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Abstract
Introduction  We previously developed an artificial intelligence (AI) model for automatic coronary angiography (CAG) seg-
mentation, using deep learning. To validate this approach, the model was applied to a new dataset and results are reported.
Methods  Retrospective selection of patients undergoing CAG and percutaneous coronary intervention or invasive physiol-
ogy assessment over a one month period from four centers. A single frame was selected from images containing a lesion with 
a 50–99% stenosis (visual estimation). Automatic Quantitative Coronary Analysis (QCA) was performed with a validated 
software. Images were then segmented by the AI model. Lesion diameters, area overlap [based on true positive (TP) and true 
negative (TN) pixels] and a global segmentation score (GSS – 0 -100 points) - previously developed and published - were 
measured.
Results  123 regions of interest from 117 images across 90 patients were included. There were no significant differences 
between lesion diameter, percentage diameter stenosis and distal border diameter between the original/segmented images. 
There was a statistically significant albeit minor difference [0,19 mm (0,09–0,28)] regarding proximal border diameter. Over-
lap accuracy ((TP + TN)/(TP + TN + FP + FN)), sensitivity (TP / (TP + FN)) and Dice Score (2TP / (2TP + FN + FP)) between 
original/segmented images was 99,9%, 95,1% and 94,8%, respectively. The GSS was 92 (87–96), similar to the previously 
obtained value in the training dataset.
Conclusion  the AI model was capable of accurate CAG segmentation across multiple performance metrics, when applied to 
a multicentric validation dataset. This paves the way for future research on its clinical uses.

Keywords  Deep learning · Artificial Intelligence · Machine learning · Coronary angiography · Coronary artery disease · 
Percutaneous coronary intervention.
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Introduction

The application of artificial intelligence (AI) to coronary 
angiography (CAG) has only been ascertained in very few 
medical/biology publications [1–4]. While the possibilities 
of such an approach are vast, the first step is arguably to 
produce accurate segmentation of CAGs, i.e., clearly iden-
tifying the coronary tree while excluding other structures.

We have previously published the first results of deep 
learning models capable of good quality CAG segmentation 
[5]. In this paper, we aim to validate the results, by apply-
ing the model to a new, previously unseen, dataset of coro-
nary angiographies from multiple centers. A well-known 
validated software was used as reference for segments with 
non-occlusive lesions, where detailed measurements were 
undertaken, while also applying the previously described 
Global Segmentation Score for broad assessment of seg-
mentation quality [5].

Methods

Participating centers and equipment

Four centers from across Portugal participated in this study. 
Images were acquired in Siemens Axiom Artis and Philips 
Azureon equipment.

Inclusion criteria

Retrospective selection of consecutive patients who had 
undergone CAG and percutaneous coronary intervention 
(PCI) and/or underwent invasive physiology assessment 
(Fractional Flow Reserve and/or other indexes), within a 
1-month period of 2022, regardless of clinical context (i.e. 
both acute and chronic coronary syndrome). This ensures 
the model was tested in a real-world context where revascu-
larization was either being considered or performed, thereby 
excluding a population with normal or near-normal coro-
nary arteries.

Exclusion criteria

We excluded cases where any of the following applied:

1)	 Patients with previous cardiac surgery, cardiac devices 
or other sources of potential artifact.

2)	 Absence of coronary lesions 50–99% stenosis by visual 
estimation (i.e. single-vessel ST-elevation myocardial 
infarction – STEMI - or chronic total occlusions – CTO 
alone).

3)	 Poor image quality.

4)	 Unclear individualization of lesion outline with no 
overlapping vessels.

5)	 Unsuccessful automatic measurements with validated 
software (details below).

6)	 Unsuccessful software extraction and superimposition 
of lesion markers on segmented image (details below).

Image selection

For each selected lesion, a single end-diastolic frame with 
clear outline definition of the vessel and target lesion was 
selected. More than one segment per patient and/or image 
could be used. With an original training dataset of 416 
images as previously published [5], we aimed to have a vali-
dation dataset of at least 100 images.

