

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Fault Revealing Test Oracles, Are We There Yet? Evaluating

The Effectiveness Of Automatically Generated Test Oracles On

Manually-Written And Automatically Generated Unit Tests

Daniel Correia Bento

Mestrado em Engenharia Informática

Dissertação orientada por:

Prof. Doutor José Carlos Medeiros de Campos

Acknowledgments

This thesis would not have been possible without the help and support from several
people. To every one of them, my deepest gratitude.

Particularly, to my supervisor, Professor José Carlos Medeiros de Campos, without
whom this work would not have been possible, for his support, advice and critical vision,
which contributed to enrich every step of the work performed.

I will be forever indebted to my family, particularly to my parents and to my sister, for
their unconditional love, help and patience throughout all this time.

i

Dedicated to my family and friends.

Resumo

Ferramentas de geração automática de testes têm sido utilizadas em cenários de de-
senvolvimento de software reais e já se provaram capazes de detetar falhas reais. No
entanto, estas ferramentas geram testes de regressão, assumindo que o código para o qual
estão a gerar testes está correto, com o objetivo de alcançar a maior quantidade de cober-
tura de código possı́vel. Isto leva a que sejam gerados testes que, apesar de executarem
código faltoso, não conseguem detetar falhas existentes no software devido à utilização
de oracles fracos. Esta geraração de oracles incapazes de testar uma funcionalidade da
forma correta, deve-se à dificuldade das ferramentas de distinguir funcionamento correto
de funcionamento incorreto do software — oracle problem — pois não têm conheci-
mento dos requisitos do sistema ou das intenções do programador no momento da criação
de determinada funcionalidade. De forma a resolver este problema, investigadores têm
desenvolvido, não só ferramentas capazes de melhorar testes já existentes, como também
várias abordagens para gerar, de forma automática, oracles que se assemelhem aos escri-
tos manualmente.

Apesar de as ferramentas de geração automática de oracles serem capazes de ge-
rar oracles semelhantes aos escritos por programadores, existem ainda algumas questões
relativamente ao uso destas ferramentas em ambientes de desenvolvimento de software
reais. Em particular, quão eficientes são os oracles gerados automaticamente a detetar
falhas reais no software? Quanto tempo levam estas ferramentas a gerar um oracle? Estas
duas perguntas são importantes pois, para que estas ferramentas sejam úteis em situações
reais, a capacidade de gerar oracles que se assemelhem a oracles escritos por programa-
dores não é tão importante quanto a capacidade destes oracles de detetar falhas existentes
no software. Além disto, independentemente da capacidade destas ferramentas em detetar
falhas no software, a sua utilização poderá ser irrelevante caso a geração de oracles seja
demasiado demorada.

Para responder a estas questões, é necessário, em primeiro lugar, software real que
contenha falhas já identificadas. Para isto, foi escolhido o DEFECTS4J, uma coleção de
vários projetos open-source, com falhas documentadas e com testes que conseguem iden-
tificar essas falhas. Assim, e para que seja possı́vel a utilização destes testes juntamente
com oracles gerados automaticamente, foram removidos os oracles escritos manualmente
de todos os testes capazes de detetar uma falha no DEFECTS4J. Para proceder à remoção

v

destes oracles, verificámos o stacktrace, manualmente e para todos os bugs detetatos
nesta coleção, de forma a identificar todas as linhas que levam os testes a falhar. O pro-
cedimento seguido para a esta tarefa passa pela remoção da linha em que um teste falha e
de todas as linhas seguintes, uma vez que a execução destas linhas poderia levar um teste
a falhar por qualquer outra razão. Desta forma, foram identificadas 4 razões que levavam
um teste a falhar: (1) assert statements – um teste falha devido a um resultado que difere
do esperado. Aqui, é removida a linha onde é feito o assert e todas as seguintes; (2) auxi-
liar test method – é feita uma chamada a um método auxiliar, onde todas as verificações
necessárias são feitas e o teste falha dentro desse método. Neste caso, apesar de ser uma
simplificação, removemos apenas a chamada ao método auxiliar e todas as linhas seguin-
tes do método de teste; (3) expected exception – é esperado o lançamento de uma exceção,
ao executar determinado código, que não ocorre. Neste caso, o teste poderá falhar por não
ser lançada uma exceção, ou por ser lançada a exceção errada. O oracle poderá ser um
bloco try/catch e, neste caso, será removido todo o bloco e as linhas seguintes, ou uma
anotação do JUnit e, nesse caso, será removida a anotação e todas as linhas do método de
teste, uma vez que não é possı́vel dizer, com certeza, qual o pedaço de código que deveria
lançar a exceção; (4) unexpected exception – uma exceção que não era esperada é lançada
ao executar um pedaço de código. Neste caso, é removida a linha em que a exceção é
lançada e todas as linhas seguintes.

Além de remover as linhas que detetam os bugs existentes no código, é, também, adi-
cionado um marcador nessa mesma linha que é necessário, por algumas ferramentas de
geração automática de oracles, para identificar em que linha o novo oracle deve ser inse-
rido. Todo este procedimento possibilita a integração de oracles gerados automaticamente
em testes escritos manualmente.

Finalmente, utilizámos uma recente e promissora ferramenta de geração automática de
oracles (T5) para gerar oracles para todos os testes resultantes do procedimento descrito
anteriormente e registámos o quão eficazes são os oracles gerados por esta ferramenta
na deteção de falhas reais, assim como o tempo necessário para a geração dos mesmos.
Foram, também, identificadas outras ferramentas além do T5, que acabaram por ser des-
cartadas pelas mais diversas razões (por exemplo, a ferramenta não estar disponı́vel, ter
pouca documentação, ou estar fora do âmbito do estudo realizado).

Para a execução da ferramenta selecionada (T5), é necessária a identificação de um
método de teste que contenha um marcador para a posição do oracle a ser gerado e do
método de foco desse teste, i.e., do método cujo funcionamento se pretente testar. Para
identificar o método de foco de cada teste, foi criado um programa em Java. Este pro-
grama assume que o programador segue a prática comum de nomenclatura do JUnit, i.e.,
que o nome de uma classe de teste é composto pelo nome da classe a ser testada com o
sufixo, ou prefixo, ‘Test’ e que um método de teste tem, geralmente, no seu nome o nome
do método a testar. Caso não seja identificado um método que corresponda a estas carac-

vi

terı́sticas, então assume-se que o método de foco será o último método a ser invocado no
método de teste (desde que este pertença ao projeto em questão).

Os nossos resultados demonstram que, em geral, o T5 está, ainda, longe de ser uti-
lizável em cenários reais de desenvolvimento de software. Inicialmente, os oracles gera-
dos pelo T5 não compilam. Isto deve-se ao facto de que o T5 gera oracles apenas em letra
minúscula, podendo não corresponder aos nomes de classes, métodos e variáveis. Para
combater isto, foi criado um script que, dados um método de teste, um método de foco e o
oracle gerado, tenta corrigir a capitalização das letras através do nome de variáveis exis-
tentes no método de teste e dos seus tipos, e do nome do método de foco. Além disto, este
script conta também com dados obtidos da API do Java 8 para corrigir o maior número
de tokens possı́vel.

Após a execução do processo descrito, dos 1696 oracles, apenas 466 compilam, dos
quais, 58 conseguem detetar corretamente uma falha. É, também, importante de notar
que o T5 foi treinado apenas para lidar com asserts, pelo que esta ferramenta não pos-
sui conhecimento suficiente para lidar com muitos dos casos existentes no DEFECTS4J.
Quando consideramos todos os 835 bugs no DEFECTS4J, o T5 foi capaz de detetar 27,
ou seja, 3.23% dos bugs. Além disto, o T5 requer, em média, 401.3 segundos para gerar
um oracle.

As abordagens e datasets apresentados nesta tese aproximam a possibilidade de ferra-
mentas de geração automática de oracles serem utilizadas para testar software real, pela
informação que é fornecida sobre os problemas atuais de várias ferramentas assim como
pela introdução de uma nova forma de testar ferramentas de geração de oracles em relação
às suas capacidades de detetar falhas reais de software.

Palavras-chave: Teste de software, Testes unitários, Test oracle, Estudo empı́rico,
Geração automática de oracles

vii

Abstract

Automated test suite generation tools have been used in real development scenarios
and proven to be able to detect real faults. These tools, however, do not know the expected
behavior of the system and generate tests that execute the faulty behavior, but fail to iden-
tify the fault due to poor test oracles. To solve this problem, researchers have developed
several approaches to automatically generate test oracles that resemble manually-written
ones. However, there remain some questions regarding the use of these tools in real de-
velopment scenarios. In particular, how effective are automatically generated test oracles
at revealing real faults? How long do these tools require to generate an oracle?

To answer these questions, we applied a recent and promising test oracle generation
approach (T5) to all fault-revealing test cases in the DEFECTS4J collection and investi-
gated how effective are the generated test oracles at detecting real faults as well as the
time required by the tool to generate them;

Our results show that: (1) out-of-the-box, oracles generated by T5 do not compile; (2)
after a simple procedure, out of the 1696 test oracles, only 466 compile and 58 of them
manage to correctly identify the fault; (3) when considering the 835 bugs in DEFECTS4J,
T5 was able to detect 27, i.e., 3.23% of the bugs. Moreover, T5 required, on average,
401.3 seconds to generate a test oracle.

The approaches and datasets presented in this thesis bring automated test oracle gen-
eration one step closer to being used in real software, by providing insight into current
problems of several tools as well as introducing a way to test automated test oracle genera-
tion tools that are being developed regarding their effectiveness on detecting real software
faults.

Keywords: Software testing, Unit testing, Test oracle, Empirical study, Automated
oracle generation

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Approach . 3
1.4 Contributions . 3
1.5 Structure of the document . 4

2 Background 5
2.1 Structure of a Unit Test . 5
2.2 Oracle . 6

2.2.1 Automated Oracles . 6
2.2.2 Human Oracles . 7

2.3 Summary . 7

3 Related Work 9
3.1 Automated Generation of Test Oracles 9

3.1.1 Test Suite Automation . 9
3.1.2 Oracle Automation . 10

3.2 Effectiveness of Automatically Generated Oracles 15
3.3 Summary . 16

4 Empirical Study 19
4.1 Experimental Subjects . 19
4.2 Experimental Setup . 20

4.2.1 Unit Test Cases . 20
4.2.2 Test Oracles . 20
4.2.3 Fault Set . 21

4.3 Experimental Procedure . 21

xi

4.3.1 Fault Detection . 21
4.3.2 Experimental Metrics . 21

4.4 Threats to Validity . 22
4.4.1 Construct validity . 22
4.4.2 External validity . 22
4.4.3 Internal validity . 22

4.5 Summary . 23

5 Empirical Analysis 25
5.1 RQ1: How effective are manually-written tests augmented with automat-

ically generated test oracles at revealing real faults? 25
5.1.1 Procedure . 25
5.1.2 Metrics . 35
5.1.3 Results . 36

5.2 RQ2: How long does it take to automatically generate fault revealing test
oracles? . 43
5.2.1 Procedure . 43
5.2.2 Metrics . 43
5.2.3 Results . 44

5.3 Summary . 47

6 Conclusions and Future Work 49
6.1 Conclusions . 49
6.2 Future Work . 49

References 61

xii

List of Figures

5.1 RQ1’s procedure. 26
5.2 Distribution of fault revealing manually-written tests per project. 27
5.3 Distribution of fault revealing manually-written tests per project and per

type of test oracle. 28
5.4 Number of bugs triggered per type(s) of test oracle. 29
5.5 Distribution of test oracles that pass/fail on the buggy/fixed version. A test

oracle only detects a bug if and only if fails on the buggy version and pass on the fixed

version. 42
5.6 Ratio of test oracles’ status. 43
5.7 Fault detection effectiveness of the automatically generated test oracles

for the fault-revealing manually-written test cases in the DEFECTS4J dataset. 44
5.8 Distribution of runtimes. 46

xiii

List of Tables

5.1 Average time required for the generation of a test oracle, for each project. 45

xv

Chapter 1

Introduction

Software can be found in various types of things, from the simplest, like fridges and
washing machines to the more complex, such as banks or planes, systems upon which
human lives currently depend on.

As the complexity of the system being developed increases, so does the difficulty to
write reliable software. Due to this, software faults are bound to be found in any software
system at some point in time. Software faults cause a program to behave in an incorrect
or unexpected way and their impact on our lives can vary, from being relatively low, like
forcing a program to close, to being extreme, like causing a plane to crash, having a major
repercussions on human lives.

1.1 Motivation

When faulty software is deployed, the undetected faults, not only get more expensive to
fix as time passes [52], but can also lead to major disasters as we have seen in the last
years.

For example, NASA’s Mars Climate Orbiter, which had a building cost of 125$ mil-
lion, was lost in space due to a software fault. After the source code was inspected, it
was discovered that the failure was originated from a navigational error, due to a miss
conversion of values. A portion of the source code was computing the force in ‘pounds
of force’ and, another portion of the code, read this data in the metric unit (‘newtons per
square meter’)1.

Other faults, however simple, can cause the loss of millions of dollars to companies.
For example, the case of Compound, a popular decentralized-finance staking protocol,
where a one-character boundary condition (‘>’ arithmetic comparison should have been
‘>=’) costed 90$ million2. Or worse, the loss of human lives, e.g., the two Boeing 737

1https://www.wired.com/2010/11/1110mars-climate-observer-report/
2https://www.cnbc.com/2021/10/01/defi-protocol-compound-mistakenly-

gives-away-millions-to-users.html

1

https://www.wired.com/2010/11/1110mars-climate-observer-report/
https://www.cnbc.com/2021/10/01/defi-protocol-compound-mistakenly-gives-away-millions-to-users.html
https://www.cnbc.com/2021/10/01/defi-protocol-compound-mistakenly-gives-away-millions-to-users.html

Chapter 1. Introduction 2

Max crashes, which killed 346 people3. Security faults might also, for example, enable
a malicious user to bypass access controls to obtain unauthorized privileges, as recently
happened with Twitch, where a server configuration error allowed its source code, detailed
users’ payouts and encrypted passwords to be leaked4.

To reduce the number of faults present in software, and therefore, lower the probability
of some kind of an error occurring, software must be tested [44]. Software testing checks
whether a program’s execution is according to its expected outcome [25] and is one of the
most crucial, challenging, and expensive parts of a software’s lifecycle [21].

1.2 Problem

Thoroughly testing a software system is a laborious and error-prone task which often re-
quires knowledge of the system and its source code [21, 4]. Thus, automation is often
advocated to reduce the manual effort. In particular, efficient techniques to automati-
cally generate unit tests for object-oriented software have been developed and resulted in
popular tools such as AGITARONE [32], RANDOOP [45], and EVOSUITE [22, 2]. These
tools generate unit tests by analysing and executing the system to be tested, reducing the
amount of work that developers need to do in order to create a usable test suite.

