equivalent:
(a) M is semisimple.
(b) M is the direct sum of a family of simple submodules.

(¢) M is the sum of a family of simple modules.

Proof. (a) = (c) Let M, be the sum of all simple submodules of M. As M is semisimple, for a suitable
submodule My of M, we have M = My & M>. If My # 0, then M contains a simple submodule,
because every non-zero semisimple module contains a simple module. But then such submodule is in
M, a contradiction. Thus, M = M;.

(c) = (a) Take M = }_._; M;, where each M; is a simple submodule of M. For notation purposes,
we write My = ) jeq Mj, forevery J C I. Take N an arbitrary submodule of M. We want to prove that
N is a direct summand of M. Consider € the set of all subsets J C [ with the following properties: M ; is
a direct sum, and N N M ; = 0. We can apply Zorn’s Lemma to €2 (note that the empty set is module of €2)
so we can choose a maximal subset J € (2. Thus, for such J, let M' = N + M; = N & (®je M;). We
are left to show that M = M’. It is enough to check M; < M’ for all i € I. If there is some M; £ M’,
then M’ N M; = 0, because M, is simple. Now

M' + M; =N & (®jecsM;) ® M,;

which contradicts the maximality of J.
(c) = (b) Take N = 0, in the previous step.
(b) = (c) Tautology. O

Remark. By the implication (c) = (a) we have that, if M = ) . _; M;, for a family of simple submodules
of M, then, for any N < M, there exists a subset JJ C I such that M = N & (®cjM;).

The following proposition describes the structure of semisimple rings.

Proposition 1.1.2. A4 ring R is right semisimple, if and only if it is a finite direct sum of some of its right
minimal ideals Ry, -+ ,Riie, R=R1 D - DR,

Proof. Let R be a right semisimple ring, that is Rp is semisimple. Therefore we can write Rp =
D, Ri, where {R; : i € I} are simple submodules of Rr. Note that these are minimal right ide-
als over the ring. So it is enough to prove that the set [ is finite. Since R = ), _; R;, there exists a finite
subset J C I such that 1 = ZjeJ aj, where a; € R; for j € J. Let us assume [ is infinite and take
iel\J



For any 0 # a € R;, we have

a=1la= (Z ajla = Zaja € Ziﬁj

JjeJ jeJ JjeJ
therefore
aeRn() M) =0
jeJ
and we have arrived at a contradiction. Hence I is finite. O

Lemma 1.1.3. (Schur) [25, Lemma 3.6] Let V be a simple R-module. Then Endg(V') is a division ring.

Proof. Let0 # ¢ € Endr(V). Thenim ¢ # 0 and ker ¢ # V. Since V' is simple and ker ¢ and im ¢ are
submodules of V| we infer that im ¢ = V' and ker ¢ = 0. This means that any non-zero R-endomorphism
admits an inverse, thus Endgr (M) is a division ring. O

The following will be used without mention. It gives us a fairly useful and straightforward charac-
terization of the relation between simple modules.

Proposition 1.1.4. For any simple R-modules V1, Vs we have Hompg(V1,V2) # 0 if and only if V1 and
Vi are isomorphic.

Proof. (<) If Vi =2 V5 then clearly there is a non-zero homomorphism.

(=) Let 0 # ¢ : Vi — V. By a similar argument done for Schur’s Lemma and by the fact that both
modules are simple we are able to infer that im ¢ = V5 and ker ¢ = 0. Now by the First Isomorphism
Theorem we conclude that V3 /0 = V5. O

The Wedderburn-Artin Theorem is fundamental in the study of semisimple rings/modules, since it
allows us to determine the class of (right or left) semisimple rings. We skip this proof since it is not
particularly important in this work.

Theorem 1.1.5. (Wedderburn-Artin) [25, Theorem 3.5] Let R be any right semisimple ring. Then we
have a ring isomorphism R = M, (D1) x - -+ x M, (Dy), for suitable division rings D1, ..., D, and
positive integers ni, . . . ,ng. The number t is uniquely determined, as are the pairs (n1, D1), . .., (ng, Dy)

(up to permutation). There are exactly t mutually non-isomorphic right simple modules over R.

Remark. A consequence of the Wedderburn-Artin Theorem is that the condition of a ring being right
semisimple is equivalent to it being left semisimple. This is true because M,,, (D) X -+ x M, (D) is
both right and left semisimple, so we often omit the “right/left” condition and simply state that a ring is
semisimple.

Now we must introduce some notions regarding R-homomorphisms.
Definition. A finite (or infinite) sequence of R-modules and R-homomorphism

o I o, T M

is said exact if for every pair of successive R-homomorphisms ( f;, f;+1) we have that im f,, = ker f,, 1.
An exact sequence of the form

0o KL ME N0



is called a short exact sequence.
It is well-understood that a sequence of this form is exact if and only if, ker g = im f, g is surjective
and f is injective.

Lemma 1.1.6. [4, Lemma 5.1] Let f : M — N and f' : N — M be R-homomorphisms such that
ff' = 1x. Then f is an epimorphism, f' is a monomorphism and M = Ker f @ im f'.

Proof. For any n € N we have ff'(n) = n,so ff'(N) = N, hence f must be an epimorphism.
Now if we take n € N such that f’(n) = 0, thenn = ff'(n) = f(0) = 0, therefore f’ is injective.
To prove the remainder, take . € M and it follows that f(m — f'f(m)) = f(m) — f(m) = 0 and
m = (m— f'f(m)+ f'f(m)) € ker f +im f'. Now if m = f'(n) € ker f Nim f/, then 0 = f(m) =
ff'(n) =nandm = f'(n) = f/(0) = 0. Thus ker f N'im f" = 0. O

Iff: M — Nand f/: N - M are R-homomorphisms with ff’ = 1y, we say that f is a split
epimorphism and that f' is a split monomorphism.

Definition. A short exact sequence

0o KL ME N0

is split or split exact in case f is a split monomorphism and g is a split epimorphism.

Lemma 1.1.7. [4, Proposition 5.2] The following statements about a short exact sequence
0KLMSN=0

in Mod-R are equivalent:

(a) The short exact sequence splits.

(b) The monomorphism f : K — M splits.
(¢) The epimorphism g : M — N splits.
(d) im f = ker g is a direct summand of M.

(e) Every homomorphism h : K — X factors through f (i.e., there exists a homomorphismt : M — X
such that h = tf.)

(f) Every homomorphism h : X — N factors through g (i.e., there exists a homomorphism v : X — M
such that h = gv.)

Proof. 1t is clear that (a) implies (b) and (c) by definition. Furthermore, by the previous lemma, (b) and
(c) imply (d). So it is enough to prove (d) = (¢) = (b) and (d) = (f) = (¢).

(d) = (e) Assume M =im f @ L, where L < M, and let h : K — X be a homomorphism. Since f
is a monomorphism, then for each m € M there exists aunique k¥ € K and! € L suchthatm = f(k)+1.
Now define t : M — X, m = f(k) + 1 — h(k). Itis clear that ¢ is a homomorphism and that h = tf.

(e) = (b) Since (e) is true for every homomorphism, then in particular take h = 1 and X = K, so
f splits.

(d) = (f) Suppose M = kerg @ L, where L < M, and let h : X — N be a homomorphism. By
definition of direct sum it follows that L N kerg = 0 and g(M) = g(L), hence g, : L — N is an
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isomorphism and let ¢’ : N — L be its inverse. Therefore v = ¢’h : X — M is a homomorphism such
that h = gv.
(f) = (c) Take h = 1y and X = N, thus g splits. O

The following proposition tells us that every submodule and every factor module of a semisimple module

is semisimple.

Proposition 1.1.8. [4, Proposition 9.4] Let M be a semisimple module with semisimple decomposition

M = @aT,. If

0o KL ME NS0

is an exact sequence, then this sequence splits and both K and N are semisimple.

Furthermore, there is a subset B C A and isomorphisms
N = @BT/g and K = @A\BTQ.

Proof. Since im f is a submodule of M, then by the proof of Proposition 1.1.1, there is a subset B C A
such that M/ = (im f) @ (©pT}3), which means that the sequence as defined above splits and N = M/
im f = ©pTp. We also have M = (@ 4\ pTa) @ (©BTp), hence K = im f = @ 4\ pTa- O

Before we shift our attention towards injective modules, we introduce the fundamental concept of

essential submodule.

Definition. A module M is said to be an essential extension of a submodule N or N is said to be an
essential submodule of M, if for every submodule H of M such that H N N = 0, then H = 0. We
denote this by N <, M.

The following two lemmas explore the properties of essential submodules and will be utilized often.

Lemma 1.1.9. [4, Lemma 5.19] 4 submodule N < M is essential in M if and only if, for each x € M\0,
there exists an v € R such that xr € N\0.

Proof. (=)If N <, M and z € M\0, thenxRN N # 0.
(<) Take x € L\0, with L < M. Now there is an r € R such that 0 # zr € N, which implies that
0#xzre NNL. O

Proposition 1.1.10. [23, Proposition 1.1] Let M, N, K, K', N' € Mod-R. Then we have the following:
1. f K <N< M, then K <, Mifandonly if K <. N <. M;
2. K<, N<Mand K' <. N' < M, then KN K' <, NN N’;
3. If f : N — M is an R-homomorphism and K <. M, then f~1(K) <. N;

4. If {K,}ier is an independent family of submodules of M, and if K; <. N; < M, for eachi € I,
then {N;}icr is an independent family and ®;c1 K; <. @ierN;.

Proof. 1. Firstassume K <, N <., M and consider 0 = My < M. Since N <., M we have MyN N #
0. As K <. N,so (MyNN)NK # 0, thus My N K # 0. Therefore K <. M. Conversely, assume that
K <. M. Then any non-zero submodule of M has a non-trivial intersection with K. In particular, we
have N < M, so any non-zero submodule of N has non-zero intersection with K, hence K <, N. For



0 # My < M, again by hypothesis, My N K # 0 and K < N so we infer that My N N # 0. Therefore
N <. M.

2. Consider B a non-zero submodule of N N N’. Since by hypothesis K <, N, then BN K # 0.
Furthermore, since K’ <., N’  then (BN K) N K’ # 0. Hence K N K’ <, NN N'.

3. By contradiction, assume that f~!(K) is not an essential submodule of N. Then N admits a
submodule A # 0 such that A N f~1(K) = 0. In particular A Nker f = 0,50 A = f(A) and 0 #
f(A) < M. However AN f~1(K) = 0, hence f(A) N K = 0, a contradiction.

4. First consider the case where the index set is finite. Assume I = {1,2}. By 2., K1 N Ky =
0 <¢ N N Ny, hence N1 N Ny = 0, therefore { N1, N2} is independent. Now consider the projections
m : N1@® Ny — Nyand o : N1 @ No — No. By 3., K1 ® Ny <. N1 ® Ny and N1 @ Ko <, N1 ® N,.
Againby 2., K1 & Ko <. N1 ® Ns. Now by induction, consider #/ = n and assume K1 ®-- - P K, <,
N1®- -+ N,,—1. By the same argument done above, (N1®- - -®N,,_1)NN,, = 0. Therefore { M, ..., M,}
is independent, and (K1 @& -+ & Kp,—1) @ K,y <¢ (N1 ® -+ @ Nj,—1) © N,,. We are left to prove
the case where I is an arbitrary index set. In general, a family {NN; };c; is independent if every finite
subfamily is independent. However, that is what we have just shown. So take 0 # n € @®;c;N;. Then
n € @;cyN;, for some J C [ finite. By the first part of the proof, it follows that ®;c ;1 K; <. P;c N,
and 0 # nR N (B K;) € nRN (DierK;). This shows that the intersection of a non-zero submodule
of ®;c1N; and P, K is different from zero. Hence @;c1 K; <. @i N;. ]

Definition. We say that K’ < M is a closed submodule of M, if K has no proper essential extension in
M. This means that given L a submodule of M such that K <. L, then K = L.

We are now ready to define injective modules.

Definition. Given right R-modules M and N, we say that M is N-injective if, for each monomorphism
f + K = N of right R-modules (equivalently, for each submodule K of N with f the inclusion), and
each R-homomorphism h : K — M, there exists an R-homomorphism /' : N — M such that h = h'f,

)
f .

00— K ——

i.e. the follow diagram commutes.

When this is the case k' is said to be an extension of h or that h can be extended to h'.

Definition. We define the injectivity domain of M as follows
Jn Y (M) = {N € Mod-R : M is N-injective}.

We say M is an injective module (over R) if its injective domain is the class of all right R-modules. We
say that R is injective on the right (resp. left) if Rp (resp. rR) is an injective module.

The following is an important structural equivalence. It allows us to reduce the study of a semisimple
module to that of cyclic submodules of factor modules. Its proof is beyond the scope of this thesis.

Proposition 1.1.11. [11, Corollary 7.14] A module M is semisimple if and only if every cyclic submodule
of a factor of M is M-injective.

The following shows that SSMod-R C Jn~!(M), for every module M.



Proposition 1.1.12. Let M be an arbitrary module, and N an arbitrary semisimple module. Then M is
N-injective.

Proof. Let K be a submodule of N andlet h : K — M be a homomorphism. Since NV is semisimple, we
have N = K @& Ny, for some submodule N; of N. Define an extension &' : N — M as h/(z) = h(x),
ifz € K and h/(z) = 0, if x € N;. Therefore M is N-injective. O

Let us present some fundamental properties of injective modules. The next result, also known as
Baer’s Test, tells us that in order to verify if a module M is injective, it is enough to take N = Rp. We
skip this proof, as we intend to prove a generalization of this result in the form of Proposition 1.1.16.

Theorem 1.1.13. (Baer’s Criterion) [24, Theorem 3.7] A right R-module M is injective if and only if,
for any right ideal I of R, any R-homomorphism h : I — M can be extended to h/ : R — M.

Proposition 1.1.14. [30, Lemma 1.2] Let M and N be arbitrary modules. If M is N-injective, then any
monomorphism M — N splits.

Proof. Suppose M is N-injective and take an arbitrary monomorphism g : M — N. Since M is N-
injective. Take h = idy; : M — M, then there exists ’ : N — N such that idy; = h'g. Thus g
splits. O

Proposition 1.1.15. [30, Proposition 1.3] Let M be N-injective and N1 < N. Then M is Ni-injective
and (N / Ny)-injective

Proof. Ttis clear that M is Np-injective. Now take X /N; a submodule of N /N7, and a homomorphism
¢ : X/N1 — M. Furthermore we take the canonical epimorphisms 7 : N — N/Nj and mp = X -
X — X/Nj. Since M is N-injective, there is a homomorphism 6 : N — M that extends ¢, because
X < N.Now we have 0(N;) = ¢m1(N1) = ¢(0) = 0, meaning N; = kerm < ker 6. Therefore, there
exists ¢ : N/N; — M such that )7 = 6. Forany z € X, ¥(x + N;) = ¢Ym(z) = 0(z) = ¢mi(x) =
¢(z + N1). To better illustrate this we define the diagram.

M
WY
T

X/Ni = N/N;

SR

X N

Therefore 1 extends ¢, hence M is (N /Ny )-injective. O

Proposition 1.1.16. [30, Proposition 1.4] A module M is N-injective if and only if M is nR-injective,
foreveryn € N.

Proof. (=) Follows from Proposition 1.1.15.

(<) Now assume M is nR-injective for every n € N. Take Ny < N and ¢ : Ny — M an R-
homomorphism. By Zorn’s Lemma we can find a maximal submodule N; and a homomorphism ¢ such
that Ng < Ny < N andv : N7 — M extends ¢, so we have N7 <. N. Assume that N; # N and
consider an element n € N\N; and define K = {r € R : nr € N;}. By Lemma 1.1.9, nK # 0.
We consider u = 9, : nK — M, which by our assumption can be extended to a homomorphism
o:nR — M.Lete : Ny +nR — M, e(ny +nr) = ¢(n1) + o(nr). If ng + nr = 0, then we



have r € K and ¢(n1) + o(nr) = ¥(n1) + p(nr) = Y(n1) + (nr) = ¢(ny + nr) = 0. So € is
well-defined. However the pair (N; 4+ nR, €) contradicts the maximality of (N1, ). Therefore Ny = N
and ¢ : N — M extends ¢. Thus M is N-injective. O

Proposition 1.1.17. [30, Proposition 1.5] 4 module M is (B;c1N;)-injective if and only if M is N;-
injective for every i € I.

Proof. (=) Follows from Proposition 1.1.15.

(<) Assume that M is (®;c7 N;)-injective forall i € I. Let N = @;<; N; and take a submodule X of
N, also consider a homomorphism ¢ : X — M. Now by Zorn’s Lemma we may assume that ¢ cannot be
extendend to any homomorphism Y — M, where Y < N, Y # N. Therefore X <. N. Now we want
to show that X = N. By contradiction assume there exists j € I and n € N; such thatn ¢ X. Since M
is Nj-injective, M is also nR-injective, again by Proposition 1.1.15. By a similar argument done in the
previous proposition, we can extend ¢ to a homomorphism ¢ : X + nR — M, which contradicts the
maximality of ¢. Therefore X = N, which means M is N-injective. O

We skip the proof of the following results.

Proposition 1.1.18. [30, Proposition 1.6] Let N and {M; : i € I} be modules. Then ], ; M; is N-
injective if and only if M; is N-injective, for every i € I.

Proposition 1.1.19. [4, Proposition 18.6] Every right R-module can be embedded in an injective right
R-module.

The previous proposition leads us to the definition of the injective envelope of a module. It is a
“minimal” embedding of M in an injective module.

Definition. A module E is called an injective hull or injective envelope of a module M, if E is an
essential extension of M (i.e. M <. F)and F is injective.
We denote the injective hull of M by E(M).

Theorem 1.1.20. [4, Theorem 18.10] Every module has an injective envelope. It is unique to within

isomorphism.
The following result will be fairly useful.
Lemma 1.1.21. [4, Proposition 18.12] In the category Mod-R we have the following statements:
1. M is injective if and only if M = E(M);
2. If M <. N, then E(M) = E(N);
3. If M < Q, with Q an injective module, then Q = E(M) & E';

4. If @ E(M,) is injective, then E( @ M,) = @ E(M,).
acA a€A acA

Proof. 1. This is immediate from the definition of injective hull.
2. By definition N <. E(N) and by hypothesis M <. N. Then M <. E(N), by Proposition
1.1.10(1). Now by definition E(N) is injective, thus E(N) is an injective envelope of M.
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3. Since @ is injective, there is a morphism ¢ : E(M) — ) making the following commute

Q\~
fT ig
M — B(M)

where f is the inclusion. As M <., E(M), g is also a monomorphism. Since E(M) is injective, then g
splits, by Proposition 1.1.14. Therefore Q = E(M) & E’, where E’ is some submodule of Q).

4. Assume that @, 4 F(M,) is injective. Take the injective envelopes E(M,,), for each o € A.
By Proposition 1.1.10(4), ®4 M, < ®4E(M,,). Thus o E(M,) = E(®4M,). O

The following is a useful characterization of injectivity in terms of its essential extensions.

Proposition 1.1.22. [24, Lemma 3.28] 4 module M is injective if and only if it has no proper essential
extensions.

Proof. Assume M is injective and consider a proper extension, M < FE. By Proposition 1.1.14, the
inclusion M — F splits, hence F = M & N, for some 0 # N < E. Then NN M = 0 and M is not
essential in F.

Conversely, assume M has no proper essential extensions, and embed M in an injective module J, by
Proposition 1.1.19. Take ¢ : M — J to be such an embedding. By Zorn’s Lemma there exists a maximal
submodule S C J such that SN ¢(M) = 0. Note that for any non-zero quotient submodule S’/S of J/S
we have (S'/S) N ((¢(M) & S)/S) # 0. Then (¢p(M) & S)/S <. J/S. However by assumption of
no proper essential extension, this only holds if (¢p(M) & S)/S = J/S. Therefore J = ¢(M) & S and
since J is injective, by a particular case of Proposition 1.1.18 we conclude that ¢( M) is injective, and so
is M. O

The definition of injectivity is given in function of homomorphisms between modules, while the
definition of semisimple modules is given in terms of direct summands of submodules. The follow-
ing proposition shows us that short exact sequences and splitting homomorphisms offer a much needed
correlation regarding a semisimple ring.

Proposition 1.1.23. Let K, M, N € Mod-R. The following are equivalent:
(a) R is semisimple.

(b) [4, Proposition 13.9] Every short exact sequence
0O-K—-M-—=>N-—=0

of right R-modules splits.
(c) [4, Proposition 13.9] Every right R-module is semisimple.
(d) [4, Corollary 13.10] Every monomorphism in Mod-R splits.

(e) [4, Corollary 13.10] Every epimorphism in Mod-R splits.

11



Proof. Since Rp, is a right module (¢) = (a) is clear.

(a) = (c) A finite (or infinite) direct sum of semisimple modules is itself semisimple. It will be shown
in Proposition 1.3.1, that every module is the epimorphic image of a direct sum of copies of Rr. So by
hypothesis this sum is semisimple.

(c) = (b) By Proposition 1.1.8.

(b) = (c) Let M be a module and let K < M. Consider the short exact sequence, 0 SMS M /
K — 0, where i is the inclusion and 7 is the canonical epimorphism. By hypothesis, this sequence splits
and so K = im+¢ = ker 7 is a direct summand of M.

(b) & (d) & (e) Follows from Lemma 1.1.7. O

Corollary 1.1.24. [4, Corollary 18.8] A ring R is semisimple if and only if every right module is injective.

Proof. (<) Assuming every right R-module is injective, by Proposition 1.1.14, every monomorphism
in Mod-R splits. Then, by Proposition 1.1.23, R is semisimple.

(=) By the previous proposition we know that M < E(M) splits, for every R-module M. So M is
a direct summand of E(M). Since E(M) is injective. Then by Proposition 1.1.18, M is injective. [

Much like the name indicates the following definition is a weaker form of injectivity. We will see a
fair amount of use for it later on, especially in Chapter 2.

Definition. A module M is said to be quasi-injective if M is M -injective.
A ring R is said to be a quasi-injective ring (Ql-ring) if all its quasi-injective modules are injective.

Definition. Let M be a module and N < M. We say that N is a fully invariant submodule of M if
f(N) < N, forevery f € Endr(M), i.e., Endgr(M)N < N.

The following proposition gives us a fairly useful way of looking at quasi-injective modules regarding
the injective hull of a module.

Proposition 1.1.25. [23, Proposition 2.13] 4 module M is quasi-injective if and only if M is a fully

invariant submodule of E(M).

Proof. Let A = Endr(E(M)).

(<) Assume that AM < M and let N be a submodule of M. Any R-homomorphism f : N — M
can be extendend to some endomorphism g in A. Note that g|5; is an endomorphism of M that extends
f- Thus by definition we conclude that M is quasi-injective.