Brief description of previous work and AI model

In our previous work [5] we trained AI models for CAG 
segmentation using 416 images from patients undergoing 
physiology or PCI in a single center. The images were man-
ually annotated by a small group (two Cardiology Fellows 
and an Interventional Cardiologist, who both annotated and 
supervised the process) and continuously reviewed and cor-
rected, in order to minimize heterogeneity and errors.

We then performed segmentation using an encoder-
decoder fully convolutional neural networks based on the 
U-Net [6], commonly used in medical image segmentation. 
These are composed of an encoder for extracting image 
features and a decoder to process those features and pro-
duce segmentation masks. To derive the best approach for 
this task, we conducted a comparative study of encoder and 
decoder architectures, which resulted in the proposal of the 
EfficientUNet++, a computationally efficient and high-per-
forming decoder architecture [7], which obtained the best 
results when combined with an EfficientNet-B5 encoder [8].

To ensure fair evaluation and minimize any bias induced 
by the input data, each model was tested on data it had not 
seen during training. The dataset was thus split at the patient 
level, into 13 subsets of approximately 32 angiograms each. 
Each subset’s segmentation was performed using a neural 
network trained exclusively on the remaining data. This 
enabled the assessment of the segmentation results for the 
entire cohort, as the usual splitting into a training and test-
ing dataset would have yielded a much smaller group of 
images for result assessment. The training hyperparameters, 
namely the number of training epochs and the learning rate 
decay schedule, were set on the first train-test split, using 1 
of the 12 training data subsets for validation. The selected 
values were then used on every other train-test split, and to 
train the model on the whole training set of the first split. 
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We also considered cross-validation, but it would be very 
compute-heavy.

This process resulted in an early AI model, which was then 
further improved by a second round of manual annotation, 
where the annotators corrected the resulting imperfections, 
thereby producing a final training dataset. An “enhanced” 
model was then trained once again using the same process 
with the new improved annotated dataset, yielding superior 
results to the early model, with a final Generalized Dice 
Score of 93,48/ +/- 2,84%. While we continue to work on 
improving our model, because the aim of this study is to 
validate the aforementioned “enhanced” model as previ-
ously published [5], no additional training was performed.

Original images analysis and segmentation

A well-established and validated software (CAAS Work-
station 8.5.1) capable of semi-automatic segmentation and 
Quantitative Coronary Angiography (QCA) was used to 
generate a reference dataset for comparison. Because it is 
especially important for a model to correctly segment dis-
eased segments, QCA analysis was performed in selected 
segments with a stenosis severity of 50–99% by visual 
estimation. For QCA measurements, calibration was per-
formed either automatically (based on the DICOM informa-
tion) or by measuring the catheter (5 or 6 Fr), provided it 
was clearly visible and measurable. The region of interest 
was then selected and automatic QCA measurements were 
undertaken.

For each region of interest where successful automatic 
QCA measurements were undertaken, the lesion diameter, 
reference diameter, diameter at proximal obstruction bor-
der and diameter at distal obstruction border were recorded. 
The diameter stenosis percentage was calculated as follows: 
((reference diameter – lesion diameter) / reference diam-
eter) x 100 [9]. No manual adjustments were accepted, in 
order to exclude human bias or human-induced imperfec-
tion. If the automated outline and measurements were not 
clearly accurate by visual inspection, the case was excluded 
(supplementary Fig. 1).

The original images (i.e., without the measurement anno-
tations generated by the CAAS software) were then seg-
mented using our best AI model to date [5], which segments 
the coronary tree in white and the catheter in red. This pro-
cess is fully automatic and the only required human input is 
the image itself. These images were used for testing only, 
not training.

