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Abstract
Introduction We	previously	developed	an	artificial	intelligence	(AI)	model	for	automatic	coronary	angiography	(CAG)	seg-
mentation, using deep learning. To validate this approach, the model was applied to a new dataset and results are reported.
Methods Retrospective selection of patients undergoing CAG and percutaneous coronary intervention or invasive physiol-
ogy assessment over a one month period from four centers. A single frame was selected from images containing a lesion with 
a 50–99% stenosis (visual estimation). Automatic Quantitative Coronary Analysis (QCA) was performed with a validated 
software. Images were then segmented by the AI model. Lesion diameters, area overlap [based on true positive (TP) and true 
negative (TN) pixels] and a global segmentation score (GSS – 0 -100 points) - previously developed and published - were 
measured.
Results 123	regions	of	 interest	from	117	images	across	90	patients	were	included.	There	were	no	significant	differences	
between lesion diameter, percentage diameter stenosis and distal border diameter between the original/segmented images. 
There	was	a	statistically	significant	albeit	minor	difference	[0,19	mm	(0,09–0,28)]	regarding	proximal	border	diameter.	Over-
lap accuracy ((TP + TN)/(TP + TN + FP + FN)), sensitivity (TP / (TP + FN)) and Dice Score (2TP / (2TP + FN + FP)) between 
original/segmented images was 99,9%, 95,1% and 94,8%, respectively. The GSS was 92 (87–96), similar to the previously 
obtained value in the training dataset.
Conclusion the AI model was capable of accurate CAG segmentation across multiple performance metrics, when applied to 
a multicentric validation dataset. This paves the way for future research on its clinical uses.

Keywords	 Deep	learning	·	Artificial	Intelligence	·	Machine	learning	·	Coronary	angiography	·	Coronary	artery	disease	·	
Percutaneous coronary intervention.
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Introduction

The	 application	 of	 artificial	 intelligence	 (AI)	 to	 coronary	
angiography (CAG) has only been ascertained in very few 
medical/biology publications [1–4]. While the possibilities 
of	 such	 an	 approach	 are	 vast,	 the	first	 step	 is	 arguably	 to	
produce accurate segmentation of CAGs, i.e., clearly iden-
tifying the coronary tree while excluding other structures.

We	 have	 previously	 published	 the	 first	 results	 of	 deep	
learning models capable of good quality CAG segmentation 
[5]. In this paper, we aim to validate the results, by apply-
ing the model to a new, previously unseen, dataset of coro-
nary angiographies from multiple centers. A well-known 
validated software was used as reference for segments with 
non-occlusive lesions, where detailed measurements were 
undertaken, while also applying the previously described 
Global Segmentation Score for broad assessment of seg-
mentation quality [5].

Methods

Participating centers and equipment

Four centers from across Portugal participated in this study. 
Images were acquired in Siemens Axiom Artis and Philips 
Azureon equipment.

Inclusion criteria

Retrospective selection of consecutive patients who had 
undergone CAG and percutaneous coronary intervention 
(PCI) and/or underwent invasive physiology assessment 
(Fractional Flow Reserve and/or other indexes), within a 
1-month period of 2022, regardless of clinical context (i.e. 
both acute and chronic coronary syndrome). This ensures 
the model was tested in a real-world context where revascu-
larization was either being considered or performed, thereby 
excluding a population with normal or near-normal coro-
nary arteries.

Exclusion criteria

We excluded cases where any of the following applied:

1) Patients with previous cardiac surgery, cardiac devices 
or other sources of potential artifact.

2) Absence of coronary lesions 50–99% stenosis by visual 
estimation (i.e. single-vessel ST-elevation myocardial 
infarction – STEMI - or chronic total occlusions – CTO 
alone).

3) Poor image quality.

4) Unclear individualization of lesion outline with no 
overlapping vessels.

5) Unsuccessful automatic measurements with validated 
software (details below).

6) Unsuccessful software extraction and superimposition 
of lesion markers on segmented image (details below).

Image selection

For each selected lesion, a single end-diastolic frame with 
clear	outline	definition	of	 the	vessel	and	 target	 lesion	was	
selected. More than one segment per patient and/or image 
could be used. With an original training dataset of 416 
images as previously published [5], we aimed to have a vali-
dation dataset of at least 100 images.

