

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Usage Statistics

João Marcelo Machado Milagaia

Mestrado em Informática

Trabalho de Projeto orientado por:

Prof. Márcia Cristina Afonso Barros

Acknowledgments

I would like to start by thanking the Faculty of Sciences of the University of Lisbon for
giving me the opportunity to pursue learning Informatics and develop a Master’s Project
Work in Informatics. This experience enabled my growth as a Software Developer and
furthered my interest in Informatics. I would also like to give a special thanks to Prof.
Márcia Cristina Afonso Barros, without whose support, patience and guidance this project
would not be possible. I would also like to thank Quidgest for the opportunity to have this
project experience within a professional context and Rodrigo Serafim, Chief Technology
Officer (CTO) at Quidgest, for guiding me as well as the Research and Development
(RND) team for welcoming and helping me throughout the project. I am also grateful for
all the friends who supported me throughout this project, specially Catarina Parente and
Francisco Cavaco. Finally, I would like to thank my sisters for their love and support and
my parents for always believing in me, for all their hard work and effort so that I could
continue studying and for always pushing me to do better. I am who I am because of them
and I will forever be grateful.

i

À minha famı́lia.

Resumo

À medida que a tecnologia avança, os sistemas de informação podem satisfazer mais
necessidades da humanidade e ajudar a resolver problemas cada vez mais complexos, re-
sultando em sistemas cada vez mais complexos. No entanto, para manter e melhorar esses
sistemas, é necessário monitorá-los de forma automática. É aqui que entra o conceito de
Observabilidade. Observabilidade, a capacidade de um sistema ser monitorável é definida
como a capacidade de inferir os estados internos de um sistema examinando o seu output.
Para implementar a observabilidade num sistema de informação, existem três tipos de
dados de telemetria - logs, métricas e traces. Em suma, olhando para logs, métricas e/ou
traces, é possı́vel inferir o que está a acontecer dentro de um sistema para, por exemplo,
detetar problemas ou ineficiências. Além disso, logs, métricas e traces podem ser resumi-
dos e representados graficamente usando um dashboard, o que permite obter rapidamente
informações sobre várias métricas e facilita a visualização de dados, economizando tempo
e esforço.

A Quidgest é uma empresa tecnológica global e, desde a sua fundação em 1988, é
pioneira no uso de IA aplicada à modelagem e geração automática de software. Genio, a
plataforma para geração automática de código, é desenvolvida pela Quidgest desde 1990,
sendo um dos seus principais recursos. É uma plataforma extreme low-code de desen-
volvimento de software orientada a modelos. O Genio foi concebido para não programa-
dores e permite que especialistas e analistas funcionais construam e suportem sistemas
de informação, abrindo caminho para combinar o know-how tecnológico com o conhe-
cimento do negócio. O Genio gera modelos que descrevem completamente o sistema
final e são enviados para geradores de tecnologia especı́ficos (por exemplo, Web Site em
Asp.Net MVC) que cumprem a implementação desse modelo numa aplicação. Isto reduz
o número de passos manuais propensos a erros e evita testes demorados, melhorando a
produtividade em cerca de 10 vezes em comparação com plataformas de low code.

A Quidgest precisa de avaliar o desempenho dos sistemas gerados pelo Genio. Além
disso, eles também precisam avaliar quais funcionalidades ou menus são usados. Até
agora, esse tipo de informação era inferido por queries manuais à base de dados. Este é
um processo difı́cil e ineficiente, razão pela qual uma junção de todas estas informações
seria útil na hora de tomar a decisão de alterar ou remover funcionalidades. Os dashboards
seriam especialmente úteis nesta situação para fazer debug, manter e analisar sistemas.

v

Não só isso, mas as estatı́sticas de uso podem fornecer uma visão sobre quais funciona-
lidades são mais usadas, o que é especialmente útil no processo de tomada de decisão de
modificação ou remoção de determinadas funcionalidades. O objetivo deste trabalho é in-
tegrar um dashboard com estatı́sticas de uso e desempenho na interface de administração
dos sistemas gerados pelo Genio. Para isso, um agente de coleção de métricas será de-
senvolvido e integrado a uma base de dados para persistir os dados. Além disso, será
desenvolvido um dashboard, com capacidades de downsampling.

Sendo que o objetivo final deste projeto é a coleção, armazenamento e visualização de
métricas de qualquer sistema gerado pelo Genio, um sistema especı́fico gerado pelo Genio
é usado para gerar métricas simuladas para fins de prototipagem. Esse sistema em parti-
cular é o QuidServer, um serviço windows desenvolvido e utilizado pela Quidgest que lê e
configura processos de longa duração e chama web services externos que executam esses
processos. Aqui, o QuidServer atua tanto como scheduler quanto como message broker e
um MockWebApi envia mensagens para o QuidServer, o que o leva a fazer log de even-
tos. O QuidServer faz log de eventos pois tem um event provider integrado, que chama a
API de logging. O tempo de processamento de mensagens foi desenvolvido como métrica
pela empresa. Cada canal de mensagem foi atribuı́do a uma instância de Stopwatch, uma
instância de EventCounter e uma instância de EventCounter geral partilhada por todos os
canais de mensagem. O stopwatch é iniciado antes do processamento de cada mensagem
e após o processamento da mensagem, o stopwatch é interrompido e o tempo decorrido
é gravado em ambos os EventCounters e ao final de cada janela de tempo (definida para
5 segundos) os EventCounters fazem log de eventos ETW contendo o número de men-
sagens processadas e um resumo dos tempos de processamento (tempo máximo, médio,
mı́nimo e stdev).

Posto isto, foi desenvolvido um agente de coleção de eventos em C Sharp utilizando o
Microsoft Visual Studio para coletar os eventos. Este agente usa a biblioteca TraceEvent e
é composto por um event controller e um event consumer. O controller cria uma sessão de
rastreamento de eventos e permite que o event provider inicie o logging, e o consumer lê
os eventos em tempo real, converte-os em data points e grava-os num bucket do InfluxDB
usando a sua writing API.

