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Abstract

Diffusion Weighted (DW) MRI is a medical imaging modality which can be used to model the dis-
placement of water molecules as they diffuse through the brain, allowing the microstructural architecture 
of brain tissues to be explored in vivo. This technique has been widely applied to the study of many 
brain pathologies. However, the presence of extracellular free water affects the diffusion 
measurements, potentially leading to wrong interpretation about the underlying microstructural 
changes. Free-water elimination (FWE) is an alternative to more traditional approaches to model DWI 
data, which divides the signal into an extracellular compartment (which depending on tissue type can be 
isotropic) representing free water and another compartment representing tissue (usually anisotropic). A 
recent method by Neto Henriques, et al, to estimate free water fraction using multiple diffusion-
weighting shells has been shown to reduce the bias in parameter estimates. However, as clinical 
protocols often use a single diffusion-weighting (single-shell data) to reduce exam times, it becomes 
relevant to investigate if introducing prior knowledge in the estimation, as proposed in the work of 
Pasternak, et al, could enable reliable free water elimination when applied to single-shell data.

The goal of this project is to compare the performance of these two free water elimination algorithms 
when applied to the same data. A large dataset of multi-shell DWI data was acquired as part of a 
longitudinal study led by the Norwegian University of Science and Technology (NTNU) in Trondheim. 
This dataset includes 78 healthy controls. The data was pre-processed and the multi-shell algorithm 
applied to eliminate free water contamination. In this project, the same data was processed after removal 
of the high diffusion-weighting shell, by applying an open-source implementation of the single-shell 
algorithm presented on the work of Golub, et al.

The methods used are fully detailed in this work, including the participants, image acquisition and 
image preprocessing phases. Tract-based spatial statistics (TBSS) were used for registration and align-
ment of images for all studied parameters and voxelwise statistics was performed in order to learn which 
voxels were significantly d i fferent b e tween i mages p rocessed w i th t he t wo a  l gorithms. W hite matter, 
cerebral cortex and subcortical masks were used to understand how the algorithms behave at a regional 
level.

The results include a comparison of the original data used, where differences can be observed and 
discussed. The statistical results - corrected p-value images for each parameter - are presented and dis-
cussed: considering the multishell algorithm as gold standard, for both fractional anysotropy (FA) and 
free water (FW) the singleshell algorithm seems to underestimate the white matter values and overes-
timate the gray matter values. For mean diffusivity (MD), it is the opposite: the single-shell 
algorithm seems to overestimate the white matter values and underestimate the gray matter values. 
These results are supported by further analysis, where each subject images for all parameters (FA, MD 
and FW) and for both algorithms (single and multi-shell) was used to get an average value of the voxels 
(excluding null values from this average), in order to understand how these values differ according to the 
algorithm used. These results, presented as boxplots for the regions being studied, also indicate that the 
values for both

i



ii

algorithms are significantly different in almost all regions and parameters.
This study allows to understand the FWE-DTI application in single-shell data. The comparison with 

the multi-shell algorithm for FA and FW showed an underestimaion of WM values and overestimation 
of GM values. For MD, the values are conditioned by the prior and overestimated for all tissue type. 
Besides, the values obtained with the single-shell algorithm are considered significantly different from 
the ones obtained with multi-shell agorithm for both WM and GM in most parameters and regions.
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Resumo

A ressonância magnética de difusão (Diffusion-Weighted Magnetic Resonance Imaging, dwMRI)
é uma categoria de imagem médica que pode ser usada para modelar a deslocação de moléculas de
água que se difundem pelo cérebro, permitindo a exploração da arquitetura microestrutural dos tecidos
cerebrais in vivo - o contraste das imagem de difusão reflete a diferença da taxa de difusão entre os
tecidos. Num meio livre, o movimento das moléculas não tem preferência direcional e é classificado
como isotrópico. No entanto, no tecido biológico, as moléculas de água são constantemente restringi-
das por obstáculos como membranas celulares e macromoléculas - neste caso, a difusão é designada
anisotrópica. A imagem por tensor de difusão (diffusion tensor imaging, DTI) é uma modificação da
dwMRI que permite representar vetores correspondentes à intensidade e direção do movimento da água
nos tecidos, para caracterizar os efeitos anisotrópicos da difusão no tecido biológico, o que não é possı́vel
com uma única imagem de difusão. Esta técnica de imagiologia tem sido amplamente aplicada ao estudo
de muitas patologias cerebrais, nomeadamente a doença de Parkinson, doença de Alzheimer, alterações
na substância branca após acidente vascular cerebral grave, esquizofrenia, tecido peritumoral, bem como
diferenças na substância branca devidas à idade, entre outros.

O esquema de amostragem é um fator essencial que dita a qualidade de reconstrução da imagem de
difusão. O termo ”single-shell” refere-se a um esquema de amostragem uniforme (em formato esférico)
de uma coleção de pontos com um único valor de ponderação da difusão (”b-value”); já o termo ”multi-
shell” implica 2 ou mais esferas. Embora as vantagens dos esquemas ”multi-shell” com um b-value
máximo mais alto (≥ 2000s/mm2) tenham já sido exploradas por autores como Christiaens et al, 2018,
e estes esquemas sejam, em alguns casos, necessários, os protocolos clı́nicos impõem, por norma, um
esquema de amostragem DTI tı́pico ”single-shell” com um único ”b-value” (≤ 1200s/mm2) e cerca de 30
amostras. Neste sentido, é relevante investigar se a introdução de informação prévia no modelo proposto
no trabalho de Pasternack, et al, 2009 poderia permitir a eliminação eficaz de água livre quando aplicada
a dados ”single-shell”.

A presença de água livre (free water, FW) extracelular também pode afetar a qualidade dos
parâmetros de difusão. A FW pode causar alterações nas medidas de difusão, e consequentemente levar
a interpretações erradas sobre as mudanças microestruturais subjacentes. A eliminação de água livre é
uma alternativa às abordagens mais tradicionais para modelação de dados de imagens de difusão, que
divide o sinal num compartimento extracelular isotrópico - isto é, a água livre - e um compartimento
anisotrópico, que representa o tecido.

