

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

AUTOMATIC GENERATION OF SMELL-FREE UNIT TESTS

João Gonçalo Balsinha Afonso

Mestrado em Engenharia Informática

Dissertação orientada por:

Prof. Doutor José Carlos Medeiros de Campos

Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. José Carlos Medeiros
de Campos, for his continuous support, availability, patience, commitment, and guidance.
His feedback was essential to the success of this work.

I will be forever grateful to my family, in particular to my parents and brother, for
their love and support. They were always there for me and gave me the strength I needed
to continue pushing through. I would never have made it without them.

I would also like to thank all my friends who have supported me throughout these
years. Special thanks to: João Martins, who has been my best friend since I was born;
João Grilo, Vânia Romão, and Tiago Sobral for being the best friends I made during my
school years and for being some of the kindest people I have ever met; Tiago Carvalho,
Miguel Dias, Miguel Saldanha, and Alexandre Monteiro, whom I met during my years at
FCUL and who have been not only the most amazing colleagues I could have but also the
most amazing friends. I feel very fortunate that I have met all of you.

This work was supported by the Fundação de Ciências e Tecnologias (FCT) through
the LASIGE research unit ((UIDB/00408/2020) – Ref.ª 716).

i

Dedicated to my family and friends.

Resumo

Testar corresponde a um processo indispensável para a geração de software de alta
qualidade. Contudo, o desenvolvimento de testes de software é dispendioso. Portanto,
com o intuito de mitigar estes custos elevados, têm sido desenvolvidas ferramentas que
permitem gerar testes automaticamente (como é o caso de ferramentas como o EvoSuite
e o Randoop). Estas ferramentas de geração automática de testes tendem a ser bastante
eficazes a produzir testes com elevada cobertura (ou seja, testes que exercitam uma grande
quantidade de código), mas frequentemente negligenciam a qualidade dos testes gerados.
Como tal, testes gerados automaticamente estão frequentemente sujeitos a um conjunto
de más práticas de programação que podem ter efeitos adversos não só na qualidade dos
próprios testes, mas também na qualidade do código de produção: test smells.

Ferramentas automáticas como o EvoSuite não têm a capacidade de “adivinhar” qual
é o comportamento suposto de um determinado programa. Nomeadamente, a razão pela
qual se usa este tipo de ferramentas é para gerar testes que manifestam o comportamento
atual do código de produção (seja ele, ou não, o correto). Assim sendo, os developers têm
de analisar e perceber o código dos testes gerados para poderem averiguar se o compor-
tamento atual de um dado programa está de acordo com o esperado. Por sua vez, se os
testes gerados automaticamente utilizarem más práticas de programação, então a respetiva
análise e manutenção será mais difı́cil. Em última instância, caso o tempo necessário para
fazer a análise dos testes exceda o tempo que se poupou por fazer a geração automática
dos mesmos (em vez de os escrever manualmente), então a utilidade destas ferramentas
torna-se questionável (nesse caso, não faria sentido usar testes gerados automaticamente).

Tendo em consideração os problemas associados com a presença de smells em testes
gerados automaticamente, comprometemo-nos a integrar um conjunto de métricas smell-
free na ferramenta EvoSuite e a desenvolver uma abordagem para otimizar essas métricas
de modo a minimizar a smelliness dos testes produzidos. Concomitantemente, assumimos
que seria necessário alcançar este objetivo sem comprometer a cobertura ou a capacidade
de detetar faults da ferramenta (caso contrário, na prática, a abordagem não seria útil).

Para este efeito, compilámos test smells de um conjunto tão vasto quanto possı́vel de
diferentes fontes e identificámos os smells relevantes para o contexto deste trabalho, ou
seja, os smells que podem afetar os testes gerados pelo EvoSuite e que também podem ser

v

caracterizados por métricas otimizáveis. Posteriormente, definimos métricas representa-
tivas para os test smells escolhidos e integrámos esse conjunto de métricas na ferramenta
EvoSuite. Por fim, foi feita uma análise de três abordagens distintas que, em teoria,
deveriam possibilitar a otimização das métricas de test smells na ferramenta EvoSuite.
Nomeadamente, ponderámos otimizar as métricas de test smells como: (1) um critério
adicional; (2) critérios secundários; (3) passos adicionais de pós-processamento. Tendo
sido feito um estudo destas três abordagens, tornou-se claro que a abordagem com maior
potencial era aquela que consistia em otimizar métricas como critérios secundários.

Concretamente, optámos por substituir o critério secundário de default do EvoSuite
(tamanho dos testes) por um conjunto de critérios secundários que permitem otimizar as
métricas de test smells. De um modo geral, caso o EvoSuite esteja a comparar testes que
são equivalentes do ponto de vista de cobertura, então são utilizados critérios secundários
que dão prioridade aos testes que têm outras caracterı́sticas apelativas. No nosso caso, isso
implica que os testes gerados só são comparados em termos de métricas de test smells se
forem equivalentes do ponto de vista da cobertura, ou seja, podemos otimizar as métricas
de test smells sem interferir diretamente com a cobertura dos testes gerados.

A otimização de métricas de test smells como passos adicionais de pós-processamento
também despertou o nosso interesse. O pós-processamento corresponde a um conjunto
de otimizações feitas após a geração dos testes que visam melhorar diversos aspetos de
qualidade dos mesmos (por exemplo, remoção de linhas de código desnecessárias). Con-
tudo, tivemos de excluir esta opção porque não tı́nhamos acesso a uma funcionalidade que
permitisse criar testes equivalentes, mas com uma estrutura fundamentalmente diferente.

Investigámos a difusão de test smells e a distribuição das respetivas métricas nos testes
gerados pela versão default da ferramenta EvoSuite e observámos que os passos de pós-
processamento reduzem imensamente a smelliness dos testes gerados. De qualquer modo,
os testes gerados automaticamente continuam sujeitos a diversos tipos de más práticas de
programação. Nomeadamente, os seguintes smells tendem a ser os mais difusos nos testes
gerados pelo EvoSuite: “Unknown Test”, “Indirect Testing”, e “Unused Inputs”. Dados
os smells que afetam os testes gerados pelo EvoSuite na prática, também identificámos
aqueles que poderiam ser otimizados como critérios secundários.

Após identificarmos os tipos de test smells que, na prática, afetam os testes gerados
pelo EvoSuite, fizemos um estudo de tuning para identificar a combinação ideal de test
smells para otimizar como critério secundários, ou seja, a combinação que minimiza a
smelliness dos testes tanto quanto possı́vel e que maximiza a cobertura e a capacidade de
deteção de faults tanto quanto possı́vel. Em concreto, realizámos pairwise tournaments
para as seguintes métricas: cobertura, mutation score, e smelliness. Dados os resultados
dos torneios, fizemos o ranking das configurações de acordo as das três métricas referi-
das e, desta forma, acabámos por optar por usar a combinação que otimiza as seguintes
métricas: “Eager Test”, “Indirect Testing”, “Obscure In-line Setup”, e “Verbose Test”.

vi

Comparámos os testes gerados pela nova versão do EvoSuite com aqueles gerados
pela versão original da ferramenta e observámos que, de facto, a smelliness dos testes
gerados tinha melhorado. Nomeadamente, o smell “Indirect Testing” (que corresponde
ao segundo smell mais difuso nos testes gerados pela versão original do EvoSuite) revelou
melhorias significativas. Por sua vez, o smell “Unrelated Assertions”, que está associado
com o “Indirect Testing”, também se tornou menos difuso. Tendo em consideração que
substituı́mos o critério secundário de default do EvoSuite (que é equivalente ao “Verbose
Test”) por um conjunto de métricas de test smells, observou-se um aumento ligeiro no
tamanho dos test cases. Embora a combinação de métricas de test smells que optámos
por otimizar como critérios secundários também inclua o “Verbose Test”, já não é dado
um foco exclusivo apenas ao tamanho dos testes. Como tal, é normal que os test cases
tendam a ser um pouco maiores na nova versão do EvoSuite.

