
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Formalization and Runtime Verification of Invariants for Robotic
Systems

Ricardo Jorge Dias Cordeiro

Mestrado em Engenharia Informática
Especialização em Interação e Conhecimento

Dissertação orientada por:
Prof. Doutor Alcides Miguel Cachulo Aguiar Fonseca

Prof. Doutor Christopher Steven Timperley

2022

Acknowledgments

I would like to thank my coordinator, Prof. Alcides Fonseca, for the exceptional way of
teaching not only through the making of my thesis but also throughout all my academic courses.

My coordinator Prof. Chris Timperley for taking his time to help me in this chapter of his
life where he had to take care of his baby.

My upperclassman Paulo and Catarina, for all the advice and help.
All my friends who spent time with me know that somehow you helped me through this

process.
All my family, in particular my grandparents.
My little brother.
In the end, and more importantly, my mother for taking care of me all my life and giving

me the opportunity to follow this path.

iii

iv

”Dreams breathe life into men, and can cage them in suffering. Men live and die by their
dreams, but long after they’ve been abandoned, they still smolder deep in men’s hearts. Some

see nothing more than life and death. They are dead! For they have no dreams.”

Kentaro Miura in Berserk

v

vi

Resumo

A Robótica tem uma grande influência na sociedade atual, seja industrialmente, na medicina,
na agricultura, ou como forma de lazer, e, muitas vezes, toma um papel crucial em que uma falha
em algum destes sistemas robóticos cruciais pode impactar o modo em como nós vivemos. Se,
por exemplo, um carro autónomo provocar a morte de algum passageiro devido a um defeito,
futuros e atuais utilizadores deste modelo irão certamente ficar apreensivos em relação à sua
utilização. Assegurar que robôs reproduzam um comportamento correto pode assim salvar
bastante dinheiro em estragos ou até mesmo as nossas vidas.

Os sistemas robóticos são não deterministicos, isto porque os robôs interagem diretamente
com o mundo real. Testar software num destes ambientes é bastante complexo devido às variáveis
serem imprevisíveis e mudarem constantemente. Verificar o sucesso de um movimento ou tarefa
neste ambiente pode ser bastante difícil do ponto de vista de um robô, pelo que monitorização
externa é muitas vezes necessária.

Devido à ampla utilização de sistemas robóticos, a qualidade do software que corre em robôs
deveria ser de extrema importância para nós. O software destes sistemas, assim como os métodos
utilizados para os testar, são bastante específicos da área e diferentes de software tradicional,
em grande parte devido à sua já falada interação com o mundo real.

As práticas atuais em relação à testagem de sistemas robóticos são vastas e envolvem méto-
dos como simulações, verificação de “logs”, testes em campo, entre outras. Frequentemente, um
denominador comum entre as práticas adotadas é a necessidade de um humano pessoalmente
analisar e determinar se o comportamento de um sistema robótico é o correto. A automatização
deste tipo de análise poderia não só aliviar o trabalho de técnicos especializados, facilitando
assim a realização de testes, mas também possivelmente permitir a execução massiva de testes
em paralelo. Este tipo de testagem automática poderá potencialmente detetar falhas no com-
portamento do sistema robótico que de outra maneira não seriam identificadas devido a erros
humanos ou mesmo à falta de tempo.

Uma invariante representa uma propriedade que se mantém durante toda a execução do
sistema, dispor de uma lista de invariantes para um sistema robótico e ser capaz de as verificar
em tempo de execução é uma forma de provar a qualidade desse sistema.

Atualmente já existe investigação e literatura substancial relacionada com a utilização de
testes automáticos em sistemas robóticos, assim como ferramentas para realizar de alguma
maneira este tipo de análise. No entanto, de uma forma geral, a automatização no campo da
deteção de erros ou até mesmo na utilização de invariantes continua a não ser adotada para este
tipo de sistemas. O problema na adoção deste tipo de ferramentas deve-se à complexidade ou à

vii

falta de confiança nas soluções já desenvolvidas, algo que incentiva o estudo apresentado nesta
tese.

Esta dissertação visa assim explorar o problema da automatização da deteção de erros com-
portamentais em robôs num ambiente de simulação, introduzindo uma linguagem de domínio
específico direcionada a especificar as propriedades de sistemas robóticos em relação ao seu
ambiente, assim como a geração de software de monitorização capaz de detetar a transgressão
destas propriedades durante uma simulação.

A linguagem de domínio específico também assume que o sistema robótico irá ser execu-
tado por meio da framework de código aberto ROS (Robot Operating System). O ROS é uma
framework que oferece uma vasta coleção de livrarias, interfaces e ferramentas especificamente
desenhadas para ajudar na construção de software para robôs. O ROS fornece uma abstração en-
tre software e hardware que ajuda desenvolvedores a conectar facilmente diferentes componentes
de robôs através de mensagens enviadas por canais de comunicação chamados tópicos. O ROS
tem uma arquitetura modular e outras vantagens que têm como objectivo a intra-colaboração
e o fácil desenvolvimento de software. O seu ecossistema está construído de maneira a que a
maioria dos projetos dependam de uma pequena lista de pacotes. Devido a todos os factos em
cima mencionados o ROS é amplamente utilizado para investigação e na indústria da robótica,
e por essas mesmas razões o escolhemos como a framework que seria integrada neste trabalho.

A Lógica Temporal Linear pode ser usada como um método de verificação de programas e
também ser útil para a criação de invariantes em sistemas robóticos. Um sistema formal de
lógica temporal contém padrões que podem ser usados como uma forma de especificação de
propriedades deste tipo de sistemas.

A Lógica Temporal Linear é um ramo da lógica responsável por representar e relacionar
componentes em referência a uma linha temporal. A linguagem de domínio específico neces-
sita de expressar requisitos de determinados estados ou eventos durante a simulação, desta
maneira precisa de apresentar determinadas características, palavras-chave para representar re-
lações temporais de ou entre objetos, como, por exemplo, o robô “nunca”, ou “eventualmente” o
robô, referências a estados anteriores da simulação, como, por exemplo, a velocidade do robô está
sempre a aumentar, ou seja, é sempre maior que no estado anterior, e atalhos para ser possível
referir certas características de ou entre objetos, como, por exemplo, a “posição”, “velocidade”
ou “distância” de ou entre robôs.

O software de monitorização gerado é um ficheiro Python que tem origem numa especificação
feita através da linguagem de domínio específico e que correrá sobre a framework ROS. A geração
deste ficheiro assume também que a monitorização será feita no simulador Gazebo, isto porque
para obter dados como a posição ou velocidade absoluta de um robô durante a simulação é
necessário aceder a tópicos ROS específicos que na geração do ficheiro de monitorização estão
hardcoded, pois dependem do software de monitorização escolhido.

O Gazebo é um simulador de alta-fidelidade capaz de simular sistemas robóticos em qual-
quer tipo de ambiente ou condições. O Gazebo é um simulador de código aberto que suporta
ferramentas como a simulação de sensores, manipulação de modelos, e o controlo de atuadores
sob diferentes motores de física, entre outras ferramentas, o que o torna um simulador de que

viii

vários sistemas robóticos diferentes entre si são capazes de tirar proveito, daí a sua escolha para
o desenvolvimento deste trabalho.

A geração de um ficheiro capaz de executar a monitorização durante uma simulação significa
também que este tipo de monitorização pode ser executada independente de um sistema robó-
tico, permitindo assim a automatização da monitorização a respeito de vários objetos e as suas
relações.

