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Resumo

Crê-se que a maior parte das estrelas é formada em grupos (Lada and Lada, 1991) que, mais tarde,
se dissolvem e cujas estrelas passam a integrar a população de campo. Este processo de dissolução
determina a distribuição de massa e idade dos grupos de estrelas observadas e, também, as propriedades
da população de campo. Neste contexto, determinar a distribuição de massa e idade dos aglomerados na
nossa galáxia irá impor constrangimentos sobre os modelos teóricos de dissolução e aumentar o nosso
conhecimento sobre os processos de perda de massa dos grupos de estrelas.

Estes grupos de estrelas formam-se devido ao colapso gravitacional nas regiões mais densas das nu-
vens moleculares gigantes que se encontram no disco galático. Como as estrelas de cada grupo formam-
se ao mesmo tempo, essas estrelas partilham a mesma idade, distância e composição química que faz
delas objetos ideais para estudar não só a formação e evolução estelar, como também a estrutura espacial
da nossa galáxia.

A massa é o elemento que governa a dinâmica interna e, também, a interação com o campo de maré da
galáxia, pelo que é de extrema importância saber qual a distribuição de massa dos aglomerados na nossa
galáxia. Contudo, um catálogo de massas homogéneo e de larga escala ainda não está disponível, pelo
que um dos objetivos principais deste trabalho é a determinação das massas para aglomerados abertos
com fotometria de elevada precisão que agora é possível graças à missão Gaia.

A nossa amostra vem do catálogo de Dias et al. (2021) que contém a idade e distância de aglomerados
abertos, determinadas a partir de dados da missão Gaia (Gaia Data Release 2, Gaia Collaboration et al.
(2018)). Os dados da missão Gaia fornecem-nos movimentos próprios, posições e fotometria (no visível)
para cada estrela. Esta missão revolucionou o campo da astronomia ao trazer dados de elevada precisão
para mais de 1 bilião de estrelas. Isto tem permitido estudar a estrutura e dinâmica da Via Láctea com
um nível de detalhe nunca antes visto. No total, a amostra proveniente do catálogo de Dias et al. (2021)
é composta por 1743 aglomerados abertos que têm idades entre alguns milhões a alguns biliões de anos
e distâncias até alguns milhares de parsecs à volta do Sol.

Considerando que o limite de cada aglomerado pode ser definido como o raio até ao qual as estre-
las ainda estão gravitacionalmente ligadas a este, por vezes chamado de "raio de maré", foi necessário
começar pela determinação do raio de maré de cada aglomerado. Este é o raio onde a força de maré
da galáxia onde o aglomerado se encontra é igual a atração gravitacional do próprio aglomerado. As
estrelas fora do raio de maré do aglomerado estão a dissipar-se para a população de campo e já não de-
vem ser consideradas parte deste. Cada aglomerado possui um perfil de densidade cuja parametrização
mais usada é o perfil de King (King, 1962) que nos permite obter o raio de maré e o raio do núcleo de
cada aglomerado. Os nossos resultados mostram um raio de maré mediano de 10 parsec (excludindo os
resultados de má qualidade) e um raio do núcleo mediano de 2 parsec que é compatível com os valores
encontrados na literatura (Piskunov et al., 2007; Kharchenko et al., 2013). Contudo, o ajuste do perfil
de King apresentou algumas dificuldades que se traduziram em incertezas elevadas para o raio de maré
embora as incertezas medianas para o raio do núcleo sejam da ordem de 20%.
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Através de modelos de evolução estelar e usando a Função de Massa Inicial, que nos dá o número
de estrelas de cada massa que se formam inicialmente num aglomerado, é possível saber o número de
estrelas que um aglomerado com uma certa massa tem de cada magnitude. Isto constitui a função de
luminosidade que varia de acordo com a idade de cada aglomerado. Através da comparação entre a
distribuição de luminosidade observada e a função de luminosidade teórica, obtida através dos modelos
de evolução estelar de Padova, podemos determinar a massa luminosa. Os nossos resultados mostram
uma distribuição logarítmica de massa que apresenta uma forma gaussiana com valor médio 2.7 dex e
desvio-padrão de 0.4 dex. A distribuição linear tem uma massa média de 797 M⊙. Os erros associados ao
nosso método de determinação da massa foram obtidos através de bootstrapping e são cerca de 4%. Para
avaliar o efeito das incertezas elevadas no raio de maré, determinámos a massa usando o valor máximo e
mínimo do raio de maré e comprovámos que o efeito na determinação da massa não é significativo.

Uma vez que nem todos os resultados são de boa qualidade, classificámos cada aglomerado com base
na qualidade da determinação do raio de maré, massa e ajuste da isócrona no diagrama cor-magnitude e
selecionámos uma amostra com os resultados de qualidade elevada e intermédia.

Para podermos caraterizar não só a forma como as estrelas passam de um ambiente em que es-
tão aglomeradas para uma população de campo bastante uniforme, como também estudar o campo de
maré da nossa galáxia, é necessário entender o processo de disrupção que atua sobre os aglomerados.
Para determinar os parâmetros relacionados com a disrupção dos aglomerados, simulámos a formação e
evolução de uma população de aglomerados abertos que perde massa ao longo do tempo de acordo com
as equações obtidas por Lamers et al. (2005b) e comparámos a distribuição simulada de idades e massas
com as observações. No nosso modelo, assumimos uma taxa de formação constante e uma função de
massa inicial exponencial, comumente utlizada na literatura, obtida usando os aglomerados imersos nas
nuvens moleculares onde são formados (Gieles, 2009).

Percorrendo várias combinações para os parâmetros do nosso modelo de disrupção e, comparando
as simulações com as observações, foi possível obter os mesmos valores que existem na literatura que
indicam uma escala de tempo de disrupção de cerca de 5 milhões de anos (Lamers et al., 2004; Bout-
loukos and Lamers, 2003). Obtivémos também uma zona adicional, que parece estar degenerada, onde
são favorecidas escalas de tempo de disrupção mais pequenas. Estas zonas verificam-se também quando
comparamos as simulações com as observações vindas de uma amostra com os aglomerados que apresen-
tam apenas resultados de qualidade elevada e também para uma amostra de menor dimensão (contendo
apenas aglomerados num raio de 1500 parsec à volta do Sol). Apesar de existir compatibilidade entre as
observações e as simulações para a distribuição de idades usando os valores da literatura, o mesmo não
acontece para a distribuição de massas cujo pico das massas simuladas se verifica para valores de massa
mais pequenos que o pico das massas observadas. Esta incompatibilidade na distribuição das massas era
inesperada e verifica-se para todas as combinações de parâmetros consideradas.

Uma vez que o nosso modelo apenas considera a evolução dos aglomerados após sairem das nuvens
moleculares, a distribuição de massa inicial usada deverá refletir a distribuição de massa dos aglomerados
jovens. Para que a distribuição de massa simulada se aproximasse das observações, testámos uma função
de massa inicial modificada obtida através do ajuste de uma gaussiana à distribuição logarítmica de massa
dos aglomerados jovens (com idades inferiores a 50 milhões de anos). Embora este ajuste tenha sido feito
apenas como um teste heurístico, os resultados mostram que o pico da distribuição das massas simuladas
se aproxima do pico das observações, mantendo o bom ajuste na distribuição das idades. Isto indica que
a função de massa inicial utilizada na literatura, obtida a partir dos aglomerados imersos, poderá não ser
adequada para os aglomerados expostos.
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Este trabalho constitui o primeiro estudo onde é possível comparar, para uma amostra de grande
dimensão, as distribuições de idade e, pela primeira vez, massa observadas na vizinhança solar com o
resultado de simulações da formação e evolução de aglomerados de forma a impor constrangimentos nos
modelos de disrupção de aglomerados abertos.

Palavras chave: Galáxia: evolução, Galáxia: conteúdo estelar, Aglomerados abertos e associações:
geral, Surveys: Gaia
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Abstract

Mass is the main quantity driving the formation, structure, and evolution of stars but it also governs
the dynamics of stellar systems such as open clusters (OCs) that provide crucial information about the
dynamical evolution of the Galactic disc where they are formed.

Recently, several large-scale OC studies have been published (Cantat-Gaudin et al. (2018), Monteiro
et al. (2020) and others). However, high quality and systematic mass determinations for those OCs are
not available so, in our work, we performed homogeneous determinations of luminous mass for 1724
OCs from the catalogue of Milky Way OCs of Dias et al. (2021). We also determined the tidal and core
radii by fitting the density profile of each cluster with the King profile (King, 1962) which was required
to determine the mass of each cluster.

Using the resulting mass distribution, we attempted to constrain the disruption experienced by clus-
ters in the solar neighbourhood by simulating the build up and mass evolution of a population of OCs
using the equations derived by Lamers et al. (2005a). Comparing the simulated age and, for the first
time, mass distributions to the observations, we recover the same parameter values related to disruption
obtained in the literature with an additional optimal area for smaller disruption timescales. However,
despite the reasonable agreement for the age distribution, the simulations do not generate a mass dis-
tribution similar to the observations. To improve the simulated mass distribution, we tested a different
Cluster Initial Mass Function (CIMF) obtained from the mass distribution of clusters with age under 50
million years (Myr), which led to an improvement of the agreement with the observed mass distribution.
This suggests that the CIMF of non-embedded clusters might be different from the one universally used,
which is determined using embedded clusters.

Keywords: Galaxy: evolution, Galaxy: stellar content, open clusters and associations: general,
Surveys: Gaia
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Chapter 1

Introduction

1.1 Star clusters

Most stars are believed to be born in groups (Lada and Lada, 1991) which later dissolve into the
field population of their host galaxy. Thus, the dissolution process drives the mass and age distribution
of the observed star cluster population as well as the properties of the field population. In this context,
determining the mass and age distribution of star clusters in the Milky Way is an essential observational
foundation for constraining models of star cluster evolution and shedding light on the dissolution pro-
cesses they experience.

Stellar groups have been noticed since ancient times and have been object of interest for many the-
oreticians over time including early astronomers. One example is Galileo Galilei that systematically
recorded and catalogued stellar aggregates in 1610 (D’Onofrio and Burigana, 2009). In Galileo’s words:

“Est enim GALAXIA nihil aliud, quam innumerarum Stellarum coacervatim consitarum congeries:
in quamcumque enim regionem illius Perspicillum dirigas, statim Stellarum ingens frequentia sese in
conspectum profert, quarum complures satis magnæ ac valde conspicuæ videntur; sed exiguarum multi-
tudo prorsus inexplorabilis est.”

“The Galaxy is nothing else but a mass of innumerable stars planted together in clusters. Upon what-
ever part of it you direct the telescope straightway a vast crowd of stars presents itself to view; many
of them are tolerably large and extremely bright, but the number of small ones is quite beyond determi-
nation” - English translation of the Sidereus Nuncius by Edward Stafford Carlos in Project Gutenberg
(Carlos, 2014).

These groups of stars are formed due to gravitational collapse in the densest regions of Giant Molec-
ular Clouds (GMCs), found in the galactic disc. In the first 2-3 million years, these groups are still
embedded in the cloud (Lada and Lada, 2003) but, after that, the gas is dispersed due to stellar winds,
radiation pressure or shock waves caused by the death of the most massive stars within the group, so they
leave the GMC and become exposed. According to Lada and Lada (2003), there are very few groups of
stars (less than 10%) that can survive the process of emerging from the parent cloud, yielding a very high
early disruption rate (sometimes referred to as “infant mortality” rate).

There are three main types of stellar groups. There are the stellar associations that are loose groups of
stars, not gravitationally bounded that drift apart from each other over time. There are also open clusters
(OCs) where the stars are gravitationally bounded to each other. OCs are groups of a few hundred to a
few thousand young stars, that may have irregular shapes, but, in general, have a more concentrated core
that is surrounded by a less dense halo. This type of cluster is usually found in the Galactic disc and
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has been extensively used in characterizing the structure of our galaxy (Moitinho et al., 2006; Vázquez
et al., 2008; Bobylev and Bajkova, 2014; Cantat-Gaudin et al., 2020). As they tend to dissolve before
most of their stars reach older ages, stars in OCs are usually young and cover a high span in brightness
and masses.