(=) Now assume that M is quasi-injective, and let g € A. Now we restrict the domain of g to be M N
g~ 1M, meaning we get amap from M Mg~ M to M, which can be extended toamap h € Endp(M), by
quasi-injectivity. Thus & can be extended to f € A such that f(M) < M and (f —g)(MNg~ M) = 0.
Since f(M) < M, this implies that

MN(f—g) '"M<Mng'M <ker(f - g)

and from this we infer that (f — g)M N M = 0. Since M <., E(M), then it follows by definition of
essential extension that (f — ¢g)M = 0. Finally gM = fM < M, thus AM < M. O

The following definition is fundamental in the theory of modules over rings.
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Definition. We define the right annihilator of a module M (over R) as follows
annp(M)={a € R:2xa=0,x € M}.

If anng(M) = 0, M is said to be a faithful module.

When there is no ambiguity about the ring we simply write ann(M ). When we consider an element
a € R (resp. asubset X of R) it may notbe clear if ann(a) (resp. ann(X)) represents the right annihilator
or the left annihilator. So we denote the right annihilator of @ over R (resp. the right annihilator of I over
R), by ann,(a) (resp. ann,(X)), and the left annihilator of a@ over R (resp. the left annihilator of X
over R), by ann(a) (resp. ann;(X)).

Now we introduce the last major concept of this section that directly relates to injectivity, the notion
of divisibility.
Definition. Let M be a right R-module, if x € M and a € R, we say that x is divisible by a if x € Ma,
i.e., there exists an element y € M such that x = ya.

The module M is divisible if, for any x € M and a € R, z is divisible by a.

Remark. As described in the definition above, for such an element y € M to exist we have the necessary
following condition: Forb € R, ab = 0 implies that xb = 0. We represent this in terms of the annihilators
by ann,(a) C ann(x). So x is divisible by a, only if ann,(a) C ann(z).

Proposition 1.1.26. [24, Proposition 3.17] For any module M the following statements are equivalent:
(a) M is a divisible module.

(b) Forany a € R, any homomorphism f : aR — M extends to a homomorphism from Rp to M.

Proof. (a) = (b)Leta € R, f € Homg(aR, M), and x = f(a) € M. Then u € ann,(a) implies that
au = 0and zu = f(a)u = f(au) = f(0) = 0. Therefore u € ann(x). Now by definition of divisibility,
x = ya for some y € M. Hence f extends to Rp — M by 1 — y.

(b) = (a) Let z € M and a € R be such that ann,(a) C ann(x). The morphism f : aR — M,
f(as) = xs, for all s € R, is a well-defined homomorphism. By hypothesis, f extends to a homomor-
phismg: R — M. Lety = g(1) € M. Clearly, x = f(a) = g(a) = g(1.a) = g(1).a = ya. O

Corollary 1.1.27. [24, Corollary 3.17°] If M is an injective module, then it is divisible. The converse
holds if R is a principal right ideal ring.

Proof. 1f a module M is injective, the condition (b) in Proposition 1.1.26 is obviously true and the first

part becomes clear. In case R is a principal right ideal ring, the converse follows by Baer’s Criterion. [

Remark. 1t is well known that the structure of abelian groups coincides with that of Z-modules. So
naturally let us define divisible abelian group.

Definition. An abelian group G is divisible if for all z € G and for all n € Z\0, there exists y € G such
that ny = x. We represent this by n | x. Thus G is divisible if G = nG, Vn € Z\0.
For a prime p, we have that G is p-divisible if G = pG.

Remark. From the definition above, note that:

1. An abelian group is divisible if and only if it is p-divisible for every p prime. This is clear since
every positive integer n can be factored as the product of primes i.e., n = p]fl pé” ...pkn | with primes

p; and natural numbers k;.
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1.2 Noetherian and Artinian Modules

The concepts of Noetherian and Artinian modules are essential and unavoidable in module and ring theory.
We shall present some of the most well-known results, as well as proving some meaningful relations to
injectivity and semisimplicity.

Let us start by presenting the rigorous definitions of generated and cogenerated.

Definition. Let A be a class of modules. A module M is (finitely) generated by A or A (finitely) gener-
ates M, in case there is a (finite) indexed set (U;);cr in A and an epimorphism

EB U, — M — 0.

icl
A module M is (finitely) cogenerated by A or A (finitely) cogenerates M, in case there is a (finite)
indexed set (U;);cr in A and a monomorphism

0—M—]]U
icl
Definition. Let M be a module, we denote the lattice of all submodules of M by (Sub(M), <). Now
we say that

e M is Noetherian if Sub(M ) satisfies the ascending chain condition (ACC) i.e., an ascending chain
My < My <--- < M, <--- of submodules is stable (there is a p € N such that for all n > p, M, =
M,).

o M is Artinian if Sub(M) satisfies the descending chain condition (DCC) i.e., a descending chain
Moy > My > --- > M, > --- of submodules is stable (there is a p € N such that for all n > p, M, =
M,).

A ring R is said to be right Artinian (resp. Noetherian) if the module Ry, is Artinian (resp. Noethe-
rian).

The upcoming Propositions 1.2.1 and 1.2.2 will be used as interchangeable with the definitions of
Noetherian and Artinian modules, respectively.

Proposition 1.2.1. [4, Proposition 10.9] Let M be a module. The following are equivalent:

(a) M is Noetherian.
(b) Every non-empty subset of Sub(M ) has a maximal element.

(¢) All submodules of M are finitely generated.

Proof. The first three implications are done by negation.

(b) = (a) Assume that M is non-Noetherian, meaning there is a chain of submodules My < M; <
-+ < M,, <--- thatis not stable. Then it is clear that the set { M,, : n € N} has no maximal element.

(a) = (b) Assume there is a non-empty set .S of submodules of M without maximal element. Take
My € S. As M is not maximal in S, there exists My € S such that My < M. Since S has no maximal
element we can choose a submodule My € S such that My < M; < Ms. By recursion we obtain an
infinite chain

Mo <M <--- <M, <---
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which does not stablize. Therefore M is not Noetherian.

(a) = (c) Assume that M has a submodule N that is not finitely generated. By recursion we define
a sequence Ty, ...,Tn,... of elements in IV has follows: first take =1 € N, secondly for each n > 2,
choose x,, € N such that x,, does not belong to the submodule of M generated by {x1,x2,...,2p—_1}.
Note that the choice of such x,, is possible since IV is not finitely generated. Now for each n > 1, we
define M,, to be generated by {z1, ..., x,}. By construction we infer that the chain My < --- M,, < ---
does not stabilize. Hence M is non-Noetherian.

(c) = (a) Assume every submodule of M is finitely generated and let My < M; < ---M,, < --- be
a chain of submodules. Define H = |, M, and suppose H is generated by {x1, 2, ..., x,}. Now for
eachi € {1,...,r}, let k; be a positive integer such that z; € My, . Take k = max{ki,...,k,}, so that
{z1,...,2+} € Mj. Therefore for all n > k, we have H < M, < M,, < H, so M is Noetherian. [

The proof of the following proposition is done by analogous arguments.

Proposition 1.2.2. [4, Proposition 10.10] Let M be a module. The following statements are equivalent:
(a) M is Artinian.
(b) Every non-empty subset of Sub(M ) has a minimal element.

(¢) Every factor module of M is finitely cogenerated.
Proposition 1.2.3. Let M € Mod-R. The following hold:

1. If we have an R-homomorphism f : M — M’ and M is Noetherian (resp. Artinian), then f (M)
is Noetherian (resp. Artinian);

2. [25,Result 1.20] Let N < M. Then M is Noetherian (resp. Artinian) if and only if N and M /N
are Noetherian (resp. Artinian);

3. [25, Result 1.20] If My, M> are Noetherian (resp. Artinian) submodules of M, then M; & My is
Noetherian (resp. Artinian).

Proof. We will only prove the Noetherian case.
1. Assume M is Noetherian, let f € Homp(M, M') and take M| < --- < M/ < --- a chain of
submodules of f (/). Then
FM) < < fH M) <o

is a chain of submodules in M. Since M is Noetherian there exists a p € Nsuch that foralln > p, we have
S7H(M]) = f~1(M]}). Now for each n € N we have M, < f(M), so we infer that f f~1(M],) = Mj,.
We have just shown that for each n > p, M), = Mj,, therefore f(M) is Noetherian.

2. (=) Any chainin N is in particular a chain of M. Since M is Noetherian any ascending chain in N
also stabilizes. For the second part, define the canonical epimorphism 7 : M — M /N,son(M) = M/
N is Noetherian by 1.

(<) Conversely, let My < --- < M,, <--- be a chain of submodules of M, then

MyAN<---<M,NN<--and (M; + N)/N < --- < (M, +N)/N < ---

15



are chains of N and M /N respectively. By hypothesis these chains stabilize for some p € N so for every
n > p, it follows that

M,N N = M, NN and (M, + N)/N = (M, + N)/N.

Take z € My, thenz + N € (M, + N)/N = (M, + N)/N, so there exist y € M, and n € N such
thatx + N=(y+n)+ N=y+(n+N)=y+ N,soxv—yec M,NN = M,NN.Nowz € M,
therefore M,, = M,,. Hence M is Noetherian.

3. Assume M; and M, are Noetherian. We have the homomorphism ¢ : M; — (M; @ M)/
My, x — x+Ms,soby 1. (M) = (M1®Ma)/Ms is Noetherian and by 2. My @ My is Noetherian. [

Proposition 1.2.4. [30, Theorem 1.7] Given a module M and a family of modules {N; : i € 1} the
following statements are equivalent:

(@) PBicrN; is M-injective.

(b) ®icyN; is M-injective for every countable subset J C I.

(¢) N, is M-injective for every i € I, and for every choice of x,, € N;, (n € N) for distinct i,, € I such

that ann(a) C NS ann(zy,), for some a € M, the ascending chain

() ann(z,) € () ann(z,) € --- C () ann(z,) C -
n=1 n=2

n=~k

becomes stationary.

Proof. (a) = (b) Immediate from Proposition 1.1.18.

(b) = (c) Again Proposition 1.1.18 implies that IN; is M-injective for every ¢ € I. Consider x =
(zp) € [Ih2yNi, and ¢ : aR — [[,2; Ni,, ar — xr. Take J = US2,(Nj>pann(z;)) and let
¢ = @|q.- Therefore ¢ is a homomorphism from a.J into @511 Ni;. Since 2, Ni; is M-injective,

n?

then it is also aR-injective, meaning ¢ extends to some 1 : aR — @;’il Nj;. Thus xJ = Plad) =
Y(aJ) < Y(aR) = Y(a)R < @cp Niy, where F'is a finite subset of N. Let F' = {1,2,.... k — 1},
so that x;J = 0, for j > k and hence J = Nj;>,ann(x;), meaning the sequence Nj>n,ann(z;)(n € N)
becomes stationary.

(c) = (a) By contradiction, assume that €. _; N; is not M-injective. Then by Proposition 1.1.16

el
we infer that @, ; V; is not aR-injective, for some a € M. Therefore there exists a right ideal K of
R and a homomorphism f : aK — @, ; IN; that cannot be extended to aR. Since ), N; is M-
injective, for all finite subsets ' C I, by Proposition 1.1.18, then f(aK) £ @, p N;, for any finite
subset /' C I. However f can be extended to g : aR — [[,.; Vs, because [ [, ; IN; is M-injective. Now
let z = g(a), then ann(a) < ann(x) = Njerann(z;), where x; is the i-component of = € [[;c; Vs
Define S, = {i € I : z;k # 0}, k € K. Then for every k € K, Sy, is a finite subset of I. However
J = Ugek Sk is not finite, since 2K = f(aK) £ @,y Ni, for any finite subset ' C I. Now by
induction take k, € K (n € N) and indices 4, € I such that iy € Sy, and i; ¢ Uﬁ;llSkn. We denote
the i,-component of = by x,,. Therefore ann(m) C N°2,ann(x,) and the sequence N;>nann(xy) is

strictly increasing, which contradicts our assumption. So we conclude P, ; N; is M-injective. O

The following theorem tells us that any direct sum of injective R-modules is injective if and only if R is
Noetherian.
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Proposition 1.2.5. [30, Theorem 1.11] The direct sum of any family of N-injective right R-modules is
N-injective if and only if every cyclic (or finitely generated) submodule of N is right Noetherian. In
particular, the direct sum of every family of injective right R-modules is injective if and only if R is right

Noetherian.

Proof. (<) Assume that nR is Noetherian for every n € N, and consider a direct sum @y 4 M, of N-
injective modules M,,. Let Ny < nRand ¢ : N — ®4ca M, be a homomorphism. Since [V is finitely
generated, then ¢p(N1) < @nepM, for F C A finite. By Proposition 1.1.18, @, M, is N-injective.
Therefore ¢ can be extended to ¢ : nR — GacrM,. Hence &,c4 M, is N-injective, by Proposition
1.1.16.

(=) Assume that the direct sum of any family of N-injective modules is N-injective. Take an ar-
bitrary n € N. We will prove that nR is right Noetherian, this means we will prove that an ascending
sequence ann(n) = Ny < N3 < Ny < - - ofright ideals of R is stationary. Let M; = E(R/N;),i € N.
Since each M; is N-injective, then by hypothesis ©£°, M; is N-injective. Now consider the set {m; =
1+ N; : i € N}. By Proposition 1.2.4, we infer that the ascending sequence N;>rann(m;)(k € N)
becomes stationary. As ann(m;) = N; for every i € N, N, = ann(my) = N;>rann(m;). Therefore
the sequence N; < Ny < --- becomes stationary. Hence nR is Noetherian. O

Definition. Let M be a non-zero module. A finite chain of n + 1 submodules of M
{0p=Mo<Mi < S My=M

is called a composition series of length n for M, if each quotient M;/M,_; is simple, this is to say each
M;_1 is maximal in M;.

Definition. If a module M admits two composition series of the form 0 = My < M; < --- M, = M
and 0 = Ng < N1 < --- < N, = M, then these composition series are said to be equivalent if n = p
and there is a permutation o of {1,2,...,n} such that

Mi/Mi+l = No’(i)/No(i)—i-l) fori = 1, 2, ceeyn.

Theorem 1.2.6. (Jordan-Hélder) [4, Theorem 11.3] Given aring R, if an R-module M has a composi-
tion series, then every pair of composition series for M are equivalent.

Remark. By the Jordan-Holder Theorem if a module has a composition series, then all composition series
are equivalent and, in particular have the same length. Therefore we can define the composition length
of a module as the length of its composition series (when they exist).

We denote the composition length of M by cl(M). If M = 0, then ¢l(M) = 0. If M has a composi-
tion series of length n, we write cl(M) = n. If M does not have a composition series, then cl(M) = oc.

The following proposition tells us that the composition series condition is equivalent to the descending

and ascending chain conditions combined.

Proposition 1.2.7. [4, Proposition 11.1] 4 non-zero module M has a composition series if and only if M

is Noetherian and Artinian.

Proof. (<) Suppose M is Noetherian and Artinian. Recursively choose an ascending chain (M, ),en,
of submodules of M as follows. Take My = 0. If n > 1 and M,,_1 = M, take M,, = M. Otherwise, if
M,,_1 # M, let M, be a minimal element in the set of all submodules of M that contain M,, 1 properly.
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Note that such minimal M,, exists by Artinian assumption. Now by Noetherian hypothesis, there isn € N
such that M,, = M. Let k be the lowest index such that M} = M. Finally by our construction of the
submodules M, we have, 0 = My < M; < --- < My = M.

(=) Now assume that M has a composition series. The proof is done by induction on the length of
the composition series. If n = 1, then M is simple and the series is trivial. Take a composition series of
length n > 2

0=MysM <. 5 M,=M,

hence M,,_1 has a composition series of length n — 1 and M / M,,_1 is simple. Now by Theorem 1.2.3(2)
we conclude the proof. O

Corollary 1.2.8. Any semisimple ring is right and left Noetherian and Artinian.

Proof. Let R be a semisimple ring, then by Proposition 1.1.2 there exist right minimal ideals Ry, ..., Ry
of R such that
R=R & - DR

Note that the right minimal ideals of R are simple submodules of Rg. Therefore the following chain of
submodules is a composition series of Rp

Oﬁffﬁ§m1@m2§"'$m1@"'@%t:RR

and by the previous proposition we get the desired result. O

1.3 Free, Projective and Uniform Modules

The concept of free module is the one that most closely resembles the structure of vector spaces, that is
not to say they coincide or that they behave in the same way, but they do admit a basis.

Definition. A module M with a subset X = {e; : i € I} is called fiee, with X as its basis, if and only if
the following “linear extension property” holds: for any family of elements {n; : ¢ € I} in a module N
there exists a unique R-homomorphism f : M — N such that f(e;) = n;, forall i € I.

An equivalent way to define a free R-module is to say that M is isomorphic to a direct sum of copies
of Rpie., M =@, ; Rg.

Proposition 1.3.1. [4, Theorem 8.1] If a right R-module M has a spanning set X C M, then there is an
epimorphism RX) — M. Moreover, R finitely generates M if and only if M has a finite spanning set.

Proof. Let X be the spanning set for M. For each x € M, the left multiplication p, : r +— zris a
right R-homomorphism Rrp — M. Let p = @ xp, be the direct sum of these homomorphisms. Then
p: RX) — Mandimp = > ximp; = >y xR = M. Thus p is an epimorphism. The last statement
is clear. O

Now we introduce the dual concept to the injective module.

Definition. Given right R-modules M and N, we say that M is N-projective, if for each epimorphism
7 : N — K and each homomorphism h : M — K there exists a homomorphism ' : M — N such that
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h = wh' i.e., the follow diagram commutes

B
)
L

N—"+>K—=0

Definition. We define the projectivity domain of M as follows
Pr~Y(M) = {N € Mod-R : M is N-projective}.

We say M is a projective module (over R) if its projectivity domain is the class of all right R-modules.
The ring R is self-projective on the right (resp. left) if Rg (resp. rR) is projective.

Proposition 1.3.2. Every free module is projective.

Proof. Let F be a free module with basis B. Take f : F' — N and 7 : M — N to be a homomorphism
and an epimorphism respectively. Now for each b € B we choose my;, € M such that 7(mp) = f(b).
By linear extension, there exists a uniquely determined homomorphism g : £© — M, such that Vb €
B, g(b) = my. Thus mg(b) = m(mp) = f(b) and so by linear extension mg = f. Therefore F' is
projective. O

Proposition 1.3.3. [4, Proposition 17.2] Let R be a ring and P a module. Then the following are equiv-

alent:

(a) P is projective.

(b) Every R-epimorphism M — P — 0 splits.

(¢) P is isomorphic to a direct summand of a free right R-module.

Proof. (a) = (b) Take an epimorphism f : M — P. Since P is projective, there exists a homomorphism
g : P — M such that fg = id,,. Hence the epimorphism splits.

(b) = (c) Let X be a spanning set for P. By Proposition 1.3.1, we have an epimorphism f from the
free module F' = & x R onto P. Then by hypothesis F i> P — 0 is a splitting epimorphism and ker f
is a direct summand of F'. Therefore, P is isomorphic to a direct summand of F.

(c) = (a) By Proposition 1.3.2 and the fact that a direct summand of a projective module is also
projective. O

Now we introduce a notion of dimension for modules, but of course this is not as straightforward as it
is for vector spaces, where we characterize dimension in function of the cardinality of a basis. With
modules, we often lack a basis to begin with, so we will define uniform dimension.

Definition. Let M be a module. We define M to be an uniform module, if for any two non-zero sub-
modules N, N’ < M we have N N N’ # 0. Equivalently, M is uniform if every non-zero submodule
of M is an essential submodule of M. A ring R is a right (resp. left) uniform ring if Rp (resp. rR) is
uniform.

Lemma 1.3.4. [24, Theorem 6.1] LetU = U@ - - DUy, andV = Vi B- - - DV, be essential submodules

of a right R-module M, where the U]s and Vj’s are uniform modules. Then m = n.
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Proof. Assume that n > m. We claim that U = Uy @ - - - @ U,,, intersects some Vj trivially. Otherwise,
Un Vi <¢ V;(1 < j < n), because V; is uniform. Furthermore, by Proposition 1.1.10(4) it would
follow that

UnNW)@-aUnV) <. Vid--aV,=V,

andalso U NV <,V <. M. Again, by Proposition 1.1.10(1) U <. M, a contradiction. Therefore
without loss of generality we can assume that UNVi=0.LetU' =U ® V. Wehave U' N U, # 0,
otherwise Uy + Us + - - - + U,,, + V71 would be a direct sum, but this contradicts U <., M. Now we have

(U/mUl)@UZ@@Um SeUl@@Um SeM

Since (U'NU) & Us ® -+ @ Uy, < U’, then U’ <, M. We have “replaced” the summand Uy by V.
Repeating this process for Vo we can go from U' to U”" = Vi & Vo @ U3 @ -+ @ Uy, < M. After m
steps, Um = Vi -V, <. M.Howeverwealsohave V=V, ®---®V, <. M,som=n. [

Definition. We say that a module has uniform dimension n or Goldie dimension n, denoted by u.dim (M) =
n, if there is an essential submodule V' <, M that is the direct sum of n uniform submodules, i.e., if
for a set of uniform submodules {U;}!" ; we have that V' = @, U; is an essential submodule of M. If
no such positive integer n exists, we write u.dim(M) = oo. A ring has right uniform dimension n, if

u.dim(Rg) = n.
The lemma above justifies that the uniform dimension is well-defined.

Lemma 1.3.5. [24, Proposition 6.3] Given a right R-mdoule M, suppose u.dim(M) = n < oco. Then
any direct sum of non-zero submodules N = N1 @ --- @& Ny < M has k < n summands.

Proof. 1f n = 1 the result is clear. Assume n > 2 and let V' <. M be such that it is the direct sum of
n uniform submodules. Now N; = N; NV # 0and N/ & --- & N, < V. We can assume M =V, say
M=U;&---&U,, where the U/s are uniform. Let N=Ny&---®Nj. Analogous to the proof of
Lemma 1.3.4, we may assume NNV, =0.Now project M onto Vo & - - - @ V,,. Therefore we have an
embedding of N into Vo @ - - - @ V},. Now by induction in n, we have k — 1 < n — 1, hence k < n. [

Proposition 1.3.6. [24, Proposition 6.4] We have u.dim(M) = oo if and only if M contains an infinite

direct sum of non-zero submodules.

Proof. The “if” part follows from Lemma 1.3.5.