Brief description of previous work and AI model

In our previous work [5] we trained AI models for CAG 
segmentation using 416 images from patients undergoing 
physiology or PCI in a single center. The images were man-
ually annotated by a small group (two Cardiology Fellows 
and an Interventional Cardiologist, who both annotated and 
supervised the process) and continuously reviewed and cor-
rected, in order to minimize heterogeneity and errors.

We then performed segmentation using an encoder-
decoder fully convolutional neural networks based on the 
U-Net [6], commonly used in medical image segmentation. 
These are composed of an encoder for extracting image 
features and a decoder to process those features and pro-
duce segmentation masks. To derive the best approach for 
this task, we conducted a comparative study of encoder and 
decoder architectures, which resulted in the proposal of the 
EfficientUNet++,	a	computationally	efficient	and	high-per-
forming decoder architecture [7], which obtained the best 
results	when	combined	with	an	EfficientNet-B5	encoder	[8].

To ensure fair evaluation and minimize any bias induced 
by the input data, each model was tested on data it had not 
seen during training. The dataset was thus split at the patient 
level, into 13 subsets of approximately 32 angiograms each. 
Each subset’s segmentation was performed using a neural 
network trained exclusively on the remaining data. This 
enabled the assessment of the segmentation results for the 
entire cohort, as the usual splitting into a training and test-
ing dataset would have yielded a much smaller group of 
images for result assessment. The training hyperparameters, 
namely the number of training epochs and the learning rate 
decay	schedule,	were	set	on	the	first	train-test	split,	using	1	
of the 12 training data subsets for validation. The selected 
values were then used on every other train-test split, and to 
train	 the	model	on	the	whole	 training	set	of	 the	first	split.	
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We also considered cross-validation, but it would be very 
compute-heavy.

This process resulted in an early AI model, which was then 
further improved by a second round of manual annotation, 
where the annotators corrected the resulting imperfections, 
thereby	producing	a	final	 training	dataset.	An	“enhanced”	
model was then trained once again using the same process 
with the new improved annotated dataset, yielding superior 
results	 to	 the	 early	model,	 with	 a	 final	 Generalized	 Dice	
Score of 93,48/ +/- 2,84%. While we continue to work on 
improving our model, because the aim of this study is to 
validate	 the	 aforementioned	 “enhanced”	 model	 as	 previ-
ously published [5], no additional training was performed.

Original images analysis and segmentation

A well-established and validated software (CAAS Work-
station 8.5.1) capable of semi-automatic segmentation and 
Quantitative Coronary Angiography (QCA) was used to 
generate	a	 reference	dataset	 for	comparison.	Because	 it	 is	
especially important for a model to correctly segment dis-
eased segments, QCA analysis was performed in selected 
segments with a stenosis severity of 50–99% by visual 
estimation. For QCA measurements, calibration was per-
formed either automatically (based on the DICOM informa-
tion) or by measuring the catheter (5 or 6 Fr), provided it 
was clearly visible and measurable. The region of interest 
was then selected and automatic QCA measurements were 
undertaken.

For each region of interest where successful automatic 
QCA measurements were undertaken, the lesion diameter, 
reference diameter, diameter at proximal obstruction bor-
der and diameter at distal obstruction border were recorded. 
The diameter stenosis percentage was calculated as follows: 
((reference diameter – lesion diameter) / reference diam-
eter) x 100 [9]. No manual adjustments were accepted, in 
order to exclude human bias or human-induced imperfec-
tion. If the automated outline and measurements were not 
clearly accurate by visual inspection, the case was excluded 
(supplementary Fig. 1).

The original images (i.e., without the measurement anno-
tations generated by the CAAS software) were then seg-
mented using our best AI model to date [5], which segments 
the coronary tree in white and the catheter in red. This pro-
cess is fully automatic and the only required human input is 
the image itself. These images were used for testing only, 
not training.