Observámos que a otimização das métricas de test smells não comprometeu nem a
cobertura nem a capacidade de detetar faults dos testes. De qualquer modo, é importante
referir que, apesar de não ter sido uma redução significativa, a nova versão do EvoSuite
é ligeiramente pior do que a original em termos de capacidade de detetar faults. Este
resultado foi inesperado porque, de acordo com o estudo de tuning, a “combinação ideal
de test smells” era a décima melhor configuração em termos de mutation score. Por sua
vez, nenhuma das outras combinações de métricas que estavam entre as dez melhores
configurações em termos de mutation score eram viáveis do ponto de vista de smelli-
ness, ou seja, parece evidente que a otimização de métricas de test smells como critérios
secundários pode ter ligeiros efeitos adversos no mutation score. Também constatámos
que não houve qualquer variação significativa no número total de linhas de código ou no
número de test cases nos test suites gerados pela nova versão do EvoSuite.

De um modo geral, podemos confirmar que fomos capazes de alcançar os nossos
objetivos, ou seja, conseguimos tornar os testes gerados pelo EvoSuite menos smelly sem
comprometer a cobertura ou a capacidade de detetar faults dos testes gerados.

Palavras-chave: Test Smells, Qualidade de Software, Geração Automática de Testes,
Otimização de Múltiplos Objetivos, Estudos Empı́ricos

vii

Abstract

Automated test generation tools (such as EvoSuite) typically aim to maximize code
coverage. However, they frequently disregard non-coverage aspects that can be relevant
for testers, such as the quality of the generated tests. Therefore, automatically generated
tests are often affected by a set of test-specific bad programming practices that may hinder
the quality of both test and production code, i.e., test smells. Given that other researchers
have successfully integrated non-coverage quality metrics into EvoSuite, we decided to
extend the EvoSuite tool such that the generated test code is smell-free. To this aim, we
compiled 54 test smells from several sources and selected 16 smells that are relevant to the
context of this work. We then augmented the tool with the respective test smell metrics
and investigated the diffusion of the selected smells and the distribution of the metrics.
Finally, we implemented an approach to optimize the test smell metrics as secondary
criteria. After establishing the optimal configuration to optimize as secondary criteria
(which we used throughout the remainder of the study), we conducted an empirical study
to assess whether the tests became significantly less smelly. Furthermore, we studied
how the proposed metrics affect the fault detection effectiveness, coverage, and size of
the generated tests. Our study revealed that the proposed approach reduces the overall
smelliness of the generated tests; in particular, the diffusion of the “Indirect Testing” and
“Unrelated Assertions” smells improved considerably. Moreover, our approach improved
the smelliness of the tests generated by EvoSuite without compromising the code coverage
or fault detection effectiveness. The size and length of the generated tests were also not
affected by the new secondary criteria.

Keywords: Test Smells, Software Quality, Automated Test Generation, Many-Objective
Optimization, Empirical Studies

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 1
1.3 Approach . 2
1.4 Contributions . 3
1.5 Structure of the Document . 4

2 Background 5
2.1 Code Smells . 5
2.2 Architectural Smells . 6
2.3 Test Smells . 7
2.4 Automatic Test Generation . 18

2.4.1 Random-Based Software Testing 18
2.4.2 Symbolic Execution . 18
2.4.3 Search-Based Software Testing 18

2.5 The EvoSuite Tool . 20
2.5.1 Search Process . 21
2.5.2 Post-Processing . 21

2.6 Summary . 21

3 Related Work 23

4 Approach 27
4.1 Test Smell Selection . 28

4.1.1 Test Smells That Cannot Occur 30
4.1.2 Test Smells Without Optimizable Metrics 31

4.2 Test Smell Metrics . 32
4.3 Optimize Test Smell Metrics . 36

xi

4.3.1 Optimize Test Smell Metrics as Additional Criteria 37
4.3.2 Optimize Test Smell Metrics as Secondary Criteria 37
4.3.3 Optimize Test Smell Metrics as Post-Processing Steps 40

4.4 Features to Prevent Test Smells . 42
4.5 Summary . 42

5 Empirical Study 43
5.1 Experimental Subjects . 44
5.2 Experimental Procedure . 44

5.2.1 RQ1: To what extent are the tests generated by the EvoSuite tool
affected by test smells? . 44

5.2.2 RQ2: What combination of test smell metrics leads to the genera-
tion of the most effective (coverage and fault detection wise) and
the least smelly tests? . 46

5.2.3 RQ3: Does the optimization of test smell metrics lead to the gen-
eration of significantly less smelly tests? 49

5.2.4 RQ4: Does the optimization of test smell metrics affect the fault
detection effectiveness, code coverage, or size of the generated
tests? . 51

5.3 Threats to Validity . 53
5.4 Summary . 54

6 Results 55
6.1 RQ1 - Identify the Test Smell Metrics to Optimize 55

6.1.1 Before Post-Processing is Applied 57
6.1.2 After Post-Processing is Applied 58

6.2 RQ2 - Finding the Ideal Combination of Metrics 60
6.2.1 Test Smell Metrics to Optimize 60
6.2.2 Optimal Configuration to Optimize as Secondary Criteria 61

6.3 RQ3 - Smelliness Improvements . 64
6.3.1 Pairwise Tournament Results . 65
6.3.2 Before Post-Processing is Applied 66
6.3.3 After Post-Processing is Applied 68
6.3.4 Overall Smelliness of the Final Test Suites 69

6.4 RQ4 - Impact on the Fault Detection Effectiveness, Code Coverage, and
Size . 70
6.4.1 RQ4.1 - Impact on the Fault Detection Effectiveness 70
6.4.2 RQ4.2 - Impact on the Final Code Coverage 71
6.4.3 RQ4.3 - Impact on Test Size . 72

6.5 Summary . 72

xii

7 Conclusion and Future Work 75

A Appendix 77
A.1 Detailed tuning results . 77
A.2 Detailed comparison of the number of classes for which Vanilla performed

worst/better than EvoSuite (smell-free) 77

Bibliography 90

xiii

List of Figures

2.1 EvoSuite – Test generation process . 20

4.1 Test smell exclusion process . 30

6.1 Vanilla – Distribution of metrics’ raw values before/after post-processing 56
6.2 Vanilla – Distribution of the percentage of smelly test cases before and

after post-processing . 57

xv

List of Tables

4.1 Test smells considered in this study . 29

6.1 Vanilla – Distribution of the 16 considered test smell metrics 56
6.2 Vanilla – Diffusion of the 16 considered test smells 57
6.3 Top-10 of 132,804 pairwise tournaments 62
6.4 Average Raw/Relative Coverage, Mutation score, and (Overall) Smelli-

ness per configuration. 65
6.5 Vanilla vs. Optimized . 65
6.6 Augmented – Distribution of the 16 considered test smell metrics 67
6.7 Augmented – Diffusion of the 16 considered test smells 67

A.2 Relative smelliness — Vanilla vs. EvoSuite (smell-free) 77
A.2 Relative smelliness — Vanilla vs. EvoSuite (smell-free) 78
A.2 Relative smelliness — Vanilla vs. EvoSuite (smell-free) 79
A.1 Vanilla – Tuning results . 80

xvii

Chapter 1

Introduction

This chapter presents the context, problem, and main motivations of our work.

1.1 Context

Software projects that strive to be successful must provide products that meet specific
quality criteria [1, 15]. In this regard, software testing [64] is an essential process to ensure
the production of high-quality software [45]; thus, it is also an invaluable practice in any
successful software project [46]. However, testing is also quite an expensive process: in
particular, manually written tests are very costly and time-consuming [22]. Even so, it is
possible to reduce these costs through the automation of test creation [28]. Automated
test generation tools, which support developers in testing activities [4, 46], have been
successfully applied. For instance, the EvoSuite1 tool has been able to detect real faults
in financial programs [3] and achieve high code coverage on open-source and industrial
software [19, 20, 38, 72, 93].

1.2 Problem Statement

Automated test generation tools such as EvoSuite [35] and Randoop [66] have become
very effective at generating tests with high code coverage [45]. However, like manually
written tests, automatically generated tests are susceptible to bad design/programming
practices [46, 69], i.e., test smells [88]. The presence of test smells may:

• Negatively impact test code comprehensibility and maintainability [13, 14].
• Hinder test code effectiveness [85, 86].
• Make test code more prone to changes and faults [85].
• Make production code more fault-prone [85].