Although automatic test generation tools have been able to achieve good results (e.g.,
high code coverage [23, 24, 50, 10] or being able to detect real faults [1, 56]), they still
have several limitations [18, 56, 53]. For example, a recent study conducted by Shamshiri
et al. [56] reported that 44.3% of 357 real faults in the DEFECTS4J database [33] are not
detected by automatically generated tests and that 63.3% of these cases were due to weak
test oracles. In line with Shamshiri et al. [56]’s work, Schwartz et al. [53] reported that
stronger test oracles could also increase the effectiveness of manually-written tests.

In unit testing of object-oriented software, test oracles are represented as test asser-
tions that check properties of objects created as part of the test. Take the following piece
of code as an example.

Listing 1.1: Example of a method with a faulty implementation.
1 public class Foo {
2 public int sum(int a, int b) {
3 // return a + b; // correct implementation
4 return 0; // faulty implementation
5 }
6 }

Listing 1.1 shows a badly implemented sum function. This function takes two numbers
and should return the sum of those two numbers, however, as it is, it always returns 0.

3https://www.fierceelectronics.com/electronics/killer-software-4-
lessons-from-deadly-737-max-crashes

4https://blog.twitch.tv/en/2021/10/15/updates-on-the-twitch-
security-incident/

https://www.fierceelectronics.com/electronics/killer-software-4-lessons-from-deadly-737-max-crashes
https://www.fierceelectronics.com/electronics/killer-software-4-lessons-from-deadly-737-max-crashes
https://blog.twitch.tv/en/2021/10/15/updates-on-the-twitch-security-incident/
https://blog.twitch.tv/en/2021/10/15/updates-on-the-twitch-security-incident/

Chapter 1. Introduction 3

Without knowing the intended behavior of the function, current automated test generation
tools would always generate a test that expects the function to return the value 0 (see line
5 in Listing 1.2), allowing this fault to pass unnoticed.

Listing 1.2: Test case generated with EVOSUITE for the pseudo-method sum.
1 @Test
2 public void test0() {
3 Foo foo0 = new Foo();
4 int int0 = foo.sum(1, 2);
5 assertEquals(0, int0);
6 }

Providing accurate — fault revealing — test oracles for a test generated automati-
cally can be a difficult task [4]. Generated tests may not represent realistic scenarios and
may not be as nicely readable as human-written tests. Test generation tools also tend to
produce large numbers of tests. Thus, it may not be feasible for a human developer to
annotate all generated tests for a program under test with a test oracle. But, is that even
necessary? Recently, several techniques have been proposed to improve the results ob-
tained by automatically generated test suites [73, 72] and also to automatically generate
test oracles that resemble their manually-written counterparts [8, 65, 61, 40]. However, to
the best of our knowledge, there is no evidence that such techniques are able to generate
fault revealing test oracles.

1.3 Approach

In this work, we conducted an empirical study to assess the effectiveness of automatically
generated test oracles at revealing faults on manually-written unit tests. For this, we
used the DEFECTS4J database [33], which contains 835 real faults from 17 open-source
projects.

Specifically, our study answers the following research questions:

RQ1: How effective are manually-written tests augmented with automatically generated
test oracles at revealing real faults? In this question, we investigate whether T5 [49,
40] is able to generate fault revealing test oracles for manually-written tests.

RQ2: How long does it take to automatically generate fault revealing test oracles? In this
question, we investigate the time required by test oracle generation approaches such
as T5 [49, 40] to generate fault revealing oracles.

1.4 Contributions

The main contributions of this thesis are as follows:

1. A survey of previously proposed tools for automated test oracle generation and/or
test case augmentation, and a review on the usability of five of these tools.

Chapter 1. Introduction 4

2. A patch dataset that removes oracles from fault-revealing tests in DEFECTS4J [33]
and labels the line where an oracle must be injected to detect each bug. This al-
lows others, not only to precisely identify and study the type of oracles present in
DEFECTS4J, but also to evaluate their own tools.

3. An empirical evaluation of the effectiveness and efficiency of T5 [49, 40] at gener-
ating fault revealing test oracles for 835 real faults in the DEFECTS4J database [33].

4. A repository5 with all scripts and data generated and used in our study to allow its
reproduction and replication.

5. An adaptation of RANDOOP [45]6 and EVOSUITE [22, 2]7 that allows the genera-
tion of test cases containing an oracle placeholder. These adaptations can be used in
a future work, to evaluate the automated generation of test oracles in automatically
generated test cases.

1.5 Structure of the document

This document is organized as follows:

• Chapter 2 describes the required background to understand the contents of this
work.

• Chapter 3 describes the techniques and tools proposed in the literature to address
the oracle problem, as well as other empirical studies similar to the one proposed
with this work.

• Chapter 4 presents the methodology and experimental setup of our analysis.

• Chapter 5 presents the questions we mean to answer with this study.

• Chapter 6 presents the final remarks and what should be done in continuation of
this work.

5https://github.com/jose/meaningful-assert-statements-data
6https://github.com/jose/meaningful-assert-statements-randoop
7https://github.com/jose/meaningful-assert-statements-evosuite

https://github.com/jose/meaningful-assert-statements-data
https://github.com/jose/meaningful-assert-statements-randoop
https://github.com/jose/meaningful-assert-statements-evosuite

Chapter 2

Background

2.1 Structure of a Unit Test

A unit test is composed of the setup, which leads the software to a determined state, the
test action, where the focal method is called upon to do something, and the oracle, which
determines the correctness of the focal method’s execution.

Listing 2.1: Example test method depicting the structure of a unit test.
1 @Test
2 public void testSum() {
3 int a = 1;
4 int b = 1;
5 int expected = 2;
6 int result = sum(a, b);
7 assertEquals(expected, result);
8 }

The piece of code in Listing 2.1 shows an example of a simple test case testSum().
A test method is usually composed of three parts:

• Test Setup. This part is composed of the steps that need to be taken before the
execution of the test method’s core body. In the previous example, this includes the
initialization of the three variables a, b and expected.

• Test Action. In this part, the unit under test (UUT) executes some determined
action, which can, or not, be the focal method [48], i.e, the unit we want to test. In
the previous example, this is the call to sum(a, b), which is the focal method.
Note that, in some cases, a test’s action can be performed inside the oracle, e.g.,
assertEquals(expected, sum(a, b)).

• Test Oracle. A test oracle determines whether the outcome of the focal method’s
execution is as expected. In this example, an assertion oracle is used, however, there
are other kinds of oracles, which will be explored further in this work.

5

Chapter 2. Background 6

2.2 Oracle

Assertion oracles, as used in Listing 2.1, are not the only types of oracles. Barr et al. [4]
identify four types of test oracles, however, those can fit in two big groups: automated
oracles and human oracles.

2.2.1 Automated Oracles

Automated oracles can be performed by the system without any human input. Two groups
of automated oracles were previously identified by Dinella et al. [17]:

1. Expected Exception Oracles. This kind of oracle verifies if the execution of some
code with an invalid argument raises an exception.

Listing 2.2: Example test method using an expected exception oracle.
1 @Test
2 public void test() {
3 String s = "Hello World";
4 int index = -1;
5 try {
6 s.charAt(index);
7 Assert.fail();
8 } catch (Exception e) {
9 verifyException(e, IndexOutOfBoundsException);

10 }
11 }

2. Assertion Oracles. This kind of oracle is used in the form ‘assert*’ and verifies if
a returned value matches the expected result of an execution.

(a) Boolean Assertions. Used to check whether a value is true or false.

Listing 2.3: Example test method using a boolean assertion oracle.
1 @Test
2 public void test() {
3 String s = "Hello World";
4 assertTrue(s.startsWith("H"));
5 assertFalse(s.isEmpty());
6 }

(b) Nullness Assertions. Usually used to check the returned value from a func-
tion.

Listing 2.4: Example test method using a nullness assertion oracle.
1 @Test
2 public void test() {
3 LinkedList ll = new LinkedList();
4 assertNull(ll.peekFirst());
5 ll.add("A");
6 assertNotNull(ll.peekFirst());
7 }

Chapter 2. Background 7

(c) Equality Assertions. Used to compare the value returned from a function
against an expected value.

Listing 2.5: Example test method using an equality assertion oracle.
1 @Test
2 public void test() {
3 String initial_s = "HELLO WORLD";
4 String expected_s = "hello world";
5 assertEquals(expected_s, initial_s.toLowerCase());
6 }

2.2.2 Human Oracles

If no automated oracle can be used, the only source for a test oracle remaining is the
human, who knows informal specifications, the domain of the problem and what the ex-
pectation for the system’s output is.

2.3 Summary

In this chapter, we briefly described and demonstrated both, the structure of a unit test and
the parts that it can be split into, as well as what types of oracles there are and how they
are used. With this, our aim is to familiarize the reader with the notions of unit testing
and test oracles used in this document.

Chapter 3

Related Work

3.1 Automated Generation of Test Oracles

Writing unit tests is a complicated and tedious task for humans to perform. The auto-
matic generation of unit tests brings along the problem of knowing what is the correct
outcome of a program or software. This problem is known as the oracle problem [4].
Some solutions to solve this problem have been proposed, for example, by Braga et al.
[8], who presented an approach based on Machine Learning, capturing usage data from
an application and using that data to train the generation of an oracle suitable for the ap-
plication under test. Pastore et al. [46] used a different approach and tried to solve the
oracle problem by exploiting CrowdSourcing, dividing the task of generating an oracle
among several users.

3.1.1 Test Suite Automation

Some researchers have developed tools to automate the generation of test suites. Among
these tools, the three most mentioned in the literature are: (1) AGITARONE [32], that
automatically creates high code-coverage (about 80%) tests by analysing the project’s
source code and taking advantage of mocking technology to solve many of the depen-
dency issues; (2) RANDOOP [45], which uses feedback-directed random test generation;
and (3) EVOSUITE [22], which integrates µTEST [26], making use of mutation analysis
in object oriented languages to generate the most effective subset of test cases possible.
Both EVOSUITE and RANDOOP are able to automatically generate regression oracles,
i.e., JUnit assertions or exceptions that exercise the current behavior of the program un-
der test. EVOSUITE first generates all possible oracles for each test case and then filters
out these oracles based on their mutation score, i.e., on their ability to kill mutants [26].
RANDOOP runs each test case, collects the output of any public API of the class under
test, and generates oracles based on the collected data [45].

TESTNMT [67] and the solution proposed by Fontes et al. [21] can generate “partial
tests”. These tests may have syntactical errors or not generate the oracles, which are

9

Chapter 3. Related Work 10

needed to infer the correctness of the software, and need to be adapted by the developer
to produce a final desired test.

Despite the increasing number of tools that have been developed over time, integration
into everyday’s software development cycle remains a problem that needs to be solved.
Arcuri et al. [2] solve this problem by developing three plugins — one for Apache Maven,
another for the IntelliJ Integrated Development Environment (IDE) and a last one for
Jenkins Continuous Integration (CI) system — for EVOSUITE. This improves the inte-
gration of EVOSUITE into the development process of software projects.

Fontes and Gay [20] do a literature review over the use of machine learning to generate
test oracles and list the main challenges of this approach. Test oracles generated through
the use of machine learning are limited by the quality and quantity of training that they
are exposed to. These approaches often need a big volume of training data and the process
of gathering and filtering the contents of said data still requires a significant amount of
human effort. Besides this, the researchers often test their approaches with software that
is simple, not being representative of real world scenarios. For this, the authors mention
the use of a standard fault benchmark, for example, the DEFECTS4J [33] database, that
provides real world scenarios of code with a faulty and a fixed version of the software.

When evaluating the results obtained by automatically generated test suites, Shamshiri
et al. [56] and Shamshiri [55] find that even though some faults are never executed, most
of them are executed but not detected. This might indicate that a better way to generate
test oracles is needed. Another problem found, especially in randomly generated tests
(e.g. RANDOOP), is that some of these tests are flaky, which makes them unreliable.

3.1.2 Oracle Automation

A test oracle [29] is identified as a mechanism that determines whether a test has passed
or failed. Oracles compare the output of a system under test, for a given input, to the
expected output. Oracles can be automated, being executed or generated automatically.

Barr et al. [4] do a survey of the existent approaches to solve the test oracle problem. In
this study four techniques for oracle automation were identified: (1) specified test oracles,
(2) derived test oracles, (3) implicit test oracles and (4) the human test oracle.

3.1.2.1 Specified Test Oracles

A specification defines, if possible, using mathematical logic, a test oracle for a deter-
mined domain. A specification language allows the definition of a specified test oracle
that judges whether the behavior of a system conforms to a formal specification.

Pre-conditions and post-conditions — state-based specifications — impose a neces-
sary condition over the input states and the effect an operation has on the program’s state,
respectively.

Chapter 3. Related Work 11

Assertions are fragments of specification languages. An assertion checks the correct-
ness of the software at runtime, according to a boolean expression.

Researchers have developed tools that can generate assertions in a deterministic man-
ner by taking as input the test method and, for some tools, the focal method as well. These
tools take advantage of Neural Machine Translation (NMT), which uses an artificial neu-
ral network to predict the likelihood of a sequence of tokens. Machine Translation is a task
of Natural Language Processing (NLP) where software is applied to translate text from
one language to another. Two approaches of NMT have been used: (1) Recurrent Neural
Networks (RNNs), which process an input sequence token by token; and (2) the Trans-
former model, which relies entirely in the attention mechanism to capture the semantic
dependency from the global view. Transformers also allow for more parallelization than
RNNs, making them more efficient.

AuTomatic Learning of Assert Statements (ATLAS) [65] applies sequence-to-sequence
learning with an RNN encoder-decoder model. This tool uses SEQ2SEQ [9], a framework
for the implementation of sequence-to-sequence models. ATLAS takes in a pair composed
of the contextual test method (test method + focal method) and predicts a meaningful
assert statement that replaces the original oracle. Overall, the main challenges ATLAS

presents are: (1) it needs the test methods to be written previously; (2) only allows the
generation of one assert statement per test method, as it is not as easy to determine which
part of the test method’s body is relevant to a certain assert statement; and (3) it focuses
only in assertion oracles and can not create expected exception oracles, described in Sec-
tion 2.2.

Since the introduction of the Transformer [63] architecture, various transformer-based
techniques have been proposed. BERT [16] (Bidirectional Encoder Representations from
Transformers) is designed to pre-train deep bidirectional representations of unlabeled text
and is used to create state-of-the-art models for a wide variety of tasks. BERT is pre-
trained in two tasks: (1) Masked Language Model (MLM), where random tokens are
masked and the model has the objective of guessing the original token; and (2) Next Sen-
tence Prediction (NSP), where two sentences are given to the model and it must decide
whether the two sentences are related or not. Other researchers have, since then, presented
new models with similar pre-training techniques as BERT’s. Liu et al. [39] propose an ap-
proach based on BERT, RoBERTa (Robustly Optimized BERT Approach), which trains
the model for longer, with more data, removing the NSP task, using longer sequences and
dynamically changing the masking pattern. BART [36] pre-trains a model by combining
Bidirectional and Auto-Regressive Transformers and generalizing BERT’s MLM. Simi-
larly, CodeBERT [19] also uses a similar MLM task to pre-train a model. These two last
approaches (BART and CodeBERT) can outperform RoBERTa.

