
 

2022 

 

UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE INFORMÁTICA 

 

 

 

 

 

 

Using compression for profiling rheumatoid arthritis 

disease progression through data mining techniques 

 
 
 
 

Diogo Henrique Rodrigues Azevedo 

 
 
 

Mestrado em Ciência de Dados 
  
 

Versão Provisória 

Dissertação orientada por: 
Prof. Doutor Andre Nuno Carvalho Souto 

 

 
 

 





Acknowledgments

To begin, I would also like to express my heartfelt gratitude to my supervisor, Prof.
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Resumo

A espondilite anquilosante é uma doença inflamatória autoimune pertencente ao ramo
da espondiloartropatia das doenças reumáticas, ramos este caracterizado por doenças al-
tamente debilitantes e com um impacto elevado tanto fı́sica como mentalmente nos paci-
entes que aflige. O leque de critérios para a escolha do tratamento biológico certo para
cada paciente é limitado e ainda pouco claro do ponto de vista clı́nico o que faz com que
esta escolha seja feita com base noutros aspetos, como a disponibilidade que o paciente
tem para a administração a cada um dos tipos de tratamento.

Neste trabalho utilizamos aglomerados por compressão, uma abordagem baseada em
teoria de informação algorı́tmica, na qual não existem parâmetros especı́ficos correspon-
dentes a área de estudo em causa, nem são necessários quaisquer conhecimentos a priori
a cerca dessa mesma área. Clustering por compressão tem por base o conceito de comple-
xidade de Kolmogorov (CK) que define a complexidade de um objeto pelo tamanho do
programa mais pequeno que quando executado, produz esse mesmo objeto como output.
Este conceito incomputável é utilizado para definir uma distância de informação e a sua
respetiva versão normalizada, que por sua vez podem ser adaptadas para algo computável
no mundo real, substituindo a CK dos objetos pelo seu tamanho após ter sido comprimido
com um compressor usual. Esta versão computável da distância de informação normali-
zada é denominada por distancia de compressão normalizada, e é com ela que são criadas
as matrizes de distancia que servem de base para a criação dos modelos de aprendizagem
automática deste trabalho.

O principal objetivo deste trabalho foi, com estes modelos, estabelecer padrões entre
pacientes e tratamentos biológicos que possam ajudar os profissionais de saúde a fazer
uma escolha mais informada sobre que tratamento a recomendar a cada paciente.

Para a aplicação desta abordagem foi feito o estudo do estado da arte de ferramentas
para clustering por compressão, no qual identificamos a ferramenta Complearn como a
mais apropriada para a abordagem pretendida. O Complearn é uma ferramenta da linha
de comandos do sistema operativo linux que permite a criação de matrizes de distância
utilizando com a opção de escolha de diferentes métodos de compressão, bem como al-
guma possibilidade de customização destes mesmos métodos. Para além da computação
das matrizes de distância, o Complearn disponibiliza o método dos quartetos como forma
de criar grupos a partir da matriz previamente computada.
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No nosso trabalho utilizamos o Complearn como ponto de partida para o desenvol-
vimento da ferramenta Zgli, um módulo que permite ao utilizador realizar clustering por
compressão utilizando python. Neste módulo foram adicionados novos algoritmos de
compressão aos já existentes no Complearn, como por exemplo, a opção de comprimir
ficheiros tabulares por coluna, e um codificador para dados categóricos.

Para a criação de modelos nao usamos diretamente o método dos quartetos por ser NP-
completo e portanto computacionalmente ineficiente, optando por utilizar os algoritmos
k-medoids e hierarchical clustering para a criação dos modelos. Os modelos são cria-
dos utilizando matrizes de distância de compressão normalizada, que são posteriormente
avaliados usando a v-measure e a adjusted random score bem como as suas matrizes de
contingências e a distribuição das caracterı́sticas de cada grupo.

No que diz respeito aos resultados foram feitos avanços em duas direções. O primeiro
conjunto de resultados sendo referente a metodologia utilizada e o segundo aos padrões
encontrados entre tratamentos e pacientes usando dados especificos da base de dados
Reuma.pt.

No segundo grupo referente aos resultados para clustering por compressão, verifi-
camos que o o método de compressão por coluna para os dados tabulares suplantou o
método normal de compressão, criando consistentemente modelos com scores melhores.
Verificamos também que modelos de clustering por compressão são capazes de competir
com os modelos de clustering tradicionais quando aplicados ao dataset deste trabalho,
obtendo scores semelhantes aos modelos tradicionais e fazendo-o utilizando um numero
inferior de grupos.

No que diz respeito aos padrões encontrados entre pacientes e tratamentos, verifica-
mos que INFLIXIMAB, GOLIMUMAB e ETANERCEPT tinham uma taxa de sucesso
maior para pacientes do sexo masculino do que pacientes do sexo feminino, algo que é
corroborado pela literatura, com o tratamento ADALIMUMAB sendo o único que apre-
sentava uma taxa de sucesso semelhante para ambos os sexos. Verificamos também que
quanto maior o ASDAS inicial, maior a probabilidade de o tratamento ser bem-sucedido,
e que o pacientes com os ASDAS inicial no intervalo e 2.1 a 2.7 apresentavam uma alta
chance de o tratamento falhar.

Palavras-chave: Kolmogorov, Complearn, Zgli, Clustering, AI
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Abstract

Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory condition be-
longing to the spondyloarthropathy category of rheumatic diseases characterized by be-
ing highly debilitating diseases and having a high impact on patients physical and mental
health as well as social and quality of life. Biological treatment for this pathology is
difficult to pick and lacks clear selection criteria. Usually, treatment is chosen based on
patient convenience.

Our goal is to use an approach based on algorithmic information theory, without any
domain-specific parameters to set, or any background knowledge required (clustering by
compression), iterate over the current state of the art, so it can be better integrated into
python pipelines as well as better suit our specific problem, and apply it to our data com-
prised of patients with AS so patterns between biological treatments and patient profiles
can be established thereby helping clinicians make a better treatment choice for each pa-
tient.

Unsupervised clustering models are generated using normalized compression distance
matrices, which are then evaluated using v-measure, adjusted random score, and visually
analyzed taking into account model contingency matrix and feature distribution per clus-
ter.

Possible patterns between biological treatment success and patient profiles were iden-
tified. Furthermore, we observed that the compression by column developed and imple-
mented in this new tool for clustering by compression seemed to yield better results than
the previous approach.

Keywords: Kolmogorov, Complearn, Zgli, Clustering, AI
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Chapter 1

Introduction

In this introductory chapter, we describe the challenge at hand, and provide a clear de-
scription of the goals to be achieved, and the contributions generated throughout the mak-
ing of this work. Furthermore, an outline of the thesis structure is presented.

1.1 Motivation

Rheumatic diseases [10] are chronic pathologies representing the leading cause of dis-
ability in developed countries and consuming significant financial, health, and social re-
sources. These diseases have afflicted humankind as far back as Ancient Egypt [19], with
studies showing that at least three pharaohs of the 18th and 19th dynasties of Old Egypt
had ankylosing spondylitis.

Ankylosing spondylitis [29] (AS) is an autoimmune inflammatory condition belong-
ing to the spondyloarthropathy category of rheumatic diseases. Its main early symptoms
are back pain and early morning stiffness, and when left unchecked, these pains can ex-
tend to the whole spine and sacroiliac joints, with severe cases ending with the total fusion
between the joints and bone structures in these areas. Most patients are young workers
and AS can result in significant socioeconomic hardship because patients must take time
off work and, in severe situations, may have to quit their job.

Since there is no cure for AS, treatment focuses on symptom relief and slowing down
the disease progression. Treatment for this condition can go from lifestyle changes,
physiotherapy, drug treatments, and the most recent, biological-treatments. Even though
lifestyle changes and physiotherapy are great ways of maintaining patients’ mobility and
posture, therapy selection follows no specific criteria, being hard to establish what patients
benefit more from each drug or biological treatment. In particular, a better understanding
of therapy responses for these patients and identifying the predictors that affect therapy
responses would be a highly useful piece of information.

Although the automatic based decision for Rheumatic diseases is a difficult task since,
as mentioned above, even experienced clinicians may disagree on the best treatment to
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Chapter 1. Introduction 2

apply for the same patient or patient with similar characteristics, with the advent of elec-
tronic medical records, the data collected can be used to extract insightful knowledge to-
ward the development of automatic based decision helpers. Data mining is a fast-growing
field aiming to develop techniques to structure the necessary information. Cilibrasi, and
Vitányi [13] proposed a new approach, based on [25], to analyze data that does not
require substantial knowledge about the context of the data to produce results. This ap-
proach uses a metric defined on the information contained in the data to cluster the simi-
larities among the instances hierarchically.

1.2 Objectives

This thesis has two primary objectives. The first was to analyze and comprehend the
current state-of-the-art tools for clustering by compression, primarily Complearn, and
iterate over them, adding new features that may be useful for future works and others
suited to better assist us in solving the specific problem of this thesis. This new iteration
will then be available as a Python module for easy integration into other Python workflows
and all relevant documentation.

The second objective of this work is to apply this new tool to AS patient data retrieved
from Reuma.pt, and verify the viability of this method by using it to find patterns between
biological treatments and patient profiles. We will use compression methods to generate
the starting distance matrices that we will, in turn, used to create plectra of unsupervised
clustering models. Finally, from all the models, the best clusters are analyzed, and possi-
ble patient profiles and features of importance will be extracted and presented.

Another goal to be achieved in parallel to the first main goal is to preprocess the data,
deal with noisy and missing values, and obtain a dataset that could be used for future
works on the subject.

1.3 Contributions

The core contributions of this thesis are:

• Development of a state-of-the-art tool for clustering by compression [7], which can
be used in future research works.

• Exploration of different compression strategies for tabular, non-tabular, and time-
series data.

• Development of a dataset resulting from the merge between two other raw datasets
extracted from Reuma.pt, which can be used in future research works.
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• Identification of potential features of importance and patient profiles related to treat-
ment success and failure.

1.4 Thesis outline

The rest of the document is organized as follows:

• In Chapter 2, we delve into the related work, looking at publications dealing with
spondyloarthritis, the method of clustering we will use, and some of its applications
in various fields.