Finally, there are the globular clusters which contain a much larger number of stars, in the order of
104−106 stars. Their structure is characterized by a high-density core and a less dense halo. This type of
clusters lasts longer than OCs and, in the Milky Way, they have ages over 10 Gyrs (e.g. Harris (1996)).
They belong mostly to the galactic halo and some to the bulge, and can be found at all galactic latitudes.

Figure 1.1: Optical images of IC 142 stellar association, part of Triangulum Galaxy (left); open cluster M45 (middle) and
Globular Cluster NGC 1466 (right). Credits: ESA/Hubble

As the stars of each cluster are formed in the same region in the Giant Molecular Cloud, they share
the same age, distance and chemical composition, but differ by mass. In the Hertzsprung-Russell (HR)
diagram, which is a scatter plot of stellar luminosities versus their effective temperatures, stars from an
open cluster align along a distinctive sequence. That sequence depends on the mass distribution and age
of the cluster. It can be fitted by age-dependent theoretical models of stellar evolution (called isochrones)
to determine the age of the cluster. In Figure 1.2, we present the observational photometric version of the
HR diagram which is the color-magnitude diagram (CMD). In the CMD, the stars’ apparent magnitude is
plotted against their color (difference of magnitude between 2 photometric bands). The effect of distance
and extinction - absorption of the stellar light by the interstellar medium- which move the isochrone
in the vertical and diagonal directions (respectively) needs to be considered when fitting the isochrone.
Since determining ages and distances is beyond the scope of this work, we refer to Dias et al. (2021),
which is our reference catalogue, for the description of the fitting method used to determine the values
used in this work. In Figure 1.2, we present an example of the CMD with fitted isochrone for log(age) =
7.8 for open cluster Alessi 5. For isolated stars, their position in the CMD is ambiguous which makes it
difficult to compare to theoretical isochrones.
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Figure 1.2: Color-Magnitude Diagram for open cluster Alessi 5 (Dias et al., 2021) with isochrone of log(age) = 7.8 overplotted
for a distance of 395 pc and AG = 0.337.

Despite the distinction between the 3 stellar groups, observations show that there is no “clear cut”
when it comes to their classification as a specific type because groups that appear to be in the transition
between these types have been observed. Recent detections have found clusters of young stars with
hundreds of thousands of stars which is characteristic of globular clusters. One example is open cluster
NGC 2070 in the Tarantula Nebula that contains about 500,000 young stars which is unusual for an open
cluster. Figure 1.3 presents the image of NGC 2070 in the Tarantula Nebula produced recently by the
James Webb Space Telescope (JWST).

Figure 1.3: Tarantula Nebula seen by James Webb’s Near-Infrared Camera (NIRCam). Near the centre of the image open
cluster NGC 2070 is shown. Credits: NASA, ESA, CSA, STScI, Webb ERO Production Team.

With the development of large-scale surveys from space (e.g. Gaia) as well as ground-based surveys
such as 2MASS (Two Micron All Sky Survey) (Skrutskie et al., 2006), VVV (VISTA Variables in the Via
Lactea) (Minniti et al., 2010), and others, more observations have been carried out which have brought a
comprehensive view of star clusters. So far, about two thousand open clusters have been detected (Dias
et al., 2002; Cantat-Gaudin, 2022) which are mostly inside a few kpc around the Sun (often called the
solar neighbourhood) but that number will certainly increase in the future.
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1.2 Mass of open clusters

Mass is the quantity that governs the internal dynamics of the clusters as well as its interactions
with external galactic gravitational forces. Despite the wealth of theoretical studies of cluster evolution
(Gieles et al. (2014), Alexander and Gieles (2012), Kruijssen et al. (2011), and others), there is a lack of
observational results to make comparisons. A comprehensive determination of the mass distribution for
the OC population is the crucial step.

For a given age, mass and chemical composition, stellar evolution models can calculate the luminos-
ity of stars establishing mass-luminosity relations. So, in principle, it is possible to derive stellar masses
from luminosity measurements. These mass determinations are often referred to as "photometric" or "lu-
minous masses". Masses derived from kinematic measurements are referred to as "dynamical masses"
and "virial masses" (for clusters assumed to be in virial equilibrium). Additionally, one may consider
"tidal masses" which are masses determined directly from the radius of a cluster given the galactic tidal
forces acting on the cluster, which will be discussed in more detail in Section 4.2.5.

In the literature, the only large scale catalogue of OC masses is that of Piskunov et al. (2007) con-
taining tidal masses for 650 OCs. In addition to that catalogue, there are only a few studies (for example,
Bisht et al. (2020) and Gao et al. (2021)) that focus on a small number of clusters for which the authors
provide mass determinations. In total, masses have only been determined for about ∼ 35% of the known
clusters. However, since most were based on the ASCC 2.5 catalogue (Kharchenko, 2001) which has a
very limited photometric and astrometric depth (K ∼ 12) and high errors, a more complete catalogue of
OC masses determined from high quality data is clearly needed. This is one of the key goals of the work
here presented.

1.3 Mass loss mechanisms in open clusters

Bright massive and intermediate-mass stars suffer violent deaths that generate stellar winds and su-
pernovae shocks. In a cluster, these phenomena may remove a significant part of the cluster’s mass,
dispersing it into the surrounding medium. The death of these stars quickly reduces the mass of the
cluster which weakens the bounds between the remaining stars. This is referred to as mass loss by stellar
evolution and it is the dominant mechanism of mass loss for ages up to about 4 Myr (Lamers et al. (2010),
see Figure 1).

On longer timescales, clusters loose mass through evaporation (or dissolution) which is the process
in which stars leave the cluster if their velocity is higher than the escape velocity of the cluster. Stars
interact with each other leading to the equipartition of energy, in a process called relaxation. On average,
the stars will have similar kinetic energy so the low mass stars will have higher velocities than the high
mass stars (Ek = 1/2mv2). The lowest mass stars will have velocities higher than the escape velocity of
the cluster so they will exit the cluster, producing a preferential loss of low mass stars. Over time, as the
total mass of the cluster decreases, the escape velocity at the boundary of the cluster (R) also decreases
(vesc =

√
2GM/R) so stars of increasingly higher masses will gradually escape from the cluster until it

completely dissolves into the field population.
From the outside, clusters suffer an additional dissolution effect due to the tidal forces from the

gravitational field of the host galaxy, pulling the stars away from the cluster. The clusters closer to the
centre of the Galaxy experience higher tidal forces as more material is concentrated in the inner regions
of the Galaxy, than those on the outer regions therefore disruption is dependent on the location of the
clusters within the Galaxy.
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Besides the tidal interaction with the Galaxy, encounters with Giant Molecular Clouds also disrupt
clusters due to the strong gravitation field of GMCs (Lamers and Gieles (2006)) which introduce extra
tidal forces. These GMCs are mainly located within the plane of the Galaxy so, in contrast to globular
clusters that spend most of its life away from the plane, open clusters are subject to multiple encounters
during their lifetime.

Understanding these processes of disruption is important to explain not only how the transition from
clustered formation to the smooth field population occurs but also to characterize the tidal field of the
Galaxy itself.

The Gaia mission (Gaia Collaboration et al., 2021) of the European Space Agency (ESA) has the
goal of pinpointing the positions of nearly two billion objects with extreme accuracy and provide accurate
astrometric and photometric data. It is the deepest all-sky survey ever done, reaching magnitude depths
around 20.5 in the G band with accuracies at the mili-magnitude level. With 3 data releases so far, it
has provided astrometric and photometric data for more than 1 billion objects, allowing to obtain the
most accurate 3D view of the Milky Way and study its dynamics with unprecedented detail. For stellar
clusters, in particular, Gaia data has made it possible to identify more cluster members, find hundreds of
new clusters and perform homogeneous determinations of cluster parameters.

In this work, we made use of data from Gaia and the cluster parameters determined in a state-of-the-
art catalogue of open clusters (Dias et al., 2021) to determine the first Gaia-based homogeneous mass
catalogue of OCs. This catalogue was then used to study the disruption experienced by clusters in the
solar neighbourhood.

In the next chapter, we will present the methods used for the determination of cluster masses. As will
be explained, this requires also determining their radii. Chapter 3 is dedicated to the characterization of
the observational data used in this work. Chapter 4 present our results for the masses and radii of 1724
OCs, followed by the investigation of the OC disruption timescale in the solar neighbourhood. Chapter
5 closes this work with conclusions and lays out directions for follow up research.
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Chapter 2

Methods

To obtain the mass of a cluster, we must first know which stars to consider. The boundary of each
cluster can be defined as the radius at which the stars inside of it are still gravitationally connected to
the cluster, often called the tidal radius (Rt). Beyond that radius, the tidal forces from the host galaxy
overcome the gravitational attraction of the cluster. So, despite the observation of many stars in the
outskirts of the clusters, with similar kinematic and photometric properties, stars beyond Rt are already
dissipating into the field population and should not be considered part of the cluster. For this reason, we
consider only stars inside Rt when determining the cluster’s mass.

Before the Gaia mission, the catalogues of OC radii available were those of Piskunov et al. (2007)
and Piskunov et al. (2008) which contained tidal radii for a total of 650 OCs. Since Gaia, several studies
have determined the tidal radii for small numbers of clusters under study (e.g., Yeh et al. (2019), Bisht et
al. (2020), and Angelo et al. (2021)). Recently, Tarricq et al. (2021) have produced a catalogue containing
radii for 164 OCs using Gaia data. However, this new catalogue only covers about ∼ 10% of the total
number of clusters with available Gaia based lists of cluster members. Thus, a first step towards building
the comprehensive catalogue of cluster masses needed for this work, is to determine their radii.

2.1 Cluster radii determinations

In a cluster, stars are not homogeneously distributed in space. Typically they are more concentrated
near the centre of the cluster and show a radial density profile that follows a smooth decreasing curve.
The most widely used parameterization is the King empirical function (King, 1962). Although it was
first introduced to describe the surface density of globular clusters, it has been widely used for open
clusters. It contains 3 parameters: the tidal radius (Rt) which is the radius beyond which the density of
stars is indistinguishable from the density of the background, the core radius (Rc) defined as the radius
for which the density is equal to half of the central density and N0 which is a normalization factor related
to the central density of the cluster. By fitting the observed radial density profile with the King function,
it is possible to determine the core and tidal radius of each cluster. As this function has been used in
other large-scale studies, we opted for this profile to make a direct comparison with related work. In the
future, we plan to test other profiles to access the effect of choosing particular profiles.

The original formula derived by King, which provides the number of stars per pc2, is:

n(R) = N0

(
1√

1+(R/Rc)2
− 1√

1+(Rt/Rc)2

)2

(2.1)
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An additional constant c was introduced to this equation, following Küpper et al. (2010), to account
for the foreground/background population of stars that act as contamination. In every line of sight, we
detect stars that are not part of any cluster (called field stars) that influence the determinations of cluster
parameters. As they are randomly distributed in space, they lead to an overall increase of the counts
in the density profile, so parameter c, which is an addictive constant, allows to account for this effect.
Outside the tidal radius, all stars are considered to be from the background so, for R ≥ Rt , the density
remains constant in the vicinity of the cluster.

n(R) =

N0

(
1√

1+(R/Rc)2
− 1√

1+(Rt/Rc)2

)2

+ c i f R < Rt

c i f R ≥ Rt

(2.2)

To determine the radial density profile for each cluster, we obtained the distance of each star to the
centre of the cluster which is given by αc in right ascension and δc in declination. First, we determine
their projected coordinates through the following expressions, as suggested by Ven et al. (2006) and
Olivares et al. (2018), where D is the distance to the cluster.x = D sin(α −αc)cos(δ )

y = D cos(δc)sin(δ )− sin(δc)cos(δ )cos(α −αc)
(2.3)

These coordinates (x,y) correspond to the projection of each star coordinates (α,δ ) on the plane of
the sky, tangential to the celestial sphere at the coordinates of the cluster’s centre. This avoids distortions
caused by strong projection effects for clusters in high declinations or those nearby that also suffer
projection effects due to the curvature of the celestial sphere. Then, to obtain the radial distance (R) of
each star to the centre of the cluster, we use R =

√
x2 + y2.