Tufano et al. [61] present an approach where a BART [36] transformer is pre-trained
on both, an english and source code corpus (BARTENG+CODE), which is then fine-tuned on

Chapter 3. Related Work 12

the task of generating assert statements for unit tests. To fine-tune this approach for assert
generation, the authors rely on the dataset used by ATLAS [65]. This dataset is com-
posed of test methods, focal methods and assert statements. The authors evaluated their
approach on how accurately it predicts human-written assert statements by comparing it
with ATLAS [65]. BARTENG+CODE was able to outperform ATLAS by 80% on top-1 ac-
curacy, where BARTENG+CODE achieved 62.47% of prediction accuracy while ATLAS was
only able to achieve 26.40%. Moreover, the authors also investigated whether the cover-
age achieved by tests automatically generated by EVOSUITE [22] would increase with the
integration of test oracles generated by BARTENG+CODE. Their approach increased line and
condition coverage of the automatically generated tests for 13 out of 18 test methods. The
generated oracles improved the line and condition coverage between 1-3 and 1-4 more
lines, respectively. For 4 methods the generated oracles, although being correct, did not
improve the coverage, while for 1 method no correct oracle was generated.

REASSERT [68] can use three different models to generate assert statements, which
include the Reformer [34], a state-of-the-art Transformer [63] architecture, ATLAS [65]
and TESTNMT [67]. The Reformer combines the modeling capacity of a Transformer
with a more efficient architecture and less memory use, making it more efficient. As
opposed to ATLAS, REASSERT [68] does not require the assert-less test method to be
written beforehand and allows the generation of more than one assert per test method.
However, it does not do well with small projects as that does not allow the models to
generalize maximally.

Mastropaolo et al. [40] pre-train and fine-tune the Text-to-Text Transfer Transformer
(T5) [49] model. Similar to the BARTENG+CODE [61] approach described before, this model
is also pre-trained on a dataset composed of both, english text and source code. This
approach is then fine-tuned in four different techniques: (1) fix faults; (2) inject code
mutants; (3) generate assert statements; and (4) generate code comments. For the task of
fine-tuning the model in the assert generation task, both versions (abstract and raw) of the
ATLAS [65] dataset were used.

Mastropaolo et al. [40] compared the results achieved by T5 [49] when fine-tuned to
support the assert generation task with the results reported by ATLAS [65].

In this study, the two original ATLAS datasets were used: AGraw , which contains the
raw source code for the input, and AGabs , which contains the abstracted version of input
and output.

When considering the abstracted version of the input (AGabs), T5 was able to achieve
similar accuracy values to the ones reported by ATLAS, for example, for K = 1, the ac-
curacy obtained by T5 was 34%, while ATLAS reported an accuracy of 31%. However,
when considering the raw dataset (AGraw), T5 achieved a 29% higher accuracy with K
= 1 (47% vs. the 18% reported by ATLAS), increasing the performance gap for larger K
values between 35-38%. T5 achieved similar results both with and without abstraction.

Chapter 3. Related Work 13

Dinella et al. [17] developed a new approach, Test Oracle GenerAtion (TOGA),
which can infer exception and assertion test oracles based in a unit’s context. This ap-
proach uses CodeBERT [19] for the generation of both, exception and assertion oracles.
TOGA is pre-trained with a variant of the ATLAS [65] dataset for the task of generating
assertion oracles and takes as input a test prefix and a unit context, which can refer to a
method’s signature or documentation.

Dinella et al. [17] compared their approach (TOGA) with BARTENG+CODE [61] in the
context of how accurate the generated assert statements are. This was made using a vari-
ation of the ATLAS [65] dataset. Results were reported using two test sets: (1) overall set,
which consisted of the entire variation of the ATLAS dataset; and (2) in-vocab set, which
is the subset of the overall set that can be expressed by the grammar and vocabulary de-
fined by TOGA. For the in-vocab set, TOGA and BARTENG+CODE achieved accuracies of
96.0% and 63.0%. However, when considering the overall set, the accuracy achieved by
TOGA decreased to 69.0% while BARTENG+CODE’s accuracy was 62.0%.

3.1.2.2 Derived Test Oracles

Derived test oracles differentiate valid and invalid behavior by using information derived
from the system’s properties (documentation, system execution results and characteristics
of previous versions).

Metamorphic testing [11] exploits properties necessary for the correct functionality
of the software in order to assess a system’s correctness — metamorphic relations. For
example, when implementing a sine function, a metamorphic relation to this function is
“sin(x) = sin(π−x)” ([69]). These relations allow for an increased space of inputs used
for testing, without the need to know what the output of a given input should be. If these
relations do not hold, then we know the software has some defects ([71, 66]).

Segura et al. [54] verify that the interest in metamorphic testing has been increasing
in various areas, such as metamorphic relation identification, test case generation, inte-
gration with other techniques and validation and evaluation of software. In this study,
as well as the ones developed by Liu et al. [38] and Chen et al. [12], researchers find
that metamorphic testing can obtain similar fault-detection results to the use of a test or-
acle, without the need to know what the expected output to a certain input is. The main
challenge that metamorphic testing presents is the identification of good metamorphic re-
lations. It is important, not only to use a variety of diverse metamorphic relations, but also
to know how to select the most effective ones.

More recently, Ibrahimzada et al. [31] developed SEER, which can determine whether
a unit test passes or fails on a given method under test when no oracles are present in
the test method. SEER was trained on a large dataset based on DEFECTS4J to learn
the semantic correlation between inputs and outputs. To achieve this, SEER uses joint-
embeding to semantically separate the representation of correct and buggy MUTs depend-

Chapter 3. Related Work 14

ing on the result of the tests.
Regression test suites assume that the previous implementation of the system is cor-

rect and can be used as an oracle. These test suites check the correctness of a system’s
new implementation based on past functionality.

EVOSUITE [22] generates test suites that are, not only optimized for code coverage,
but also enhanced with regression assertions that capture the current behavior of the tested
unit.

System executions can be used by exploiting the execution trace to derive test oracles.
Molina et al. [43] developed EVOSPEX, which takes advantage of system executions

to generate post-condition assertions. This tool first executes the method under test to
obtain valid pre and post-state pairs. Then, these valid pre and post-state pairs are mutated
to generate invalid ones. Finally, a genetic algorithm is used to infer assertions in the form
of post-conditions that satisfy the valid pre and post-state pairs.

Danglot et al. [14] developed DSPOT, which uses mutation score to try to improve
upon developer-written test cases. This approach takes a test case as input and outputs an
improved version of the same test case. These new tests can be directly integrated into
the main codebase through patches or pull requests.

RANDOOP [45] generates unit tests using feedback-directed random testing, a tech-
nique that uses execution feedback gathered from executing test inputs as they are created.
Besides this, input sequences that exhibit normal behavior (no exceptions and no contract
violations) are output as regression tests.

Textual documentation describes requirements of a system’s functionality and can be
used as a basis for generating test oracles. Although being, usually, partial and ambiguous,
in contrast to specification languages, developers are more likely to write them.

Goffi et al. [27] developed TORADOCU, which automatically generates test oracles
for exceptional behaviors by processing Javadoc comments. TORADOCU takes advan-
tage of aspect oriented programming and AspectJ1 to embed the generated oracles into
existing test suites. Similarly, JDOCTOR [7] also parses Javadoc comments by combining
pattern, lexical and semantic matching. However, unlike TORADOCU, JDOCTOR creates
software contracts, by generating executable procedure specifications for preconditions,
and normal and exceptional post-conditions.

3.1.2.3 Implicit Test Oracles

Implicit test oracles rely on common and implicit knowledge of a system’s correct and
incorrect behavior. An implicit test oracle does not require domain knowledge as it is
based on facts, e.g., “the system must not crash”.

Exceptions or crashes are, generally, blatant faults. However, there are no universal
rules and an exception (or even a crash) can be a fault in one system, but be expected in

1https://www.eclipse.org/aspectj/

https://www.eclipse.org/aspectj/

Chapter 3. Related Work 15

another.

3.1.2.4 Human Test Oracles

When no other solution works, a human tester must be used as an oracle. The human
tester can be involved in the process in two ways: (1) writing the test oracles; and (2)
evaluating the outcome of tests. Researchers have worked in finding ways to reduce the
effort needed by the human tester in both of these. For example, Pastore et al. [46] try
to automate the test oracle mechanism by outsourcing the problem to an online service
where other people provide the answers — i.e., CrowdSourcing. In this study researchers
point out key challenges, e.g. the need for the problem to be exposed in a simple way,
provide sufficient and clear documentation of the problem and the need for the workers
to have some experience in the area. Despite all of this, the described research still shows
promising results (at least 69% correct answers with a qualified crowd).

3.2 Effectiveness of Automatically Generated Oracles

Other researchers have conducted empirical evaluations regarding the effectiveness of au-
tomatic oracle generation approaches at detecting real faults [56, 17, 1]. Here we describe
the works that have evaluated the effectiveness of automatically generated tests or test
oracles at detecting the faulty behavior of the program under test.

Some tools, as is the case for EVOSUITE [22], RANDOOP [45] and AGITARONE [32],
are able to generate complete test suites that are complemented with a test oracle, and do
not focus specifically on the generation of test oracles. While these tools are not the focus
of our work, they are established as state-of-the-art in automated test suite generation and
can be seen as a baseline for our analysis.

Shamshiri et al. [56] evaluated and compared the effectiveness of these three state-of-
the-art test generation tools (i.e., EVOSUITE, RANDOOP and AGITARONE) at detecting
the 357 real faults in the DEFECTS4J v0.1.0 dataset. In this evaluation, researchers re-
ported that the automated test generation tools were able to generate test cases that de-
tected 199 out of the 357 faults (55.7%), but no tool alone could detect more than 40.6%.
When considering tools individually, EVOSUITE, AGITARONE and RANDOOP detected
145, 130, and 93 faults, respectively. Furthermore, EVOSUITE and RANDOOP generated
3.4% and 8.3% non-compilable test suites on average, 21.0% of the tests generated by
RANDOOP were flaky (i.e., they passed/failed temporarily due to some dependencies),
and 46.0% of AGITARONE ’s failing tests were false positives.

Almasi et al. [1] evaluated both EVOSUITE [22] and RANDOOP [45] on a real financial
application known as LifeCalc, owned and developed by SEB Life & Pension Holding
AB Riga Branch. In total, 19 out of 25 faults were detected. On average, EVOSUITE and
RANDOOP generated a test suite that detected 50.8% and 36.8% of the faults, respectively.

Chapter 3. Related Work 16

Some of the researchers for automated test oracle generation tools have evaluated their
approaches regarding how effective these approaches are at detecting bugs or at improving
test cases in real world projects.

Dinella et al. [17] integrate TOGA with the EVOSUITE [22] toolset to determine
whether TOGA can generate test oracles capable of detecting real faults. The integration
resulted in automatically generated test suites that detected 54 real faults out of the 835 in
the DEFECTS4J v2.0.0 dataset.

Danglot et al. [14] evaluate their approach (DSPOT) using 40 real-world unit test
classes from 10 open-source software projects. DSPOT was able to improve 26/40 of the
test cases. The researchers also proposed the use of these automatically improved test
cases to the projects’ lead developers. In the end, 13/19 of these improved test cases were
accepted and merged into the main code base.

In this study, as opposed to the approaches described previously, we evaluated an auto-
matic oracle generation approach on manually-written tests. In a nutshell, we investigated
(1) how effective are automatically generated oracles at detecting real faults when used in
manually-written tests, and (2) how efficient are automatic oracle generation approaches
at generating test oracles.

3.3 Summary

Researchers have developed several tools that automatically generate test suites or test
oracles, in order to ease the task of writing unitary tests. However, these tools still have
trouble distinguishing correct from incorrect behavior — known as the oracle problem.

In this chapter, we do a survey of the state-of-the-art on both, test suite automation and
oracle automation. First, we review three test suite generation tools that have been used in
real-world development as well as a few others and describe the problems raised by these
tools. We then identify several oracle automation techniques as well as the type of oracles
that each of them generates, and, as we did previously, describe the problems that each of
these tools presents. Moreover, we also demonstrate how the oracles generated by these
tools perform when compared with manually-written oracles or when compared with the
oracles generated by another tool. Finally, we present other works that, similarly to our
evaluation, have analyzed how the previously surveyed tools perform when generating
test cases and test oracles for real-world projects.

Tools to automatically generate test suites are already used in real development sce-
narios. However, these tools still fail to identify many of the faults present in the software
[56, 55], meaning that a better way to generate test oracles may be needed. Although
a lot of effort is being put into the automation of generating better test oracles, most of
these tools have only been tested regarding how accurately they can generate an oracle
that is similar to a manually-written oracle. However, in reality, how effective are these

Chapter 3. Related Work 17

automatically generated oracles at detecting real faults?

Chapter 4

Empirical Study

To evaluate the effectiveness of automatically generated test oracles at detecting real
faults, we performed an empirical evaluation of automatically generated test oracles on
manually-written test cases. Despite advances on the automatic generation of test ora-
cles [26, 72, 46], the oracle problem is still one of the main challenges of automatic test
generation (as without a formal specification or domain knowledge of the program under
test, it is almost impossible to know its intended behavior).

In this section we present the methodology and experimental setup of our empirical
analysis.

4.1 Experimental Subjects

To automatically perform our experimental analysis, the selection of subject programs
used in our empirical evaluations is restricted to the following requirements: (1) the pro-
grams used should be developed in Java as the considered tools only support Java; (2) two
versions of the same program should be available to automatically validate if an oracle de-
tects or not the change, i.e., the fault; and (3) the difference between two versions should
be documented as a patch so that we could automatically validate if an automatically gen-
erated test case covers the faulty code1. One particular collection of subject programs that
meets all requirements is DEFECTS4J [33] 2.0.0 (#74b5b81)2. DEFECTS4J is a collec-
tion of 835 reproducible and isolated real software faults from 17 large Java open-source
programs. For each real fault, DEFECTS4J provides a pair of program versions: a fixed
and a faulty version (created by applying a minimal patch to the fixed version) and the
corresponding test suites with at least one test case that triggers the fault. In addition,
DEFECTS4J has been used in similar studies (e.g., [56, 17]) which allows us to compare
our results to the ones reported in the literature.

1Note that no test oracle could ever trigger the faulty behavior of the program under test if the test case
does not cover the faulty code.

2https://github.com/rjust/defects4j/tree/v2.0.0

19

https://github.com/rjust/defects4j/tree/v2.0.0

Chapter 4. Empirical Study 20

4.2 Experimental Setup

All experiments were executed on a machine at the Faculty of Sciences of the University
of Lisbon, Portugal. The machine was running Ubuntu 5.4.0-125-generic (x86 64) with
32 Intel(R) Xeon(R) Silver 4216 CPU at 2.10GHz, and 64 GB of RAM.