Performance assessment

Diameters and percentage diameter stenosis

A dedicated python script was written to extract the CAAS 
markers and superimpose them on the segmentation 
obtained by the model. The lesion diameter, diameter at 
proximal obstruction border and diameter at distal obstruc-
tion border were then measured using a dedicated python 
script as well, by verifying the superimposition of the mark-
ers with the coronary tree. Because the reference diameter 
does not exist in the segmented image (which only contains 
the coronary artery tree and catheter), the CAAS-generated 
value was used. Percentage stenosis was then calculated 
using the same equation. Finally, we also compared the 
measured catheter diameter on the original image versus the 
segmented image with another adaption of the same script, 
by measuring the distance between the two parallel lines 
generated in the original image from the CAAS software. 
The resulting measurements obtained in the original and the 
segmented images were then compared.

Overlap between original and segmented images

A dedicated python script was also used for assessing the 
overlap between the original and the segmented images in 
the region of interest, using the CAAS output as reference. 
Pixels were then classified as follows:

	– True positive (TP): a pixel marked as coronary in both 
the segmented and original image.

	– False positive (FP): a pixel marked as coronary only in 
the segmented image.

	– True negative (TN): a pixel marked as non-coronary in 
both the segmented and original image.

	– False negative (FN): a pixel marked as non-coronary 
only in the original image.

Using this classification, the following parameters were 
calculated:

	– Accuracy: ([TP + TN]/[TP + TN + FP + FN])
	– Sensitivity: TP / (TP + FN).
	– Specificity: TN/(TN + FP),
	– Positive Predictive Value: TP / (TP + FP).
	– Negative predictive value TN/(TN + FN).
	– Intersection over Union (IoU): TP / (TP + FN + FP).
	– Dice Score: 2TP / (2TP + FN + FP).
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Performance

Diameters and percentage diameter stenosis

Detailed metrics of images (Fig. 3) are depicted in Tables 3 
and 4. There were no significant differences for all param-
eters except for diameter at proximal obstruction border, 
where the median difference between groups was 0,19 mm. 
All difference parameters (Table 3) had a non-normal distri-
bution, with the interquartile range demonstrating that there 
is a clear predominant difference towards the lower-end val-
ues, as the 25th quartile is either 0 or very close to 0.

There were no significant differences across stenosis 
severity (supplementary Table 1) or target vessel (supple-
mentary Table 2). There were also no significant differences 
considering across centers (supplementary Tables 3 and 4).

With regards to the catheter diameters (Fig.  4), results 
are shown on supplementary Table 5. A significant number 
of cases (26/117 − 22%) had to be excluded, either because 
of collimation (rendering the catheter not visible – 8 cases) 
or segmentation gaps leading to inaccurate border defini-
tion (18 cases). The latter occur because the model focuses 
especially on segmenting the distal part of the catheter for 
correctly identifying the transition between catheter and cor-
onary, whereas in the original images calibration occurred 
predominantly in less distal portions. Because the presence 
of two groups (5 and 6 Fr) of catheters renders the overall 
distribution of the sample non-normal, the two groups were 
analysed separately. There were no significant differences 
between the original and segmented images. Again, the dif-
ference parameter had a non-normal distribution, with the 
interquartile range demonstrating that there is a clear pre-
dominant difference towards the lower-end values.

Overlap between original and segmented images

Results are detailed on Table 5. The model scored ≥ 90% in 
all metrics (Fig. 5). There were some significant differences 
between target vessel (supplementary Table 6) and stenosis 
severity (supplementary Table 7) which, in absolute terms, 
were between 1 and 3%. There were no differences between 
centers (supplementary Table 8).

Global segmentation score

Results are shown on supplementary Table  9. The model 
scored well above or close to 90% in most criteria. Cath-
eter gaps were common, usually due to contrast backflow 
impeding proper visualization of such portions. Catheter 
artifacts were common and mild gaps in distal parts of small 
collaterals were quite common as well.