• In Chapter 3, the background needed for the execution of the proposed work is pro-
vided. This includes an explanation of spondyloarthritis and its different assessment
and evaluation methods. We present clustering by compression, the normalized
compression distance, and the various steps needed to reach it. Regarding data, we
look at different ways of compressing it and a method for feature selection. Lastly,
we have an overview of clustering, its applications, and three different scores used
in this work to evaluate its models.

• Chapter 4 describes the Complearn tool and gives an overview of its features, fol-
lowed by the presentation of Zgli, a python module developed throughout this work
to iterate on the Complearn tool and suit the unique demands for tackling the chal-
lenges in this study.

• Chapter 5 presents all the steps done during data preprocessing and the datasets
resulting from it.

• In Chapter 6, we present the overall model-building approach and data analysis
done in this work, as well as the results derived from all the datasets generated in
Chapter 5.

• Chapter 7 outlines the conclusions achieved in this work and suggests topics for
future work.
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Chapter 2

Related Work

Clustering techniques are very useful tools for stratifying data into different homogeneous
groups, and their potential to identify different patient profiles within clinical data has
been shown throughout the years. For instance, in [41], the authors perform a hierarchical
clustering analysis on seventy-seven Parkinson’s Disease (PD) patients and fifty control
individuals, identifying two patterns of cortical atrophy that separated PD patients from
the control group. In another work [4], the authors develop a decision-making assistant for
clinicians, where a hierarchical clustering model is used on adult spinal deformity patient
data comprised of hundreds of data points, with the patterns discovered have the potential
to facilitate treatment optimization by highlighting which treatment patterns yield optimal
improvement with the lowest risk.

The data of this study comes as data points from patients with ankylosing spondylitis
in diverse stages of biological treatment. The disease is evaluated in two main ways: pa-
tient functional ability and disease activity. Functional ability is assessed by the BASFI
index [11], calculated using 10 questions regarding day-to-day activities (i.e. reaching
high shelves). Disease activity can be measured using two indices, these being BASDAI
and ASDAS. The BASDAI index [21] measures disease activity similarly to the BASFI
index, using a questionnaire consisting of 6 questions: 2 related to pain, 3 related to af-
fected body regions 2 regarding morning stiffness and 1 regarding fatigue. The ASDAS
index is the most recent index from the tree [42], and its purpose is to improve the evalu-
ation of the AS disease activity. This index improves on the BASFI index by being more
sensitive to change and by covering disease activity more broadly.

More details of these tree indices can be found further ahead in the background chap-
ter, but with both clustering techniques relevance and disease monitoring covered, we
can now look into recent studies on data related to ankylosing spondylitis patients from
Reuma.pt, that highlight the potential of the data to be mined for extraction of patterns
between patients and the different biological treatment options, as well as features of
importance that may describe treatment success and failure.

In another work [36] the authors employed a statistical analysis and Uni and Mul-
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tivariable regression to determine baseline predictive factors of response to biological
therapies at the 12 weeks. The findings show that a better response is expected in males
and younger patients; baseline disease activity predicts a response at 12 weeks; baseline
elevated CRP is an important predictor of ASDAS response, but not of BASDAI response;
the ASDAS predicts both ASDAS and BASDAI response and the BASDAI only predicts
the BASDAI response.

In another work [8], Carolina et al. used a joint model approach to determine the
failure of biologic treatment, considering both baseline and time-varying variables from
spondyloarthritis patients. Patients who were male, HLA-B27 positive, and had a later
biologic therapy starting date or a longer time interval between the onset of the disease
and the introduction of the first biologic therapy had higher therapy adherence.

Kishan Rama, et al. [35] presented a new approach to analyzing switches between
therapies occurring during the patients’ lifetime using AliClu, a computational method to
analyze longitudinal data that provides clusters by unraveling switch patterns present in
the clinical data. The clusters found allowed the authors to stratify the patients based on
their temporal profiles and identify common features for those groups.

The clustering method we envisage use is based on the [13], proposed by Vitanáyi et
al., and has been demonstrated to apply to several data types, including time-series data.

Music clustering [15] is one of the first examples of this method’s application by the
same authors. In this study, music data is clustered in different levels of granularity using
the normalized compression distance and the quartet tree method, grouping the pieces of
music by genre first and later grouping those same pieces of music by the author.

A recent example of this type of clustering is present in [14] where the study on
the Phylogeny of the COVID-19 Virus SARS-CoV-2, is presented. This work uses RNA
sequences of viruses as the dataset, grouping similar sequences together to find the most
plausible origin of the virus.

Finally, in [39] shows an application of this method to time-series clinical data, where
the same pipeline is used to analyze a dataset of fetal heart rate tracings acquired by vari-
ous fetal sensors with varying capturing frequencies, sizes, and signal loss. Despite these
discrepancies, the approach proved to be robust and yielded interesting results, clustering
similar groups together.



Chapter 3

Background

In this chapter, we will look at the ankylosing spondylitis disease to better understand the
motivation for this work and, in due course, the features represented in the data. Next, we
describe the feature selection method chosen for this work, with a theoretical overview
and a simple example in practice. Next, it presents the essential background on clustering,
specifically clustering by compression, where we explain what normalized compression
distance is, how it is computed, and all the steps needed to reach its final formula and its
practical usage. Later we look into two compression approaches (integer and float com-
pression) that were tested during the clustering development by the compression python
module. Finally, we discuss the clustering technique developed in the Complearn tool,
which we used to acquire testing results for our new clustering by compression Python
module.

3.1 Ankylosing Spondilitis

To understand what Ankylosing Spondylitis is, let us first look at it with a broader point of
view. Starting with rheumatic diseases, these are auto-immune inflammatory diseases that
cause the patients’ immune system to attack its joints, muscles, and bones [24]. Inside
the major group of rheumatic diseases, we have the spondyloarthropathy (SpA) branch,
represented by psoriatic arthritis, reactive arthritis, arthritis associated with inflammatory
bowel disease, and ankylosing spondylitis (AS). These diseases share similar clinical fea-
tures and an association with the human leukocyte antigen (HLA)-B27[29].

There is some nuance regarding the nomenclature and diagnosis of patients with AS.
The definite diagnosis can be delayed as radiographic changes may take up to a decade to
manifest. This early stage of the disease is referred to as non-radiographic axial spondy-
loarthritis (nr-axSpA). Disease progression will depend on many factors such as time, dis-
ease severity, and treatment response, so it is not implied that all patients with nr-axSpA
may reach the more advanced AS state. The literature debates whether these illnesses
should be classified as separate diseases altogether [30, 43], nevertheless axial SpA is
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Chapter 3. Background 8

Figure 3.1: Bambo Spine. Replicated from AnkylosingSpondylitis.net [40]

nowadays the most common way to refer to these diseases [23].

Chronic inflammation, primarily affecting the axial skeleton, is a hallmark of AS.
The most common symptom of AS is sacroiliitis. However, peripheral joints can also
be affected. Back pain and increasing spinal rigidity are the two most common clinical
symptoms. In more severe cases, the inflammation can cause fibrosis and calcification
of the spine, resulting in the so-called ”bamboo spine,” which is an irreversible disorder
characterized by total spinal fusion - see Figure 3.1.

These clinical manifestations can lead to systemic symptoms, including exhaustion,
weight loss, chronic pain, and immobility, which can significantly influence a patient’s
social and economic life. Furthermore, they can be catalysts of psychological issues like
anxiety and depression, which can further reduce the patient’s overall quality of life.

Clinical disease monitoring is critical for understanding illness progression and evalu-
ating patient response to therapy and guiding therapeutic decisions. Erythrocyte sedimen-
tation rate (ESR), C-reactive protein (CRP) levels, which are inflammatory indicators, and
other laboratory data that are thought to reveal if meaningful abnormalities are among the
tests performed along side self administered questionnaires.

To evaluate the patient perception of well-being, disease is evaluated in two main
ways: i) patient functional capability and ii) disease activity. The first measures to which
degree the condition has impaired the patient’s movement and overall functional capabil-
ity, and the latter measures the level of symptom frequency and intensity.

Starting with function capability, we have Bath Ankylosing Spondylitis Functional
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Index (BASFI)[2], calculated using patient answers from 0 to 10 to ten questions related
to the difficulty of daily activities, such as bending at the waist, reaching for high shelves,
going upstairs, standing up without external help, etc... To obtain the final index, every
function is given the same weight by performing the mean of every answer and the result
is a number between 0 to 10.

For disease activity measurement, we have Bath Ankylosing Spondylitis Disease Ac-
tivity Index (BASDAI)[5] and the more recent Ankylosing Spondylitis Disease Activity
Score (ASDAS)[28]. Starting with BASDAI, it is calculated using patient answers from
0 to 10 to six other questions related to disease symptoms. These questions cover fa-
tigue, spinal pain, joint pain/swelling, localized tenderness (enthesitis, or inflammation
of tendons and ligaments), morning stiffness duration, and morning stiffness severity. To
balance each symptom equally, the mean of the two-morning stiffness values are taken.
The resulting score from 0 to 50 is divided by 5 to yield a final BASDAI score between 0
and 10. Scores of 4 or higher indicate sub-optimal illness control, and patients with these
scores are usually suitable candidates for either a change in their medical medication or
enrolment in clinical trials assessing new drug therapies.

ASDAS is a composite index that combines five disease activity variables with only
partial overlap, resulting in a single score with better truth (validity), enhanced discrim-
inative capacity, and improved sensitivity to change compared to single-item variables.
ASDAS value ranges from 0 to 10, and there are two ways to calculate it, with the pre-
ferred being the following:

0.12×BackPain+
0.06×DurationOfMorningStiffness+

0.11× PatientGlobal+
0.07× PeripheralPainSwelling+

0.58× ln(CRP + 1)

Where ln is the discrete logarithm in the natural base and CRP is the level of c-reactive
protein in the patients’ blood (measured beforehand by a CRP test). Further, the informa-
tion about disease activity can be extracted if the index is compared with the following
cut-offs:

• ASDAS < 1.3: Inactive Disease;

• 1.3 < ASDAS < 2.1: Low Disease Activity;

• 2.1 < ASDAS < 3.5: High Disease Activity;

• ASDAS > 3.5: Very High Disease Activity.