4.2.1 Unit Test Cases

In our evaluation, we assess the effectiveness of automatically generated oracles when
coupled with developer-written test cases. For this, we used a variation of the fault-
revealing manually-written tests available in the DEFECTS4J [33] database, where we
removed the lines that trigger the bug, with the intent of replacing these lines with auto-
matically generated oracles.

4.2.2 Test Oracles

In our study we focused on tools capable of either generating a complete oracle (e.g.,
ATLAS [65], BARTENG+CODE [61], T5 [49, 40] and TOGA [17]) or generating augmented
test methods (e.g., DSPOT [14]) that can be integrated into the original test suites. Some
tools, as is the case for JDOCTOR [7] and TORADOCU [27], are only capable of generating
pre and post-conditions, or Java Aspects that enhance parts of a test suite.

Some of these tools, however, proved unusable for various reasons: (1) ATLAS lacks
support and documentation that helps to execute it3; (2) BARTENG+CODE is not publicly
available; (3) TOGA requires that we provide it an already formed oracle, which is then
improved4. This would not allow for a fair comparison or to make any solid conclusions
of TOGA’s results, as it would already have been provided with an oracle that tested
the buggy behavior; and (4) DSPOT can only handle maven projects5. As DEFECTS4J
contains projects that do no use maven, we opted to exclude DSPOT.

With this in mind, to automatically generate test oracles for manually-written tests, we
opted to use only T56. Mastropaolo et al. [40] made two T5 models available (raw and
abstract), which were trained for the generation of assert statements and differ in both,
complexity and results obtained. In our study, we evaluate only T5’s raw model, as it
requires a simpler procedure to integrate into a real development scenario. This model is
also the one with the best accuracy when comparing the generated oracles with the ones
written by developers.

3https://gitlab.com/cawatson/atlas---deep-learning-assert-
statements/-/issues/2

4https://github.com/microsoft/toga/issues/3
5https://github.com/STAMP-project/dspot/issues/728
6Disclaimer: during the development of this thesis a new version of T5 [41] was proposed that addresses

some of the issues we later report in Section 5.1.3. Due to time constraints, we have not included it in our
empirical study.

https://gitlab.com/cawatson/atlas---deep-learning-assert-statements/-/issues/2
https://gitlab.com/cawatson/atlas---deep-learning-assert-statements/-/issues/2
https://github.com/microsoft/toga/issues/3
https://github.com/STAMP-project/dspot/issues/728

Chapter 4. Empirical Study 21

4.2.3 Fault Set

In our study, we used DEFECTS4J 2.0.0 (#74b5b81) [33]. This collection is composed of
17 open-source Java programs (Chart, Cli, Closure, Codec, Collections, Compress, Csv,
Gson, JacksonCore, JacksonDatabind, JacksonXml, Jsoup, JxPath, Lang, Math, Mockito,
Time), adding up to 835 bugs.

4.3 Experimental Procedure

4.3.1 Fault Detection

To assess whether automatically generated oracles do actually detect a fault, at least two
different experiments could be performed: (1) ask a human developer to inspect every
generated oracle (expensive and error prone); or (2) execute every generated oracle on
a different version of the same program (cheap and can be performed automatically).
Ideally, the difference between the program version in which oracles are generated and
the program version in which oracles are executed should be minimal and represent a
single change. Given that DEFECTS4J already provides such minimal difference between
the faulty and fixed version of each fault, we can perform (2) out-of-the-box and most
importantly, automatically.

Note that automatically generated test oracles could fail to detect a fault for reasons
unrelated to the fault itself. We identified these cases by checking whether the test cases
cover any faulty line and assuming the failure is fault-related if and only if it does. More-
over, we also (1) looked at the stacktrace of each failing test case and compared it with the
expected stacktrace provided by DEFECTS4J and, (2) compared the generated test oracles
with their developer-written counterparts.

4.3.2 Experimental Metrics

To judge the effectiveness and usefulness of the evaluated test oracle generation approach
(T5) at detecting real faults we measured a variety of metrics.

• Number of broken test oracles, i.e., oracles that do not compile on the program’s
version they were generated for.

• Number of flaky test oracles, i.e., oracles that fail on the program’s version they
were generated but due to other reason than the fault itself.

• Number of real faults detected.

• Runtime to generate a fault-revealing test oracle. An approach might not be con-
sidered as being usable in a real world scenario if it requires a long time to generate
test oracles for a given test suite.

Chapter 4. Empirical Study 22

We also perform a statistical analysis of our results and discuss whether, e.g., approach
X performs statistically better at generating fault-revealing test oracles than approach Y.
Depending on the distribution of the results obtained in our experiments, we will either
use parametric or non-parametric statistical tests to perform that analysis.

4.4 Threats to Validity

Based on the guidelines described by Wohlin et al. [70], we discuss the threats to validity.

4.4.1 Construct validity

A potential threat to construct validity is that we only used one tool (T5) in our study, as
we either could not manage to execute other tools or they were not suited for the purpose
of this study, as described in Section 4.2.2.

Moreover, the use of all faults in the DEFECTS4J database, without any sort of differ-
entiation on what are the types and severities of the faults used in our study, may present
another threat to construct validity. As T5 was trained to generate assert statements only
and does not know how to handle expected exception cases, our results my not be repre-
sentative of this approach’s capability of generating oracles capable of detecting faults for
the type of oracle it was trained on (i.e., assert statements).

Furthermore, the fault set used may not include every bug that was detected in these
projects, which may underestimate the capability of the automatically generated oracles
at detecting real faults. This is, however, mitigated, as the bugs present in DEFECTS4J
are taken from all stages of a project’s development.

4.4.2 External validity

A potential threat to external validity is that our results may not generalize to other pro-
grams with different characteristics.

We mitigate this by using DEFECTS4J 2.0.0 (#74b5b81) [33]. This provides us with
(1) a big diversity of projects (17 open-source Java programs), which differ in complexity
and in how tests are written (as different developers can write the same test method in
different ways), and (2) a wide variety of bugs (835).

Moreover, our study only uses manually-written test cases. It is possible, however,
that automatically generated test cases could provide a better set up for the automatic
generation of oracles, leading to better results.

4.4.3 Internal validity

A potential threat to internal validity is that we may overestimate how good the automati-
cally generated oracles are at detecting real faults. We mitigate this by executing the tests

Chapter 4. Empirical Study 23

in both versions of the software, i.e., a version where the fault is present and a version
where the fault has been fixed through a minimal change to the source code. For the cases
where the oracle fails in the faulty version of the software but does not in its fixed counter-
part, we (1) manually go through the stacktrace to check if a test case covers a faulty line
and, (2) compare the generated oracles to their manually-written counterparts to identify
false-positives. Moreover, all scripts developed to perform our experiments and run our
statistical analysis were revised by all the authors and are publicly available for others to
review and/or reuse.

4.5 Summary

In this chapter we describe the setup used to conduct the evaluation of automatically
generated oracles as well as the validity threats that may be raised.

The use of DEFECTS4J eases the execution of our study, as it is composed of various
projects written in Java, with documented faults, tests capable of detecting those faults
and a version where that fault is fixed.

When considering the automated generation of test oracles, only one was used in
our study, while several others were discarded. These tools may be discarded due to
unavailability, low documentation, having an unfair advantage over other tools, or simply
being out of the scope of our study.

Moreover, we describe the procedure and metrics to be recorded during the execution
of our study.

Finally, we identify possible validity threats that our setup presents and how we plan
to mitigate these threats.

Following the presented setup, in the following chapter, we perform an empirical study
to detect how effective and efficient the selected test oracle generation approach is at
detecting real-world software faults.

Chapter 5

Empirical Analysis

In our empirical analysis, we conduct experiments that allow us to obtain concrete data to
evaluate whether automatically generated test oracles are, not only effective at detecting
real faults, but also usable in a real development scenario. In particular, our empirical
study answers the following research questions:

5.1 RQ1: How effective are manually-written tests aug-
mented with automatically generated test oracles at
revealing real faults?

In this research question, we evaluate the effectiveness of an automated oracle generation
approach (T5) at producing fault-revealing test oracles for manually-written test cases.

5.1.1 Procedure

Figure 5.1 depicts the procedure we conducted to answer this research question. For
each fault X , we 1 remove all manually-written test oracles from all fault revealing
manually-written tests. 2 Augment each test with test oracles generated by T5 [49, 40].
3 Compile the augmented tests on the faulty and fixed versions of X and remove any

test oracle that it is considered broken, i.e., it does not compile. 4 Execute the tests
on the faulty version of X to assess its fault detection capability. If no test fails on the
faulty version, the fault is considered undetected. 5 Otherwise, if at least one test fails,
we execute it on the fixed version of X to evaluate for false-positives. A test that fails in
both, the version containing the bug and the version that does not contain the bug, it fails
due to any other reason that is unrelated to the fault itself and is, therefore, a false-positive.
5 If, on the other hand, the test does not fail in the fixed version, we manually compare

the automatically generated oracle with the manually-written one. Besides this, we also
compare the stacktraces obtained by executing, on the buggy version of the software, the
test containing manually-written test oracles and the test with automatically generated test

25

Chapter 5. Empirical Analysis 26

Defects4J

Stacktrace of all manually-written
fault revealing test cases

Fault X's
test suite

Fixed version
of fault X

Faulty version
of fault X

2. Augment test suite
with automatically

generated test oracles

1. Remove
test oracles

T5

3. Compile augmented
test suite

3'. Remove broken test oracles

4. Run augmented
test suite

No failing test,
fault X has not
been detected

Fault X has
been detected

False-positive,
fault X has not
been detected

5. Run fault
detecting test suites

False-positive, test still fails
on fixed version, fault X
has not been detected 6. Check for

false-positives

Figure 5.1: RQ1’s procedure.

oracles. If it is clear that the generated oracle tests the same functionality as the manually-
written oracle, or both stacktraces report the same error or exceptional message, we then
assume the fault is truly detected.

1 Remove all manually-written test oracles from all fault revealing manually-written
tests

Figure 5.2 displays the distribution of fault revealing manually-written tests for each
project in DEFECTS4J. Overall, in the 835 bugs, there are 1,750 fault revealing manually-
written tests in the DEFECTS4J collection. Most bugs are triggered by a single test case
(559 out of 835) and on average there are 2.1 fault revealing tests per bug. The bug with
the largest number of fault revealing tests is Closure-144 with 84 tests.

To remove all manually-written test oracles from all fault revealing manually-written
tests we (1) collected all fault revealing tests and identified the line of code in the test
that triggers the buggy behavior of each bug by looking at each test’s stacktrace, and (2)
removed the oracle and any subsequent lines of code from the test. We remove all lines
after the oracle as the execution of these never-executed-before lines could cause the tests
to fail for any other reason than the bug itself. The former is an automatic process as that
information is already provided by DEFECTS4J. The later was performed manually by all
the authors of this document for all bugs and kept in a patch file to ease the validation of
the procedure and/or to automatize any procedure related to RQ1.

During this procedure we have identified four types of test oracles that trigger the
buggy behavior of each bug in DEFECTS4J (assert statement, auxiliar test method, ex-
pected exception and unexpected exception). The number of test methods capable of de-
tecting a fault in each project for the identified test oracle types can be seen in Figure 5.3.

Chapter 5. Empirical Analysis 27

●●

● ●

●● ●

●

● ●● ●● ●●● ●

● ●●

●

●●

●●● ●●●●●● ●●● ●●

●● ●

●

● ●●

●● ●

●

2.1

Chart

Cli

Closure

Codec

Collections

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

1 10 100

Fault revealing manually−written tests (log10)

Figure 5.2: Distribution of fault revealing manually-written tests per project.

Figure 5.4 displays the number of bugs triggered per type of test oracle. Note that one
bug might be triggered by more than one test, each with a different type of test oracle.

Assert statement: Whereas a test triggers the buggy behavior of a bug through a JUnit
assertion, e.g., assertFalse. Out of the 1,750 fault revealing manually-written tests
in the DEFECTS4J collection, 576 trigger the buggy behavior through an assert statement.
Regarding number of bugs, 334 bugs are triggered by at least one assert statement, where
292 are uniquely triggered by assert statements. Chart-26 is the bug with the largest
number of assert statements (22). In our analysis, we found that assert statements could
be at the end of a test:

Listing 5.1: Line removed from the test that triggers the buggy behavior of Compress-6.
@Test
public void testNotEquals() {

ZipArchiveEntry entry1 = new ZipArchiveEntry("foo");
ZipArchiveEntry entry2 = new ZipArchiveEntry("bar");

- assertFalse(entry1.equals(entry2));
}

Or at any line in a test:

Listing 5.2: Lines removed from the test that triggers the buggy behavior of Lang-32.
@Test
public void testReflectionObjectCycle() {

ReflectionTestCycleA a = new ReflectionTestCycleA();
ReflectionTestCycleB b = new ReflectionTestCycleB();

Chapter 5. Empirical Analysis 28

● ●

●

●●

●

●

●●● ●●

●

●●

●● ●●●●●

●● ●

●● ●

●

●●

●

●

●

●

●● ●

● ●

●

●●

●●

●

●

●●●●

●

●●●●

●●●●

●

●

Assert statement Auxiliar test method Expected exception Unexpected exception

1 3 10 30 1 3 10 30 1 3 10 30 1 3 10 30

Chart

Cli

Closure

Codec

Collections

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Fault revealing manually−written tests (log10)

Figure 5.3: Distribution of fault revealing manually-written tests per project and per type of test
oracle.

a.b = b;
b.a = a;

a.hashCode();
- assertNull(HashCodeBuilder.getRegistry());
- b.hashCode();
- assertNull(HashCodeBuilder.getRegistry());
}

Auxiliar test method: Some tests use auxiliar methods where different conditions are
checked for and where the oracles are executed. Out of the 1,750 fault revealing manually-
written tests in the DEFECTS4J dataset, 691 trigger the buggy behavior through an aux-
iliar test method. Regarding number of bugs, 241 bugs are triggered by at least one
auxiliar test method, where 217 are uniquely triggered by auxiliar test method. No bug in
Jsoup, JacksonXml, and Collections projects is triggered by any auxiliar test method, and
Closure-144 is the bug with the largest number of auxiliar test methods (71).

For this type of oracle we removed the call to the auxiliar test method in the triggering
test. While we acknowledge that this is a simplification of the problem we tackle, we
preferred to first investigate the performance of these tools in a simpler scenario. It could,
however, be possible to obtain better results if we had generated the oracles for the auxiliar
methods instead, maintaining the original call to these methods. It could be interesting to
observe the results obtained with this approach in a future work.

Chapter 5. Empirical Analysis 29

Assert

statement

Auxiliar test

method

Expected

exception

Unexpected

exception

292

(35.0%)

217

(26.0%)

61

(7.3%)

211

(25.3%)

14

(1.7%)

0

(0.0%)
3

(0.4%)

5

(0.6%)

9

(1.1%)

20

(2.4%)

0

(0.0%)

0

(0.0%)

2

(0.2%)

1

(0.1%)

0

(0.0%)

Figure 5.4: Number of bugs triggered per type(s) of test oracle.