Global segmentation score

While the above-mentioned criteria offer a detailed account 
of the model’s accuracy, they do not provide a broad over-
view of the quality of segmentation as assessed by experts 
in CAG interpretation (i.e. Cardiologists). As a result, we 
have previously developed the Global Segmentation Score 
(GSS), which we have previously applied on the original 
CAG dataset used to train the AI model (details on its appli-
cation on supplementary data file) [5]. The GSS was scored 
by consensus by four Interventional Cardiologists (one from 
each contributing center).

Figure  1 summarizes the above-mentioned steps for 
assessing coronary segmentation.

Statistical analysis

Descriptive variables are shown in absolute and relative 
(percentage) numbers. Quantitative variables are shown 
in average ± standard deviation (if normally distributed) or 
median (interquartile range) if non-normally distributed. If 
distribution was normal, we used the paired samples T-test 
to assess for differences in related samples quantitative vari-
ables. If distribution was not normal, we used the Mann-
Whitney test (two independent groups) or the Kruskal 
Wallis test (multiple independent groups) to assess for dif-
ferences in quantitative variables. A p-value < 0,05 was used 
for statistical significance. SPSS 27 was used for analysis.

Ethical issues

This study complies with the Declaration of Helsinki and 
was approved by the local Ethics’ Institutional Review 
Board.

Results

Baseline characteristics

We included 123 measurements from 117 images, from 
a total of 90 patients (flowchart in Fig. 2; clinical data on 
Table 1). The left anterior descending artery (LAD) was the 
most common target vessel (three measurements were taken 
on diagonals, two emerging proximally and one emerging in 
the middle segment of the LAD; all were taken on the proxi-
mal segment of the collateral), with measurements taking 
place more frequently in the middle and proximal segments. 
As measured by QCA, most lesions had a 50–69% diameter 
stenosis, with a minority of ≥ 70% lesions (Table 2).
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Discussion

Main findings

A deep learning AI segmentation model was capable of fully 

N is lower than overall measurements due to assessment 
of more than one lesion per image and 8 cases of collimation 
where the catheter could not be scored, thereby excluding 
those cases from assessment.

Fig. 1  Graphical Abstract: Overview of the segmentation and analysis 
process. Top left: Baseline CAG of a right coronary artery. Top right: 
AI automated segmented image. Bottom left: automatic QCA analy-
sis image output in detail. Bottom middle: transposition of the lesion 

markers on the segmented image in detail. Bottom right: area over-
lap between the region of interest in the auto-QCA and the segmented 
image; white pixels are true positives; green pixels are false negatives; 
red pixels are false positives
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automatic accurate CAG segmentation, as checked by a ref-
erence segmentation obtained with validated software and 
also when assessed by a broad assessment score we previ-
ously developed [5].

Diameters at both healthy segments (proximal and dis-
tal lesion borders) and diseased segments (diameter at 
maximum obstruction zone) were similar between the two 
groups, with statistically significant differences only at the 

Table 1  Clinical characteristics of included patients
Factor N +/- SD or N(%)
Age 65 +/- 12
Sex (male) 73 (81%)
Hypertension 62 (68,9%)
Diabetes mellitus 28 (31,1%)
Dyslipidemia 55 (61,1%)
Smoker (past or present) 50 (55,6%)
Chronic coronary syndrome 37 (41,1%)
Acute coronary syndrome 53 (58,9%)
Revascularization during/after CAG 76 (84,4%)
Invasive Physiology during procedure 19 (21,1%)

Table 2  Distribution of target vessel and lesion severity. LAD: Left 
Anterior Descending Artery; RCA: Right Coronary Artery; CX: Left 
Circunflex Artery

Parameter N (%)
Target Vessel LAD Proximal 19

Middle 23
Distal 8
Total 50 (41)

RCA Proximal 9
Middle 24
Distal 8
Total 41 (33)

CX Proximal 9
Middle 21
Distal 2
Total 32 (26)

Lesion severity ≥ 70% 22 (18)
50–69% 58 (47)
< 50% 43 (35)