For the “only if” part assume that M does not contain an infinite direct sum of non-zero submodules.
We claim that any non—zero submodule N < M contains a uniform submodule. Ifthis is not true, then NV
cannot be uniform, meaning it contains some A1 @ By with A1 # 0 # By. Then By is not uniform either.
Hence it contains some A& By, with Ay # 0 # Bs. Repeating this process, we arrive at an infinite direct
sum A1 @ Ay @ --- < M, a contradiction. Now take U; < M uniform. If U; is not essential in M, then
U@ Us < M, for some Uy # 0 that we can assume to be uniform. If Uy @ Us is not essential in M, again
we can take a non-zero uniform submodule Us such that U; & Uy @ Us < M. However, by assumption,
we can only repeat this process a finite number of times. Eventually we have U; & - - - ® U,, <. M, with
all U/ s uniform submodules of M. Therefore, by definition, u.dim(M) = n. O

Corollary 1.3.7. [24, Corollary 6.6] For a right R-module M, the uniform dimension of M is the supre-
mum of the set:

{k : M contains a direct sum of k non-zero submodules}.
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Proof. Let k < oo be such supremum. If & = oo, then by Lemma 1.3.5, u.dim(M) = oco. If k < oo,
then by the previous proposition, w.dim (M ) must be finite, and again by Lemma 1.3.5 we conclude that
w.dim(M) = k. O

Let us relate the notion of uniform dimension with Noetherian and Artinian modules.

Proposition 1.3.8. [24, Corollary 6.7] Let M be a right R-module.

(a) If M is a Noetherian or an Artinian module, then u.dim(M) < co.

(b) If M has a composition series of length n, then u.dim(M) < n. This is an equality if and only if M
is semisimple.

Proof. (a) If the module is Noetherian or Artinian, then either of the chain conditions rules out the exis-
tence of an infinite direct sum of non-zero submodules in M.

(b) Assume we have a composition series of length n. If M contains Ny @ ... & Ng, where every
N; # 0, then

k
k SZ length(N;) < length(M) = n.
i=1
This implies that u.dim (M) < n. If M is semisimple then u.dim (M) = n.
Conversely, if u.dim(M) = n, then Ny & ... & N,, C M, for some N; # 0, and by the inequality
above for k = n, it follows that M = N; @ ... & N, with length(N;) = 1, for every i. Thus M is
semisimple. O

The following lemma tells us that the uniform dimension of M is equal to the uniform dimension of its
injective hull. This fact holds for both the finite and infinite cases.

Lemma 1.3.9. [24, Corollary 6.10(2)] Let N < M. Then u.dim(N) < u.dim(M ), and they coincide
when N <., M.

Proof. Immediate from Corollary 1.3.7. The equality follows from the definition of uniform dimension.
O

Proposition 1.3.10. [24, Proposition 6.12] The following statements are equivalent:

(a) A module M has finite uniform dimension n.

(b) The injective hull of M, E(M) is a direct sum of n many indecomposable injective modules E;.

Proof. (a) = (b) Assume that u.dim (M) = n. Then M contains an essential submodule V =U; & - - &
U, where each U; is uniform. By Proposition 1.1.21 we have E(M) = E(V)=E({U; & ---® U,) =
E(U)) & --- @ E(Uy,). So we are done if we manage to prove that E(U;) is indecomposable, for each
U;. Assume E(U;) = K @ N, with K, N # 0. Then, as U; <. E(U;), we have U; N K,U; N N # 0.
But U; is uniform, so Uy N K, Uy NN <, U;, contradicting (U; N K) N (U; N N) = 0.

(b) = (a) By the previous lemma u.dim(M) = u.dim(E(M)), so without loss of generality we may
assume M is injective such that M = M; & - - - & M,,, where each M; is indecomposable and injective.
Now by the definition of uniform module, each M; is uniform. Therefore u.dim (M) = n. O
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1.4 Torsion Subgroups and Singular Submodules

In this section we introduce and develop the notions of torsion subgroup and singular submodule.

Definition. Let G be an (additive) abelian group. The order of an element g in G is the smallest m € N
such that mg = 0. In this case we say that g has finite order, and represent this by o(g) = m. Otherwise,
o(g) = oo, and we say ¢ has infinite order.

Definition. The (maximal) torsion subgroup, T(G) of G, consists of all elements of finite order. If
G = T(G) we say G is a torsion group.

Definition. A subgroup of G is said to be forsion-free if all it elements, with the exception of zero (order
1), have infinite order.

Definition. If every non-zero element of a group GG has order p” for some n € N, we say that G is a
p-group Or a p-primary group.

Definition. Given a group G, for each prime p we define the p-primary component of G by
T,(G) = {a € G : pFa =0, for some k € N}.

Lemma 1.4.1. [20, Chapter 2, Lemma 1.1] Let G = (g) be a finite cyclic group where o(g) = m =
pi* ... p} with different primes p;. Then G has a decomposition into a direct sum G = (g1) ® - - - & (g,

where 0(g;) = p;', with uniquely determined summands.

Proof. Fori =1,...,k,define m; = mp, " and g; = m;g. Then all m/s are relatively prime, so there
exist s; € Z such that s;my + - - - 4+ sgmg = 1. Hence g = symig+ -+ - + sgmirg = s191 + - - - + Sk gk,
so the g/s generate G. Furthermore, (g;) has order p;’ and is disjoint from (g1, ..., gi—1, git1,- -, Jk)
which has order m;. Thus G = (g1) ® - - - ® (gx). The uniqueness of the summands (g;) follows from the
fact that (g;) is the only subgroup of G containing all the elements whose orders are powers of p;. [

The following proposition has a fundamental role in the study of abelian groups. It gives us a char-
acterization of a torsion group in function of the direct sum of its p-primary components.

Proposition 1.4.2. [20, Chapter 2, Theorem 1.2] A torsion group G is the direct sum of its p-groups
1,(G) with different primes p, i.e., T(G) = @ ,cp Tp(G).

Proof. Let G be a torsion group. Clearly for each p prime, 7},(G) is non-empty, because 0 € 7,,(G). Now
take a,b € T(G), so p"a = 0 = p™b, for some m,n € N. Then p" ™" (a — b) = 0,s0a — b € T,,(G).
This implies that 7,,(G) is a subgroup of G. Now take p1, ..., p; distinct primes different from p. By
definition, every element of 7}, () + - - - + T}, (G) is annihilated by a product of powers of py, . . ., p;.
Therefore T,(G) N (T, (G) + - -- + T},,(G)) = 0. Thus the T,,(G)'s generate their direct sum in G. By
the previous lemma, this must be the whole G.

If G has a different decomposition, into p-groups (for different primes p), say €P,cp Sp(G), then
by the maximality of 7},, we have that S,(G) < T,(G), for each p € P. If we had S),(G) strictly
contained in 7),(G), then P, Sp(G) would not be equal to G- Therefore this decomposition is uniquely
determined. O

Definition. Given a right R-module M, the following subset of M is a submodule of M called the
singular submodule of M :

Z(M)={m e M :ann(m) <. Rgp} ={m € M : mI =0, forsome I <. Rp}

22



A module M is said to be a singular module if Z(M) = M.1f Z(M) = 0, M is said to be nonsingular.
A ring R is right nonsingular, if Rg is a nonsingular module.

The following result is clear from the definition.
Lemma 1.4.3. Let N be a submodule of M. Then Z(N) = N N Z(M).

Remark. By this lemma it follows that if M is nonsingular (resp. singular), then all its submodules are
nonsingular (resp. singular).

Definition. We define the second singular submodule or Goldie torsion submodule of M, Z5(M), by
the equality Zo(M)/Z(M) = Z(M | Z(M)).

Lemma 1.4.4. Let M be a module over a ring R. Then Z(M) <. Zy(M). Furthermore, Zo(M) is a
closed submodule of M.

Proof. Let H < Z3(M) such that H N Z(M) = 0. Then H is nonsingular. On the other hand, H =
(HoZ(M))/Z(M) < Zy(M)/Z(M) = Z(M/Z(M)). Then H is both singular and nonsingular, so
H=0. U

Proposition 1.4.5. [22, Proposition 1.5] Let M be an R-module.
(a) M is singular if and only if M = N /K, where K <., N.
() If K < Nand Z(N) =0, then N/K is singular if and only if K <, N.

Proof. (a) (=) Assume M is a singular module, and take an arbitrary x € M. As M is singular, z €
Z(M), and there exists I, <. Rp such that xI, = 0. Let N = @,cpRandlet f : N — M be the
epimorphism defined in Proposition 1.3.1. Take K = ker f. Clearly @, I, is a submodule of K, and
so by Proposition 1.1.10(4) it follows that &1, <. N. Therefore K <. N. Now by the First [somorphism
Theorem we conclude that M = N /K.

(<) Suppose M = N /K with K <. N. We take z € N and define the homomorphism, f : R — N,
f(r) = xr and by Proposition 1.1.10(3) we infer that f~}(K) <. R. Now we have z(f1(K)) < K,
and so N /K is singular, meaning M is singular.

(b) Assume N /K is singular and take = € N\0, As N /K is singular, I < K, for some I <. Rp.
But since IV is nonsingular it follows that 21 # 0, and by Lemma 1.1.9 K <. N. The converse is clear
by (a). O

Lemma 1.4.6. [22, Proposition 1.6] For any module M over a nonsingular ring R, Z(M /Z(M)) = 0.

Proof. By Lemma 1.4.4, Z(M/Z(M)) = Zy(M)/Z(M) with Z(M) <. Zy(M) Now assume there
exists x € Zo(M)\Z(M). This would mean that ann(z) is not essential in R, meaning there exists a
non-zero right ideal I of Ry such that ann(xz) NI = 0. Now =/ = I. Then z/ # 0 must be nonsingular
as well, so I N Z(M) = 0. However this contradicts the fact that Z(A/) is an essential submodule of
Z5(M). We have shown that Zo(M) = Z(M ), and [ is nonsingular, because R is nonsingular, therefore
Z(M/Z(M))=0. O

Proposition 1.4.7. [22, Proposition 1.7] Let R be a nonsingular ring.

(a) A module M is singular if and only if Hompr(M, B) = 0, for every nonsingular module B.

(b) 4 module B is nonsingular if and only if Homp (M, B) = 0, for every singular module M.

Proof. (a) By the previous lemma, M /Z(M) = 0, and Homg(A, A/Z(A)) = 0, only if A is singular.
(b) If Homp (M, B) = 0, then B must be nonsingular. O
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1.5 The Socle

Definition. The socle of an R-module M is the sum of all simple submodules of M ,and is denoted by

Soc(M).

Remark. Note that M is semisimple if and only if M = Soc(M). Furthermore, the socle of a module is
semisimple, by Proposition 1.1.1.

We will use the following proposition as an analogous to the definition.

Proposition 1.5.1. [4, Proposition 9.7] Let M be a module over R. Then
Soc(M) = ﬂ{L < M : L is essential in M }.

Proof. Let T be a simple submodule of M. If we take another arbitrary submodule L such that L <., M,
then by definition of essential submodule it follows that 7'N L # 0 and so 7' < L. Therefore Soc(M) is
contained in every essential submodule of M.

For the other inclusion, let H be the intersection of all essential submodules of M. Take N < H
and N’ a complement submodule of N in M (a complement submodule of N is a maximal submodule
of M such that N N N’ = 0). Now let us prove that N ¢ N’ is an essential submodule of M. Take
0 # S < M such that (N @& N') N S = 0. It follows that N N (N’ + S) = 0 and this contradicts the
maximality of N/, hence N & N’ <. M. Note that N < H < N & N’ and by Modular Law we have
H=HN(N&N')= N&(HNN'). Therefore N is a direct summand of H, meaning H is semisimple
and we conclude that H < Soc(M). O

Proposition 1.5.2. [4, Corollary 9.9] Let K be a submodule of M. Then Soc(K) = K N Soc(M). In
particular, Soc(Soc(M)) = Soc(M).

Proof. The simple submodules of K are exactly the simple submodules of M that lie in K, so Soc(K) <
Soc(M). Since Soc(M) is semisimple, then by Proposition 1.1.8, K N Soc(M) is semisimple, and
therefore contained in Soc(K). O

We now present some relevant results relating the Noetherian and Artinian conditions to the socle.

Proposition 1.5.3. [4, Corollary 10.11(1)] Let M be an non-zero module. If M is Artinian, then M has

a simple submodule. In fact, Soc(M) is an essential submodule of M.

Proof. By Proposition 1.2.2 we are guaranteed a minimal submodule. Now take N a non-zero submodule
of M such that N N Soc(M) = 0. Again by the Artinian hypothesis, if N is not itself minimal then
it admits a minimal submodule H. However since H is minimal, it is contained in Soc(M). Hence
H N Soc(M) # 0. Therefore N = 0. Thus Soc(M) is an essential submodule. O

Lemma 1.5.4. [22, Proposition 1.2] Let M be a module. Then M is semisimple if and only if M has no

proper essential submodules.

Proof. (=) Since M is semisimple, then M = Soc(M). Hence M does not admit a proper essential
submodule.

(<) First we prove that given a submodule N of M and K a maximal submodule of M such that
NNK =0, then N& K is essential in M. Take L < M suchthat ( N K)NL =0,so NN(K&L) = 0.
Now by the maximality of K we know that L < K, hence L = (N @& K) N L = 0. By the definition
of essential submodule we infer that N & K <. M and by hypothesis N & K = M. Thus M is
semisimple. O
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The concept of semiartinian will prove itself important in the latter chapters.

Definition. A module M is said to be semiartinian, if each of its non-zero factor modules has a simple
module. A ring R is said to be right semiartinian if R, is semiartinian.

Proposition 1.5.5. Let M be a module. If M is Noetherian and semiartinian, then M is Artinian.

Proof. Assume M # 0. By hypothesis, Soc(M) # 0, meaning there is a simple non-zero submodule
Sy of M. If S1 = M we are done. Otherwise, M /S; is non-zero, so there exists a non-zero submodule
Sy of M such that S/S; is simple. Now we may assume there is a non-zero submodule S, such that
S/ Sn—1 is simple. If S,, # M, then S,,+1/S,, is simple, for some non-zero submodule S,,;1 such that
Sn+1/Sn is simple. Now we have a proper ascending chain Sy < S; < --- < S,, < --- , where each S;
is Artinian, by Proposition 1.2.3(2). By the Noetherian hypothesis, this chain must eventually stabilize,
i.e. M = Sy, for some N € N. Therefore M is Artinian. O

Definition. Given a commutative right R-module M. The set
X (M) = {x € M : every prime ideal containing ann(z) is maximal}
is the maximal component of M. If M = X (M) we say that M has maximal orders.

The proof of the proposition is beyond the scope of this thesis.

Proposition 1.5.6. [29, Proposition 3] Let R be a commutative Noetherian ring and M a module. Then

the following are equivalent:
(a) M is Artinian
(b) M is a submodule of E1 & ... ® E,, where E; = E(R/I;) with I; a maximal ideal of R.

(¢) M has maximal orders and finitely generated socle.

The following is a way of “horizontally slicing” a module using its socle.

Definition. We define the socle series of a module M as follows:
0 < Soci (M) < Soca(M) < ---
where Soc, is defined recursively by
Soci1 (M) = Soc(M) and Socy41(M)/Socy (M) = Soc(M /Soc,(M)), forn > 1.

Remark. This series can be finite and does not need to be stable.

Proposition 1.5.7. [12, Lemma 4] For any module M, any submodule Soc,, (M) in the socle series of
M is fully invariant.

Proof. Suppose by contradiction that the result does not hold. Then there exists n > 1 such that Soc,, (M)
is not fully invariant. Let ¢ € End(M), so ¢(Soc,—1(M)) < Soc,—1(M) and we have the induced ho-
momorphism ¢ : M’ — M’ with M’ = M /Soc,,—1(M). Now ¢'(Soc1(M')) < Socy(M'). Therefore
¢(Socy,(M)) < Soc, (M), meaning Soc, (M) is fully invariant, a contradiction. O
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1.6 The Radical and the Jacobson Radical

We start by introducing the dual definition of essential submodule.

Definition. Let R be a ring and /N a submodule of M. The submodule N is said to be superfluous or
small in M, if for every L < M such that N + L = M, implies M = L. We denote this by N <, M.

Dual to the socle we have the following notion.

Definition. Let M be an R-module. The radical of the module M is the intersection of all maximal
submodules of M, denoted by Rad(M).

The following is interchangeable with the definition.

Proposition 1.6.1. [4, Proposition 9.13] For a module M,
Rad(M) = Z{L < M | Lis superfluous in M}.

Proof. Let L. <, M and take K a maximal submodule of M. If L. £ K, thus M = K + N. However
by the superfluous condition we must have M = K ,which means K is not maximal, a contradiction.
So every superfluous submodule of M is contained in Rad(M ). For the other inclusion, take x € M. If
K < M withxR+ K = M. Therefore K = M, or there exists a maximal su bmodule N of M such that
K < Nandx ¢ N.Ifz € Rad(M). Then the maximal submodule N cannot exist in these conditions,
thus xR <, M. ]

The following propositions is clear by definition, and it tells us that the radical of a module is fully
invariant.

Proposition 1.6.2. [4, Proposition 9.14] Let M and N be modules and f : M — N a homomorphism.
Then
f(Rad(M)) < Rad(N).

Proposition 1.6.3. [4, Proposition 9.15]1 If f : M — N is an epimorphism and ker f < Rad(M ), then
Rad(N) = f(Rad(M)). In particular, Rad(M /Rad(M)) = 0.

Proof. To prove the first part, by Proposition 1.6.2, it is enough to prove that Rad(N) is a submodule of
f(Rad(M)). We start by proving that for a maximal submodule K of M, we have f~}(f(K)) = K. In
general, f1(f(K)) = K +ker f, and by hypothesis ker f < Rad(M) < K. Therefore K +ker f = K.
Now we show f(K) is a maximal submodule of N. Assume f(K) is not proper, i.e., f(/K) = N. Then
K = f~Yf(K)) = f~Y(N) = M, acontradiction. Now take L a submodule of N such that f(K) < L.
Then K < f~Y(L),and so f~!(L)is K or M. Hence L = f(f~'(L))is f(K) or f(M) = N. Thus,
f(K) is a maximal submodule of N.

Take y € Rad(N). Since f is an epimorphism, there exists y € M such thaty = f(x). We claim that
x € Rad(M). Let K be a maximal submodule of M. We have already proved that f(K) is a maximal
submodule of NV, so that y € f(K). Therefore x € f~1(f(K)) = K. We conclude that = € Rad(M)

For the second half, take the canonical epimorphism f : M — M /Rad(M), by the first half we
know that Rad(M /Rad(M)) = f(Rad(M)). Butker f = Rad(M), hence f(Rad(M)) = 0. O

Proposition 1.6.4. [4, Proposition 9.18] If every proper submodule of M is contained in a maximal
submodule of M, then Rad(M) is the unique largest superfluous submodule of M.
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Proof. Let L be a proper submodule of M and let K be a maximal submodule such that . < K. Then
by Proposition 1.6.1, L + Rad(M) < K # M. O

The proof of the proposition is beyond the scope of this thesis.

Proposition 1.6.5. [17, Proposition 7.32 A] The following statements are equivalent:

(a) Each simple right R-module is injective.
(b) Each right ideal is the intersection of maximal right ideals.

(¢) Rad(M) =0, for all M € Mod-R.

Definition. A ring R is a right V-ring if every simple right R-module is injective.

The Jacobson radical is the radical of Rp (or g R).

Definition. We define the Jacobson radical of a ring R as follows
J(R) = ﬂ{fz : I; is a maximal right ideal of R}.

If we want to define this in terms of the radical, it is simply, Rad(Rg) = J(R).

Claim. To be precise we should define the left and right Jacobson radical. However the left and right
Jacobson radicals coincide even in the non-commutative case. See [25, §4 ] for the development of this
equivalence.

Next we obtain an equivalent characterization for the Jacobson radical in function of the annihilator.
However we require the following lemma.

Lemma 1.6.6. [25, Lemma 4.1] For y € R, the following statements are equivalent:

(@ y <€ J(R).
(b) 1 — yx is right invertible, for any © € R.

(¢) My = 0, for any simple R-module M.

Proof. (a)= (b) Assume y € J(R).If1—yx is not right invertible, for some z € R, then (1—yx)R C R
is contained in a maximal right ideal I of R. However 1 — yz € I and y € I, together imply that 1 € 1.
Hence I = R, which is a contradiction.

(b) = (c) Assume my # 0, for some m € M\0, then (my)R = M. In particular, for some x € R we
have m = (my)x, so m(1 — yx) = 0. But, by hypothesis, (1 — yx) is right invertible, therefore m = 0,
a contradiction.

(c) = (a) Let I be a right maximal ideal of R, then (R/I)-module is simple. Therefore, by hypothesis,
(R/I)y = 0thus y € I. By definition y € J(R). O

If we combine the definition and (c¢) of the previous lemma, the Jacobson radical of a ring R becomes the
intersection of the annihilators of M, where M is any simple R-module.
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Corollary 1.6.7. [25, Corollary 4.2] Let R be a ring and M a module. Then
J(R) = ﬂ{ann(M), M is simple}.

In particular, J(R) is an ideal of R.
The proof of the following is clear.

Lemma 1.6.8. [25, Proposition 4.6] Let R be a ring and I C J(R) an ideal. Then J(R/I) = J(R)/I.
In particular, J(R/J(R)) = 0.

The following useful result combines the Artinian condition and the Jacobson radical.

Proposition 1.6.9. [25, Theorem 4.14] A ring R is semisimple if and only if R is right Artinian and
J(R) = {0}.

Proof. (=) Let us assume R is semisimple. By Corollary 1.2.8 we know that R is Artinian, meaning
we are left to prove that J(R) = 0. Since R is semisimple there exists a right ideal I of R such that
R=J(R)®I.If J(R) # 0, then I # R so there exists a maximal right ideal I’ of R such that I C I'.
Now since J(R) C I’ it follows that R C I’, so we have arrived at a contradiction, therefore J( R) must
be trivial.

(<) Now assume that R is right Artinian and that J(R) = {0}. Let I; be a minimal right ideal
of R (note that this ideal exists since the ring is Artinian). Now, since J(R) = {0} & Ij, then there
exists a right maximal ideal I of R such that I7 N I; = {0}. Otherwise the minimality of /; implies
that Iy = I; N I* C I*, for all right maximal ideals I*of R, and therefore I; C J(R) = 0. From the
maximality of I] it follows that R = I} & I7. If I7 = {0} then R = 9 and R is semisimple and we
conclude the proof. If I7 # {0} then again by the Artinian hypothesis there exists a right minimal ideal
I of R such that Io C I7. Repeating the same argument there exists a right maximal ideal /5 of R such
that R = I @ I5. Therefore

I=IOn(Lely)=Lo(]NI)

and
R:Il@IQEB(IikﬁIS)

If Iy NI = {0}, then R = I; & I and R is semisimple, otherwise we keep repeating the process. After
repeating this process, we obtain I, Io, ..., I, minimal right ideals, and I7, I3, ..., I maximal right ideals
suchthat I, CI¥ jand R=1 & L& ..., &L, ¢ ([fNI5N..NI}), forevery m < n. Furthermore
we have the descending chain of ideals

[i‘;2[1*(7[52...2[1“(}...(}]22...

which is stable, since R is Artinian. Therefore R = I} & Is & --- @ I, for some n € N. Hence by
Proposition 1.1.2, we conclude R is semisimple. U

Definition. A ring R is said to be semiprimary, if J(R) is nilpotent (J(R)" = 0, for some n € N) and
R/J(R) is semisimple.