O objetivo deste trabalho é então fornecer uma maneira de desenvolvedores de software
para sistemas robóticos conseguirem verificar propriedades posicionais e temporais dos seus
sistemas de maneira automática através de uma linguagem de domínio específico, que deve, ao
mesmo tempo, ser simples, intuitiva e permitir expressar propriedades que sejam relevantes entre
componentes da simulação.

De maneira a avaliar o trabalho desenvolvido tentámos detetar erros em sistemas robóticos,
inserindo propositadamente bugs no sistema. Estes bugs provêm de uma lista de bugs que foram
previamente identificados por outros utilizadores destes sistemas robóticos. A lista contém bugs
bastante diferentes entre si, dos quais a maior parte já foi corrigido em software atual, sendo
que o nosso objetivo é identificar bugs antigos que ocorram em tempo de execução.

Resultados mostram que é possível expressar propriedades temporais e posicionais de e entre
robôs e o seu ambiente com o suporte da linguagem de domínio específico. O trabalho mostra
também que é possível automatizar a monitorização da violação de alguns tipos de compor-
tamentos esperados de robôs em relação ao seu estado ou determinados eventos que ocorrem
durante uma simulação.

Palavras-chave: Robótica, Linguagem de domínio, Monitorização em tempo de execução,
Deteção de erros

ix

x

Abstract

Robotic systems are critical in today’s society, be it in manufacturing, medicine, or agricul-
ture. A potential failure in a robot may have extraordinary costs, not only financial but can
also cost lives.

Current practices in robot testing are vast and involve methods like simulation, log checking,
or field testing. However, current practices often require human monitoring to determine the
correctness of a given behavior. Automating this analysis can not only relieve the burden from
a high-skilled engineer but also allow for massive parallel executions of tests that can detect
behavioral faults in the robots. These faults could otherwise not be found due to human error
or a lack of time.

I have developed a Domain Specific Language to specify the properties of robotic systems in
the Robot Operating System (ROS). Developer written specifications in this language compile
to a monitor ROS module that detects violations of those properties at runtime. I have used
this language to express the temporal and positional properties of robots using Linear Temporal
Logic as a basis for the language stipulation. I have also automated the monitoring of some
behavioral violations of robots in relation to their state or events during a simulation, resorting
to relations between the internal information of the system and the corresponding information
in the simulator.

To evaluate the developed work, I went through a list of documented ROS bugs and identified
some that happen at runtime. Using these bugs as a basis I specified the robot’s properties in
the developed language that should be capable of detecting an error, in order to test both the
expressiveness and the monitoring while running the system.

Keywords: Robotics, Domain-specific language, Runtime Monitoring, Error detection

xi

xii

Contents

List of Figures xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Objectives . 2
1.4 Motivational Example . 3
1.5 Contributions . 3
1.6 Structure of the document . 4

2 Background & Related Work 5
2.1 Background . 5

2.1.1 Robot Operating System . 5
2.1.2 Gazebo . 6
2.1.3 Runtime Testing . 6
2.1.4 Linear Temporal Logic and Invariants . 7

2.2 Related Work . 7
2.2.1 Monitoring Frameworks . 8

3 A Specification Language for Robotics Properties 9
3.1 Language Notations . 9

3.1.1 High-level Concepts . 9
3.1.2 Temporal Keywords . 10
3.1.3 Temporal value . 10
3.1.4 Simulation primivitives . 10
3.1.5 Operands . 11
3.1.6 Operators . 11
3.1.7 Protected Variables . 11
3.1.8 Topic declaration . 11
3.1.9 Model robots . 11

3.2 Grammar . 12
3.3 DSL Usage Examples . 13

3.3.1 Vehicle Maximum Speed . 13

xiii

3.3.2 Follow the Leader . 13
3.3.3 Localization error . 13
3.3.4 Drone height rotors control . 13

4 Monitoring 15
4.1 Runtime Monitoring . 15
4.2 Compilation . 15

4.2.1 Architecture . 15
4.2.2 Code Generation . 16
4.2.3 State . 20
4.2.4 Error Messages . 21

5 Evaluation 23
5.1 Evaluation Overview . 23
5.2 Experiments . 24

5.2.1 Calculation Error Inverts Turning Direction 24
5.2.2 Robot Getting Stuck When Auto-docking 25
5.2.3 Unexpected Movement Due to Wrong Calculation 26

6 Future Work 29
6.1 Performance Tweaking . 29
6.2 Validation of the Proposal . 29
6.3 Better Error Messages . 29
6.4 Integrate the DSL with Scenario Generation Tools 30
6.5 Integration with other Industrial Simulators . 30
6.6 Automatic Quality Assurance . 30

7 Conclusion 31

References 34

xiv

List of Figures

1.1 Example of the displayed error when the robot does not stop at the stop sign. . . 3

2.1 Gazebo 7’s interface. 6

4.1 Diagram of the execution of the generated code. 16
4.2 Example of an error message. 21

5.1 The normal runtime flow of the system. 24
5.2 The flow of the system when the adding the daemon node. 24
5.3 Calculation Error Inverts Turning Direction bug error message. 25
5.4 Robot Getting Stuck When Auto-docking bug error message. 26
5.5 Unexpected Movement Due to Wrong Calculation bug error message. 27

xv

xvi

Chapter 1

Introduction

This thesis explores a possible solution for automation in the testing of robotic systems through
a domain-specific language (DSL) and simulation-based monitoring software.

A DSL is a programming language that is written for a specific domain, it usually provides a
higher level of abstraction and is simpler than other languages mainly because they are intended
to be used by people knowledgeable of the domain.

This chapter intends to introduce the motivation for this work (section 1.1), present the
problem statements of such an approach (section 1.2), discuss the objectives (section 1.3), show
a motivational example of the developed work (section 1.4), present the expected contributions
(section 1.5), and finally summarize the structure of the rest of the document (section 1.6).

1.1 Motivation

Robotics already significantly impact our current society, in industry, in medicine, in agriculture,
or leisurely in sports contests or personal use. Robotics often take critical roles like the example
of robot arms in car assembly lines or autonomous farms. The tendency is for robot usage to
keep growing at a global level.

Robotic Systems are non-deterministic, mainly because robots interact directly with the real
world. Testing software in such environments is complex, as many variables can change, and
verifying the success of a task or movement may not be possible from the robot’s perspective,
and external monitoring may be required.

Current practices in testing robot software mainly involve field testing, simulation testing,
and log checking and require a human to analyze the robot’s behavior to determine whether the
behavior is correct. Due to their broad practicality, the quality of software running on robots
should be extremely important to us. Robot software, as well as the techniques used to test their
quality, are very field-specific and different from the techniques employed in traditional Software
Engineering mainly because of their real-world interaction. This peculiarity means automatic
tests are rarely used in robotics [12, 16].

Studying possible options for viable automation of tests in robotic systems could lead to
an opening on its usage in both research and the industry. Also, allowing for multiple parallel
executions of tests not depending on human monitoring could improve the quality of current
and future robot software.

1

1.2 Problem Statement

The existing challenges in robot testing have influence in planning tests for a robotic system,
because there are tradeoffs among the possible choices.

Using simulation-based testing, developers can take advantage of real values of objects’
attributes to compare with what the robot system perceives. In this way, it is possible to
surpass the need for human-in-the-loop testing.

Human-in-the-loop testing refers to a method of testing that requires a human to perform
a certain task that can’t be covered by means of automation or simulation. The main problem
with human-in-the-loop testing is that it requires the time of a high-skilled professional which
could be used for something else, human-in-the-loop testing is also restricting because a human
can only supervise one test at a time.

While simulation-based tests are a promising approach for automation, there is still distrust
in the precision and validity of the results. As a result, simulation-based autonomous testing is
rarely used due to reliability and factors like cost and complexity [12, 16]. Due to these factors,
despite being dangerous, sometimes expensive, or work-intensive, field testing or other methods
are still the main choices. The resulting product is a lack of quality in the software across
projects.