Listing 5.3: Lines removed from the test that triggers the buggy behavior of JxPath-6.
@Test
public void testIterateVariable() throws Exception {

assertXPathValueIterator(context, "$d", list("a", "b"));
- assertXPathValue(context, "$d = ’a’", Boolean.TRUE);
- assertXPathValue(context, "$d = ’b’", Boolean.TRUE);
}

Expected exception: Expected exception oracles execute some sort of action and pass
if, an only if, a certain exception is thrown. Out of the 1,750 fault revealing manually-
written tests in the DEFECTS4J dataset, 98 trigger the buggy behavior through a expected
exception. Regarding number of bugs, 71 bugs are triggered by at least one expected
exception, where 61 are uniquely triggered by expected exception. No bug in Chart and
Closure projects is triggered by expected exception, and Math-35 and Mockito-4 are the
bugs with the largest number of expected exceptions (4).

We defined that, for a try/catch block to be considered an expected exception oracle,
there had to be an action statement (the focal method) and a fail() statement in the try
block. If considered an expected exception, the entire try/catch is removed:

Listing 5.4: Lines removed from the test that triggers the buggy behavior of JacksonCore-23.
@Test
public void testInvalidSubClass() throws Exception
{

DefaultPrettyPrinter pp = new MyPrettyPrinter();
- try {
- pp.createInstance();
- fail("Should not pass");
- } catch (IllegalStateException e) {

Chapter 5. Empirical Analysis 30

- verifyException(e, "does not override");
- }
}

Note that, not all try/catch blocks represent an expected exception. The example below
shows Compress-17. This test contains a try/catch, however, if an exception is thrown,
the test will fail.

Listing 5.5: Lines removed from the test that triggers the buggy behavior of Compress-17.
@Test
public void testCompress197() throws Exception {

TarArchiveInputStream tar = getTestStream("/COMPRESS-197.tar");
try {

TarArchiveEntry entry = tar.getNextTarEntry();
while (entry != null) {

entry = tar.getNextTarEntry();
}

} catch (IOException e) {
- fail("COMPRESS-197: " + e.getMessage());

} finally {
- tar.close();

}
}

In JUnit, expected exceptions could also be coded using the @Test(expected = ...) anno-
tation. We found 31 cases where the expected exception oracle was a JUnit annotation. In
these cases, the entire method executes normally and, once it finishes execution, if the test
has not thrown the expected exception, fails. As JUnit does not provide a way to specify
what method is expected to throw the exception, it is necessary to have knowledge of
the code to know exactly what statement that would be. Because of this, we decided to
remove all lines from these test methods, leaving them empty, as well as the ‘(expected =
...)’ from the @Test annotation.

Listing 5.6: Line removed from the test that triggers the buggy behavior of Csv-8.
- @Test(expected = IllegalArgumentException.class)
+ @Test

public void testDuplicateHeaderElements() {
- CSVFormat.DEFAULT.withHeader("A", "A").validate();

}

Unexpected exception: In this type of oracle, a test fails due to an exception being thrown
during an action in the test. Out of the 1,750 fault revealing manually-written tests in
the DEFECTS4J dataset, 385 trigger the buggy behavior through a unexpected exception.
Regarding number of bugs, 246 bugs are triggered by at least one unexpected exception,
where 211 are uniquely triggered by unexpected exception. Mockito-1 is the bug with the
largest number of unexpected exceptions (26).

Listing 5.7: Lines removed from the test that triggers the buggy behavior of Compress-20.
@Test
public void testCpioUnarchiveCreatedByRedlineRpm() throws Exception {

CpioArchiveInputStream in =

Chapter 5. Empirical Analysis 31

new CpioArchiveInputStream(new FileInputStream(getFile("redline.cpio")));
CpioArchiveEntry entry= null;

int count = 0;
- while ((entry = (CpioArchiveEntry) in.getNextEntry())
- != null) {
- count++;
- }
- in.close();

- assertEquals(count, 1);
}

Some unexpected exceptions might also occur within a try/catch block. Note that, in List-
ing 5.8, we removed the entire try/catch block as it would have been left empty otherwise.

Listing 5.8: Lines removed from the test that triggers the buggy behavior of Jsoup-78.
@Test
public void handlesEmptyStreamDuringParseRead() throws IOException {

Connection.Response res = Jsoup.connect(InterruptedServlet.Url)
.timeout(200)
.execute();

boolean threw = false;
- try {
- Document document = res.parse();
- assertEquals("Something", document.title());
- } catch (IOException e) {
- threw = true;
- }
- assertEquals(true, threw);
}

Miscellaneous: During our procedure, some outliers were found. For these cases, we had
to proceed with different strategies, which are described here.

Out of the 835 active bugs in DEFECTS4J, we found two (Chart-4 and Mockito-12)
for which the bug is located in the setup method. As this method is invoked by JUnit
before any other test method gets executed, removing lines from it could cause other tests
to fail. Thus, we did not manage to entirely remove the manually-written test oracles so
that every test would pass.

Moreover, some manually-written tests become empty after applying our procedure
to remove the manually-written test oracles. In our analysis we found 531 empty tests
out of 1696, where Collections is the only project without any empty tests and Closure is
the project with the most amount of empty tests (356 out of 545) as well as the highest
percentage of empty tests (65.3%), e.g.:

Listing 5.9: Lines removed from the test that triggers the buggy behavior of Gson-11.
@Test
public void testNumberAsStringDeserialization() {

- Number value = gson.fromJson("\"18\"", Number.class);
- assertEquals(18, value.intValue());
}

In some cases, the resulting tests, after applying our procedure, would still fail for

Chapter 5. Empirical Analysis 32

another reason. For those cases, we had to follow an additional procedure:

• When a test fails due to a line inside a try block, according to our procedure, all
lines inside the finally block (if there is one) are removed. In JacksonDatabind-58,
we can not remove the line inside the finally block, as it causes other tests to fail.

Listing 5.10: Patch created to remove the failing line inf JacksonDatabind-58.
@Test
public void testCauseOfThrowableIgnoral() throws Exception
{
final SecurityManager origSecMan = System.getSecurityManager();
try {
System.setSecurityManager(new CauseBlockingSecurityManager());

- _testCauseOfThrowableIgnoral();
} finally {
System.setSecurityManager(origSecMan);

}
}

• When a bug is detected inside a loop, continuing to execute the loop can lead to the
test failing in another line. We found three cases where this happened (Closure-74,
Lang-40, and Time-25). In these cases, we decided to remove these other failing
lines so that the test executes without failing.

Listing 5.11: Patch created to remove the failing lines in Time-25.
@Test
public void test_getOffsetFromLocal_Moscow_Autumn_overlap_mins()
{
for (int min = 0; min < 60; min++) {
if (min < 10) {

- doTest_getOffsetFromLocal(10, 28, 2, min,
- "2007-10-28T02:0" + min + ":00.000+04:00", ZONE_MOSCOW);

} else {
- doTest_getOffsetFromLocal(10, 28, 2, min,
- "2007-10-28T02:" + min + ":00.000+04:00", ZONE_MOSCOW);

}
}

}

• In other cases, our procedure might lead to infinite loops. We found two bugs
for which this happened (Compress-36 and JacksonCore-4). We took different
approaches for each of them. In Compress-36, it was possible to leave one line
unchanged, which allows the loop to reach a final state.

Listing 5.12: Patch created for Compress-36 to avoid an infinite loop.
@Test
public void readEntriesOfSize0() throws IOException {
final SevenZFile sevenZFile = new SevenZFile(getFile("COMPRESS-348.7z"));
try {
int entries = 0;
SevenZArchiveEntry entry = sevenZFile.getNextEntry();
while (entry != null) {
entries++;

- int b = sevenZFile.read();
- if ("2.txt".equals(entry.getName()) ||
- "5.txt".equals(entry.getName()))

Chapter 5. Empirical Analysis 33

- {
- assertEquals(-1, b);
- } else {
- assertNotEquals(-1, b);
- }

entry = sevenZFile.getNextEntry();
}

- assertEquals(5, entries);
} finally {

- sevenZFile.close();
}

}

In JacksonCore-4, we did not have this option, therefore, and to avoid adding code
(e.g., a break statement), in any of the patches, we decided to entirely remove
the loop block. We are aware of the problem this raises, however, we thought this
would be a preferable approach for the reason described previously.

Listing 5.13: Patch created for JacksonCore-4 to avoid an infinite loop.
@Test
public void testExpand()
{
TextBuffer tb = new TextBuffer(new BufferRecycler());
char[] buf = tb.getCurrentSegment();

- while (buf.length < 500 * 1000) {
- char[] old = buf;
- buf = tb.expandCurrentSegment();
- if (old.length >= buf.length) {
- fail("Expected buffer of " + old.length +
- " to expand, did not, length now " + buf.length);
- }
- }
}

In the end, we generated 1696 patches that remove the statements that cause the tests in
DEFECTS4J to fail. Note that, in total, DEFECTS4J had 1,750 failing tests. The difference
in these numbers is due to the fact that, in some cases, the failing tests referred to an
extended test class.

2 Augment each test with test oracles generated by either T5

After the process described in 1 , the tests present in all of the DEFECTS4J projects
should be compilable and execute without failing.

T5, requires an oracle placeholder to know where the generated oracle is to be placed
within the source code. We opted to add the line ‘// TEST ORACLE’ to the patches, to
serve as a placeholder (as demonstrated in Listing 5.14). The use of a comment allows
the code to compile and is easy enough to replace by any other placeholder recognized
by T5 or any other tool. This way, this dataset can still be used to test any other tool, for
example, ATLAS or BARTENG+CODE, in the future.

Listing 5.14: Patch created for Compress-6, containing oracle placeholder.

Chapter 5. Empirical Analysis 34

@Test
public void testNotEquals() {

ZipArchiveEntry entry1 = new ZipArchiveEntry("foo");
ZipArchiveEntry entry2 = new ZipArchiveEntry("bar");

- assertFalse(entry1.equals(entry2));
+ // TEST ORACLE
}

To be able to provide better oracles, T5 takes as input the test method’s source code
as well as the source of the focal method being used.

We developed a Java program1 to help us identify a test’s focal method by taking into
consideration the strategies described by Qusef et al. [48], Watson et al. [65] and Tufano
et al. [62]. Our program takes as input a project’s source code path and its tests’ path and
prints to file the source code of both, a test method and its focal method.

We start by making the assumption that the developers follow JUnit testing’s common
naming conventions to identify the focal class. According to common practice, the name
of a test class is usually composed of the name of the focal class, with the suffix ‘Test’
(for example, a class that tests Foo.java would be named FooTest.java). We then
loop through the methods called in the test method and remove those that do not belong
to the focal class. If a single method remains, then that is our focal method, otherwise,
if more than one method fits the criteria, then we attempt to identify the corresponding
focal method according to the test method’s name, as many times, the test method’s name
is composed of the name of the focal method plus the prefix/suffix Test. If only one
method remains, that is the test’s focal method, otherwise, if more than one method re-
mains, we select the method that is called last as the focal method.

We are aware this approach is a simplification of the problem and may lead to wrongly
identifying a method as being the focal method, however, manually determining each of
the test methods’ focal method is not feasible.

To increase our chances of detecting the right focal method, we also created another
set of patches that, instead of removing the line/oracle that causes a test to fail and every
other line after, keeps the line that causes the test to fail and removes every line after that.
Doing this means that, if our tool selects the last called method as the focal method, then
that method should be the one that made the test fail originally. Note that, in the following
examples, we add a ‘// TEST ORACLE’ comment at the end of some lines. This is not
required, however, helps us to manually identify the line that originally makes a test fail
if necessary.

Listing 5.15: Changes made to Codec-2 to keep the buggy behavior.
@Test
public void testBase64EmptyOutputStream() throws Exception {
byte[] emptyEncoded = new byte[0];
byte[] emptyDecoded = new byte[0];

- testByteByByte(emptyEncoded, emptyDecoded, 76, CRLF);

1Java tool to find a testś focal method, https://github.com/jose/meaningful-assert-
statements-data/tree/master/tools/test-analysis

https://github.com/jose/meaningful-assert-statements-data/tree/master/tools/test-analysis
https://github.com/jose/meaningful-assert-statements-data/tree/master/tools/test-analysis

Chapter 5. Empirical Analysis 35

- testByChunk(emptyEncoded, emptyDecoded, 76, CRLF);
+ testByteByByte(emptyEncoded, emptyDecoded, 76, CRLF); // TEST ORACLE
+
}

Listing 5.16: Changes made to Math-106 to keep the buggy behavior.
public void testParseProperInvalidMinus() {

String source = "2 -2 / 3";
try {

Fraction c = properFormat.parse(source);
- fail("invalid minus in improper fraction.");
+ fail("invalid minus in improper fraction."); // TEST ORACLE

} catch (ParseException ex) {
// expected

}
- source = "2 2 / -3";
- try {
- Fraction c = properFormat.parse(source);
- fail("invalid minus in improper fraction.");
- } catch (ParseException ex) {
- // expected
- }
}

Moreover, T5 (as well as ATLAS and BARTENG+CODE) expect source code to contain
fully-qualified class names (i.e., canonical names) and in a tokenized format. To accom-
plish this, we used SPOON [47], which analyzes source files and creates a meta-model
that allows for a deeper analysis and transformation of the program.

3 Compile the augmented tests on the faulty version of X

Oracles generated by T5 may not be compilable right away. T5 generates test oracles
using only lowercase, therefore, there may be errors in class, method or variable names
that must be fixed before we can compile the test suite with the automatically generated
oracles.

We developed a Python script2 to fix the casing of test oracles generated by T5. This
script takes as input the test method, the focal method and the test oracle generated by T5
to detect what variables exist in the test method, their type and the focal method’s name.
Moreover, we also generated JSON files3 containing all data from Java 8’s API that we
pass to the script to give it a better chance at correctly fixing the casing of a token.

5.1.2 Metrics

In RQ1 we track and report, for T5: the number of generated test oracles, the number of
broken test oracles and the number of failing tests.

2Python script to fix oracles generated by T5, https://github.com/jose/meaningful-
assert-statements-data/blob/master/oracle-generation/scripts/fix-t5-
output.py

3Generated JSON files containing Java 8 API’s data, https://github.com/jose/
meaningful-assert-statements-data/tree/master/utils/java-api

https://github.com/jose/meaningful-assert-statements-data/blob/master/oracle-generation/scripts/fix-t5-output.py
https://github.com/jose/meaningful-assert-statements-data/blob/master/oracle-generation/scripts/fix-t5-output.py
https://github.com/jose/meaningful-assert-statements-data/blob/master/oracle-generation/scripts/fix-t5-output.py
https://github.com/jose/meaningful-assert-statements-data/tree/master/utils/java-api
https://github.com/jose/meaningful-assert-statements-data/tree/master/utils/java-api

Chapter 5. Empirical Analysis 36

Moreover, we do a false-positive analysis to obtain: the number of false-positives, and
the number of faults detected.

A failing test is considered a ‘positive’, however, a ‘positive’ test, does not mean that
the test oracle detected a bug and can be one of two things:

• True-Positive: The test fails due to the buggy implementation.