If, in two consecutive appointments, there is an ASDAS score decrease of 2.0 or more
points, it means there was a significant clinical improvement, and if this decrease was
greater than 1.1 or more points, it is consideredan important clinical improvement.
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The ASAS-EULAR group uses these indices to make recommendations for the man-
agement and treatment of AS - see figure 3.2. SpA treatment should be personalized to
the individual patient, considering their characteristics and symptoms, with the most usual
objective being to reach a state of disease inactivity. Physical therapy, nonsteroidal anti-
inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and
biologic agents, such as tumor necrosis factor (TNF) inhibitors and interleukin (IL)-17
or IL-23 inhibitors, may be used as treatment options if patients remain in a high disease
activity state after trying the referred options.

As we can see from the recommendations in 3.2, treatment choice represents the
main problem for SpA treatment, since the same treatment can have radically different
responses from different patients. For this reason, the challenge becomes the optimiza-
tion of this trial and error process, so the best treatment is provided as early as possible,
and we reduce the disease’s impact on patient functional ability and overall quality of life.

3.2 Kolmogorov Complexity

The Kolmogorov Complexity (K) is a concept from algorithmic information theory, a
sub-field of mathematics and computer science, and it can be described as follows a mea-
sure of information in a string. The Kolmogorov complexity of an object - in the case of
this paper, text files containing patient features related to AS - is the length of the shortest
program in a predetermined syntax (i.e, Turing Machine, Python, Java, Lisp) that, when
run, produces that same object as output. So K(x) is the length of the most compressed
version describing x.

As an example that illustrates this concept, consider the following strings:

• s1: ”ggggggggggggggggg” size = 17

• s2: ”LATQvgkCQaNwEadqO” size = 17

Notice that although they have the same size in terms of algorithmic information
needed to describe the two strings, one can use the following programs p1 and p2 de-
scribing s1 and s2, respectively:

• p1: ”return ’g’ * 17 ” K(s1) ≈ 4

• p2: ”return ’LATQvgkCQaNwEadqO’” K(s2) ≈ 17

Notice that the number of times ’g basically describes the information in s1’ is repeated;
therefore, K(s1) (the algorithmic information needed to describe s1) is much shorter than
writing the entire string. On the other hand, there are no “patterns” that one can use to
describe more concisely the string s2; therefore K(s2) is nearly maximally, i.e., approxi-
mately equal to the size of s2.
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Figure 3.2: Algorithm based on the ASAS-EULAR recommendations for the manage-
ment of axial spondyloarthritis.



Chapter 3. Background 12

3.3 Normalized Compression Distance

The Normalized Compression Distance measures the similarity between two objects, but
to understand it, we first need to look at the concept of information distance and its nor-
malized version. The information distance (ID) represents the distance between two ob-
jects x and y by the shortest program (the one corresponding to Kolmogorov Complexity),
which transforms x into y and vice-versa.

ID = max{K(x|y), K(y|x)}.

The information distance will then give us the absolute distance between two objects
independently of the size of the objects, but if we want to measure similarity between
objects, we must first normalize this distance to get the relative distances between objects.
For example, the ID can tell us that two strings differ by 17 bits, but does not take into
account if this difference is between two strings of size 50 or 500. For this reason, we
divide the information distance by the size of the most extensive description of the two
strings.

NID =
max{K(x|y), K(y|x)}
max{K(x), K(y)}

.

With the NID, we can then measure the similarity between any computer file. However,
since this distance is calculated based on the representation of each object with the least
Kolmogorov Complexity, and this notion, in turn, is not computable, we have to use an
approximation of this measure: the Normalized Compression Distance (NCD).

The Normalized Compression Distance approximates of K by using real-world com-
pressors Z (i.e. gzip, bzlib, zlib), to represent the size of compressed objects. Having this
notion in mind, the NID was rewritten to be applicable in the real world [26]:

NCD =
Z(xy)−min{Z(x), Z(y)}

max{Z(x), Z(y)}
.

The distance is calculated by first appending both files together and compressing them.
Then both files are compressed individually, taking the difference between the appended
compressed file size and the smallest individual compressed file size. Finally, this dif-
ference is normalized by dividing it by the size of the largest individual compressed file.
Since we are using compressors Z to approximate K of each object, it is obvious that the
better the Z is, the more accurate the NCD results will be.

3.4 Integer Compression

As we have seen before, data compressors will be essential in this work to accurately
approximate each object’s Kolmogorov version. Since the data are written in files rep-
resenting time-series of integer variables, here we look at some methods that compress
these integer files without forgetting to consider their time-series structure.
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Delta and Delta-of Delta encodings [27] compresses files by only storing the differ-
ence (delta) of the last iteration of that same object. This method works best when there
is repeated information in succession. So, for example, given the data:

Appointment BASDAI ASDAS BASFI

2021-10 8 34 8
2021-11 7 28 7
2021-12 4 18 4

We can apply Delta and we obtain:

Appointment BASDAI ASDAS BASFI

2021-10 8 34 8
1 month -1 -6 -1
1 month -3 -10 -3

We can then go one step further and apply Delta encoding to the already compressed
data to compress specific columns even further. This is called Delta of Delta encoding.
In the following example, we know that the appointment column has a frequency of 1
month, which means that the delta value will be repeated in every row of the table. The
delta of this specific column can then be performed to compress the data even further. The
first and second rows stay the same storing the starting rows of the first and second delta
encoding, respectively, all the others turn to zeros since there are no other differences in
the column.

Appointment BASDAI ASDAS BASFI

2021-10 8 34 8
1 month -1 -6 -1

0 -3 -10 -3

After encoding the data with this method and reducing the number of digits needed
to represent it, we can still go one step further and use the least memory-heavy way of
storing the integer data inside the files.

3.5 Float Compression

In general, compressing floating-point values is more challenging than compressing in-
tegers. Unlike fixed-length integers, floating-point numbers frequently employ all their
available bits, especially when converted from decimal numbers that are not properly rep-
resented in binary. This is because floats are built from base 2 fractions that do not entirely
overlap, so decimal values are rounded to the nearest base 2 value available. An example
could be when we add 0.1 to 0.2 we do not get 0.3 and get 0.30000000000000004 instead.

Also, delta-encoding techniques do not work well on floats, as they do not reduce
the number of bits necessary to represent its value. Because of these difficulties, most
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floating-point compression algorithms tend to be complex, slow, or lossy (e.g, truncation
of significant digits).

One of the fastest and lossless float compression techniques is the XOR-based Algo-
rithm used in the Gorilla [34] in-memory time-series database developed by Facebook.

This technique consists of the XORing of successive floating-point values. It starts
by looking at the hexadecimal values of the floats, (1) storing the first hexadecimal value
without changing its value, then (2) we perform the XOR of the second hexadecimal value
with the first and storing its value, (3) finally, it repeats this process for the remaining
values. The following tables illustrate this process:

Float Hex Representation XOR with previous

15.5 0x402f000000000000
14.0625 0x402c200000000000 0x0003200000000000

3.25 0x402a000000000000 0x0026200000000000
8.625 0x4021400000000000 0x002b400000000000
13.1 0x402a333333333333 0x000b733333333333

The Quartet Method
Now that we have established the various methods for approximating the NCD using

compressors, whether they are general-purpose compressors like GZIP or ZLIB, or more
specialized compressors like int and float compression, we now describe a way to group
the objects and visualize these clusters once the NCD matrix has been calculated.

We describe the quartet method as, from our collection of n elements, we consider
each group of four items. Therefore, the total number of groups is n

4
. A tree is then built

from each group u, v, w, x, and each internal node has three neighbors, implying that the
tree is made up of two subtrees with two leaves each. Let this tree be called a quartet.
There are three possible dispositions for a quartet: uv|wx, uw|vx, and ux|vw, where
each pair of letters represents the leaves connected to the same internal node as shown
in Figure 3.3. The cost of each quartet is then defined by the sum of distances between
each pair of neighbors: Cuv|wx = d(u, v) + d(w, x). We say a tree T is consistent with
u, v, w, x if and only if the path from u to v does not cross the path from w to x for any
given T and any collection of four leaf labels u, v, w, x. The tree representing our data
can then be considered composed of this smaller quartet tree. Finally, the sum of the costs
of all consistent quartets is the cost of the entire tree.

The authors of [13] go even further and implement a score S to measure how well
any given tree represents the pairwise distance matrix. For this, a list for all quartets of
all groups is created. Then, for each group, the best and worst scores are calculated (i.e,
maximal and minimal distances). Adding all the best scores will yield the best theoretical
score a tree could have for a given matrix, and its opposite could be done to calculate the
worst score. To compare tree scores, we rescale the best and worst scores to be 1 and 0,
respectively.
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Figure 3.3: Possible position of quartets of 4 nodes.

A method based on randomization and hill-climbing is used to find an optimal tree.
The search method starts by creating a random tree T1 with n − 2 internal nodes and n
leaf nodes (2n − 2 nodes total). The score S(T1) is then calculated, and since it is the
first score calculated, it denotes the best-known score up until that moment. A second
tree T2 is then created by mutating T1 in one of three possible ways: (1) a leaf swap,
choosing two leaf nodes randomly and swapping them. (2) a subtree swap, choosing
at random two internal nodes and swapping the subtrees rooted on them; (3) a subtree
transfer, choosing a random tree at random, detaching and reattaching it in another place,
maintaining similarity invariants. After T2 is created, we calculate its score S(T2). If
S(T2) ¿ S(T1) then we keep the tree T2, otherwise, we keep T1 and repeat the process.
Finally, the search algorithm halts if it reaches a tree with a score S(T ) = 1 or if no better
trees are being found in a reasonable amount of time.

3.6 Maximum Relevance Minimum Redundancy

When building a machine learning model, it is clear that the more data we have to train
a model, the better its performance is, but this applies only to rich information data. For
instance, in [16], the authors show that, from a dataset with thousands of features, the
best accuracy results for predicting a disease are obtained using a much smaller subset of
features (say, 50). Therefore, feature selection procedures are critical for achieving better
model performance.
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Figure 3.4: Feature selection subsets

Feature selection can be done in two main ways:

• All-Relevant methods aim to find all of the features that have any predictive poten-
tial.