In this thesis, I address problems of defining simulation-based automated tests for robotics
systems.

1.3 Objectives

The ultimate goal of this thesis is to remove the need for human-in-the-loop testing of robotic
systems by studying a possible solution for automation in simulation-based tests.

This work aims to provide developers with a way to verify their robotic systems’ properties
in relation to their position in a simulation (positional properties) as well as correlations between
current and past events (temporal properties). To this end, I propose the introduction of a DSL
for developers to express their relevant properties. The given properties compile into monitors
that can be used in simulation to ensure the correctness of the system. The DSL was designed
from the point of view of the Robot Operating System (ROS) [14] developers and tries to abstract
the underlying Linear Temporal Logic (LTL) system. LTL is a branch of logic responsible for
representing and reasoning about modalities in reference to time. The DSL allows properties to
reason about native ROS constructs, like topics, messages and simulation information. Thus,
it is possible to express properties that relate the internal information of the system with the
corresponding information in the simulator.

The DSL should allow describing a robotic system’s properties simply and intuitively while
simultaneously expressing relevant temporal and positional arguments between robots compo-
nents and objects in the simulation. For this reason, the expected design goals of the DSL that
I believe conform with ROS developers are:

• Temporal operators based on but not restricted to Linear Temporal Logic.

2

• Primitives that reference simulation environment variables, like the position, velocity, and
others.

• Basic operators to make comparisons between defined components, like greater than,
equals, and others.

1.4 Motivational Example

Let us consider an autonomous car developer wanting to express that the car always stops when
near a stop sign. The following example presents a property defined in the language that specifies
the intended behavior of the developer.

after_until robot.distance.stop_sign < 1, robot.distance.stop_sign > 1, eventually robot.velocity
== 0

Translating into natural language, the property states (in the first section) that after the
robot’s distance to the stop-sign is below the value of 1 in the simulator, and (in the second
section) that up until the distance is again above 1, then (in the third section) the robot velocity
will eventually be equal to 0.

The toolchain compiles the DSL specification to executable Python code that is capable of
running as a ROS node. The node listens only to relevant topics and performs the computations
to verify the specified property.

Figure 1.1: Example of the displayed error when the robot does not stop at the stop sign.

The flow of the process of monitoring a robotic system is described as follows:

(i) Property formalization: The developer describes in the DSL the properties of the
robotic system one wants to monitor in a text file.

(ii) Compilation: The specified properties are compiled, and a Python file, capable of running
as a ROS node, is generated.

(iii) Monitoring: The node can be run whenever testing the system and will listen to pertinent
topics and perform the computations needed to verify the specified properties.

1.5 Contributions

The expected contributions of this thesis are enumerated below.

1. Definition of a domain-specific language to specify robotic systems’ properties.

3

2. Implementation of a compiler for the language that can generate software capable of mon-
itoring relevant components while in a simulation.

3. Evaluation of the expressive capabilities of the solution.

1.6 Structure of the document

The document is organized as follows:

• Chapter 2 - Background & Related Work

An overview of the background literature and similar work.

• Chapter 3 - Specification Language for Robotics Properties

The structure and concepts of the domain-specific language are presented.

• Chapter 4 - Monitoring

From compilation to error detection, the whole process of monitoring is explained.

• Chapter 5 - Evaluation

How the developed work was evaluated.

• Chapter 6 - Future Work

The work left undone or possible improvements are presented.

• Chapter 7 - Conclusion

A summary and opinion on the developed work.

4

Chapter 2

Background & Related Work

This chapter gives an overview of the background software adopted while developing this work
(section 2.1), and shines light on the already existing similar work and adopted techniques on
the subject (section 2.2).

2.1 Background

This section provides some background on the used software and the reason for its choice,
what the Robot Operating System is (subsection 2.1.1), and the simulation software adopted
(subsection 2.1.2). The research on runtime testing, the different techniques, and the difficulties
of implementing it that already exist (subsection 2.1.3), and also, the importance of invariant
specification and its relation to Linear Temporal Logic (LTL) (subsection 2.1.4).

2.1.1 Robot Operating System

The Robot Operating System (ROS) [14] is an open-source framework with a vast collection of
libraries, interfaces, and tools designed to help build robot software. ROS provides an abstraction
between hardware and software. This abstraction helps developers easily connect the different
robot components predominantly through messages sent through communication channels called
topics via a publish-subscribe architecture. A topic decouples the production of information from
its consumption, ROS nodes will subscribe and publish to relevant topics and not know who
they are comunicating with. Every topic as a message type and can only receive messages of
that type.

ROS has a modular architecture, is built with the purpose of cross-collaboration and easy
development [4], is one hundred percent open source, available in multiple platforms, and ready
for use across a wide array of robotics applications. For all these reasons, ROS is the norm
for teaching robotics and is the basis for most robotics research, not only this but multiple
companies rely on ROS for robotic development.

The ROS ecosystem ended up with a very strong «standard library» of packages that are used
by almost everyone, and a large number of packages that don’t belong to that standard library
that are rarely used by anyone. This is generally seen as a bad thing in software ecosystems, but
for this work, it is an advantage because it allows specifying the behavior of a smaller standard
library and still be able to represent the behavior of a large number of ROS systems. Literature

5

states that around eighty-two percent of ROS applications rely on packages released by a small
subset of groups [12].

2.1.2 Gazebo

Robotic systems simulation is an essential tool for testing robots’ behavior. For this reason,
Gazebo [11] started with the idea of a high-fidelity simulator to simulate robots in any environ-
ment under mixed conditions.

Gazebo is an open-source 3D simulator that supports tools like sensors simulation, mesh
management, and actuators control under different physics engines, among others, which makes
it a simulator that very distinct robotic systems can use.

Gazebo was chosen as the simulator for the work to follow up the work done by Afsoon Afzal
in GzScenic [7], an automatic scene generation for the Gazebo simulator. In this way, it would
be possible to have a tool to perform automatic tests in multiple arbitrarily generated scenarios.

Figure 2.1: Gazebo 7’s interface.

2.1.3 Runtime Testing

Runtime Testing is an analysis that takes place during the execution of a program, taking advan-
tage of information from the running system to make inferences on if the observed information
violates certain properties of the program.

Due to the mentioned unforeseen circumstances when executing robotic systems, runtime
testing, although sometimes time-consuming, may be advantageous when identifying errors in
these types of systems.

6

Implementing runtime monitoring adds load to the simulation since the computer has to
allocate resources to the monitoring software. Therefore, not demanding excessive resources is
essential when taking this approach.

Stadler, Vierhauser and Cleland-Huang ”Towards flexible Runtime Monitoring Support for
ROS-based Applications” [15] pinpoint several challenges in developing runtime monitoring tools
for robotic-based applications:

• “Provisioning of an initial overview of the system structure.”

• “Diversity and need to individually configure monitoring needs.”

• “Only a subset of these properties likely need to be monitored on a continuous basis.”

• “Data needs to be collected and analyzed differently.”

• “Diverse types of constraints need to be defined and checked on the data.”

• “Make the outcome of the runtime monitoring data and services accessible to the user.”

These challenges are relevant in choosing which direction to take when specifying the DSL
or implementing the monitoring tool for my approach. For instance, while I want the DSL
to be intuitive and easily learned, it should also be capable of expressing all monitoring needs
and giving an overview of the system. Also, identifying what type of data we need to monitor
influences how the checking of the properties is computed.