• False-Positive: The test has flaky test oracle and fails due to a reason unrelated to
the bug itself.

To distinguish between these cases, we run the same test on the unit’s buggy and fixed
version. If the test fails on both, buggy and fixed versions, we can safely assume the test
has an incorrect oracle, and is a False-Positive.

5.1.3 Results

T5 was able to generate a test oracle for every one of the 1696 test methods, even if they
were left empty after applying our patch to remove the oracle. We demonstrate a few of
these cases here:

Oracles generated by T5 for empty test methods: T5 was able to generate oracles for test
methods that were left completely empty. Here we show a few of those cases to investigate
what kind of oracles can T5 generate in these cases.

• JacksonCore-17. T5 generated one of the most simple oracles possible, verifying
that the value ‘true’ is true.

Listing 5.17: Oracle generated for JacksonCore-17.
org. junit. assert. asserttrue (true)

• Time-18. T5 verifies whether two class literals are equal, however, it uses the same
class in both parameters of the oracle. Moreover, it is worth noting that, most likely,
T5 was able to use the ‘gjchronology’ token as it was the return type of the focal
method provided.

Listing 5.18: Oracle generated for Time-18.
org. junit. assert. assertequals (
org. joda. time. chrono. gjchronology. class,
org. joda. time. chrono. gjchronology. class

)

Listing 5.19: Focal method given for Time-18.
public static GJChronology getInstanceUTC() {
return getInstance(DateTimeZone.UTC, DEFAULT_CUTOVER, 4);

}

Chapter 5. Empirical Analysis 37

• Math-5. T5 fails to generate the correct oracle, however, the generated oracle is
objectively close to the oracle that had been written by the developers.

Listing 5.20: Oracle generated for Math-5.
org. junit. assert. assertequals (complex. zero, reciprocal ())

Listing 5.21: Oracle written by the developers for Math-5.
Assert.assertEquals(Complex.ZERO.reciprocal(), Complex.INF);

• Codec-16. T5 generated an oracle that is syntactically incorrect. However, it is
worth noting that it did try to use, in some way, the focal method that it was given.
Moreover, through the use of the ‘testcodec’ token, T5 may have gotten the idea that
this variable existed in the test suite’s scope through the name of the test method.

Listing 5.22: Oracle generated for Codec-16.
org. junit. assert. assertnotnull (testcodec. public base32 (true, null))

Listing 5.23: Focal method given for Codec-16.
public Base32(final boolean useHex, final byte pad) {
this(0, null, useHex, pad);

}

Listing 5.24: Test method for Codec-16.
@Test
public void testCodec200() {
// TEST ORACLE

}

Out-of-the-box, none of the oracles generated by T5 compile. The main reasons are:
(1) no test oracle includes the ‘;’ required by Java at the end of each statement; and (2)
T5 generates lowercase test oracles which do not match either the source code under test
and test’s code. As described in Section 5.1.1, we try to fix the generated oracles through
the use of a script.

Despite our efforts to automatically fix the oracles generated by T5, after our post-
processing, some oracles still keep badly formatted tokens. These could be variables not
defined in the source code, calls to non-existing methods, or oracles with a wrong syntax.

In Listing 5.25, we present a test case from Csv-9 with the post-processed test oracle.
As can be seen in Listing 5.26, this test does not compile, as the token ‘tomap’ should
have been ‘toMap’.

Listing 5.25: Csv-9 test method with automatically generated oracle.
@org.junit.Test
public void testToMapWithNoHeader() throws java.lang.Exception {

Chapter 5. Empirical Analysis 38

final org.apache.commons.csv.CSVParser parser =
org.apache.commons.csv.CSVParser.parse("a,b",
org.apache.commons.csv.CSVFormat.newFormat(’,’));

final org.apache.commons.csv.CSVRecord shortRec = parser.iterator().next();
org.junit.Assert.assertEquals (0 , shortRec.tomap().size());

}

Listing 5.26: Stacktrace excerpt from Csv-9’s execution with automatically generated oracle.
...
[javac] <...>/CSVRecordTest.java:175: error: cannot find symbol
[javac] org.junit.Assert.assertEquals(0, shortRec.tomap().size());
[javac] ˆ
[javac] symbol: method tomap()
[javac] location: variable shortRec of type CSVRecord

Listing 5.27 and Listing 5.28 show an oracle generated with a wrong syntax and part
of the stacktrace from its execution, respectively.

Listing 5.27: Automatically generated oracle for Gson-18.
org. junit. assert. assertnotnull (bigclass. public gson ())

Listing 5.28: Stacktrace excerpt from Gson-18’s execution with automatically generated oracle.
...
[javac] <...>/CollectionTest.java:410: error: <identifier> expected
[javac] org.junit.Assert.assertNotNull (bigClass.public Gson());
[javac] ˆ
...

Despite all of these cases, after the execution of our script, the % of oracles generated
by T5 that compile increased to 27.48% (466 oracles out of 1696).

We execute the tests that do compile on the faulty version of the software and, to assess
whether a test fails due to a reason unrelated to the bug itself, we then execute these same
tests on the fixed version of the software. If the oracle is testing the correct functionality,
then it should pass when executed on the version of the software that does not contain
the bug. Figure 5.5 reports the number of tests that pass or fail for both versions of the
software. Overall, out of the 213 tests that fail in the faulty version, 151 are automatically
identified as false-positives, as they also fail in the fixed version.

For the remaining 62 tests, we manually compare the oracle automatically generated
by T5 with the oracle written by the developers as well as the stacktraces that originate
from executing the tests on the faulty version of the software. When manually evaluating
these 62 test oracles, we found that most of the generated oracles (53) are exactly the
same as those that were manually-written while. For 9 remaining cases, we identified two
possibilities: (1) the oracles are different but are correct; and (2) the tests are different and
incorrect. We demonstrate these cases here:

Different but correct test oracles: In 5 test cases, despite being semantically different,
when comparing the oracles and the context they are executed in, it is simple to say they

Chapter 5. Empirical Analysis 39

execute the same verifications:

• Lang-55, in class org.apache.commons.lang.time.StopWatchTest,
method testLang315, the original oracle used assertTrue to assess an equal-
ity while T5 used assertEquals for the same variables.

Listing 5.29: Developer-written oracle for Lang-55.
junit.framework.TestCase.assertTrue(suspendTime == totalTime);

Listing 5.30: Automatically generated oracle for Lang-55.
org.junit.Assert.assertEquals (suspendTime , totalTime);

• Math-37, in class org.apache.commons.math.complex.ComplexTest,
methods testTan and testTanh, the original oracle used an extra value for
the assert statement. The oracle generated by T5 compares the same variables,
however, without the extra value.

Listing 5.31: Developer-written oracle for Math-37.
org.apache.commons.math.TestUtils.assertEquals(expected, actual, 1.0E-5);

Listing 5.32: Automatically generated oracle for Math-37.
org.junit.Assert.assertEquals (expected , actual);

• JacksonDatabind-48, in class com.fasterxml.jackson.databind.ser.
TestFeatures, method testVisibilityFeatures, the original oracle is
a fail inside an if statement. The oracle generated by T5 tests the opposite of the
condition present in the if statement, meaning that, once the execution reaches the
generated assert statement, the value being tested is always false, making this assert
statement equal to assertTrue(false), or simply a fail statement.

Listing 5.33: Developer-written oracle for JacksonDatabind-48.
if (props.size() != 1) {
junit.framework.TestCase.fail((("Should find 1 property, not " + props.size()) +

"; properties = ") + props);
}

Listing 5.34: Automatically generated oracle for JacksonDatabind-48.
if (props.size() != 1) {
org.junit.Assert.assertTrue (((props.size ()) == 1));

}

• Compress-2, in test class org.apache.commons.compress.archivers
.ArTestCase, method testArDelete, the original oracles test whether two

Chapter 5. Empirical Analysis 40

variables are equal to 1, while the oracle generated by T5 tests whether those same
variables are equal to eachother.

Listing 5.35: Developer-written oracles for Compress-2.
junit.framework.Assert.assertEquals(1, copied);
junit.framework.Assert.assertEquals(1, deleted);

Listing 5.36: Automatically generated oracle for Compress-2.
org.junit.Assert.assertEquals (copied , deleted);

Different and incorrect test oracles: In 4 cases, it is not as easy to distinguish correct from
incorrect oracles without knowledge of the system being tested. For this reason, we opted
to underestimate the results obtained and identified these cases as false-positives:

• JacksonDatabind-42, in class com.fasterxml.jackson.databind.deser
.TestJdkTypes, method testLocale.

Listing 5.37: Test case with manually-written test oracle for JacksonDatabind-42.
@org.junit.Test
public void testLocale() throws java.io.IOException {
junit.framework.TestCase.assertEquals(new java.util.Locale("en"),

MAPPER.readValue(quote("en"), java.util.Locale.class));
junit.framework.TestCase.assertEquals(new java.util.Locale("es", "ES"),

MAPPER.readValue(quote("es_ES"), java.util.Locale.class));
junit.framework.TestCase.assertEquals(new java.util.Locale("FI", "fi", "savo"),

MAPPER.readValue(quote("fi_FI_savo"), java.util.Locale.class));
// [databind#1123]
java.util.Locale loc = MAPPER.readValue(quote(""), java.util.Locale.class);
// TEST ORACLE
junit.framework.TestCase.assertSame(java.util.Locale.ROOT, loc);

}

Listing 5.38: Automatically generated test oracle for JacksonDatabind-42.
org.junit.Assert.assertNotNull (loc);

• JacksonDatabind-103, in class com.fasterxml.jackson.databind.exc.
BasicExceptionTest, method testLocationAddition.

Listing 5.39: Test case with manually-written test oracle for JacksonDatabind-103.
@org.junit.Test
public void testLocationAddition() throws java.lang.Exception {
try {
MAPPER.readValue("{\"value\":\"foo\"}", new

com.fasterxml.jackson.core.type.TypeReference< java.util.Map<
com.fasterxml.jackson.databind.BaseMapTest.ABC, java.lang.Integer > >() {

});
junit.framework.TestCase.fail("Should not pass");

} catch (
com.fasterxml.jackson.databind.exc.MismatchedInputException e

) {
java.lang.String msg = e.getMessage();
java.lang.String[] str = msg.split(" at \\[");
if (str.length != 2) {

Chapter 5. Empirical Analysis 41

// TEST ORACLE
junit.framework.TestCase.fail((("Should only get one ’at [’ marker, got " +

(str.length - 1)) + ", source: ") + msg);
}

}
}

Listing 5.40: Automatically generated test oracle for JacksonDatabind-103.
org.junit.Assert.assertEquals (msg , str.length);

• Lang-42, class org.apache.commons.lang.StringEscapeUtilsTest,
method testEscapeHtmlHighUnicode.

Listing 5.41: Test case with manually-written test oracle for Lang-42.
@org.junit.Test
public void testEscapeHtmlHighUnicode() throws

java.io.UnsupportedEncodingException {
// this is the utf8 representation of the character:
// COUNTING ROD UNIT DIGIT THREE
// in unicode
// codepoint: U+1D362
byte[] data = new byte[] { ((byte) (0xf0)), ((byte) (0x9d)), ((byte) (0x8d)),

((byte) (0xa2)) };
java.lang.String escaped =

org.apache.commons.lang.StringEscapeUtils.escapeHtml(new
java.lang.String(data, "UTF8"));

java.lang.String unescaped =
org.apache.commons.lang.StringEscapeUtils.unescapeHtml(escaped);

// TEST ORACLE
junit.framework.TestCase.assertEquals("High unicode was not escaped correctly",

"𝍢", escaped);
}

Listing 5.42: Automatically generated test oracle for Lang-42.
org.junit.Assert.assertEquals (escaped , unescaped);

• Finally, we identified Jsoup-1, in org.jsoup.parser.ParserTest, method
createsStructureFromBodySnippet.

Listing 5.43: Test case with manually-written test oracle for Jsoup-1.
@org.junit.Test
public void createsStructureFromBodySnippet() {
// the bar baz stuff naturally goes into the body, but the ’foo’ goes into root,

and the normalisation routine
// needs to move into the start of the body
java.lang.String html = "foo bar baz";
org.jsoup.nodes.Document doc = org.jsoup.Jsoup.parse(html);
// TEST ORACLE
org.junit.Assert.assertEquals("foo bar baz", doc.text());

}

Listing 5.44: Automatically generated test oracle for Jsoup-1.
org.junit.Assert.assertEquals (html , doc.body ().html ());

Chapter 5. Empirical Analysis 42

Fail on the

faulty version

Fail on the

fixed version

Pass on the

faulty version

Pass on the

fixed version

0

(0.0%)

0

(0.0%)

0

(0.0%)

0

(0.0%)

151

(32.4%)

3

(0.6%) 250

(53.6%)

0

(0.0%)

0

(0.0%)

62

(13.3%)

0

(0.0%)

0

(0.0%)

0

(0.0%)

0

(0.0%)

0

(0.0%)

Figure 5.5: Distribution of test oracles that pass/fail on the buggy/fixed version. A test oracle only
detects a bug if and only if fails on the buggy version and pass on the fixed version.

Figure 5.6 reports the % as well as the number of oracles generated by T5 per execu-
tion result and per project. Figure 5.7 reports the number of faults that can be detected by
the oracles generated by T5.

Overall, out of 1696 test oracles generated by T5, we found 58 true-positives, detect-
ing 27 faults out of 835 available on the DEFECTS4J collection. On JacksonXml, no fault
was detected out of six; on Math, only 3 faults were detected out of 106; and on Chart, 8
faults were detected out of 26.

It is worth noting that the model used with T5 had only been trained for the generation
of assert statements. Therefore, it was expected that this tool could not be able to generate
a valid oracle for tests that detected the bug using any of the other techniques mencioned
previously. When considering only the bugs in the DEFECTS4J collection that can be
detected using an assert statement, out of 334 bugs, T5 was able to detect 8.08%.

RQ1: In a total of 1696 test oracles, 1230 did not compile. Out of the 466 compilable
test oracles, 253 do not fail when executed in the faulty version of the software, 155
are false-positives failing due to a reason unrelated to the bug, and only 58 are truly
able to detect a fault. T5 is able to detect 27 out of 835 (3.23%) of the faults present
in DEFECTS4J.

Chapter 5. Empirical Analysis 43

41 3 4 34

35 15 4 1

493 34 18

20 6 11 2

2 1 1

44 19 7 2

10 13 1

23 10 1

35 8 10

65 40 24 3

8 4

62 55 24 4

30 1

73 8 24 5

128 20 14 4

102 8 8

59 9 4 2

T5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Chart

Cli

Closure

Codec

Collections

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

% Test oracles

Compilation issue Non−trigger test Trigger test (false) Trigger test (true)

Figure 5.6: Ratio of test oracles’ status.

5.2 RQ2: How long does it take to automatically generate
fault revealing test oracles?

To assess whether the automated test oracle generation approach might be usable in a
real world scenario, in this research question we investigate (using the data generated in
the previous research question) the time that T5 spends at generating fault revealing test
oracles.