Os algoritmos de estimativa/eliminação de FW para corrigir as medidas de difusão afetadas são hoje
um tema em exploração. Uma maneira de abordar o problema é modificar o modelo DTI1 (diffusion
tensor imaging) padrão, largamente utilizado, e adicionar um segundo compartimento que representa a
componente isotrópica - de forma a que a fração FW seja um parâmetro adicional a ser estimado. Hoy et

1Algoritmo padrão utilizado em imagens de difusão que permite a representação de vetores correspondentes à força e direção
do movimento da água nos tecidos.
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al., 2014, fizeram alteraçoes num modelo de regressão linear (Weighted Linear Least Squares) no sentido 
de torná-lo compatı́vel com o modelo de dois compartimentos. Neto-Henriques et al., 2017 desenvolveu 
mais tarde uma implementação deste algoritmo. No entanto, este algoritmo aplica-se a dados ”multi-
shell”, que são menos comuns em ambiente clı́nico, uma vez que implicam tempos de aquisição mais 
longos - se o número de direç ões por shell permanecer o mesmo, uma aquisição de dois olevaria mais 
tempo. Portanto, a nı́vel clı́nico, as aquisiç ões ”single-shell” (normalmente adquiridas com b = 1000s/
mm2) são preferidas - o que levou Pasternak et al., 2009 a propor e implementar as estratégias para dados 
”single-shell”: este algoritmo consiste em adicionar restriç ões espaciais aos dados e realizar um método 
Gradient Descent (GD) de forma a que seja possı́vel obter uma solução única. Golub et. al, 2018 fez 
modificaç ões nas várias etapas do algoritmo com o intuito de melhorar a robustez da técnica.

O objetivo deste projeto é comparar o desempenho desses dois algoritmos de eliminação de água livre 
(DTI para multi-shell, e o algoritmo para dados single-shell criado por Golub et. al) quando aplicados 
aos mesmos dados. Um grande conjunto de dados de difusão ”multi-shell” foi adquirido como parte 
de um estudo pela Universidade Norueguesa de Ciência e Tecnologia (NUST) em Trondheim, Noruega. 
Este conjunto de dados inclui 78 controlos saudáveis. Os dados já foram pré-processados e o algoritmo 
”multi-shell” foi aplicado para eliminar a água livre. Neste projeto, os mesmos dados serão processados 
após a remoção da camada de alta difusão, através da implementação do algoritmo ”single-shell” do 
trabalho de Golub et. al, 2018 . Os resultados do algoritmo ”single-shell” serão comparados com os 
resultados do algoritmo ”multi-shell” (atualmente o estado da arte na área) para os mesmos dados, a fim 
de avaliar a eficácia dos indicadores de difusão estimados pela abordagem ”single-shell”.

Os métodos utilizados estão detalhados neste trabalho, incluindo os participantes, a aquisição de 
imagens e o pré-processamento das imagens utilizadas. Uma ferramenta de estatı́stica espacial (TBSS, 
tract-based spatial statistic) foi usada para registo e alinhamento de imagens para todos os parâmetros 
estudados e estatı́stica aplicada a voxéis (voxelwise statistics) foi realizada com o intuito de identificar 
quais os voxéis considerados significativamente diferentes entre as imagens em que foi implementado o 
algoritmo ”multi-shell” e as que foram corridas com o algoritmo ”single-shell”. Os pârametros estudados 
neste trabalho incluem: fração anisotrópica (FA, fractional anysotropy), água livre (FW) e difusividade 
média (MD, mean diffusivity). Máscaras da substância branca, córtex cerebral e região subcortical foram 
usadas para entender o comportamento dos algoritmos a nı́vel regional.

Os resultados incluem uma comparação das imagens originais utilizadas, onde algumas diferenças 
são identificadas e discutidas. Os resultados estatı́sticos - imagens de valor-p (também chamado de nı́vel 
descritivo ou probabilidade de significância) corrigidas para cada parâmetro -  s ão apresentados e  dis-
cutidos: considerando o algoritmo ”multi-shell” como gold-standard, tanto para FA quanto para FW o 
algoritmo ”single-shell” parece subestimar os valores da substância branca e sobrestimar os valores da 
substância cinzenta. Para MD, é o oposto: o algoritmo ”single-shell” parece sobrestimar os valores da 
substância branca e subestimar os valores da substância cinzenta. Estes resultados são suportados por 
uma análise mais aprofundada, onde as imagens de cada sujeito para todos os parâmetros (FA, MD, FW) 
e para ambos os algoritmos (”single” e ”multi-shell”) foram usadas para obter uma média do valor dos 
voxéis, com o intuito de identificar quais os valores significativamente diferentes entre os dois algoritmos 
(”single” e ”multi-shell”). Esses resultados, apresentados como boxplots (ou caixa de bigodes) para cada 
região em estudo, também parecem indicar que os valores para ambos os algoritmos são significativa-
mente diferentes em quase todas as regiões e parâmetros.

Este estudo debruça-se sobre a aplicação de FWE-DTI em dados ”single-shell”. A comparação com
o algoritmo ”multi-shell” para FA e FW mostrou uma subestimação dos valores de matéria branca e
sobrestimação dos valores de matéria cinzenta. Para MD, os valores são condicionados pelo ”prior” e
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sobrestimados para todos os tipos de tecido. Além disso, os valores obtidos com o algoritmo ”single-
shell” são considerados significativamente diferentes dos obtidos com o algoritmo multi-shell tanto para 
matéria branca quanto para matéria cinzenta em quase todos os parâmetros e regiões.

Palavras-chave
Ressonância Magnética ponderada por difusão - Água livre - Single/Multi-shell - Difusividade média - 
Anisotropia fracionária
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Chapter 1

Introduction

1.1 Motivation, structure and goal of the current work

1.1.1 Motivation

The term free water (FW) refers to water molecules that do not flow and are not constrained by their 
surroundings. Free water is found in the human brain as cerebrospinal fluid (CSF), which is confined to 
the ventricles and the brain parenchyma. Due to processes such as tumors, brain trauma, or hemorrhage 
that cause ruptures in the blood–brain barrier, free water may also accumulate in the form of vasogenic 
edema within the brain parenchyma in the extracellular space [1][2].