Performance assessment

Diameters and percentage diameter stenosis

A dedicated python script was written to extract the CAAS 
markers and superimpose them on the segmentation 
obtained by the model. The lesion diameter, diameter at 
proximal obstruction border and diameter at distal obstruc-
tion border were then measured using a dedicated python 
script as well, by verifying the superimposition of the mark-
ers	with	the	coronary	tree.	Because	the	reference	diameter	
does not exist in the segmented image (which only contains 
the coronary artery tree and catheter), the CAAS-generated 
value was used. Percentage stenosis was then calculated 
using the same equation. Finally, we also compared the 
measured catheter diameter on the original image versus the 
segmented image with another adaption of the same script, 
by measuring the distance between the two parallel lines 
generated in the original image from the CAAS software. 
The resulting measurements obtained in the original and the 
segmented images were then compared.

Overlap between original and segmented images

A dedicated python script was also used for assessing the 
overlap between the original and the segmented images in 
the region of interest, using the CAAS output as reference. 
Pixels	were	then	classified	as	follows:

 – True positive (TP): a pixel marked as coronary in both 
the segmented and original image.

 – False positive (FP): a pixel marked as coronary only in 
the segmented image.

 – True negative (TN): a pixel marked as non-coronary in 
both the segmented and original image.

 – False negative (FN): a pixel marked as non-coronary 
only in the original image.

Using	 this	 classification,	 the	 following	 parameters	 were	
calculated:

 – Accuracy: ([TP + TN]/[TP + TN + FP + FN])
 – Sensitivity: TP / (TP + FN).
 – Specificity:	TN/(TN	+ FP),
 – Positive Predictive Value: TP / (TP + FP).
 – Negative predictive value TN/(TN + FN).
 – Intersection over Union (IoU): TP / (TP + FN + FP).
 – Dice Score: 2TP / (2TP + FN + FP).
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Performance

Diameters and percentage diameter stenosis

Detailed metrics of images (Fig. 3) are depicted in Tables 3 
and 4.	There	were	no	significant	differences	for	all	param-
eters except for diameter at proximal obstruction border, 
where	the	median	difference	between	groups	was	0,19	mm.	
All	difference	parameters	(Table	3) had a non-normal distri-
bution, with the interquartile range demonstrating that there 
is	a	clear	predominant	difference	towards	the	lower-end	val-
ues, as the 25th quartile is either 0 or very close to 0.

There	 were	 no	 significant	 differences	 across	 stenosis	
severity (supplementary Table 1) or target vessel (supple-
mentary Table 2).	There	were	also	no	significant	differences	
considering across centers (supplementary Tables 3 and 4).

With regards to the catheter diameters (Fig. 4), results 
are shown on supplementary Table 5.	A	significant	number	
of cases (26/117 − 22%) had to be excluded, either because 
of collimation (rendering the catheter not visible – 8 cases) 
or	 segmentation	 gaps	 leading	 to	 inaccurate	 border	 defini-
tion (18 cases). The latter occur because the model focuses 
especially on segmenting the distal part of the catheter for 
correctly identifying the transition between catheter and cor-
onary, whereas in the original images calibration occurred 
predominantly	in	less	distal	portions.	Because	the	presence	
of two groups (5 and 6 Fr) of catheters renders the overall 
distribution of the sample non-normal, the two groups were 
analysed	 separately.	There	were	 no	 significant	 differences	
between the original and segmented images. Again, the dif-
ference parameter had a non-normal distribution, with the 
interquartile range demonstrating that there is a clear pre-
dominant	difference	towards	the	lower-end	values.

Overlap between original and segmented images

Results are detailed on Table 5. The model scored ≥ 90% in 
all metrics (Fig. 5).	There	were	some	significant	differences	
between target vessel (supplementary Table 6) and stenosis 
severity (supplementary Table 7) which, in absolute terms, 
were	between	1	and	3%.	There	were	no	differences	between	
centers (supplementary Table 8).

Global segmentation score

Results are shown on supplementary Table 9. The model 
scored well above or close to 90% in most criteria. Cath-
eter	gaps	were	common,	usually	due	 to	contrast	backflow	
impeding proper visualization of such portions. Catheter 
artifacts were common and mild gaps in distal parts of small 
collaterals were quite common as well.