Semiprimary rings do not show anywhere else in this dissertation, so with the intent of not introducing
more results we leave the following as a claim.
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Claim. [25, Theorems 4.12 and 4.14] Any Artinian ring is semiprimary.
We are now ready to establish an important relation between Artinian and Noetherian rings.

Theorem 1.6.10. (Hopkins-Levitzki) [25, Theorem 4.15] Let R be a semiprimary ring. Then for any
M € Mod-R the following statements are equivalent:

(a) M is Noetherian.
(b) M is Artinian.
(¢) M has a composition series.

In particular, (i) R is right (vesp. left) Artinian if and only if it is right (resp. left) Noetherian and

semiprimary. (ii) Any finitely generated right module over a right Artinian ring has a composition series.

Proof. We have already seen in Proposition 1.2.7 that (c) implies (a) and (b), so it is enough to show
(a), (b) = (o).
Assume M is Noetherian or Artinian. By hypothesis, we fix ann € N such that J(R)™ = 0. Consider
the chain
M >M.J(R)> M.J(R)*>>--->M.JR)" =0.

It is enough to show that every factor M..J(R)?/M.J(R)** admits a composition series, but each factor
is either Noetherian or Artinian as a R/.J(R)-module. Now by assumption R/.J(R) is semisimple, so that
cach factor M.J(R)"/M.J(R)"*! is the direct sum of simple R/.J(R)-modules. By the chain condition,
this direct sum must be finite, meaning M..J(R)?/M.J(R)**! admits a composition series as a R/.J(R)-
module.

To prove (i) consider the equivalence between (a) and (b) applied to Ry (resp. rpR). For (ii), observe
that a finitely generated (right) module over a (right) Artinian ring is also Artinian. O

Remark. This result implies that a right Artinian ring is always right Noetherian.

We finish this section by defining local and semilocal rings, whose definitions strongly correlate with
the Jacobson radical.

Proposition 1.6.11. [25, Theorem 19.1] Let R # 0 a ring. The following are equivalent:

() R has a unique maximal right ideal
(b) R has a unique maximal left ideal.
(¢) R/J(R) is a division ring.

Proof. By symmetry, it is enough to show that (a) and (c) are equivalent.

(a) = (c) By hypothesis J(R) is the unique maximal right ideal of R. Therefore R/.J(R) has two
right ideals, the zero ideal and itself. Hence R/J(R) is a division ring.

(c) = (a) By definition, J(R) is contained in any maximal right ideal. Now since R/J(R) is a
division ring, the only maximal right ideal must be J(R). O]

Definition. A non-zero ring R is local if it has a unique maximal right or left ideal.

Definition. A ring R is semilocal if R/J(R) is semisimple. Equivalently, R is semilocal if R/J(R) is
right (or left) Artinian.
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Remark. By Proposition 1.6.9, we know that R/.J(R) is semisimple if and only if R/J(R) is Artinian and
J(R/J(R)) = 0. This equality always holds by Lemma 1.6.8, therefore the definitions are equivalent.

Artinian and local rings are both semilocal. If R is Artinian, then R/J(R) is Artinian. If R is local,
then by the previous proposition R/.J(R) is a division ring, hence simple, thus Artinian.

1.7 More Classes of Modules and Rings

This section aims to gather the definitions and results regarding rings and modules that do not fit elsewhere
in a natural way.

We begin with the definition of hereditary ring, as the class of hereditary Noetherian rings will prove
itself fundamental in Section 3.3.

Definition. A ring R is said right hereditary, if all of its right ideals are projective. If R is both left and
right hereditary, we say that R is hereditary.

Definition. A ring R is right semihereditary, if all of its right ideals are finitely generated. If R is both
left and right hereditary, we say that R is semihereditary.

Remark. Let R be an arbitrary ring. We have the following:

(a) A right semisimple ring R is right hereditary, because its right ideals are summands of R, hence
projective.

(b) A right Principal Ideal Domain is also a right hereditary ring. Note that in an integral domain for
any x € R we can define the isomorphism, R — xR, r — xr, so any principal right ideal is free,
hence projective. In particular Z is an hereditary ring.

(¢) Clearly any semihereditary ring is hereditary.

We have a particular interest in the class of Artinian serial rings, as we will see in Sections 3.2 and 3.4.

Definition. A module M is said to be a uniserial module if all its submodules are totally ordered by
inclusion i.e., for any submodules A and B of M, either A C Bor B C A.

Definition. A module is said to be serial if it is the direct sum of uniserial modules. A ring R is right
(resp. left) serial if Ry (resp. pR) is a serial module. If both conditions hold we say R is a serial ring.
Remark. 1t is trivial that a simple module is uniserial, so a semisimple module is a serial module.

The following proposition gives us an important characterization. Its proof is beyond the scope of

this thesis. Note that by the following proposition indecomposable modules are uniserial.

Proposition 1.7.1. [16, Theorem 5.6] Let R be an Artinian serial ring. Then every module M is a direct
sum of cyclic uniserial modules, and any two direct sum decompositions of M into direct sums of non-zero

uniserial modules are isomorphic.
We now move onto the concept of the dual module, but first let us state this clear result.

Lemma 1.7.2. Let R be a ring and M a right R-module. The additive group Homp(M, R) is a left
R-module, with the following scalar multiplication: if f € Hompr(M,R) and r € R we have rf :
M = R, (rf)(@) = rf(z).
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The left R-module as defined above is said to be the dual module of M (over R) and we denote it
by M* = Hompg(M, R). Its elements are said to be the /inear forms on M. For every ordered pair of
elements x € M and f € M*, the element f(x) of R is denoted by < z, f > .

Definition. Consider amodule M and its dual M* = Hompg(M, R). An element 2z € M and an element
f € M* are said orthogonal, if < x, f >= 0.

A subset NV of M and a subset N*of M* are orthogonal sets if, forallz € N, f € N*, x and f are
orthogonal.

Definition. Two modules are called orthogonal if they have no non-zero isomorphic submodules.
We define yet another important class of rings, present throughout Chapter 2.

Definition. A ring R is said to be a right SI-ring if all its singular right R-modules are injective.

Proposition 1.7.3. [22, Proposition 3.1] For a ring R, the following are equivalent:

(a) R is aright SI-ring.

(b) All singular right R-modules are semisimple.

(¢) R/I is semisimple, for all essential ideals I.

Proof. (a) = (b) Let M be an arbitrary singular right R-module. Then by definition of right SI-ring, M
is injective, and all of its submodules are also injective, meaning they are all summands of M. Hence M
is semisimple.

(b) = (c) Since I <. R, it follows that R/I is singular, hence by hypothesis R/I is semisimple.

(c) = (a) Suppose that M is a singular right R-module and let us prove that M is R-injective, and
therefore injective. Let I be an esssential ideal and f : I — M a homomorphism. Note that I/ ker f
is singular, because it is isomorphic to f(I) < M. Then ker f is an essential ideal, which means by
hypothesis that R/ ker f must be semisimple. Thus I/ ker f is a summand of R/ ker f and this means
that f can be extended to some f : Rr — M and we are done. O

Proposition 1.7.4. [22, Proposition 3.6] If R is a right SI-ring, then R/Soc(RR) is right Noetherian.

Proof. 1t is enough to prove that if J = Soc(Rp) and J < I < Rp, then I/J is finitely generated.
We choose K < [ such that J @ K <. I. Then I/(J @ K) is singular and by SI hypothesis injective,
hence a summand of R/(J & K). Therefore I/(J & K) is cyclic, and we are done if we manage to
prove that K is finitely generated. Let us start by seeing that K has finite dimension, otherwise there
exists an infinite sequence { K, Ko, ...} of independent non-zero submodules of K. Since K N J = 0,
this means none of the K; < K are semisimple, and by Lemma 1.5.4 each K has a proper essential
submodule that we represent by H;. Since H; <. K; for every i, then ®H; <. ®K;, by Proposition
1.1.10(4). Now by Proposition 1.4.5(a), (B K;)/(®H;) is singular, so (BK;)/(®H;) is injective, and
so a summand of R/(®H;). Thus it is cyclic, contradicting the fact that it is an infinite direct sum of
non-zero modules. Hence K has finite dimension. Now take a maximal independent family {E; };c; of
non-zero cyclic submodules of K, so E = ®;cr F; is finitely generated, since K has finite dimension.
Furthermore, from the maximality of { F; },c; we infer that E <. K. Thus K /F is singular, once again
injective, and we conclude that '/ E' is a summand of R/E. Therefore K /E is cyclic, meaning K must
be finitely generated. O

31



The proof of the following is beyond the scope of this thesis. Furthermore, for the definition of Morita
equivalent, see A.3.

Proposition 1.7.5. [22, Theorem 3.11] 4 ring R is a right SI-ring if and only if there is a ring decom-
position R = K X Ry X ... X Ry, such that K/Soc(K) is a semisimple ring and each R; is Morita
equivalent to a right SI-domain.

Definition. A ring R is said to be a right PCI-ring if every cyclic right module not isomorphic to R is
injective.

Claim 1.7.6. If R is a domain, then the notion of right PCI-domain and right SI-domain are equivalent.

A ring that satisfies any of the following conditions is said to be a quasi-Frobenius ring, which we
represent by QF-ring.

Theorem 1.7.7. [24, Theorem 15.1] For any ring R the following conditions are equivalent
(a) R is right Noetherian on one side and right self-injective.
(b) R is left Noetherian and right self-injective.

(¢) R is right Noetherian and satisfies the following conditions:

(i) ann,(anny(I)) = 1, for any right ideal I C R.
(i) ann,(anny(J)) = J, for any left ideal J C R.

(d) R is Artinian on both sides and satisfies (i) and (ii).
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Chapter 2

Poor Modules

The main focus of this work is to study pauper modules, a concept directly derived from poor modules.
With that in mind, this chapter does not present a full study of poor modules, instead being dedicated to
presenting necessary and/or illustrative results for the next chapter.

Another way to state that a (right) R-module is injective is to say that its injectivity domain is maxi-
mum, i.e., Jn~! (M) = Mod-R. In this case, the injectivity domain of M is “wealthy”, so the notion of
“poor” modules arises from the injectivity domain of a module being minimum. In Proposition 1.1.12
we have established that SSMod-R is contained in the injectivity domain of any module. It turns out the
intersection of all injectivity domains in Mod-R is indeed SSMod-R, by Proposition 2.1.3.

The first section is dedicated to develop these ideas, while providing some useful results going for-
ward. The second section justifies in a way our pursuit of the study of poor modules, illustrating the
usefulness of this concept in the characterization of different classes of rings.

2.1 Definitions and general results

The results and definitions in this section follow from [1, 3, 8, 15]. Please note that some authors use the
term "semisimple" to mean the ring has a trivial Jacobson radical. For Artinian rings, Proposition 1.6.9
guarantees that this notion coincides with the notion of semisimple we introduced in Chapter 1. Therefore,
we will use "semisimple Artinian ring" to eliminate that ambiguity, as in the papers referenced.

Poor modules are in their essence opposite to injective modules.
Definition. A right module M is poor if Jn=! (M) = SSMod-R.
Lemma 2.1.1. 4 module M is poor if and only if every cyclic module xR € Jn~'(M) is semisimple.

Proof. (=) This implication follows from the definition of poor module.

(<=) Take an arbitrary module N € Jn~!(M). By Proposition 1.1.16 we know that M being N-
injective is equivalent to M being x R-injective for all of the cyclic submodules of N. Now since every
module is spanned by the set of its cyclic submodules and these are semisimple by hypothesis, then so
must be V. Therefore M is poor. O

Naturally, we are concerned with the existence of poor modules.
Theorem 2.1.2. [15, Proposition 1] Every ring R has a poor module.

Proof. We start by considering a complete set { M, | w € Q} of representatives of isomorphism classes

of non-semisimple cyclic right R-modules. For every w € €2, since M,, is not semisimple, then by Lemma
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1.5.4 we can choose a proper essential submodule NV, of M,,. Now take S = ®,cq N, If S is not poor,
by Lemma 2.1.1 we can choose A to be a non-semisimple cyclic module such that S'is A-injective. Since
the set defined above is complete, then for some w € 2 we have that A = M,,. So A admits a proper
essential submodule K <. A, which is isomorphic to IV,,. As N, is a direct summand of S, so K is
also A-injective. Thus K is a direct summand of A, contradicting K <. A. Therefore S must be a poor
module. O

The following proposition justifies the definition of poor modules and establishes SSMod-R as the
lower bound for the injectivity domain of an arbitrary right R-module.

Proposition 2.1.3. [1, Proposition 3.1] We have.

(| 3n (M) = SSMod-R.
M e Mod-R

Proof. We have already seen that SSMod-R is contained in the injectivity domain of any R-module.
For the other inclusion, take N in the intersection of the injectivity domains of every M € Mod-R and
T < N. Then in particular 7" is N-injective, so the inclusion 7" — N splits, by Proposition 1.1.14, and
T is a direct summand of N. Thus N is a semisimple right R-module. U

The following proposition makes it apparent that direct sums are fundamental in the study of poor
modules.

Lemma 2.1.4. The injectivity domain of the direct sum of two modules is the intersection of the injectivity
domains of the summands, i.e., for arbitrary right R-modules My, My we have

In N My @ M) = Jn~(My) N Jn~ (M),

Proof. When a set of indexes [ is finite, we know that the direct product and the direct sum coincide.
Therefore the result follows directly from Proposition 1.1.18. O

The next result is not just a useful consequence of the previous proposition, it also shows that when
it comes to direct sums the poor condition acts as a sort of absorption property. In fact this corollary is
the inspiration behind the definition of a pauper module (see Chapter 3).

Corollary 2.1.5. [1, Remark 2.4] If M is a poor module, then for any module N we have that M & N is
yele

Proof. Let K € Jn~ (M @ N). By Lemma 2.1.4, we have K € Jn= (M) N JIn~Y(N). Thus K €
Jn~Y(M) and since M is poor, K must be semisimple. Hence M @& N is poor. O

In general, the corollary above is not an equivalence. When one of the summands is an injective
module, we have the following result.

Proposition 2.1.6. [3, Lemma 2.4] Let M be an arbitrary module and E an injective module. Then
E ® M is poor if and only if M is poor.

Proof. The “if” part is immediate from the corollary above. For the converse, suppose F & M is poor
and take N € Jn~1(M). As E is injective, N € Jn~!(E). By lemma2.1.4, N € Jn~'(E® M). Hence,
by hypothesis, N is semisimple. Therefore, M is poor. O
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The proof of Theorem 2.1.2 already gave us a “hint” on how to build poor modules, and the following
proposition gives us an explicit way to do so.

Proposition 2.1.7. [15, Proposition 2] Let M = @& ner N, where T is any complete set of representatives
of cyclic right R-modules. Then M is poor.

Proof. Let K be an arbitrary module such that M is K-injective. Then all cyclic submodules of factors
of K are K-injective. Thus, by Proposition 1.1.11, it follows that K must be semisimple. Therefore M
is poor. O

The following is the first example of the usefulness of poor modules as a tool to characterize a ring.

Proposition 2.1.8. [1, Proposition 3.7] If a (vight) nonsingular ring R has a nonsingular poor module,
then R is an Sl-ring.

Proof. Let M be a nonsingular poor module and take an arbitrary singular module N. Lemma 1.4.7(a)
tells us we have Homp(N, M) = 0,s0 N € Jn~'(M). Since M is poor, N must be semisimple.
Therefore by the equivalence established in Proposition 1.7.3, we conclude that R is a right SI-ring. [

Proposition 2.1.9. [8, Proposition 5.1] Let R be a semilocal ring. Then R/ J(R) is a poor module.

Proof. Let I = R/J(R) and suppose that B € Jn~1(I), where B is a cyclic right R-module. We
want to prove that Rad(B) = 0. So, by contradiction, suppose there is a non-zero x € Rad(B). Let
f : xR — I be a non-zero homomorphism. So, f can be extended to a homomorphism g : B — I,
because [ is B-injective. Then we have that f(zR) = g(zR) < g(Rad(B)) < Rad(I), by Proposition
1.6.2, but also Rad(I) = 0, by Proposition 1.6.3. However this would imply that f(zR) = 0, which
contradicts our assumption. Therefore Rad(B) = 0, hence BJ(R) = 0 and J(R) C ann(B). Now by
the semilocal hypothesis, I is semisimple. As B = bR = R/ann(b), for some b € B, then B is also
semisimple. Therefore I is poor. U

The following example is a direct application of the previous proposition.

Example 2.1.10. Z/6Z is a poor Z/12Z-module.

We take R = 7 /127 which is Artinian, because it is finite. By the remark following the definition
of semilocal we know this ring is semilocal.

Let us compute J(R). It is easy to see that the maximal ideals of R are 27 /127 and 3Z/12Z. So by
definition J(R) = (2Z/127) N (3Z/12Z) = 6Z/12Z. Now by the Third Isomorphism Theorem

R/J(R) = (Z/12Z)/(6Z,/12Z) = 7./61.

The two following results lead us to a fundamental example of a poor module. Its proof is beyond
the scope of this thesis.

Proposition 2.1.11. [1, Proposition 3.4] Let R be an hereditary Noetherian domain and let M be a
semisimple module that contains exactly one copy of each simple R-module. Then M is either poor or
injective.

In particular, if R admits only one simple module (up to isomorphism), then that module is either
injective or poor. If a ring R and module M satisfy these conditions, then M is poor unless R is a

V-ring.
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Corollary 2.1.12. [1, Corollary 3.5] Let R be an hereditary Noetherian domain. If there exists a non-
simple and non-zero uniserial module U, then every semisimple module M that contains every simple

R-module is poor.

Proof. Take modules M and U as above. By the previous proposition, M is injective or poor. By hy-
pothesis U contains a simple submodule N < U. Also by hypothesis we can embed N into M. Assuming
M is injective, then N is U-injective. Now by Proposition 1.1.14, N is a direct summand of U, which
contradicts the uniserial hypothesis. Therefore, M is poor. O

This example is fundamental in the study of pauper abelian groups.

Example 2.1.13. Let R = Z, and M = ®pcp(Z/pZ) = ®pepZp.

Note that by definition M contains exactly one copy of each of its simple R-modules. Furthermore,
we have already seen that Z is an hereditary domain, and it is also well known that Z is Noetherian. So
by the previous corollary it follows that M is a poor module.

2.2 Rings with no middle class

This section presents important results that hold their own significance, although their importance will
become more clear in Chapter 3. Most of the results presented here are from [15]. They are utilized in
order to prove the main result of this section, Theorem 2.2.14.

Definition. For a class of right R-modules .4, we say that R has no A-middle class, if every module in
A is either poor or injective.

So we have two extreme cases:

* When all modules in A are poor we say that the ring R is A-destitute.

* When no module in A is poor we say that the ring R is an A-utopia.

If A = Mod-R in one of the cases described above, we omit A and simply state that the ring R is destitute
(resp. utopia). If we take A = {simple R-modules} we say R is simple-destitute (resp. simple-utopia),
and analogous for other classes of rings.

An immediate application of the definition.

Proposition 2.2.1. [1, Remark 2.3] For a ring R, the follow conditions are equivalent:
(a) R is semisimple Artinian.

(b) R is destitute.

(¢) There exists an injective poor module.

(d) {0} is a poor module.

Proof. (a) = (b) From Proposition 1.1.23 we infer that every right R-module is semisimple. Take M
and N arbitrary right R-modules such that M is N-injective. Since N is semisimple, M is poor. By the
arbitrary choice of M, Mod-R is destitute.

(b) = (d) Obvious by definition.

(d) = (c) It is clear, since {0} is injective.

(c) = (a) Let M be an injective poor module. Then M is R-injective and, because M is poor, R is
semisimple. O
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Most of the following results are fairly self-explanatory, in terms of the characterization they offer for
certain classes of rings. They also illustrate the “strength” of the no middle class condition.

Proposition 2.2.2. [1, Proposition 3.2] Let R be a right PCl-domain. Then R has no middle class and

Rpg is a poor module.

Proof. If R is a division ring, then R, is a simple module. By Proposition 2.2.1, R is destitute and all
modules are poor.

Now let us assume that R is not a division ring. Then, by definition of PCI-domain, the only cyclic
modules that are not injective are isomorphic to Rr. Now by Claim 1.7.6, the injective cyclic modules
are all singular, therefore semisimple by Proposition 1.7.3. Hence NV is a non-injective module M must
be poor. O

Proposition 2.2.3. [1, Theorem 4.1] Let R be a semilocal ring such that J(R) is simple and an essential
right ideal of R. Then R has no middle class. In particular, J(R) is a poor R-module.

Proof. Let R be a ring in the conditions described above. Also take M a module which is not injective
and aR a cyclic module. If M is a R-injective and since M is not injective, it follows that ann(a) # 0. By
hypothesis of J(R) being essential and simple it follows that 0 # J(R) < ann(a). Now by the semilocal
hypothesis, we have that aR is semisimple, since aR = R/ann(a) < (R/J(R))/(ann(a)/J(R)).
Therefore M is poor and R has no middle class. In particular, J(R) is a poor module. O

The following is an useful structural result.
Lemma 2.2.4. [15, Lemma 1] The property of having no middle class is inherited by factor rings.

Proof. Let R be aring with no right middle class and take I an ideal of R. Let M be aright (R/I)-module
which is not poor. Thus, there exists a non-semisimple module N/ such that My, is N/ -injective.
So My is Ng-injective. Now Np is non-semisimple and R has no middle class, then My, is injective.
Therefore My is injective. O

Note that (i) is a sort of complementary result to Proposition 1.7.3(b), by adding the no (right) middle
class condition.

Lemma 2.2.5. [15, Lemma 2] Let R be a ring with no middle class that is not a right SI-ring. Then the
following conditions hold:

(i) Every nonsingular right R-module is injective (hence semisimple).
(ii) The second singular submodule splits in any right R-module.

(iii) There exists a ring direct sum R = S @ T such that S is a semisimple Artinian ring and T has
essential socle with Z(Tr) = Soc(Tr).

(iv) Soc(RR) is an essential submodule of Ry.

Proof. (i) Assume that R is not a right SI-ring and that it has no right middle class. Then there exists a
singular right module which is not injective. So by Proposition 1.1.22, Mr <. E(M). Furthermore, by
Proposition 1.5.4 we infer that (M) is not semisimple. So every nonsingular module is F'(M )-injective.
Then by hypothesis, every nonsingular module is injective, as well as semisimple.
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(if) Let M be a module. We have shown in Lemma 1.4.4, that Z(M) is essential in Zy(M ), and
Z5(M) is a closed submodule of M. This means that there exists a submodule N < M such that (N &
Zs(M))/ Zo(M) is essential in M /Z5(M ). Now by (i) N must be injective, as it is nonsingular. Finally
M =N & Zy(M) i.e., Zo(M) splits in M.