2.1.4 Linear Temporal Logic and Invariants

An invariant represents a property that holds through the execution of the system. Having a
set of invariants for a robotic system and asserting them at runtime makes it able to prove the
correctness of the system.

Research on invariant checking [16] demonstrates that important safety bugs in real-world
autonomous robotic systems can be identified when representing safety violations of systems
and monitoring them.

Linear temporal logic (LTL) is a branch of logic responsible for representing and reasoning
about modalities in reference to time.

As an approach for program verification, a formal system of temporal logic was suggested for
both sequential and parallel programs [13]. LTL can be used as a method of model-checking [8]
using its patterns as a form of property specification. It includes patterns such as ”always”,
”finally”, ”until”, ”eventually”, and others, which can be used to define invariants for program
verification of robotics systems.

2.2 Related Work

Other monitoring frameworks that have already tried to implement similar runtime verification
concepts are presented in subsection 2.2.1.

7

2.2.1 Monitoring Frameworks

Similar work on runtime monitoring that integrates with ROS already exists.
ROSMonitoring [9] can monitor and log errors at the level of topic (communication buses

between the systems’ components) malfunctioning, however, it was designed with portability and
scalability in mind which means it is highly complex to use and can be not very user-friendly
unless one is already knowledgeable of the subject.

ROSMonitoring also does not provide a ROS-oriented DSL, instead, it takes advantage of the
already built and somewhat generic language Runtime Monitoring Language (RML) [2] which
doesn’t provide the expressiveness and intuitiveness expected from a ROS-oriented invariant
specification language.

ROSRV [10] is another tool that provides the runtime monitoring of ROS systems, however,
ROSRV implements safety measures while the system is running, interfering with its normal
execution. ROSRV lacks documentation on its functioning and usage. Additionally, ROSRV
seems to have been discontinued since its last version is only capable of running under ROS
Groovy Galapagos, which has not been supported since 2014.

8

Chapter 3

A Specification Language for
Robotics Properties

In this chapter, the structure and intricacies of the DSL are presented. The notations used
in the DSL, like concepts and keywords, are introduced in section 3.1. The DSL grammar is
written in the Backus-Naur Form (BNF) (section 3.2). BNF is a notation used to describe the
grammar or syntax of computable languages. Finally, some practical examples are written with
the help of the DSL to display its expressiveness (section 3.3).

3.1 Language Notations

This section presents the notations that are possible to express with the DSL. Some high-
level concepts are explained in subsection 3.1.1. Temporal notations are enumerated in subsec-
tion 3.1.2 and subsection 3.1.3. Section 3.1.4 enumerates the primitives that can be used to
related simulation and robot components. Section 3.1.5 and subsection 3.1.6 talk, respectively,
about the operands and operators of the DSL. Section 3.1.7 shows the protected variables of
the DSL. Section 3.1.8 talks about topic declaration in the DSL. Finally, subsection 3.1.9 talks
about robot modeling in the DSL.

3.1.1 High-level Concepts

The high-level concepts that can be created in the language are:

• Property - A property represents a temporal specification or a blend of temporal speci-
fications between components.

Ex. after robot.position.x > 1, never robot.velocity > 5

• Declaration - A declaration allows for the representation of ROS topics in order to
interact with them.

Ex. decl robot_position /odom Odometry.pose.pose.position

• Model - A model allows for the declaration of specific topics that are required when
correlating certain robots’ and simulation components.

Ex. model robot1: position /odom Odometry.pose.pose.position ;

9

• Association - An association serves as a way to create program variables.

Ex. property1 = always robot.velocity > 1

3.1.2 Temporal Keywords

The language considers not only LTL basic operators but also some common shortcuts for useful
combinations of such operators, like after_until.

• always X - X has to hold on the entire subsequent path;

• never X - X never holds on the entire subsequent path;

• eventually X - X eventually has to hold somewhere on the subsequent path;

• after X, Y - after the event X is observed, Y has to hold on the entire subsequent path;

• until X, Y - X holds at the current or future position, and Y has to hold until that
position. At that position, Y does not have to hold anymore;

• after_until X, Y, Z - after the event X is observed, Z has to hold on the entire subsequent
path up until Y happens. At that position, Z does not have to hold anymore;

Note: For the property “after X, always Y” the property “always Y” only has to hold after
the first condition is met, this is what is meant by subsequent path.

3.1.3 Temporal value

It is also possible to reference previous variable states:

@{X,−y} (3.1)

This will represent the value of the variable X in the point in time -y.

3.1.4 Simulation primivitives

To support comparing the internal state of the robotic system with the environment, the lan-
guage provides basic primitives to refer to the simulation environment:

• X.position - The position of the robot in the simulation;

• X.position.y - The position in the y axis of the robot in the simulation. Also works for
x and z;

• X.distance.Y - The absolute distance between two objects in the simulation. For the x
and y axis;

• X.distanceZ.Y - The absolute distance between two objects in the simulation. For the
x, y, and z axis;

• X.velocity - The velocity of an object in the simulation. This refers to linear velocity;

10

• X.velocity.x - The velocity in the x axis of an object in the simulation. This refers to
linear velocity;

• X.localization_error - The difference between the robot’s perception of its position and
the actual position in the simulation;

3.1.5 Operands

Besides the already mentioned operands, Temporal values, Simulation primivitives, and Tem-
poral Keywords, the DSL also supports both Integer and Float values, Booleans, and declared
variables.

3.1.6 Operators

The DSL supports operators to correlate components. The operators are + (addition), - (sub-
traction), * (multiplication), / (division), == (equals), != (different), > (greater than), >=
(greater or equal than), < (lower than), <= (lower or equal than), and (conjunction), or (dis-
junction), implies (implication), and for any comparison operator A A{y} - the values being
compared will have an error margin of y, for instance (Z =={0.05} Y) is the similar to saying
(Y-0.05 < Z < Y+0.05) and (Z <{0.05} Y) the same as (Z < Y+0.05).

3.1.7 Protected Variables

Protected variables are variable names restricted to set determined monitoring parameters.
rate - Set the frame rate at which properties are checked (By default, the rate is 30hz)
timeout - Set the timeout for how long the verification will last (By default, the timeout

is 100 seconds)
margin - Set the error margin for comparisons

3.1.8 Topic declaration

In order to relate robot components with the simulation, the developer can declare the relevant
topics.

The language cannot inherently have a way to interact with specific components of a robot
because it does not know which topic to get information from. Therefore, the developer needs
to declare these specific topics to be able to interact with them.

1 decl robot_position /odom Odometry.pose.pose.position

The variable robot_position was declared with the type Odometry.pose.pose.position and is
linked to the topic /odom

3.1.9 Model robots

A set of specific topics can be modeled for the robot, like position or velocity. The compiler will
use these to call specific functions that need this information from the robot’s perspective.

11

1 model robot1:
2 position /odom Odometry.pose.pose.position
3 ;
4 never robot1.localization_error > 0.002

The localization_error function requires the position topic of a robot to be modeled in order
to compare it with the actual simulation position.

3.2 Grammar

The language grammar is written in BNF and is presented below.
The <association> production highlights a basic notation of the language and is related to

the high-level concepts of the DSL mentioned in subsection 3.1.1.