Tendo o agente de coleção a enviar dados para o InfluxDB, foi criado um dashboard
utilizando a ferramenta Boards do InfluxDB. As queries construı́das no Data Explorer
podem ser exportadas para diferentes células de um dashboard com a ferramenta Boards.
Isto permite a visualização simultânea de diferentes dados e para melhor interação com as
células do painel, é possı́vel criar variáveis dinâmicas que permitem alterar componentes
especı́ficos da célula, como um valor de tag, sem editá-los. Outra funcionalidade do
InfluxDB é a ferramenta Tasks que permite criar queries contı́nuas que são executadas
automaticamente e periodicamente, o que é especialmente útil para downsampling, pois
é possı́vel executar periodicamente uma query que agrega dados em janelas de tempo e

vi

armazena os valores agregados num bucket com um perı́odo de retenção maior.
Como o InfluxDB é principalmente uma base de dados, este não é otimizado para a

visualização de dados, pois é mais limitante do que o Grafana, que é construı́do especi-
ficamente para a análise e visualização de dados temporais. No entanto, ao explorar os
dashboards do InfluxDB, foi possı́vel utilizar esse conhecimento e utilizar o Grafana para
recriar o dashboard criado no InfluxDB. Os dashboards do Grafana têm painéis que pos-
suem três funcionalidades diferentes: query, transformação e alerta. Isto permite remover
a parte de menor desempenho de uma query, o processamento dos dados. Em vez disso, a
query pode simplesmente buscar os dados necessários (o que torna a consulta muito mais
rápida e eficiente) e o recurso de transformação do Grafana foi desenhado para processar
com eficiência os dados consultados. Assim, o InfluxDB agora é usado apenas para ar-
mazenar e reduzir a amostragem de dados, enquanto o Grafana usa a linguagem Flux para
fazer queries e visualizar os dados num dashboard interativo.

Até agora, a coleção, persistência e visualização são testadas apenas para o tempo de
processamento das mensagens recebidas, métrica que foi implementada pela empresa. A
próxima etapa deste projeto é então entender como as métricas são coletadas de um sis-
tema: fazendo medições e agregando os dados em métricas que podem ser enviadas por
eventos ETW para serem capturadas pelo agente de coleção de métricas. Para isso, é im-
plementada uma nova métrica, o número de tarefas de scheduling invocadas, bem como
o tempo de processamento dessas tarefas. A implementação desta métrica foi muito se-
melhante à métrica do tempo de processamento da mensagem, pois continuamos a medir
um tempo de processamento. A única diferença é que, como as tarefas podem ser con-
correntes, cada uma deve ter um novo Stopwatch distinto, em vez de cada canal ter um
Stopwatch atribuı́do. Isto garante que, mesmo que duas tarefas diferentes do mesmo ca-
nal estejam a ser processadas ao mesmo tempo, cada uma delas ainda terá seu próprio
stopwatch. Por fim, o Docker é usado para correr o InfluxDB num container e o Grafana
noutro, o que permite a automação da instalação e configuração do InfluxDB e do Grafana
usando ficheiros de configuração. Após isso, é desenvolvido um script para automatizar a
primeira configuração do InfluxDB e do Grafana, facilitando a continuação deste projeto.
Trabalho futuro incluiria a adição de mais métricas, como erros frequentes, duração de
pedidos, duração de sessões e número de utilizadores por dia, além de integrar o dash-
board criado no Genio com o objetivo de que cada sistema gerado por ele tenha o seu
próprio dashboard estatı́stico.

Palavras-chave: TSDB, InfluxDB, Dashboard, Grafana, Docker

vii

Abstract

By looking at logs, metrics and traces, it is possible to infer what is going on inside a
system, in order to detect problems or inefficiencies. Quidgest is a global technological
company and since its establishment in 1988, it has pioneered the use of AI applied to
modelling and automatic generation of software. Genio is a tool that allows functional
specialists and analysts to build and support information systems. Quidgest needs to eval-
uate the performance of the systems generated by Genio. The goal of this work is to
integrate a dashboard with usage and performance statistics into the administration inter-
face of the solutions generated by Genio. To generate mock metrics QuidServer is used, a
windows service developed and used by Quidgest. This service reads and configures long
duration processes and calls external services that run those processes. With this, an event
collection agent was developed in C Sharp. This agent reads events in real time, parses
them and writes them into an InfluxDB bucket. With InfluxDB, it is possible to create con-
tinuous queries that run automatically and periodically to downsample the data as needed.
Grafana is then used to create dashboard, which allows for simultaneous visualization of
different data. Having the processing time of received messages as a metric implemented
by the company, a new metric is implemented, the number of invoked scheduling tasks,
as well as the processing time of said tasks. This is done to understand how metrics are
collected from a system: measuring data and aggregating it into metrics that can be sent
through ETW events to be captured by the metric collection agent. Finally, Docker is used
to run InfluxDB in one container and Grafana in another, which allows for the automation
of the installation and configuration of InfluxDB and Grafana.

Keywords: TSDB, InfluxDB, Dashboard, Grafana, Docker

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Goals . 2
1.4 Contributions . 2
1.5 Structure of the document . 3

2 Background 5
2.1 Quidgest . 5
2.2 Logs, metrics, and traces . 6
2.3 Metric monitoring and collection . 7

2.3.1 Telegraf . 7
2.4 Metric storing . 8
2.5 Metric visualization interface . 9
2.6 Docker . 9

3 Related Work 11
3.1 Metric collection . 11
3.2 Metric storing . 11
3.3 Metric visualization . 12

4 Methods 15

5 Results and Discussion 19
5.1 Analysis of architecture . 19
5.2 Metric collection . 20
5.3 Metric persistence . 20
5.4 Metric visualization . 20

xi

5.5 Comparison with Telegraf . 22
5.6 Implementation of new metric . 24
5.7 Docker containerization . 24

6 Conclusion 27

Glossary 29

Bibliography 33

Index 34

xii

xiv

List of Figures

4.1 Project Flow Schema . 15

5.1 Interactive dashboard developed using InfluxDB 21
5.2 Interactive dashboard developed using Grafana 22
5.3 Dashboard automatically generated by InfluxDB to visualize the system

monitoring data . 23

xv

List of Tables

5.1 Summary table of comparison between Telegraf and QMetrics, the metric
collection agent developed in C Sharp. 23

xvii

Chapter 1

Introduction

This Master’s Project Work in Informatics is the result of an internship of nine months at
Quidgest - Management Consultants, SA. In this project, a dashboard of usage statistics
is developed for Quidgest’s software development platform, Genio. The goal of this work
is to integrate a dashboard with usage and performance statistics into the administration
interface of the systems generated by Genio. To do this, a metric collection agent will be
developed and integrated with a timeseries database to persist the data. In addition to this,
a dashboard will be developed, along with downsampling capabilities.