• Minimal-Optimal (such as MRMR) methods that aim to identify a small number of
features that, when combined, offer the most significant predictive power.

In practice, this means that if 2 features have the same predictive score, both would
be selected by an all-relevant method, whereas only one would be selected and the other
dismissed by a minimal optimal method. This is a subtle difference when looking at
small datasets, but as we scale up the main dataset, the number of features between the
all-relevant dataset and the minimal optimal dataset becomes very clear, making the algo-
rithm more efficient while keeping model performance.

In the work developed, we used MRMR as the tool for feature selection. This ap-
proach works as follows: The first step is to choose the number of features K we intend
to extract from the main dataset.

Next, a basket of K size is created, and a feature is selected and added to it at the end
of each iteration until the basket is full (number of features in basket = K). One can easily
understand the mechanism for the selection of the features if we interpret the method’s
name - Maximum relevance Minimum Redundancy - in each iteration, when selecting a
feature, we choose the one that is most relevant to the target variable and has the least
amount of overlap with the features chosen in the earlier iterations.

This relation between relevance and redundancy is given by a score obtained using the
following formula:

scorei(f) =
relevance(f |target)

redundancy(f |features selected until i− 1)
.
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The best feature of the i-th iteration would be the one with the highest score.
Now that we have the concept of score down, the final step is to translate the abstract

concepts of relevance and redundancy into something that can be calculated. Starting
with the score’s numerator, we can represent the relevance of a feature by the F-statistic
between the feature and the target. Looking at the denominator, we can represent the
redundancy of an element by the average Pearson correlation between the feature and
all the other features already in the basket. If we do this, our computable score formula
becomes:

scorei(f) =
F (f |target)∑

s∈features select until i−1 |corr(f, s)|/(i− 1)
,

where i is the i-th iteration, f is the feature being evaluated, F is F-statistic and corr is
Pearson correlation. Note that correlation is taken in absolute value. If two features have
a correlation of .9 or of -.9 it makes no difference: in both cases, they are highly redundant.

Finally, to illustrate how the method works, consider a modified example from [31]
that displays a single iteration of the Algorithm. We assume the following state of the
Algorithm:

• The Algorithm is currently on its 3rd iteration;

• ASDAS has been selected in the first iteration;

• BASFI has been selected in the second iteration.

Figure 3.5: Example of MRMR 3rd Iteration

Looking at the MRMR scores obtained at the end of the 3rd iteration, we can see that
the next best feature is Sex, with a score of 2572.
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3.7 Clustering

Clustering is the process of grouping a population or set of data points into groups with
inter-group heterogeneity and intra-group homogeneity. This means that points within the
same group are similar but distinct from points in other groups.

Clustering has applications in many fields, including market research, pattern recogni-
tion, data analysis, and image processing. As an example of this technique being applied,
we can look at pattern and cluster mining on text data [3] where the authors use hierar-
chical agglomerative clustering and k-means to group similar text files, such as stories,
emails, and news. Another example of clustering being utilized, this time in health stud-
ies, is the clustering of patients based on their individual course of low back pain over
a six-month period [6] where four clusters that described patients of different rates of
improvement were found ranging from slow improvers to fast improvers.

In this work we will be using K-medoids, and Hierarchical agglomerative clustering
as techniques that take a distance matrix as input and generate clusters in an unsupervised
manner and present them as output. We refer to Hands-On Unsupervised Learning Using
Python [33] for detailed explanation as well as a hands-on approach of this methods in
python.

The first is a very simple algorithm that divides n observations into k clusters, with
each observation belonging to a cluster and the nearest mean acting as the cluster’centroid
therefore, in the construction of the cluster the next element is placed in the group for
which the distance is minimal. The second is a bottom-up approach to hierarchical clus-
tering methods, in which all points begin in a different cluster and are joined recursively
until the desired number of clusters is reached.

Clustering results can be evaluated in many different ways, but in this work we will
be using the silhouette score, v-measure and adjusted random scores to look at the perfor-
mance of our models.

The silhouette score [38] is usually used when the data’s ground truth labels are un-
known. The score values can range from -1 to 1, with -1 for incorrect clustering and 1 for
highly dense clustering. The score of a single sample is given by:

s =
b− a

max{a, b}
,

with a representing the mean distance between a sample and all other points in the same
class, and b representing the mean distance between a sample and all other points in the
next closest cluster. This means that when the silhouettes are dense and well-spaced, the
silhouette score will be higher, corresponding to the usual definition of a cluster.

The v-measure[37] score can only be used when the ground truth labels are known.
This score is based on two concepts: homogeneity, meaning each cluster contains only
members of a single class, and completeness, where all members of a given class are
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assigned to the same cluster. Both the homogeneity and completeness values are bound
between 0 and 1, with their harmonic mean being the so-called v-measure. The v-measure
is computed as follows:

v =
(1 + β) ∗ homogeneity ∗ completeness
(β ∗ homogeneity ∗ completeness)

,

with β default value being 1. If we change β to values below 1, more weight will be
given to the homogeneity of the clusters. On the other hand, if the value of β is greater
than 1, more weight will be attributed to the completeness of the clusters.

Finally, we have the random adjuster score [1], which can only be used if the ground
truth labels of the data are known. This score is a corrected version of the rand index that
ensures values close to 0 for a model outputting random labeling of the objects. This score
is symmetric, i.e., swapping the argument does not change the scores. Its values range
from 0 to 1, with 0 representing random labeling and 1 representing perfect labeling.
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Chapter 4

Zgli

In this chapter we will take a closer look at the Complearn tool, explain how it works
and its main features. Afterwards we will explain the motivation behind the creation of
the Zgli python module, as well as its main features and improvements developed for this
particular work, looking at the main validation tests at the end.

4.1 Complearn

Complearn [12] is a Linux command line tool that enables its users to perform clustering
by compression in a straight forward and intuitive way, by providing all the resources
necessary for distance matrix computation and cluster production and visualization.

The tool is divided in two main command names, these being ncd, for computations
of the Normalized Compression Distance and maketree, for binary tree generation from a
given distance matrix.

The ncd command name offers the possibility to select between different compression
methods among bzlib, zlib and blocksort, and multiple input options described below:

• File Mode - Takes as argument a filename whose contents will be compressed.

• String Literal Mode - Takes as an argument a string whose contents will be com-
pressed. By default, each string literal is separated by white space. For string literals
containing white space, surround with double quotes.

• Plain List Mode - Takes as argument a filename, which contains a list of filenames
to be individually compressed. Each filename is separated by a line break.

• Term List Mode - Takes as argument a filename whose contents are a list of string
literals to be individually compressed. Each string literal is separated by a line
break.

• Directory Mode - Takes as argument the name of a directory whose file contents
will be used to compute the distance matrix.

21
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The outputs from the ncd commands, if we so choose, can then be used as input
for the maketree command name. This command takes a distance matrix as input and
computes a possible best-fitting unrooted binary tree and outputs a ”treefile.dot” that can
be visualized using the GraphViz tool [17] with the only two restrictions being that the
matrix must be square and be of size 4x4 or greater. Internally the maketree method
generates and represents its structure using the quartet method explained in section Float
Compression.

4.2 Zgli

The Zgli [7] module was constructed to be a python iteration over the Complearn tool
by porting its distance matrix computation capabilities and using it as a starting point
for development and to facilitate the use of other compressors and to have the access
to specific type compressors such as the gorilla compressor for float type data and delta
compressor for int type data.

The tool is written in python to better facilitate its integration with other established
data science utilities and being it a scripting language, development and editing of the tool
becomes much easier than if it was being made using C with the Complearn tool source
code as a starting point.

The Zgli is divided in two main classes:

• Folder - Perform operations inside the folder containing the files intended for com-
pression and clustering.

• Encoder - Encode tabular data using functions to transform the data.

In the following subsections we take a look at the Folder and Encoder classes, explain-
ing their purpose and main features but skip over description, parameter, and examples of
some of the functions. For a detailed description of all the functions, code and usage as
well as a quick start guide we refer to the Zgli website [7].

4.2.1 Folder

Four separate functions compose the Folder class, three of which provide the user with
access to relevant information about the files and one of which enables the user to generate
a distance matrix that encompasses all the NCDs between the files in the folder.

The first three functions are get file names, get file lengths, and get file sizes, where
length denotes the text file’s character count and size denotes the amount of memory it
uses to be locally stored.

The final function in this class, distance matrix, computes several methods for han-
dling the data by importing the Complearn methods to this functionality. Starting with
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compression options, Zgli now offers the additional gzip , lzma, and raw compression op-
tions in addition to the pre-existing zlib and bzlib compressors present in complearn with
raw meaning the files are not compressed and the original file sizes are used instead for
the computation of the distance matrix.

The option to compress a text file per column was the second feature we added to this
function. This function will calculate the file size as the sum of the compressed sizes of
all the columns inside the text file if it has a tabular structure and the user provides the
column delimiter (e.g., commas in .csv files).

Additionally, the user can perform weighted compression by column, where the com-
pressed size of each column is multiplied by the weight provided, allowing the user to
artificially manipulate column importance on the final compressed file size.

4.2.2 Encoder

The Encoder class has three different functions that allow the user to encode small tabular
data into larger sequences, with the idea that the text file compressors are then capable
of analyzing and compressing. This class was idealized due to the necessity to solve the
problem that appears when compressing small text files using state-of-the-art compres-
sion algorithms. Small files, even if completely different, when compressed will yield
very similar compressed sizes, making the NCD unable to correctly depict the differences
between them.

With the three encoding functions categorize cols, standardize categorical cols, en-
code df provided in this class, the user can create a pipeline and encode the smaller data
that is usually present inside the cells of tabular data, and still be able to use the clustering
by compression approach to the data.