Fig. 2  Flowchart of patient and 
image selection
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The stenosis severity as assessed by percentage stenosis 
only differed by < 5% in absolute terms, a difference not 
meaningful either statistically or clinically. The latter is 
perhaps the single most important finding, as percentage 
diameter stenosis is the fundamental criteria assessed in 
clinical practice for proceeding with either revasculariza-
tion or functional testing, as recommended in current guide-
lines [10]. Importantly, there were no significant differences 

proximal obstruction border. However, in absolute terms, 
the difference was very small (0,19 mm, a < 10% difference 
considering the proximal diameter in either group) and we 
therefore believe it is unlikely to be of clinical significance. 

Table 3  Detailed measurements between the original and the seg-
mented images. Values shown as mean ± standard deviation. AI – arti-
ficial intelligence. *Paired samples T-test;
Parameter Original 

Image
AI Gener-
ated 
Segmented 
Image

P-value*

Diameter Stenosis (%) 56 ± 13 55 ± 13 0,071
Diameter at lesion (mm) 1,06 ± 0,39 1,08 ± 0,37 0,146
Diameter at proximal obstruc-
tion border (mm)

2,27 ± 0,54 2,09 ± 0,53 < 0,01

Diameter at distal obstruction 
border (mm)

2,19 ± 0,56 2,15 ± 0,58 0,133

Table 4  Median differences between the original and segmented 
images. Values shown as median (IQ 25th – 75th)
Parameter Difference
Diameter Stenosis (%) 4,5 (0–7,7)
Diameter at lesion (mm) 0,10 (0–0,17)
Diameter at proximal obstruction border (mm) 0,19 

(0,09–0,28)
Diameter at distal obstruction border (mm) 0,10 (0–0,19)

Fig. 3  Comparative view of a right coronary artery (56% stenosis by QCA). Left-to-right: original image, auto-QCA, transposition of lines (proxi-
mal border diameter, lesion diameter and distal border diameter) to segmented image
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faithful indication of the actual model performance. In that 
regard, sensitivity and positive predictive value still scored 
quite high, at approximately 95%. The metric that more 
directly assesses the true overlap between the original and 
segmented images in the region of interest (correctly iden-
tifying all of the vessel while avoiding non-artery pixels) is 
the intersection over union criteria, which fell just short of 
90%. Lastly, the Dice Score puts greater emphasis on the 

in performance regarding target vessel, stenosis severity or 
centers.

When considering the overlap between the segmented 
image and the original image, accuracy, specificity and 
negative predictive value scored close to 100%. This was 
expected, because most of the image is composed by back-
ground rather than artery. As a result, we believe metrics 
that do not take into account true negatives provide a more 

Table 5  Overlap metrics. Values shown as median (IQ 25th – 75th)
Accuracy (%) Sensitivity (%) Specificity (%) Positive predictive 

value (%)
Negative predictive 
value (%)

Intersection over 
Union (%)

Dice Score 
(%)

99,9 (99,9–99,9) 95,1 (92,8–96,4) 99,9 (99,9–99,9) 94,9 (93,1–96,5) 99,9 (99,9–99,9) 90,1 (87,6–91,7) 94,8 
(93,4–95,7)

Fig. 5  Area overlap in a and left anterior descending 64% stenosis (as measured by QCA).

 