1.1 Context

Quidgest is a global software engineering company that has pioneered the concept of AI
applied to automatic software generation since its establishment in 1988[18]. Genio is an
extreme low-code model-driven software development platform developed by Quidgest,
being one of its main resources. Genio is conceived for non-programmers, and it allows
functional specialists and analysts to build and support information systems. It generates
models that fully describe the final system. These models are sent to specific technology
generators (e.g., Web Site in Asp.Net MVC) that fulfil the implementation of that model
into an application. This reduces the number of manual error-prone steps and avoids
time-consuming testing, improving productivity[6].

1.2 Motivation

As technology advances, information systems can satisfy more of humanity’s needs and
help solve increasingly complex problems, resulting in increasingly complex systems.
However, to maintain and improve these systems, there is a need to monitor them in an
automatic way. This is where the concept of Observability comes in. Observability, the
ability of a system to be monitorable is defined as the ability to infer the internal states of
a system by examining its external outputs. To implement observability in an information

1

Chapter 1. Introduction 2

system there are three types of telemetry data - logs, metrics, and traces. In short, by look-
ing at logs, metrics and/or traces, it is possible to infer what is going on inside a system,
in order to, for example, detect problems or inefficiencies. In addition, logs, metrics, and
traces can be summarized and represented graphically by using a dashboard. This allows
obtaining information on multiple metrics at a glance and makes data visualization easier,
saving time and effort.

Quidgest needs to evaluate the performance of the systems generated by Genio. Not
only this, but they also need to assess what functionalities or menus are used. Until now,
this type of information has been inferred by manual queries to the database. This is a
difficult and inefficient process, which is why a junction of all this information would be
useful when making a decision to change features or remove them. Dashboards would
be especially useful in this situation to debug, maintain and analyse systems. Not only
that, but usage statistics can give an insight into what features are used the most, which is
especially useful in the decision-making process of the modification or removal of certain
functionalities.

1.3 Goals

The goal of this work is to integrate a dashboard with usage and performance statistics
into the administration interface of the systems generated by Genio. To do this, a metric
collection agent will be developed and integrated with a timeseries database to persist the
data. In addition to this, a dashboard will be developed, along with downsampling capa-
bilities. Furthermore, this project aims to explore metrics to monitor and test collection,
persistence, and visualization tools for metrics.

1.4 Contributions

The contributions made for this project include:

• Metric collection agent prototype that supports integration with InfluxDB’s TSDB

• Downsampling query for the collected metrics written in Flux language

• Grafana dashboard that displays the collected data

• New metric to be collected: Number of invoked scheduling tasks

• Docker containers for InfluxDB and Grafana, including all necessary configuration
files

• Scripts to start and stop metric collection agent and containers

Chapter 1. Introduction 3

• Script to create data buckets for InfluxDB

• Script to import downsampling task into InfluxDB

• Documentation file that explains how to run metric collection agent, as well as how
it works

1.5 Structure of the document

This document is organised in 6 chapters as follows:

• Chapter 1 - Introduction: Introduces the context for the project, as well as the mo-
tivation and goals behind it, followed by the contributions of the project and the
structure of the document.

• Chapter 2 - Background: Provides more information about the company where the
project work took place, as well as concepts needed to understand metric collection,
persistence, and visualization, in addition to the tools that were used.

• Chapter 3 - Related Work: Discusses other works of research in the literature that
are related to the various aspects of the project.

• Chapter 4 - Methods: Indicates what methods were used throughout the project.

• Chapter 5 - Results and Discussion: Exhibits and discusses the results obtained by
following the methods previously mentioned.

• Chapter 6 - Conclusion: Summarizes the main points of the project and discusses
possible future work for this project.

Chapter 1. Introduction 4

Chapter 2

Background

In this chapter, a background to the project is presented, including more information about
the company where the project took place, as well as concepts needed to understand metric
collection, persistence, and visualization, in addition to the tools that were used.

2.1 Quidgest

Quidgest is a global technological company and since its establishment in 1988, it has pi-
oneered the use of AI applied to modelling and automatic generation of software[18]. Ge-
nio, the platform for automatic generation of code, has been developed by Quidgest since
1990, being one of its main resources. It is an extreme low-code model-driven software
development platform that combines technological independence, code standardization
and delivery speed in multiple languages and technologies. In fact, it supports the most
recent web-based architectures, technologies, and databases, as well as previous modelled
Back Office solutions to ensure legacy support and fast upgrading. Genio is conceived for
non-programmers, and it allows functional specialists and analysts to build and support
information systems, clearing the way for combining technological know-how with busi-
ness knowledge. It generates models that fully describe the final system and are sent to
specific technology generators (e.g., Web Site in Asp.Net MVC) that fulfil the implemen-
tation of that model into an application. This reduces the number of manual error-prone
steps and avoids time-consuming testing, improving productivity by about 10 times in
comparison with low code platforms[6].

Since one of the goals of the project is to collect, store and visualize metrics from
any system generated by Genio, the first step is to test the collection, storage, and visu-
alization of metrics from one particular system. Thus, the test subject used in this step is
QuidServer, a windows service developed and used by Quidgest that reads and configures
long duration processes and calls external web services that run those processes. Thus,
QuidServer acts as both a scheduler and a message broker. A MockWebApi sends mes-
sages to QuidServer, running in parallel with it. This is what triggers QuidServer to log

5

Chapter 2. Background 6

events.

2.2 Logs, metrics, and traces

Monitoring the performance of the systems generated by Genio is crucial to debug com-
mon errors and maintain the system. It is also useful to know information like user logins
and logouts to determine the affluence of people in a certain system at a certain time to
predict a pattern and allocate more resources if and when necessary. In addition, the abil-
ity to know which features are most or least used in a system can be incredibly useful to
understand the general user experience, acting as user’s feedback. If a feature is the least
used in a system it can be because it is not as visible or easy to use as the others, indicating
to the developers the need of improving the feature, or it can be because the feature is not
as useful for the users, indicating the possibility of removing that feature altogether.