Considering the projected spatial distribution, we counted the number of stars inside concentric rings
to obtain the density distribution for each cluster (Figure 2.1). For clusters where the farthest star is
less than 12 pc from the centre, we used a ring size of 0.5 pc and opted for 1 pc for the other cases.
This choice was somewhat arbitrary, but the results were checked to ensure that there was no under/over
sampling of the density profile in clusters with fewer stars.
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Figure 2.1: (Left) Radial density profile for open cluster COIN-Gaia 1 (blue points) with fitted King profile (orange line).
(Right) Projected spatial distribution of the stars in open cluster COIN-Gaia 1 (black dots) with concentric rings (light grey)
used to obtain the density profile.

Then, we fitted the King profile to the observed density distribution using a Non-Linear Least-
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Squares Fitting python package, LMFIT (Newville et al., 2014). This package finds the optimal set
of parameters by exploring the parameter space to determine the maximum likelihood values. We used
the Maximum Likelihood Estimation from the emcee method within LMFIT to obtain the King parame-
ters and adopted +1σ and -1σ error estimates as the upper and lower uncertainty of each King parameter,
respectively.

Emcee (Foreman-Mackey et al., 2013) is a python implementation of the Markov chain Monte Carlo
(MCMC) Ensembler sampler that samples the parameter space to find the distribution of the King param-
eters. Very briefly, we can describe MCMC as a random sampling technique in which each step (or each
new parameter combination) depends only on the previous step. It “walks” over the parameter space to
find the combination that is most likely to be the optimal (i.e. find the combination that maximizes the
likelihood). Instead of going through every single combination, its algorithm samples the distribution
of parameters to find the maximum which makes this method much faster than doing a grid search for
multidimensional parameter spaces. Codes such as emcee include improvements to the original MCMC
method to increase the speed and accuracy of the methods (Goodman and Weare, 2010) and have been
widely used in astronomy.

To avoid having results dependent on the starting point, it requires that we provide initial “burn-in”
steps to allow the method to converge. For that reason, we assigned 100,000 steps and discarded the
first 5000. As recommended in Goodman and Weare (2010), the convergence of the chains was checked
based on the value of the integrated autocorrelation time (τ), that works as a measure of the robustness
of the MCMC analysis, to ensure that the Monte Carlo error (σ ) is within a few percent (σ2 = (τ×
variance) / number of steps). According to Goodman and Weare (2010), τ must be above 50 for every
parameter so that the estimates can be trusted, i.e., the Monte Carlo error (or sampling error) is around a
few percent. Considering the 100,000 steps, for clusters where τ was under 50, LMFIT raised a warning
and we increased the number of steps. More details on this are discussed in Section 4.1.1.

As it would be too computationally expensive to run in a personal computer (about 60 days consid-
ering 100,000 steps for each OC) which would prevent the possibility of testing and repeating runs, we
made use of the remote server of CENTRA-SIM to parallelize the code by running it simultaneously in
6 CPU, each with 4 cores. Each CPU was commanded to run on a specific portion of the sample (about
300 open clusters per CPU) therefore reducing the computation time by a factor of 6, leading to a total
time of 10 days.

While testing the code, convergence problems were found for some clusters where the tidal radius
given by the code was at the maximum limit allowed by us. Problems in fitting the King profile are
often attributed to the sparse nature of open clusters that combined with contamination by field stars,
make the fitting more difficult. We noticed that the results were very sensitive to the value of parameter c
so, to overcome such problem, we tested several small modifications to the model. These modifications
include considering parameter c as the median of the points outside the tidal radius in each iteration or
removing the constant c entirely. None of these modifications provided significant improvements in the
convergence of the method.

In addition, we noticed some cases where the density in the outer regions of the cluster is of order
∼ 10−2 stars/pc2. If the density is already as low as that in the outer regions, we consider it to be the
background so the tidal radius should not be larger than that. For that reason we implemented a threshold
at 0.02 stars/pc2. For each combination of parameters, the radius at which the King profile is smaller
than 0.02 is checked and the run is discarded if the tidal radius considered in that run is above that value.
The implementation of this threshold allowed to reduce the number of clusters that were not converging.

9



2.2 Mass determination

In this work, we address the determination of open clusters’ luminous mass through the comparison
of the observed luminosity distribution to the theoretical luminosity distribution for each cluster. The
theoretical luminosity distributions, commonly designated as luminosity functions (LFs), give us the
number of stars in each magnitude bin for a cluster with a known mass. The LFs were taken from the
Padova database of stellar evolutionary tracks and isochrones (Bressan et al. (2012), Marigo et al. (2013),
Marigo et al. (2008), Chen et al. (2015), PARSEC version 1.2S). We retrieved a grid of LFs calculated for
the Gaia filter passbands of Maíz Apellániz and Weiler (2018) and Kroupa (2001) initial mass function
(distribution of stellar masses in the cluster at birth) corrected for unresolved binaries of stars, scaled to
the solar metallicity of Z = 0.0152.

The luminosity functions obtained from Padova models are normalized to 1 solar mass, for the mass
of the stellar population initially born. Since Padova models are referred to the initial mass but include
the effect of stellar evolution (as death of stars), the LF for the cluster’s age will no longer be normalized
to 1 solar mass as some stars have already died. For this reason, the scaling of the LF to the observed
luminosity distribution does not provide the current mass of the cluster. So, a scaling correction had to
be implemented to account for that effect. To do so, we generated, from Padova models, a population
of stars with known mass and evaluated the mass of the cluster (by summing the individual masses
of each star) at different ages from log(age) = 6.6 to 10, with steps of 0.1 dex. We observed that the
mass decreases with age in a linear trend so we performed a linear fit (Figure 2.2) and obtained corr =
−0.135× log(t)+1.781, where "corr" is the mass of the LF at the selected age instead of 1 solar mass.
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Figure 2.2: Mass of a simulated cluster (from PADOVA models) at different ages from log(age) = 6.6 to 10, with steps of 0.1
dex with linear fit overplotted.

To compare the theoretical and observed luminosity distributions, we plotted the histogram of the
absolute magnitudes and scaled it to match the theoretical LF. The absolute magnitudes were obtained
through equation (M = m−5log(d)+5−A) where M is the absolute magnitude, m is apparent magni-
tude, d is distance (in parsec) and A is the interstellar absorption.

We adopted two mass determination methods. One method consists in the least-squares fit of the
model luminosity distribution to the observed one. The LF is multiplied by a number, called "scaling
factor", to match the observed luminosity distribution. Using equation 2.4, where LFcount stands for the
number of stars in each bin predicted by the luminosity function and obscount is the observed number
of stars (in each bin), we obtain the deviation of the observed star counts in relation to the theoretical
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counts, as is shown by the black arrows in Figure 2.3. The scaling factor that minimizes that equation
multiplied by the scaling correction (corr) is the current total mass of the cluster, in units of solar masses.

χ
2 =

∑
N
(LFcount × f actor−obscount)

2

Nbins
(2.4)

Figure 2.3: Histogram of the stellar absolute magnitude distribution, in the G band, for open cluster Alessi 18. Orange line
represents the luminosity function for the cluster’s age multiplied by 269 (scaling factor) which corresponds to a mass of 122
M⊙.

The second method is the direct division of the areas under the magnitude distributions. Since both
the theoretical and observed magnitude distributions are evaluated using the same bin width, dividing the
areas is simply dividing the sum of the observed number of stars (or counts) by the sum of the predicted
counts.

The data used in this work comes from Gaia DR2 (Gaia Collaboration et al., 2018) which contains
photometry in 3 bands (G, GBP, and GRP) that fall in the visible region of the spectrum. Details on the
data used are given in Section 3.1. Both mass determination methods were applied to the G band to make
comparisons on their performance and to the GBP and GRP bands to check the robustness of the results,
as will be discussed in Section 4.2. As we wish to compare the results between the different bands, only
stars detected in the 3 Gaia bands were considered.

The two methods share the same principle however, they produce slightly different results. The
second method does not consider the shape of the magnitude distribution as it only considers the sum
of the counts. On the contrary, the least-squares method is sensitive to the shape because each bin has a
different weight so, in case the cluster parameters (such as age or distance) are not well determined and/or
there is incompleteness, the results will be more affected. This will be seen later as a larger difference
in the mass determined using different bands considering the least-squares method. Since the luminosity
function is dependent on age and distance, if those are not correctly determined, the shape of the LF will
not be adequate to the cluster.
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2.2.1 Completeness Cut

Although Gaia photometry is complete down to an apparent magnitude of ∼ 20 in the G band, since
the membership probabilities from Dias et al. (2021) were only assigned for stars with apparent magni-
tude G ≤ 18, we must only consider stars with Gapparent ≤ 18. We must also note that when the apparent
magnitudes are converted to absolute magnitudes and discretized in bins, the absolute magnitude bins
will not be complete as the last bin may include magnitude values that correspond to Gapp > 18. In fact,
in some cases, there is indication of this effect as the last bin has very few stars when compared to the
predicted luminosity function (see Figure 2.4).

Using luminosity functions in apparent magnitude would cancel this effect however, retrieving LFs
from Padova in apparent magnitude is not possible in the website interface. So, to account for this
artificial incompleteness effect, we imposed a completeness cut in the G band by removing the absolute
magnitude bins that correspond to Gapparent ≥ 18. In most cases, this results in the removal of just the
last bin, as exemplified in Figure 2.4, with few exceptions where more than one bin is removed. Since
the true completeness limit in GBP and GRP bands is not known, we chose to remove the last bin in those
bands.
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Figure 2.4: Absolute magnitude distribution for open cluster Alessi 12 with luminosity function scaled to match the observed
distribution before (left) and after (right) implementing the magnitude cut in the G band, using the least squares’ method.

Additionally, as the Padova interface forces us to manually retrieve LFs for each bin width, our
freedom of choice for the bin width was limited. Choosing a different bin width for every cluster would
become unpractical so, for that reason, we tried to find a couple of bin widths that could work for the
entire sample. We opted for a bin width of 0.5 magnitudes, however, for clusters with fewer stars this
choice was not appropriate as it was oversampling the data, so we increased the bin width to 1, in those
cases.

In future work, we plan to build our own luminosity functions using the Padova stellar evolution
models and mass functions. This will give us more freedom in the choice of bin width and more easily
convert between apparent and absolute magnitudes.

2.2.2 Bootstrap error analysis

To get the error associated with our mass determination methods, a bootstrap analysis was performed.
The bootstrap method is a resampling technique used to estimate statistics on a population by sampling
a data set with replacement. It generates new hypothetical samples that help to test the estimated value
and efficiently determine the standard error. This method has the advantage that it is easy to implement

12



and it does not require any pre-assumptions to work.
In our work, it translates into taking samples (with the same size as the original) with replacement of

the magnitude distribution for each cluster and then calculate the mass of the new samples. To select the
number of samples necessary to have a robust error determination, we checked the error using 10, 50,
100 and 200 samples. Above 50 samples, the bootstrap error showed fluctuations outside the significant
digits, so we decided to use 100 samples. This process was only applied to the least-squares method
because, in the other method, the total number of stars is kept fixed so the sums are always the same,
what changes is how the stars are distributed through the bins therefore bootstrapping cannot be applied
to the second method. Considering the least-squares method, for each repetition, a mass is determined,
so we adopt the standard deviation from the 100 mass values as the error of our method, for each cluster.
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Chapter 3

Sources

3.1 Catalogue of Dias et al., 2021

The Gaia mission of the European Space Agency (ESA) was launched in 2013 with the goal of
pinpointing the positions of nearly two billion objects with extreme accuracy at the microarcsecond
level. This is allowing astronomers to study the Milky Way structure and dynamics with unprecedented
detail. This mission has had 3 data releases and more are planned for the future. The first Gaia Data
Release (DR1: Gaia Collaboration et al. (2016)), contained positions and magnitudes for more than one
billion sources. The second and third data releases (DR2: Gaia Collaboration et al. (2018), DR3: Gaia
Collaboration et al. (2022) and Gaia Collaboration et al. (2021)) presented astronomers with astrometric
data of unprecedented accuracy (up to a hundred times better than previous proper motion catalogues)
for more than 1 billion sources.

It is the deepest all-sky survey ever done, reaching magnitude depths of G ∼ 20.5 with accuracies
at the mili-magnitude level. It provides 5 astrometric parameters: positions (in right ascension (α)
and declination (δ )); proper motions (in α and δ ) and parallaxes. It also provides magnitudes in three
photometric filters (G, GBP and GRP) for more than one billion sources. These photometric bands fall in
the visible region of the electromagnetic spectrum (400 to 900 nm) which is the sensitivity window of
the CCDs used in the Gaia satellite (Figure 3.1). The nominal uncertainties of Gaia reach accuracies of
0.02 mas in parallax and 0.05 mas/yr in proper motions, for G > 14, and 2 mas and 5 mas/yr, respectively,
for G ∼ 21.