The negative impact that test smells might have on the quality of both test and production
code demonstrates the importance/benefits of generating smell-free test code (i.e., test

1https://www.evosuite.org

1

Chapter 1. Introduction 2

code without bad programming practices). Although test smells are present in both man-
ually written and automatically generated tests, these two types of tests are fundamentally
different and, as such, are not affected in the same way (e.g., the diffuseness of test smells
differs) [46, 69].

Manually written tests: Test smells usually arise due to poor design decisions made
during the creation of test suites [87]. Test smells are often highly diffused in software
systems [13] and, despite their negative impact, tend to persist for a long time [18, 87].
Furthermore, test smells are more likely to arise in large software systems [13]. Some
types of test smells tend to co-occur together [13].

Automatically generated tests: Are often affected by test smells [46] because most
automatic test generation tools mainly focus on producing tests with the highest possible
code coverage and do not consider other factors which can be relevant for testers [70]:
one such factor is the quality of the generated tests [69]. Therefore, test smells tend to
be highly diffused throughout the automatically generated test suites due to the nature of
these tools [46]. Moreover, other factors may influence the presence of specific smells
in the generated tests, such as the quality of the production code and the size of the test
suites [46]. Like manually written tests, automated tests also contain certain test smells
that tend to be more diffused and that frequently co-occur together [69], but these differ
between the two types of tests [46]. The presence of test smells in automatically generated
tests is particularly concerning because developers need to understand the test code and
infer its objective [84] before they can either add new assertions or analyze the existing
automatically generated assertions to identify problems [35]. Typically, automatically
generated test code is harder to understand [25] and maintain [84] than manually written
code, and the presence of test smells further exacerbates this problem [13, 14]. Ultimately,
the additional time required to perform maintenance tasks on automatically generated
test code should not exceed the time saved through the automation of test creation [84].
Otherwise, the usefulness of these tools becomes debatable.

1.3 Approach

To the best of our knowledge, there are two main ways to avoid smelly tests:

1. Use specific refactoring operations to remove existing test smells [88]. Several test
smell detection tools have been developed to assist in this process [2].

2. Generate tests that are smell-free by design, which is the objective of this work.

The primary goal of this project is to extend the EvoSuite tool such that the generated test
code is smell-free (i.e., not affected by bad programming practices). We aim to achieve
this objective without compromising the code coverage or fault detection effectiveness of
the generated tests. For this purpose, we incorporated a carefully selected set of test smell
metrics into EvoSuite and optimized these metrics as secondary criteria [45, 46, 70].

Chapter 1. Introduction 3

Indeed, during the search process, if multiple test cases are equally good in terms of
coverage, then EvoSuite uses the secondary criteria to prioritize test cases with other
desirable characteristics (e.g., number of statements). As such, by optimizing the test
smell metrics as secondary criteria, tests are compared in terms of test smell metrics if
and only if they cover the same code elements. To implement this approach, we need
to replace the default secondary criterion (test case length) with new secondary criteria
that optimize test smell metrics. We believe that the optimization of test smell metrics as
secondary criteria corresponds to a promising way to generate less smelly tests, as similar
approaches have already been successfully used to incorporate other non-coverage quality
metrics into the EvoSuite tool [45, 70].

Overall, the underlying hypothesis of this study is the following:

We can optimize test smell metrics to address the high diffusion of test smells
in the test code automatically generated by the EvoSuite tool. By optimizing
a set of test smell metrics as secondary non-coverage-based criteria, we can
promote less smelly tests with minimal impact on the final code coverage or
fault detection effectiveness. Thus, it should be possible to improve the quality
of the generated tests without compromising other aspects of the test code.

1.4 Contributions

The main contributions of this thesis are as follows:

• We curated a list of 54 test smells, identified those that can affect the tests generated
by EvoSuite, and established which of the identified test smells can be characterized
by optimizable metrics.

• We investigated two different approaches to optimize test smell metrics in EvoSuite:
(1) as secondary criteria; (2) as additional post-processing steps.

• We studied the diffusion of smells in the tests generated by EvoSuite; moreover,
we conducted an empirical study to assess the test smells that affect a significant
portion of the generated tests.

• We extended EvoSuite with new secondary criteria that optimize test smell metrics.
• We conducted an empirical study to assess the optimal combination of test smell

metrics to optimize as secondary criteria.
• We conducted a large empirical study to assess whether the optimization of test

smell metrics: (1) significantly reduces the smelliness of the generated tests; (2)
does not negatively affect the coverage or fault detection effectiveness of the tests;
(3) does not increase the number of generated tests.

The work developed in this thesis has been adapted into a research paper and presented at
the 16th edition of the International Workshop on Search-Based and Fuzz Testing.

Chapter 1. Introduction 4

1.5 Structure of the Document

This document is organized as follows:

• Section 2 provides an overview of the background information required to under-
stand the approaches we have proposed to optimize test smell metrics.

• Section 3 contains the related work, i.e., the literature associated with test smells.
• Section 4 describes how we identified the types of test smell metrics to optimize,

how we intend to compute the respective metrics, and presents three approaches to
optimize test smell metrics.

• Section 5 presents the design of the empirical study and describes the evaluation of
the proposed approach.

• Section 6 discusses the results of the study.
• Section 7 summarizes this study and discusses additional future work.

Chapter 2

Background

This chapter presents background information about three different types of smells: code,
architectural, and test smells. In addition, it also provides a general overview of different
automatic test generation approaches and explains how the EvoSuite tool works (however,
we will primarily focus on features related to the context of this work).

2.1 Code Smells

Code smells [33] correspond to suboptimal programming/design practices [67, 89]. These
code smells equate to neither faults nor errors; instead, they indicate that the code might
contain specific quality issues [95]. Indeed, code smells act as symptoms of possible
problems [32] and, therefore, help to decide when/how to refactor [33]. After uncovering
the presence of code smells in a given program, it is possible to apply certain refactoring
operations to remove them [33] (code smell detection tools can aid in this process [31]).
The presence of code smells can potentially:

• Hinder understandability and maintainability [95].
• Make the code more prone to changes [53, 68] and faults [67, 68].

Furthermore, these problems tend to become more severe when the same programs are
affected by multiple smells [68]. Code smells are also a symptom of technical debt [10].

The following list enumerates some examples of code smells defined by Martin Fowler
and Kent Beck in the book “Refactoring Improving the Design of Existing Code” [33]:

• Duplicated Code: Similar or equal code structures are present in several parts of
a program [58]. Duplication may compromise the maintainability of systems [95].
Duplicated code can arise across [33]: (1) multiple methods of the same class; (2)
sibling subclasses; (3) unrelated classes.

• Long Method: Excessively long methods (in terms of lines of code) that tend to
encompass too many responsibilities [58]. This smell can make the code overly
complex [32] and, therefore, difficult to understand, extend, and maintain [31].

5

Chapter 2. Background 6

• Feature Envy: Methods that access more data/functionality from classes other than
their own [32, 33]. Methods affected by this smell might be in the wrong class [58].

• Divergent Change: Several parts of a specific class frequently need to be changed
for various reasons [33]. This smell reveals a lack of cohesion in a class [58].

• Shotgun Surgery: The opposite of the “Divergent Change” code smell — a single
change requires many small changes to multiple classes [33, 58].

• Data Clumps: Data items that always appear together — if an item is absent, the
others may become meaningless [58]. Therefore, it is better to organize such data
items into an object [33].

• Lazy Class: Classes that do not do enough to justify their existence; thus, they
should be deleted [33]. Such classes are usually very small and simple [68].

The definitions of code smells are, however, subjective: for example, it is not possible to
define the specific number of lines of code that indicates that refactoring should be applied
in the “Long Method” code smell [89]. In some cases/projects, it might be N number of
lines; in other cases, it might be M.