In the same way, knowing which features are most used in a system may give clues
about the next features to be implemented. These are just some examples of the benefits
of system monitoring. However, the monitoring of a system is only possible if the system
itself is monitorable.

The ability of a system to be monitorable is called observability. It is defined as the
ability to infer the internal states of a system by examining its external outputs. To im-
plement observability in a system there are three types of telemetry data - logs, metrics,
and traces - often called “the three pillars of observability”[25]. Logs are immutable
records that are time stamped, give contextual information about a certain event, and can
be represented in three different formats: plain text, structured and binary. The infor-
mation present in logs can include the time at which an event occurred and which user
or endpoint was associated with it, as well as an error, warning or information message
that describes what happened. Metrics are sets of numeric values that describe a process
or activity over time and allow for longer data retention, since numbers are optimized
for processing, storing, compressing, and retrieving. For example, metrics might track
how many transactions an application handles per second or measure how many CPU or
memory resources are consumed on a server. Traces represent a series of causally related
distributed events which can give insight into both the path traversed by a request as well
as the structure of a request. Traces are similar to logs in the sense that they describe at
what time each process occurred, however traces are more structured since a trace of a
request includes all the traces of the requests called by the original request.

The biggest challenge here is that the volume of collected data greatly increases over
time, therefore for this project we will use three strategies for mitigating this problem: col-
lecting metrics that, unlike logs or traces, can be conveniently aggregated and visualized
in dashboards; storing the (timestamped) data in a time series database specialized in data
compression; and downsampling (older) data, which metrics (as numeric values) are also

Chapter 2. Background 7

optimized for. Another way to solve this problem would be by sampling, as implemented
in Google’s Dapper project[34]. However, this approach is better fit for companies of the
same magnitude as Google.

2.3 Metric monitoring and collection

To collect events logged by QuidServer, a collection agent is developed in C Sharp[2]
using Microsoft Visual Studio[21]. This agent uses the TraceEvent library to collect and
process event data[16]. This library was initially built to parse Event Tracing for Windows
(ETW) events that the Windows operating system (OS) generates and is meant to be used
together with the EventSource class that provides the ability to create ETW events[1].

ETW is a widely used and efficient logging framework with structured payloads and
ETW based logging systems are broken down into three components: providers, con-
trollers, and consumers. An event provider is wired into the application to be monitored
(in this case QuidServer) and it calls the logging API to provide events. It is common
for the controller and consumer to be combined, ergo in this project they constitute the
agent developed in C sharp. The controller creates an event tracing session and enables
the provider to start logging, and the consumer reads events from the session in real time.

EventSource is an efficient mechanism to log events, but it loses performance as the
frequency of events increases. To manage that increase, the EventCounter class was used
in the place of EventSource[4]. Instead of writing an event for every measurement, Event-
Counter records a set of values during a set interval and, at the end of each interval, a
statistical summary for the set is computed to write an event. This way, instead of storing
each individual processing time, the maximum, mean, and minimum processing time is
stored, as well as the number of processed messages.

2.3.1 Telegraf

Telegraf is an open-source plugin-driven server agent for metric and event collection. The
extensive library of input and output plugins make Telegraf easily extendable, and it also
allows for custom plugin development[19]. The TICK stack is a loosely coupled and
tightly integrated collection of open-source products developed to manage high quantities
of time series data for metric analysis, and it consists of Telegraf, InfluxDB, Chronograf
and Kapacitor[13]. By being part of the TICK stack, Telegraf is designed to work seam-
lessly with InfluxDB, having both input and output plugins available to collect data from
and/or to InfluxDB[15].

Chapter 2. Background 8

2.4 Metric storing

Time series are sequences of values of a variable taken at successive equally spaced time
intervals and since timestamped metrics are collected in this project, it is imperative to
have a Time series database (TSDB) which is optimized for time series data[30] and
efficiently compresses data[32], which is useful to control the volume of collected data
since as data grows older, granularity becomes less important.

TSDBs have become increasingly popular with the emergence of the Internet of Things
(IoT)[31]. IoT englobes a network of physical objects that are embedded with software,
sensors, actuators, and other technologies that help to connect and exchange data using
devices and systems over the Internet[35]. Since IoT sensors collect vast amounts of
(timestamped) data, it makes sense that TSDBs would be imperative to IoT, however they
are also used in DevOps monitoring and real time data analysis. TSDB use cases include,
but are not limited to, software system monitoring, eventing apps that track data about
user interaction and business intelligence tools.

The TSDB used in this project is InfluxDB, an open-source schemaless TSDB de-
veloped by InfluxData[14]. It is written in Go[7] and provides an SQL-like query lan-
guage, Flux[5]. InfluxDB has been ranked the number one TSDB since 2016[10] on
DB-Engines[3], an independent website that ranks DBs based on search engine popular-
ity, frequency of technical discussions, number of job offers and number of mentions in
social media.

InfluxDB stores its data in a bucket, which combines the concept of a database and
a retention period, and it writes data points by using line protocol, a text-based format
consisting of the measurement, tag set, field set and timestamp. Each point is required
to have one and only one measurement, which is a string that indicates what the point is
measuring. The tag set is optional, contains all the tag key-value pairs of the data point
and both the key and value are strings. A point must have at least one field in the field set,
which is required and contains all the field key-value pairs of the data point, in which the
key is a string, and the value can be a string, float, integer or boolean. Finally, a point has
only one timestamp, which is optional, since if it is not provided, InfluxDB will use the
system time of the host machine.

Another key concept in InfluxDB is series. A series key is a set of points that share
a measurement, tag set and field key. A series includes timestamps and field values for a
given series key. An important thing to note here is that tags are indexed, and fields are
not. This means that a query that filters by field values must scan all field values, mak-
ing queries on tags more performant. Consequently, it is recommended that commonly
queried metadata should be stored in tags and not fields. However, tags that contain highly
variable information lead to a large number of unique series in the DB. This phenomenon
is known as high series cardinality, and it is the main cause of high memory usage. To
avoid this issue, highly variable information should be stored as a string field instead of a

Chapter 2. Background 9

tag.