<program> ::= <command> | <command> <program>
<command> ::= <association> | <declaration> | <model> | <pattern>
<association> ::= name = <pattern>

| _rate_ = integer
| _timeout_ = <number>
| _default_margin_ = <number>

<declaration> ::= decl name topic_name <msgtype>
| decl name name <msgtype>

<model> ::= model name : <modelargs> ;
<modelargs> ::= <name> topic_name <msgtype>

| <name> <name> <msgtype>
| <name> topic_name <msgtype> <modelargs>
| <name> <name> <msgtype> <modelargs>

<name> ::= name | <func_main>
<func_main> ::= position | velocity | distance | localization_error | orientation
<msgtype> ::= <name> | <name> . <msgtype>
<pattern> ::= always <pattern>

| never <pattern>
| eventually <pattern>
| after <pattern> , <pattern>
| until <pattern> , <pattern>
| after_until <pattern> , <pattern> , <pattern>
| <conjunction>

<conjunction> ::= <conjunction> and <comparison>
| <conjunction> or <comparison>
| <conjunction> implies <comparison>
| <comparison>

<comparison> ::= <multiplication> <opbin> <multiplication>
| <multiplication> <opbin> <number> <multiplication>
| <multiplication>

<opbin> ::= < | > | <= | >= | == | !=
<multiplication> ::= <multiplication> * <addition>

| <multiplication> / <addition>
| <addition>

12

<addition> ::= <addition> + <operand> | <addition> - <operand> | <operand>
<operand> ::= name

| <number>
| true
| false
| <func>
| <temporalvalue>
| (<pattern>)

<number> ::= float | integer
<func> ::= name . <func_main> | name . <func_main> <funcargs>
<funcargs> ::= . <name> | . <name> <funcargs>
<temporalvalue> ::= @ name , integer

3.3 DSL Usage Examples

To validate the expressive power of our language, I present some examples of expressions inspired
by real-world scenarios.

3.3.1 Vehicle Maximum Speed

Some robots have a maximum safe speed at which they can move. Sometimes this limit is
imposed by law, but some other times by physical constraints.

The robot velocity will never be above 2 for the duration of the simulation;

1 never robot.velocity > 2.0

3.3.2 Follow the Leader

The first robot being above 1 velocity implies that the second robot is at least at 0.8 distance
from the first robot, up until the first robot reaches a particular location;

1 until (robot1.position.x > 45 and robot1.position.y > 45), always (robot1.velocity > 1 implies robot2.distance.
robot1 > 0.8)

3.3.3 Localization error

The localization error (difference between the robot’s perception of its location and the actual
simulation location) of the robot is never above a specific value.

1 model robot1:
2 position /odom Odometry.pose.pose.position
3 ;
4 never robot1.localization_error > 0.002

3.3.4 Drone height rotors control

After a drone is at a certain altitude, both rotors always have the same velocity up until the
drone decreases to a certain altitude.

13

1 decl rotor1_vel /drone_mov/rotor1 Vector3.linear.x
2 decl rotor2_vel /drone_mov/rotor2 Vector3.linear.x
3

4 after_until drone.position.z > 5, drone.position.z < 5, rotor1_vel == rotor2_vel

14

Chapter 4

Monitoring

This chapter explains the whole process of monitoring, from compilation to error detection.
First, the overall process of compilation is explained in section 4.1, then the generated file

and some of its specifications are described in section 4.2.

4.1 Runtime Monitoring

After writing all the desired robotic systems specifications, the file needs to be compiled into
a monitoring Python module. This is currently done running the following script, from its
location: python language.py properties.txt /home/ros_workspace/src/my_pkg/src.

The language.py file needs to be run as a Python file and takes as arguments:

1. The specifications file;

2. The path where the Python monitoring module will be generated.

The given directory for the generated file should be under a ROS workspace for the compila-
tion to succeed. This is because, during the compilation, access to information like the available
ROS messages might be necessary.

The monitoring file can now run as an independent ROS node, integrated into a launch file,
or using rosrun in the console to execute it.

4.2 Compilation

In this section, we start by giving an overview of what the generated code does while executing
(subsection 4.2.1), next, we explain the data structures used in compilation and the translation
rules to the generated code are explained in (subsection 4.2.2). We discuss how the various
states of the simulation are saved in subsection 4.2.3. Finally, we discuss the generation of error
messages in subsection 4.2.4.

4.2.1 Architecture

The diagram in Figure 4.1 tries to capture the essence of what the generated code is doing
when running alongside a simulation of a robotic system. The topic where its fetched the real

15

simulation data /gazebo/model_states, and the multiple topics with the robot perception of the
simulation. The diagram highlights the two parallel processes running in the node, the “Callback
Function” and the “Monitoring Loop” and their job in the verification.

Monitoring Node

Callback
Function

Monitoring
Loop

Save current simulation
state in global variable

Save current simulation state in
global states variable (at fixed rate)

Run functions where
properties are verified

Simulator

/gazebo/model_states
(The Topic with simulation

parameter values)

/topics
(The Topics subscribed by

the tool)

⟳

Figure 4.1: Diagram of the execution of the generated code.

The callback function is called every time a new message is received in one of the subscribed
topics, it saves the relevant information for the property checking in a global variable and this
information serves as the current “screenshot” of the simulation representing its current state.

The node executes a loop at a delineated rate, which is represented in the diagram as the
“Monitoring Loop”, doing the following tasks:

1. Check if the defined simulation timeout time has been reached.

2. Save the current simulation state in a global variable of saved states.

3. Verify the properties using the saved states and calling each dedicated property function.

4.2.2 Code Generation

In order to generate the monitoring code, some context is saved when parsing through the
abstract syntax tree created from the specification file.

The saved context is essentialy separated in five Dictionary lists: Models, Associations,
Variables, Subscribers, and Properties.

16

The information saved in these data structures will afterward be used in translation rules
between the source code to create the generated code.

Models

The data structure of each model saved in the context is composed of:

1. The name of the object in the simulation that is being modeled.

2. The correspondent function the model refers to, for example velocity or distance.

3. The Message type of the data structure of the topic to subscribe.

For each entry in the Model of an object, a model data structure will be saved in the context.
A subscriber data structure will also be created that subscribes to the correspondent topic of
the modeled object.

The subscriber and variable in the correspondent generated code that are associated with
each entry of the Model, will have a unique name composed of the object name plus the function
associated with that entry.

Associations

The data structure of each association saved in the context is composed of:

1. The name of the association in the specification.

2. The name of the variable associated with the association.

When specifying an association a new variable data structure is created in the context. The
new variable has the prefix of an association as well as its name. In the generated code the new
variable will point to the variable created on the right side of the association.

Variables

The data structure of each variable saved in the context is composed of:

1. The variable name to use in generated code.

2. The generated code representation of the expression to be used to fetch the data of the
variable.

The variable names to be used in the generated code will have different suffixes and pre-
fixes depending on: Their types, and if they originate from a model, declaration, function, or
association. In this way, it is easier to identify variable relations during the compilation of the
generated code.

All simulation primitives have a hardcoded representation to get their absolute value from
the simulator topic information, which is stored in a global state variable (subsection 4.2.3).
To retrieve the correct string for each primitive to be used in the generated code, an auxiliary
function sim_funcs was created:

17

1 def sim_funcs(object_, func, args, ctx):
2 ”””Add var to the context and return var name for the output file (Considering the function used)”””
3 var_name, extract = None, None
4 if func == ”position”:
5 args = [”position”] + args
6 var_name = object_ + ”_” + ”_”.join(args) + ”_var_sim”
7 extract = (
8 ”model_states_msg.pose[model_states_indexes[’”
9 + object_