2.2 Architectural Smells

Architectural smells (AS) represent architectural decisions that compromise the quality
of software systems in terms of maintainability and evolvability [11, 30]. Moreover, they
are a source of technical debt [81] and, over time, can lead to architectural erosion [43].
Architectural smells suggest that there may be issues in the architecture [81].

Four examples of important types of architectural smells that have been described in
the related literature [81]:

• Unstable Dependency (UD): A given component is dependent on other less stable
components [11]. Such dependencies might trigger chains of changes [81].

• Cyclic Dependency (CD): Several components are directly/indirectly dependent
on each other [11] (these dependent components form a cycle [81]).

• Hub-like Dependency (HL): Components have numerous incoming and outgoing
dependencies [11, 81].

• God Component (GC): A component is much larger than the other components in
the system [81] (i.e., it has too much control [11]).

Architectural smells can negatively affect the quality of software systems and, therefore,
should be removed [43]. Hence, several architectural smell detection tools have been
developed to help with this removal process [11].

Chapter 2. Background 7

2.3 Test Smells

As with production code, test code can also be affected by a particular set of bad smells
that may jeopardize the quality of both test [13, 14, 85, 86] and production [85] code:
test smells [63, 88]. Test smells correspond to suboptimal design/programming practices
specific to test code that correlate with test implementation, organization, documentation,
and interactions [14, 77, 87]. These smells are symptoms of possible problems in the test
code and are often highly diffused in both manually written [13, 14] and automatically
generated tests [46, 69]. Due to the high diffusion and potential dangers of test smells,
researchers have [2]: (1) proposed new types of test smells; (2) developed test smell
detection tools; (3) proposed refactoring operations to remove particular test smells.

This section depicts 54 test smells that, to the best of our knowledge, are representative
of the most common types of test smells that have been proposed and evaluated in the
related literature [2, 63]. Furthermore, we combine different descriptions/names for the
same type of test smells into a single definition. If there are several similar types of test
smells, then we only consider the most common of those smells; in turn, we regard the
other test smells as variants. Whenever possible, we also provide an illustrative example
for the test smells that are relevant to the context of this study.

1 – Abnormal UTF-Use (AUU) [2, 79]:

Description: Test suites change the default behavior of the unit-testing framework.
Impact: Harder to understand and maintain.

2 – Anonymous Test (AT) [2, 79]:

Description: Test cases with non-descriptive names.
Impact: Harder to understand and maintain.
Alternative Designations: Test-Method Category Name [79].

3 – Assertion Roulette (AR) [46, 63, 78, 86, 88]:

Description: A test case has several unexplained assertions. This test smell can arise for
one of two reasons:

1. A test case has an excessive number of assertions (typically because the test case is
inspecting too much functionality);

2. A test case has multiple assertions without assertion messages1.

Impact: When the test fails, it is difficult to identify the exact assertion that failed (hinders
comprehensibility and maintainability).

1An assertion message is an optional argument in an assertion statement that defines a message to be
displayed when the assertion fails.

Chapter 2. Background 8

Listing 2.1: Example of a test case with the “Assertion Roulette” test smell [69].
@Test
public void test8() throws Throwable {
Document document0 = new Document("", "");
assertNotNull(document0);

document0.procText.add((Character) ’s’);
String string0 = document0.stringify();
assertEquals("s", document0.stringify());
assertNotNull(string0);
assertEquals("s", string0);

}

4 – Brittle Assertion (BA) [2, 50]:

Description: One or more assertions in a test case check values that said test case does
not manipulate (the test is checking too much).
Impact: Less effective (the test may fail when it should not) and harder to maintain.

5 – Conditional Test Logic (CTL) [2, 63, 77, 78, 86]:

Description: Test cases have control structures that may prevent the execution of specific
statements (i.e., the test cases have many execution paths).
Impact: Behave unpredictably and are less effective (this smell may hamper test coverage
and fault detection effectiveness). Such tests are also harder to understand and maintain.
Alternative Designations: Indented Test [16, 63] and Guarded Test [79].
Variants: Control Logic (ConL) [2, 79] — test cases use methods such as debug or halt
to control the execution flow.

6 – Constructor Initialization (CI) [2, 77, 78, 92]:

Description: A test suite uses a constructor to initialize the fields; instead, tests should
have set up methods (using constructors is a bad practice and, as such, should be avoided).
Impact: Harder to understand.

7 – Dead Field (DF) [2, 47]:

Description: Fields are initialized in an implicit setup but not used by the test cases.
Impact: This smell affects understandability and leads to slower tests (unnecessary work).
Alternative Designations: Unused Shared-Fixture Variables [79].

8 – Default Test (DT) [2, 77, 78]:

Description: Using the example test suites automatically generated by Android Studio.
Impact: If not removed, developers may add test cases to such test suites.

Chapter 2. Background 9

9 – Duplicate Assert (DA) [2, 77, 78, 92]:

Description: A test case contains several assertions that check the same condition (i.e.,
a test case contains two or more assertions with the same parameters). This smell arises
even if the test case checks the same condition with different values.
Impact: Harder to understand and maintain.

Listing 2.2: Example of a test case with the “Duplicate Assert” test smell [77].
@Test
public void testXmlSanitizer() {
.....
valid = XmlSanitizer.isValid("Fritz-box");
assertEquals("Minus is valid", true, valid);
System.out.println("Minus test - passed");
valid = XmlSanitizer.isValid ("Fritz-box");
assertEquals("Minus is valid", true, valid);
System.out.println("Minus test - passed");
.....

}

10 – Eager Test (ET) [63, 74, 78, 86, 88]:

Description: A test case checks multiple methods of the class under test (i.e., it verifies
too much functionality). Typically, this smell is said to occur when a test case checks two
or more methods of the class under test.
Impact: Harder to understand and maintain.

Listing 2.3: Example of a test case with the “Eager Test” test smell [74].
@Test
public void test56() throws Throwable {
SubstringLabeler substringLabeler0 = new SubstringLabeler();
substringLabeler0.connectionNotification("testSet", "testSet");
InstanceEvent instanceEvent0 = substringLabeler0.m_ie;
substringLabeler0.acceptInstance(instanceEvent0);
assertEquals("SubstringLabeler", substringLabeler0.getCustomName());
assertFalse(substringLabeler0.isBusy());
assertEquals("Match", substringLabeler0.getMatchAttributeName());

}

11 – Empty Shared-Fixture (ESF) [2, 79]:

Description: A test suite contains an implicit setup with an empty body.
Impact: Harder to understand and maintain.

12 – Empty Test (EmT) [2, 77, 78, 86, 92]:

Description: Test cases without executable statements.
Impact: Less effective (empty tests always pass, thus giving a false sense of security).
Variants: Comments Only Test (COT) [79] — corresponds to a commented-out test case.

Chapter 2. Background 10

13 – Erratic Test (ErT) [63]:

Description: Tests exhibit erratic behavior — they might give different results in different
runs (e.g., different people run the same tests but obtain different results).
Impact: Less effective.

14 – Exception Handling (EH) [2, 77, 78]:

Description: Tests use throw/catch statements instead of JUnit’s exception handling.
Impact: Harder to understand and maintain. This smell also makes tests less effective.

15 – For Testers Only (FTO) [13, 14, 46, 63, 88]:

Description: The production class contains code exclusively used by tests.
Impact: This test smell negatively impacts the understandability and maintainability of
production code since it makes the system under test more complex.

16 – Fragile Test (FT) [63]:

Description: Tests start to fail to compile/run due to unrelated changes to the system
under test. Fragile tests can also start to fail in situations where nothing was changed.
Impact: This smell leads to increased maintenance costs.

17 – Frequent Debugging (FD) [63]:

Description: It is often necessary to manually debug the tests to determine the cause of
failures. This test smell might arise due to (1) the lack of available information or (2)
infrequently run tests.
Impact: Such tests are less effective and harder to understand and maintain.
Alternative Designations: Manual Debugging [63].

18 – General Fixture (GF) [13, 47, 63, 86, 88]:

Description: An implicit setup is excessively general/large, so the test cases do not access
the entirety of the fixture.
Impact: This smell affects comprehensibility and causes tests to run slower due to the
unnecessary extra work. It can also make the tests fragile (i.e., affects maintainability).