Fig. 4  Catheter segmentation 
assessment. Left-to-right: original 
image, auto-border detection by 
reference software, transposition 
of lines in proximal border to 
segmented image
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were not reported. Importantly, however, that study’s evalu-
ation used the baseline human annotation as reference, rather 
than an external validated software, thereby not enabling 
the identification of bias or imperfections which might have 
become embedded in their AI model. In our previous study, 
we demonstrated that even with a small group of annotators 
and continuous review of the annotations, there is always 
some degree of imperfection in human annotation [5], hence 
the relevance of comparing against an automated and vali-
dated external software. Additionally, the reported accuracy 
focuses on the overlap across the entire coronary tree rather 
than the percentage stenosis of diseased segments. This is 
advantageous in the sense that a globally accurate perfor-
mance can be tested. Notwithstanding, we believe testing 
only for diseased segments actually renders the comparison 
more demanding. This is because the segmentation of ste-
notic segments is harder from a technical point of view and 
also due to the fact that the number of true positive pixels 
is necessarily smaller in such segments – leading to a lower 
likelihood of true positives. Whichever interpretation is 
made, it is clear that an exact comparison with Du et al. [3] 
is not possible. However, broadly speaking, the accuracy of 
both models seems quite high and our model seems at least 
as accurate, if not more.

Su Yang et al. [4] also produced AI models for CAG seg-
mentation. Their validation dataset was somewhat larger 
(181 images), but their performance seems slightly lower, 
with all overlap metrics generally scoring just short of 90% 
and a Dice Score of 89%. Importantly, they also only seg-
mented diseased segments, with a minimum lesion of 30% 
and used the same reference software as we did. Thus, their 
results are more directly comparable to ours and our model 
seems to have superior performance. Two other works [1, 
2], from the same baseline dataset, also went on to develop 
AI-based CAG segmentation, this time with a validation 
dataset of 550 images. While the model performed well, 
with an accuracy of 98% and a sensitivity of 87%, they 
also based their validation dataset on human annotation of 
the coronary tree without using external software. Thus the 
above-mentioned considerations for Du et al. [3] also apply.

Recently, Gao et al. [11] published the results of a CAG 
segmentation model trained on only 130 images. Their 
methodology, however, is somewhat different, since they 
combined features from deep learning segmentation mod-
els’ features and non-AI image filters to perform pixel-wise 
classification using gradient-boosting decision trees [12] 
and deep forests [13]. Their results also show good perfor-
mance, with a Dice Score of 87,4%, sensitivity of 90,2% 
and specificity of 99,2%. This highlights that merging deep 
learning with traditional computer vision methods can yield 
good results, when working with relatively small datasets. 
However, no external validation software was used and the 

fundamental task of segmentation – correctly identifying the 
target structure i.e. true positives – in this case, the coronary 
tree. With an average score of approximately 95%, while 
also considering all the remaining metrics, we believe our 
model can be described as accurate. Importantly, the Dice 
Score in our previous study was 93%, thus very similar to 
what we now found [5]. There were statistically significant 
differences in the IoU and Dice Scores between target vessel 
stenosis severity. Notwithstanding, the absolute differences 
were very minor (around 1–2%) and therefore of little or no 
clinical relevance.

With regards to the GSS, our model achieved a high 
score with a median of 92/100 points, exceedingly similar 
to what we had previously described in the dataset used to 
train and develop the model. The model scored very high 
in almost all tasks, while maintaining minor imperfections 
with regards to mild gaps in collateral branches, which were 
very frequent. Catheter segmentation was not as good as 
coronary segmentation, as usually small catheter artifacts or 
gaps in the vicinity of the coronary tree origin were com-
mon. This was due not only to contrast backflow, but also 
because of how AI models are trained and function. Indeed, 
performance is very dependent on class frequency. Because 
the catheter is a less frequent class (i.e. corresponds to much 
fewer pixels), the models receive less penalty for errors 
regarding its segmentation when compared to the coronary 
tree. This is partly mitigated by the use of an appropriate 
loss function, but the imbalance nevertheless persists to 
some extent. Once again, this was very similar to what we 
saw in the training dataset [5]. With regards to precise cath-
eter measurements, the differences between original and 
segmented images (for both 5 and 6 Fr catheters) were not 
statistically significant, suggesting the catheter’s segmen-
tation, from a calliper precision point of view, is accurate. 
However, due to the above-mentioned limitations and to a 
small number of images where only a small portion (or none 
at all) of the catheter was discernible, our sample was some-
what reduced, thereby limiting this assessment.