(iii) From (ii) we have R = Ir ® Z2(RR), for some right ideal I of R. So I = R/Z3(R), thus I
is nonsingular, and by (i) it follows that I is injective and semisimple. Note that for any » € R there
is an isomorphism between I and a direct summand of I, hence [ is also nonsingular, which implies
that Zo(Rp)I = 0. Therefore [ is a two-sided ideal. Now by contradiction, assume that Z(Rp) is not
semisimple. Again by (i) this implies that Z(Rg) # 0. thus Z(E(Rpg)) is not semisimple either. In
general the singular submodule is a fully invariant submodule of a module. In particular Z(FE(Rpg)) is a
fully invariant submodule of F(Rp). Now by Proposition 1.1.25, Z(E(Rg)) is quasi-injective, thus not
poor. By the no middle class hypothesis, Z (F(Rp)) must be injective. Therefore Z(Rgr) = Z(E(Rg))N
Rp, is a closed submodule of Rp. From this we infer that Z2(Rpr) = Z(Rpg), which by (ii) implies that
Z(Rp) splits in Rp. This leads us to conclude that Z(Rpr) = 0, which is a contradiction. So Z(Rpg)
must be semisimple. Take S = Irand T' = Z3(RRg),so R =S & T and Z(Tr) = Z(RR) = Soc(Tr).
Hence, by Proposition 1.4.4 we have Soc(Tr) <. Tr.

(iv) Consequence of (iii), since Soc(R) = Soc(S) & Soc(T) =S & Soc(T) <, ST =R. O

Lemma 2.2.6. [15, Lemma 3] Let R be a ring with no right middle class such that Soc(R) is singular

and essential. Then R is an indecomposable ring.

Proof. By contradiction, assume that R = I; @ Io, with Iy, Is # 0 ideals. Also let J; and J be ideals
contained in Iyand I respectively. If the map f : J; — Jy is an R-homomorphism, then we have
f(hh) = f(J1)l2 = f(Jil2) = f(0) = 0, which implies that every right ideal contained in I is [;-
injective. In particular, Soc(l) is I;-injective. Now by the no middle class hypothesis we have that,
either soc(Iy) is injective or I; is semisimple. In the first case, the sum of simple submodules of /5 is
injective, hence I is semisimple. In the latter case, we conclude that R has a simple direct summand,
contradicting the fact that Soc( Ry) is singular. Therefore I; = 0 or I> = 0, so R is indecomposable. [

Lemma 2.2.7. [15, Lemma 4] Let R be a ring with no middle class. If R has a non-semisimple and
Notherian right module, then R is a right Notherian ring.

Proof. Let M be a Noetherian and non-semisimple module. Take a set of injective right R-modules
{E; | i € I}. Then by Proposition 1.2.4 we have that @, ;
semisimple and 2 has no middle class, we infer that @, ; E; is injective. Therefore by Proposition 1.2.5,

E; is M-injective. Now since M is non-

we conclude R is right Noetherian. O

The following proposition reduces the study of no right middle class rings to the following two classes.

Proposition 2.2.8. [15, Lemma 5] Any ring with no right middle class is either right semiartinian or

right Noetherian.

Proof. Assume R is not a right semiartinian ring. Take Z to be the non-zero union of the right socle series
of R, and consider the union ring R/Z. Now by the hypothesis of not being semiartinian, for some module
M in the socle series we have that Soc(M) = 0, hence Soc(R/Z) = 0. Furthermore, by Lemma 2.2.4
we also know that R/Z has no middle class. Now, if R/Z was not an SI-ring, then by Lemma 2.2.5(iv)
we would have Soc(Rg) <. Rpg, so we infer that R/Z is a right SI-ring. Therefore by Proposition 1.7.4,
we conclude that R/Z is a right Noetherian ring. Thus R/Z is a Noetherian right R-module, as well as

non-semisimple. By the previous lemma, R is a right Noetherian ring. O
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Lemma 2.2.9. [15, Lemma 6] 4 ring R with no right middle class that has singular right socle is right

Noetherian.

Proof. Assume that R is in the conditions as described. In order to see that R is right Noetherian, we
know it is enough to show that it is not semiartinian, by the previous proposition. Let us assume the
contrary, that R is semiartinian. This means that for every non-zero module Soc(M) # 0. In particular,
we know there exists a simple right ideal / C R. Note that since Soc(Rp) is singular, I cannot be a direct
summand of R and hence is not injective. Therefore we have that [ is properly contained in £ ([), so
E(I)/I admits a simple submodule. Then I is maximal in a submodule I’ of E(I). Hence I’ is clearly
Noetherian, and non-semisimple. Now by Lemma 2.2.7, we conclude that R is right Noetherian. O

Lemma 2.2.10. [15, Lemma 7] Let R be a ring with no middle class, with non-zero singular right socle.
Then R is right Artinian.

Proof. By the previous lemma we know that R is right Noetherian. To prove that R is Artinian we
know that by Proposition 1.5.5, it is enough to prove that R is semiartinian. Let us assume R is not
right semiartinian and reach a contradiction. We denote the union of the right socle series of R by U,
and take R = R/U. By the not semiartinian assumption, we have Soc(Rg) = 0 and R # 0, this
implies that Soc(Rp) is not an essential submodule of R. So, by Proposition 1.5.3, R is not Artinian.
Now by the no middle class assumption and Lemma 2.2.4 we know R = R/U has no middle class
either, hence R, is injective or poor. If Ry, is injective, then the ring R is self-injective. Also R is right
Noetherian, by Proposition 1.2.3(1). This means R is a QF-ring, hence R is Artinian, by Proposition
1.7.7, a contradiction. Thus R is poor.

Now we restrict our focus to a cyclic submodule. Assume we have a non-semiartinian cyclic NV
module. We take V' to be the union of the socle series of N and let N = N /V. Again we have Soc(Ng) =
0and N # 0.

First we claim that N has a submodule W = W /V, where W a submodule of N containing V' such
that N/W =2 N /W is not semiartinian. By contradiction, assume that every factor N /X is semiartinian,
with 0 # X < N. Then R is N/X-injective, and poor, by the previous paragraph, hence N/X is
semisimple. Take K to be a simple right ideal of R, which exists by the non-zero socle assumption.
Furthermore, since Soc(Rpg) is singular, K cannot be injective. Therefore by no right middle class
assumption, K is poor.

Now we claim that K is N-injective. Let G be a submodule of N, and let f : G — K be a non-zero
homomorphism. As Soc(N), then Soc(G) = 0, hence ker f # 0. By the argument done above, we infer
that N/ ker f is semisimple, and so N/ ker f = (G/ker f) @ (Y / ker f), for some Y < N. Now take
the projections g1 : N — N/ker f, g2 : (G/ker f) @ (Y /ker f) — N, and the induced isomorphism
f:G/ker f — K. Therefore fg1go : N — K extends f, hence K is N-injective. However, K is poor,
so N must be semisimple, a contradiction. We have just proven the claim of the previous paragraph.
Now if we take N = R, we have a non-zero right ideal A; of R such that R/A; is not semiartinian.
If N = R/Aj, then there is a non-zero right ideal Ay of A; such that R/ A, is not semiartinian. By
recursion, we obtain an infinite strictly ascending chain Aj, Ao, . .. of right ideals of R, where each R/
A; is not semiartinian. But this contradicts the fact that R is Noetherian, thus R is semiartinian, hence R
is Artinian. O

Building upon Proposition 2.2.8 we have.

Proposition 2.2.11. [15, Lemma 9] Let R be a right semiartinian ring with no right middle class. Then
R is either a right V-ring or a right Artinian ring.
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Proof. Assume R is not a right V-ring. So there exists a simple right submodule N < Rp which is
not injective. But since IV is not injective, as in the proof of Lemma 2.2.9, we infer that there exists a
simple submodule of E(N)/N, hence R is right Noetherian. Therefore by the semiartinian hypothesis
we conclude that R is Artinian, by Proposition 1.5.5. O

Definition. The socle of a module M is said to be homogeneous if all of its simple submodules are
isomorphic to one another. In other words, for arbitrary simple submodules, V1, Vo in Soc(M) we have
i = V.

Lemma 2.2.12. [15, Lemma 8] Let R be a right nonsingular ring with no right middle class. Then there
exists a ving direct sum of the form R = S ® T, where S is a semisimple Artinian ring and T is a ring
with homogeneous right socle (that can be zero).

Proof. Assume that R is a right nonsingular ring with no right middle class. We want to start by showing
that Soc(Rpr) does not contain a submodule of the form A & B, where both A and B are infinitely gener-
ated orthogonal submodules (see Section 1.7). So with a contradiction in mind let us assume that A and
B do exist in these conditions. As A and B are infinitely generated, then A and B must be non-injective.
Now because A and B are orthogonal, it follows that forany f € Hompg(E(B), E(A)) we have f(B) =
0. Since B < ker f < E(B), then by Proposition 1.1.10(1), ker f <. E(B). Furthermore, im f =
E(B)/ker f, hence im f is singular, by Proposition 1.4.5. Thus f = 0, since R is nonsingular. There-
fore A is E(B)-injective. Since F/(B) is non-semisimple, because it is infinitely generated, then A cannot
be poor, which by the no middle class hypothesis means it is injective, contradicting our assumption.

Now consider two non-isomorphic simple modules S;and Sz contained in Soc(Rpg). By the same
argument above, we can assume without loss of generality that £/(S1) is E(S2)-injective and vice-versa.
So at least one of them would have to be injective. The same argument also applies to a simple right ideal
S which is orthogonal to an infinitely generated semisimple right ideal 1.

From this we are able to conclude that Soc(Rpr) can only have a finite number of homogeneous
components, where only one of them may be infinitely generated. Once again by the same argument
we are able to conclude that every other components must be injective. This allows us to construct a
summand of the form R = S & T, as stated in the lemma. O

Lemma 2.2.13. [15, Lemma 10] Let R be a non-semisimple right SI-ring with no right middle class such
that R/Soc(RpR) is semisimple. Then R has a unique simple singular right R-module.

Proof. Assume that R is a non-semisimple right SI-ring with no middle class and that R/Soc(RRr)
is semisimple. Note that 0 # Soc(Rr) <. Rpr and R is semiartinian. By hypothesis we have R/
Soc(Rg) = @;_,(Bi/Soc(RR)) for some right ideals B;, where each B;/Soc(Rp) is a simple sub-
module of R/Soc(Rpg). Since R is not semisimple Artinian, we can infer by Lemma 1.5.4 that R admits
an essential maximal right ideal. Now by Proposition 1.4.5 there exists a simple singular module S. Since
S is simple, it must be generated by a single element, s € .S, such that S = sR. By definition of singular
module, for this generator s we have that ann(s) <. Rgr.Now by Proposition 1.5.1, Soc(Rg) < ann(s).
Since S = sR =Y ;" | sB; and S is simple, we must have that S = sB;, for some i € {7,...,n}, there-
fore S = B;/Soc(Rpr). By the arbitrary choice of S it follows that, any other simple singular module
would be isomorphic to some B;/Soc(Rpg). So if we manage to prove that all the modules of the form
B;/soc(Rp) are isomorphic to each other we are done.

Let i # j. There exists a € B, such that B; = aR + Soc(Rpr). We already know that Soc(Rg) <.
Rp, soby Proposition 1.1.10(1), each By, is also essential. By Lemma 1.1.21(2) this implies that E(Rr) =
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E(By). Now since B; is not semisimple and R has no middle class, we infer that the quasi-injective mod-
ule 3° e rom B, E(B;) | (B) is not semisimple, because it cointains B;, and coincides with E(B;) =
E(Rpg). This means that B; generates E(Rp). Thus there exists an epimorphism f : Bj(.r) — E(RRg),
for some index set I'. Now choose an element x in a finite subsum of Bl.(F) such that f(z) = a € B;j. We
now restrict f’s domain to this finite subsum of Bi(F) ;obtaining a homomorphism of the form g : B* —
E(RR), for some m € N, such that aR < im g. Let C = g~ '(aR). Since R is a right SI-ring, then it
is right hereditary, by [22, Proposition 3.3]. The right ideal a R is projective, so by Proposition 1.3.3 we
know that g splits, thus a R can be embedded in C, as well as embedded in B;™.

Leta = (b1,...,by) with by, € B;, forevery k € {i,...,m}. NowaR C byR& ... ® b, R, and
since aR is not semisimple we have for some z € {1,...,m} that b, € Soc(Rg). Therefore B; =
bR + Soc(Rp). Since ann,(a) C ann,(b,), then by the hereditary condition it follows that we have
a splitting epimorphism h : aR — b, R, hence aR = kerh & L with L a submodule of aR. From
this sum we extrapolate that (ker h/soc(kerh)) @ (L/Soc(L)) = (aR/Soc(aR)). Now applying The
Second Isomorphism Theorem we have aR/Soc(aR) = (aR+ Soc(RR))/(Soc(Rg)) and this is clearly
isomorphic to B;/Soc(Rp). Since L is not semisimple and B;/Soc(Rp) is simple, we deduce that ker h
is semisimple. Therefore L + Soc(Rg) = Bj. Again by the Second Isomorphism Theorem we obtain
(Bj/Soc(RR)) = (L + Soc(RR))/Soc(Rr) = L/Soc(L) and also (L/Soc(L) = (b,R/Soc(b,R)) =
(B;/soc(Rg). We have just shown that any two simple singular modules are isomorphic, this means that
a simple singular module is unique up to isomorphism. O

We now proceed to the main result of this section, whose proof we shall split into two propositions.

Theorem 2.2.14. [15, Theorem 2] If R is a ring with no right middle class, then R = S x T, where S is
a semisimple Artinian ring, and T is zero or it belongs to one of the following classes:

(a) T is Morita equivalence to a right PCI-domain, or
(b) T is an indecomposable right SI-ring satisfying the following conditions:
(1) T is either a right Artinian or a right V-ring,

(11) T has homogeneous essential right socle and

(iii) there is a unique simple singular right T-module up to isomorphism, or
(¢) T is an indecomposable right Artinian ring satisfying the following conditions:

(1) SOC(TT) = Z(TT) = J(T),

(i1) 7" has homogeneous right socle, and

(iii) there is a unique non-injective simple right 7'-module up to isomorphism.
In (c) T is either a Q F-ring with J(T")2 = 0, or poor as a right module.

Proposition 2.2.15. [15, Proposition 3] Let R be a ring with no middle class such that R is not right

SI-ring. Then R is the direct sum of a semisimple Artinian ring S and a ring T' satisfying the conditions
of Theorem 2.2.14(c).

Proof. Immediately applying Lemma 2.2.5(iii) we have that R = S @ T, where .S is semisimple Artinian
and T has essential right socle with Z(Tr) = Soc(Tr). By Lemma 2.2.4 we know 7" has no middle
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class. Assume that 7' # 0. We have that 7" is indecomposable as a ring and that it must be right Artinian,
by Lemmas 2.2.6 and 2.2.10 respectively.

Now let E be an injective T-module. We have seen in Proposition 1.6.2 that Rad(E) is a fully
invariant submodule of E. Thus by Proposition 1.1.25, Rad(E) is quasi-injective. Since 7" is Artinian,
then by Hopkins-Levitzki Theorem, it is also Noetherian. Therefore by Proposition 1.6.4, Rad(E) <, E.
Now by no middle class assumption Rad(E) must be semisimple. Note that J(T') < Rad(E(Tr)) is
also semisimple as a T-module. As Z(Tr) = Soc(Tr), every simple right ideal of T is contained in
J(T'). And we conclude that J(T") = Z(Tr) = Soc(Tr).

Choose an arbitrary simple right ideal 77 of T'. Then clearly 77 is also a singular right ideal, hence it
is non-injective. Now let us verify uniqueness (up to isomorphism). Let 75 be an arbitrary non-injective
simple right 7-module. Since 7" is a right Artinian ring, it admits a chain T, C T4 C FE(T5) of modules
such that 7% is maximal, and essential in 7%. Since 7} is non-injective it is poor, thus 77 is a proper
submodule of 3 ¢c pyon, (1, m(1y)) f(13) by Proposition 1.1.25. So there exists a T'-homomorphism
f : Ty — E(T1) such that f(T%) < Ti. Hence T3 is a proper submodule of f(7%), implying that
the composition length of f(7%) is greater than one, which means that f is clearly a monomorphism.
From this it is clear that 77 =2 T5. Therefore we have found a unique (up to isomorphism) non-injective
simple right 7-module and that Soc(77r) is homogeneous. O

Proposition 2.2.16. [15, Proposition 4] Let R be a right SI-ring with no right middle class. Then R is
the ring direct sum of a semisimple Artinian ring S and a ving T, which is Morita equivalent to a right
PCl-domain or is as described in Theorem 2.2.14(b).

Proof. Let us assume R is a right SI-ring with no right middle class. Now by Lemma 2.2.12 we have
R = S @ T, where S is a semisimple Artinian ring, and 7 is a ring such that Soc(7r) is homogeneous
(it can be zero). Since R has no middle class, neither does 7', by Lemma 2.2.4. Assume T' = T} & 15,
where 77 and 75 are ideals of 71" such that 77 is not a semisimple Artinian ring. Then every right ideal
of 15 is Ti-injective, as a T-module, and by the no middle class asusmption, it is injective. Therefore
T» must be semisimple Artinian. This means that 7" cannot be decomposed into two rings that are not
semisimple Artinian.

Since R is a right SI-ring, then T is also a right SI-ring (we are just restricting the condition from R
to a subring 7'). Now by Proposition 1.7.5, and since 1" cannot be decomposed into two rings that are
not semisimple Artinian, we infer that 7" is Morita equivalent to a right PCI-domain, or 7'/ Soc(Tr) is
semisimple. The first case is exactly Theorem 2.2.14(a).

Assume 7'/ Soc(Tr) is semisimple. Hence T is right semiartinian. Now let us prove, by contradiction,
that under these conditions 7" is indecomposable. So assume 7' = 11 @ T», where 17,15 # 0 are two-
sided ideals. Since Soc(Tr) is essential, then for each ¢ = 1,2, there is a simple right ideal U; of T'
contained in 7;. Now we have U1T» = 0 and Vo7, = V5, but this would imply that Soc(T7r) is not
homogeneous, a contradiction. Therefore 7" must be indecomposable. Now by Proposition 2.2.11 we
know that 7T is either a right V-ring or a right Artinian ring. If 7" is a semisimple Artinian V-ring we are
done. So assume 7’ is not semisimple Artinian. It follows by Lemma 2.2.13 that 7" admits a unique (up
to isomorphism) simple singular right module, concluding the proof. O

Example 2.2.17. We will now take and develop a bit further examples given in [15] that illustrate the
three possibilities of Theorem 2.2.14.

(i) By Proposition 2.2.2, it is clear that any right PCI-domain is in the conditions of Theorem 2.2.14(a).
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K K 10 00
(ii) Let R = , where K is a field and take e; = and ex = .Let M be a
0 K 00 01

module such that M is A-injective, where A is a non-semisimple cyclic module. It is not hard to
see that R is Artinian and serial. Then by Proposition 1.7.1 wehave A = A1 ®...® A, where A;
are cyclic uniserial modules. Thus each A; is isomorphic to e; R, es R, or ey R/Soc(e1 R). Since
A is non-semisimple, then for some ¢ € {1,...,n} we have A; = e; R. Therefore M is injective.
By the arbitrary choice of M we conclude that R has no middle class. Now R admits two simple

K K
R-modules, eoR = g HZ and S = R/ (8 k)% Soc(RR) = 8 K) is homogeneous

and essential and es R is singular. Thus R satisfies Theorem 2.2.14(b).

(iii) Choose R = Z/p*Z, for a prime p. It is straightforward to see that R has a unique maximal ideal,
J(R) = pZ/p*Z. This ideal is clearly simple (semisimple) and essential. Now R/J(R) = Z/pZ
is also simple (semisimple), hence R is semilocal. Then by Proposition 2.2.3, R is a ring with no
middle class in the conditions of Theorem 2.2.14(c).

We have proven the main result of this section. We will end this section by showing that a commutative
ring with no middle class is Artinian. We shall skip the proof of most of the remaining results, whose
purpose is to prove Theorem 2.2.22.

Lemma 2.2.18. [15, Proposition 7] Let R be a right Artinian ring with unique (up to isomorphism) local
module of length two, and homogeneous Soc(Rr) = J(R). Then R has no (right) middle class. In
particular R is in the conditions of Theorem 2.2.14(c).

Lemma 2.2.19. [27, Corollary 2.14] Let R be a right Artinian ring. Then, R has no right middle class if
and only if J(R) contains no non-trivial ideal of R.

Lemma 2.2.20. [5, Lemma 2.4] Suppose that we have a ring of the form R = S @ T, a direct sum of
two rings, where S is semisimple Artinian. Then R has no (simple) middle class if and only if T has no
(simple) middle class.

The following proposition shows us the strength of the no middle class condition.

Proposition 2.2.21. [5, Proposition 4.2] If R is a commutative Notherian ring with no middle class, then

R is Artinian.

Remark. The purpose of [9] is self-explanatory by its title “A right PCI ring is right Noetherian”. We shall
use the fact that a ring that is Morita equivalent to a PCI-ring (domain) is a Noetherian ring (domain).

Theorem 2.2.22. [5, Theorem 4.3] A commutative ring R has no middle class if and only if there is a
ring decomposition R = S & T, where S is semisimple Artinian and T is zero or a local ring whose
maximal ideal is minimal.

Proof. (=) Under these conditions, we apply Theorem 2.2.14. So we have a ring decomposition R =
S @ T, with S semisimple Artinian and 7" is either zero (we would be done if that were the case), or it
fits one of the following cases.

(i) T is Morita equivalent to a right PCI-domain 7”. In this case, 7" is a right Noetherian domain by
[9]. Now, since R is commutative with no middle class, by the previous proposition 7” is also Artinian,
which implies it is a simple ring. A commutative simple ring is a field, concluding the proof.
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(i1) 7" is an indecomposable SI-ring, which is either Artinian or a V-ring. Let us start by assuming
T is Artinian. Then T is a finite product of local rings. Now the indecomposable hypothesis allows us
to infer that 7" is a commutative Artinian local ring. If T is not a field, then there is a minimal non-zero
ideal I of T, and by the local hypothesis I = T'/J(T) is a division ring. Since 7" is an SI-ring and
T/J(T) is singular as a T-module, it follows by the SI-ring hypothesis that [ is injective, meaning that
I is a direct summand of 7. However this contradicts the indecomposable assumption of 7. So, under
these conditions, as 71" is Artinian it would have to be a field. Now assume 7" is a V-ring, and without
loss of generality that 7" is not Noetherian. Note that, if it was Noetherian we would just be going back
to Case (i). Since we have no middle class we infer that 7" is semiartinian, by Proposition 2.2.8. Let I be
a non-zero minimal ideal of 7. Now since J(T") = 0, then T" admits a maximal ideal M which does not
contain /. Thus 7 is a sum of the form I & M, but since T is indecomposable we conclude that 7" = I.
Therefore T is a field.