2.5 Metric visualization interface

InfluxDB user interface (UI) allows data visualization; however, it is used for storing the
data. The visualization is usually provided by another tool, Grafana[8], which is the go-to
open-source software for time series analytics and visualization[31]. Grafana was built
by Grafana Labs[9] and integrates a large number of data sources, including InfluxDB. In
fact, the two are commonly used together.

On top of InfluxDB’s features, Grafana’s dashboards have panels that have three dif-
ferent functionalities: query, transform and alert. This allows the removal of the least
performant part of a query, which is processing the data. Instead, the query can simply
fetch the needed data (which makes the query much faster and performant) and Grafana’s
transform feature is designed to efficiently process the queried data.

2.6 Docker

Docker is a group of products developed by “Docker, Inc” in 2013 that uses OS-level vir-
tualization to deliver software in individualized containers[11]. This open-source engine
allows the wrapping of any application and its dependencies, allowing it to run anywhere,
as well as automating the configuration of applications.

The base of docker are Docker files, which describe how to build a docker image, a
snapshot of a piece of software. The image is immutable and is used to run one or more
containers which are the actual software running.

Chapter 3

Related Work

Monitoring a system’s performance is crucial to debug common errors and maintain the
system as well as to gain insight on usage patterns. This section will discuss related
work around three topics that are relevant to system monitoring: metric collection, metric
storing and metric visualization.

3.1 Metric collection

There are two main categories regarding metric collection methods. One involves having
an agent residing in each individual component that pushes metrics while the other con-
sists of having a centralized collector that pulls metrics from components[33]. The TICK
Stack[13] and Prometheus[17] are two popular monitoring systems that are examples of
these two categories, respectively. In our project, a metric collection agent is developed to
be compared with Telegraf, TICK’s very own metric collection software, which has been
shown to be a lightweight and suitable real-time monitoring agent[33].

However, the biggest challenge in system monitoring is that the volume of collected
data greatly increases over time. One solution to this problem is sampling, as imple-
mented in Google’s Dapper project[34]. Dapper is described as a Large-Scale Distributed
Systems Tracing Infrastructure. However, this approach is better fit for companies of the
same magnitude as Google. Thus, other approaches are used, such as the aggregation of
collected metrics, the use of a TSDB to store and compress data; and downsampling the
data.

3.2 Metric storing

A relational database is a flexible, easy, and established solution for data persistence. Yet,
it has the disadvantage of not being scalable as data increases[29]. This disadvantage
leads to the creation and increasing use of time series NoSQL databases to deal with
increasingly copious amounts of time-series data[27]. Indeed, TSDBs have been shown

11

Chapter 3. Related Work 12

to be optimized for time series data[30] and to efficiently compress data[32]. Not only
that, but TSDBs have been increasingly used in association with the emergence of the
Internet of Things (IoT)[31].

Our project uses InfluxDB, an open-source schemaless TSDB that has been the most
used TSDB since 2016[10]. InfluxDB’s primary benefit has been shown to be the ability
of value aggregation without the need of manual interference[26] in addition to the ability
of being accessed by Grafana, the go-to open-source software for time series analytics
and visualization[31].

3.3 Metric visualization

Data visualization is a crucial part of any type of logging framework as it allows users
to examine the data in detail and interactive statistic dashboards are especially useful
for zooming in and/or filtering data. One example of interactive dashboards associated
with a logging framework is the creation of a dashboard for the statistical analysis and
visualization of user logs[23] from LogUI, a framework-agnostic JavaScript library[28]
designed to simplify the process of logging for web pages.

In this project, the dashboard is constructed with the widely used Grafana which
has recently been used as the display environment of the new monitoring infrastructure
that CERN[12] has provided for the ATLAS Distributed Computing project[24]. This
new infrastructure aims to replace the one that has been used for the last 10 years. It
was based on a collection of CERN-provided custom dashboards and performed effec-
tively, however the progressive difficulty of the system maintenance demanded for a new
infrastructure[22].

Chapter 3. Related Work 14

Chapter 4

Methods

This section will describe not only the steps taken in the development of this project
but also all the knowledge that was necessary to be acquired in the process, since in the
beginning, the project consists of researching and learning new tools. The main stages of
the project are an initial analysis of the problem and Genio’s architecture, the development
of a prototype for metric collection, persistence, and visualization, the implementation of
a new metric and the use of Docker containerization, as seen in figure 4.1.

Figure 4.1: Project Flow Schema

Before starting the project, it is imperative to learn and understand how to use Genio
and how it works as an extreme low-code model-driven software development platform
to get a better understanding of it, as well as analysing the architecture of the systems
generated by Genio and the structure of the databases created for them.

The ultimate goal of this project is the collection, storage and visualization of metrics
from any system generated by Genio, but for prototyping purposes, one particular system
generated by Genio, QuidServer, is used to generate mock metrics. After analysing the
QuidServer’s architecture, an event collection agent is developed in C Sharp using Mi-

15

Chapter 4. Methods 16

crosoft Visual Studio to collect events logged by QuidServer, parse them, and store them
in InfluxDB, a TSDB.

Having the collection agent sending data to InfluxDB, the next step is to learn how
InfluxDB works, learn its language Flux, and explore what InfluxDB can do and after
exploring the data with different queries, a dashboard is created using InfluxDB’s Boards
tool. In addition, InfluxDB is benchmarked to understand the storage space taken by each
metric, how it stores data and how InfluxDB compares with other TSDBs. This allows
for a better understanding of InfluxDB, which is crucial to optimize the persistence of the
data.

The last functionality to explore in InfluxDB is the Tasks tool which allows to create
continuous queries that run automatically and periodically, which is especially useful for
downsampling since it is possible to periodically run a query that aggregates data within
windows of time and stores the aggregate values in a bucket with a larger retention period.

Since InfluxDB is mainly a TSDB, it is not optimized for data visualization, as it is
more limiting than Grafana, which is specifically built for time series analytics and visu-
alization. However, by exploring InfluxDB’s dashboards, it is possible to use this knowl-
edge and Grafana to recreate the dashboard created in InfluxDB. With this, InfluxDB is
now only used to store and downsample data, while Grafana uses Flux to query the data
and visualize it in an interactive dashboard.