For an encoding pipeline example, let’s look at the following data:

Feature1 Feature2 Feature3 Feature4

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2

After loading our data, we encode all the columns comprised of continuous variables
using the categorize cols function. The data is then transformed to what is shown below:

Feature1 Feature2 Feature3 Feature4

(4.296, 5.2] (3.2, 3.8] (0.994, 2.475] (0.0976, 0.7]
(4.296, 5.2] (2.6, 3.2] (0.994, 2.475] (0.0976, 0.7]
(4.296, 5.2] (2.6, 3.2] (0.994, 2.475] (0.0976, 0.7]
(4.296, 5.2] (2.6, 3.2] (0.994, 2.475] (0.0976, 0.7]
(4.296, 5.2] (3.2, 3.8] (0.994, 2.475] (0.0976, 0.7]
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With all the columns as categorical, we now standardize the dataframe structure, so
all categories are represented with the same notation, using standardize categorical cols:

Feature1 Feature2 Feature3 Feature4

0 2 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 2 0 0

Finally, using the encode df function, we can encode all the categories into their rep-
resentative patterns, with the final format of the data being the following:

Feature1 Feature2 Feature3 Feature4

000000000000 012012012012 000000000000 000000000000
000000000000 010101010101 000000000000 000000000000
000000000000 010101010101 000000000000 000000000000
000000000000 010101010101 000000000000 000000000000
000000000000 012012012012 000000000000 000000000000

To better understand how the encode df function works, let’s look at the following
example, starting by establishing the following:

• Row: 0,1,0,2

• ASCII string: 0123456789abcdefg (...)

• Hop: 1

With the Row being a single row from a dataframe after the categorize df and stan-
dardize categorical cols functions were applied, the ASCII string being a string made up
of 94 different ASCII characters, and Hop being a user defined parameter that determines
how many characters should be jumped between different categories (the purpose of this
parameter should be clear by the end of the example).

Now that we’ve established the data and parameters, let’s move on to the row to be
encoded. The row is divided into three classes: 0, 1, and 2. This means that the encod-
ing function will need to generate three distinct patterns to represent each of one of these
classes. All of these patterns must have varying levels of complexity, so that when com-
pressed, different compressed sizes are obtained. This variation in complexity must also
be consistent across classes so that feature importance remains generally constant. The
solution proposed by encode df for all of these issues is to encode the classes as follows:

• 0: 000000
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• 1: 010101

• 2: 012012

Where every class is represented by a slice of the main ASCII string, with the size of
this slice increasing by one (hop = 1) for each new class. If the value of hop parameter
was equal to two, the size of this slice would increase by two for each new class, with the
final encoding results being:

• 0: 000000000000000

• 1: 012012012012012

• 2: 012340123401234

Another thing to note, and this is visible in the previous example, is that the size of the
encoded string that represents each class grows in proportion to the number of classes and
hop size. As previously stated, the trend is for larger strings to generate larger compressed
sizes, hence all classes must have same size strings representing them, so the differences
between them can reside in their complexity rather than their size. If we want all the
strings to be the same size, we must consider the hop parameter and the number of classes
the function must represent, with the size formula being:

size = lcm(hop, hop× 2, · · · , hop× n)

where n is the number of classes of the column with most classes in the dataframe and
lcm represent the least common multiple among all the numbers given as parameters.
Furthermore, to make sure all the columns are represented in a same manner, this function
makes sure to distribute the class representations between all the columns in the best way
it can. For example, let’s take the representations of column X (column with most classes
in the dataset):

• 0: 000000000000000

• 1: 012012012012012

• 2: 012340123401234

To make sure a binary column, for example column Y, has the same impact on the
compression sizes as column X, the function encoded column Y in the following way:

• 0: 000000000000000

• 1: 012340123401234
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This function considers the difference between class 0 and class 2 in column X is
the same as the difference between class 0 and class 1 in column Y, and for this reason,
tries to represent them in the same way. When this is not possible, the function rounds the
class representation to the closest existing representation in the column with most features
inside the dataframe, and when tied, this approximation is rounded downwards.

4.3 Validation Tests

In this section, we look at various questions where we compare the zgli module to the
Complearn tool to see if it enhances the state-of-the-art tolls for clustering by compression
in any manner other than simply being a Python port of an already existing tool. These
questions are:

• Can we apply the Complearn tool to multivariate, possibly time series data? Are
the results consistent?

• Can these results be improved?

• Can dedicated compression methods like int/float compression prove to aid or be
better than text compressors like gzip, bzlib or lzma.

Due to legal constraints, access to the data took longer than expected. Therefore,
some additional data was used to validate the compress by column feature of our Zgli
python module. Since all we knew at the time was that our data would be mostly nu-
meric, with float values and would probably, at least, have a subset of time-series data,
we searched the UCI repository for datasets with similar features and came across this
basketball dataset [22] by David Guarin et al. An accelerometer (x,y,z) and a gyroscope
(R, phi, delta) located on the right arm were used to collect the data. Four distinct users
were requested to carry out several basketball moves: dribble, hold, pass, pickup, shoot.
All the data collected was stored as float values. Each pair of user-action as its own file,
and the dataset has a total of 80 files. Little data munging was required since there were
no missing values and the data was already pre-arranged in text files, the required format
for our method. Given the various file sizes and the method we intend to employ, a sep-
arate dataset was built from the raw one (after the headers were removed) in which each
file has the same number of lines. This was accomplished by looping the smaller files and
repeating them line by line until all the smaller files were the same size as the largest one
- see Figure 4.1.

To validate this method’s results, it’s important to take into account the following:
The files will be clustered together based on their compressed size. Although not always,
files with larger original sizes tend to have larger compressed sizes, and files with smaller
original sizes tend to have smaller compressed sizes. As a result, we believe it is critical
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Figure 4.1: Looped rows example.

to examine clusters formed using only the original file sizes so that we can later compare
them to clusters generated using file compressors and see what their impact is on the
groups formed. After looping all the necessary files in the 80 file dataset, we sampled
15 files (3 files per basketball move) just so the binary-trees resulting from the clustering
performed could be better visualized for the effect of this explanation. Figure 4.2 shows
the binary tree generated when using the uncompressed file sizes, and it clearly shows
that the method is not able to correctly group the actions based on the raw size alone.

Firstly we generated the tree using the original file sizes, then both compressors avail-
able in the Complearn tool, zlib and bzlib were used for clustering, with the zlib showing
the best results. The tree differs greatly from the one using the original file sizes with
almost every action being grouped correctly and the tree itself having a score of approxi-
mately 0.98 as seen in

For the second test, we wanted to look at the performance of the method when all
the files had the same number of rows. So firstly, we had all smaller files have their
structure repeated row by row (as illustrated before) until they reached the same number
of rows contained in the largest file. The dataset resulting from this operation has noisier
data since files now contain repeated rows and different files have a different number of
repeated rows. Complearn was then applied to the altered dataset, and the best results
did not differ much from the first test. The compressor with better performance was now
bzlib, but the purity of the clusters found on the binary tree and the tree score did not have
a significant change.

Following this analysis of the Complearn tool, we turned to our Zgli module, and
started testing with the new features implemented to then compare them to the baseline
established by the previous tests. After the introduction of file compression by column,
the compression methods zlib, bzlib, gzip, lzma, and gorilla were all tested. The first
four were also tested with and without gorilla encoding beforehand, and some interesting
outcomes were discovered. Firstly, the gorilla encoding before compression did not help
in the grouping of the files, in fact, all the binary trees where the float encoding was
applied showed both worse scores and clusters when compared to the trees generated
when the single general-purpose compressor was used. Additionally, when pairing the
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compression by column option and the lzma compressor, we were able to obtain better
results than before, with every cluster apart from the ”pass” cluster being pure and a tree
score of 0.99 as shown in Figure 4.4.

Figure 4.3: Clustering using zlib file sizes.
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Figure 4.2: Binary-tree obtained from the raw file sizes.
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Figure 4.4: Clustering using lzma and compression by column.

Now, to answer the questions we started with, by applying the Complearn tool to
multivariate/ time series data, and the results show to be consistent with what it is to be
expected. Even so, these results can be improved if we use compression by column on our
data. Also, after testing dedicated compressors such as the Delta and Gorilla compressors,
we verified that they do not outperform the more generalist algorithms like bzlib, zlib and
lzma.



Chapter 5

Data description and processing

5.1 Reuma.pt

This thesis is a result of the Project PREDICT (PTDC/CCI-CIF/29877/2017), funded
by Fundo Europeu de Desenvolvimento Regional (FEDER), through Programa Opera-
cional Regional LISBOA (LISBOA2020), and by national funds, through Fundação para
a Ciência e Tecnologia (FCT). The Reuma.pt register has been active since June 2008.
It was created by the Portuguese Society of Rheumatology, and it contains information
received on a regular basis from rheumatic patients in Portugal who are performing bi-
ological therapy. In our study we will be focusing on SpA patients, but the Reuma.pt
register includes patients with other conditions, such as rheumatoid arthritis, psoriatic
arthritis, and juvenile idiopathic arthritis. Data from this repository includes identifica-
tion data, demographic data, previous medical history, comorbidities, laboratory findings,
past and current medications, adverse events, and disease activity, just to name a few.

5.2 Data Cleaning

We received our data On November 11, 2021. This data was provided in a 13 multi-sheet
Excel file. Only patients with at least two appointments and known biological therapy are
included in this database. The first two sheets contain 2293 rows, one per patient, and
features related to patients’ personal information, condition, and therapy. The next two
sheets contain 32476 rows, one for each doctor’s appointment, with data corresponding
to the patient’s joint health, disease indices as well as answers to questions used to assess
general condition. The remaining nine sheets contain a variable number of rows and
features per patient, with very noisy data, ambiguous features, and overall data we deemed
not helpful for this work.

The Excel sheets pertaining to doctor’s appointments and patient joints were chosen
from among all the available data to be merged and used as the data for this work.

Each row in these sheets contains a patient id and an appointment sequence number,

31
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Figure 5.1: Data snippet of missing value volumes per column and patient

allowing a series of appointments to be set up for each patient. The number of appoint-
ments per patient is not fixed, and so we may have a different number of doctor’s ap-
pointments for each patient. We produced two additional columns with the sum of all
painful and swollen joints after merging these two datasets based on the aforementioned
id and sequence number. Following a deeper examination, these were converted into bi-
nary columns due to the large disparity in the number of patients with no painful/swollen
joints and those with one or more. The resulting dataset had 32476 rows and 112 columns.