Figure 3.1: (Left) Gaia passbands as produced by Coordination Unit 5 of the Gaia Data Processing and Analysis Consor-
tium. The coloured lines in the figure show the G, GBP and GRP passbands (green: G; blue: GBP; red: GRP). Credits:
ESA/Gaia/DPAC. (Right) Artist’s impression of the Gaia spacecraft. Credits: ESA–D. Ducros, 2013.
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In what regards open cluster studies, Gaia astrometry and photometry has allowed to identify clus-
ter members and find hundreds of new clusters and cluster candidates (Liu and Pang, 2019; Sim et al.,
2019; Castro-Ginard et al., 2020; Ferreira et al., 2021). With its deep photometric data, the determi-
nation of distances, ages and extinctions with higher accuracy has been made possible which allowed
homogeneous determinations of cluster parameters (Cantat-Gaudin et al., 2018; Bossini et al., 2019;
Cantat-Gaudin et al., 2020; Monteiro et al., 2020; Dias et al., 2021).

While there are several catalogues that use data from Gaia, the majority is focused on a small number
of clusters. The two main Gaia-based large scale catalogues available in the literature are the Cantat-
Gaudin et al. (2020) and Dias et al. (2021) catalogues. The catalogue of Cantat-Gaudin et al. (2020)
contains cluster parameters (distance, age, and interstellar reddening) for 1867 OCs determined using an
artificial neural network. In this study, we make use of the slightly more recent catalogue of Dias et al.
(2021) which contains cluster parameters such as age, distance, extinction, proper motion, metallicity,
amongst others determined from Gaia Data Release 2 data. The clusters’ age, distance and extinction
were obtained using a cross-entropy (CE) method to fit theoretical isochrones to the CMDs of cluster
member stars, as described in Monteiro et al. (2017) and Monteiro et al. (2021). This catalogue is homo-
geneous since the parameters were determined with the same isochrone fitting method for all clusters.

In addition to the main catalogue, tables of individual stellar membership probabilities from pub-
lished literature and individual stellar data, from Gaia DR2, are also provided for each cluster. The
memberships come from several other catalogues (e.g. Castro-Ginard et al. (2020), Sim et al. (2019),
and Liu and Pang (2019)), and were determined using different methods based on the astrometric, pho-
tometric and proper motion data of the stars in each cluster. It should be noted that Dias et al. (2021)
recalculated the memberships for the clusters in Liu and Pang (2019) and Castro-Ginard et al. (2020)
as the stars in those clusters were only assigned, by the authors, 1 or 0 for members and non-members,
respectively.

3.2 Sample characterization

3.2.1 Age, distance and spatial distribution

Figure 3.2 shows the distribution of the 1743 open clusters from Dias et al. (2021) in the X-Y plane
of the Galaxy, with positive Y in the direction of the Galactic anticentre. The Galactic centre is at (0,0),
the Sun is situated at (0,8.3) kpc and the X axis points to the Galactic rotation direction. The spatial
distribution does not present a homogeneous distribution in the X-Y plane because there is a higher
number of clusters detected in the outer region of the Galaxy (Y > 8.3 kpc) when compared to the inner
region (Y < 8.3 kpc). Since our sample from Dias et al. (2021) only contains stars brighter than G ∼
18, it is magnitude limited. Factors that decrease the apparent brightness of clusters members, such
as distance, extinction and age lower the distance up to which we can detect stars of G ∼ 18. In the
direction of the Galactic centre, the level of extinction is much higher due to the higher concentration of
dust that block optical wavelengths (see Figure 3.2 on the right). So, we can only detect sources up to a
distance that is shorter than in the anticentre direction. Additionally, as some studies may be focused on
a specific region, it artificially increases the number of clusters in those regions, leading to a non-uniform
distribution of clusters in the X-Y plane.
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Figure 3.2: Distribution of OCs in the X-Y plane of the Galaxy, with positive Y in the direction of the Galactic anticentre and
the X axis pointing to the Galactic rotation direction. Galactic centre is at (0,0) and the Sun at (0, 8.3). On the left, the open
clusters are color-coded by age and, on the right, by extinction (Av).

Figure 3.3 shows the distance from the Galactic plane against Galactocentric distance, color-coded
by age. In this plot, the increase of the scale height of the disc is evident in the outer regions. The scale
height is defined as the vertical distance over which the number density decreases by 1/e (Binney and
Tremaine, 2011). In other words, it gives a sense of the scale where the clusters are contained in relation
to the distance from the Galactic plane. In the outer regions of the Galaxy, the clusters show a larger
spread in the vertical axis corresponding to a larger scale height. We can also see that younger clusters
are found near the Galactic plane, while older clusters can be found at all Galactic altitudes as already
pointed out by Cantat-Gaudin et al. (2020).
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Figure 3.3: Distribution of open clusters in distance from the Galactic plane (z) against Galactocentric distance (RGC), color-
coded by age.

In Figure 3.4, we plot the observed distribution of age and distance of our sample. For both dis-
tributions, we fitted a Gaussian Kernel Density Estimation that was implemented using the function
gaussian_kde of Python Scipy package considering a bandwidth of 0.27 dex for the age distribution and
454 pc for the distance distribution.

In general, the sample contains OCs within a few kiloparsec around the Sun with ages of a few
million years to a few billion years.
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Figure 3.4: Distribution of age (left) and distance (right) of open clusters in the catalogue of Dias et al. (2021), with fitted
Gaussian KDE with bandwidth of 0.27 dex for the age and 454 pc for the distance distribution.

3.2.2 Membership Probability Cut-off

To distinguish between member stars and stars from the field population, it is important that we as-
sign a membership probably (Pmemb) to each star in the field of view around the cluster, translating its
probability of belonging to the cluster. In general, the distribution of membership probabilities for stars
detected in the region of the sky around a cluster shows a U shape distribution with more stars at the
highest and lowest membership probabilities, as seen, for example, for open cluster FSR 0441 in Figure
3.5. This means that it is possible to separate cluster stars from field stars, reducing the level of con-
tamination. In this work, we take a conservative approach by considering only stars with a membership
probability above 50%, which are stars that are statistically more likely to belong to the cluster than to
be from the field population.
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Figure 3.5: Membership probability distribution for open cluster FSR 0441 which is 12.5 million years old and at a distance of
3473 parsec.

The sample from Dias et al. (2021) that we use in our work, as mentioned before, contains stellar
memberships determined in other smaller catalogues. Dias et al. (2021) visually inspected the clusters’
CMD and did not include in the published catalogue those that seemed dubious or likely not physical
objects. These objects come mostly from the catalogue of Liu and Pang (2019) and some from Castro-
Ginard et al. (2020). In fact, in the Liu and Pang (2019) catalogue, 72% of the sample was classified, by
the authors, as class 3 (worst quality) regarding the width of the main sequence (MS), age and quality
of the isochrone fitting. In Castro-Ginard et al. (2020) catalogue, 36% was classified (by the authors) as
class C (worst quality) and 15% as class B. According to Dias et al. (2021), these are cluster candidates
that require further confirmation.
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Dias et al. (2021) visually inspected the CMD with the fitted isochrone over-plotted of each cluster to
exclude poor quality determinations. So, in principle, the 1743 OCs reported pass the bona fide criteria
however, we detected some cases where there is considerable scatter and/or poor isochrone fit. For
that reason, the CMD for the 1743 OCs with the fitted isochrone over-plotted were visually inspected.
For those that showed signs of contamination, i.e., stars very far from the isochrone, we increased the
membership probability cut-off trying to reduce the contamination. At a first stage, we determined how
many showed significant contamination (only ∼ 11%) and, later, plotted the CMD for every membership
cut-off above 0.5 (from 0.6 to 0.9). As we are dealing with a trade-off between the level of completeness
and contamination, we chose the cut-off that removed the contamination by as much as possible but
also kept a significant number of stars to avoid losing too much information. The membership cut-off
distribution for our sample is the following:

Table 3.1: Number of clusters per membership cut-off used in this work.

Membership
Cut-off

P >0.5 P >0.6 P >0.7 P >0.8 P >0.9

Number of
clusters

1555 34 66 53 35

As an example, we show in Figure 3.6 the CMD for open cluster NGC 2244 considering, on the
left, only stars with a membership probability above 0.5 (Pmemb > 0.5) and, on the right, with the chosen
cut-off of Pmemb > 0.8. The comparison shows that increasing the membership cut-off allows to reduce
the scatter around the main-sequence, i.e, removing a significant part of the contamination.
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Figure 3.6: Color-magnitude diagram for open cluster NGC 2244 with isochrone for log(age) = 7.1 dex and distance of 1254
pc, considering only stars with membership probability above 0.5 (left) and 0.8 (right).

Of those that contained higher contamination and, therefore, needed a higher membership cut-off,
we note that 69 (37%) are from the Castro-Ginard et al. (2020) catalogue and 47 (25%) are from the
Liu and Pang (2019) catalogue. In fact, when looking at their color-magnitude diagram, we noticed that
some don’t show a main sequence nor any type of pattern that can be identified as a cluster. As Dias
et al. (2021) suggested, further investigation is needed to conclude on the nature of the objects but that is
beyond the scope of this work.
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3.2.3 Photometric Classification

Due to the presence of several OCs with poor CMD fits, we classified the clusters using as criterion
the width of the main sequence and quality of the isochrone fitting. Considering the CMDs for the
selected member stars of each cluster, we visually inspected and classified the clusters into 3 categories:
P1 (best quality), P2 (medium) and P3 (worst quality), where P stands for photometry. The first category
(P1) contains open clusters that present a good isochrone fit where there is small dispersion, i.e., most
of its stars are near the isochrone. The second category is for intermediate quality fits where there is
some dispersion around the isochrone, which is evidence of contamination, or the isochrone does not
provide the best fit to the data. The latter (P3) contains clusters where the isochrone does not trace the
distribution of stars in the CMD, or the points are too scattered to find any pattern that resembles an open
cluster. Table 3.2 contains the number of clusters in each category.

Table 3.2: Number of clusters per classification according to the quality of the CMD.

P1 P2 P3

Number of
clusters

939 649 155

Figures 3.7, 3.8 and 3.9 show typical cases for each classification. Despite the low definition of the
sequence and/or the presence of scatter in the CMD, the 155 clusters in P3 were kept in the study under
a quality flag.
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Figure 3.7: CMD for open cluster Alessi 6 which is a representative case of classification P1.
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Figure 3.8: CMD for open cluster Berkeley 15 which is representative of P2.
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Figure 3.9: CMD for open cluster LP 2172, an example of clusters with classification P3.
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Chapter 4

Results

4.1 Determining tidal radii

To determine the tidal radii some constraints were made to the process described in Section 2.1 to
ensure the results have physical meaning. As the core radius cannot be larger than the size of the cluster,
we restricted the possible values of the core radius to a maximum corresponding to the radial distance of
the farthest star, in each cluster. Even though this constraint ignores the fact that additional undetected
member stars could exist, the results show that the core radii are never at the maximum value considered
so this choice simply defines an appropriate range of values to be considered for Rc. For the tidal radius,
we defined a maximum value of 100 pc as most clusters have the farthest star under 30 pc from its centre.
This choice has also been used in other studies such as Tarricq et al. (2021), with whom we compare our
results in section 4.1.5.1.

An additional constraint was imposed to avoid considering values for the tidal radius that are smaller
than the core radius, as it does not have physical meaning. These constraints were implemented such
that, if the combination of parameters is not to be considered, the run will be discarded due to a very high
χ2 value, forced by us.

While visually inspecting our early results of the King profile fit, we detected 4 open clusters (Berke-
ley 58, Berkeley 59, Blanco 1 and NGC 7789) for which the centre is incorrectly determined (the listed
centre is off the cluster distribution) so, we decided to remove them from our sample. This leaves us with
a sample of 1739 OCs. After testing the best parameter ranges that worked for the entire sample, we
applied the described procedure to the 1739 open clusters considering the following parameter ranges:

Table 4.1: Minimum and maximum parameter limits considered to fit the King profile to the observed density distribution. The
maximum limit for the core radius is the value of the distance to the centre of the cluster of the farthest member star (max(R)).