19 – Hard-to-Test Code (HTTC) [63]:

Description: The system under test has properties that make it inherently difficult to test
(e.g., highly coupled code). It is also possible to have test code that is difficult to test.
Impact: Less effective automatically generated tests. Harder to manually write tests.

Chapter 2. Background 11

20 – Ignored Test (IgT) [2, 77, 78, 86, 92]:

Description: Test case/suite uses the @Ignore annotation, thus impeding it from running.
Impact: Test suites become harder to understand. Causes compilation time overhead.

21 – Indirect Testing (IT) [13, 46, 63, 74, 88]:

Description: A test case performs tests on classes other than the one under test. This
smell may arise because the test case is (indirectly) checking the respective production
class using methods of other classes.
Impact: This smell negatively affects the comprehensibility and maintainability of test
cases. It can also hamper the debugging process.

Listing 2.4: Example of a test case with the “Indirect Testing” test smell [69].
@Test
public void test3() throws Throwable {
SweetHome3D sweetHome3D0 = new SweetHome3D();
HomeRecorder.Type homeRecorder_Type0 = HomeRecorder.Type.DEFAULT;
HomeFileRecorder homeFileRecorder0 = (HomeFileRecorder)

sweetHome3D0.getHomeRecorder(homeRecorder_Type0);
assertNotNull(homeFileRecorder0);

}

22 – Lack of Cohesion of Methods (LCM) [2, 47]:

Description: Unrelated test cases are arranged into a test suite (i.e., they are not cohesive).
Impact: Harder to understand and maintain.

Listing 2.5: Example of a test suite with the “Lack of Cohesion of Methods” test smell.
@Test
public void test00() throws Throwable {
Login login0 = new Login();
int int0 = login0.getAuth_num();
assertEquals(0, login0.getAuth_max());
assertEquals(0, int0);

}

@Test
public void test01() throws Throwable {
int int0 = UserManagement.getNBGM();
assertEquals(0, int0);

}

23 – Lazy Test (LT) [2, 13, 14, 78, 88]:

Description: Multiple test cases in a test suite check the same production method.
Impact: This smell can hinder maintainability.

Listing 2.6: Example of a test suite with the “Lazy Test” test smell [78].
@Test
public void testDecrypt() throws Exception {

Chapter 2. Background 12

FileInputStream file = new FileInputStream(ENCRYPTED_DATA_FILE_4_14);
byte[] enfileData = new byte[file.available()];
FileInputStream input = new FileInputStream(DECRYPTED_DATA_FILE_4_14);
byte[] fileData = new byte[input.available()];
input.read(fileData);
input.close();
file.read(enfileData);
file.close();
String expectedResult = new String(fileData, "UTF-8");
assertEquals("Testing simple decrypt",expectedResult,

Cryptographer.decrypt(enfileData, "test"));
}

@Test
public void testEncrypt() throws Exception {
String xml = readFileAsString(DECRYPTED_DATA_FILE_4_14);
byte[] encrypted = Cryptographer.encrypt(xml, "test");
String decrypt = Cryptographer.decrypt(encrypted, "test");
assertEquals(xml, decrypt);

}

24 – Likely Ineffective Object-Comparison (LIOC) [2, 79]:

Description: A test case has one or more object comparisons that will never fail (e.g., a
test case compares an object with itself).
Impact: Less effective.

Listing 2.7: Example of a test case with the “Likely Ineffective Object-Comparison” test
smell [74].
@Test
public void test58() throws Throwable {
OrganizationImpl organizationImpl0 = new OrganizationImpl();
boolean boolean0 = organizationImpl0.equals(organizationImpl0);
assertTrue(boolean0);
assertEquals(0L, organizationImpl0.getPrimaryKey());

}

25 – Magic Number Test (MNT) [2, 77, 78, 86, 92]:

Description: A test case uses unexplained/undocumented numerical values.
Impact: This test smell hampers the understandability and maintainability of test cases
(it is harder to understand the meaning and purpose of such values).

26 – Manual Intervention (MI) [63]:

Description: Tests that require some form of manual action to run.
Impact: Such tests are likely to be run less frequently due to the effort they require. As
such, this smell makes tests less effective.

27 – Mixed Selectors (MS) [2, 79]:

Description: A class contains both production methods and test cases.

Chapter 2. Background 13

Impact: This test smell negatively impacts understandability and maintainability.

28 – Mystery Guest (MG) [13, 46, 63, 88, 92]:

Description: Tests use external resources (such as files or databases); hence, they are not
self-contained.
Impact: Harder to understand and maintain due to the lack of available information. The
usage of external resources also introduces hidden dependencies.

29 – Non-Java Smells (NJS):

Description: This does not correspond to a specific smell. Instead, it represents a set
of simple test smells associated with concepts unrelated to Java. We have decided to
combine the following smells into this category:

• Empty Method Category [79]: Test case with an empty method category.
• Empty Test-Method Category [79]: Test case with an empty test method category.
• TTCN-3 Smells [12]: Set of test smells specific to TTCN-3 test suites.
• Unclassified Method Category [79]: Test cases not organized by a method-category.

30 – Obscure In-line Setup (OISS) [2, 47]:

Description: A test case contains an excessive amount of setup functionality (an in-line
setup should only have what is required to understand the test).
Impact: Harder to understand and maintain.
Variants: Max Instance Variables (MIV) [79] — Overly large fixture.
Note: The acceptable amount of setup information in a test case is dependent on the
characteristics of the respective test and the production class.

31 – Overcommented Test (OCT) [2, 79]:

Description: A test contains too many comments.
Impact: This smell can make the tests harder to understand (which is the opposite of
what comments should do).

32 – Overreferencing (OF) [2, 79]:

Description: A test case that references classes an excessive number of times.
Impact: This test smell makes the tests more difficult to understand and maintain.
Note: The acceptable amount of referenced classes in a test case is dependent on the
characteristics of the respective test and the production class.

Chapter 2. Background 14

33 – Proper Organization (PO) [2, 79]:

Description: Poorly organized test cases that do not respect testing conventions.
Impact: Harder to understand and maintain.

34 – Redundant Assertion (RA) [2, 77, 78, 92]:

Description: Test cases have assertions that are permanently true/false (e.g., assertions
with equal values for the actual and expected parameters).
Impact: This smell makes the tests less effective (it can give a false sense of security).

Listing 2.8: Example of a test case with the “Redundant Assertion” test smell [77].
@Test
public void testTrue() {
/* ** Assert statement will always return true ** */
assertEquals(true, true) ;

}

35 – Redundant Print (RP) [2, 77, 78]:

Description: Test cases have (unnecessary) print statements.
Impact: May hinder test effectiveness (print statements consume both time and resources).
Variants: Transcripting Test (TT) [79] — corresponds to printing/logging to the console.

36 – Resource Optimism (RO) [46, 78, 85, 86, 88]:

Description: Test cases that make optimistic assumptions about the existence/state of
external resources.
Impact: This smell can lead to non-deterministic test results.

37 – Returning Assertion (ReA) [2]:

Description: A test case contains assertions and also returns a value.
Impact: This smell affects maintainability and comprehensibility.

38 – Rotten Green Tests (RGT) [2, 5, 27]:

Description: Test cases affected by this smell can pass without executing at least one
assertion, thus giving a false sense of security.
Impact: Less effective.
Variants: Early Returning Test (ERT) — the test case does not execute certain assertions
because it returns a value too early.

Chapter 2. Background 15

Listing 2.9: Example of a test case with the “Rotten Green Tests” test smell [5].
@Test
public void testLoggerContainsLogEntry(){
Logger logger = new Logger();
logger.log("log1");
logger.log("log2");
for (LogEntry logEntry : logger.getLogEntries()){
assertTrue(logger.containsLogEntry(logEntry));

}
}

39 – Sensitive Equality (SE) [46, 74, 78, 85, 88]:

Description: A test has assertions that perform equality checks using the toString method.
Impact: Test cases become dependent on (irrelevant) details of the String used in the
comparison. Moreover, if the toString method for an object changes, the test starts failing.