Having a prototype metric collection agent completed, the next step is to explore and
use Telegraf, InfluxData’s own data collection agent, to collect the metrics and send them
to InfluxDB to compare the benefits, development time, and complexity of the agent de-
veloped in C Sharp vs Telegraf. These factors will determine which method should be
used to collect the data in the final product.

Until this point, the collection, persistence, and visualization are only being tested for
the processing time of received messages, a metric that was previously implemented by
the company. The next step in this project is then to understand how metrics are collected
from a system, measuring data, and aggregating it into metrics that can be sent through
ETW events to be captured by the metric collection agent. To do this, a new metric is
implemented, the number of invoked scheduling tasks, as well as the processing time of
said tasks.

Finally, Docker is used to run InfluxDB in one container and Grafana in another, which
allows for the automation of the installation and configuration of InfluxDB and Grafana
by using configuration files. After that, a script is constructed to automate the InfluxDB
and Grafana first setup, facilitating the continuation of this project.

Chapter 4. Methods 18

Chapter 5

Results and Discussion

In this chapter the results of the project will be presented and discussed, following the
methods described previously, as seen in figure 4.1, in addition to any unplanned proce-
dure that was implemented in response to either a result or an unexpected problem.

5.1 Analysis of architecture

Before starting the project, it is imperative to learn and understand how to use Genio and
how it works as an extreme low-code model-driven software development platform to get
a better understanding of it, as well as analysing the architecture of the systems generated
by Genio and the structure of the databases created for them. This analysis allowed the
understanding of the points of contact between the user and the system, as to identify
what kind of metrics could be extracted, as well as where, in the code, they would be
implemented.

The ultimate goal of this project is the collection, storage, and visualization of metrics
from any system generated by Genio, but for prototyping purposes, one particular sys-
tem generated by Genio, QuidServer is used to generate mock metrics. Here, QuidServer
acts as both a scheduler and a message broker and a MockWebApi sends messages to
QuidServer, running in parallel with it. This is what triggers QuidServer to log events.
QuidServer does this by having an event provider wired into it, that calls the logging API.
Thus, to develop an event collection agent, the architectures of QuidServer, the MockWe-
bApi and the events logged by QuidServer were analysed, not only to understand how the
message processing time was already developed as a metric by the company, but also to be
able to replicate the procedure to create new metrics. Each message channel was assigned
to a Stopwatch instance, an EventCounter instance and a general EventCounter instance
shared by all message channels. The Stopwatch would be started before the processing
of each message and after the message was processed, the Stopwatch was stopped and
the elapsed time was written in both EventCounters and by the end of each time window
(set to 5 seconds) the EventCounters would log ETW events containing the number of

19

Chapter 5. Results and Discussion 20

processed messages and a summary of the processing times (max, mean, min and stdev).
Having both EventCounters allowed to have data for each specific message channel, as
well as for all channels.

5.2 Metric collection

With the understanding of the mechanism and structure of the events logged by Quid-
Server, an event collection agent was developed in C Sharp using Microsoft Visual Studio
to collect said events. This agent uses the TraceEvent library and is composed of an event
controller and an event consumer. The controller creates an event tracing session and en-
ables the provider to start logging, and the consumer reads events from the session in real
time, parses them into data points using line protocol and writes them into an InfluxDB
bucket using its write API. However, to persist the data in InfluxDB, it had to be installed,
started, and set up to create an InfluxDB user client that can write data. This includes
creating an organization name, a bucket, and an Operator API token.

5.3 Metric persistence

Having the collection agent sending data to InfluxDB, the next step was to learn how
InfluxDB works, learn its language Flux, and explore what InfluxDB can do. InfluxDB
has a Data Explorer tool that allows for querying, processing, and visualizing data. When
building a query, it is necessary to define the data source (like a bucket), the time range and
data filters like measurement, field keys and tag values. A query can be built in the Query
Builder or the Script Editor. Querying with the Query Builder is as simple as selecting
the bucket, time range and filters in the UI. However, this way of building queries can
be limiting. To allow for more freedom, the Script Editor can be used, in which the
query is manually written using the Flux language. In addition to filtering, InfluxDB
also allows for the shaping and processing of data. Shaping consists of modifying the
data structure to prepare it for processing and includes grouping, pivoting, dropping, and
keeping specific columns, while processing includes aggregate functions, selecting and
rewriting rows. Finally, InfluxDB also provides different visualization types like graph,
heatmap, histogram or table, as well as the ability to choose the time window in which to
aggregate data.

5.4 Metric visualization

After exploring the data with different queries, a dashboard was created using InfluxDB’s
Boards tool, as shown in figure 5.1. Queries built in the Data Explorer can be exported
into different cells of a dashboard with the Boards tool. This allows for the simultaneous

Chapter 5. Results and Discussion 21

visualization of different data and to better interact with the dashboard cells, it is possible
to create dashboard variables which allow to alter specific cell components, like a tag
value, without editing them.

Figure 5.1: Interactive dashboard developed using InfluxDB

In addition, InfluxDB is benchmarked to understand the storage space taken by each
metric, how it stores data and how InfluxDB compares with other TSDBs. This allows
for a better understanding of InfluxDB, which is crucial to optimize the persistence of the
data.

The last functionality explored in InfluxDB was the Tasks tool which allows to create
continuous queries that run automatically and periodically. This is especially useful for
downsampling since it is possible to periodically run a query that aggregates data within
windows of time and stores the aggregate values in a bucket with a larger retention period.

Since InfluxDB is mainly a TSDB, it is not optimized for data visualization, as it
is more limiting than Grafana, which is specifically built for time series analytics and
visualization. However, by exploring InfluxDB’s dashboards, it was possible to use this
knowledge and use Grafana to recreate the dashboard created in InfluxDB. Grafana’s
dashboards have panels that have three different functionalities: query, transform and
alert. This allows to remove the least performant part of a query, which is processing the
data. Instead, the query can simply fetch the needed data (which makes the query much
faster and performant) and Grafana’s transform feature is designed to efficiently process
the queried data. With this, InfluxDB is now only used to store and downsample data,
while Grafana uses Flux to query the data and visualize it in an interactive dashboard, as
shown in figure 5.2.