10 + ”’]].”
11 + ”.”.join(args)
12)
13 elif func == ”velocity”:
14 var_name = object_ + ”_velocity_” + ”_”.join(args) + ”_var_sim”
15 if args == []:
16 extract = (
17 ”((model_states_msg.twist[model_states_indexes[’”
18 + object_
19 + ”’]].linear.x)**2 + (model_states_msg.twist[model_states_indexes[’”
20 + object_
21 + ”’]].linear.y)**2 + (model_states_msg.twist[model_states_indexes[’”
22 + object_
23 + ”’]].linear.z)**2”
24 + ”)**(0.5)”
25)
26 else:
27 extract = (
28 ”model_states_msg.twist[model_states_indexes[’”
29 + object_
30 + ”’]].”
31 + ”.”.join(args)
32)
33 elif func == ”localization_error”:
34 var_name = object_ + ”_localization_error”
35 args = ctx.model_msgtype(object_, ”position”)
36 extract = (
37 ”((model_states_msg.pose[model_states_indexes[’”
38 + object_
39 + ”’]].position.x - ”
40 + object_
41 + ”_position_msg.”
42 + args
43 + ”.x)**2 + (model_states_msg.pose[model_states_indexes[’”
44 + object_
45 + ”’]].position.y - ”
46 + object_
47 + ”_position_msg.”
48 + args
49 + ”.y)**2 + (model_states_msg.pose[model_states_indexes[’”
50 + object_
51 + ”’]].position.z - ”
52 + object_
53 + ”_position_msg.”
54 + args
55 + ”.z)**2)**(0.5)”
56)
57 elif func == ”distanceZ”:
58 object2 = args[0]
59 var_name = object_ + ”_” + object2 + ”_distanceZ”
60 extract = (
61 ”((model_states_msg.pose[model_states_indexes[’”
62 + object_
63 + ”’]].position.x - model_states_msg.pose[model_states_indexes[’”

18

64 + object2
65 + ”’]].position.x)**2 + (model_states_msg.pose[model_states_indexes[’”
66 + object_
67 + ”’]].position.y -”
68 + ”model_states_msg.pose[model_states_indexes[’”
69 + object2
70 + ”’]].position.y)**2 + (model_states_msg.pose[model_states_indexes[’”
71 + object_
72 + ”’]].position.z - model_states_msg.pose[model_states_indexes[’”
73 + object2
74 + ”’]].position.z)**2)**(0.5)”
75)
76 elif func == ”distance”:
77 object2 = args[0]
78 var_name = object_ + ”_” + object2 + ”_distance”
79 extract = (
80 ”((model_states_msg.pose[model_states_indexes[’”
81 + object_
82 + ”’]].position.x - model_states_msg.pose[model_states_indexes[’”
83 + object2
84 + ”’]].position.x)**2 + (model_states_msg.pose[model_states_indexes[’”
85 + object_
86 + ”’]].position.y -”
87 + ”model_states_msg.pose[model_states_indexes[’”
88 + object2
89 + ”’]].position.y)**2)**(0.5)”
90)
91 ctx.add_var(var_name, extract)
92 return ”states[0][’” + var_name + ”’]”

For instance, if the compilation is processing the primitive robot1.distance.robot2 that relates
the distance between two robots, this function will compute the variable named robot1_robot2_distance
and how to fetch its value during execution:

1 robot1_robot2_distance = ((model_states_msg.pose[model_states_indexes’[’robot1]].position.x -
model_states_msg.pose[model_states_indexes’[’robot2]].position.x)**2 +(model_states_msg.pose[
model_states_indexes’[’robot1]].position.y - model_states_msg.pose[model_states_indexes’[’robot2]].
position.y)**2)**(0.5)

Subscribers

The data structure of each subscriber saved in the context is composed of:

1. The Topic name to which to subscribe.

2. The Message type associated with the topic.

3. The Library from which the Message type originates.

4. The Subscriber name in the generated code.

A subscriber relates in the specification to a declaration, a model entry, or the default sim-
ulator information topic.

The Library is necessary in order to make an import of the Message type in the generated
code. The Library is obtained through a python subprocess:

19

1 command = f”cd {self.filepath} | rosmsg show {msg_type}”

The generated monitoring file declares the needed subscribers and uses ApproximateTimeSyn-
chronizer, from the message_filters package, to call the callback function. The Approximate-
TimeSynchronizer synchronizes messages by their timestamp and if they do not have a header,
uses the ROS time.

Properties

The data structure of each property saved in the context is composed of:

1. The correspondent line in the specification file.

2. The correspondent type of property.

3. A List of Strings with the necessary code representation of boolean assertions to be used
in the generated code as a property verification.

A property is represented by one base property, which is the one at the first level of the
specification. In the next example, the base property saved in the context will be the ”after”.
The ”never” property will only influence the way the property is checked on the generated code
and no data structure of it will be saved in the context.

1 after robot.distance.wall < 1, never robot.velocity > 0.5

A property, in order of complexity, is comprised of: Other properties, conjunctions (and,
or, and implies), comparisons (<, >, <=, >=, ==, and !=), operations (+, -, *, and /), and
operands (variable, number, boolean, simulation primitive, and temporal value).

The abstract syntax tree is parsed from the lowest to the highest complexity field, in this way
the List of strings that represent boolean assertions in the generated code can be cumulatively
built because the information from the lowest fields is always present in the higher ones. In the
end, a List with the necessary comparisons is built for a base property.

In the generated code an independent function with the necessary boolean assertions for
verifying the property will then be defined for each base property.

4.2.3 State

A callback function is called every time a new message from one of the subscribers is received.
The callback function saves the relevant information for property checking in a global variable
as a Dictionary. This information serves as a current ”screenshot” of the simulation representing
its current state.

The callback function is called at fluctuating rates, for this reason, we take advantage of
the loop that is running at a fixed rate to save multiple current states of the simulation in
another global variable as a Dictionary List. This variable will be the one used when checking
the properties to make correlations with past states.

20

4.2.4 Error Messages

An error message starts by stating the line in the specification file which resulted in an error as
well as showing the property where the error originated.

Afterward, I use the current saved state of the simulation to show the values at the time of
failure of all the variables present in the property that originated the error.

Figure 4.2: Example of an error message.

21

22

Chapter 5

Evaluation

This chapter introduces the evaluation process of the work. Section 5.1 gives a broad overview
of the whole process, and section 5.2 goes into more detail about each one of the experiments.

5.1 Evaluation Overview

To evaluate the developed work, I decided to go through a list of already documented ROS bugs
and identify three that happen at runtime. After that, I specified a robot’s properties in the
DSL that should be capable of detecting an error for said bugs while running the system.

ROBUST [3] is a dataset that documents over two hundred bugs in multiple robots using
ROS. After going through the dataset in an initial skim, three bugs that happened at runtime
and didn’t halt the robot execution were identified:

• Calculation Error Inverts Turning Direction 1 (subsection 5.2.1) - “Due to an error in
velocity calculations, when Kobuki was issued a very low negative linear speed (very slow
backwards movement), it would also inadvertently invert its turning direction. That is, if
it was supposed to move backwards while turning left, it would move backwards and turn
right instead.”

• Robot Getting Stuck When Auto-docking 2 (subsection 5.2.2) - “The movement speeds
were hard-coded for the auto-docking algorithm, and worked well for regular Kobuki and
Turtlebot, but were too slow for heavier robots, causing them to get stuck.”

• Unexpected Movement Due to Wrong Calculation 3 (subsection 5.2.3) - “Kobuki moves
using differential drive. Originally, the command velocities (linear and angular) were pro-
vided as ‘short‘, and were converted to ‘short‘ after each step, even though the calculations
yielded floating point numbers. This lead to calculation errors in some special cases, where
the robot was supposed to move forward but ended up moving backwards instead.”