CSF contamination is a type of partial volume effect that occurs in voxels shared by CSF and brain 
tissue along the contour lines of the ventricles and around the perimeters of the brain parenchyma [3][4]. 
As a result, CSF-contaminated voxels have decreased fractional anisotropy (FA) values. A white mat-
ter voxel contaminated by free water will most likely be represented by a relatively isotropic diffusion 
tensor, preventing it from being classified as white m atter. CSF contamination has been shown to dis-
turb the delineation of fibers that run near the ventricles, such as the fornix, cingulum, and parts of the 
corpus callosum [5][6], and to impact the comparisons of DTI-related quantities using voxel-based and 
histogram analysis [7].

Both pathological neuro degeneration or healthy aging of the brain can cause ventricle augmentation 
and degeneration processes and increase partial volume effects (PVE). Thus, correcting for FW contam-
ination is also critical in studies involving elderly subjects.

1.1.2 Structure

This work starts by introducing the teorical concepts necessary to understand the diffusion processes 
that happen in the brain and how they are used in magnetic ressonance imaging (MRI) - including the 
diffusion phenomenon, diffusion tensor imaging and diffusion tensor. The mathematics behind the 
scalar invariants that are used to characterize the anisotropic effects of diffusion on biological tissue 
is also explored. This is followed by the introducion of free water elimination DTI (FWE-DTI) and 
the alterations necessary to the mathematical equations behind the single-shell algorithm in order to 
separate the water and tissue components1. At this point, the state-of-the-art is presented and the 
context of evolution of FWE-DTI is further explained. Next, the difference between a single-shell and 
multi-shell schemes is introduced, followed by the introduction of regularized gradient descent 
fitting procedure

1In his work, Golub, et al, 2018, further explores the mathematical context which lead him to the implementation of the 
algorithm.
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1. INTRODUCTION

that allows to apply the FWE-DTI to single-shell data. This first introdutory chapter is followed by the 
methods used in this work, from the characerization of the participants of the dataset images, the details 
of image acquisition and processing and the process of statistical analysis used for the comparison of the 
algorithms.

The results include a comparison of the original data used, where differences can be observed and 
discussed. The statistical results - corrected p-value images for each parameter (FA, FW and MD) -
are presented and discussed and are supported by further analysis, presented as boxplots for the regions 
being studied.

1.1.3 Goal

The goal of this project is to compare the performance of two free water elimination algorithms 
when applied to the same data. A large dataset of multi-shell DWI data has been acquired as part of 
a longitudinal traumatic brain injury study led by the NTNU in Trondheim [8]. This dataset includes 
78 healthy controls whose data has already been pre-processed (further explained), and the multi-shell 
algorithm applied to eliminate free water contamination. In this project, the same data will be processed 
after removal of the high diffusion-weighting shell, by applying an open-source implementation of the 
single-shell algorithm [9]. The results will be compared to the output of the multi-shell algorithm (cur-
rently the state-of-the art in the field) for the same data, in order to assess the reliability of the diffusion 
metrics estimated by the single-shell approach.

1.2 Diffusion-Weighted Magnetic Resonance Imaging

1.2.1 Diffusion Phenomenom

The thermal motion of all particles (liquid or gas) at temperatures above absolute zero is designated 
molecular diffusion. Metabolism and respiration of living beings rely in part upon diffusion (in addition 
to bulk or active processes) given that in cell biology, diffusion is a main form of transport of neces-
sary materials such as aminoacids within cells [10]. In a free medium, this movement of molecules has 
no directional preference and it is classified as isotropic, represented in Figure 1.1 A. However, in bio-
logical tissue, water molecules are constantly being hindered by obstacles such as cell membranes and 
macromolecules - in this case, the diffusion is anisotropic2 and no longer Gaussian (depending on the 
observation time), represented in Figure 1.1 B. As a consequence, the diffusion coefficient (D) depends 
on the direction of measurement and the geometry of the underlying structures.

2Anisotropy is the property of a material which allows it to change or assume different properties in different directions
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1.2 Diffusion-Weighted Magnetic Resonance Imaging

Figure 1.1: Molecular diffusion, also known as brownian motion, is the phenomenon tof thermally induced molecular 
displacement in a fluid. Water molecules are constantly moving. A: Diffusion is isotropic when motion is unconstrained, 
which means that motion occurs equally and randomly in all directions. B: When molecular motion is restricted, such as in 
white-matter tracts, diffusion is anisotropic, which means that motion occurs predominantly in one direction [11].

Unrestricted isotropic diffusion, such as that found in CSF-filled regions, is represented by a sphere 
with a radius close to Dw = 3 × 10-3mm2; diffusion is still isotropic in randomly organized tissue, but it is 
limited by D<Dw (smaller sphere); in highly organized structures like WM, diffusion is represented by 
an elongated ellipsoid aligned with the orientation of the underlying fibre.

1.2.2 Diffusion Tensor Imaging

Diffusion-Weighted Magnetic Resonance Imaging (dwMRI) is a type of conventional MRI in which 
the diffusion of the water molecules is exploited to visualize internal microstruture. The image contrast 
in DWI reflects the difference in rate of diffusion between tissues [12].

Diffusion is the foundation of dwMRI. Because dwMRI is performed at millisecond intervals, it 
collects information at the micrometre scale, making it sensitive to microstructural changes in the brain. 
The average displacement of water molecules along a specified direction can be determined by applying 
two magnetic field gradient pulses that impose a phase on each molecule based on its displacement. A 
phase distribution is generated for a population of water molecules in a single voxel, which reflects the 
displacement distribution. Figure 1.2 ilustrates a spin-echo diffusion weighted image sequence:
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1. INTRODUCTION

Figure 1.2: Simplified pulse diagram of a spin-echo diffusion-weighted image sequence. The diffusion gradients are shaded
orange (note that they are both positive since the 180-degree pulse between them reverses the phase). The addition of equal,
paired diffusion gradients to the standard spin-echo sequence causes moving protons to dephase. The degree of diffusion
weighting depends on the strength of the gradient (amplitude G and duration δ ) as well as the time spacing between them (∆) -
this is referred to as the b-value, further discussed. (Adapted from Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 21753).