5.2.1 Procedure

For this RQ, we measure the time (in seconds) that T5 takes to generate a test oracle
during step 2 of RQ1’s procedure.

5.2.2 Metrics

In RQ2 we track and report for the selected automated oracle generation approach (T5)
the time, in seconds, it takes to generate a fault revealing test oracle.

Chapter 5. Empirical Analysis 44

18 8

38 1

174

17 1

4

45 2

15 1

18

26

109 3

6

91 2

22

59 5

103 3

38

25 1

T5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Chart

Cli

Closure

Codec

Collections

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

% Faults

Fault not detected Fault detected

Figure 5.7: Fault detection effectiveness of the automatically generated test oracles for the fault-
revealing manually-written test cases in the DEFECTS4J dataset.

5.2.3 Results

Figure 5.8 reports the distribution of T5’s execution time per project. Overall, T5 re-
quires 401.3 seconds (6 min. 41 sec.) to generate an oracle. The oracle generated for
the test case org.jsoup.parser.ParserTest::handlesNestedImplicitTable in Jsoup-3 took the
least time (75.0 seconds). On the other hand, the test case that required the most time was
com.google.javascript.jscomp.CrossModuleMethodMotionTest::testIssue600 in Closure-
163, and it took 12470.0 seconds for T5 to generate an oracle.

Listing 5.45: Oracle that took T5 the less time to generate
org. junit. assert. assertnotnull (doc)

Listing 5.46: Oracle that took T5 the most time to generate
org. junit. assert. assertequals (1, com. google. javascript. jscomp.

compilertestcase. static com. google. javascript. jscomp. compilertestcase. static
com. google. javascript. jscomp. compilertestcase. static com. google. javascript.
jscomp. compilertestcase. static com. google. javascript. jscomp.
compilertestcase. static com. google. javascript. jscomp. compilertestcase. ...

Chapter 5. Empirical Analysis 45

Table 5.1: Average time required for the generation of a test oracle, for each project.

Project Time (s)

Chart 341.8
Cli 311.2
Closure 508.7
Codec 434.2
Collections 312.5
Compress 334.8
Csv 340.8
Gson 372.8
JacksonCore 342.8
JacksonDatabind 329.7
JacksonXml 325.5
Jsoup 309.3
JxPath 370.5
Lang 451.0
Math 648.2
Mockito 454.3
Time 634.6

Median 342.8
Average 401.3

As shown in Listing 5.45, the oracle that took T5 the least time to generate was an
assertNotNull statement. The fact that this is one of the simplest oracles that can be
generated may explain the short amount of time required. On the other hand, Listing 5.46
shows the oracle that took the longest time to be generated. The long time required for
this case may be due to an error during the generation of the oracle, as it seems that T5
entered a loop while attempting to generate this oracle.

When analysing the 58 fault-revealing test oracles, we find that their average time to be
generated was 331.1 seconds. The shortest time required to generate a fault-revealing test
oracle was 103.0 seconds (for org.jsoup.integration.ConnectTest::testBinaryResultThrows
in Jsoup-91), while the longest time required was 553.0 seconds (for org.apache.commons
.csv.CSVPrinterTest::testMySqlNullOutput in Csv-13).

RQ2: On average, T5 took 401.3 seconds to generate an oracle for each of the test
cases and 331.1 seconds when considering only the oracles that were capable of
detecting a bug.

Chapter 5. Empirical Analysis 46

401.3 456.4 283.8 311.7 331.1

All Fail to Compile No Detection False−Positive True−Positive

T
5

100 1000 10000 100 1000 10000 100 1000 10000 100 1000 10000 100 1000 10000

Chart

Cli

Closure

Codec

Collections

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Runtime (seconds, log10)

Figure 5.8: Distribution of runtimes.

Chapter 5. Empirical Analysis 47

5.3 Summary

Manually-written test oracles must first be removed from fault-revealing test methods so
that we can replace them with automatically generated oracles and execute our evalua-
tion. In this chapter, we describe the procedure we have followed for each of the four
identified types of test oracles (assert statement, auxiliar test method, expected exception
and unexpected exception) as well as the results obtained when executing our evaluation.

Regarding the evaluated tool to automatically generate test oracles (T5), despite its
results when comparing generated test oracles with test oracles written by developers,
this tool still fails to achieve a good fault detection rate in real, manually-written, test
cases. Our evaluation yielded the following key results:

• Out-of-the-box, none of the generated test oracles compile, as T5 generates oracles
only in lower case.

• After a simple post-processing, out of 1696 test oracles, 466 compile and only 58
of these manage to find the real fault.

• Out of the 58 identified true-positives, T5 generated the exact same oracle as the
developer in 53 cases.

• Out of the 835 existent bugs in DEFECTS4J, T5 was able to detect 27, i.e., 3.23%
of the bugs.

Moreover, when analysing the time required to generate test oracles, T5 took, on av-
erage, 401.3 seconds (6 minutes and 41 seconds) to generate an oracle and 331.1 seconds
(5 minutes and 31 seconds) to generate a fault-revealing test oracle. It is worth noting
that, real test suites usually contain many test methods, meaning that, depending on the
size of the test suite, when using T5, one could expect it to take many hours to generate
an oracle for each of the methods in the test suite.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Automated oracle generation tools are generally measured in comparison with another
tool and on how close the generated oracles are to human-written ones, while automated
test suite generation tools are generally measured in terms of code coverage achieved.
This work presents an empirical evaluation on the ability of an automated test oracle gen-
eration tool to detect real faults in the DEFECTS4J collection. We do this by integrating
automatically generated test oracles with manually written test cases and measuring the
performance of the generated oracles on their fault detection rate.

The results show that: (1) T5 is able to detect 27 out of the 835 (3.23%) faults present
in DEFECTS4J; (2) out of the 466 compilable test oracles, there were 155 false-positives
and only 58 are truly able to detect a fault; and, (3) on average, T5 required 401.3 seconds
to generate an oracle for each of the test cases.

Moreover, generating compilable oracles remains a problem (out of 1696 test ora-
cles, 1230 did not compile), mainly for two reasons: (1) the tool still needs some work,
as sometimes, it appears T5 gets stuck in a loop while generating the oracles; and (2)
our procedure to fix the generated oracles still fails in many cases, as it does not have
knowledge of all available variables, methods and classes in the system being tested.

As described in Section 4.2.2, some tools were considered to be unusable due various
reasons. We hope that these challenges are addressed in future research and that our data
can serve to evaluate the progress of research on automated test oracle generation.

6.2 Future Work

In the future, a more in-depth evaluation regarding the state-of-the-art on automated test
oracle generation could be done, for example, by: (1) using more tools capable of ei-
ther automatically generating oracles, or augmenting existing tests; and (2) expanding
our dataset to the rest of the test methods in DEFECTS4J, this would provide us some

49

Chapter 6. Conclusions and Future Work 50

insight into how these tools behave when generating oracles for tests that do not cover
the faulty behavior. Moreover, it would be interesting to re-execute our experiments with
the new T5 [41] and analyze whether it improves our results in both, ablity to generate
compilable oracales and the effectiveness of these oracles. Furthermore, tools like AT-
LAS, BARTENG+CODE and T5 can generate more than one oracle for each test method. It
would be worth exploring whether their fault-detection rate increases according to how
many oracles are generated.

It could also be useful to analyze how effective these tools are when generating oracles
for automatically-generated test suites. These test suites can be generated, for example,
with state-of-the-art tools like EVOSUITE [22] or RANDOOP [45].

In the future, we aim to investigate two other research questions:

• RQx: How effective are automatically generated tests augmented with auto-
matically generated test oracles at revealing real faults? In this research ques-
tion, automated test generation tools, along with automated oracle generation tools
will be used on the faulty version of the software. This is similar to the evalua-
tion done by Dinella et al. [17] and will allow us to better evaluate how the various
approaches perform in a non-regression testing scenario.

• RQy: How effective are automatically generated tests augmented with auto-
matically generated test oracles at revealing regression faults? As in the previ-
ous research question, we will employ automated test generation tools along with
automated oracle generation tools, but in a regression testing scenario — the tradi-
tional scenario where tools like EVOSUITE and RANDOOP are used.

To answer these research questions we aim to follow the following procedure:

1. For each fault X , automatically generate tests for the faulty and fixed version of
X (for RQx and RQy, respectively) by running EVOSUITE or RANDOOP. Note
that these tools are usually executed in a regression testing scenario and generate
regression test oracles (e.g., [56]). In RQx, regression testing is not performed,
therefore, these tools can be executed with their procedure to generate regression
oracles disabled.

2. Compile the automatically generated tests on both, the faulty and the fixed versions
of X . Any test that does not compile is considered broken and therefore removed.

3. Execute the automatically generated tests on the version of X that they were gener-
ated on. At this point, any test that fails when executed on the program version that
it was generated on is considered flaky and therefore removed.

4. Collect the code coverage of all generated tests that are not broken or flaky.

Chapter 6. Conclusions and Future Work 51

5. Check whether the generated tests exercise any faulty line of code If no test exer-
cises any faulty line of code, no test oracle could ever detect the fault and therefore
those tests are discarded.

6. Augment the generated tests that do exercise the faulty code with automatically
generated test oracles, for example, with tools like T5 [49, 40], BARTENG+CODE [61],
ATLAS [65], TOGA [17], or DSPOT [14]. Note that, for RQy, oracles generated
by EVOSUITE, using ALLα and MUTATIONα techniques, and RANDOOP, using the
REGRESSIONβ approach can also be used.

7. Compile the augmented tests and remove any test oracle that does not compile. This
is a safety step as tools might generated uncompilable test oracles.

8. Execute the augmented tests on the faulty version of X to assess its fault detection
capability. If no test fails on the faulty version, the fault is considered undetected.
Otherwise, if at least one test fails, we then check for false positives.

9. Check whether the tests that fail on the faulty version of X fail due to no other
reason than the fault itself. This can be done by executing the tests on the fixed
version, as in DEFECTS4J, the difference between the buggy and fixed versions
is a minimal patch, therefore, if a test fails on the fixed version, then it is due
to some reason other than the bug itself. Moreover, one can manually compare the
stacktraces of the manually-written test oracles in the manually-written tests and the
stacktrace of the automatically generated test oracles in the automatically generated
tests.

We have already modified both EVOSUITE and RANDOOP so that it is possible to:

1. Generate the same test suites to be used for several oracle generation techniques,
being only different in the oracles used for each test case. This is particularly impor-
tant for RQy, where we will use these tools to generate test suites containing oracles
generated by them, as well as test suites with no oracles. Although both of these
tools claim to be deterministic to some degree, there is always some randomization
to the generated test suites. Therefore, generating test suites several times for every
selected approach, could mean different test suites, and, therefore, an unfair base of
compasison, as some of these test suites could present a better setup for a fault to
be detected than others. For this, in both tools, the modified version of EVOSUITE

and RANDOOP generates a sequence of statements as the test prefix, then clone this
sequence as many times as the number of oracle generation strategies selected and,
finally, generate oracles for each of the tests.

2. Generate test suites containing oracle placeholders. For this, a placeholder strategy
was added in both, EVOSUITE and RANDOOP, which generates placeholder oracles

Chapter 6. Conclusions and Future Work 52

as follows:

No Exception: In these scenarios the test’s action statement does not throw an ex-
ception. Generally a statement in the form assert* is used.

Listing 6.1: Example of a normal execution test method with a placeholder oracle.
1 @Test
2 public void test1() {
3 Foo f = new Foo();
4 f.bar();
5 // TEST ORACLE
6 }

Expected Exception: In these scenarios the test’s action statement is expected to
throw an exception. Generally a try/catch block is used.

Note that, as we have done in Chapter 5, in this case, maybe the correct would be
to completely remove the try/catch block and let the oracle generation tools choose
what oracle to generate. It is also worth noting that, if done this way, it will be
harder to identify the focal method, as it will be removed along with the entire try
block.

Listing 6.2: Example of an expected exception test method with a placeholder oracle.
1 @Test
2 public void test2() {
3 Foo f = new Foo();
4 try {
5 f.fooBar();
6 // TEST ORACLE
7 } catch (Exception e) {
8 // pass
9 }

10 }

For these two new research questions, we will track and report, for each automated
test generation tool and automated oracle generation approach: (1) the number of gener-
ated tests, (2) the number of broken and flaky tests, (3) the code coverage of the generated
tests, (4) the number of tests that exercise the faulty code, (5) the number of generated test
oracles, (6) the number of broken test oracles, (7) the number of false-positives, and (8)
the number of true-positives (i.e., the number of faults detected). Further more, we will
also conduct a statistical analysis on whether there is an automated oracle generation ap-
proach that performs statistically better/worse than any other approach at generating fault
revealing test oracles on automatically generated tests. A few examples of comparisons
that we plan to investigate are: EVOSUITE + ATLAS vs. RANDOOP + ATLAS, EVOSUITE

+ ATLAS vs. EVOSUITE + T5, or RANDOOP + REGRESSIONβ vs. RANDOOP + TOGA.

Bibliography

[1] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-
felds. An industrial evaluation of unit test generation: Finding real faults in a fi-
nancial application. In 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), pages 263–272,
2017. doi: 10.1109/ICSE-SEIP.2017.27.

[2] Andrea Arcuri, José Campos, and Gordon Fraser. Unit test generation during soft-
ware development: Evosuite plugins for maven, intellij and jenkins. In 2016 IEEE
International Conference on Software Testing, Verification and Validation (ICST),
pages 401–408, 2016. doi: 10.1109/ICST.2016.44.

[3] Association for Computing Machinery. Artifact Review and Badging Version 1.1,
August 2020. URL https://www.acm.org/publications/policies/

artifact-review-and-badging-current.

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The
oracle problem in software testing: A survey. IEEE Transactions on Software Engi-
neering, 41(5):507–525, 2015. doi: 10.1109/TSE.2014.2372785.

[5] Kent Beck. JUnit Pocket Guide. O’Reilly Media, Inc., 2004.

[6] Kent Beck, Erich Gamma, David Saff, and Kris Vasudevan. JUnit: unit testing
framework, 2022. URL https://junit.org.

[7] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. Translating code com-
ments to procedure specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018, page
242–253, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450356992. doi: 10.1145/3213846.3213872. URL https://doi.org/

10.1145/3213846.3213872.

[8] Ronyérison Braga, Pedro Santos Neto, Ricardo Rabêlo, José Santiago, and Matheus
Souza. A machine learning approach to generate test oracles. In Proceedings

53

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://junit.org
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/3213846.3213872

Bibliography 54

of the XXXII Brazilian Symposium on Software Engineering, SBES ’18, page
142–151, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450365031. doi: 10.1145/3266237.3266273. URL https://doi.org/

10.1145/3266237.3266273.

[9] D. Britz, A. Goldie, T. Luong, and Q. Le. Massive Exploration of Neural Machine
Translation Architectures. ArXiv e-prints, March 2017.

[10] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and An-
drea Arcuri. An empirical evaluation of evolutionary algorithms for unit test suite
generation. Information and Software Technology, 104:207–235, 2018. ISSN 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2018.08.010. URL https://www.

sciencedirect.com/science/article/pii/S0950584917304858.