The developed dashboard contains 7 panels. The first shows a time series graph with
the evolution of the number of processed messages through time; the second panel is also
a time series graph, but it shows the throughput rate of messages, which is calculated by
dividing the number of processed messages by the time interval; the third panel shows

Chapter 5. Results and Discussion 22

Figure 5.2: Interactive dashboard developed using Grafana

the total number of processed messages; the fourth shows the mean throughput rate of
messages; the fifth shows the mean processing time; the sixth shows a time series graph
that shows the evolution of the max, mean, and min processing time, as well as the stan-
dard deviation (stdev), mean + stdev and mean - stdev (this is useful to know the range
in which the processing time of most messages is at a given moment); finally, the seventh
panel shows a summary table of the various metrics.

5.5 Comparison with Telegraf

Having a prototype metric collection agent completed, the next step is to explore and use
Telegraf, InfluxData’s own data collection agent, to collect the metrics and send them to
InfluxDB to compare the benefits, development time, and complexity of the agent devel-
oped in C Sharp vs Telegraf. These factors will determine which method should be used
to collect the data in the final product.

Telegraf input and output plugins are enabled and configured in Telegraf’s config-
uration file (telegraf.conf), so the InfluxDB (OSS v2.0) UI was used to automatically
generate a Telegraf configuration. This configuration uses the outputs.influxdb v2 plugin
to write metrics to InfluxDB and the system monitoring group of plugins was picked to
test Telegraf (v1.21). The plugins that constitute the system monitoring group of plug-
ins are the following: inputs.cpu, inputs.disk, inputs.diskio, inputs.mem, inputs.net, in-
puts.processes, inputs.swap and inputs.system. These plugins gather metrics about CPU
and disk usage, disk IO, system memory, network interface usage, number of processes
grouped by status, swap memory usage and general stats on system load, uptime and num-
ber of users logged in. However, as the inputs.processes plugin is specific for Linux, it
had to be replaced by the inputs.win perf counters and inputs.win services plugins which

Chapter 5. Results and Discussion 23

are specific for Windows and gather metrics about Performance Counters and Windows
services, respectively. With this, InfluxDB automatically generates a dashboard to visu-
alize the system monitoring data, as seen in figure 5.3 which confirms that both Telegraf
and its plugins are working as expected.

Figure 5.3: Dashboard automatically generated by InfluxDB to visualize the system mon-
itoring data

Having tested the transfer of data between Telegraf and InfluxDB, the next step is
to test the collection of ETW events with Telegraf. Unfortunately, there is not an input
plugin specific for ETW event collection available, so an external plugin would have to
be developed for this use case. External plugins can run through Telegraf’s inputs.execd
plugin, a plugin designed to run external programs that output formatted metrics on the
process’s STDOUT and stay running. The plugin can be built from a sample Telegraf
configuration provided by the documentation[20] which is written in Go and should be
modified to collect ETW events. A summary of the comparison between Telegraf and
QMetrics, the metric collection agent developed in C Sharp, is available in table 5.1.

Metric collection agent QMetrics Telegraf

Benefits
Customizable code tailored

to the project’s use case

Flexibility of configuring

and using different plugins

Development time <6 days 7+ days

Complexity Simple program in C# Complex plugin written in Go

Table 5.1: Summary table of comparison between Telegraf and QMetrics, the metric
collection agent developed in C Sharp.

The advantages of using Telegraf would be the flexibility of configuring and using

Chapter 5. Results and Discussion 24

different plugins, which would be useful if the project required the use of one or more
of the available plugins. However, since the project’s use case is not supported and since
the process of using Telegraf proved to be much more complex and time consuming than
the development of the metric collection agent developed in C Sharp, it was decided that
Telegraf would not be the metric collection agent used.

5.6 Implementation of new metric

Until this point, the collection, persistence, and visualization are only being tested for the
processing time of received messages, a metric that was previously implemented by the
company. The next step in this project is then to understand how metrics are collected
from a system, measuring data, and aggregating it into metrics that can be sent through
ETW events to be captured by the metric collection agent. To do this, a new metric is
implemented, the number of invoked scheduling tasks, as well as the processing time of
said tasks.

The implementation of this metric was very similar to the metric of the message pro-
cessing time, since processing time is still being measured. The only difference is that
since tasks can be concurrent, each one must have a new distinct Stopwatch instead of
each channel having it is assigned Stopwatch. This is to ensure that even if two different
tasks of the same channel are being processed at the same time, each of them will still
have their own Stopwatch.

5.7 Docker containerization

Finally, Docker is used to run InfluxDB in one container and Grafana in another, which
allows for the automation of the installation and configuration of InfluxDB and Grafana by
using configuration files. From the company point of view, Docker has the disadvantage
of having to be installed by the client, who may not agree to this. Besides, the docker
engine must be running in addition to the metric collection agent, which implies a high
consumption of resources. However, not using Docker would mean the installation of
two applications (InfluxDB and Grafana) instead of one (docker engine), on top of the
manual installation of both applications, which not only translates to more time spent
in configuration, but it also leads to a higher number of errors or differences in each
configuration. After that, a script is constructed to automate the InfluxDB and Grafana
first setup, facilitating the continuation of this project.

Chapter 5. Results and Discussion 26

Chapter 6

Conclusion

Throughout this project an event collection agent was developed to collect events logged
by QuidServer and write them into InfluxDB as data points. This step was not only useful
to understand the structure of the events logged by QuidServer, but also to understand
the structure of the data points written into InfluxDB. The dashboard feature provided by
InfluxDB was used to design dashboards and explore the collected data and using this
knowledge, Grafana was used to create a dashboard that exploits the advantages of both
InfluxDB and Grafana. The result is a metric collection, persistence and visualization
framework which allows to examine the data in real-time and detail as well as to store and
downsample older data to compare the data over days, months, or years. In addition to
this, docker containers for InfluxDB and Grafana were developed in order to wrap these
applications and their dependencies, as well as automating the configuration process. Fi-
nally, the monitoring of one more metric was implemented, so future work would include
the addition of more metrics, such as frequent errors, request duration, session duration
and number of users per day as well as to integrate the created dashboard in Genio with
the aim of every system generated by it to have its own statistical dashboard.

27

Chapter 6. Conclusion 29

Bibliography

[1] About event tracing - win32 apps — microsoft docs. [Online]. Accessed: 2021-12-
22. Available: https://docs.microsoft.com/en-us/windows/win32/etw/about-event-
tracing.