(iii) T is an indecomposable Artinian ring, with Soc(Tr) = J(T'). In this case, R is once again a
local ring. Then we know by Corollary 2.2.19, that the maximal ideal J(T") is also minimal.

(<) For the converse, assume 7" is a commutative local ring whose maximal ideal is simple, then
T has a unique (up to isomorphism) local module of length two, which is itself. Furthermore, it also
has homogeneous socle, which is equal to J(7"). Now from Proposition 2.2.18, it follows that 7" has no
middle class. Finally we apply Lemma 2.2.20 and we are done. O

We have already seen that a no middle class ring is either Noetherian or semiartinian, in the latter
V-ring or Artinian. So by the previous Theorem and Proposition 2.2.21 we have the following.

Corollary 2.2.23. [5, Corollary 4.4] Any commutative ring R with no middle class is Artinian.
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Chapter 3

Pauper Modules

Throughout the previous chapter we have developed the concept of poor module. Furthermore, we have
studied several classes of modules regarding their injectivity domains. Now we seek to do the same for
indecomposable poor modules. Most of what we will do in this chapter is seeing which classes of modules
satisfy certain conditions.

As in Chapter 2, please note that some authors use the term "semisimple" to mean the ring has a
trivial Jacobson radical. For Artinian rings, Proposition 1.6.9 guarantees that this notion coincides with
the notion of semisimple we introduced in Chapter 1. Therefore, we will use "semisimple Artinian ring"
to eliminate that ambiguity, as in the papers referenced.

Unless otherwise stated the results in this chapter follow from [3].

3.1 Definitions and general results

We have seen in Corollary 2.1.5 that the sum of a poor module with any arbitrary module is itself poor,
meaning there may not be much interest in the study of these types of sums. Therefore the need of an
intrinsic characterization of poor modules, and the notion of pauper module arises.

Definition. A module is said to be pauper, if it is poor and no proper direct summand of it is poor.

Remark. An indecomposable poor module is pauper. However this does not mean a pauper module is
necessarily indecomposable, or that it even has finite dimension. In fact, Examples 3.1.4(i) and (ii) are
counterexamples of just that.

We want to characterize rings and different classes of modules in terms of their (or lack thereof)
pauper modules.
Let R be a ring and A a class of right R-modules.

« (Existence) We say the class of modules A satisfies (E) if it contains pauper modules.

* (Ubiquity) We say the class of modules A satisfies (U) if for every poor module P in A there exists
a pauper module M in A such that M C% P, i.e., M is a direct summand of P.

Finding out if a class of modules satisfies (U) is in general not something easy to accomplish. In light of
that we define a weaker property (U’) that under certain conditions is equivalent to (U) as we will see.

* A class of modules A satisfies (U’) if for every poor module P in A there exists a pauper M € A
such that M is a pure submodule of P (see Section A.2 for the definition of pure submodule).
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When A =Mod-R, we say that R satisfies (E), (U) or (U’) when A does.

We have shown in Proposition 2.1.2 that every ring has at least one poor module. The next question
seems to be if all rings have at least one pauper module. The answer is no, as shown in the following
counterexample.

Proposition 3.1.1. Let R be a (non-semisimple) right semiartinian right V-ring. Then R has no pauper
right module.

Proof. By Theorem 2.1.2 we know there exists a a poor R-module M. Since R is semiartinian we have
Soc(M) # 0. Take a simple submodule N of M. By the V-ring hypothesis, N is injective, hence M =
N @ N’ for some N’ < M. Furthermore, N is poor, by Lemma 2.1.6. We have just shown that any poor
R-module contains a proper poor direct summand. Therefore R has no pauper modules. O

Corollary 3.1.2. Let R be a (non-semisimple) right V-ring. If R has a pauper module M, then Soc(M) =
0. Furthermore, every semiartinian right module is semisimple.

Proof. Let M be a pauper module. We must have Soc(M ) = 0, otherwise M would not be pauper as we
have shown in the previous proposition. Take an arbitrary semiartinian module /N and K a submodule of
N.Clearly Homp(K, M) = 0. Therefore M is N-injective. Since M is poor, then NV is semisimple. [

The following theorem is fundamental in the study of pauper abelian groups. Its proof will be done
in Section 3.5, where it is more thematically appropriate. Recall that P denotes the set of prime numbers.

Theorem 3.1.3. [2, Theorem 3.1] An abelian group G is poor ( as a Z-module) if and only if its torsion
part T(G) has a direct summand isomorphic to ©pcpZLy.

Example 3.1.4. Going forward we will represent ©,cpZ;, by Go.

(i) Itis clear that T'(Go) = G, by Proposition 1.4.2. Therefore G is poor by the previous theorem, and
pauper since no direct summand of it is poor.

(i) Define G = [[,cp
(o, and G is poor. Now assume that G = H @ K, for some poor submodule H <z (. Once again
by Theorem 3.1.3, Gy is contained in H. Furthermore, H N K = 0, implies that K N Gy = 0. We
have G/Go = @, Q; divisible and Rad(G) = 0. Now G/Go = (K © H)/Go = K © (H/
Gy). Therefore K is also divisible. This means that for every n € Z\0 we have nK = K. Hence
Rad(K) = K. Since Rad(K) = K C Rad(G) = 0, we infer that X' = 0. Finally we conclude
that G = H is pauper.

Zy, again by Proposition 1.4.2 and the previous theorem, we infer that T'(G) =

(iii) Take the ring R = Zsg. Since Zs is finite, then it is clearly Artinian. It is also clear that its maximal
ideals are (2), (3) and (5). Therefore J(Zs3p) = {0}, and by Proposition 1.6.9, we conclude Zs is
semisimple. Now Zs is semisimple Artinian, then the trivial module {0} is poor, by Proposition
2.2.1. Tt is also clear that {0} is indecomposable, so that it is pauper. This falls under a general
case. A ring R is semisimple Artinian if and only if {0} is pauper. Therefore semisimple Artinian

rings satisfy (U).

Remark. By the previous theorem the ring of integers satisfies condition (U”).

Let us see more classes of modules that satisfy (F).
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Proposition 3.1.5. Over arbitrary rings, finite uniform dimensional poor modules have pauper direct

summands.

Proof. Let M be a finite uniform dimensional poor module and assume M is not pauper. Then there
exist non—zero submodules N1, K1 < M such that M = Ny & K7, where N7 is a poor module. If V; is
pauper we are done, otherwise there exist non-zero submodules No, Ko < Nj such that N = Ny & Ko,
with Ny poor. As u.dim(M) < oo, by Corollary 1.3.7, M does not contain an infinite direct summand.
This means that after a finite number of repetitions of this process, we must reach a pauper submodule of
M. O

Proposition 3.1.6. Let R be a semilocal ring. Then the right R-module R/J(R) has a pauper direct
summand.

Proof. We have already seen in Proposition 2.1.9 that R/.J(R) is poor. Now by the semilocal hypothesis,
R/J(R) is semisimple. Hence it has finite uniform dimension, which by the previous proposition lets us
conclude that R/J(R) admits pauper direct summands. O

Example 3.1.7. In light of the two previous propositions.

(i) By Proposition 1.3.8(a), Noetherian (resp. Artinian) modules have finite uniform dimension, hence
Noetherian (resp. Artinian) poor modules admit pauper direct summands.

(ii) Take R = Z and M = Z/mZ = Z,, (m > 0). In this case the uniform dimension of M is
characterized by the number of distinct prime divisors of m. This means the Z-module Z,,, that is
poor, admits pauper direct summands.

(iii) We have already seen that Zso/J(Z30) = Zso is semisimple, hence semilocal. In general, any finite
ring or any finite dimension algebra over a field K is semilocal. Therefore, it admits pauper direct
summands.

(iv) If R is a semilocal ring, then A = M, (R) is also semilocal. This follows from the fact that
Rad(A) = M, (Rad(R)). So now we get

A/Rad(A) = M, (R/Rad(R)).

By hypothesis, R/ Rad(R) is semisimple. So M,,(R/Rad(R)) is also semisimple. Therefore A is
semilocal, thus A/.J(A) admits pauper direct summands, by Proposition 3.1.6.

The following theorem is a strong indicator of the significance of the existence of pauper modules.

Theorem 3.1.8. Let R be a ring with no right middle class. The following statements are equivalent:

(a) R is right Noetherian.
(b) R has a pauper right module.
(¢) Every non-injective right R-module has a pauper submodule.

(d) Every non-injective right R-module has a cyclic pauper submodule.
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Proof. (d) = (c) = (b) are immediate.

(b) = (a) Assume that R is not right Noetherian. Then by Proposition 2.2.8, R must be right semiar-
tinian. Furthermore, by Proposition 2.2.11, R is either a V-ring or Artinian. However R cannot be right
Artinian, because this would imply R is right Noetherian, by the Hopkins-Levitzki’s Theorem. Therefore
R is a right semiartinian right V-ring. In Proposition 3.1.1 we have shown that this specific class of rings
does not satisfy (£), a contradiction. Thus R must be Noetherian.

(a) = (d) Assume R is right Noetherian, and let M be a non-injective R-module. By Proposition
1.2.5, we may assume that M does not have any non-zero injective submodule. Let 0 # N < M be a
cyclic submodule of M. Now, by the no right middle class hypothesis, N must be poor. It is clear that N
has finite uniform dimension, so by Proposition 3.1.5, N has a pauper direct summand, which must be
cyclic, since it is a submodule of a cyclic module. O

Theorem 3.1.8 has the following clear consequence.

Theorem 3.1.9. Let R be a right V-ring with no right middle class. The following are equivalent:
(a) R is semisimple Artinian.
(b) R has a pauper right R-module.

(¢) Every right R-module contains a pauper submodule.

The following is a Corollary combining Theorem 2.2.14 and the previous two theorems.

Corollary 3.1.10. Let R be a ring with no right middle class. Then R has a pauper right module if and
onlyif R =5 x T, where S is semisimple and T is Noetherian.

3.2 Rings with no indecomposable middle class

It seems natural to combine what was done in Section 2.2 with the indecomposable condition.

If R has no right middle class, a module M is pauper if and only if M is indecomposable and non-
injective.
Definition. A ring R has no indecomposable right middle class if, every indecomposable right R-module
is poor or injective.
Remark. From the definition it is clear that a ring with no (right) middle class is, in particular, a ring with
no indecomposable (right) middle class.

Remark. A semisimple V-ring is a somewhat trivial example of a ring with no indecomposable middle
class, since over a semisimple ring every indecomposable module is simple. We have the following
weaker condition.

Note that indecomposable modules are simple and injective, so we have the following result.

Proposition 3.2.1. Let R be a right semiartinian V-ring. Then R is a ring with no indecomposable middle

class.
Similar to Lemma 2.2.4 we have.

Proposition 3.2.2. Let R be a ring with no indecomposable right middle class and I an ideal of R. Then
the ring R/I has no indecomposable right middle class.
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Proof. Let M be an indecomposable right (R/I)-module. Then M is also indecomposable, as a right
R-module. Since by hypothesis R has no indecomposable right middle class, then M, is either injective
or poor, thus Mg/ is injective or poor. O

Lemma 3.2.3. Let R be a commutative ring, and A and B be R-modules of composition length two and
isomorphic simple socle V. Then A/V = B/V =V and, in fact, A = B. Moreover, A is A-injective.

Proof. Since A has a chain of length two, it is of the form {0} € K C A such that K is simple, so
K = Soc(A) = V. This means that A is not a semisimple R-module, otherwise the socle of A would be
itself. The same is valid for B. Assume that A/V = U and U % V, for some simple submodule U of A.
Define P = anng(V') and Q = anng(U). Now we have PQA = 0 and A is a (R/PQ)-module. Also
note that R/ P and R/( are simple (R/PQ)-modules, so that R/PQ = (R/P) & (R/Q) is semisimple
as an (R/P(Q)-module, and by Proposition 1.1.23(c), A is also a semisimple (R/PQ)-module. However
this would imply that A semisimple as a R-module, which is a contradiction. Hence A/V = V| we have
V <. Aand V <. B, and by Proposition 1.6.4, Rad(A) =V <5 Aand Rad(B) =V <4 B. This
implies that A = aR and B = bR, for some a € A and b € B, in other words A and B are cyclic
modules. Clearly anng(A) = anngr(B) and we conclude that A = aR = R/I = bR = B for some
ideal I of R. Hence A = B.

We are left to prove that A is A-injective. It is enough to show that for a submodule X of A such that
X 2V, then any homomorphism f : X — A can be extended to a homomorphism g : A — A. Assume
without loss of generality, that X = V. We have already seen that A and V' are cyclic modules, which
we represent by A = aR and V' = xR. Now since f(V') < V, then for some s € R we have f(x) = zs.
Therefore it is enough to define g : A — A, by g(b) = bs, for each b € A. Thus g(x) = xs = f(x), so
g extends f. O

Lemma 3.2.4. For a simple module V' over a commutative Noetherian ring, the properties of injectivity,

projectivity and flatness are equivalent.

Proof. The necessity of the commutative condition follows from [36, Lemma 2.6], which states that if
V' is a simple module, then V' is flat if and only if it is injective. Note that finitely presented modules are
in particular finitely related, so combining Lemmas A.2.4 and A.2.5 we conclude that for a Noetherian
ring, flatness and projectivity are equivalent. O

Theorem 3.2.5. Let R be a commutative Noetherian ring. Then R has no indecomposable middle class
ifand only if R = S x T, where S semisimple Artinian and T = 0 or T is a local ring whose maximal
ideal is minimal. In other words, R is the direct product of finitely many fields and at most one ring of
composition length two.

Proof. Let us start with the “Only if” part. Assume R has no indecomposable middle class. Take S =
Zie 1 Ji, where J; are the injective minimal ideals of R. Since 2 is Noetherian, then by Proposition 1.2.5,
S is injective. Hence R = S @& T, for some ideal 7" of R. Suppose T' ## 0, then T" cannot be semisimple,
otherwise it would be contained in S.

Let us show that 7" is a local ring. By contradiction, assume 7 is not local. By Lemma 3.2.4 and
S NT = 0, we infer that T has no injective (projective) simple factor. Take K7 and K5 two distinct
maximal ideals of 7. Thus U = T'/K; and U’ = T/ K5 are non-injective simple modules. So by the
no indecomposable middle class assumption, U and U’ must be poor. Now by Proposition 1.5.6, the
injective hull of U is Artinian, hence Soc(E(U)/U) # 0, which means there exists V' < E(U) such
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that V /U is simple. We also know U and U’ are not isomorphic, which by Proposition 1.1.4 implies
Hom(U,U’) = 0. So U’ is V-injective, contradicting the poorness of U’. Therefore T is a local ring.

Let U be the unique simple 7'-module and V' as defined above. Then by Lemma 3.2.3, V is V-
injective. Furthermore, since V' indecomposable, it must also be injective, by hypothesis. Since E(U)
is the smallest injective module containing U, we have V' = E(U). Now we want to show that 7" is
Artinian. Since 7' is Noetherian, by Propositon 1.5.5, we know it is enough to see that " is semiartinian.
Again we shall do this by contradiction. Assume Soc(M) = 0, with M7 a cyclic module. Furthermore,
consider M to be a non-injective module (note that if M is injective we can take a non-injective cyclic
submodule of M). Since M is generated by a single element, then by the Noetherian hypothesis, it must
be indecomposable as well, which by hypothesis, means that M is poor. However, we also know that
Hom(V, M) = 0, because Soc(M) = 0, which implies that M is V-injective. Thus M is injective, a
contradiction because M is poor. Therefore 7" is semiartinian, hence Artinian.

Now T'is Artinian, so by Proposition 1.5.6 it follows that Soc(T’r) is finitely generated, so Soc(Tr) =
U", for some n € N. We have shown in Proposition 1.5.3 that Soc(T7) is essential, i.e., Soc(Tr) <.
T < V™. Henceforth, the quotient module 7'/ Soc(Tr) can be embedded in (V/U)", which is clearly
semisimple, thus 7'/ Soc(Tr) is semisimple. Since 7" is local and V' /U = U, then T'/Soc(Tr) = U,
therefore J(T") = Soc(Tr). Now by this equality and Lemma 1.6.6(c) we have 0 = J(T').Soc(Tr) =
(Soc(Tr))?. We have already seen that V is non-semisimple and has composition length two, so it is
cyclic, V = vT withv € V. Note that, V = vT = T /anng(v), so if we manage to prove that anng(v) =
0,then V= T. Let t € T\O such that tv = 0. A left zero divisor can never be a unit, so ¢t € Soc(T).
As T is local and its socle is homogeneous, t1° = U™, for some n € N. Therefore Uv = 0, and
Soc(T).v = 0. Hence V is a T'/Soc(T)-module. Now since T'/Soc(T) is simple, V' is semisimple,
which is a contradiction. Thus ann(v) =0andso f : T — V, f(t) = vt is an isomorphism.

Let us prove the “If” part. Take M a non-injective and indecomposable right R-module. So by
hypothesis M = M; & M, where M is an S-module and M5 is a T-module. Now since M is inde-
composable and non-injective, M7 must be trivial. Hence M = My = U, where U is the unique (up to
isomorphism) simple 7-module. Clearly every local ring is in particular semilocal, by Proposition 3.1.6
we conclude that M is poor and indecomposable. O

The following two results establish that for commutative Noetherian rings and Artinian serial rings,
the “no middle class” condition is equivalent to the “no indecomposable middle class” condition.

Corollary 3.2.6. Let R be a commutative Noetherian ring. Then R has no middle class if and only if R
has no indecomposable middle class.

Proof. By the previous theorem and Theorem 2.2.22. O

The proof of the following theorem will not be done here. It is the combination of several results of
[15] and [27, Corollary 3.2].

Lemma 3.2.7. [5, Theorem 3] Let R be a ring. Then R has no right middle class if and only if R =2 S&®T,
where S is semisimple Artinian and T satisfies one of the following conditions:

(a) T is Morita equivalent to a right PCI-domain, or

(b) T is aright Sl-ring, V-ring with the following properties:

50



(1) T has essential homogeneous right socle and

(ii) for any submodule A of Qr, which does not contain the right socle of T as a proper
submodule, QA = Q, where Q) is the maximal right quotient ring of T', or

(¢) T is a right Artinian ring, such that J(T') properly contains no non-zero ideals.
Theorem 3.2.8. Let R be an Artinian serial ring. The following characterizations are equivalent:

(a) R has no indecomposable middle class.
(b) R has no right middle class.

(¢) R =S x T, where S is semisimple Artinian and T is a ring such that J(T)? = 0.

Proof. (a) = (b) Take a non-injective right module M. Since R is a serial ring, Proposition 1.7.1 gives us
a characterization of the form M = @®;c;U;, with U; uniserial modules for ¢ € I. As M is non-injective,
then for some ¢y € I we must have some U, non-injective. Thus by no indecomposable middle class
assumption U, is poor, which by Corollary 2.1.5, means that M is poor.

(b) = (a) Evident.

(b) & (c) Follows from Lemma 3.2.7. O

Proposition 3.2.9. [8, Proposition 5.7] Let R be a right semiartinian ring with no simple middle class.
Then R is a right V-ring or, there is a ring direct sum R = S & T, where S is semisimple Artinian and T

has a unique non-injective simple right module up to isomorphism, and Soc(T) is homogeneous.

Proof. Let us assume R is not a V-ring. Take Up, to be a non-injective simple module. By the hypothesis
of no simple middle class, U is poor. Now by a similar argument to the one done in Proposition 2.2.15,
we infer that R has a unique non-injective simple right module (up to isomorphism). Let .S be the sum
of the injective simple right ideals of R. By contradiction, assume that .S is not injective, and consider
its injective hull £(5). By semiartinian hypothesis it follows that Soc(E(S)/S) # 0. Now take X /.S to
be a simple submodule of E(S)/S. Note that S <. X, by Proposition 1.1.10(1). Let us show that U is
X-injective. Choose 0 # Y < X, andlet f : Y — U be a homomorphism. If Y < S| then since Y
is semisimple, and U is poor (non-injective), so Homp(Y,U) = 0. Therefore f extends to X trivially.
Now if Y ¢ S| since S is a maximal submodule of X, it follows that Y + S = X, and .S is semisimple, so
S=YNS®S, where S’ is a submodule of S. Since Y does not intersect S it follows that X =Y @ 5.
Considering the projection 7 : X — Y we infer that fr : X — U extends f. Hence U is X-injective.
However we have already seen that U is poor. Thus X is semisimple. so S is a direct summand of X.
But this implies that .S is not essential in X, a contradiction. Thus R = S & 7', for some right ideal T’
of R. By the choice of S we have that Hom(S,T) = 0 and Hom(T,S) = 0. Therefore, both S and
T are two-sided ideals, hence R = S @ T is a ring direct sum. Since R admits a unique non-injective
simple module, 7" also has a unique non-injective simple right module, which implies that Soc(Tr) is
homogeneous. O

Theorem 3.2.10. Let R be a right Artinian ring. Suppose R has no indecomposable middle class. Then
R x S, where S is semisimple Artinian, Soc(Tr) is homogeneous, J(T) = Soc(Tr) and J(T)? = 0.

Proof. Let R be a right Artinian ring with no indecomposable middle class. By the previous proposition
we have R = S x T, where S is semisimple Artinian and 7" has a unique non-injective simple module,
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and Soc(T'r) is homogeneous. Consider U to be the non-injective simple 7-module and take E(U) to be
its injective hull. By the proof of the previous proposition we are able to infer that no simple submodule
of T"is a direct summand of T". Therefore Soc(Tr) < J(T'). Now by the Artinian hypothesis, Soc(E(U)/
U) = A/U # 0. Then by Propositions 1.5.7 and 1.1.25, we infer that A is quasi-injective. Since A is
indecomposable in R, then A must be injective. Hence A = E(U),and E(U)/U is semisimple. Again by
the Artinian condition, the Soc(T7r) is finitely generated, thus Soc(Tr) = U™, for some n € N. Therefore
T /Soc(Tr) can be embedded in the semisimple module (E(U)/U)™, which means T'/Soc(Tr) is also
semisimple, so .J(7T') is a submodule of Soc(Tr). Therefore J(T) = Soc(Tr) and (J(T))? = 0. O

3.3 Over Noetherian Rings

We have seen in Corollary 2.2.23 that commutative rings with no middle class are Artinian, hence Noethe-
rian, by the Hopkins—Levitzki Theorem. The two major result of this section are Theorems 3.3.2 and
3.3.10. The first establishes that for Noetherian rings the conditions (U) and (U’) are equivalent, while
the latter shows that commutative hereditary Noetherian rings satisfy (U’).