Global segmentation score

While	the	above-mentioned	criteria	offer	a	detailed	account	
of the model’s accuracy, they do not provide a broad over-
view of the quality of segmentation as assessed by experts 
in CAG interpretation (i.e. Cardiologists). As a result, we 
have previously developed the Global Segmentation Score 
(GSS), which we have previously applied on the original 
CAG dataset used to train the AI model (details on its appli-
cation	on	supplementary	data	file)	[5]. The GSS was scored 
by consensus by four Interventional Cardiologists (one from 
each contributing center).

Figure 1 summarizes the above-mentioned steps for 
assessing coronary segmentation.

Statistical analysis

Descriptive variables are shown in absolute and relative 
(percentage) numbers. Quantitative variables are shown 
in average ± standard deviation (if normally distributed) or 
median (interquartile range) if non-normally distributed. If 
distribution was normal, we used the paired samples T-test 
to	assess	for	differences	in	related	samples	quantitative	vari-
ables. If distribution was not normal, we used the Mann-
Whitney test (two independent groups) or the Kruskal 
Wallis test (multiple independent groups) to assess for dif-
ferences in quantitative variables. A p-value < 0,05 was used 
for	statistical	significance.	SPSS	27	was	used	for	analysis.

Ethical issues

This study complies with the Declaration of Helsinki and 
was approved by the local Ethics’ Institutional Review 
Board.

Results

Baseline characteristics

We included 123 measurements from 117 images, from 
a	 total	of	90	patients	(flowchart	 in	Fig.	2; clinical data on 
Table 1). The left anterior descending artery (LAD) was the 
most common target vessel (three measurements were taken 
on diagonals, two emerging proximally and one emerging in 
the middle segment of the LAD; all were taken on the proxi-
mal segment of the collateral), with measurements taking 
place more frequently in the middle and proximal segments. 
As measured by QCA, most lesions had a 50–69% diameter 
stenosis, with a minority of ≥ 70% lesions (Table 2).
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Discussion

Main findings

A deep learning AI segmentation model was capable of fully 

N is lower than overall measurements due to assessment 
of more than one lesion per image and 8 cases of collimation 
where the catheter could not be scored, thereby excluding 
those cases from assessment.

Fig. 1 Graphical Abstract: Overview of the segmentation and analysis 
process.	Top	left:	Baseline	CAG	of	a	right	coronary	artery.	Top	right:	
AI	automated	segmented	image.	Bottom	left:	automatic	QCA	analy-
sis	image	output	in	detail.	Bottom	middle:	transposition	of	the	lesion	

markers	on	 the	 segmented	 image	 in	detail.	Bottom	 right:	 area	over-
lap between the region of interest in the auto-QCA and the segmented 
image; white pixels are true positives; green pixels are false negatives; 
red pixels are false positives
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automatic accurate CAG segmentation, as checked by a ref-
erence segmentation obtained with validated software and 
also when assessed by a broad assessment score we previ-
ously developed [5].

Diameters at both healthy segments (proximal and dis-
tal lesion borders) and diseased segments (diameter at 
maximum obstruction zone) were similar between the two 
groups,	with	statistically	significant	differences	only	at	the	

Table 1 Clinical characteristics of included patients
Factor N +/- SD or N(%)
Age 65 +/- 12
Sex (male) 73 (81%)
Hypertension 62 (68,9%)
Diabetes mellitus 28 (31,1%)
Dyslipidemia 55 (61,1%)
Smoker (past or present) 50 (55,6%)
Chronic coronary syndrome 37 (41,1%)
Acute coronary syndrome 53 (58,9%)
Revascularization during/after CAG 76 (84,4%)
Invasive Physiology during procedure 19 (21,1%)

Table 2 Distribution of target vessel and lesion severity. LAD: Left 
Anterior Descending Artery; RCA: Right Coronary Artery; CX: Left 
Circunflex	Artery

Parameter N (%)
Target Vessel LAD Proximal 19

Middle 23
Distal 8
Total 50 (41)

RCA Proximal 9
Middle 24
Distal 8
Total 41 (33)

CX Proximal 9
Middle 21
Distal 2
Total 32 (26)