Parameter
Minimum
Limit

Maximum
Limit

Rt 0.5 pc 100 pc
Rc 0.2 pc max(R) pc
c 0.02 stars/pc2 5 stars/pc2

N0 0 250

Our initial results showed that 72 OCs did not converge on any value. These are typically clusters
that do not show a centrally concentrated distribution in the X-Y plane, so their density profile is almost
flat or has an irregular shape that cannot be fitted with the King profile.

To overcome this issue, we changed the number of stars considered, by changing the membership
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probability cut-off used for those clusters. For every possible cut-off (from 0.0 to 0.9), we determined
the King parameters using the stars with membership above the cut-off considered. Of the 72 clusters
for which the code did not converge using the cut-off chosen using the CMD, 57 provided results for at
least one cut-off and 15 did not return values for any cut-off. For that reason, we will not consider those
15 clusters in the analysis as we do not have any King parameters estimates for them.

For those that converged on more than one cut-off, we chose the lowest cut-off that resulted in the
best fit considering the quality of the King profile fit and how well the core and tidal radii adjust to the
spatial distribution. We note, however, that these clusters have poor quality determinations. Our choice
to consider the lower membership cut-offs follows the argument of Piskunov et al. (2007) which argued
that using a lower membership cut-off provides better results for the King parameters because, despite
including more contamination which increases the value of parameter “c”, it results in a more robust fit.
After implementing the changes in the membership cut-off, we obtained King parameters for 1724 OCs.

4.1.1 Uncertainty

Regarding the uncertainty of the King parameters, we applied the emcee method from LMFIT, as
described in Section 2.1. Since running our code with a high number of steps for all clusters would be
very time consuming (between ∼10 to ∼25 hours for each one of the 1724 clusters), we decided to start
with 1×105 for all clusters. However, as mentioned in Section 2.1, for some open clusters, the number
of steps given was not enough to fulfill the criterion of τ ≥ 50, which is necessary to have low sampling
error and robust determinations from the MCMC chain. In those cases, the program recommended the
use of a longer chain so, we gradually increased that number until the criterion was satisfied. In Table
4.2, we present the distribution of the number of steps used in our emcee analysis.

Table 4.2: Distribution of the number of steps used in the emcee analysis. Note that 1437 (83%) of our sample uses 1× 105

steps and only 287 OCs use a higher number of steps.

Number of steps Number of OCs
1×105 1437
2×105 188
5×105 79
8×105 11
1.2×106 5
2×106 4

4.1.2 Results

In Figure 4.1, the distribution of tidal and core radii is shown for 1724 OCs. The distribution of tidal
radii shows a "bump" (secondary peak) around 50 pc which corresponds to clusters with convergence
problems, as will be explained in Section 4.1.4. Excluding the clusters with poor quality fits (classified
as R4, see next Section) the "bump" around 50 pc disappears. In the future, we will look in more detail to
the convergence of the chains in these clusters. The distribution of tidal radii excluding clusters with poor
fits is represented as the green histogram in the left plot of Figure 4.1. It presents a median value of 10
pc, consistent with the values found in the literature (for example, Piskunov et al. (2007) and Kharchenko
et al. (2013)). In Figure 4.1 on the right, we show the core radii distribution of our sample which has a
median value of 2 pc. The distribution of parameters N0 and c are shown in the Appendix A. In every
histogram, the bin width was chosen using the Knuth rule (Knuth, 2006).
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Figure 4.1: Distribution of tidal (left) and core (right) radii for 1724 OCs. In green we represent the distribution of tidal radii
excluding poor quality fits. Median tidal radii is 10 pc (from green histogram) and median core radii is 2 pc. In the top right of
each figure, we present a zoomed plot within 0 to 15 pc for tidal radii and 0 to 5 pc for the core radii.

The distribution of the upper and lower uncertainties for the core and tidal radii determined in this
study are shown in Figures 4.2 and 4.3, for 1724 open clusters. The median of the fractional lower and
upper uncertainties for the tidal radius are 40% and 144%, respectively. These large uncertainties reflect
the difficulty in obtaining the tidal radii which could be due to, in some cases, the sparse nature of open
clusters. For the core radius, the median lower uncertainty is 19% and the median upper uncertainty is
21%. The uncertainties for N0 and c are also shown in the Appendix A.
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Figure 4.2: Distribution of lower (left) and upper (right) uncertainty for the tidal radii measured for 1724 OCs. On the left plot,
there are 71 (4%) clusters with sporadic values below -3 and on the right plot, there are 52 (3%) clusters with values above 15,
which we do not include in the figure to allow an easier visualization of the results.
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Figure 4.3: Distribution of lower (left) and upper (right) uncertainty for the core radii. On the left plot, there are 9 clusters with
values below -0.5 and on the right plot, there are 7 clusters with values above 1, which are not represented.
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4.1.3 Tidal Radii Classification

Even though our method provided results for 1724 OCs, we stress that not all present satisfactory
results. To separate our results, we classified them according to the quality of the King profile fit to the
observed density profile. To do so, we plotted, for each cluster, the observed density profile (in linear
and logarithmic scale) with the fitted King profile and the X-Y spatial distribution of the member stars
with circles at radius Rc and Rt overplotted. These 3 plots were visually inspected and each cluster was
classified into one of 4 classifications: R1 (best quality), R2 (intermediate quality), R3 (worst quality)
and R4 (non-reliable).

Classification R1 consists of clusters where there is a very good match between the observed density
profile and the King profile, as well as a good fit of Rc and Rt to the X-Y spatial distribution.

Classification R2 consists of clusters that have a tidal radius which is visually well adjusted, but a
core radius not well adjusted (too small or too large) to the observed central concentration.

Classification R3 consists of clusters that have similar values of tidal and core radius (which is an
indication of possible convergence problems) and/or fewer stars which makes the fit less robust.

Classification R4 consists mostly of clusters where the tidal radius obtained is too large (around 50
pc) and/or is visually not adequate. Cases where the density distribution does not show a profile that can
be fitted by the King profile are also included in this category.

Table 4.3: Number of open clusters per classification and respective percentage.

Classification Number of OCs Percentage
R1 342 19.8 %
R2 495 28.7 %
R3 338 19.6 %
R4 549 31.9 %

As we will use this classification in the selection of the sample of clusters with good determinations,
from which we will base our study of cluster disruption, we analysed the spatial distribution of clusters
from each classification separately to assess the spatial bias. As shown in the plots in Appendix A,
each classification follows a similar spatial X-Y distribution so there is no spatial trend and no bias is
introduced by selecting clusters based on the classification of their tidal radii determination.

In the following figures, we give representative examples of clusters in each classification.
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Figure 4.4: Example representative of a cluster with R1 classification. (Left) Spatial density distribution of open cluster NGC
6791, with 109.9 years and distance of 4447 pc. (Right) Spatial distribution of the cluster’s stars, color-coded by membership
probability, with black circle at 18.46 pc (tidal radius) and orange circle at 3.73 pc (core radius).
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Figure 4.5: Example representative of a cluster with R2 classification. (Left) Spatial density distribution of open cluster Alessi
24, with 108.5 years and distance of 482 pc. (Right) Spatial distribution of the cluster’s stars, color-coded by membership
probability, with black circle at 8.9 pc (tidal radius) and orange circle at 6.83 pc (core radius).
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Figure 4.6: Example representative of a cluster with R3 classification. (Left) Spatial density distribution of open cluster Czernik
3, with 108.5 years and distance of 4505 pc. (Right) Spatial distribution of the cluster’s stars, color-coded by membership
probability, with black circle at 2.67 pc (tidal radius) and orange circle at 2.25 pc (core radius).
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Figure 4.7: Example representative of a cluster with R4 classification. (Left) Spatial density distribution of open cluster ASCC
85, with 108.1 years and distance of 848 pc. (Right) Spatial distribution of the cluster’s stars, color-coded by membership
probability, with black circle at 45.8 pc (tidal radius) and orange circle at 2.27 pc (core radius).
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4.1.4 Sanity check

As a sanity check of the LMFIT procedure, we implemented a discrete loop over the tidal radius
and obtained directly the χ2 between the King profile and the observed density distribution. This was
done by looping over Rt with steps of 0.5 pc and obtaining the χ2 for each run. We allowed N0 and c to
vary continuously between the limits given in Table 4.1 as these parameters do not have restrictions. As
for Rc, it varied within the limits given previously but, for the runs where Rt is smaller than the radial
distance to the furthest star (max(R)), Rc was only allowed to go up to Rt . Using this “loop” method,
we can access the values of Rt and Rc directly which is difficult to check inside LMFIT as it varies the
parameters almost continuously inside the given ranges. In LMFIT, the combinations considered are not
easily accessible so this "loop" method allows to perform a sanity check. We compared the results from
this method to the results from LMFIT and verified that, for the high quality determinations (classification
R1), the tidal radii have a median difference of 2%, which is an indication that these determinations are
robust. For clusters with classification R2 and R3, the results show a higher difference (15% and 37%,
respectively). Additionally, we also confirmed that most of the clusters that make up the "bump" in the
tidal radii distribution around 50 pc have convergence problems in the loop as these always returned the
maximum value chosen for the tidal radius in our sanity check loop.

4.1.5 Comparison with other studies

4.1.5.1 Comparison with Tarricq et al., 2021

The most recent and relevant catalogue of tidal radii is that of Tarricq et al. (2021) where stellar
memberships were revisited for a sample of 389 open clusters in the solar vicinity using Gaia Early Data
Release 3 (eDR3: Gaia Collaboration et al. (2021)). Several structural parameters were determined,
including core and tidal radius, elongation and size of the halo using a new list of members extended to
the outskirts of the clusters. Of the total sample, Tarricq et al. (2021) reports the determinations of tidal
and core radii for 164 and 145 OCs, respectively. In our sample, we have 109 OCs under the same name
and centre coordinates.

In Tarricq et al. (2021), the tidal radii were determined by fitting the King density profile with a
Maximum Likelihood estimator using the MCMC sampler emcee (Foreman-Mackey et al., 2013). The
method differs from ours in the sense that Tarricq et al. (2021) used 10,000 iterations per “walker” (in a
total of eight “walkers”) and discarded the results where a flag was risen by the integrated auto-correlation
time whereas we used 100,000 iterations (with a single walker) for most of the clusters and increased
that number when needed, as described in Section 4.1.1.

The authors implemented two criteria to discard the poorly constrained results by excluding clusters
where the uncertainty in Rt was above 15 pc and above 2.5 pc for Rc. In our study, we filtered our results
based on the quality of the density profile fit and not on the value of the uncertainty. If we apply the
criteria used by Tarricq et al. (2021) to our sample, we report the determination of Rt and Rc for 467
OCs, an increase of almost 3 times.

Despite the similarities in our methods, Tarricq et al. (2021) expanded the number of stars considered
in each cluster so, the number of stars considered is significantly different between our studies as seen in
Figure 4.8 on the left. The ages used by Tarricq et al. (2021) come from the catalogue of Cantat-Gaudin et
al. (2020) and were determined using a different method than in our reference catalogue, which explains
the difference seen in Figure 4.8 on the right. As for the distance, the values are similar (only differing
by about 5%).
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Figure 4.8: (Left) Number of stars used for each OC from this work compared to the number of stars used in Tarricq et al.
(2021). (Right) Comparison of the age of each OC used in Tarricq et al. (2021) from the catalogue of Cantat-Gaudin et al.
(2020) to the age from Dias et al. (2021).

The comparison between the core and tidal radii obtained by Tarricq et al. (2021) and in this study
is presented in Figure 4.9, for the 109 OCs that are common in both studies. Our method, in general,
leads to smaller values of Rt and similar values of Rc. This difference in the tidal radii distribution is
also verified by Tarricq et al. (2021) when comparing their results to the distribution of tidal radii from
Piskunov et al. (2007), Kharchenko et al. (2013), and Angelo et al. (2021).
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Figure 4.9: Comparison of the distribution of tidal (left) and core (right) radii from this work and from Tarricq et al. (2021), for
the 109 OCs in common.