We then focused on dealing with all the missing values in our dataset. A considerable
portion of the columns in our dataset had massive percentages of missing values - see
Figure 5.1.

The imputation of these values would not be a recommended approach since we cer-
tainly would be introducing a high bias in our data given the volume of value imputations
that had to be done. For this reason, we chose to do a hybrid approach between dropping
columns with a high volume of missing values followed by the elimination of rows with
a high volume of missing values. For this approach, we started by dropping all columns
with more than 33% of its values missing. We chose this threshold mainly because we get
to keep all the disease indices (ASDAS, BASFI, and BASDAI). If this threshold were any
lower, we would not be able to keep the BASFI index in the dataset. After dropping all
the columns and rows, we ended up with a dataset comprised of 64 features and, 15804
rows. Patients in this dataframe are represented more than once, meaning every row in
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this dataset represents a doctor’s appointment, but not all appointments are of a different
patient.

Next, we created new columns we thought could better represent the information in-
side the already existing features. We created a chronological number for each of the
patient’s biological treatment, meaning every time the patient switched or stopped his
treatment, this chronological number would restart. We added a column with the number
of treatment switches at the time of each appointment, with the number increasing every
time the patient switched treatment, but not when he stopped and restarted the same treat-
ment. We also added some static features that were present in the patient’s Excel sheet,
that had relevant information about the patients’ treatment journey, with these being the
date of the first appointment, date of the last appointment and starting date of the first
biological treatment. Finally, we dropped some of the columns that contained irrelevant
information, these were (dt consulta) for being a duplicate of other columns in the data,
and i ocasional, i ult consulta and unidades pcr for being columns with a single value
(and therefore contributing in nothing for the differentiation of the data).

5.3 Data Restructure

After dealing with all the missing variables and creating the new features, the next step
was to structure our data such that it accurately represented the appointments of a single
treatment as well as its success/failure outcome. When thinking of the best way to do this,
while analyzing the appointments for each treatment in our data, the following pattern was
found:

• The patient starts a biological treatment.

• When the patient has a high ASDAS, the next appointment shows great decreases
in disease activity.

• After some time, the patient’s activity increases slightly and stabilizes.

We believe this phenomenon occurs because, when patients have high disease activity,
any treatment that has a minor impact on decreasing disease activity reflects a significant
decrease in assessed ASDAS, most likely as a result of the patient finally experiencing a
working treatment for his condition. As the treatment is continued, the patient becomes
used to his new disease activity baseline, causing the assessed ASDAS levels to climb
slightly.

Based on this hypothesis and the ASAS-EULAR recommendations, we considered
representing a treatment by using the values from the first appointment at which the treat-
ment is administered to the patient (treatment start) and computing the difference be-
tween the patient’s ASDAS in the appointment and the one obtained in the last registered
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appointment (treatment end) for the same treatment. The resulting row contains all the
characteristics that the patient had at the initial session, with the target variable being the
ASDAS amplitude that results from this difference. After applying this transformation
to our data, we end with a dataset consisting of 936 treatments instances (rows) and 64
features.

ASDAS amplitude between the first and last appointment can only be as big as the
starting ASDAS. An improvement is considered clinically important when this amplitude
is greater or equal to 1.1. These improvements are usually only obtained when the patient
has high disease activity, corresponding to ASDAS greater than 2.1. For these reasons,
it only makes sense to analyze the treatments with a starting ASDAS greater than 2.1 as
recommended in by the ASAS-EULAR.

When we filter the dataset only to contain rows with these characteristics, we end with
a dataset with 543 treatment instances (rows) and 64 features.

Finally, before separating our dataset into its different treatments, since the method we
will be applying to our data is sensible to outliers, we remove them by taking the absolute
Z-score of each value in the column relative to the column mean and standard deviation.
We then consider only the rows where all column values have an absolute Z-score that is
less than 3, eliminating any instances with values 3 standard deviations above the mean.
The resulting dataframe without outliers is made up of 391 rows and 64 features. The
final features are the following:

Patient id, appointment id, number of days being followed by a clinician, active bio-
logical treatment, sequential number of current biological treatment, concomitant disease-
modifying antirheumatic drug (DMARD) at baseline, active corticoid treatment, patient
evaluation during appointment, nocturnal patients evaluation, spine evaluation, C-reactive
protein, vs, number of painful joints, number of swollen joints, answers to the BASFI
questionnaire as well as the final BASFI index (11 features) ), answers to the BASDAI
questionnaire as well as the final BASDAI index (7 features), ASDAS index, ASDAS
activity, ASDAS computed using vs, ASDAS computed using C reactive protein val-
ues, appointment count, chronological index of current biological treatment, number of
switches up to the current appointment, age of disease diagnosis, estimated age of disease
onset, birthdate, sex, nationality, first biological treatment, Anti-TNF index, baseline in-
dex, binary baseline indicator, Age at the beginning of first biological treatment, age ate
the last appointment, disease years up to the last appointment, binary HLAB27 indicator,
date of first appointment, date of last appointment, binary mortality indicator, patients al-
coholism level, patients smoking level, time in years up to disease diagnosis, first failing
treatment, years of disease up to first biological treatment and finally the target variable
being patients clinical improvement.
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Treatment Row count

ADALIMUMAB 124
ETANERCEPT 120
GOLIMUMAB 67
INFLIXIMAB 64

SECUCINUMAB 11
CERTOLIZUMAB 4
USTECINUMAB 1

Table 5.1: Treatment row counts

Treatment Treatment Success Treatment Failure

ADALIMUMAB 62 62
ETANERCEPT 46 74
GOLIMUMAB 25 42
INFLIXIMAB 17 47

Table 5.2: Success and failure count per treatment

5.4 Final Datasets

Our final dataset consists of several patient biological therapies approaches. The final
step in processing our data is to break it into its many biological therapies, so we can
later apply the different clustering techniques discussed to the various treatments and
determine which patient profiles best describe each of them. Each of the treatments has
the following row count: The row count for each treatment can be seen in table 5.1.

Based on the row counts for each treatment, we decided to omit SECUCINUMAB,
CERTOLIZUMAB, and USTECINUMAB from the dataset. Their sample size was so
small that we believe an analysis of those treatments would be extremely skewed and not
broad enough to accurately reflect population patterns.

With these treatment approaches excluded, we divided our dataset into its remaining
treatments, with the final distribution of our target variable for each of these show in table
5.2.
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Chapter 6

Clustering by compression results on
Reuma.pt

In this chapter, we will look at the pipeline that was built and then applied to all the
treatment datasets. We then examine each dataset separately, visualizing the impact of
increasing the number of features on model scores, which compression method produced
better results, and how clustering by compression models performed when compared to
standard clustering models. The patterns discovered after examining the cluster feature
distribution of the best 5 models for clustering by compression and the best 5 models for
standard compression are then discussed. Finally, we compare the results obtained in each
dataset to determine which trends were shared by all datasets and which were unique to
each.

6.1 Methods

With all the data cleaned and separated into all the different treatments, we built a pipeline
for the analysis of each dataset - see Figure 6.1. This pipeline has the ADALIMUMAB,
ETANERCEPT, GOLIMUMAB and INFLIXIMAB as a starting point. We then perform
feature selection for each dataset using the Maximum Relevance Minimum Redundancy
(MRMR) algorithm, as explained in Section 3.6. After getting the best 10 features for
each dataset we generate models starting by using the first two features with the best
MRMR score, and appending the next best feature to the set until all the features were
used to generate models. For each subset of features (2 best features, 3 best features, ..., 10
features) we also went over different numbers of clusters, from 2 to 10. Furthermore, for
each pair of features and number of clusters we used Hierarchical Clustering (with com-
plete, average and single distance) and K-medoids to generate 4 different models. Finally,
when doing clustering by compression we used the 2 fastest compression algorithms, zlib
and bzlib with both standard compression and compression by column.

This whole processes was done three times, once for clustering by compression with
standard compression and other for normal clustering. This means that for each dataset

37
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we generate 1620 different models:

9(feature sets)× 9(clusters)× 4(models)× 5(types of clustering) = 1620

with feature sets being 9 because we went from feature set of size 2 up to feature set of
size 10, clusters being 9 because we went from 2 clusters up to 10 clusters, models being
4 because we used hierarchical clustering with 3 different distances and K-medoids, and
types of clustering being 5 because we used bzlib and zlib with standard compression and
compression by column, and normal clustering.

Each of these models was then evaluated using the silhouette score, v-measure and
Adjusted Random Score, previously mentioned and explained in Section 3.7. After eval-
uating every model, we selected the 10 best models for each score, these being the top
five models of clustering by compression and the top five models of standard clustering.
These 10 models were then closely analyzed using their contingency matrices as to better
understand and visualize their cluster distributions. The most pure and repeating clusters
throughout all models were identified and had their features analyzed and interpreted so
that common patient profiles for treatment failure and success could be extracted.

This pipeline was repeated an extra number of times for some special cases and tests.
Firstly, the pipeline was run using the SMOTE [9] oversampling technique, which in-
volves randomly duplicating examples from the minority class and adding them to the
training dataset. We verified that a big portion of the patterns uncovered using this ap-
proach was highly biased, since the oversampling of the treatments implied that almost
a quarter of the rows would be artificial when looking at the ETANERCEPT and GOLI-
MUMAB treatments and approximately 3 quarters of the rows would be artificial when
looking at the INFLIXIMAB treatment. Undersampling was not an option either, since
we already had a few rows to begin with, and we could not spare losing any more rows
in order to balance the classes of treatment success and treatment failure. The other time
we repeated the pipeline was to manually introduce features into the feature set of some
treatments, in order to, in addition to performing the individual analysis of each treatment,
be able to compare all treatments using the same set of features.
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Figure 6.1: Flowchart representing the overall approach to the model building and data
analysis done.