Lesion severity ≥ 70% 22 (18)
50–69% 58 (47)
< 50% 43 (35)

Fig. 2 Flowchart of patient and 
image selection
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The stenosis severity as assessed by percentage stenosis 
only	 differed	 by	<	5%	 in	 absolute	 terms,	 a	 difference	 not	
meaningful either statistically or clinically. The latter is 
perhaps	 the	 single	 most	 important	 finding,	 as	 percentage	
diameter stenosis is the fundamental criteria assessed in 
clinical practice for proceeding with either revasculariza-
tion or functional testing, as recommended in current guide-
lines [10].	Importantly,	there	were	no	significant	differences	

proximal obstruction border. However, in absolute terms, 
the	difference	was	very	small	(0,19	mm,	a	<	10%	difference	
considering the proximal diameter in either group) and we 
therefore	believe	it	is	unlikely	to	be	of	clinical	significance.	

Table 3 Detailed measurements between the original and the seg-
mented images. Values shown as mean ± standard deviation. AI – arti-
ficial	intelligence.	*Paired	samples	T-test;
Parameter Original 

Image
AI Gener-
ated 
Segmented 
Image

P-value*

Diameter Stenosis (%) 56 ± 13 55 ± 13 0,071
Diameter at lesion (mm) 1,06 ± 0,39 1,08 ± 0,37 0,146
Diameter at proximal obstruc-
tion border (mm)

2,27 ± 0,54 2,09 ± 0,53 < 0,01

Diameter at distal obstruction 
border (mm)

2,19 ± 0,56 2,15 ± 0,58 0,133

Table 4	 Median	 differences	 between	 the	 original	 and	 segmented	
images. Values shown as median (IQ 25th – 75th)
Parameter Difference
Diameter Stenosis (%) 4,5 (0–7,7)
Diameter at lesion (mm) 0,10 (0–0,17)
Diameter at proximal obstruction border (mm) 0,19 

(0,09–0,28)
Diameter at distal obstruction border (mm) 0,10 (0–0,19)

Fig. 3 Comparative view of a right coronary artery (56% stenosis by QCA). Left-to-right: original image, auto-QCA, transposition of lines (proxi-
mal border diameter, lesion diameter and distal border diameter) to segmented image
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faithful indication of the actual model performance. In that 
regard, sensitivity and positive predictive value still scored 
quite high, at approximately 95%. The metric that more 
directly assesses the true overlap between the original and 
segmented images in the region of interest (correctly iden-
tifying all of the vessel while avoiding non-artery pixels) is 
the intersection over union criteria, which fell just short of 
90%. Lastly, the Dice Score puts greater emphasis on the 

in performance regarding target vessel, stenosis severity or 
centers.

When considering the overlap between the segmented 
image	 and	 the	 original	 image,	 accuracy,	 specificity	 and	
negative predictive value scored close to 100%. This was 
expected, because most of the image is composed by back-
ground rather than artery. As a result, we believe metrics 
that do not take into account true negatives provide a more 

Table 5 Overlap metrics. Values shown as median (IQ 25th – 75th)
Accuracy (%) Sensitivity (%) Specificity	(%) Positive predictive 

value (%)
Negative predictive 
value (%)

Intersection over 
Union (%)

Dice Score 
(%)

99,9 (99,9–99,9) 95,1 (92,8–96,4) 99,9 (99,9–99,9) 94,9 (93,1–96,5) 99,9 (99,9–99,9) 90,1 (87,6–91,7) 94,8 
(93,4–95,7)

Fig. 5 Area overlap in a and left anterior descending 64% stenosis (as measured by QCA).