Listing 2.10: Example of a test case with the “Sensitive Equality” test smell [74].
@Test
public void test62() throws Throwable {
SubstringLabeler.Match substringLabeler_Match0 = new SubstringLabeler.Match();
String string0 = substringLabeler_Match0.toString();
assertEquals("Substring: [Atts:]", string0);

}

40 – Sleepy Test (ST) [2, 77, 78]:

Description: Temporarily stopping the execution of a test case.
Impact: Less effective — pausing a thread can trigger unexpected results.

41 – Slow Tests (SloT) [63]:

Description: Tests take a long time to run. This smell can arise as a result of (1) poorly
designed test code or (2) the characteristics of the system under test.
Impact: Slow tests are less effective and are likely to be run less frequently.

42 – Teardown Only Test (TOT) [2, 79]:

Description: Test suites that only specify teardown.
Impact: This smell affects maintainability.

43 – Test Code Duplication (TCD) [2, 13, 14, 63, 88]:

Description: Unwanted duplication in the test code. Test code duplication can be present
amongst several tests or within the same test.
Impact: This smell affects maintainability and comprehensibility.
Alternative Designations: Duplicated Code [16].

Chapter 2. Background 16

44 – Test Logic in Production (TLP) [63]:

Description: Production code contains logic that should solely be exercised when testing.
Impact: This smell makes the system under test more complex and fault-prone (serious
problems can arise when running the test-specific code in a production environment).

45 – Test Maverick (TM) [2, 47]:

Description: A test suite contains test cases independent of the existing implicit setup.
Impact: Run slower (unnecessary extra work). Harder to comprehend and maintain.

46 – Test Pollution (TP) [2, 48]:

Description: Dependent tests that can use (i.e., read/write) shared resources.
Impact: This test smell negatively impacts understandability and maintainability.

47 – Test Redundancy (TR) [2, 57]:

Description: One or more test cases can be removed without affecting the fault detection
effectiveness of the test suite.
Impact: Redundant test cases only make the test suite harder to understand and maintain.

Listing 2.11: Example of a test suite with the “Test Redundancy” test smell.
@Test
public void test00() throws Throwable {
int int0 = Login.getPASSWORDENC();
assertEquals(2, int0);

}

@Test
public void test01() throws Throwable {
int int0 = Login.getPASSWORDENC();
assertEquals(2, int0);

}

48 – Test Run War (TRW) [2, 13, 14, 63, 88]:

Description: Tests allocate resources (e.g., temporary files) used by various people.
Impact: These tests may fail if different people run them simultaneously.

49 – Test-Class Name (TCN) [2, 79]:

Description: Test suites with non-descriptive names.
Impact: Harder to understand and maintain.

Chapter 2. Background 17

50 – Unknown Test (UT) [2, 74, 77, 78, 92]:

Description: Test cases without valid assertions or @Test(expected) annotations.
Impact: Less effective because there are no assertions to check whether the results are
as expected. Harder to understand and maintain as there are no assertions to examine,
thereby making it harder to deduce the purpose of the test cases (this is especially apparent
when test cases have non-descriptive names).
Alternative Designations: Assertionless [16] and Assertionless Test [79].
Variants: Under-the-carpet Assertion (UCA) [79] — corresponds to commenting-out
assertions in a test case (if only failing assertions are commented-out from the test case,
then it is considered an Under-the-carpet failing Assertion (UCFA) [79] smell).

Listing 2.12: Example of a test case with the “Unknown Test“ test smell [77].
@Test
public void hitGetPOICategoriesApi() throws Exception {
POICategories poiCategories = apiClient.getPOICategories(16);
for (POICategory category : poiCategories) {
System.out.println(category.name() + ": " + category);

}
}

51 – Unused Inputs (UI) [2, 50]:

Description: A test case has no assertions to check the particular values that said test case
manipulates (the test case is checking too little).
Impact: Less effective (as it may be unable to reveal faults) and harder to maintain.

Listing 2.13: Example of a test case with the “Unused Inputs” test smell [50].
@Test
public void testGetRowKey() {
DefaultKeyedValues2D d = new DefaultKeyedValues2D();

d.addValue(new Double(1.0), "R1", "C1");
d.addValue(new Double(1.0), "R2", "C1");
assertEquals("R1", d.getRowKey(0));
assertEquals("R2", d.getRowKey(1));

}

52 – Unusual Test Order (UTO) [2, 79]:

Description: A test that directly calls other tests.
Impact: Such tests may manifest erratic behavior (i.e., they are less effective).

53 – Vague Header Setup (VHS) [2, 47]:

Description: Fields are initialized in the class header rather than in an implicit setup.
Impact: Harder to understand and maintain.

Chapter 2. Background 18

54 – Verbose Test (VT) [16, 63, 79, 86, 92]:

Description: A test case contains an excessive number of statements (i.e., the test is
unnecessarily long). As a result, the test code is neither clean nor simple.
Impact: The excessive number of statements makes the tests harder to understand and
maintain. Such tests are also more likely to contain other types of test smells [46].
Alternative Designations: Complex Test [63], Long Test [79] and Obscure Test [63].
Note: The acceptable number of statements in a test case is dependent on the situation at
hand (e.g., 20 statements may be too much in some situations and not enough in others).

2.4 Automatic Test Generation

This section describes three distinct approaches that enable the automatic generation of
software tests.

2.4.1 Random-Based Software Testing

It is possible to generate tests by using random search-based algorithms. These algorithms
create test cases by combining randomly generated statements/inputs [61]. This type of
search has a fundamental limitation: it does not have a feedback mechanism — so it is
not suitable for finding solutions that are difficult to reach (highly specific portions of the
overall search space, i.e., the set of all possible solutions) [39, 60]. However, this is not the
case for every tool that uses random testing: for instance, Randoop [66] is an automated
test generation tool that uses “feedback-directed random testing” to avoid generating tests
with illegal/redundant inputs [41].

2.4.2 Symbolic Execution

Symbolic Execution (SE) [17, 55] corresponds to a software testing technique that uses
symbolic values instead of concrete input values [82] and assigns symbolic expressions
to program variables [60, 62]. This technique is used to explore the different paths of a
program: each path represents a set of possible executions and is associated with a logical
formula that derives from the symbolic values [9]. Logical formulas are used to deduce
concrete input values that explore as many execution paths as possible [17].

2.4.3 Search-Based Software Testing

Search-Based Software Testing (SBST) corresponds to the utilization of metaheuristic
search techniques to automate testing tasks [61], i.e., it is a way to approach test creation
as an optimization problem [49].

Chapter 2. Background 19

Metaheuristic search techniques use heuristics to propose solutions for combinatorial
problems [60]. These techniques require some form of guidance to be able to sample
from the search space in a controlled manner: this guidance is provided by feedback from
problem-specific objective functions [61]. Objective functions evaluate solutions of the
search in accordance with the search goals [60] and score better potential solutions to the
problem with better objective values2 [83]. Therefore, the search is guided towards more
promising areas of the search space [60]. There are two main types of metaheuristics [61]:

• Local search: One solution in the local neighborhood (i.e., set of solutions that can
be created by making a small change to the current solution) is considered at a time.

• Global search: Many solutions in the search space are sampled at a time.

Hill Climbing is a type of local search algorithm that starts by randomly choosing an
initial solution from the search space [60]. The local neighborhood is analyzed, and a
solution with a better objective value replaces the current solution [60]. The process of
investigating the neighborhood and finding new solutions repeats until the neighborhood
of the current solution contains no other solution with a better objective value [52]. The
final solution is locally optimal [61], but it is not guaranteed to be globally optimal: the
result is entirely dependent on a randomly obtained starting solution [60]. Simulated
Annealing [56] partially mitigates this issue by having a given probability of replacing the
current solution with a neighbor with a worse objective value: this is very likely to happen
at the beginning of the search, but the probability decreases as the search progresses [60].