[2] C sharp docs - get started, tutorials, reference. — microsoft docs. [Online]. Ac-
cessed: 2021-12-22. Available: https://docs.microsoft.com/en-us/dotnet/csharp/.

[3] Db-engines ranking - popularity ranking of database management systems. [Online].
Accessed: 2021-12-22. Available: https://db-engines.com/en/ranking.

[4] Eventcounter class (system.diagnostics.tracing) — microsoft docs. [On-
line]. Accessed: 2021-12-22. Available: https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.tracing.eventcounter?view=net-6.0.

[5] Flux 0.x documentation. [Online]. Accessed: 2021-12-22. Available:
https://docs.influxdata.com/flux/v0.x/.

[6] Genio platform — quidgest. [Online]. Accessed: 2021-12-02. Available:
https://genio.quidgest.com/.

[7] The go programming language. [Online]. Accessed: 2021-12-22. Available:
https://go.dev/.

[8] Grafana documentation — grafana labs. [Online]. Accessed: 2021-12-22. Available:
https://grafana.com/docs/grafana/latest/.

[9] Grafana: The open observability platform — grafana labs. [Online]. Accessed:
2021-12-22. Available: https://grafana.com/.

[10] historical trend of time series dbms popularity. [Online]. Accessed: 2021-12-22.
Available: https://db-engines.com/en/rankingtrend/time+ series+ dbms.

[11] Home - docker. [Online]. Accessed: 2022-09-25. Available: https://www.docker.com/.

[12] Home — cern. [Online]. Accessed: 2022-01-02. Available: https://home.cern/.

31

Bibliography 32

[13] Influxdb 1.x: Open source time series platform — influxdata. [Online]. Accessed: 2021-
12-28. Available: https://www.influxdata.com/time-series-platform/.

[14] Influxdb: Open source time series database — influxdata. [Online]. Accessed: 2021-12-
22. Available: https://www.influxdata.com/.

[15] Influxdb oss 2.0 documentation. [Online]. Accessed: 2021-12-22. Available:
https://docs.influxdata.com/influxdb/v2.0/.

[16] perfview/traceeventlibrary.md at main · microsoft/perfview
· github. [Online]. Accessed: 2021-12-22. Available:
https://github.com/microsoft/perfview/blob/main/documentation/TraceEvent/TraceEventLibrary.md.

[17] Prometheus - monitoring system time series database. [Online]. Accessed: 2021-12-28.
Available: https://prometheus.io/.

[18] Quidgest: Future-ready software. [Online]. Accessed: 2021-12-02. Available:
https://quidgest.com/.

[19] Telegraf open source server agent — influxdb. [Online]. Accessed: 2021-12-22. Avail-
able: https://www.influxdata.com/time-series-platform/telegraf/.

[20] telegraf/inputs.md at master · influxdata/telegraf · github. [Online]. Accessed: 2022-09-
25. Available: https://github.com/influxdata/telegraf/blob/master/docs/INPUTS.md.

[21] Visual studio: Ide and code editor for software developers and teams. [Online]. Accessed:
2021-12-22. Available: https://visualstudio.microsoft.com/.

[22] Thomas Beermann, Aleksandr Alekseev, Dario Baberis, Sabine Crépé-Renaudin, Jo-
Hannes Elmsheuser, Ivan Glushkov, Michal Svatos, Armen Vartapetian, Petr Vokac, and
Helmut Wolters. Implementation of atlas distributed computing monitor-ing dashboards
using influxdb and grafana. 2020.

[23] Hugo Van Dijk and Claudia Hauff. Expanding logui: Adding screen capturing and a
statistical analysis dashboard for web-based experiments, 2021.

[24] Johannes Elmsheuser and Alessandro Di Girolamo. Overview of the atlas distributed
computing system. 2019.

[25] Radoslav Gatev. Observability: Logs, metrics, and traces. Introducing Distributed Appli-
cation Runtime (Dapr), pages 233–252, 2021.

[26] Mohammad Abu Kausar. Suitability of influxdb database for iot applications. Article in
International Journal of Innovative Technology and Exploring Engineering, pages 2278–
3075, 2019.

Bibliography 33

[27] Gunasekaran Manogaran, Daphne Lopez, Chandu Thota, Kaja M Abbas, Saumyadipta
Pyne, and Revathi Sundarasekar. Innovative healthcare systems for the 21st century. un-
derstanding complex systems. pages 263–284, 2017.

[28] David Maxwell and Claudia Hauff. Logui : Contemporary logging infrastructure for
web-based experiments. 2021.

[29] Franck Michel. Integrating heterogeneous data sources in the web of data. 2017.

[30] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon Westover. Ex-
act discovery of time series motifs. 2009.

[31] Syeda Noor, Zehra Naqvi, Sofia Yfantidou, Esteban Zimányi, and Zim´ Zimányi. Time
series databases and influxdb. 2017.

[32] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza,
and Kaushik Veeraraghavan. Gorilla. Proceedings of the VLDB Endowment, 8:1816–
1827, 8 2015.

[33] Prapaporn Rattanatamrong, Yoottana Boonpalit, Siwakorn Suwanjinda, Ayuth Mang-
meesap, Shava Smallen, Ken Subraties, Vahid Daneshmand, and Jason Haga. Overhead
study of telegraf as a real-time monitoring agent. JCSSE 2020 - 17th International Joint
Conference on Computer Science and Software Engineering, pages 42–46, 11 2020.

[34] Benjamin H Sigelman, André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal,
Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Google technical report dapper
dapper, a large-scale distributed systems tracing infrastructure. 2010.

[35] Felix Wortmann and Kristina Flü. Internet of things technology and value added. 2015.

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Goals
	Contributions
	Structure of the document

	Background
	Quidgest
	Logs, metrics, and traces
	Metric monitoring and collection
	Telegraf

	Metric storing
	Metric visualization interface
	Docker

	Related Work
	Metric collection
	Metric storing
	Metric visualization

	Methods
	Results and Discussion
	Analysis of architecture
	Metric collection
	Metric persistence
	Metric visualization
	Comparison with Telegraf
	Implementation of new metric
	Docker containerization

	Conclusion
	Glossary
	Bibliography
	Index