 

Fig. 4 Catheter segmentation 
assessment. Left-to-right: original 
image, auto-border detection by 
reference software, transposition 
of lines in proximal border to 
segmented image
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were not reported. Importantly, however, that study’s evalu-
ation used the baseline human annotation as reference, rather 
than an external validated software, thereby not enabling 
the	identification	of	bias	or	imperfections	which	might	have	
become embedded in their AI model. In our previous study, 
we demonstrated that even with a small group of annotators 
and continuous review of the annotations, there is always 
some degree of imperfection in human annotation [5], hence 
the relevance of comparing against an automated and vali-
dated external software. Additionally, the reported accuracy 
focuses on the overlap across the entire coronary tree rather 
than the percentage stenosis of diseased segments. This is 
advantageous in the sense that a globally accurate perfor-
mance can be tested. Notwithstanding, we believe testing 
only for diseased segments actually renders the comparison 
more demanding. This is because the segmentation of ste-
notic segments is harder from a technical point of view and 
also due to the fact that the number of true positive pixels 
is necessarily smaller in such segments – leading to a lower 
likelihood of true positives. Whichever interpretation is 
made, it is clear that an exact comparison with Du et al. [3] 
is not possible. However, broadly speaking, the accuracy of 
both models seems quite high and our model seems at least 
as accurate, if not more.

Su Yang et al. [4] also produced AI models for CAG seg-
mentation. Their validation dataset was somewhat larger 
(181 images), but their performance seems slightly lower, 
with all overlap metrics generally scoring just short of 90% 
and a Dice Score of 89%. Importantly, they also only seg-
mented diseased segments, with a minimum lesion of 30% 
and used the same reference software as we did. Thus, their 
results are more directly comparable to ours and our model 
seems to have superior performance. Two other works [1, 
2], from the same baseline dataset, also went on to develop 
AI-based CAG segmentation, this time with a validation 
dataset of 550 images. While the model performed well, 
with an accuracy of 98% and a sensitivity of 87%, they 
also based their validation dataset on human annotation of 
the coronary tree without using external software. Thus the 
above-mentioned considerations for Du et al. [3] also apply.

Recently, Gao et al. [11] published the results of a CAG 
segmentation model trained on only 130 images. Their 
methodology,	 however,	 is	 somewhat	 different,	 since	 they	
combined features from deep learning segmentation mod-
els’	features	and	non-AI	image	filters	to	perform	pixel-wise	
classification	 using	 gradient-boosting	 decision	 trees	 [12] 
and deep forests [13]. Their results also show good perfor-
mance, with a Dice Score of 87,4%, sensitivity of 90,2% 
and	specificity	of	99,2%.	This	highlights	that	merging	deep	
learning with traditional computer vision methods can yield 
good results, when working with relatively small datasets. 
However, no external validation software was used and the 

fundamental task of segmentation – correctly identifying the 
target structure i.e. true positives – in this case, the coronary 
tree. With an average score of approximately 95%, while 
also considering all the remaining metrics, we believe our 
model can be described as accurate. Importantly, the Dice 
Score in our previous study was 93%, thus very similar to 
what we now found [5].	There	were	statistically	significant	
differences	in	the	IoU	and	Dice	Scores	between	target	vessel	
stenosis	severity.	Notwithstanding,	the	absolute	differences	
were very minor (around 1–2%) and therefore of little or no 
clinical relevance.

With regards to the GSS, our model achieved a high 
score with a median of 92/100 points, exceedingly similar 
to what we had previously described in the dataset used to 
train and develop the model. The model scored very high 
in almost all tasks, while maintaining minor imperfections 
with regards to mild gaps in collateral branches, which were 
very frequent. Catheter segmentation was not as good as 
coronary segmentation, as usually small catheter artifacts or 
gaps in the vicinity of the coronary tree origin were com-
mon.	This	was	due	not	only	to	contrast	backflow,	but	also	
because of how AI models are trained and function. Indeed, 
performance	is	very	dependent	on	class	frequency.	Because	
the catheter is a less frequent class (i.e. corresponds to much 
fewer pixels), the models receive less penalty for errors 
regarding its segmentation when compared to the coronary 
tree. This is partly mitigated by the use of an appropriate 
loss function, but the imbalance nevertheless persists to 
some extent. Once again, this was very similar to what we 
saw in the training dataset [5]. With regards to precise cath-
eter	 measurements,	 the	 differences	 between	 original	 and	
segmented images (for both 5 and 6 Fr catheters) were not 
statistically	 significant,	 suggesting	 the	 catheter’s	 segmen-
tation, from a calliper precision point of view, is accurate. 
However, due to the above-mentioned limitations and to a 
small number of images where only a small portion (or none 
at all) of the catheter was discernible, our sample was some-
what reduced, thereby limiting this assessment.