Genetic Algorithms (GAs) are a type of global search algorithm inspired by natural
evolution (the fittest survive, evolve, and reproduce) [61]: a single solution corresponds
to a chromosome/individual; a set of solutions constitutes a population; a population may
evolve to form a new population, thus creating a new generation [60]. The initial popula-
tion of candidate solutions is randomly generated [83]. To evolve the population, selection
mechanisms are used to choose the (“parent”) solutions that will be used to generate the
“offspring” for the next generation [60]: solutions with a better fitness value are more
likely to be selected [39]. A population evolves through the usage of genetics-inspired
operations such as mutation, which randomly modifies a solution, and crossover, which
combines genetic material from parent solutions to produce new offspring [19, 20]. New
generations are created until either the solution is found, or the search budget (i.e., a limit
to the resources that can be spent) is exhausted [61]. EvoSuite uses this type of search
algorithm to automatically generate tests.

2A “better” solution simply refers to a solution that is closer to achieving the end goal of the search.
Moreover, a “better” objective value does not necessarily imply that it has a greater score: in some instances,
the search may be attempting to minimize the objective function and, therefore, the better solutions have
lower values.

Chapter 2. Background 20

Figure 2.1: EvoSuite – Test generation process.

2.5 The EvoSuite Tool

EvoSuite [7, 34, 36, 93] is an automated search-based tool that uses evolutionary search to
generate executable test suites for Java software. Given the class under test, the EvoSuite
tool produces JUnit test cases that aim to maximize a specific set of coverage criteria [21];
indeed, EvoSuite is able to optimize several coverage criteria simultaneously. Moreover,
the generated test cases contain regression assertions to capture the current behavior of
the system under test [7].

By default, EvoSuite attempts to satisfy a specific range of testing criteria, but it is
also possible to set other combinations of criteria [80]. Likewise, there also exists a set of
properties that can be manipulated to configure how EvoSuite behaves [34]. The default
search algorithm currently used by the EvoSuite tool is the Dynamic Many Objective
Sorting Algorithm (i.e., DynaMOSA) [72], which operates at the test case level (test cases
correspond to the chromosomes) [93]. DynaMOSA is an extension of MOSA [20] that
uses a control dependency graph (CDG) to focus the search on targets (e.g., branches)
that are free of control dependencies [72, 93].

Figure 2.1 depicts the test generation process presently used by the EvoSuite tool.
This process can be divided into two main categories: (1) Search process and (2) Post-
processing steps.

Chapter 2. Background 21

2.5.1 Search Process

The EvoSuite tool starts the search process by creating an initial population of randomly
generated test cases — this initial population constitutes the first generation of tests. The
population evolves over several generations in order to optimize a set of coverage criteria:
EvoSuite compares tests and prioritizes those that lead to better code coverage (i.e., the
fittest). Specifically, during each iteration of the evolutionary cycle, EvoSuite:

1. Generates new individuals (i.e., offspring population) from the current population
(i.e., parent population);

2. Creates the population for the next generation by using test cases from the union of
both parent and offspring solutions.

This evolutionary cycle continues until all the targets have been covered or the search
budget has been fully exhausted. The end of the evolutionary cycle also marks the end of
the search process.

EvoSuite uses a secondary preference criterion to promote test cases that are closer
to uncovered targets and that have the shortest possible length — if multiple test cases
have the same fitness value for a certain target, then the shortest one is preferred [72].
Test case length is used as the default secondary preference criterion because shorter test
cases are easier to manually analyze [72] and less likely to break or expose flakiness [71].

2.5.2 Post-Processing

By default, after exhausting the search budget or achieving 100% code coverage, EvoSuite
applies several post-processing steps to improve the quality/readability of the generated
tests [34, 71, 93]: primitive values and null references are inlined, redundant test cases
and statements (which do not contribute to the final code coverage) are removed, and a
minimized set of assertions is added to each test case (using mutation analysis) [37]. The
post-processing steps can be activated/deactivated by changing EvoSuite’s properties.

2.6 Summary

In this chapter, we have presented three types of smells, i.e., code, architectural, and test
smells. Given the context of this work, we primarily focused on test smells; specifically,
we compiled test smells from several sources into a list of 54 smells (this list forms the
basis of our work). After providing a general overview of different automatic test genera-
tion approaches, we described the main characteristics of the EvoSuite tool; in particular,
we explained the: (1) search process; (2) secondary criteria; (3) post-processing steps.
Having established both how EvoSuite automatically generates test cases and also a vast
set of test smells, we can now proceed to investigate the integration of smell-free metrics
in the EvoSuite tool.

Chapter 3

Related Work

Code smells were initially defined by Fowler [33] as structures in the code that suggest the
possibility of refactoring, thus helping to decide when and how to refactor. Specifically,
in the refactoring book [33], Beck and Fowler present a list of 22 code smells and the
respective refactoring strategies to remove them.

Van Deursen et al. [88] extended the concept of code smells to test code and presented
a catalogue of 11 test-specific smells (or test smells), along with refactoring operations to
remove said smells. Meszaros [63] defined other test smells and considered test smells as
the set of both code smells (i.e., code-level smells) and behavior smells (i.e., smells that
affect the outcome of the test).

Bavota et al. [14] investigated the distribution of test smells and their impact on test
code understandability and maintainability — the results revealed that: (1) test smells are
highly prevalent in open-source and industrial software; (2) test smells can compromise
test code understandability and maintainability; (3) specific test smells often co-occur
together. Subsequently, Bavota et al. [13] carried out a more in-depth investigation into the
same subject and confirmed the previously obtained results; furthermore, the researchers
observed that larger software systems are more likely to be affected by test smells and that
inexperienced developers are more susceptible to the effects of test smells than those with
more experience. Note that the results of these two investigations are related to manually
written tests, whereas we are focused on automatically generated tests (these two types of
tests are fundamentally different). Bavota et al. [13, 14] also developed a tool that detects
nine types of test smells in Java test suites. This tool uses rules that overestimate the
smelliness of the tests, thus ensuring high recall at the expense of precision; indeed, this
was a necessary design decision because the researchers simply intended to use this tool
to alleviate the manual process of investigating the smelliness of software systems (and
they did not want to miss any test-smell instances).

Spadini et al. [85] studied the correlation between six types of test smells and the
quality of both test and production code. Regarding the impact of test smells on the quality
of test code: (1) test smells make test cases more prone to changes and faults; (2) test

23

Chapter 3. Related Work 24

cases affected by multiple smells are more prone to changes than those affected by fewer
smells; (3) tests containing the “Assertion Roulette”, “Eager Test”, and “Indirect Testing”
smells are particularly more change- and fault-prone than those affected by the other
considered test smells. Regarding the impact of test smells on the quality of production
code: (1) production code exercised by smelly tests is more fault-prone than production
code exercised by non-smelly tests; (2) the “Eager Test” and “Indirect Testing” smells
have a stronger positive correlation with faulty production code than the other smells.

Tufano et al. [87] performed an empirical study to investigate: (1) developers’ ability
to recognize test smells; (2) the lifecycle of test smells. Through a survey, the researchers
discovered that developers often fail to recognize test smells (and perceive their severity),
thus demonstrating the importance of using automated test smell detection tools. Hence,
to better understand the characteristics of test smells and therefore enable the development
of automated detection tools, Tufano et al. investigated the lifecycle of test smells — the
results demonstrated that: (1) test smells primarily occur due to the usage of bad design
practices during the creation of test suites; (2) test smells tend to remain in software
systems for a long time; (3) there may exist some correlation between code and test smells.
In the case of our work, we do not intend to create a dedicated tool to detect test smells;
instead, we seek to change the way EvoSuite generates tests to produce less smelly tests
(even so, the depicted lack of awareness about test smells further proves the importance
of extending the EvoSuite tool such that the generated test code is smell-free).

The negative influence of test smells has motivated the development of several test
smell detection tools. Aljedaani et al. [2] presented a catalog of 22 test smell detection
tools and compiled the smells detected by the respective tools into a single list of 66
test smells. We use this work as the primary source of test smells for our work (but we
combine these smells with those presented by Meszaros [63]).