6.2 ADALIMUMAB

In this section, we will analyse the results obtained for the ADALIMUMAB dataset,
which consists of a total of 124 treatments, 62 of them being success cases and the other
62 being failure cases.

The best 10 features selected by the MRMR method for this dataset were ASDAS,
time until diagnostic, ASDAS calculated using pcr, number of days until first doctor’s
appointment, ASDAS calculated using vs, question six of the BASDAI questionnaire, vs,
question four of the BASDAI questionnaire, BASDAI and pcr.

Following the feature selection, the models were generated. The best silhouette scores,
v-measures and adjusted random scores for each number of features can be seen in Fig-
ure 6.2. Also, the best 5 clustering by compression models and the best 5 standard com-
pression models for each of the scores can be seen in Tables 6.1, 6.2, 6.3.

When we used clustering by compression on the ADALIMUMAB dataset, we found
that the compression by column models outperformed standard compression models for
every score. Also, when comparing clustering by compression models and normal clus-
tering models we see that the best models were created using clustering by compression
were unable to beat the best models created using standard compression, but only when
the models use a set of 2 features. For any other set of features greater than 2, clustering
by compression was able to obtain competing scores and usually using a smaller number
of clusters, meaning it was able to separate the data just as good as the standard clustering
methods with fewer groups.
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Score Clusters Features Compressor Model

0.873814 8 2 N/A HC complete
0.671859 2 2 bzlib by column HC average
0.671859 2 2 bzlib by column HC complete
0.671859 2 2 bzlib by column HC single
0.620176 8 2 N/A HC average
0.579773 2 3 bzlib by column HC single
0.579773 2 3 bzlib by column HC average
0.537397 8 4 N/A HC complete
0.513231 6 4 N/A HC average
0.513231 6 4 N/A HC single

Table 6.1: Silhouette Scores of the best 5 clustering by compression and the best 5 normal
compression models for the ADALIMUMAB dataset.

Score Clusters Features Compressor Model

0.873814 8 2 N/A HC complete
0.620176 8 2 N/A HC average
0.513231 6 4 N/A HC average
0.496547 5 4 N/A HC complete
0.45292 7 4 bzlib by column HC single

0.448966 5 4 bzlib by column HC complete
0.435702 6 4 bzlib by column HC average
0.422575 7 3 N/A HC complete
0.373125 5 5 bzlib by column HC complete
0.352834 8 5 bzlib by column HC single

Table 6.2: V-measure of the best 5 clustering by compression and the best 5 normal
compression models for the ADALIMUMAB dataset.

When looking at the feature distribution for the best models of each score and ana-
lyzing the feature distribution of their clusters, we discovered that the feature that best
described treatment success or failure was the initial ASDAS, with patients having AS-
DAS greater than or equal to 3.2 having a higher rate of treatment success and patients
having ASDAS less than 3.2 having a higher rate of treatment failure, with the patient
gender playing no part in this distinction. We also verified that patients with ASDAS less
than 2.7 have a higher treatment failure rate.

6.3 ETANERCEPT

In this section, we will analyze the results obtained for the ETANERCEPT dataset, which
consists of a total of 120 treatments, 46 of them being success cases and the other 74
being failure cases.
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Score Clusters Features Compressor Model

0.873814 8 2 N/A HC complete
0.591835 7 2 N/A HC average
0.539348 5 2 bzlib by column HC average
0.535332 4 2 bzlib by column HC complete
0.496547 5 4 N/A HC complete
0.466472 5 4 N/A HC average
0.444549 4 4 bzlib by column HC complete
0.435702 6 4 bzlib by column HC average
0.432731 6 4 bzlib by column HC single
0.422575 7 3 N/A HC complete

Table 6.3: Adjusted Random Scores of the best 5 clustering by compression and the best
5 normal compression models for the ADALIMUMAB dataset.

The best 10 features selected by the MRMR method for this dataset were ASDAS,
time of disease until first biological treatment, ASDAS calculated using CRP (C-Reactive
protein mg/l), number of days until first doctor’s appointment, age at start of first biolog-
ical treatment, question five of the BASDAI questionnaire, level of alcohol consumption,
ASDAS calculated using ESR (erythrocyte sedimentation rate mm/hr), question three of
the BASDAI questionnaire and CRP.

Following the feature selection, the same pipeline was applied, with the best silhou-
ette scores, v-measures and adjusted random scores for each number of features being
displayed in Figure 6.3. Also, the best 5 clustering by compression models and the best 5
standard compression models for each of the scores can be seen in Tables 6.4 6.5 6.6.

After applying clustering by compression to the ETANERCEPT dataset, we verified
again that the compression by column outperformed the standard compression method
for all scores. When comparing clustering by compression and standard compression, we
observed again that the normal clustering had better maximum scores for small feature
sets, of size two and three, and had similar scores to clustering by compression for feature
sets greater than 3, with clustering by compression showing again a smaller number of
clusters when compared to normal clustering.

Finally, when looking for patterns in the clusters of the best models, we verified that
the features better describing patient profiles were ASDAS at the start of the treatment,
time until first biological treatment and the patient sex. Patient with ASDAS less than 3.2
and time until first biological treatment less than 13 years, showed a high rate of treatment
failure. For male patients with starting ASDAS greater than 3.2 the treatment showed a
higher rate of success. We also verified again that patients with ASDAS less than 2.7 have
a higher treatment failure rate.
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Score Clusters Features Compressor Model

0.513297 7 3 N/A HC single
0.513297 7 3 N/A HC average
0.513297 7 3 N/A HC complete
0.511218 7 3 bzlib by column HC single
0.510276 6 3 bzlib by column HC average
0.510276 6 3 bzlib by column HC complete
0.430986 2 9 bzlib normal HC single
0.415792 2 7 bzlib normal HC single
0.393228 7 4 N/A HC complete
0.393228 7 4 N/A HC average

Table 6.4: Silhouette Scores of the best 5 clustering by compression and the best 5 stan-
dard compression models for the ETANERCEPT dataset.

Score Clusters Features Compressor Model

0.507932 8 3 N/A HC average
0.499001 8 3 N/A HC complete
0.490582 8 3 N/A HC single
0.3945 8 2 bzlib by column HC average

0.393228 7 4 N/A HC complete
0.382533 2 3 bzlib by column HC single
0.382533 2 3 bzlib by column HC complete
0.378066 8 2 N/A HC average
0.318598 2 4 bzlib by column HC complete
0.290999 4 2 bzlib by column HC complete

Table 6.5: V-measures of the best 5 clustering by compression and the best 5 standard
compression models for the ETANERCEPT dataset.

Score Clusters Features Compressor Model

0.507932 8 3 N/A HC average
0.499001 8 3 N/A HC complete
0.404663 6 3 N/A HC single
0.378066 8 2 N/A HC average
0.37364 8 2 N/A HC complete

0.353129 6 2 bzlib by column HC average
0.290999 4 2 bzlib by column HC complete
0.256796 2 6 bzlib by column HC average
0.256255 5 3 zlib by column HC average
0.256255 5 3 zlib by column HC single

Table 6.6: Adjusted Random Scores of the best 5 clustering by compression and the best
5 standard compression models for the ETANERCEPT dataset.
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Score Clusters Features Compressor Model

0.588178 8 2 N/A HC complete
0.583808 8 2 N/A HC average
0.56795 2 3 bzlib by column HC average
0.56795 2 3 bzlib by column K-medoids
0.56795 2 3 bzlib by column HC complete
0.56795 2 3 bzlib by column HC single

0.505713 8 4 bzlib by column HC complete
0.475152 8 4 N/A HC complete
0.446612 7 4 N/A HC average
0.441733 6 4 N/A HC single

Table 6.7: Silhouette scores of the best 5 clustering by compression and the best 5 standard
compression models for the GOLIMUMAB dataset.

6.4 GOLIMUMAB

In this section, we will analyze the results obtained for the GOLIMUMAB dataset, which
consists of a total of 67 treatments, 25 of them being success cases and the other 42 being
failure cases.

The best 10 features selected by the MRMR method for this dataset were ASDAS,
time until diagnosis, sex, ASDAS calculated using pcr, Date of the last doctor’s appoint-
ment, patient’s evaluation, number of treatment switches, age at condition diagnosis, pcr,
baseline index.

After the feature selection process, we applied the pipeline, with the resulting best sil-
houette scores, v-measures and adjusted random scores for each number of features being
displayed in Figure 6.4. Also, the best 5 clustering by compression models and the best 5
standard compression models for each of the scores can be seen in Tables 6.7 6.8 6.9.

We then applied the pipeline to the GOLIMUMAB dataset and verified very simi-
lar score results between clustering by compression models and normal clustering mod-
els. The trend of clustering by compression, needing fewer clusters to separate the data
with similar scores when compared with the normal clustering models, continues for this
dataset.

As for the patterns identified in the clusters, we verified that male patients with AS-
DAS greater than 2.7 have a higher treatment success rate. In contrast, most of the female
patients (26 out of 34 female patients) had treatment failure. Also, like what we verified
before, patients with ASDAS less than 2.7 have a higher rate of treatment failure.
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Score Clusters Features Compressor Model

0.588178 8 2 N/A HC complete
0.505713 8 4 bzlib by column HC complete
0.502198 8 4 bzlib by column HC single
0.475152 8 4 N/A HC complete
0.450261 8 5 bzlib by column HC complete
0.446612 7 4 N/A HC average
0.425628 8 5 N/A HC complete
0.390852 3 3 bzlib by column K-medoids
0.390682 8 5 bzlib by column HC single
0.386077 8 5 N/A HC average

Table 6.8: V-measures of the best 5 clustering by compression and the best 5 standard
compression models for the GOLIMUMAB dataset.