Other studies in the field

There are very few studies published in medical/biology 
journals to date where a comparison with our results can 
be made. With regards to the GSS in particular, no similar 
application has ever been undertaken, to our knowledge.

The largest published study [3] included a dataset of 
1050 images distributed across all incidences and vessels 
for performance evaluation. An average 98% accuracy was 
obtained.	While	 specificity	and	negative	predictive	values	
scored very highly, sensitivity and positive predictive value 
came closer to 80%. The performance was slightly inferior 
in more distal vessels. Intersection over union or Dice Score 
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to that, we also believe that our manual annotations meth-
odology was essential, as it allowed us to obtain a highly 
reliable training dataset: a small number of annotators (to 
reduce heterogeneity) well trained in the interpretation of 
coronary angiograms; very careful review of annotations 
with recurrent iterations of quality checks and improve-
ments; and further manual improvement of the already accu-
rate segmentation images produced by an earlier AI model, 
thus combining the best of AI and human annotations into 
a	final	training	dataset,	as	mentioned	in	the	methods section 
and previous publication [5].

Limitations

Our study is not without limitations. Despite the multicen-
tric approach, our dataset is relatively small when compared 
to previously published studies. We also only tested the 
model performance against validated software in diseased 
locations, rather than on the whole coronary tree. Therefore, 
we	cannot	affirm	that	the	performance	would	be	identical	in	
the remaining areas. However, as previously explained, seg-
menting zones with lesions is actually more challenging for 
the model than segmenting broad, mostly healthy segments. 
In	addition	to	that,	we	did	not	find	differences	regarding	tar-
get vessel or lesion severity. Plus, considering the results 
of the GSS, the overall performance regarding CAG seg-
mentation was quite appropriate. Thus, we believe that it is 
unlikely	 that	performance	would	be	 significantly	different	
had we tested for the whole coronary tree. Importantly, if we 
had chosen to segment whole vessels, it would be very likely 
that some manual corrections had to be undertaken, which 
might induce bias or imperfections in the reference images. 
Hence, the decision to proceed as described was deliber-
ate. The assessment of catheter segmentation was also more 
limited than that of the coronary tree, as described above.

The exclusion of potential sources of artifacts from 
devices or previous cardiac surgery means our model is not 
yet applicable to such patients. Notwithstanding, we didn’t 
exclude cases with previous implantation of stents, but we 
did not perform detailed measurements on such segments.

The total number of patients/images who fully met exclu-
sion	criteria	was	somewhat	high,	thereby	limiting	the	final	
amount of available images for analysis, which may raise 
questions as to whether this sample is representative of 
everyday CAGs and an therefore constitutes an adequate 
validation dataset. This was the result of somewhat stringent 
criteria, which we felt were nonetheless necessary due to 
basic feasibility (such as excluding single-vessel complete 
occlusion cases where QCA is not applicable, or excluding 
imaging artifacts for which the models are not yet trained), 
reduction of bias (such as not allowing for manual QCA 
correction), or excluding patients with normal/near-normal 

whole coronary tree was evaluated. As a result, once more, 
the previous considerations for Du et al. [3] apply.

Other works in the application of AI to coronary segmen-
tation are primarily technical and featured in engineering 
publications. A detailed review of these falls outside the 
scope of this paper and can be consulted in our previous 
technical publication [7]. However, some considerations 
regarding these provide further contextualization of our 
findings.

Xian et al. [14] used a very large dataset of 3200 manu-
ally annotated images and experimented with the U-Net 
architecture as well, with a sensitivity of 90,1%, positive 
predictive value of 89,8% and Dice Score 90%. However, 
the	 annotations	 were	 undertaken	with	 a	 specific	 software	
for the purpose of coarsely signaling the vessel route, and 
focused only on the main vessels. Since we achieved higher 
performance metrics, it seems a smaller but higher quality 
dataset, with very precise and cumbersome manual annota-
tions, may be a better approach.