Regarding the uncertainties, since Tarricq et al. (2021) excluded clusters based on the value of the
uncertainty, a direct comparison is not possible because we include in our study cluster with large uncer-
tainties (with a quality flag). However, we notice that our results have, in general, similar uncertainties
for the core radii and higher uncertainties for the tidal radii, when compared to the ones from Tarricq
et al. (2021).

4.1.5.2 Comparison with Piskunov et al., 2007

Before the Gaia mission, the main catalogue of tidal radii was from Piskunov et al. (2007) (updated
in Piskunov et al. (2008)). It contains tidal radii for 650 OCs from the ASCC 2.5 catalogue, determined
by fitting the King profiles to the observed cumulative density distribution. In Figure 4.10, we compare
the distance and age of each cluster used in this work to the values used by Piskunov et al. (2007).
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Since they used pre-Gaia data, as expected, many clusters have different ages and distances in the two
catalogues. However, for the determination of the tidal radii, this difference is not expected to impact the
results. As seen in Figure 4.11, our results for the tidal radii are comparable with the ones from Piskunov
et al. (2007).
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Figure 4.10: Comparison of the age (left) and distance (right) of each OC used in Piskunov et al. (2007) to the ones from Dias
et al. (2021).
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Figure 4.11: Distribution of tidal radii from this work and from Piskunov et al. (2007).
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4.2 Determining luminous masses of clusters

With the tidal radii determined, we selected the stars within Rt in each cluster and obtained the
luminous masses of the clusters, applying the methods described in Section 2.2 to 1724 open clusters. As
mentioned, the bin width has been adjusted to avoid over or under sampling the luminosity distribution.
For clusters with fewer stars, which we consider to be those that had less than 10 stars in the highest bin,
we doubled the bin width to 1 magnitude. Then, we visually inspected them to confirm the magnitude
distribution did not appear to be over or under sampled. In total, 1168 clusters remained with a bin width
of 0.5 and 556 changed to 1.

For the membership probability cut-off, we took a conservative approach by considering only stars
that are more likely to be from the cluster than from the field population. For this reason, we adopted the
cut-offs determined through visual inspection of the CMD as described in Section 3.2.2. Note that we
did not use the cut-offs from Section 4.1 which included some cut-offs lower than 0.5, which we were
forced to adopt so that the method would converge. Despite this choice leads to clusters with tidal radius
and mass determined using different numbers of stars, it should not influence our results because the tidal
radius should not depend on the chosen membership cut-off, i.e., it should not depend on the number of
stars considered.

4.2.1 Mass distribution

Considering the small adjustments described above, the distribution of mass (in linear and logarith-
mic scale) obtained for the G band, using the method of the least squares is shown in Figure 4.12, with
a Kernel Density Estimation with bandwidth of 0.18 dex. The logarithmic distribution shows a peak at
log(M) = 2.7 dex, with standard deviation of 0.4 dex. The linear mean mass is 797 M⊙ and the median is
426 M⊙. Details on why the least squares method was the adopted method are given in Section 4.2.3.2.
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Figure 4.12: Distribution of the luminous mass obtained in this work, in linear (left) and logarithmic (right) scale. There are
34 clusters with mass above 4000 M⊙ that we exclude from the left plot to allow an easier visualization of the results. On the
right, the orange line is a Gaussian KDE with bandwidth of 0.18 dex.

4.2.1.1 Spatial distribution

The distribution of open clusters in the X-Z and Y-Z plane color-coded by mass is shown in Figures
4.13 and 4.14. The distribution in the galactic plane shows that clusters further away from the plane
are older and more massive. It is known that clusters are usually born at lower latitudes where there is
more gas and dust. Fewer clusters are formed at high galactic latitudes. Of those that can form at high
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latitudes, since they suffer less disruption (due to the lack of GMCs and other clusters), they survive
longer. In this older population of clusters outside the galactic plane, we expect to detect only the more
massive ones because clusters naturally dissolve into the field so, the less massive ones will not persist
until older ages.
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Figure 4.13: Distribution of OCs in the X-Y plane (left) color-coded by luminous mass and distribution of mass by age (right).
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Figure 4.14: Distribution of open clusters in the X-Z plane color-coded by luminous mass.

4.2.2 Error analysis

4.2.2.1 Bootstrap error analysis

The results of the bootstrap error analysis, performed for 100 samples, are shown in Figure 4.15,
for the G band. Most of the clusters have a mass error under 6% and the median value for the error
is 4% with standard deviation of 3%. We note that these are the statistical uncertainties related to our
mass determination method, not the true uncertainty of the mass of each cluster because the systematic
uncertainty in the determinations of the age or distance of each cluster are not accounted for.
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Figure 4.15: Distribution of the fractional mass error obtained through bootstrapping using 100 samples.

4.2.2.2 Effect of tidal radius uncertainty

To account for the uncertainty of the tidal radius and check the influence of that uncertainty in the
value of the mass, we calculated the mass of each cluster considering the minimum and maximum value
of Rt that corresponds to Rt −σ and Rt +σ , respectively. As seen in Figure 4.16, the mass distribution
considering only stars inside the minimum or the maximum value of Rt is very similar to the mass
obtained considering Rt . In fact, the mass obtained using the minimum value of Rt is around 8% less
than the mass inside Rt (represented as M(Rt)) and the mass inside the maximum Rt is around 6%
more than M(Rt). This proves that despite the large uncertainties in the tidal radius, it does not have a
significant effect on the mass.
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Figure 4.16: Distribution of luminous mass using only stars inside minimum Rt , Rt or maximum Rt .

The distribution of errors for the mass considering the lower and upper limits of Rt is similar to that
of M(Rt). The mass errors considering M(Rt(min)) and M(Rt(max)) show similar values to those of
M(Rt), with median difference of 4% and 3%, respectively.
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Figure 4.17: Fractional mass error for masses determined using only stars inside minimum Rt , Rt and maximum Rt .

4.2.3 Comparison between Gaia bands and mass determination methods

4.2.3.1 Comparison between G, BP and RP bands

To further assess the robustness of our mass determination method, we obtained the mass using pho-
tometric data from GBP and GRP Gaia bands, repeating the same process as described in the previous
sections. Comparing those to our mass results using photometry from G band, using the least-squares
method, we noted a normalized difference of 3% between the mass obtained using G and GBP bands
and 5% difference between G and GRP bands, with standard deviation (1σ ) of 19% and 20%, respec-
tively. This indicates that our method is robust as there is, in general, a small difference between the
mass determined using different bands. The values represent the normalized differences, in the sense
of M(GBP)−M(G)

M(G) , as seen in Figure 4.18 on the left. The mean and standard deviation of the comparison
for the mass calculated for different bands is presented in Table 4.4. It shows similar values for both
methods however, for the second method (division of sums), there is a lower standard deviation for the
difference of the masses obtained with different bands. This might be explained by the argument already
mentioned: as this method only considers the sum of the counts, without weighting each bin, it is less
sensitive to incompleteness or incorrect age or distance determinations, so it is less likely that the results
will differ between bands.
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Figure 4.18: Normalized difference for masses determined using G and GBP bands (left) and G and GRP bands (right). We
excluded from the figure 4 clusters on both plots with values above 1.
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Table 4.4: Mean and standard deviation of the normalized difference between the mass determined using G and GBP, G and
GRP bands, considering the least-squares method (ls) and the division of sums (div).

Mean Standard dev.
BP-G [ls] 3% 19%
RP-G [ls] 5% 20%
BP-G [div] 3% 13%
RP-G [div] 5% 14%

4.2.3.2 Comparison between mass determination methods

To further explore our results, we also compared the mass obtained using the two described methods:
the least squares and the division of sums, for the same band. The comparison of the results from each
method for the G band is shown in Figure 4.19. It has a mean mass difference of 6% (with standard devi-
ation of 13%) between the two methods, with the least squares method giving generally lower estimates
for the mass of the clusters.
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Figure 4.19: Normalized mass difference for masses determined using the method of division of sums and least-squares.

As the differences between the two methods and the three bands are consistent with the typical mass
error of < 10%, we conclude that our mass determination method is robust. Given that the results from
GBP and GRP bands were only obtained as a sanity check, only the mass determined using the G band
should be considered. For the methods, both can be used but we opted for the least-squares as it allows
a simpler determination of the error through bootstrap analysis and it is sensitive to the shape of the
luminosity function.

4.2.4 Mass Classification

To assess the quality of the mass determinations, we classified the 1724 open clusters based on the
quality of the agreement between observed and predicted luminosity distributions (called "LF fits" for
simplicity). Several attempts were made to find a criterion that would allow a systematic classification of
the LF fits. No criterion was found that allowed a strict classification, however, by using the χ2 value of
the fit, it was possible to loosely sort the clusters and then thoroughly classify, by eye, in three categories:
M1 (best), M2 and M3 (worst), where M stands for mass.

For category M1 we selected the clusters which show a good agreement between the observed and
predicted counts, on the 3 Gaia bands. In category M2 are the clusters for which the shape does not
match well the predicted one or where there are not enough bins to give a reliable fit. The remaining
clusters, for which the shape of the observed magnitude distribution is very different from the theoretical
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one, were classified as M3 as those do not represent reliable results. An additional category (MX) was
created for the clusters where the CMD was very poorly populated or the sequence undefined. In this
category, we include all the OCs that had classification of P3.

Table 4.5: Number of clusters per classification according to the quality of the mass determination based on the quality of the
agreement between observed and predicted luminosity functions.

Classification Number of OCs
M1 812
M2 695
M3 65
MX 152
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Figure 4.20: Absolute magnitude distribution for OCs NGC 6405 (left) and Gulliver 17 (right) with luminosity functions scaled
to match the observed density distributions. NGC 6405 is representative of classification M1 and Gulliver 17 is classified as
M2.
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Figure 4.21: Absolute magnitude distribution for Juchert 13 (left) and LP 1620 (right) with luminosity functions scaled to
match the observed density distributions. Juchert 13 is classified as M3 and LP 1620 as MX.
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4.2.5 Comparison with Piskunov et al. 2007

Assuming that a cluster is in equilibrium and under the influence of the tidal field of the host galaxy,
the cluster will experience forces that stretch it in opposite directions along the line towards the centre
of the host galaxy. In such case, the tidal radius can be seen as the radius where the gravitational energy
of the cluster equals the gravitational pull of the host galaxy. Piskunov et al. (2007) used the tidal
radius to determine tidal masses for a sample of 650 open clusters. They obtained the tidal mass by
using M = (4A(A−B)r3

t )/G where A and B are Oort’s constants (Piskunov et al., 2006) with values
14.5 ± 0.8 km/s/kpc and B = -13.0 ± 1.1 km/s/kpc, respectively and G is the gravitational constant
(4.3× 10−3(km/s)2 pc M−1

⊙ ). The Oort constants express the rotational properties of galactic orbits in
the solar neighbourhood, thus also encoding the (tidal) gravitational forces in this region.

As can be seen in Figure 4.22, even though the individual masses are not similar for most clusters,
the overall distribution of masses follows the same shape.
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Figure 4.22: Comparison of tidal masses from Piskunov et al. (2007) to the luminous masses determined in this work.
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4.3 Sample Selection

To avoid including unreliable results into the sample that we will use to explore the mass loss in open
clusters, we selected 2 samples: a stricter high-quality sample, labelled as “gold sample” and another
that is less strict and contains results of intermediate to high quality, labelled “silver sample”. The gold
sample consists of clusters with only the best classification in the 3 categories: mass (M1), photometry
(P1) and radius (R1). The silver sample includes clusters with radius classification R1 and R2, mass
classification M1 and M2, and all photometric classifications. In total, the gold sample contains 153 OCs
(9%) and the silver sample contains 713 OCs (41%). Note that the gold sample is contained inside the
silver sample.