To replicate each bug, a daemon node is inserted into the system that interferes with the
normal runtime flow and replicates the desired bug. Figure 5.1 represents the natural flow of

1https://github.com/robust-rosin/robust/blob/master/kobuki/e964bbb/e964bbb.bug
2https://github.com/robust-rosin/robust/blob/master/kobuki/0416c81/0416c81.bug
3https://github.com/robust-rosin/robust/blob/master/kobuki/1c141a5/1c141a5.bug

23

https://github.com/robust-rosin/robust/blob/master/kobuki/e964bbb/e964bbb.bug
https://github.com/robust-rosin/robust/blob/master/kobuki/0416c81/0416c81.bug
https://github.com/robust-rosin/robust/blob/master/kobuki/1c141a5/1c141a5.bug

the systems whilst Figure 5.2 shows the system flow when trying to replicate a bug with the
help of the daemon node.

/cmd_vel robot_nodeteleop_base

Figure 5.1: The normal runtime flow of the system.

/cmd_vel_original /cmd_vel robot_node

daemon_node

teleop_base

Figure 5.2: The flow of the system when the adding the daemon node.

When injecting a bug, all the data before addressed to the robots’ /cmd_vel topic is
remapped to a new topic called /cmd_vel_original, the daemon node subscribes to this new
topic and modifies the data before sending it to the robots’ /cmd_vel topic so that the robot
behaves like the expected bug.

With this new system flow, it is possible to specify properties between the /cmd_vel topic
which represents the robots’ behavior, and the /cmd_vel_original topic, which represents the
actual command given to the robot.

The robots’ /cmd_vel topic expects to receive messages of type Twist, a data structure
composed of two Vector3 objects, that express velocity in its linear and angular parts, for this
reason, our /cmd_vel_original will also need to receive and send messages of the Twist type.

5.2 Experiments

This section goes through the property specification and runtime monitoring for the three men-
tioned selected bugs. Calculation Error Inverts Turning Direction (subsection 5.2.1), Robot
Getting Stuck When Auto-docking(subsection 5.2.2), and Unexpected Movement Due to Wrong
Calculation (subsection 5.2.3).

5.2.1 Calculation Error Inverts Turning Direction

DSL property specification:
First, I declare the cmd_vel_original topic, which will represent the commands given to the

robot. Then I make a correlation between the topic that represents the given commands and
the topic that represents the actual robot’s behavior.

decl angular_vel_robot_perception cmd_vel_original Twist.angular.z
after turtlebot3.velocity.angular.z < 0, never angular_vel_robot_perception > 0

24

Translating into natural language, the property states in the first section that after the robot’s
actual simulation z parameter of the angular velocity is less than zero, then in the second section,
the z parameter of the angular velocity of the command given to the robot is never more than
zero.

Daemon node code and behavior:

1 class Direction_invert_error:
2

3 def __init__(self):
4 print(”simulating direction_invert_error_behavior...”)
5 self.cmd_vel_pub = rospy.Publisher(”cmd_vel”, Twist, queue_size=1)
6 self.twist = Twist()
7 self.direction_invert_error()
8

9 def get_vel(self):
10 return rospy.wait_for_message(”cmd_vel_original”, Twist)
11

12 def direction_invert_error(self):
13 while not rospy.is_shutdown():
14 vel = self.get_vel()
15 self.twist = vel
16 if abs(vel.linear.x) < 0.012:
17 self.twist.angular.z = -vel.angular.z
18 self.cmd_vel_pub.publish(self.twist)

The daemon node checks when the given robot’s command linear velocity is below 0.012
and injects the opposite value of the z parameter of the angular velocity to the actual robot’s
velocity in the simulation.

Now when giving commands to the robot, if the given velocity is below 0.012, a value chosen
at random to start emulating the behavior, and I make a turn, the robot will turn the opposite
way. The output of the monitoring node for a test case is demonstrated in Figure 5.3.

Figure 5.3: Calculation Error Inverts Turning Direction bug error message.

5.2.2 Robot Getting Stuck When Auto-docking

DSL property specification:
First, I declare the cmd_vel_original topic, which will represent the commands given to the

robot. Then I make a correlation between the topic that represents the given commands and
the topic that represents the actual robot’s behavior.

decl vel_robot_perception cmd_vel_original Twist.linear.x
after vel_robot_perception > 0, never turtlebot3.velocity =={0.005} 0
Translating into natural language, the property states in the first section that after the given

robot’s commands x parameter of the linear velocity is greater than zero, then in the second

25

section, the actual simulation linear velocity is never equal to the interval -0.005 to 0.005, which
is roughly zero.

Daemon node code and behavior:

1 class Auto_docking_error:
2

3 def __init__(self):
4 print(”simulating auto_docking_error_behavior...”)
5 self.cmd_vel_pub = rospy.Publisher(”cmd_vel”, Twist, queue_size=1)
6 self.twist = Twist()
7 self.auto_docking_error()
8

9 def get_vel(self):
10 return rospy.wait_for_message(”cmd_vel_original”, Twist)
11

12 def auto_docking_error(self):
13 while not rospy.is_shutdown():
14 vel = self.get_vel()
15 self.twist = vel
16 if abs(vel.linear.x) < 0.015:
17 self.twist.linear.x = 0.0
18 self.cmd_vel_pub.publish(self.twist)

The daemon node checks when the given robot’s command linear velocity is below 0.015 and
injects a value of 0.0 to the linear velocity of the actual robot’s velocity in the simulation.

Now when giving commands to the robot, if the given velocity is below 0.015, a value chosen
at random to start emulating the behavior, the robot will stay stationary. The output of the
monitoring node for a test case is demonstrated in Figure 5.4.

Figure 5.4: Robot Getting Stuck When Auto-docking bug error message.

5.2.3 Unexpected Movement Due to Wrong Calculation

DSL property specification:
First, I declare the cmd_vel_original topic, which will represent the commands given to the

robot. Then I make a correlation between the topic that represents the given commands and
the topic that represents the actual robot’s behavior.

decl vel_robot_perception cmd_vel_original Twist.linear.x
after turtlebot3.velocity.linear.x < 0, never vel_robot_perception > 0
Translating into natural language, the property states in the first section that after the robot’s

actual simulation x parameter of the linear velocity is less than zero, then in the second section,
the x parameter of the linear velocity of the command given to the robot is never more than zero.

Daemon node code and behavior:

1 class Backwards_movement_error:
2

26

3 def __init__(self):
4 print(”simulating backwards_movement_error_behavior...”)
5 self.cmd_vel_pub = rospy.Publisher(”cmd_vel”, Twist, queue_size=1)
6 self.twist = Twist()
7 self.backwards_movement_error()
8

9 def get_vel(self):
10 return rospy.wait_for_message(”cmd_vel_original”, Twist)
11

12 def backwards_movement_error(self):
13 while not rospy.is_shutdown():
14 vel = self.get_vel()
15 self.twist = vel
16 if abs(vel.linear.x) > 0.03:
17 self.twist.linear.x = -vel.linear.x
18 self.cmd_vel_pub.publish(self.twist)

The daemon node checks when the given robot’s command linear velocity is above 0.03, a
value chosen at random to start emulating the behavior, and injects the opposite value of the x
parameter of the linear velocity to the actual robot’s velocity in the simulation.

Now when giving commands to the robot, if the given velocity is above 0.03, the robot will
start moving backward. The output of the monitoring node for a test case is demonstrated in
Figure 5.5.

Figure 5.5: Unexpected Movement Due to Wrong Calculation bug error message.

27

28

Chapter 6

Future Work

In this chapter, the possible work left undone or that could improve our study is presented.
Improvement of the developed work performance is mentioned in section 6.1, section 6.2 mentions
the validation of the work, section 6.3 discusses about the work’s error messages, section 6.4
talks about the integration with scenario generation tools, section 6.5 mentions the possible
integration with other simulators besides Gazebo, and finally section 6.6 talks about a more
advanced quality assurance tool.