When water molecules are free to move, fast diffusion processes lead to a broader range of displace-
ments - hence a wider distribution of phases, which results in higher loss of signal coherence and the
radio frequency signal detected by the scanner is weaker, which creates a darker image. Conversely, if
there is biological tissue constraining the water molecules, diffusion becomes slower, phase spread is
narrower and less Gaussian, resulting in less signal attenuation and a brighter image. The images ac-
quired are DW: each voxel has a signal attenuation that reflects the diffusion of water molecules in that
voxel, which in turn is dependent on tissue properties and micro-structure. The contrast is determined by
association of characteristics ilustrated in Fig. 1.2: the magnitude, G, the duration, δ , distance between
the gradient pulses, ∆, and the proton gyromagnetic ratio, γ , into a single main parameter of acquisition,
the b-value:

δ

3
) (1.1)b = γ2

δ 2G2(∆−

The attenuation of the signal can be predicted using the b-

value:S = S0 ∗ exp(−b∗ADC) (1.2)

Here, apparent diffusion coefficient (ADC) replaces Dw given that the measured diffusion depends on
the acquisition parameters and on tissue barriers - it is not the true diffusion coefficient of water. S0 is
the signal with no diffusion sensitization (i.e signal for b = 0 s/mm2).
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1.2 Diffusion-Weighted Magnetic Resonance Imaging

1.2.3 Diffusion Tensor

Diffusion tensor imaging (DTI) is a modification of DWI that enables the depiction of vectors corre-
sponding to the strength and direction of water movement in tissues, usually with a second-order tensor3,
in order to capture the anisotropic effects of diffusion in biological tissue, which is not possible with a
single diffusion-weighted (DW) image. DTI has the potential to increase our understanding of neural
connectivity and how specific brain regions interconnect [13].

The partial volume effect (PVE) arises in volumetric images, such as DTI, when there are crossed
nerve fibres, presence of inhibited extracellular water or more than one tissue type occurs in a voxel. In
such cases, the voxel intensity depends not only on the imaging sequence and tissue properties, but also
on the proportions of each tissue type present in the voxel. As a result, DTI-derived scalar measurements
are not always easy to interpret, which can lead to questionable results [14].

To overcome these problems, DTI requires a minimum of six dwMRI images in linearly independent
directions to compute six separate diffusion components for each voxel, using a symmetric 3 x 3 tensor
to model diffusion. The diffusion tensor can be broken down into several metrics, each of which contains
more data about brain microstructure than a single dwMRI image.

1.2.4 The effective Diffusion Tensor and Scalar invariants

After model fitting, meaningful quantities can be estimated, including diffusion tensor and fractional
anisotropy in DTI [15].

In the work of Basser et. al [16], the signal decay (Sk) and effective diffusion tensor are defined as
follows:

Sk = S0 ∗ exp(−b∗qT
k ∗D∗q) (1.3)

where S0 is the non diffusion-weighted signal, qk is the normalized direction (column vector) of the kth

applied gradient (b = 0 s/mm2), b is the weighting factor that controls the contrast and D is the effective
diffusion tensor:

[D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

] (1.4)

which can be visually represented by an ellipsoid. For isotropic diffusion, the diffusion tensor can be
imagined as a sphere; conversely, when the diffusion tensor is strongly anisotropic due to complex tissue
confinements, it can be visualized as an ellipsoid with its major axis parallel to the direction of highest
diffusivity.

Another measure obtained from DTI data that has been used to investigate differences in brain struc-
tural integrity is mean diffusivity (MD), which describes the rotationally-invariant magnitude of water
diffusion within brain tissue:

MD =
λ1 +λ2 +λ3

3
(1.5)

The eigenvalues of D are represented by λ1 > λ2 > λ3. MD is generally similar between different subjects
across WM and GM - at values close to 0.8 × 10−3mm2s−1, and close to Dw (Dw = 3 × 10−3mm2s−1)
in CSF. An increase in overall diffusion typically consists of increased water content (i.e., edema and
inflammation) and thus has relatively less resistance, and therefore, higher diffusion rates.

3A second-order tensor describes a mapping that takes one vector as input, and gives one vector as output
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The degree of anisotropy of a diffusion process is described by fractional anisotropy (FA), which is
a scalar value between zero and one. A value of zero indicates that diffusion is isotropic, which means
that it is unrestricted (or equally restricted) in all directions. The commonly used fractional anisotropy
index can be regarded as the standard deviation of eigenvalues to the mean diffusivity:

FA =

√
3
2
∗

√
(λ1 −MD)2 +(λ2 −MD)2 +(λ3 −MD)2

λ 2
1 +λ 2

2 +λ 2
3

(1.6)

1.3 Free Water Elimination DTI (FW-DTI)

The goal of FWE-DTI is to separate the water and tissue components of the signal, which is done by
adding a second compartment to equation 1.3, as proposed by Pierpaoli et al., 2004 [17]:

Sk = S0 ∗ [(1 − fw ) exp(−b ∗ qk
T ∗ Dt ∗ q) + fw ∗ exp(−b ∗ Dw)] (1.7)

Where 0 < f w < 1 quantifies the FW volume fraction and D t is the corrected diffusion tensor. For single-
shell data, fitting equation 1.7 to estimate the seven model parameters (six diffusion tensor elements and 
the volume fraction) is an ill posed problem because for every fixed value of free water, a viable D t can 
be obtained with linear regression. As a result, selecting the optimal pair of estimations (FW, Dt ) (global 
minimum) is not easy, and many believe it is impossible. In his work, Pasternak et al. [18] used local 
spatial constraints that enforce smooth variation of the diffusion tensor resulting in stable FW-DTI fits in 
single-shell data. In the case of multi-shell data, however, there is enough information to fit D t and FW 
at the same time. While anisotropic tissue effects are more proeminent at high b-values, isotropic FW 
effects are more evident at low b-values.

1.4 State-of-the-Art

FWE-DTI has attracted a huge interest to characterize diffusion alterations in the context of Parkin-
son’s disease [19], Alzheimer’s disease [20], age-related differences in white matter [21], white matter 
alterations following severe stroke [22], schizophrenia [23], peritumoral tissue [24], among others. These 
studies suggest that FWE-DTI is fundamental to decouple changes associated with microstructural al-
terations from increases in partial volume near interfaces between tissue and CSF in particular, partial 
volume increases associated with gross tissue atrophy and ventricular enlargement. Moreover FWE-DTI 
has the advantage of providing a FW fraction estimate, a potential surrogate marker for edema.