The distributions of age and distance of each sample are plotted in Figure 4.23 as well as their spatial
distributions, in Figure 4.24. Both Figures 4.23 and 4.24 indicate that the silver sample is distributed
in a way similar to the full sample. No apparent biases arise from the quality cuts to produce the silver
sample. As for the gold sample, the number of clusters is manifestly small, displaying a much more
limited spatial coverage. For those reasons, we decide not to consider the gold sample as the main
sample for our analysis in the following sections, but we will still use it to check the robustness of the
results that will be drawn from the silver sample.
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Figure 4.23: Distribution of age (left) and distance (right) for the full sample (blue), gold sample (orange) and silver sample
(green).
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Figure 4.24: Spatial distribution of the full sample (left), silver sample (middle) and the gold sample (right) in the X-Y plane
of the Galaxy.
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4.3.1 Spatial Completeness

To investigate the spatial completeness, we looked at the density of our silver sample for OCs with
ages under 1 Gyr. This age limit was chosen to check the completeness of the sample from where
we obtain the mass distribution that will be used to investigate the disruption timescale in the solar
neighbourhood.
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Figure 4.25: Density of the OCs in the silver sample with age under 1 Gyr as a function of the radial distance from the Sun.

In Figure 4.25, we present the density inside concentric rings (with steps of 400 pc) as a function
of the distance. Under the assumption that our position in the Galaxy is not special, the density should
remain constant in a complete sample. But, as seen in the plot, the density is not constant and decreases
with the distance and this is also verified for the full sample. This is somewhat unexpected as some
authors have claimed that the sample of known OCs in the solar neighbourhood is complete within
1.8 kpc around the Sun (e.g. Joshi (2005), Bonatto et al. (2006), Buckner and Froebrich (2014), and
Kharchenko et al. (2013)).

To conduct a more thorough investigation, we divided the silver sample into 3 subsamples. We
separated the clusters by age as young (log(age) ≤ 8), intermediate (8 < log(age) < 8.6) and old clusters
(log(age) ≥ 8.6). In Figure 4.26, we present the spatial distribution of each age subsample with a black
circle at 2 kpc. At young ages, the clusters are still near their birthplace in the spiral arms so, their
spatial distribution presents a clustered structure around the spiral arms (e.g. Dias and Lépine (2005)
and Cantat-Gaudin et al. (2020)). At intermediate and higher ages, the structure is less visible and the
distribution appears more homogeneous. However, as seen in Figure 4.27, for every age subsample, the
density decreases with the distance.

37



8000 6000 4000 2000 0 2000 4000 6000 8000
x [pc]

0

2000

4000

6000

8000

10000

12000

14000

16000

y 
[p

c]

Log Age  8

8000 6000 4000 2000 0 2000 4000 6000 8000
x [pc]

0

2000

4000

6000

8000

10000

12000

14000

16000

y 
[p

c]

8.0 < Log Age  8.6

8000 6000 4000 2000 0 2000 4000 6000 8000
x [pc]

0

2000

4000

6000

8000

10000

12000

14000

16000

y 
[p

c]

Log Age  8.6

Figure 4.26: Spatial distribution of the silver sample divided into 3 age subsamples with black circle at 2 kpc.
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Figure 4.27: Density distribution of each age subsample from the silver sample.

Even though Kharchenko et al. (2013) claims that the Milky Way Star Cluster (MWSC) catalog is
complete up to a distance of 1.8 kpc, Joshi et al. (2016), who use that catalog, report a decrease of density
for clusters with ages under 700 Myr (log(age) < 8.8). Such decrease is similar to our results from the
Dias et al. (2021) catalog. This raises questions on the claims of sample completeness.

For our younger groups, the clumpy structures and irregular density profiles make it hard to assess
completeness. However, given the large variations seen in the density profile of each age subsample, the
density appears to decrease similarly for every age. This indicates that the selection effects introduced are
similar at every age but further investigation on this subject is planned as future work. From the spatial
distributions, it is possible to establish a 2 kpc limit after which the distributions are visibly incomplete
(at young and intermediate ages). For this reason, we adopt 2 kpc as the spatial limit for our silver
sample.

For the gold sample, it is not possible to assess the completeness as there are very few OCs to draw
conclusions from. For this reason, we only checked the completeness for the silver sample and assume
the same limit for the gold sample. Cleaner CMDs for the clusters are needed to allow more robust
determinations of cluster parameters that will increase the size of the gold sample and allow a better
completeness analysis.
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4.4 Disruption Timescale

As already mentioned in Section 1.3, stellar clusters lose mass through several processes of disrup-
tion. In our study, we do not differentiate between the different disruption mechanisms, in the sense
that our disruption analysis includes the combined effects of evaporation by two-body relaxation, tidal
stripping by the host galaxy and GMC encounters.

In a cluster, the fraction of mass that remains at a certain time t, can be defined as µ(t) ≡ M(t)/Mi,
where Mi is the cluster initial mass. Lamers et al. (2005b) considered that the mass loss is a combination
of stellar evolution and disruption in such way that dM/dt = (dM/dt)ev+(dM/dt)dis where “ev” stands
for stellar evolution and “dis” stands for disruption.

In our model, for the mass loss by stellar evolution, we use the equations derived by Lamers et al.
(2005b) who parameterise it as:

log qev(t) = (log t −aev)
bev + cev, f or t > 12.5 Myr (4.1)

with qev ≡ (△M)ev/Mi where (△M)ev is the mass lost by stellar evolution and µev(t) = 1− qev(t)
is the fraction of the initial mass that remains bounded to the cluster at age t, considering only stellar
evolution. Values for aev, bev and cev are listed in Lamers et al. (2005b) for different metallicities. As we
wish to analyze the mass loss experienced by clusters in the solar neighbourhood, we adopt the values of
aev = 7, bev = 0.255 and cev = -1.805, which are valid for the solar neighbourhood.

Regarding the disruption, Lamers et al. (2005b) considered that the disruption time can be defined
as t−1

dis = dln(M)/dt which describes an exponential decay with a timescale that increases as the mass
of the cluster increases. In fact, early works of Boutloukos and Lamers (2003) showed that there is a
relation between the disruption time and the mass of a cluster as tdis = t0(M/M⊙)

γ . In this expression,
t0 is the disruption timescale, which depends on the tidal forces of the host galaxy, so it varies between
galaxies and is dependent on the position of the cluster in relation to the galaxy. γ describes the mass-
dependence of the disruption time and depends on the concentration of the stellar distribution in the
cluster. Boutloukos and Lamers (2003) used the age distribution from Wielen (1971) and found γ = 0.6
for clusters within 1 kpc of the Sun. Baumgardt and Makino (2003) performed N-body simulations of
clusters in the tidal field of our galaxy at different galactocentric distances, taken into account the mass
loss by stellar evolution and by tidal relaxation. Their results show the same mass dependence for the
disruption time with γ = 0.62. This allowed to obtain the expression for the mass loss due to disruption
for which Lamers et al. (2005b) found an approximated solution that describes the decrease of mass as:

µ(t;Mi)≡
M(t)
Mi

≃
{
(µev(t))γ − γt

t0

(
M⊙
Mi

)γ}1/γ

(4.2)

This approximation provides excellent agreement (within 0.015 dex) to the numerical solution for 0
< γ < 1, 103 ≤ Mi/M⊙ ≤ 106 and t0 = [2,30] Myrs.

Using these expressions, Lamers et al. (2005b) compared the predicted age distribution obtained
by integrating the previous expressions to the observed age distribution of open clusters in the solar
neighbourhood, from the Kharchenko et al. (2005) catalogue, and obtained t0 = 3.3+1.5

−1.0 Myr and γ =
0.62. It was pointed out by the authors that ideally one would use both the mass and age distributions
to compare against predictions however, a mass catalogue was not available at the time. This has now
changed with Gaia, which has allowed us to build the catalogue of masses presented in Section 4.2. It is
now possible to use the observed mass distribution for constraining the modelled disruption timescale of
open clusters in the solar neighbourhood.
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In this study, we made use of the code developed by our group at CENTRA-FCUL (Silva (2016) and
Moreira (in prep.)) that simulates the build up and mass evolution of a population of OCs along time. The
model generates clusters at a constant rate (10 clusters at each timestep of 0.2 Myr), with initial masses
drawn from a Cluster Initial Mass Function (CIMF), and includes the cluster mass loss as prescribed in
Equation 4.2. The CIMF used, which describes the number of clusters that is initially formed of each
mass, is the one universally adopted determined using embedded clusters, which is described with a
power law of the type (Lada and Lada, 2003; Gieles, 2009):

dN
dM

= MminM−α (4.3)

with α ∼ 2, Mmin = 100 M⊙ and Mmax = 3×104 M⊙ as suggested by Lamers and Gieles (2006).
The model has two parameters, t0 and γ , that are varied in the simulations, producing different cluster

mass and age distributions to be compared to the observations. By changing t0 and γ in the model, so that
the age and mass distribution of the generated clusters matches the observed distributions, in the solar
neighbourhood, we obtain the disruption timescale (t0) and γ . In our work, as clusters are within a few
kpc around the Sun, we assume the same tidal influence for all clusters, independent of their location
in the galaxy. In the future, we plan to lift this assumption by considering the tidal field dependence on
the location. We also do not consider the differences in the stellar concentration in the clusters, so our
parameter γ will be the same for all clusters.

To quantify the quality of the agreement between the model and observations for the mass and age
distributions, the root mean square (RMS) between the observations and normalized predictions was
calculated. The normalization was done so that the total number of clusters in the simulation is the same
as the number of observed open clusters. This means that the code works for any cluster formation rate
and the value of 10 clusters per timestep was an arbitrary choice that allowed to have enough simulated
clusters to make a robust comparison.

4.4.1 Results with power law CIMF

We ran our simulations for 1 Gyr and compared the final distribution of age and mass of the simulated
clusters to the distribution of clusters from the silver sample with age ≤ 1 Gyr. We chose to run our
simulations for 1 Gyr since, for older ages, the OC sample in the solar neighbourhood is known to be
incomplete (Moitinho (2010), Kharchenko et al. (2013), and others). We also limit our sample to a
sphere of 2 kpc around the Sun as we consider that to be the completeness limit of our silver sample, as
discussed in Section 4.3.1.

Taking the values of t0 and γ from Lamers et al. (2005a) as initial references, we ran simulations for
a large range of these parameters on a grid of 8x5 with t0 between 0 and 35 Myrs (steps of 5 Myr) and γ

between 0.2 and 1.0 (steps of 0.2). The initial value of t0 was replaced by 1 Myr because the equations
used are not valid for t0 = 0.

In Figure 4.28, we present the RMS of the difference between the simulated and observed age and
mass distributions (top panels). The RMS considering the combination of the age and mass distributions
was obtained by multiplying the RMS from the age to the RMS from the mass fit and is displayed
in Figure 4.28 on the bottom. In the green filled area, we represent the contour of the 1.5σ region,
considering σ as the minimum value of the RMS, with a smoothing factor of 3. This gives an idea of the
optimal area for the parameters t0 and γ .
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Figure 4.28: Heatmaps of the RMS between the simulated and observed age (top left), mass (top right) and combination of age
and mass (bottom) distributions for the silver sample within 2 kpc around the Sun. The green area represents the contour of the
1.5σ region, considering σ as the minimum value of the RMS.

Notice that considering the age distribution (top left panel of Figure 4.28) we detect an optimal
parameter range inside a curved shape region for γ between 0.4 and 1 and t0 between 1 and 30 Myr. The
best value is at γ = 0.6 and t0 = 5 Myr, consistent with the values suggested by Lamers et al. (2005b)
and also for t0 = 1 Myr and γ = 0.8 and 1, which seems to be a degenerate area that extends into the
upper right part of the grid (for lower t0 and higher γ). However, using the mass distribution (top right
panel of Figure 4.28) it is not possible to isolate an optimal range for t0 and γ but the heatmap shows that
changing the value of γ leads to significant differences in the agreement between observed and simulated
mass distributions with higher values of γ being favoured, i.e., the quality of the agreement increases for
higher values of γ (for a fixed t0). The disruption timescale t0 has a minor effect on the simulated mass
distribution but lower values of t0 are favoured (for the same γ).

When combining the two effects, the optimal set of parameters is within two regions. One at t0 = 5
Myr and γ = 0.6 and other at t0 = 1 Myr and γ of 0.8 and 1. However, although these two regions provide
the best fit inside this grid, the observed and simulated mass distributions do not show a good match, as
seen in Figures 4.29 and 4.30.
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Figure 4.29: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 5 Myr and γ = 0.6, using the silver sample within 2 kpc around the Sun.
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Figure 4.30: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 1 Myr and γ = 1, using the silver sample within 2 kpc around the Sun.