Yang et al [15] have obtained a sensitivity, positive pre-
dictive value and Dice Score of 91,3%, 92,5% and 91,9%, 
respectively,	 by	 using	 popular	 image	 classification	 back-
bones pre-trained on ImageNet instead of the U-Net’s 
encoder,	while	also	using	a	modified	generalized	dice	loss	
function.	 Their	 findings	 were	 influential	 in	 our	 training	
method, as we used a combination of their proposed loss 
function and the focal loss [16]. Other authors have explored 
the use of dense connections, improving on the performance 
of the standard U-Net [17]. This approach is also present in 
the U-Net ++ [18], which we used in our approach.

In all of the above studies, metrics regarding vessel 
diameters were not performed. Thus, a direct comparison 
with this study regarding those is not possible. M’hiri et 
al. addressed the issue of CAG diameter measurements, 
when dealing with the issue of diameter variation during 
the cardiac cycle due to vessel distensibility. They focused 
mainly	in	measuring	specific	segments	of	the	coronary	tree,	
as we did. However, they used a graph-based segmenta-
tion method, then tracked the changes across the cardiac 
cycle using a spatio-temporal segmentation method. They 
obtained a Dice Score of 98%, with a very small diameter 
mean error (0,18 mm) [19]. However, they did not focus 
on diseased regions. While this study is not focused on AI 
methods, it highlights that other methods may be of use for 
accurate CAG segmentation, potentially in combination 
with AI tools [11].

In light of all these studies, the performance of our model 
seems at least as good, if not better, than previously pro-
posed AI models. We believe this is related to its neural net-
work architecture, which was carefully chosen over a series 
of experiments [7], taking into consideration the invaluable 
contributions of previously mentioned studies. In addition 
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artery	segmentation	system	would	surely	benefit	from	train-
ing on a larger volume of data. Manual annotation of coro-
nary angiography images, however, is very cumbersome 
and	 time-consuming,	 and	 therefore	 it	 is	difficult	 to	obtain	
much	 larger	 labeled	 datasets.	Hence,	 significant	 improve-
ments to the model could probably be achieved, for exam-
ple, by using self-supervised learning on existing very large 
volumes of unlabeled data. These possibilities are described 
in detail in our previous technical publication [7].

Data Availability

Detailed full-scale study data cannot currently be made pub-
licly available due to limitations imposed by national data 
protection regulations, as this is a retrospective study and no 
informed consent was obtainable regarding this particular 
analysis.	Both	our	research	team	and	others	in	the	national	
scientific	community	are	working	to	develop	a	framework	
where such would be possible. However, independent rep-
lication of our analysis is possible, given that the detailed 
description of our experimentations and relevant code is 
publicly available [7].

Conclusions

Our AI model was capable of accurate CAG segmentation 
when applied to a multicentric validation dataset, with no 
differences	between	target	vessels	or	stenosis	severity.	This	
paves the way for future research and implementation for its 
clinical uses.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10554-
023-02839-5.
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the clinical characteristics of included patients are in agree-
ment with everyday clinical practice. We therefore believe 
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The imbalance in sample size limits the comparison 
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It	has	 long	been	established	 that	operators	significantly	
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did not perform such testing.
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ing generalization from this dataset. However, we believe 
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Future directions

We are currently working in automatic anatomical interpre-
tation, lesion severity based on auto-QCA and integration 
with	physiology.	We	believe	without	effective	segmentation	
models, none of these will be possible. Much like for human 
interpretation of CAG, separating the coronary arteries from 
everything	else	 in	 the	 image	 is	an	essential	first	step.	Our	
ultimate goal is to produce an intelligence augmentation 
tool that helps physicians perform a more objective and 
streamlined interpretation of CAG, hopefully contributing 
for better patient outcomes. As we continuously improve its 
performance, while also adding new capabilities, clinical 
application will potentially be possible in the near future, 
opening a new perspective and potentially more accurate 
method to assess coronary artery disease.

We are also continuously working to expand and improve 
the	model,	as	segmentation	alone	is	not	a	final	goal	in	itself,	
but rather a fundamental step. We hope to release a public 
version in the near future, which other researchers may use 
for whichever application they may deem useful. Impor-
tantly, comparing or even merging with future models from 
other groups may also be very relevant. Since it uses an 
inherently data-hungry deep learning model, our coronary 
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