The enthusiasm in developing FW estimation/elimination algorithms in order to correct the biased 
diffusion measures obtained with standard DTI is increasing. An easy way to approach it is to modify the 
standard DTI model and add a second compartment that accounts for the isotropic component - the FW 
fraction becomes an additional parameter to be estimated. Hoy et al., 2014 [25], performed a modified 
version of Weighted Linear Least Squares (WLLS) on a multi-shell (at least two non-zero different 
diffusion weightings) dwMRI acquisition to fit the two compartment model. Convergence was stabilized 
and diffusion measures corrected for FW were obtained due to the extra information provided by the 
multi-shell data. An open source implementation of this algorithm was later optimized by Henriques et 
al., 2017 [26]. However, multi-shell datasets are less common in a clinical environment, due to longer 
acquisition times (since the protocols are typically optimized for DTI, if the number of directions per shell 
remains the same, a two shell acquisition will take twice as long). Therefore, single-shell acquisitions
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1.5 Single-shell VS Multi-shell

(typically acquired with b = 1000s/mm2) are preferred. Given that, Pasternak et al., 2009 [18] proposed 
and implemented the single-shell strategies: this algorithm consists of adding spatial constraints to the 
data and performing a Gradient Descent (GD) method in order to help convergence of the ill-posed 
problem. In his work, Golub et. al [9] made modifications to each step of the algorithm as an attempt 
to improve the robustness technique. All developments performed were tested in both synthetic and in 
vivo data and then integrated into the open-source platform Dipy. The performance of the algorithm 
was also compared to the performance of the open source algorithm for multi-shell data implemented by 
Henriques et al., 2017 [25]. In [9], the mathematical framework behind the implemented algorithm is 
presented.

1.5 Single-shell VS Multi-shell

In DWI, signal measurements are a limited number of samples of the diffusion signal in 3D q-space. 
Reconstruction in dMRI entails fitting the signal samples by using a well-designed model, including DTI 
[15].

The optimal sampling scheme yields the best reconstruction quality. A single spherical shell is a 
uniformly sampled spherical manifold with a single diffusion weighting (b-value) where a multi shell 
includes two or more spherical shells. A typical DTI sampling scheme is a single-shell scheme with 
about 30 samples and a low b-value (≤ 1200s/mm2), while multi-shell schemes are preferred (or 
necessarily needed in some cases) with a second shell of b-value (≤ 2000s/mm2).

Because the FWE-DTI fitting is only well suited for multi-shell acquisitions, a regularised gradient 
descent (RGD) method was previously implemented to allow it to be used to single-shell data. However, 
the reliability of the RGD method has been poorly assessed. Golub et. al [27] conducted a simulation 
study that aimed to quantify the specificity of FWE-DTI procedures on single and multi-shell data.

1.6 Regularized Gradient Descent fitting procedure

Previous studies suggested utilising RGD techniques with precise parameter initializations to fit the 
FWE-DTI model to single-shell data [18][28]. Golub et. al [9] set tissue MD and FA estimates to zero 
when the refined tissue is below 0.1, since FWE-DTI estimates are not well defined for voxels containing 
only FW.

Three different strategies were tested to initialize fw (free water fraction, (0 < fw ≤ 1)) in the RGD 
algorithm: a) initialization based on the T2-weighted images, b) initialization based on a tissue’s Mean 
Diffusivity prior and c) hybrid initialization, which are further explained in [9]. Particularly, a) ini-
tialization based on T2-weighted information uses priors on the typical pure FW and tissue signals, b) 
initialization based on MD assumes a constant prior for MDt (MDt is the fixed tissue’s MD prior), while 
c) the hybrid initialization is just a log interpolation between the former techniques. It was shown that the 
plausibility of FWE-DTI initializations is the main determinant factor for the plausibility of FWE-DTI 
single-shell estimates. For the case of fixed ground truth M Dt = 0 .6µm2ms−1 and v arying f w, the ini-
tialization based on MDt shows the smaltest deviations to the ground truth line, and was therefore used 
in the present work. The mathematical context of this work and the theory behind how the implemented 
algorithm works are detailed in [9].
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Chapter 2

Methods

2.1 Participants

For the current study, a dataset of multi-shell DWI data of 77 healthy controls was used, previously 
acquired as part of a longitudinal traumatic brain injury study [8] led by the NTNU (Norwegian Uni-
versity of Science and Technology) in Trondheim. This dataset included 47 females and 30 males, ages 
ranging from 16 to 60 years old with education status that ranges from below GCSE (General Cer-
tificate o f S econdary E ducation) t o u niversity d e grees. E xclusion c riteria w e re: ( 1) n on-fluency in  the 
Norwegian language; (2) having a pre-existing severe neurological, psychiatric, somatic, or substance 
use determined to be severe enough to interfere with outcome assessment; (3) having a prior history of 
a mild (e.g. prior traumatic lesions on CT1), moderate, or severe TBI; or (4) other major trauma. All 
participants, or their legally authorized representative, gave consent prior to participation.

2.2 Image Acquisition

MRI was acquired with a 3T Siemens Skyra system (Siemens Healthcare, Erlangen, Germany) with 
a 32-channel head coil. The image protocol consisted of a series of clinical MRI sequences, includ-
ing: three dimensional (3D) T1-weighted magnetization-prepared rapid acquisition with gradient echo 
(MPRAGE) and two dimensional (2D) diffusion weighted imaging (DWI) and others not used in the 
current project, but formerly specified [29]. T he T 1w M PRAGE s cans w ere o btained w ith e cho time, 
TE= 4.21ms, repetition time, TR= 2300ms, time to inversion, TI= 996ms, and a flip a n gle o f  9  de-
grees. T1w images consisted of 176 slices with isotropic 1mm3 voxels covering a FOV (field of view) of 
256x256. Diffusion weighted scans included four base line volumes (b= 0s/mm2) and 60 diffusion sen-
sitised volumes with two different b-values (b= 1000,2000s/mm2, same 30 directions each). To acquire 
DWI images (60 axial slices; FOV =96x96) with isotropic 2.5x2.5x2.5mm3 voxels, scanner parameters 
were set to TR= 8800ms and TE= 95ms. Additional b0 volumes with opposite phase encoding directions 
were acquired (same parameters). 
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2.3 Image processing

T1w images were N4 bias corrected and spatially normalised to T1w MNI template via affine and 
deformable registration, both using ANTs - Advanced Normalization Tools [30] and brain masks were 
computed, using a brain extraction tool (HD-BET2) [31]. Diffusion images were denoised via 
MPPCA3 (MRtrix3) [32] and corrected for Gibbs’ ringing artefacts (MRtrix4)[33]. Susceptibility 
distortions were estimated with topup5 (from FSL6) [34] by using an additional b0 volume with opposite 
phase encoding direction. Head motion and eddy current artefacts were corrected for via eddy7 (FSL) 
[35]. Lastly, B0 magnetic field inhomogeneities8 were corrected (MRtrix3) [30].