6.1 Performance Tweaking

The generated code performance can be improved so that the load of the monitoring node on
the simulation is reduced.

For instance, the frequency at which some properties are checked could fluctuate. In some
circumstances, a particular property does not need to be checked at every simulation itera-
tion. Implementing some mechanism that can skip certain property checks per iteration will
undoubtedly decrease the load the monitoring node will have on the simulation.

6.2 Validation of the Proposal

Although some evaluation was done for the work done, more evidence and experimental data
on the effective capabilities of the proposal are still needed:

1. How expressive is the DSL from the developers’ point of view in specifying robots’ prop-
erties.

2. Proof of concept that the system is able to detect the rule violations specified by the DSL.

3. Evidence that the monitoring does not disturb the simulation by demanding excessive
resources.

6.3 Better Error Messages

Giving developers helpful and comprehensible error messages is a shared concern amongst all
compilers. One can argue that even the best compilers still have space for improvement when

29

talking about delivering good error messages.
Although in this work I gave some thought to the error messages delivery, I believe that

a more narrow error localization is still possible. For instance, in cases where a property has
assertions for a time interval, like an after_until or an eventually, maybe not only the value
at the time of failure of the variables present in the specification should be shown but also a
selection of the values at multiple previous states of the simulation.

Also, there was no time for a thorough validation of the proposal, which means that some bugs
could be present when delivering the error messages, and the users could have some problems
with the delivery or ideas on how to improve it.

6.4 Integrate the DSL with Scenario Generation Tools

Integrating this work with a scenario generation tool would improve the whole test automa-
tion process by creating unpredictable environments on where to test our specified properties,
allowing the execution of multiple tests.

For instance, GzScenic [7] is a tool that generates random scenarios for the Gazebo simulator
based on a defined model.

6.5 Integration with other Industrial Simulators

This work was developed with the Gazebo simulator in mind, which means the monitoring is
currently not compatible with other simulators.

Although Gazebo is widely used, many other simulators are also currently being used, like
RoboDK [1], Webots [6] or Unity [5]. Therefore, adapting our work to integrate other widely
used simulators would be helpful for many users that choose not to use Gazebo.

6.6 Automatic Quality Assurance

This work can be used to measure the quality of software modules. The tests could allow
the robot’s automatic correction and generation of code, generating multiple alternatives and
automatically evaluating how good they are, improving the code to do what we want. Thus, it
can be used in automated program synthesis, repair, and improvement.

30

Chapter 7

Conclusion

Due to the fact that robots interact with the real world, robotic systems are unpredictable.
Coming up with a reliable and efficient method for automatic robot testing is a challenge, one
of the reasons being that verifying the success of a task may not be possible from the robot’s
perspective.

My approach takes advantage of simulation software to perform a type of external monitoring
in order to achieve automatic monitoring of the robotic system.

My approach relies on simulation-based testing so that developers can take advantage of
the real values of objects’ attributes in the simulation to compare with what the robot system
perceives, trying in this way to surpass the need for human-in-the-loop testing.

I succeeded in developing a DSL that allows for the specification of a ROS robotic system’s
properties and that abstracts an underlying LTL system. It is possible to express relevant
temporal and positional arguments between robots’ components and objects in the simulation,
and also properties that relate the internal information of the system with the corresponding
information in the Gazebo simulator.

Although better validation by developers on the expressiveness of the DSL is still needed, I
believe the developed DSL provides an easy-going, intuitive and in-depth way for both experts
and non-experts to specify properties for robotic systems.

I have also succeeded in developing a tool for the generation of automatic monitoring software
that can monitor some behavioral violations of robots in relation to their state or events during
a Gazebo simulation. At the same time, I have shown that the approach’s generated monitoring
software can monitor some interesting scenarios that developers care about.

31

32

Bibliography

[1] RoboDK. https://robodk.com/. [Online; accessed 22-September-2022].

[2] Runtime Monitoring Language. https://rmlatdibris.github.io/. [Online; accessed 13-
September-2022].

[3] ROBUST: ROS Bug Study. https://github.com/robust-rosin/robust. [Online; accessed
28-August-2022].

[4] ROS-INDUSTRIAL. https://rosindustrial.org/. [Online; accessed 11-September-2022].

[5] Unity. https://unity.com/. [Online; accessed 22-September-2022].

[6] Webots. https://www.cyberbotics.com/. [Online; accessed 22-September-2022].

[7] Afsoon Afzal, Claire Le Goues, and Christopher S. Timperley. GzScenic: Automatic Scene
Generation for Gazebo Simulator, 2021.

[8] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specification
patterns for finite-state verification. In Proceedings of the second workshop on Formal
methods in software practice, pages 7–15, 1998.

[9] Angelo Ferrando, Rafael C. Cardoso, Michael Fisher, Davide Ancona, Luca Franceschini,
and Viviana Mascardi. ROSMonitoring: a runtime verification framework for ROS. In
Annual Conference Towards Autonomous Robotic Systems, pages 387–399. Springer, 2020.

[10] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo, Aravind Sun-
daresan, and Grigore Rosu. ROSRV: Runtime verification for robots. In International
Conference on Runtime Verification, pages 247–254. Springer, 2014.

[11] Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[12] Sophia Kolak, Afsoon Afzal, Claire Le Goues, Michael Hilton, and Christopher Steven
Timperley. It Takes a Village to Build a Robot: An Empirical Study of The ROS Ecosystem.
In 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 430–440, 2020. doi: 10.1109/ICSME46990.2020.00048.

[13] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science (SFCS 1977), pages 46–57. ieee, 1977.

33

https://robodk.com/
https://rmlatdibris.github.io/
https://github.com/robust-rosin/robust
https://rosindustrial.org/
https://unity.com/
https://www.cyberbotics.com/

[14] Morgan Quigley, Ken Conle, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Ng. ROS: an open-source Robot Operating System. ICRA Workshop
on Open Source Software, 3(3.2):1–6, 01 2009.

[15] Marco Stadler, Michael Vierhauser, and Jane Cleland-Huang. Towards flexible runtime
monitoring support for ROS-based applications. In RoSE’22: 4th International Workshop
on Robotics Software Engineering Proceedings, 2022.

[16] Milda Zizyte, Casidhe Hutchison, Raewyn Duvall, Claire Le Goues, and Philip Koopman.
The Importance of Safety Invariants in Robustness Testing Autonomy Systems. In 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks-
Supplemental Volume (DSN-S), pages 41–44. IEEE, 2021.

34

	List of Figures
	Introduction
	Motivation
	Problem Statement
	Objectives
	Motivational Example
	Contributions
	Structure of the document

	Background & Related Work
	Background
	Robot Operating System
	Gazebo
	Runtime Testing
	Linear Temporal Logic and Invariants

	Related Work
	Monitoring Frameworks

	A Specification Language for Robotics Properties
	Language Notations
	High-level Concepts
	Temporal Keywords
	Temporal value
	Simulation primivitives
	Operands
	Operators
	Protected Variables
	Topic declaration
	Model robots

	Grammar
	DSL Usage Examples
	Vehicle Maximum Speed
	Follow the Leader
	Localization error
	Drone height rotors control

	Monitoring
	Runtime Monitoring
	Compilation
	Architecture
	Code Generation
	State
	Error Messages

	Evaluation
	Evaluation Overview
	Experiments
	Calculation Error Inverts Turning Direction
	Robot Getting Stuck When Auto-docking
	Unexpected Movement Due to Wrong Calculation

	Future Work
	Performance Tweaking
	Validation of the Proposal
	Better Error Messages
	Integrate the DSL with Scenario Generation Tools
	Integration with other Industrial Simulators
	Automatic Quality Assurance

	Conclusion
	References