Other studies in the field

There are very few studies published in medical/biology 
journals to date where a comparison with our results can 
be made. With regards to the GSS in particular, no similar 
application has ever been undertaken, to our knowledge.

The largest published study [3] included a dataset of 
1050 images distributed across all incidences and vessels 
for performance evaluation. An average 98% accuracy was 
obtained. While specificity and negative predictive values 
scored very highly, sensitivity and positive predictive value 
came closer to 80%. The performance was slightly inferior 
in more distal vessels. Intersection over union or Dice Score 
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to that, we also believe that our manual annotations meth-
odology was essential, as it allowed us to obtain a highly 
reliable training dataset: a small number of annotators (to 
reduce heterogeneity) well trained in the interpretation of 
coronary angiograms; very careful review of annotations 
with recurrent iterations of quality checks and improve-
ments; and further manual improvement of the already accu-
rate segmentation images produced by an earlier AI model, 
thus combining the best of AI and human annotations into 
a final training dataset, as mentioned in the methods section 
and previous publication [5].

Limitations

Our study is not without limitations. Despite the multicen-
tric approach, our dataset is relatively small when compared 
to previously published studies. We also only tested the 
model performance against validated software in diseased 
locations, rather than on the whole coronary tree. Therefore, 
we cannot affirm that the performance would be identical in 
the remaining areas. However, as previously explained, seg-
menting zones with lesions is actually more challenging for 
the model than segmenting broad, mostly healthy segments. 
In addition to that, we did not find differences regarding tar-
get vessel or lesion severity. Plus, considering the results 
of the GSS, the overall performance regarding CAG seg-
mentation was quite appropriate. Thus, we believe that it is 
unlikely that performance would be significantly different 
had we tested for the whole coronary tree. Importantly, if we 
had chosen to segment whole vessels, it would be very likely 
that some manual corrections had to be undertaken, which 
might induce bias or imperfections in the reference images. 
Hence, the decision to proceed as described was deliber-
ate. The assessment of catheter segmentation was also more 
limited than that of the coronary tree, as described above.

The exclusion of potential sources of artifacts from 
devices or previous cardiac surgery means our model is not 
yet applicable to such patients. Notwithstanding, we didn’t 
exclude cases with previous implantation of stents, but we 
did not perform detailed measurements on such segments.

The total number of patients/images who fully met exclu-
sion criteria was somewhat high, thereby limiting the final 
amount of available images for analysis, which may raise 
questions as to whether this sample is representative of 
everyday CAGs and an therefore constitutes an adequate 
validation dataset. This was the result of somewhat stringent 
criteria, which we felt were nonetheless necessary due to 
basic feasibility (such as excluding single-vessel complete 
occlusion cases where QCA is not applicable, or excluding 
imaging artifacts for which the models are not yet trained), 
reduction of bias (such as not allowing for manual QCA 
correction), or excluding patients with normal/near-normal 

whole coronary tree was evaluated. As a result, once more, 
the previous considerations for Du et al. [3] apply.

Other works in the application of AI to coronary segmen-
tation are primarily technical and featured in engineering 
publications. A detailed review of these falls outside the 
scope of this paper and can be consulted in our previous 
technical publication [7]. However, some considerations 
regarding these provide further contextualization of our 
findings.

Xian et al. [14] used a very large dataset of 3200 manu-
ally annotated images and experimented with the U-Net 
architecture as well, with a sensitivity of 90,1%, positive 
predictive value of 89,8% and Dice Score 90%. However, 
the annotations were undertaken with a specific software 
for the purpose of coarsely signaling the vessel route, and 
focused only on the main vessels. Since we achieved higher 
performance metrics, it seems a smaller but higher quality 
dataset, with very precise and cumbersome manual annota-
tions, may be a better approach.