[11] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: A new approach for
generating next test cases, 2020.

[12] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse,
and Zhi Quan Zhou. Metamorphic testing: A review of challenges and opportunities.
ACM Comput. Surv., 51(1), jan 2018. ISSN 0360-0300. doi: 10.1145/3143561. URL
https://doi.org/10.1145/3143561.

[13] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured Programming.
Academic Press Ltd., GBR, 1972. ISBN 0122005503.

[14] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monper-
rus. Automatic test improvement with DSpot: a study with ten mature open-source
projects. Empirical Software Engineering, 24(4):2603–2635, apr 2019. doi: 10.
1007/s10664-019-09692-y. URL https://doi.org/10.1007%2Fs10664-

019-09692-y.

[15] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert: Suggesting Repairs
for Broken Unit Tests. In 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 433–444, Nov 2009. doi: 10.1109/ASE.2009.17.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[17] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu Lahiri. Toga: A
neural method for test oracle generation. In ICSE 2022. ACM, May 2022. URL
https://www.microsoft.com/en-us/research/publication/

toga-a-neural-method-for-test-oracle-generation/.

https://doi.org/10.1145/3266237.3266273
https://doi.org/10.1145/3266237.3266273
https://www.sciencedirect.com/science/article/pii/S0950584917304858
https://www.sciencedirect.com/science/article/pii/S0950584917304858
https://doi.org/10.1145/3143561
https://doi.org/10.1007%2Fs10664-019-09692-y
https://doi.org/10.1007%2Fs10664-019-09692-y
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/

Bibliography 55

[18] Zhiyu Fan. A Systematic Evaluation of Problematic Tests Generated by Evo-
Suite. In Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings, ICSE ’19, page 165–167. IEEE Press, 2019. doi:
10.1109/ICSE-Companion.2019.00068. URL https://doi.org/10.1109/

ICSE-Companion.2019.00068.

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-
trained model for programming and natural languages, 2020.

[20] Afonso Fontes and Gregory Gay. Using machine learning to generate test oracles:
A systematic literature review. In Proceedings of the 1st International Workshop on
Test Oracles, TORACLE 2021, page 1–10, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450386265. doi: 10.1145/3472675.3473974.
URL https://doi.org/10.1145/3472675.3473974.

[21] Afonso Fontes, Gregory Gay, Francisco Gomes de Oliveira Neto, and Robert Feldt.
Automated support for unit test generation: A tutorial book chapter, 2021.

[22] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering, ES-
EC/FSE ’11, page 416–419, New York, NY, USA, 2011. Association for Com-
puting Machinery. ISBN 9781450304436. doi: 10.1145/2025113.2025179. URL
https://doi.org/10.1145/2025113.2025179.

[23] Gordon Fraser and Andrea Arcuri. A Large-Scale Evaluation of Automated Unit
Test Generation Using EvoSuite. ACM Trans. Softw. Eng. Methodol., 24(2), dec
2014. ISSN 1049-331X. doi: 10.1145/2685612. URL https://doi.org/10.

1145/2685612.

[24] Gordon Fraser and Andrea Arcuri. 1600 Faults in 100 Projects: Automatically Find-
ing Faults While Achieving High Coverage with EvoSuite. Empirical Softw. Engg.,
20(3):611–639, jun 2015. ISSN 1382-3256. doi: 10.1007/s10664-013-9288-2. URL
https://doi.org/10.1007/s10664-013-9288-2.

[25] Gordon Fraser and José Miguel Rojas. Software Testing, pages 123–192. Springer
International Publishing, Cham, 2019. ISBN 978-3-030-00262-6. doi: 10.1007/
978-3-030-00262-6 4. URL https://doi.org/10.1007/978-3-030-

00262-6_4.

[26] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and
oracles. In Proceedings of the 19th International Symposium on Software Testing

https://doi.org/10.1109/ICSE-Companion.2019.00068
https://doi.org/10.1109/ICSE-Companion.2019.00068
https://doi.org/10.1145/3472675.3473974
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612
https://doi.org/10.1007/s10664-013-9288-2
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1007/978-3-030-00262-6_4

Bibliography 56

and Analysis, ISSTA ’10, page 147–158, New York, NY, USA, 2010. Association
for Computing Machinery. ISBN 9781605588230. doi: 10.1145/1831708.1831728.
URL https://doi.org/10.1145/1831708.1831728.

[27] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. Auto-
matic Generation of Oracles for Exceptional Behaviors. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA 2016,
page 213–224, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450343909. doi: 10.1145/2931037.2931061. URL https:

//doi.org/10.1145/2931037.2931061.

[28] K. Gwet. Computing inter-rater reliability and its variance in the presence of high
agreement. British Journal of Mathematical and Statistical Psychology, 61(1):29–
48, 2008.

[29] W.E. Howden. Theoretical and empirical studies of program testing. IEEE Trans-
actions on Software Engineering, SE-4(4):293–298, 1978. doi: 10.1109/TSE.1978.
231514.

[30] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic code
search, 2019. URL https://arxiv.org/abs/1909.09436.

[31] Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand.
Perfect is the enemy of test oracle. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, page 70–81, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450394130. doi: 10.1145/3540250.3549086.
URL https://doi.org/10.1145/3540250.3549086.

[32] Agitar Technologies Inc. AgitarOne JUnit Generator. http://www.agitar.

com/solutions/products/automated_junit_generation.html,
2014. Last visited on 2021-12-14.

[33] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA 2014, page
437–440, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450326452. doi: 10.1145/2610384.2628055. URL https://doi.org/

10.1145/2610384.2628055.

[34] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-
former, 2020.

https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.1145/2931037.2931061
https://arxiv.org/abs/1909.09436
https://doi.org/10.1145/3540250.3549086
http://www.agitar.com/solutions/products/automated_junit_generation.html
http://www.agitar.com/solutions/products/automated_junit_generation.html
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055

Bibliography 57

[35] Claus Klammer and Albin Kern. Writing unit tests: It’s now or never! In 2015 IEEE
Eighth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 1–4, 2015. doi: 10.1109/ICSTW.2015.7107469.

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension, 2019.

[37] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transform-
ers. AI Open, 3:111–132, 2022. ISSN 2666-6510. doi: https://doi.org/10.1016/j.
aiopen.2022.10.001. URL https://www.sciencedirect.com/science/
article/pii/S2666651022000146.

[38] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. How effectively does
metamorphic testing alleviate the oracle problem? IEEE Transactions on Software
Engineering, 40(1):4–22, 2014. doi: 10.1109/TSE.2013.46.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach, 2019.

[40] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Studying the Usage
of Text-To-Text Transfer Transformer to Support Code-Related Tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages
336–347, 2021. doi: 10.1109/ICSE43902.2021.00041.

[41] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Using transfer learning
for code-related tasks, 2022. URL https://arxiv.org/abs/2206.08574.

[42] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. Using Transfer Learning
for Code-Related Tasks. IEEE Transactions on Software Engineering, pages 1–20,
2022. doi: 10.1109/TSE.2022.3183297.

[43] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. Evospex: An
evolutionary algorithm for learning postconditions, 2021.

[44] Glenford J. Myers, Tom Badgett, and Corey Sandler. The Art of Software Testing.
John Wiley & Sons, 2012.

https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://arxiv.org/abs/2206.08574

Bibliography 58

[45] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed random test-
ing for java. In Companion to the 22nd ACM SIGPLAN Conference on Object-
Oriented Programming Systems and Applications Companion, OOPSLA ’07, page
815–816, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595938657. doi: 10.1145/1297846.1297902. URL https://doi.org/

10.1145/1297846.1297902.

[46] Fabrizio Pastore, Leonardo Mariani, and Gordon Fraser. Crowdoracles: Can the
crowd solve the oracle problem? In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, pages 342–351, 2013. doi: 10.1109/
ICST.2013.13.

[47] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Li-
onel Seinturier. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience, 46:1155–1179,
2015. doi: 10.1002/spe.2346. URL https://hal.archives-ouvertes.

fr/hal-01078532/document.

[48] Abdallah Qusef, Rocco Oliveto, and Andrea De Lucia. Recovering traceability links
between unit tests and classes under test: An improved method. In 2010 IEEE
International Conference on Software Maintenance, pages 1–10, 2010. doi: 10.
1109/ICSM.2010.5609581.

[49] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res.,
21(1), jan 2020. ISSN 1532-4435.

[50] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. A Detailed
Investigation of the Effectiveness of Whole Test Suite Generation. Empirical Soft-
ware Engineering, 2016.

[51] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Represen-
tations by Error Propagation, page 318–362. MIT Press, Cambridge, MA, USA,
1986. ISBN 026268053X.

[52] Arvinder Saini. How much do bugs cost to fix during each phase of the
sdlc?, Jan 2017. URL https://www.synopsys.com/blogs/software-

security/cost-to-fix-bugs-during-each-sdlc-phase/. [On-
line; accessed 19-January-2022].

[53] Amanda Schwartz, Daniel Puckett, Ying Meng, and Gregory Gay. Investigating
faults missed by test suites achieving high code coverage. Journal of Systems

https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://www.synopsys.com/blogs/software-security/cost-to-fix-bugs-during-each-sdlc-phase/
https://www.synopsys.com/blogs/software-security/cost-to-fix-bugs-during-each-sdlc-phase/

Bibliography 59

and Software, 144:106–120, 2018. ISSN 0164-1212. doi: https://doi.org/10.1016/
j.jss.2018.06.024. URL https://www.sciencedirect.com/science/

article/pii/S0164121218301201.

[54] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. A survey
on metamorphic testing. IEEE Transactions on Software Engineering, 42(9):805–
824, 2016. doi: 10.1109/TSE.2016.2532875.

[55] Sina Shamshiri. Automated unit test generation for evolving software. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, page 1038–1041, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450336758. doi: 10.1145/2786805.2803196.
URL https://doi.org/10.1145/2786805.2803196.

[56] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. Do Automatically Generated Unit Tests Find Real Faults? An Em-
pirical Study of Effectiveness and Challenges. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 201–211, 2015.
doi: 10.1109/ASE.2015.86.

[57] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers:
A survey. ACM Comput. Surv., 55(6), dec 2022. ISSN 0360-0300. doi: 10.1145/
3530811. URL https://doi.org/10.1145/3530811.

[58] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. An empirical study on learning bug-fixing patches
in the wild via neural machine translation. CoRR, abs/1812.08693, 2018.

[59] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys
Poshyvanyk. On learning meaningful code changes via neural machine translation.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, 2019.

[60] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sun-
daresan. Unit test case generation with transformers and focal context, 2020. URL
https://arxiv.org/abs/2009.05617.

[61] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. Gener-
ating Accurate Assert Statements for Unit Test Cases using Pretrained Transform-
ers. CoRR, abs/2009.05634, 2020. URL https://arxiv.org/abs/2009.

05634.

[62] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sun-
daresan. Unit test case generation with transformers and focal context, 2021.

https://www.sciencedirect.com/science/article/pii/S0164121218301201
https://www.sciencedirect.com/science/article/pii/S0164121218301201
https://doi.org/10.1145/2786805.2803196
https://doi.org/10.1145/3530811
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05634
https://arxiv.org/abs/2009.05634

Bibliography 60

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2017.

[64] Ham Vocke. The practical test pyramid, Feb 2018. URL https:

//martinfowler.com/articles/practical-test-pyramid.html.
[Online; accessed 08-December-2021].

[65] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. On learning meaningful assert statements for unit test cases. In Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 1398–1409, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450371216. doi: 10.1145/3377811.3380429. URL
https://doi.org/10.1145/3377811.3380429.

[66] Hillel Wayne. Metamorphic testing, Mar 2019. URL https://www.

hillelwayne.com/post/metamorphic-testing/. [Online; accessed
29-November-2021].

[67] Robert White and Jens Krinke. Testnmt: Function-to-test neural machine transla-
tion. In Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for
Software Engineering, NL4SE 2018, page 30–33, New York, NY, USA, 2018. As-
sociation for Computing Machinery. ISBN 9781450360555. doi: 10.1145/3283812.
3283823. URL https://doi.org/10.1145/3283812.3283823.

[68] Robert White and Jens Krinke. Reassert: Deep learning for assert generation. CoRR,
abs/2011.09784, 2020. URL https://arxiv.org/abs/2011.09784.

[69] Wikipedia contributors. Metamorphic testing — Wikipedia, the free encyclope-
dia, 2021. URL https://en.wikipedia.org/w/index.php?title=

Metamorphic_testing&oldid=1039383920. [Online; accessed 27-
November-2021].

[70] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer Science &
Business Media, 2012.

[71] Pomin Wu. Test your machine learning algorithm with metamorphic testing, Nov
2017. URL https://medium.com/trustableai/testing-ai-with-

metamorphic-testing-61d690001f5c. [Online; accessed 29-November-
2021].

https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://doi.org/10.1145/3377811.3380429
https://www.hillelwayne.com/post/metamorphic-testing/
https://www.hillelwayne.com/post/metamorphic-testing/
https://doi.org/10.1145/3283812.3283823
https://arxiv.org/abs/2011.09784
https://en.wikipedia.org/w/index.php?title=Metamorphic_testing&oldid=1039383920
https://en.wikipedia.org/w/index.php?title=Metamorphic_testing&oldid=1039383920
https://medium.com/trustableai/testing-ai-with-metamorphic-testing-61d690001f5c
https://medium.com/trustableai/testing-ai-with-metamorphic-testing-61d690001f5c

Bibliography 61

[72] Tao Xie. Augmenting Automatically Generated Unit-Test Suites with Regression
Oracle Checking. In Dave Thomas, editor, ECOOP 2006 – Object-Oriented Pro-
gramming, pages 380–403, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
ISBN 978-3-540-35727-8.

[73] Runze Yu, Youzhe Zhang, and Jifeng Xuan. MetPurity: A Learning-Based Tool
of Pure Method Identification for Automatic Test Generation. In Proceedings of
the ACM/IEEE 35th International Conference on Automated Software Engineering,
ASE ’20, New York, NY, USA, 2020. Association for Computing Machinery.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem
	Approach
	Contributions
	Structure of the document

	Background
	Structure of a Unit Test
	Oracle
	Automated Oracles
	Human Oracles

	Summary

	Related Work
	Automated Generation of Test Oracles
	Test Suite Automation
	Oracle Automation

	Effectiveness of Automatically Generated Oracles
	Summary

	Empirical Study
	Experimental Subjects
	Experimental Setup
	Unit Test Cases
	Test Oracles
	Fault Set

	Experimental Procedure
	Fault Detection
	Experimental Metrics

	Threats to Validity
	Construct validity
	External validity
	Internal validity

	Summary

	Empirical Analysis
	RQ1: How effective are manually-written tests augmented with automatically generated test oracles at revealing real faults?
	Procedure
	Metrics
	Results

	RQ2: How long does it take to automatically generate fault revealing test oracles?
	Procedure
	Metrics
	Results

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References