In fact, using the values found in the literature (determined using the age distribution only) of γ = 0.62
and t0 = 3.3 Myrs (Lamers et al., 2005a), the observed mass distribution does not match the simulated
mass distribution (Figure 4.31). The simulated distribution peaks at lower masses than the observations
for any value of t0 in the intervals considered in the literature. This incompatibility came as a surprise
and was not suspected in previous works (e.g. Lamers and Gieles (2006) and Lamers et al. (2005a)). It
has been revealed by our newly determined masses and could be indicating that additional physics needs
to be considered. To explore the origin of this mass distribution discrepancy, we consider, in the next
section, the possibility that the CIMF of non embedded clusters (i.e., clusters that survived emerging
from their parent molecular cloud) may be different from the CIMF of embedded clusters, which is the
one universally adopted.

The heatmaps of the RMS determined using the silver sample but only within 1.5 kpc is shown in
Figure 4.32. Since the RMS was calculated using a different number of bins, comparing the value of
the RMS directly with Figure 4.32 is not possible but the results show, in general, the same areas for the
optimal parameter combinations.

These results are also verified when using the gold sample instead of the silver sample, considering
the 2 kpc radial limit (Figure 4.33).
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Figure 4.31: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 3.3 Myr and γ = 0.62 (Lamers et al., 2005), using the silver sample within 2 kpc around the Sun.
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Figure 4.32: Heatmaps of the RMS between the simulated and observed age (left), mass (center) and combination of age and
mass (right) distributions for the silver sample within 1.5 kpc around the Sun. The green area represents the contour of the 1.5σ

region, considering σ as the minimum value of the RMS.
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Figure 4.33: Heatmaps of the RMS between the simulated and observed age (left), mass (center) and combination of age and
mass (right) distributions for the gold sample within 2 kpc around the Sun. The green area represents the contour of the 1.5σ

region, considering σ as the minimum value of the RMS.

4.4.2 Modified CIMF

For the purpose of this work, the CIMF employed in the simulations should reflect the mass dis-
tribution of OCs just after emerging from their molecular clouds. This is when our simulations start.
We note that our model does not include the mass loss and disruption that happen with the emergence
process. However, the CIMFs found in the literature and used in previous similar works (e.g. Lamers
et al. (2005a)) as well as in the previous sections have been determined for embedded clusters. While
determining the CIMF of OCs is beyond the scope of this work, we inspect the mass distribution of
young OCs from the silver sample within 2 kpc (complete and high quality) to get some insight.

We considered the logarithmic mass distribution for OCs with age ≤ 20 Myr and 50 Myr but, as the
sample with OCs younger than 20 Myr has only 59 clusters, we opted to use only the sample with ages
≤ 50 Myr, which has 108 clusters. The shape of the logarithmic mass distribution appears to roughly
follow a gaussian shape, so we adopted a heuristic approach by fitting a Gaussian with Equation 4.4. We
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obtained x0 and σ by taking the mean and standard deviation of the logarithm of the mass distribution.

1
σ
√

2π
e−

1
2 (

x0−µ

σ
)2

(4.4)

The values of x0 and σ obtained are 2.5 and 0.4, respectively. Using this Gaussian functional as the
CIMF in our model instead of the previous power law shape is expected to have a visible impact in the
results. Using this Gaussian toy CIMF translates into drawing a random sample from the Gaussian, and
then convert those logarithmic values into linear mass. That will be the initial mass of each generated
cluster. Our choice to use a Gaussian is meant as a quick test to check the results. Other distributions (for
example, log-normal) could have been used and we plan to explore, in depth, the CIMF as future work.
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Figure 4.34: Distribution of the logarithm of mass for OCs with age under 50 Myr with fitted Gaussian with x0 = 2.5 and σ =
0.4.

4.4.2.1 Effect of Spatial Completeness on the modified CIMF

We explored the effect of spatial completeness in the values of x0 and σ by determining the Gaussian
parameters using OCs within 1, 1.5 and 3 kpc to compare to the values determined using OCs within 2
kpc. The sample of OCs under 50 Myr within 1 kpc contains very few clusters so it’s not possible perform
to fit a Gaussian to the mass distribution. As for the 1.5 and 3 kpc, as shown in Table 4.6, the value of
x0 increases with the size of the sample. The larger sample (3 kpc) may suffer from incompleteness,
therefore artificially decreasing the proportion of low mass clusters, which increases the mean mass. On
the smaller sample (1.5 kpc) there is a smaller number of high mass clusters as we are sampling a smaller
portion of space, leading to a lower mean mass. This indicates that a compromise is necessary so we
adopt the values determined using OCs within 2 kpc.

Table 4.6: Values of the fitted Gaussian parameters (x0 and σ ) for OCs with age under 50 Myrs in the silver sample, considering
a radial distance of 1.5, 2 and 3 kpc around the Sun.

1.5 kpc 2 kpc 3 kpc
x0 2.4 2.5 2.6
σ 0.4 0.4 0.4
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4.4.3 Results with modified CIMF and comparison with power law CIMF

The comparison between simulated data and observations using the modified CIMF is seen in Figure
4.35 for the optimal t0 and γ values obtained previously (t0 = 5 Myr and γ = 0.6). When compared with
Figure 4.29, it shows that the peak of the mass distribution is slightly closer to the peak of the observed
mass distribution and the age distribution peaks for the same age as the observations.
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Figure 4.35: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 5 Myr and γ = 0.6, using the silver sample within 2 kpc around the Sun and a modified CIMF.

To obtain the optimal parameter combination considering the modified CIMF, we ran the whole grid
of simulations with the new CIMF. As shown in Figure 4.36, the new results show a better agreement
between simulated and observed mass distributions, confirmed by the lower RMS for each set of t0 and
γ in the top right panel. The effect of changing γ is much more pronounced in the heatmap of the RMS
from the mass distribution using the modified CIMF than with the power-law CIMF. When combining
both the age and mass distributions, we recover the same optimal areas as previously seen.

The age and mass distributions for the optimal combinations (t0, γ) = (5, 0.6); (1, 0.8) and (1, 1) are
presented in Figure 4.35 and 4.37.

45



0.2 0.4 0.6 0.8 1.0

1.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

t 0
 [M

yr
]

54 46 37 18 15

46 33 16 24 36

39 23 19 34 40

35 19 26 38 41

30 18 31 40 42

27 20 34 41 42

25 22 36 41 42

23 25 38 42 43

RMS for Age Distribution - Modified CIMF

16

24

32

40

48

RM
S

0.2 0.4 0.6 0.8 1.0

1.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

t 0
 [M

yr
]

5 8.7 11 8.9 7.9

17 16 12 9.6 7.6

19 16 13 9.7 7.3

20 16 12 9.3 6.9

20 16 12 8.7 6.8

19 17 12 8.3 6.5

20 16 11 8 6.6

20 16 11 7.4 6.2

RMS for Mass Distribution - Modified CIMF

6

9

12

15

18

RM
S

0.2 0.4 0.6 0.8 1.0

1.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

t 0
 [M

yr
]

267 399 406 163 119

796 519 196 228 273

769 369 240 328 295

685 301 320 350 286

594 302 368 342 284

522 328 408 338 274

493 361 413 331 278

464 399 412 309 265

RMS for Mass x Age - Modified CIMF

150

300

450

600

750

RM
S

Figure 4.36: Heatmaps of the RMS between the simulated and observed age (left), mass (center) and combination of age and
mass (right) distributions for the silver sample within 2 kpc around the Sun and a modified CIMF. The green area represents
the contour of the 1.5σ region, considering σ as the minimum value of the RMS.
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Figure 4.37: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
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the Sun and the modified CIMF.
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For the OCs in the silver sample within 1.5 kpc, the results show the exact same trends as well as the
results with OCs from the gold sample. In Appendix B, we show the results considering t0 = 5 Myr and
γ = 0.6, using the silver sample within 1.5 kpc and the gold sample, both for the power law and modified
CIMF.

As seen in our results, the modified CIMF that was implemented as a "quick test" leads to a better
agreement between the simulated and observed mass distributions. This indicates that the CIMF com-
monly used may not be the same for embedded and non-embedded clusters. We suggest that it has a
“breaking” point where it deviates from the power law form. Further investigation on this is planed for
future work.
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Chapter 5

Conclusions

In this study, we determined the luminous masses for a sample of 1724 OCs by comparing their
luminosity distribution to the theoretical luminosity function, taken from Padova stellar evolution models,
building the first catalogue of masses for a large sample in the solar neighbourhood using Gaia Data
Release 2 (Gaia Collaboration et al., 2018). Our luminous mass distribution peaks at log(M) = 2.7 dex
and is compatible with the tidal mass distribution determined by Piskunov et al. (2007).

To determine the masses, it was required that we started by determining the radii of each cluster in
our sample. The tidal and core radii were determined by fitting the King density profile to the observed
density profile of each cluster using LMFIT python package (Newville et al., 2014). Our values of
core radii are consistent with the values found by Tarricq et al. (2021) however, we obtained a different
distribution of tidal radii which is more consistent with the one found by Piskunov et al. (2007). Besides
that, the results show large uncertainties for the tidal radii that suggest that determining tidal radii is very
challenging. However, we verified that despite the large uncertainties in the tidal radii, it does not have a
significant impact on our luminous mass determinations. In the future, we plan to explore other density
profiles to obtain more robust determinations and assess the effect of choosing a particular profile.

To study the disruption process that leads to the loss of mass in open clusters, we simulated the
build up and mass evolution of a population of clusters following the equations derived by Lamers et al.
(2005a). Comparing the observed age and, for the first time, the mass distributions to the simulations,
we were able to constrain the disruption experienced by open clusters in the solar neighbourhood. Our
results recover the parameters obtained in the literature for disruption timescales of a few million years
(Lamers et al., 2005a) as well as an additional optimal area for smaller disruption timescales, t0 (related
to the tidal forces of the host galaxy) and larger values of γ . However, when using the parameters (t0 and
γ) presented in the literature determined using the age distribution only, the simulated mass distribution
does not agree with the observations. As our model starts from the moment clusters emerge from the
GMC, the Cluster Initial Mass Function (CIMF) should reflect the mass distribution of young clusters so
we modified the CIMF to match the distribution of mass of OCs with ages under 50 Myrs. In a heuristic
approach, we use this toy CIMF as a quick test to check the results. In the future, we plan to explore,
in depth, the functional form of the CIMF. The results showed a simulated mass distribution that peaks
closer to the peak of the observations, while still preserving the good agreement with the age distribution.
These results are also verified for a sample with only clusters with high quality determinations as well as
a smaller sample within 1.5 kpc around the Sun. This indicates that the CIMF universally used, which is
determined for embedded clusters, may not be the same for non embedded clusters.

In the future, we plan to determine dynamical masses which will be compared to the luminous ones
found in this study to assess the common assumption of virial equilibrium in open clusters. The tidal field
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dependence on the location will also be explored in future work. In the next years, with missions such
as Gaia which are still collecting data, cleaner CMDs will be made available for more clusters which
will allow more precise determinations of clusters’ parameters. That will increase the number of clusters
with high quality determinations, increasing the size of our gold sample to provide better constraints on
the processes that drive the disruption of OCs.
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Appendix A

Distribution of parameters N0 and c
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Figure A.1: Distribution of N0 (left) and parameter c (right) for 1724 OCs.
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Figure A.2: Distribution of the lower and upper uncertainty of N0, considering 1724 OCs.
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Figure A.3: Distribution of the lower and upper uncertainty of parameter c, considering 1724 OCs.
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Figure A.4: Spatial distribution in the X-Y plane for the clusters with R1 (best quality), R2, R3 (worst quality) and R4 (unreli-
able) classification.
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Appendix B

Simulation results for the gold sample and
a smaller (1.5 kpc) sample
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Figure B.1: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 5 Myr and γ = 0.6, using the silver sample within 1.5 kpc around the Sun and a power law CIMF.
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Figure B.2: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 5 Myr and γ = 0.6, using the silver sample within 1.5 kpc around the Sun and the implemented modified
CIMF.
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Figure B.3: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 5 Myr and γ = 0.6, using the gold sample within 2 kpc around the Sun and a power law CIMF.
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Figure B.4: Comparison of the distribution of age (left) and mass (right) between the simulations (orange) and the observations
(blue) considering t0 = 5 Myr and γ = 0.6, using the gold sample within 2 kpc around the Sun and the implemented modified
CIMF.
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