The preprocessed, artefact corrected DWI images were used to compute anisotropic power maps, 
which have a similar contrast to T1w MPRAGE images. For each subject, anisotropic powermaps were 
aligned with T1w using the neuroimaging tool ANTs. The found transformation was then used to project 
FA, MD maps and other DWI derived images to T1w space.

Brain masking was achieved by registering diffusion data to T1w scans of the same scan session 
(ANTs) [36] and backprojecting of the previously computed brain mask from T1w to diffusion space. 
Diffusion parameter (FA & MD) and free water (FW) maps were estimated both with single (b=0, 
1000s/mm2 volumes) [37][38] and multi-shell data (Dipy) [39][40].

2.4 Statistical analysis

For both datasets (single and multi) and all parameters we used one fixed pipeline.

2.4.1 Registration

The first s tep w as t o d o t he n ormalization o f t he c ontrols DWI i mages -  w hich a re i n t he native 
space - into standard stereotactic space (Montreal Neurological Institute, MNI) - in order to allow the 
performance of statistical tests.

Tract-based spatial statistics (TBSS) [41] was used for registration and alignment but not for statisti-
cal analysis. Furthermore, the process of building the common white skeleton characteristics of TBSS 
was not performed either. TBSS uses a template based on FA maps obtained with the DTI fit ( e.g. the 
FA images obtained using the function dtifit in FSL, which are not corrected for free-water), so in order 
to get the same contrast, the first input to TBSS registration steps were the DTI fit FA maps.

First, the images were slightly eroded and the end slices were set to zero (to remove likely outliers 
from the diffusion tensor fitting). Next, with nonlinear registration (FNIRT9), all FA images were aligned 
to a 1mm3 standard space: the FMRIB58 FA10image. Each subject’s FA image had the nonlinear trans-
form to the target and the affine transform to MNI152 space applied, resulting in a transformation of the

2Automated brain extraction of multisequence MRI using artificial neural networks
3Marcenko-Pastur PCA algorithm
4Advanced tools for the analysis of diffusion MRI data
5A tool for estimating and correcting susceptibility induced distortions
6Functional Magnetic Resonance Imaging of the Brain Software Library is a software library containing image analysis and

statistical tools for functional, structural and diffusion MRI brain imaging data
7A tool for correcting eddy currents and movements in diffusion data
8Normal magnets contain various magnetic field inhomogeneities, which is one of the sources effecting T2*. This results in

protons precessing at different Larmor frequencies and subsequently dephasing.
9Non linear registration intensity based for MRI brain exams.

10A high-resolution average of 58 well-aligned good quality FA images from healthy male and female subjects aged between
20-50
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original FA image into MNI152 space - which will be refered to as template space. Next, these were all 
merged into a single 4D image file (allFA) and the mean of all FA images was created, called meanFA. 
Here, the traditional pipeline was interrupted and a spatial filter was applied to these images in order to 
exclude from the mask voxels that have a value of zero for at least one of the subjects - null voxels are 
excluded because they do not represent the correct value in that part of the brain, and by including them 
in the statistical analysis, they will artificially lower the mean for the most affected group.

It is straightforward to apply TBSS to data diffusion-derived other than FA images - there was an 
interest in how MD or FW vary between the two different algorithms in this study. At this point, the 
images for all parameters (FA, MD, FW) and for both algorithms (single and multi-shell) were 
aligned to MNI152 space, the original nonlinear registration (using the original DTI-fit FA data) was 
applied to the new data and a 4D file statistics resulting of the merging of all subjects’ warped data was 
created (for each parameter and algorithm). Finally, all data were prepared for voxel-wise statistical 
analysis over the original (DTI-fit) FA space.

2.4.2 Voxelwise statistics

Voxel-wise analysis across the single and multi-shell images was performed using permutation-
based, voxel-wise nonparametric testing [42] implemented as the “randomise” function in the FSL 
package, in order to investigate which voxels are significantly different between the two groups. 
The number of permutations in all tests was equal to 2,000. Statistical threshold p < 0.05, after 
correction for multiple comparisons with TFCE(Threshold-Free Cluster Enhancement, identical to 
cluster-based thresholding, but more robust in general and the initial random cluster-forming 
threshold is unnecessary) was used during the analysis [43].

To run randomise, a design matrix file (design.mat) and contrasts file (design.con) are needed. In this 
case, each subject has exactly 2 measures (from the two different algorithms, for each parameter) and 
the average difference between these two measures across subjects is of interest. The Glm GUI11[44], 
which allows the specification of designs, was used to generate a single-group paired difference (Paired
T-Test) matrix for the 77 controls.

A similar voxelwise analysis procedure was applied to the MD and FW images.

2.4.3 Analysis of regional values

In order to understand how the algorithms behave at a regional level, white matter, cerebral cortex
and subcortical masks were obtained by mapping the Harvard-Oxford cortical and subcortical structural
atlases [45] 21 regions (1 mm resolution) to the p-value maps produced by randomise in MNI1521 space.
The ventricular mask was excluded.