Yang et al [15] have obtained a sensitivity, positive pre-
dictive value and Dice Score of 91,3%, 92,5% and 91,9%, 
respectively, by using popular image classification back-
bones pre-trained on ImageNet instead of the U-Net’s 
encoder, while also using a modified generalized dice loss 
function. Their findings were influential in our training 
method, as we used a combination of their proposed loss 
function and the focal loss [16]. Other authors have explored 
the use of dense connections, improving on the performance 
of the standard U-Net [17]. This approach is also present in 
the U-Net ++ [18], which we used in our approach.

In all of the above studies, metrics regarding vessel 
diameters were not performed. Thus, a direct comparison 
with this study regarding those is not possible. M’hiri et 
al. addressed the issue of CAG diameter measurements, 
when dealing with the issue of diameter variation during 
the cardiac cycle due to vessel distensibility. They focused 
mainly in measuring specific segments of the coronary tree, 
as we did. However, they used a graph-based segmenta-
tion method, then tracked the changes across the cardiac 
cycle using a spatio-temporal segmentation method. They 
obtained a Dice Score of 98%, with a very small diameter 
mean error (0,18  mm) [19]. However, they did not focus 
on diseased regions. While this study is not focused on AI 
methods, it highlights that other methods may be of use for 
accurate CAG segmentation, potentially in combination 
with AI tools [11].

In light of all these studies, the performance of our model 
seems at least as good, if not better, than previously pro-
posed AI models. We believe this is related to its neural net-
work architecture, which was carefully chosen over a series 
of experiments [7], taking into consideration the invaluable 
contributions of previously mentioned studies. In addition 
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artery segmentation system would surely benefit from train-
ing on a larger volume of data. Manual annotation of coro-
nary angiography images, however, is very cumbersome 
and time-consuming, and therefore it is difficult to obtain 
much larger labeled datasets. Hence, significant improve-
ments to the model could probably be achieved, for exam-
ple, by using self-supervised learning on existing very large 
volumes of unlabeled data. These possibilities are described 
in detail in our previous technical publication [7].

Data Availability

Detailed full-scale study data cannot currently be made pub-
licly available due to limitations imposed by national data 
protection regulations, as this is a retrospective study and no 
informed consent was obtainable regarding this particular 
analysis. Both our research team and others in the national 
scientific community are working to develop a framework 
where such would be possible. However, independent rep-
lication of our analysis is possible, given that the detailed 
description of our experimentations and relevant code is 
publicly available [7].

Conclusions

Our AI model was capable of accurate CAG segmentation 
when applied to a multicentric validation dataset, with no 
differences between target vessels or stenosis severity. This 
paves the way for future research and implementation for its 
clinical uses.
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included patients consecutively rather than selectively and 
the clinical characteristics of included patients are in agree-
ment with everyday clinical practice. We therefore believe 
our sample to be reasonably representative of real-world 
practice. Furthermore, we exceeded the minimum valida-
tion target of 100 images, yielding relative rates of train-
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The imbalance in sample size limits the comparison 
between centers.
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Future directions

We are currently working in automatic anatomical interpre-
tation, lesion severity based on auto-QCA and integration 
with physiology. We believe without effective segmentation 
models, none of these will be possible. Much like for human 
interpretation of CAG, separating the coronary arteries from 
everything else in the image is an essential first step. Our 
ultimate goal is to produce an intelligence augmentation 
tool that helps physicians perform a more objective and 
streamlined interpretation of CAG, hopefully contributing 
for better patient outcomes. As we continuously improve its 
performance, while also adding new capabilities, clinical 
application will potentially be possible in the near future, 
opening a new perspective and potentially more accurate 
method to assess coronary artery disease.

We are also continuously working to expand and improve 
the model, as segmentation alone is not a final goal in itself, 
but rather a fundamental step. We hope to release a public 
version in the near future, which other researchers may use 
for whichever application they may deem useful. Impor-
tantly, comparing or even merging with future models from 
other groups may also be very relevant. Since it uses an 
inherently data-hungry deep learning model, our coronary 
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