The following lemma is valid over any ring.

Lemma 3.3.1. [21, Lemma 8.4] Let R be any ring and A, B,C, H, F, M be right R-modules. Suppose

0 H—>F—">M 0
¢l "wl L J{n
¥ a ¥ B
0 A B C 0

is a commutative diagram with exact arrows. There exists a map o : F' — A making the upper triangle
commute (i.e., oy = @) if and only if there is a map p : M — B making the lower triangle commute

(ie, Bp=m).

Proof. (=) Assume the upper triangle commutes. Then (1) — ao)y = ap — agp = 0 implies there exists
a homomorphism p : M — B such that pd = ¥ — ao. Hence Spd = Sy — fao = nd, thus Bp = n.
(<) Now assume p = n. Then for 7 = ¢ — pd we have 57 = 1) — Bpd = nd — nd = 0. Now
there exists a homomorphism o : F' — A such that ag = 7. Therefore aoy = 1y — pdy = ¢, hence
oy = ¢. O

Theorem 3.3.2. Let R be a right Noetherian ring and M be a right R-module. If P is a pure submodule
of M and P is poor, then M is poor.

Proof. Assume that M is N-injective, with N an arbitrary cyclic module. It is enough to prove that P
is also N-injective. Let N1 be a submodule of NV, and take a homomorphism f : N; — P. Now by
definition of N-injective, we can take a homomorphism g : N — M such that g, = f. Hence we have
the following diagram where both rows are exact

1

0—=P— > M—"% M/P 0
¥ v
o]
0—> Ny —= N ——= N/N; —= 0.

Since R is Noetherian and N is cyclic, then N7 must be finitely generated. Thus N /N is finitely
presented. Furthermore, the top row is pure exact, so by Lemma A.2.3 there exists a homomorphism
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w : N/N; — M such that mju = h. Now by the previous lemma, there exists a homomorphism
v: N — P such that v, = f. Therefore P is N-injective. O

In a commutative Noetherian ring, the irredundant complete sum of non-injective simples is pauper.

Proposition 3.3.3. Let R be a commutative Noetherian ring and ' be a complete set of representatives
of non-injective simple R-modules. Then S = ©g,crS; is pauper. Moreover, for any poor R-module M,
the singular submodule, Z (M) contains a copy of S.

Proof. Let us start by proving that S is poor. Suppose that S is A-injective, with A a cyclic module. Then
we have A = R/I where I is some ideal of R. Let S* be the direct sum of a complete set of representatives
of non-injective simple R/I-modules, By definition S* is isomorphic to some direct summand of S. Since
S is A-injective, S* is also A-injective, thus S* is R/I-injective, a contradiction, unless S* = 0. If R/I
has no non-injective simple submodules, then R/I must be a commutative Noetherian V-ring. Therefore
by Proposition 1.1.11, R/I is semisimple. Hence A is semisimple, and we can infer that S is poor.

Now let us show that S is pauper. Take a proper direct summand /V of S. So there exists a non-injective
simple R-module 7" such that Hompg(7T, N) = 0. By Proposition 1.5.6 we know that the injective hull
of T is Artinian. Since 7" is non-injective, then £/(7") must contain a submodule B of composition length
two. Then B is not semisimple and IV is B-injective. Thus N is not poor, hence S is pauper.

Finally let M be a poor R-module. By an analogous argument done in the previous paragraph,
Homp(V, M) # 0, for some non-injective simple module V. Now by Lemma 3.2.4, V' is not projective,
soV CZ(M),thus S C Z(M). O

Corollary 3.3.4. Let R be a commutative Noetherian ring. Then any module N suchthat S = ®g,crS; <
N < HS,EF S; is poor:

Proof. Let N be in the conditions described above. We have seen in Proposition 3.3.3, that S is poor.
Furthermore, we also know that S is a pure submodule of [ [ .- S;. Thus S is also pure submodule of
N. Then by Theorem 3.3.2 we are done. O

Lemma 3.3.5. Let R be a commutative Noetherian ring and A = {S;};c1 be a complete set of represen-
tatives of non-isomorphic simple R-modules. Then the module M = Hie 1 Si/ ®icr Si has no maximal
submodules, i.e., Rad(M) = M.

Proof. Take K = ®;¢1.5;, and let Z be an arbitrary maximal ideal of R. Then for some S; € A we have
Z = annp(S;),andZS; = S forall 5; € AsuchthatS; # S;. Therefore Z(] [;c; Si) = [[;; Sj- Now
by the Second Isomorphism Theorem, M = ([[;c; Si + K)/K, thus ZM = ([, ; S; + K)/K = M,
and Rad(M) = QM = M where () ranges over the set of maximal ideals of R. Hence M has no

maximal ideals. O

Proposition 3.3.6. Let R be a commutative hereditary Noetherian ring, and let {S; };c1 be a complete set
of representatives of non-isomorphic simple R-modules. Then any module N such that ®;c1S; < N <
[Lic; Si and Rad(N /(©ie15:)) = N /(®ic1S;) is pauper. In particular, [ [, S; is pauper.

Proof. Since all Sjs are simple, then Rad([[;.; Si) = 0. Assume N = A @ B, where A is poor. By
Proposition 3.3.3, it follows that ®;c;S; C A. Now let # : N — B be the natural projection. Then
@ierS; C kerm. So we have the epimorphism 7 : N /(®;ec7S;) — B. Now by Proposition 1.6.2 and
hypothesis it follows that im7 C Rad(B) = 0, thus B = 0. Therefore N is pauper. For the last state-
ment, we know by Lemma 3.3.5 that [ [, ; S;/(®4c1.S;) has no maximal submodules, i.e, Rad([[;.; Si/

(DierSi)) = [;er Si/ (BierSi)- O
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Proposition 3.3.7. Let M be a right R-module. Suppose that for every non-injective simple module V,
M has a direct summand isomorphic to V. Then M has a pure submodule isomorphic to S, where S is

the irvedundant complete direct sum of non-injective simple R-modules.

Proof. Let U and V be two non-isomorphic, non-injective simple R-modules, that are direct summands
of M.So M =U @ N, with N < M. Now define the natural projection 7 : M — U, where kerm = N.
Since U % V, then by Proposition 1.1.4, 7(V') = 0, hence V' < N. Now for some submodule Y of M, we
havethat M = V@Y and N = (UsY)NN =V & (Y NN),soV isadirect summand of N. Therefore
M =U@&V & K, forsome K < M. Furthermore, we can extend this argument, by induction, to a finite
set of simple all non-isomorphic submodules of M. Let {U;};cr be a complete set of representatives of
the non-injective simple R-modules of M, with each U; a direct summand of M. Therefore for every
finite J C I we have N; = ®;c;U; is a direct summand of M, hence a pure submodule of M as well.
As Ny is pure, then S = Pic15; = lz’lnN 7 1s pure, since the direct limit of a pure submodule is itself
pure. O

Lemma 3.3.8. Let R be a commutative hereditary Noetherian ring. Let M be an R-module and V a
simple submodule of M. The following are equivalent.

(a) V is a closed submodule in M.
(b) QV =V NQM for each maximal ideal Q) of R.

(¢) V is a direct summand of M.

Proof. (a) < (b) In the effort of not introducing even more notation we refer the reader to [35, Theorem
4.5.1].

(b) = (c) Define P = anng(V'). So by hypothesis, 0 = PV = V N PM, thus V' Z PM. Since
M /PM is a semisimple, then PM must be an intersection of maximal submodules of M. Then there
exists a maximal submodule K < M suchthat V + K = M. As V is simple, we infer that V' N K = 0,
hence M =V & K.

(c) = (a) Obvious. O

Proposition 3.3.9. Let R be a commutative hereditary Noetherian ring. An R-module M is poor if and
only if, for every non-injective simple module V, M has a direct summand isomorphic to V.

Proof. (<) By Proposition 3.3.7, M admits a pure submodule /N, which is isomorphic to the irredundant
complete sum of non-injective simple R-modules .S. Now by Proposition 3.3.3, IV is pauper (poor). So
by Proposition 3.3.2 we conclude that M is poor.

(=) By negation, assume that V' is a non-injective simple module such that M has no summand
isomorphic to V. As V is non-injective we can take a submodule A of F (V') with a composition series
of length two such that V' <., A and A/V = V. Now we must distinguish between two cases: O

Casel. If Homp(V,M) = 0,as 0 <V < A is a composition series for A with A/V =V, then for
every Ay < A we have Homp (A1, M) = 0. Hence M is A-injective, thus M is not poor, a
contradiction.

Case2. 1If Homgr(V, M) # 0, let A; be a non-trivial submodule of A, and let f : A1 — M be any
non-zero homomorphism. Without loss of generality, we may assume that A; = V. Now
if f(V) is a closed submodule of M, then it follows by the previous proposition, that f(1/)
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is a direct summand of M. This means that M has a direct summand isomorphic to V, a
contradiction. So f(V') cannot be a closed submodule of M. Then there is a submodule N of
M, with composition length two such that V' <. N. Thus by Lemma 3.2.3 A = B, and B is
A-injective. Therefore M is clearly B-injective, a contradiction.

We are finally ready to prove the main result of this section. Note that the following result is a general-
ization of Theorem 3.1.3.

Theorem 3.3.10. A commutative hereditary Noetherian ring R satisfies (U') and the following statements
are equivalent, for every R-module M :

(a) M is poor.
(b) Z(M) is poor.
(¢) For every non-injective simple module V, M has a direct summand isomorphic to V.

(d) M has a pure submodule isomorphic to S, where S' is the direct sum of non-isomorphic and non-
injective simple R-modules.

Proof. (a) = (b) Let us assume that M is poor, and let V' be a non-injective simple module. Then by
the previous proposition, M admits a direct summand U which is isomorphic to V. Furthermore, by
Proposition 3.3.3 we know that U < Z(M). So U is also a direct summand of Z(M ), and again by
Proposition 3.3.9, Z (M) is poor.

(b) = (a) By the hereditary hypothesis, we apply Lemma A.2.6, so that M /Z(M) is flat. By defini-
tion (M /Z (M) ®pr —) is exact, thus Z(M) is a pure submodule of M. Therefore, by Theorem 3.3.2, M
must be poor.

(a) < (c) This is the previous proposition.

(c) = (d) By Proposition 3.3.7.

(d) = (c) By Proposition 3.3.3, S is poor. Now since S is a pure submodule of M, then by Proposition
3.3.2 we conclude the proof. O

3.4 Over Semiartinian Rings

We will prove in Proposition 3.4.2 that the irredundant complete sum of non-injective simple modules
is pauper, over commutative semiartinian ring, Furthermore, commutative semiartinian rings with zero
radical satisfy (U’), by Proposition 3.4.3. This section will be concluded by proving that Artinian serial
rings satisfy (U).

Lemma 3.4.1. [8, Lemma 5.9] Let R be a commutative ring and let V be a simple R-module. If V is
N-injective for some R-module N, then V1) is N-injective for every index set I.

Proof. Let P = ann(V), and I an index set. Since V is N-injective, then by Proposition 1.1.18, V' is
also N-injective. Furthermore, R is commutative and V/P = 0. Therefore V' is an (R/P)-module,
and P is maximal, hence R/ P is a field, which implies that V7 is a semisimple (R/P)-module. Then
V! is also semisimple as a R-module. Therefore V() is a direct summand of V!. Thus V() is also
N-injective. O
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Proposition 3.4.2. Let R be a commutative semiartinian ring. Then the irredundant complete sum of
non-injective simple right R-module, S is pauper. Moreover, any poor module contains an isomorphic

copy of each non-injective simple R-module.

Proof. Take M to be an arbitrary cyclic R-module, and assume the irredundant complete sum of non-
injective simple R-modules S is M-injective. By the proof of Proposition 1.5.3, we know that the semi-
artinian condition is sufficient in order for us to have Soc(M) <. M. Furthermore, assume that M is not
semisimple. Now by contradiction, suppose that Soc(M ) has infinite length. So either M contains an
infinite direct summand of S, denoted by IV, or it contains a direct summand isomorphic to V) where
V' is a non-injective simple module and [ is an infinite index set. In the first case, IV is M -injective.
Then by Proposition 1.1.14, the inclusion N — M splits, a contradiction. In the latter case, since V'
is M-injective, by Lemma 3.4.1 we have that V() is also M-injective. Again by Proposition 1.1.14,
the inclusion V!) < M splits, a contradiction. Therefore Soc(M) has finite length, thus Soc(M) is
M-injective. Once again, by Proposition 1.1.14, Soc(M) is a direct summand of M, a contradiction.
Thus M must be semisimple, hence S is poor.

The last part follows by analogous arguments of those used in Proposition 3.3.3. O

The equivalence between (a) and (b) in the following proposition is exactly the fact that for a com-
mutative semiartinian ring R, the class of R-modules for which the radical is zero satisfies condition
v’

Proposition 3.4.3. Let R be a commutative semiartinian ring and M a right R-module such that Rad(M ) =

0. Then the following are equivalent:

(a) M is poor.
(b) M has a pure submodule isomorphic to S, where S is the direct sum of non-injective simple modules.

(¢) For every non-injective simple R-module V, M has a direct summand isomorphic to V.

Proof. (a) = (b) By the previous proposition, we know the irredundant complete sum of non-injective
simple R-modules is pauper. Moreover, M contains a summand isomorphic to some non-injective simple
module in S. Therefore by Proposition 3.3.7, M admits a pure submodule isomorphic to S.

(b) = (a) Analogous proof'to the first paragraph of the previous proposition. As S is pauper it follows
that M is poor.

(b) = (c) Let V be a non-injective simple R-module. As Rad(M) = 0, then there exists a maximal
submodule N of M suchthat V + N = M. Now V NN = 0, because V is simple. Thus M =V & N.

(c) = (b) Immediate from Proposition 3.3.7. O

Corollary 3.4.4. Let R be a commutative semiartinian ring and I a complete irredundant set of non-
injective simple modules. Then [] s,er i is poor. Moreover, any submodule N of I1 s,er containing

®g,erS; is poor.

Corollary 3.4.5. Let R be a commutative ring. Suppose R is Noetherian or semiartinian. Then any poor
module has a pauper subm odule.

Proof. In Propositions 3.3.3 and 3.4.2, we have shown that the irredundant complete sum of non-injective
simple R-modules .S, is a pauper module, over commutative Noetherian rings and commutative semiar-

tinian rings respectively. In either case, any poor module has a submodule isomorphic to S. O
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Now we turn our attention to Artinian rings.

Theorem 3.4.6. Let R be a right Artinian ring. Then every non-injective right module contains a pauper
module if and only if there is a ring decomposition R = S @& T, where S is semisimple and T = 0, or T’
has a unique simple right module. In the case where T # 0, R has a unique pauper right module, namely

the unique simple submodule of T'.

Proof. We start with the necessity condition. Since R is Artinian it follows that R = e; R & eaR &
- PepnROHLRD--- B finR, where e R, eaR, . . ., e, R are the injective pauper right ideals of R. Let
S=eR®eaR®---PeyRandT = fiR® - - & fr, R. Therefore Homp (T, S) = Homp(S,T) =0,
which implies S N7 = 0. Hence R = S @ T is a ring direct summand. If 7' = 0, then R = S is
semisimple, and we are done. Let T" # 0. Now by contradiction, assume 7’ admits two non-isomorphic
simple right T-modules, U and V. By hypothesis, both U and V' admit pauper submodules. If 0 is pauper,
then 7" = 0, a contradiction. Therefore U and V' must be both pauper. Now take a submodule A of E(U)
with composition length two. Then, V' is A-injective. However, V' is poor and A is not semisimple, a
contradiction. Hence 7" has a unique simple submodule.

Now for the sufficiency. Assume T" = 0. Thus R is semisimple and Artinian and by Proposition 2.2.1
we are done. Now assume that 7' # 0 and take U to be its unique simple right 7-module. An Artinian
ring is semilocal, so it follows by Proposition 2.1.9 that 7'/ J(T") = U™ is poor. as a T-module and as an
R-module as well. Therefore U is a poor R-module. We take M a non-injective module, so MT # 0.
Therefore M contains a simple submodule isomorphic to U. As U is poor and simple we are done. [

Lemma 3.4.7. Let R be an Artinian serial ring and M, N indecomposable right R-modules. If cl(M) <
cl(N), then N is M-injective.

Proof. Take A a submodule of M, let f : A — N be a homomorphism, consider the inclusion ¢ : N —
E(N), and define h = if. Then there is a homomorphism g : M — E(N) such that g4 = h. Now
by hypothesis, cl(g(M)) < c¢l(M) < cl(N). Since N is uniserial, F(N) is also uniserial. Therefore
g(M) < N. Hence g extends f. Thus N is M-injective. O

Proposition 3.4.8. Let R be an Artinian serial ring. Then the irredundant complete sum of non-injective
simple right modules, S, is a pauper module. Moreover, any poor right R-module has a direct summand

isomorphic to S. That is, any poor module has a pauper direct summand.

Proof. Let us start by noting that any Artinian ring is in particular semilocal. So R/.J(R) is semisimple,
which by Proposition 3.1.6 implies that S is poor. Now by contradiction, assume S is poor but not pauper.
Then S admits a proper poor direct summand S’. Thus for some non-injective simple module U we have
that Homp (U, S”) = 0, by Proposition 1.1.4. As R is Artinian, there exists a non-semisimple submodule
Y of E(U) such that Y /U is simple. Furthermore, S’ is Y-injective, but this contradicts the poorness of
S’. Hence S must be pauper.

Let M be a poor module. By Proposition 1.7.1, M = &;cU; with each Uj; a cyclic uniseral module.
Let us prove that M has a summand isomorphic to S. This is equivalent to seeing that for each non-
injective simple module K, there is a 79 € [ such that K = U,,. Again by contradiction, assume there
exists a non-injective simple module 7" such that 7" 22 U;, for all i € I. By the non-injective assumption,
there exists X < E(T) such that X /T is simple and /(X ) = 2. As T is not isomorphic to any Uj,
then for each U; it follows that Homp (T, U;) # 0. From this we infer that c/(X) < ¢l(U;). Hence by
Lemma 3.4.7, U, is X -injective. Since X is finitely generated, then M is also X-injective. However this
contradicts the hypothesis that M is poor, so M must have a direct summand isomorphic to S. O
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3.5 Pauper Abelian Groups

In Corollary 1.1.27 we established an equivalence between divisibility and injectivity for abelian groups.
We start by pondering what does it mean for a group to be semisimple, the first definition and lemma
offer an answer. After introducing some necessary concepts we will prove Theorem 3.1.3. Throughout
this section the importance of Examples 3.1.4(i) and (ii) will become clearer.

The definitions and structural general results regarding abelian groups follow from [20]. In particular,
Proposition 3.5.3 is key in the characterization of abelian groups. It gives us a decomposition of abelian
groups in terms of its reduced and divisible (injective) subgroups.

In this section we will be showing that the class of torsion groups satisfies (U), (Corollary 3.5.6).
The last result of this section is dedicated to proving that the class of abelian groups with torsion-free
rank one also satisfies (U).

Definition. A positive integer is said to be square-free if it is not divisible by any element of the form
p?, with p € P.

Definition. An abelian group G is said to be elementary, if every element has a square-free order.
Naturally, an elementary p-group is an elementary group, whose elements all have order p, for some
peP

The following justifies why elementary groups are “semisimple” groups.

Lemma 3.5.1. [20, Chapter 2.1, Theorem 1.4] An elementary group G is a direct sum of cyclic groups
of prime orders (i.e. elementary p-groups).

Proof. 1t is clear that an elementary group is a torsion group. Thus by Proposition 1.4.2 it is enough
to consider the elementary p-subgroups of GG. Note that an elementary p-group is a Z/piZ-vector space.
Therefore it is the direct sum of one dimensional spaces, i.e., groups of order p. O

Definition. A group G is bounded if nG = 0, for some n € Z\0.
Remark. Clearly Zj, is bounded.
Lemma 3.5.2. [20, Chapter 3.5, Theorem 5.2] A bounded group is a direct sum of cyclic groups.

Proof. Take a bounded group A. Since A is bounded, then so are its p-primary components. Now [20,
Theorem 5.1] states that an arbitrary p-group is a direct sum of cyclic groups if and only if;, it is the union
of an ascending chain of bounded subgroups

A <A< <4< A=A,
n=1

Thus if we take the A’ s to be the p-primary components of A we are done. O

Definition. A group G is said to be a reduced group if GG has no divisible subgroups different from zero.

Definition. A subgroup H of G is said to be a pure subgroup in GG, if an equation nx = h € H is solvable
in G, this implies it is also solvable in H, i.e., if nH = H N nG, for every n € N.

Remark. In general, the torsion subgroup of a group G is pure. Take gy € T'(G). Forsomex € G and n €
N we have gy = nx. Now by definition of torsion subgroup, it follows that gy has finite order, which
implies by the equality that z also has finite order, i.e., z € T'(G).
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Remark. The sum of divisible groups is itself divisible. So the maximal divisible subgroup of G, D is
the subgroup generated by all divisible subgroups of GG. So if we take a reduced subgroup N of G, then
NND=0.

The following results is essential in understanding the structure of abelian groups.

Proposition 3.5.3. [20, Chapter 4.2, Theorem 2.5] Every group G is the direct sum of a divisible group
D and a reduced group N, G = D & N, where D is a uniquely determined subgroup of G and Nis

unique up to isomorphism.

Proof. By the remark above, it is enough to show that D is a direct summand of GG. Let D be an arbitrary
divisible subgroup of G. Then by Corollary 1.1.27, D is injective, in particular D is G-injective. There-
fore the identity map idp : D — D extends to a homomorphism f : G — D. Hence G = ker f & D, so
D is a direct summand of G.

Now to prove the last statement. If G = N @ D, with D divisible and N reduced. Then D must
be the unique maximal divisible subgroup of G. Note that N is the complement of D, which is always
unique up to isomorphism. O

Combining the definitions of pure and p-group we have the following.
Definition. A subgroup H of G is p-pure if p* H = H N p*FG, for every k € N.

Definition. Let p € P. A subgroup H < G is said to be a p-basic subgroup of G if it satisfies the
following conditions:

1. H is a direct sum of cyclic p-groups and infinite cyclic groups;
2. H is p-pure in G,
3. G/H is p-divisible.

Lemma 3.5.4. [20, Chapter 5.2, Lemma 2.1] Let H be a subgroup of G such that H is a direct sum of

cyclic groups, of the same order p*. The following are equivalent:
(a) H is a pure (p-pure) subgroup of G.

(b) HnNpFG =0.

(¢) H is adirect summand of G.

Proof. (a) = (b) Assume H is a p-pure subgroup of G. Therefore H N p™G = p™ H, for every m € N.
If we choose k = m, then p*H = 0.