11General linear model graphical user interface
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Left hemisphere Right hemisphere Mask
1 Cerebral white matter 12 Cerebral white matter White matter
2 Cerebral cortex 13 Cerebral cortex Cerebral cortex
3 Lateral ventricle 14 Lateral ventricle Ventricular
4 Thalamus 15 Thalamus

Subcortical

5 Caudate 16 Caudate
6 Putamen 17 Putamen
7 Pallidum 18 Pallidum
8 Brain-stem 19 Hippocampus
9 Hippocampus 20 Amygdala
10 Amygdala 21 Accumbens
11 Accumbens

Table 2.1: 21 regions of the Harvard-Oxford cortical and subcortical structural atlas and the corresponding masks created: white
matter (regions 1 + 12); cerebral cortex (regions 2 + 13) and subcortical (regions 4 to 11 + 15 to 21)
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Chapter 3

Results and discussion

3.1 Visual comparison of data run with the multi-shell algorithm and the
single-shell algorithm

In order to better understand the difference between images after the implementation of multi-shell
algorithm and the single-shell algorithm, Figures 3.1-3.3 are a side-by-side comparison of the two algo-
rihms applied to the same randomnly chosen subject, for all parameters studied (FA, MD, FW), respec-
tively.

Figure 3.1: Comparison of DTI images for FA values of a random subject, after implementation of the multi-shell (top section
of the figure) and single-shell algorithm (bottom of the figure). For this specific case, FA values range between 0-0.637 when
processed with the multi-shell algorithm and between 0-0.613 when processed with the single-shell algorithm.
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Figure 3.2: Comparison of DTI images for FW values of a random subject, after implementation of the multi-shell (top section
of the figure) and single-shell algorithm (bottom of the figure). For this specific case, FW values range between 0-0.808 when
processed with the multi-shell algorithm and between 0-0.817 when processed with the single-shell algorithm.

Figure 3.3: Comparison of DTI images for MD values of a random subject, after implementation of the multi-shell (top 
section of the figure) and single-shell algorithm (bottom of the figure). For this specific case, MD values range between 0 − 
0.660µm2ms−1 when processed with the multi-shell algorithm and between 0 − 0.605µm2ms−1 when processed with the 
single-shell algorithm.

The ortho view (Figures 3.1-3.3) comprises three canvases, which display the overlays along three
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orthogonal planes. In the case of a NIFTI image which is oriented acording to the MNI152 template,
those canvases correspond to the sagittal, coronal, and axial planes. Figures 3.1-3.3 are a random sample
that allows a visualization of the original data used, and should not be generalized or used to draw
conclusions. However, it is possible to see that there are obvious differences in the images run with the
two algorithms - the maximum intensity value of the voxels, the location of the most and least intense
zones, how the voxels are perceived in the CSF zones (ventricles and perimeter of brain parenchyma).
Regarding figure 3.3, we can say that using initialization with MDt = 0.6µm2ms−1 conditioned the MD
images run with the single-shell algorithm and limited the range of values for this parameter to values
very close to this prior.

Upon obtaining the results in which the ventricles appear significantly different between both algo-
rithms (very clear in Figure 3.1), an anomaly was detected: if they are assigned the value 1 in the FW
parameter for both algorithms, one can assume that there are no significant differences in this region.
However, the differences in the ventricles may be due to the effect of normalization. The reason the FA
maps obtained with the DTI fit were used to do the normalization was because the corrected FA maps
(with the FWE) had zeros in certain areas (as explained in 1.6, MD and FA were considered zero for
values below 0.1), which does not happen with the DTI fit FA maps.

When comparing the FA maps with both algorithms (multi and single-shell) for the same subject, the
parenchyma presents many differences - which can be seen through statistics. The intensity of the FA
values in the ventricle (scale from 0 to 1) was supposed to be close to zero and that is not the case - some
voxels have unexpected high values. This can be explained as a PVE, in this case due to ”leakage” from
the subcortical region to the ventricles.

To make sure that the voxels set to zero from both algorithms are comparable (and that the differences
are not a result of corregistration), subjects maps both before and after registration were analysed. The
difference of the number of null voxels between both algorithms (for the same subject) is < 1% for FA
and MD, in both cases: images before corregistration (native space) and after corregistration (template
space). As to FW, comparison of the number of voxels with values > 0.99 for these parameters led to
the same conclusions: the difference between algorithms is < 1%, and was considered negligible. As
expected, the difference between algorithms is smaller after registration.

3.2 Statistical results

The results of the voxelwise analysis procedure ”randomise” are shown in the form of a corrected
p-value image for each parameter:
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Figure 3.4: Corrected p-value image for FA values: red-yellow corresponds to the multi>single test and blue-light blue gives
the multi<single test, both thresholded at .95 which shows significant clusters

Figure 3.5: Corrected p-value image for FW values: red-yellow corresponds to the multi>single test and blue-light blue gives
the multi<single test, both thresholded at .95 which shows significant clusters
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Figure 3.6: Corrected p-value image for MD values: red-yellow corresponds to the multi>single test and blue-light blue gives 
the multi<single test, both thresholded at .95 which shows significant c lusters. The red parts represented here correspond to 
the voxels where the p-values are lower and closer to the 0.95 threshold for the case of the multi>single test.

The difference is widespread throughout the brain and the only systematic difference visually is gray 
matter vs white matter.

Considering the multishell algorithm as gold standard, for both FA and FW the singleshell algorithm 
seems to underestimate the white matter values and overestimate the gray matter values. For MD, it is 
the opposite: the singleshell algorithm seems to overestimate the white matter values and underestimate 
the gray matter values. Given that we are using a prior based on MD, this can explain the overestimation 
of the singleshell algorithm for this parameter (further analysed ahead).

3.3 Further analysis

Each subject images for all parameters (FA, MD, FW) and for both algorithms (single and multi-
shell) was used to get an average value of the voxels (excluding null values from this average), in 
order to understand how these values differ according to the algorithm used. The following 
boxplots display the distribution of data based on a five number summary (minimum, first quartile 
(Q1), median, third quartile (Q3), and maximum). In each box, the central mark indicates the median, 
and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The 
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually using dots. A second graphic was created depicting lines that match values of the same 
subject for the two algorithms, making it possible to see if there is a common tendency between 
algorithms.
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Figure 3.7: Distribuition of the average FA values of each subject for both algorithms in white matter. The second graphic
depicts lines that match FA values of the same subject for the two algorithms in order to evaluate tendencies between algorithms.

Figure 3.8: Distribuition of the average FA values of each subject for both algorithms in the cerebral cortex. The second
graphic depicts lines that match FA values of the same subject for the two algorithms in order to evaluate tendencies between
algorithms.
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Figure 3.9: Distribuition of the average FA values of each subject for both algorithms in the subcortical region. The second
graphic depicts lines that match FA values of the same subject for the two algorithms in order to evaluate tendencies between
algorithms.