Score Clusters Features Compressor Model

0.446612 7 4 N/A HC complete
0.441733 6 4 N/A HC single
0.432458 8 4 N/A HC average
0.412846 3 3 bzlib by column HC complete
0.407364 7 5 N/A HC complete
0.390852 3 3 bzlib by column K-medoids
0.390682 8 5 bzlib by column HC single
0.386953 5 5 N/A HC average
0.374891 3 5 bzlib by column HC complete
0.308163 3 3 zlib by column HC average

Table 6.9: Adjusted Random Scores of the best 5 clustering by compression and the best
5 standard compression models for the GOLIMUMAB dataset.
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Score Clusters Features Compressor Model

0.8125 8 2 N/A HC average
0.803819 8 2 N/A HC complete
0.684863 8 2 bzlib by column HC single
0.679641 2 2 bzlib by column HC complete
0.679641 2 2 bzlib by column HC average
0.60313 8 2 N/A HC single

0.495979 7 2 bzlib by column K-medoids
0.451636 2 3 bzlib by column HC single
0.278344 5 5 N/A HC average
0.259509 5 5 N/A HC complete

Table 6.10: Silhouette Scores of the best 5 clustering by compression and the best 5
standard compression models for the INFLIXIMAB dataset.

6.5 INFLIXIMAB

In this section, we will analyze the results obtained for the INFLIXIMAB dataset, which
consists of a total of 64 treatments, 17 of them being success cases and the other 47 being
failure cases.

After applying the MRMR feature selection algorithm the best 10 features extracted
were ASDAS, Sex, question four of the BASDAI questionnaire, question two of the
BASDAI questionnaire, ASDAS calculated using pcr, age at start of first biologic treat-
ment, question three of the BASFI questionnaire, vs, BASDAI and number of treatment
switches.

We then generated models with all the features selected, with the best scores being
shown in Figure 6.5. The best 5 clustering by compression models and the best 5 standard
compression models that we used for the treatment analysis have their scores shown in
Tables 6.10 6.11 6.12.

Following the model generation and selection, we verified similar results to the one we
encountered in the previous datasets, where the normal clustering outperforms clustering
by compression for feature sets of size two, but has very similar results for any other
feature set sizes. Clustering by compression shows smaller number of clusters when
compared to normal clustering.

Looking at the patient profiles, we observed that male patients with initial ASDAS
greater than 3.2 had a higher treatment success rate for this biological treatment. Female
patients failed at a greater incidence for any level of initial ASDAS. Finally, patients with
an initial ASDAS of less than 2.7 had a higher failure rate, making it consistent with all
the previous treatments.
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Score Clusters Features Compressor Model

0.8125 8 2 N/A HC average
0.803819 8 2 N/A HC complete
0.684863 8 2 bzlib by column HC single
0.669274 8 2 bzlib by column HC complete
0.669274 8 2 bzlib by column HC average
0.60313 8 2 N/A HC single

0.495979 8 2 bzlib by column K-medoids
0.292292 3 4 bzlib normal HC average
0.266225 6 5 N/A HC average
0.244656 8 3 N/A HC average

Table 6.11: V-measures of the best 5 clustering by compression and the best 5 standard
compression models for the INFLIXIMAB dataset.

Score Clusters Features Compressor Model

0.8125 8 2 N/A HC average
0.803819 8 2 N/A HC complete
0.513128 4 2 bzlib by column HC average
0.513128 4 2 bzlib by column HC complete
0.303977 2 7 bzlib normal HC single
0.300028 5 3 bzlib by column HC complete
0.296687 8 2 zlib by column HC single
0.284965 5 2 N/A HC single
0.217403 3 3 N/A HC average
0.175645 6 3 N/A HC complete

Table 6.12: Adjusted Random Scores of the best 5 clustering by compression and the best
5 standard compression models for the INFLIXIMAB dataset.
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6.6 Comparison of results

In this section, we will focus on the comparison of the results obtained for all the different
treatments previously analyzed, and extract overall conclusions from these results.

When looking at the results from all the datasets, we could observe that the majority
of the patterns could be seen in all the datasets. Starting by the things all treatments had
in common:

• Clustering by compression using compression by column showed better results for
all the biological treatments.

• Clustering by compression demonstrated the ability to achieve similar score results
to standard clustering for feature sets greater than 2, while using a smaller number
of clusters, implying that it was able to separate the data just as well as normal
clustering models without dividing it into as many clusters.

• The results of the INFLIXIMAB, GOLIMUMAB and ETANERCEPT treatments,
showed that for this dataset, the treatments had a higher success rate for male pa-
tients whereas the improvements in female patients wasn’t as noticeable.

• The higher the initial ASDAS the higher the success rate for the treatment applied.

• When the initial ASDAS was lower than 2.7 (and therefore less room for an im-
provement), treatments are more likely to be classified as ”failures”, since ASDAS
improvements, although sometimes present, didn’t exceed the 1.1 ASDAS reduc-
tion threshold defined by ASAS-EULAR recommendations.

For the results not found in all datasets, we found one pattern specific to the GOLI-
MUMAB dataset:

• In contrast to the INFLIXIMAB, GOLIMUMAB and ETANERCEPT treatments,
the ADALIMUMAB did not make a distinction between genders, having similar
success rates for both.
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Figure 6.2: Best scores per number of features for the ADALIMUMAB dataset.
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Figure 6.3: Best scores per number of features for the ETANERCEPT dataset
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Figure 6.4: Best scores per number of features for the GOLIMUMAB dataset.
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Figure 6.5: Best scores per number of features for the INFLIXIMAB dataset.
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Chapter 7

Conclusions

Clustering by compression is an unconventional method of grouping and mining data
for patterns. This method was chosen for mining the Reuma.pt dataset for patterns that
could link patient profiles to different biological treatments in this study and find which
treatment could better suit each patient.

Conclusions can be drawn at two levels based on the work done and the results
achieved. First, we examined clustering by compression and the various conclusions
found in this work. When developing and testing the Zgli python module, we verified that
text compressors such as bzlib, zlib and lzma generated better models than specific com-
pression methods such as delta for integer compression and gorilla for float compression.

Models constructed on a distance matrix computed using the compression by column
method consistently outperformed models built using the standard compression method
for both the basket and Reuma.pt datasets. This leads to the conclusion that when working
with tabular data, the compression per column method can better preserve the structure of
the data, resulting in a less noisy and more representative compressed data sizes.

Second, when we examined the patterns between SpA patients and the various bio-
logic treatments, we could clearly see that, for the dataset obtained at the end of data
pre-processing, the INFLIXIMAB, GOLIMUMAB, and ETANERCEPT treatments had
a higher success rate for male patients and a higher failure rate for female patients, with
the ADALIMUMAB treatment being the only exception, with similar success rates for
both male and female patients. We could also see that the greater the initial ASDAS for
all treatments, the higher the rate of treatment success. The contrary was also seen, with
the higher the rate of treatment failure being reported when the baseline ASDAS was
closer to the 2.1 to 2.7 range. Because the concept of treatment success and failure is
based on ASDAS variance at 12 weeks, we believe that when we look at patients with
high initial ASDAS, and hence high disease activity, patients are particularly sensitive to
any decreases in disease activity, that could lead to an improvement in their quality of life.
The same could be true for patients with initial ASDAS values ranging from 2.1 to 2.7.
While these individuals have disease activity that is classified as high, their initial ASDAS
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is near to the 2.1 threshold, with patients with ASDAS less than 2.1 being classified as
having low disease activity. The lower the disease activity, the more difficult it is to find
treatments that have a positive effect on the reduction of disease activity.

From the results observed, for male patients with high initial ASDAS, any of the
four biologic treatments analyzed (INFLIXIMAB, GOLIMUMAB, ETANERCEPT and
ADALIMUMAB) showed to be good approach to obtain clinical important improve-
ments on disease activity. For female patients with high initial ASDAS, ADALIMUMAB
showed to be the better approach to obtain clinical important improvements. In the case
of patients with initial ASDAS values ranging between 2.1 and 2.7, we were unable to
identify any relevant patterns that linked patients to treatment success, since success in-
stances were scarce. We believe that when looking at the treatments SECUCINUMAB,
CERTOLIZUMAB and USTECINUMAB as well as patients between the ASDAS range
of 2.1 and 2.7, more data is needed before any meaningful patient profiles representative
of the larger population can be found, and respective conclusions can be taken.

7.1 Achievements

Throughout this work we developed and made available Zgli [7] a python module with
different tools that allow its users to perform the computation of distance matrices com-
prised of the normalized compression distance between the different objects to be clus-
tered. This tool expands the number of compression algorithms that can be used for
compression, provides a compression by column option for when the user is dealing with
tabular data, and also provides a data encoder for small data that would otherwise be
incompatible with the clustering by compression methodology.

A dataset comprised patient treatment instances of 4 different biological treatments,
INFLIXIMAB, GOLIMUMAB, ETANERCEPT and ADALIMUMAB was created and
can be used for future studies on SpA patients from the Reuma.pt data repository.

Finally, different patient profiles were identified that linked patients with different
successful and unsuccessful treatment approaches, that could bring valuable insights for
aiding clinicians in selection of the right biologic treatment for each patient.

7.2 Future work

Considering the work developed during this thesis and some of the results obtained, we
identified the following proposals for future work.

Firstly, we think that the phenomena of clustering by compression needing fewer clus-
ters to obtain similar scores when compared to normal clustering models should be further
explored by applying this same comparative approach to other datasets comprised of tab-
ular data and see if the same result can be observed.
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We also see that there is more potential when it comes to different data encoding and
compression approaches, with the conversion of text data into different formats such as
images and sound allowing us to explore several different compression approaches that
could produce radically different results due to the significant difference in the represen-
tation of the data.

Finally, the quartet method could be added to the Zgli module to enable users to
perform the same approaches discussed in the initial literature published in clustering
by compression.
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[39] Costa Santos, Joao Bernardes, Paul Vitányi, and Luis Antunes. Clustering fetal heart
rate tracings by compression. In 19th IEEE Symposium on Computer-Based Medical
Systems (CBMS’06), pages 685–690, USA, 2006. IEEE.

[40] Editorial Team and Emily Downward. What are the symptoms of as?, Feb 2019.

[41] Carme Uribe, Barbara Segura, Hugo Cesar Baigo, Alexandra Abos, Anna Isabel
Garcia-Diaz, Anna Campabadal, Maria Jose Marti, Francesc Valldeoriola, Yaroslau
Compta, Eduard Tolosa, and et al., Feb 2018.

[42] D van der Heijde, E Lie, T K Kvien, J Sieper, F Van den Bosch, J Listing, J Braun,
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