(b) = (c) Let K be a maximal subgroup of G such that p*G < K and K N H = 0. Let us prove that
G = H @ K. Suppose that g € G\ (H @ K). Then we also have pg € H & K, thus pg = h + k, with
h € H and k € K. Hence p*~'h + p*~1k = pFg € K, which implies that p*~'h = 0. By hypothesis
there exists b’ € H such that ph’ = h. Furthermore, by the maximality of K, the subgroup (K, g — h')
contains by € H\0. Thus, for some &’ € K and integer m we have hg = k'+m(g—h’). Since HNK =0
and p(g — h') = k € K, it follows that the greatest common divisor between m and p is 1. This implies
that both m(g—h/) = hg— k' and p(g—h') = karein H ® K. Thereforeg—h' € H®Ksog € H®K,
a contradiction. Hence G = H ¢ K.

(c) = (a) is trivial by definition of p-pure subgroup. O
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The following is a good illustration of the fact that certain types of pure subgroups are summands.

Lemma 3.5.5. [20, Chapter 5.2, Theorem 2.5] 4 pure bounded subgroup H of G is a direct summand of
G.

Proof. Let H be a bounded subgroup of G. Then by Lemma 3.5.2, we have H = H; & C, where H;
is a direct sum of cyclic groups of order p*, for some k € N. Furthermore, the least upper bound of the
orders of elements in C are lesser than the orders of the elements of H. As H is pure in G, then H1 is also
pure, by Lemma 3.5.2. Once again by the previous lemma, G = H; @ G for some G < G. Therefore,
H = Hy ®Cy,withC; = HN Gy = C. Thus C] is pure in G1. Now by induction, ' is a direct
summand of G;. Therefore H is a direct summand of G. O

We are now ready to prove Theorem 3.1.3.

Theorem. An abelian group G is poor ( as a Z-module) if and only if its torsion part T (G) has a direct

summand isomorphic to SpcpLy.

Proof. We start with the “Only if” part. Assume that a group G is poor and p is an arbitrary prime.
If T,(G) = 0, then for all k € Ny : pFa = 0, if and only every divisible p-subgroup H of G is a
divisible. Therefore by Corollary 1.1.27 we have that GG is H-injective, for every p-group H. However
this contradicts the poorness of G. Thus T),(G) # 0. If every element g € G of order p is divisible by
p, then G is Z,2-injective, because the only non-trivial subgroup of Z,2 is pZ,,. So there exists element,
a, € G of order p that is not divisible by p, i.e., o(ap) = panda { p. Therefore the cyclic group
generated by (ay,) is a p-pure subgroup of 7},(G), and a pure (bounded) subgroup of 7),(G) as well. Now
by Lemma 3.5.5, it follows that (a,,) is a direct summand of 7),(G). Hence @pcp(a,) is a direct summand
of ®,cpT,(G) = T(G). Therefore @pep < ap >= Go.

For the “If” part, assume that 7'(G) contains a direct summand that is isomorphic to Go. We take A
to be a summand of T'(G) such that A = 7Z,, ( A is bounded). As T'(G) is pure in G, so must be A. Again
by Lemma 3.5.5, A is a direct summand in G. So G has a direct summand isomorphic to Z,. Now let
us assume G is H-injective, for some group H. Then for each p € P, Z,, is also H-injective. Now by
contradiction, suppose that H is not elementary (semisimple). Thus there exists h € H such that h has
infinite order, or o(h) = p”, with p € P and n > 1. If h has infinite order, then (h) = Z. If o(h) = p",
this implies that (h) = Zy,». Therefore by Proposition 1.1.16 we infer that Z,, is either Z-injective, or
Zpn-injective. Now a homomorphism f : pZ — Z, such that f(p) = 1, does not admit an extension

g : Z — Zy. Because if it did, we would have that 1 = f(p) = g(p) = pg(1) = 0. On the other hand,

n—1 n71>

the subgroup of Z,~, generated by p™~ " is isomorphic to Z,. However (p is not a direct summand of

Zyn . So in either case we arrive at a contradiction. Hence M must be semisimple. Thus G is poor. [

The following result is a consequence of Theorem 3.1.3. This corollary tells us that the class of torsion
groups satisfies (U).

Corollary 3.5.6. [2, Corollary 3.2] For an abelian group G, the following are equivalent:
(a) G is poor.

(b) The reduced part of G is poor.

(¢) T(G) is poor:

(d) For each prime p, G has a direct summand isomorphic to Zi,.
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Proof. (a) = (b) By Proposition 3.5.3 a group G is of the form N & D, with N a reduced subgroup, and
D a divisible subgroup. Since ( is poor this means that N or D (or both) must be poor. However, D is
divisible (injective), so by Lemma 2.1.6, N must be poor.

(b) = (a) Again by Proposition 3.5.3 we know the reduced part of G is a summand of GG. Hence we
are done, by Corollary 2.1.5.

(a) & (c) Immediate by Theorem 3.1.3.

(c) = (d) We have already established in Proposition 1.4.2 that T'(G) = ®pep1,(G). Furthermore, by
Theorem 3.1.3 we know that the torsion group 7'(G) admits a direct summand isomorphic to ®,cpT)(G),
which we know to be poor.

(d) = (c) For each prime p, let G, be a direct summand of G isomorphic to a summand of T,,(G).
Furthermore, each p-primary component 7},(G) is isomorphic to Z,. Hence T'(G) = @,cpT,(G) = Go,
since G is poor we are done. O

Theorem 3.5.7. Let G be a pauper abelian group. Then T'(G) = Gy.

Proof. Let T),(G) be a p-primary component of G. As G is poor, then by Corollary 3.5.6, T),(G) has a
direct summand V' isomorphic to Z,. Furthermore, 7,,(G) = V @ H, for some H < T,(G). We want
to prove that H = 0, by contradiction assume that H # 0. Let A be a p-basic subgroup of H. Now by
definition, 0 # A is a direct sum of cyclic p-groups. Let B be a cyclic direct summand of A. Therefore B
is a pure bounded subgroup of G. Thus by Lemma 3.5.5, B is a direct summand of G. Hence G = B®C
where C' is poor, because by Theorem 3.1.3, T/(C) has a direct summand isomorphic to Gy. We have
arrived at a contradiction. Therefore H = 0, so T,,(G) = K, which implies that T'(G) = Gj. O

The following is an n obvious consequence of the previous theorem.
Corollary 3.5.8. A4 torsion abelian group is pauper if and only if it is isomorphic to Gy.

Lemma 3.5.9. Let G be a group. Suppose that T(G) = Go and G /Gy is indecomposable. If G is not
a direct summand in G, then G is pauper.

Proof. By hypothesis, T(G) = Gy, thus G is poor, by Theorem 3.1.3. Now take H to be a poor direct
summand of G. Since Gy is not a direct summand, then Gy C H. Furthermore, H /G| is a direct sum-
mand of G/Gy. However, G/Gy is indecomposable. Hence H = G or H = GY. In either case G is
indecomposable, so G is pauper. O

Remark. A pure subgroup of a divisible group is also divisible. Take a pure subgroup H of a divisible
group G. Then by definition of divisibility, H 2 h = nz, with n € N has a solution in G. Now since
H is pure, h = nz also has a solution in H. This holds for every h € H and n € N. Therefore H is
divisible.

Proposition 3.5.10. Let G be a pure subgroup of ||, op Zy, that contains Gy. Then G is pauper.

p€EP

Proof. Let A = HpeIP Zyp, and assume G is a pure subgroup of A. Then nG = G N nA, for every
n € N. If we take the quotient nG /Gy = (G NnA)/Gy, it follows that n(G/Gp) = G/GoNn(A/Gy).
Therefore G/G) is a pure subgroup of A/Gj. We have already shown in Example 3.1.4(ii), that A/G)
is divisible. Furthermore, since G/G) is pure, then by the previous remark, G /Gy is also divisible, and
Rad(G/Gy) = G/Gp. Now the result follows from Proposition 3.3.6. O

Let us switch our focus to torsion-free rank one groups, so we must give some definitions.
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Definition. An abelian group G is said to be a torsion-free if all its elements, except for 0, are of infinite
order.

Definition. The torsion-free rank of a group G,is the cardinality of a maximal linearly independent set.

Remark. The non-zero subgroups of QQ are the torsion-free rank one groups. In other words, a torsion-free
rank one group is a Q-vector space.

Definition. We define the p-height of any g € G\0 as the largest number k for which g € p*G\p**'G.
We denote this by h,(g). If no such p exists we denote the p-height by h,(g) = occ.

Definition. Given a torsion-free group GG. The sequence of p-heights of g € G,

X(9) = (hpy (9)s hpo (9), -5 p, (9) -1,

is called the characteristic of g.

Remark. [20, Chapter 12] Consider an arbitrary rational group G of torsion-free rank one. Then A =
G /Gy is a rational group, because G is of rank one. An element a € G is of the form a = b,
with @ € Q and b € G. So we can describe any a € A\0 in terms of its characteristic x(a) =

(ha(a),h3(a), ..., hp,(a),...).
The proof of the following result is beyond the scope of this dissertation.

Theorem 3.5.11. Let G be a torsion-free rank one subgroup of HpeIP Zy, containing Gy and x(a) =
(ho(a), h3(a), ..., hp(a), ...), for some 0 # a € A = G /Gq. We have the following hypothesis:

@) If hy(a) = 0, for a finite number of primes p, then G is pauper.
(ii) If hy(a) # 0, for a finite number of primes p, then G\ is a direct summand of G, so G is not pauper.

(iii) If'h,(a) = 0, for an infinite number of primes p and h,(a) # 0 for an infinite number of primes p,

then G may or may not be pauper.

Proof. [3, Theorem 6.6]. O

Although we have seen that the ring of integers satisfies (U’). It is still unknown if it satisfies (U). The
last result of this section justifies the focus on the class of abelian groups of torsion-free rank one.

Corollary 3.5.12. Let G be an abelian group in the conditions of the previous theorem such that G is
not pauper. Then G = Gy ® H, for some 0 # H < G. It follows that, the class of torsion-free rank one
groups satisfies (U).

Proof. Suppose G is not pauper. Thus G = K ® H, where K is a proper and poor submodule of G.
Since K is poor, then by Theorem 3.1.3 it follows that Gy < K. Thus H NGy = 0. If Gy < B, then G/
Go = (K /Gy)® H. Hence G/G| is the sum of two non-zero groups. However G /Gy is indecomposable,
so K = Gjy. O
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Appendix

A.1 Categories and Functors

The following definitions and results follows from [4].

Note that if A is a set and % is a class, then the indexed class (A¢)cey in Z?(A) has a union and an
intersection in A. Let & be a class, for each pair A, B € €, let morc(A, B) be a set; write the elements
of more(A, B) as “arrows” f : A — B for which A is called the domain and B the codomain. Finally,
suppose that for each triple A, B, C' € € there is a function

o :more(B,C) x morc(A, B) = morc(A,C).
We denote the arrow assigned to a pair
g:B—-C f:A—-B

by the arrow gf : A — C. The system, C = (%, mor¢, o), consists of the class ¢, the map mor¢ :
(A, B) — morc(A, B) and the rule, o is a category if:

(C.1) Foreverytripleh:C - D,g: B—C, f: A— B,
ho(gof)=(hog)of.
(C.2) Foreach A € ¥, thereisaunique 14 € morc(A, A) suchthatif f : A — Bandg: C — A, then
fola=f and lyog=g.

If C is a category, then the elements of the class € are called the objects of the category, the “arrows”
f + A — B are called morphisms, the partial map o is called the composition, and the morphisms 14 are
called the identities of the category.

A category D = (2, morp, o) isasubcategory of C = (€', mor¢, o) provided Z C ¢, morp(A, B) C
morc (A, B) for each pair A, B € Z, o in D is the restriction of o in C. If in addition morp (A4, B) =
morc(A, B) for each A, B € 9, then D is a full subcategory of C.

Informally a functor is a morphism between categories.

Definition. Let C = (4, mor¢,0) and D = (2, morp, o) be two categories.

A pair of functions F' = (F’, F") is a covariant functor from C to D if F” is a function from & to 2,
F" is a function from the morphisms of C to those of D such that forall A, B,C € ¢ andall f : A — B
andg: B — CinC,

(F) F"(f): F'(A) —» F'(B) in D;
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(E2) F"(go f) = F"(g) o F"(f);
(F.3) F"(14) = 1pr(a).-

A contravariant functor is a pair F = (F’, F"') satisfying;
(FE.)* F"(f): F'(B) — F'(A) in D;

(E2)* F"(go f) = F"(f) o F"(9);

(F3) F"(14) = 1pr(a).-

So a contravariant functor is “arrow reversing”.

The category of abelian groups is represented by Ab. Furthermore, given a ring R we represent the
category of left R-modules by R-Mod. We have a special interest in functors between module categories.

Definition. Let C be a full subcategory of R-modules and that D is a full subcategory of S-modules.
Then a functor 71" from C to D is additive if for each M, N,modules in C and each pair f,g: M — N in
C,

T(f+9)=T()+T(9)

In particular, if T" is additive and covariant, then the restriction
T:Homgp(M,N)— Homg(T (M), T(N))

is an abelian group homomorphism. If instead 7" is additive and contravariant, then the restriction
T:Homp(M,N)— Homg(T(N),T(M))

is an abelian group homomorphism.

Definition. Let C and D be full subcategories of categories of modules and let ' : C — D be a covariant
functor. If for every short exact sequence in C

O—K—M-—N-—=0

the sequence
0— F(K)— F(M)— F(N)

is exact in D, then F' is said to be left exact. If
F(K)— F(M)— F(N)—0

is exact in D, then F' is said to be right exact. In the contravariant case
0—G(N)— GM)— GK)

for left exact and
G(N) - GM)— G(K)—=0

for right exact. A functor that is both left and right exact is called an exact functor.

We may now construct the Hom functor.
Let U =R Ug be a bimodule. Let f :g M —pr N be an R-homomorphism in g M. Then for each
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v € Hompg(U, M), we have fv € Homp(U, N). We claim that
Hom(U, f) :v = fy
is an S-homomorphism.
Hompg(U, f): Homgr(U,M) — Hompg(U, N).
Forify1,v2 € Homp(U, M) and s1, s3 € S, then for all u € U,

fo(s1m1 + s2v2)(u) = f(y1(us1) + v2(usz2)
= fr(us1) + fyz(us2)
= (s1(f1) + s2(fr2))(u).

Thus, we do have a function Hompg(U, —) : R-Mod — S-Mod defined by

Homp(U,—) : M — Hompg(U, M)
Homp(U,—): f— Hompg(U, f).

The notation Hompr(U, f) can be akward, so if there is no ambiguity with the module U, we are
likely to abbreviate
f« = Hompg(U, f).

Note that if f : M — N in R-Mod, then f, is characterized by

/ N
X A:v)
U

Now it’s an easy matter to check that Hom (U, —) is actually an additive covariant functor from R-Mod

M

to S-Mod. On the other hand, we can define a mapping
f*=Hompg(f,U): Homr(N,U) — Hompr(M,U)

via
Homp(f,U) : v+ ~f.

It is straightforward to show that f* = Hompg(f,U) is an S-homomorphism. For f* we have

f N
N A
U

here then we have a function Homp(—,U) : R-Mod — Mod-S defined by

M
f*

Homp(—,U): M — Hompg(M,U)
Homp(—,U): f— Hompg(f,U).
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Proposition A.1.1. [4, Theorem 16.1] Let R and .S be rings and let U =i Ug be a bimodule. Then
Hompg(U,—) : R-Mod — S-Mod

is an additive covariant functor and
Hompg(—,U) : R-Mod — Mod-S

1s an additive contravariant functor.

A.2 Tensor Product and Flat Modules

The definitions and constructions of this section follow from [4] until otherwise stated.

Definition. Given a right R-module M and a left R-module N and an abelian group A, a function
B:MxN—A

is said to be R-balanced if for all m,m; € M, n,n; € N andr € R
L. B(m1 +ma,n) = B(mi,n) + B(ma,n);
2. B(m,n1 + ng) = B(m,n1) + B(m, n2);
3. B(mr,n) = B(m,rn).

There is a natural way to trade each R-balanced map in for a linear map by using the concept of a tensor
product. Let M and g N be modules. A pair (7, 7) consisting of an abelian group 7" and an R-balanced
map 7 : M x N — T is a tensor product of Mr and rN in case for every abelian group A and every
R-balanced map 5 : M x N — A there is a unique Z-homomorphism f : 7' — A such that the diagram

M x N

T A

commutes. If (7, 7) is a tensor product of Mp and rN, then clearly, f o 7 is R-balanced for each
homomorphism f : T — A. Thus (7, 7) is a tensor product of My and g N if and only if for each
abelian group A

fe for

defines a one-to-one correspondence between Homyz (T, A) and the set of R-balanced maps 3 : M X
N — A.
The tensor product exists and is unique up to isomorphism. For the uniqueness we have the following.

Proposition A.2.1. [4, Proposition 19.1] If (T, 7) and (T, ") are two tensor products of (Mp,r N ) then
there exists a Z-isomorphism f : T — T" such that 7" = fT.

Now let us construct a tensor product of (Mpg,gr N) over R. Take F' = ZM*N) the free abelian
group on M x N. Then F has free basis (x4 )acirxn- For notational convenience let us simply write
(m,n) for z(,, ,,). Then

F = @MxNZ(m, n)
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Now let K be the subgroup of F' generated by all the elements of the form

(m1 +ma,n) — (m1,n) — (ma,n),
(m,ny +ng) — (m,ny) — (m,na),

(mr,n) — (m,rn),
andset T = F'/K. Define 7 : M x N — T via
T(m,n) = (m,n) + K.

Proposition A.2.2. [4, Proposition 19.2] With T and T defined as above, (T, T) is a tensor product of
(Mp,r N) over R.

Given (Mpg,r N), let (T, 7) be the tensor product constructed above, we write I' = M ®p N and
for each (m,n) € M x N,
T(m,n) =m®n.

We tend to be somewhat loose with our terminology and call M ®gr N the tensor product of M and
N.

Enroute to the tensor functors we next develop a theory of a tensor product f®g of two R-homomorphisms.
Let M, M’ be right R-modules and let N, N’ be left R-modules. Suppose further that f : M — M’ and
g : N — N’ are R-homomorphisms. Define amap (f,g): M x N — M’ ®r N’ via

(f;9)(m,n) = f(m) @ g(n).

It is evident that (f, g) is R-balanced, so there is a unique Z-homomorphism, which we shall denote by
f®g,from M ®r N to M’ @ N’ such that the following diagram commutes:

M x N
o
M N M’ N’
R f®g PR

Thus, in particular, f ® g is characterized via

(f@g)(m@n) = f(m)@g(n).

Now we are ready to construct the tensor functor.
Let U =g Ug be a bimodule. Then it follows by [4, Propositions 19.7 and 19.8] that there is an
additive covariant functor
(U®r—):r M =z M

defined by
U@r—): M—U®rM

U@r—): feluaf

By [4, Propositions 19.5] each U @ M is a left S-module. We claim moreover that if f : M — M’ is
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an R-homomorphism, then
U®pf:sU®r M — sU®@p M’

is an S-homomorphism. It is sufficient to check this on the generators u ® m of U @ M. But for each
seS,ueU,andm € M.

(U g f)lsu@m) = (1y ® f)(su®@m)
=su® f(m) = s(u® f(m))
=s((U®r f)(u®@m))
as claimed. Thus we may view this as an additive functor from R-Mod to S-Mod and write it
(sU ®g —) : R-Mod — S-Mod.
Similarly, there is an additive covariant functor
(— ®g Ur) : Mod-S — Mod-R

defined by
(—®sUg): N— N ®gUgr
(—®sUr):g—g®1y.

The remaining definitions of this section follow from [24].

Definition. A module Pp, is said to be finitely related (abbreviated f.r.) if there exists an exact sequence
0—+-K—=F—=P—=0

in Mod-R, where F' is free (of arbitrary rank) and K is finitely generated.
A module Pg, is said to be finitely presented (abbreviated f.p.) if there exists an exact sequence

O—-—K—-F—P—0

in Mod-R, where F' is free of finite rank and K is finitely generated (or equivalently, there exists an exact
sequence R™ — R" — P — 0 withm,n € N).

Definition. A (short) exact sequencec : 0 — A % B — C — 0 in Mod-R is said to be pure (exact) if
e®p C' is an exact sequence (of abelian groups) for any left R-module C’. (Of course only the injectivity
of A®r C' — B ®p C' is at stake.) If this is the case, we say that ©(A) is a pure submodule of B (or
that B is a pure extension of p(A)).

Remark. Every direct summand of a module M is pure in M.
Lemma A.2.3. [33, Lemma 3.70] Let 0 — B’ L BB B 0be a pure exact sequence, where i is
the inclusion. If M is a finitely presented left R-module, then p, : Homgr(M, B) — Hompg(M, B") is

surjective.

Lemma A.2.4. [24, Proposition 4.29] 4 ring R is right Noetherian iff all finitely generated (resp. cyclic)
right R-modules are f.p.
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Definition. A right module Pg is said flat (or R-flat) if the functor (P ®p —) is exact on the category
of left R-modules.

Lemma A.2.5. [24, Theorem 4.30] Let P be a f-v. right module over any ring R. Then P is flat iff it is

projective.

Lemma A.2.6. [22, Proposition 2.3] Let R be a commutative ring. Then all nonsingular R-modules are
flat if and only if R is semihereditary.

A.3 Morita Equivalences

The definitions and results of this section follow from [4].

Since every ring R has a natural R-module structure on itself, we often study a ring R by studying
the category of R-modules. Two rings are said to be Morita equivalent if their module categories are
equivalent. Let us define what we mean by equivalent categories.

Let C and D be arbitrary categories. Then the covariant functor ' : C — D is a category equivalence,
in case there is a functor (necessarely covariant) G : D — C and natural isomorphisms GF = 1 and
FG = 1p.

A functor G with this property is called an inverse equivalence of F. Two categories are equivalent
in case there exists a category equivalence from one to the other. We write C &~ D in case C and D are
equivalent. It is easy to check that this defines an equivalence relation on the class of all categories.

We restrict our interest to module categories, so the functors between such categories are additive.
Thus for two such categories to be equivalent there must be an additive equivalence from one to the other.

Two rings R and S are said to be Morita equivalent, abbreviated R ~ S, if R-Mod =~ S-Mod,
i.e., in case there are additive equivalences between these categories of modules. In [4, Corollary 22.3]
it is shown that the categories R-Mod and S-Mod are equivalent if and only if Mod-R and Mod-S are
equivalent.

These categorial equivalences, preserve many properties such as, projectivity, injectivity, simplicity,
semisimplicity, finitely generated, finitely cogenerated, Artinian, Noetherian, indecomposable, as shown
in [4, Proposition 21.6 & 21.8].
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