Regarding the distribution of the average FA values of each subject, Figures 3.7 and 3.8 corroborate
the results of the voxelwise analysis as they show that the single-shell algorithm is underestimating the
white matter values, and overestimating the grey matter (cerebral cortex) values. For the subcortical
region, the median is similiar for both algorithms but the range of the distribution is much smaller in
the single-shell algorithm. Regarding the second graphic, it is possible to see a tendency of subjects
with higher averages in multi-shell algorithm corresponding to subjects with higher values in the single-
shell algorithm for WM and for the cerebral cortex. However, for subcortical region there seems to be
a number of subjects that present lower averages on the multi-shell algorithm and correspond to higher
averages on the single-shell algorithm (which can be depicted by ”crossing” lines in the second graphic
of Figure 3.9). One of the things that is noticeable is that for both WM and the cerebral cortex, the median
of the single-shell boxplot is outside the range of values for the 25th-75th percentile of the multi-shell
boxplot. This can indicate that they are signicantly different, which meets the results of the statistical
analysis.

Figure 3.10: Distribuition of the average FW values of each subject for both algorithms in white matter. The second graphic de-
picts lines that match FW values of the same subject for the two algorithms in order to evaluate tendencies between algorithms.
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Figure 3.11: Distribuition of the average FW values of each subject for both algorithms in the cerebral cortex. The second
graphic depicts lines that match FW values of the same subject for the two algorithms in order to evaluate tendencies between
algorithms.

Figure 3.12: Distribuition of the average FW values of each subject for both algorithms in the subcortical region. The second
graphic depicts lines that match FW values of the same subject for the two algorithms in order to evaluate tendencies between
algorithms.

When analysing the distribution of the average FW values of each subject, Figures 3.10 is similar to
Figure 3.7 and shows that the single-shell algorithm is underestimating the white matter values, which
can be observed in the statistical results. For the cerebral cortex, there is a slight overestimation of the
grey matter FW values by the single-shell algorithm, but the boxplots for both algorithms look very
similar. When analysing the second graphic of Figure 3.11 the lines that match the average of the same
subject for both algorithms tend to be horizontal and without ”crossing lines”, meaning that the average
value for the same subject is quite similar. For the subcortical region, the range of the distribution is
much smaller in the single-shell algorithm and in the second graphic, this region seems to be the one that
presents more ”crossing lines”. Again, for WM the median of the single-shell boxplot is outside of the
range of values of the 25th-75th percentile of the multi-shell boxplot, which can indicate that they are
signicantly different.
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3.3 Further analysis

Figure 3.13: Distribuition of the average MD values of each subject for both algorithms in white matter. The second graphic
depicts lines that match MD values of the same subject for the two algorithms in order to evaluate tendencies between algo-
rithms.

Figure 3.14: Distribuition of the average MD values of each subject for both algorithms in the cerebral cortex. The second
graphic depicts lines that match MD values of the same subject for the two algorithms in order to evaluate tendencies between
algorithms.
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3. RESULTS AND DISCUSSION

Figure 3.15: Distribuition of the average MD values of each subject for both algorithms in the subcortical region. The second 
graphic depicts lines that match MD values of the same subject for the two algorithms in order to evaluate tendencies between 
algorithms.

The comparison of WM values for both algorithms was the most difficult from the beginning. As we 
can observe in Figures 3.13-3.15, for the regions under study (WM, cerebral cortex and subcortical re-
gion), the single-shell boxplot is outside the range of values of the 25th-75th percentile of the multi-shell 
boxplot, which can indicate that they are signicantly different, meeting the statistical analysis results. 
The single-shell boxplot seems to have a very thin distribution of values around the MDt = 0.6µm2ms−1

value used as a fixed ground truth for the initialization of the RGD for WM and the subcortical region, 
and between 0.52 − 0.54µm2ms−1 for the cerebral cortex. According to this, the single-shell algorithm 
is overestimating the WM, cerebral cortex and subcortical region MD values. When comparing to the 
statistical results (Figure 3.6), the coronal and axial planes are mainly blue (multi<single test), which 
agrees with Figures 3.13-3.15 but the sagital view depicts a lot of yellow (multi>single test). This view 
shows the outtermost layer of the brain, which is mainly grey matter. However, in the coronal plane of 
Figure 3.6, the yellow (multi>single) layer corresponds to a thin section delimitating the brain. Given 
that the mask used for the cerebral cortex region will include much more voxels in blue than in yellow, 
both these images lead to the same conclusion. Besides, when studying diffusion in gray matter, results 
must be critically analysed: in gray matter there is not a defined ”fiber” so tensor assumptions do not ex-
ist: the tensor can find something more isotropic, an average is calculated and the closest approximation 
is given as result.
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Chapter 4

Conclusion

4.1 Conclusion

In 2021, Golub, et al, [38] stressed that results from single-shell FWE-DTI in previous and future 
studies should be interpreted with care, as based solely on priors, FWE-DTI estimates are not able to 
distinguish changes in FW content from changes in the tissue’s apparent diffusion tensor for single-shell 
data acquisitions. The results of this study are in line with that, as there was an obvious effect of using 
tissue MD prior on the parameters values.

When studying MD, the impact of the MD prior initialization method is clear: the range of values of 
MD is limited to a small scope. And even though the effects are not as straight-forward on FA and FW, 
they were affected. Plus, when compared to the gold-standard for FWE-DTI - the multi-shell algorithm 
- this study found that the values obtained with the single-shell algorithm are considered significantly 
different for both WM and GM, for all parameters except the FA values of the subcortical region and the 
FW values for the cerebral cortex. For FA and FW, the single-shell algorithm underestimates WM values 
and overestimates GM values. For MD, these values are highly conditioned by the prior which result in 
an overstimation regardless of the tissue type and region in study.

4.2 Limitations of the current study

One limitation of the current study was the use of TBSS for the registration of the subjects’ images, 
as studies have showed that methods such as groupwise registration based on ANTS perform better than 
TBSS[46].

4.3 Future work

In the future, it may be interesting to replicate the results on dwMRI data from real lesions or even 
on physical phantoms as proposed by Farrher and colleagues [47].
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