Peruma et al. [77] presented 12 new types of test smells (11 smells that apply to
both Java and Android apps and one that is specific to Android apps) and demonstrated
through a survey that the considered smells do indeed correspond to bad programming
practices. Additionally, the authors investigated the distribution of test smells in Android
applications. To this aim, the researchers decided to use tsDetect1, an automated test smell
detection tool for Java software that can detect 19 different types of test smells [76]. The
results of the study revealed that test smells: (1) were highly diffused in the investigated
test suites; (2) tended to be introduced early in the lifetime of the apps.

Virgı́nio et al. [92] investigated the association between test smells and code coverage
and concluded that test smells might influence test code coverage. The authors used
JNose Test2, an automated test smell detection tool (with the ability to detect 21 different
test smells) that also collects code coverage metrics. The JNose Test reuses the test smell

1https://github.com/TestSmells/TestSmellDetector
2https://github.com/arieslab/jnose

Chapter 3. Related Work 25

detection rules from the tsDetect tool [91]. Similarly, we also used the test smell detection
rules from the tDetect tool as the main inspiration for our test smell metrics. However, we
had to adapt these rules to the context of our work: instead of analyzing concrete tests,
our test smell metrics analyze objects that represent the tests; in turn, we are dependent
on the implementation of the respective classes.

Greiler et al. [47] presented six types of test smells related to fixture setup (five of
which correspond to new types of test smells) and refactoring strategies to remove them.
Moreover, the authors implemented a static analysis technique to detect test fixture smells
in the TestHound tool (a tool that detects test fixture smells and proposes refactoring
operations) and demonstrated that fixture-related test smells affect industrial projects.

Huo and Clause [50] created a technique based on dynamic tainting to automatically
analyze test oracles and detect two types of test smells: “Brittle Assertions” (test cases
check too much) and “Unused Inputs” (test cases check too little). The authors developed
OraclePolish (a tool that implements the proposed technique) and demonstrated that this
tool was effective at detecting both types of smells at a moderate cost.

Spadini et al. [86] studied severity thresholds for 11 types of test smells. Firstly,
the authors utilized the tsDetect tool to establish new severity thresholds for nine types
of test smells. The calibration results indicated that: (1) four out of nine test smells
should be characterized by higher thresholds; (2) the other five test smells did not require
higher thresholds. Subsequently, the authors investigated developers’ perception of the 11
test smells considered in the study (using the established thresholds) — the researchers
observed that: (1) the “Empty Test” and “Sleepy Test” smells had the highest refactoring
priority; (2) the “Conditional Test Logic”, “Empty Test”, and “Ignored Test” smells had
the most significant impact on test code maintainability; (3) the new severity thresholds
better represented the developers’ understanding of test smells; (4) even with the new
thresholds, there were instances in which the developers still did not consider the detected
test smells as real problems. Regarding our work, instead of verifying whether the tests
are smelly, we optimize test smell metrics, i.e., we do not use thresholds (e.g., instead of
checking whether a test case is too long, we compare equivalent tests and choose the one
with fewer statements). However, we use thresholds to investigate the smelliness of the
final test suites generated by EvoSuite. In fact, we use the thresholds defined by Spadini
et al. [86] to measure the “Assertion Roulette”, “Eager Test”, and “Verbose Test” smells.

Palomba et al. [69] investigated the extent to which the tests automatically generated
by EvoSuite are affected by test smells — the study revealed that: (1) as with manually
written tests, test smells are also highly diffused throughout automatically generated tests;
(2) among the studied test smells, the “Assertion Roulette”, “Eager Test”, and “Test Code
Duplication” smells were the most diffused types of test smells in the generated test suites;
(3) specific types of test smells often co-occur together in automatically generated tests;
(4) there exists a positive correlation between test smells and the structural properties of

Chapter 3. Related Work 26

the system. Subsequently, Grano et al. [46] extended upon the prior analysis [69] by
studying the smelliness of the test suites automatically generated by three state-of-the-art
tools: EvoSuite, Randoop, and JTExpert. The study revealed that: (1) the three tools
generate smelly test code; (2) the “Assertion Roulette” and “Eager Test” smells constitute
the most diffused types of bad smells in the tests generated by the three tools; (3) the
generated tests are smelly due to the nature of the tools; (4) the presence of specific test
smells may imply the presence of other test smells; (5) the size of the tests is associated
to the occurrence of specific test smells. We extend these Palomba et al. [69] and Grano
et al. [46] works as follows: (1) we perform our study on a newer version of the EvoSuite
tool; (2) we consider a larger set of 16 smells and implement the respective test smell
metrics; (3) instead of just detecting smells, we also optimize the proposed test smell
metrics to generate less smelly tests.

Panichella et al. [74] conducted a study to determine the effectiveness of test smell
detection tools at identifying smells in automatically generated test code. They used two
test smell detection tools to detect six smell types in the test suites generated by the Evo-
Suite tool: the tool developed by Bavota et al. [13, 14] and the tsDetect tool [76]. Firstly,
Panichella et al. performed a manual investigation to assess the smelliness of 100 test
suites automatically generated by EvoSuite and observed that: (1) automatically gener-
ated tests are affected by a small but non-trivial quantity of test smells; (2) the “Assertion
Roulette” and “Eager Test” smells frequently co-occurred together; (3) the “Indirect Test-
ing” was the most diffused type of smell in the generated tests. Secondly, they compared
the manually identified test smells with the smells reported by the two selected tools and
concluded that: (1) both tools overestimated the smelliness of the generated tests; (2)
test smell detection tools should use better metrics and detection strategies. Moreover,
Panichella et al. stated that EvoSuite averts the “Mystery Guest” and “Resource Opti-
mism” smells through the usage of mocks and bytecode instrumentation. The authors
also presented three types of relevant problems not covered by the studied test smells.
We also investigate the same six types of test smells considered in this study in our work;
however, not only do we study other smells, but we also implement new test smell metrics
(taking into account the feedback provided by the authors in this study). Subsequently,
Panichella et al. [75] extended upon this work by investigating the same test smell detec-
tion tools and considering: (1) the tests generated by the EvoSuite and JTExpert tools; (2)
manually written tests. Regarding automatically generated tests, the authors confirmed
the results obtained in the previous study. Concerning manually written tests, the authors
observed that: (1) manually written tests and automatically generated tests are affected by
test smells differently; (2) both tools are more effective at identifying smells in manually
written tests; (3) most detected smells did not correspond to problems.

Chapter 4

Approach

The main objective of this study is to integrate test smell metrics into the EvoSuite tool and
optimize these metrics such that the generated test code is smell-free. We aim to achieve
this goal without compromising the final code coverage or fault detection effectiveness of
the generated tests.

We decided to implement these metrics into the EvoSuite tool because: (1) it is a
popular state-of-the-art automated test generation tool that has achieved the highest score
in various editions of the SBST tool competition [21, 42, 71, 93]; (2) has been successfully
augmented with a multitude of other quality metrics [24, 25, 45, 70]; (3) several studies
have investigated the presence of test smells in the generated tests and proposed potential
solutions [46, 69, 74].

The test suites automatically generated by EvoSuite are affected by bad programming
practices that hinder the quality of both test and production code: test smells [46, 69, 74].
These bad smells occur because the primary focus of the EvoSuite tool is to produce tests
with the highest possible coverage; as such, certain aspects related to code quality (like the
usage of good programming practices) are not adequately accounted for [69]. Moreover,
as stated by Grano et al. [46], test smells arise due to the very nature of the EvoSuite
tool: the initial population of tests is randomly generated, so it is only natural that they
do not follow good programming practices, i.e., they are smelly. The population evolves
over several generations, and the only way in which the smelliness of the tests is (to
some extent) regulated is through the default secondary criterion, which prioritizes shorter
tests. Even so, simply prioritizing smaller tests is not enough to ensure the absence of test
smells; as such, once the tests become smelly, they tend to remain smelly throughout
the evolutionary process. After the search, EvoSuite applies multiple post-processing
steps to improve the quality of the tests, thus making the generated tests (potentially) less
smelly [93]; however, different smells have different causes, and the post-processing steps
do not address all types of test smells.

The tests generated by EvoSuite are indeed smelly, but, as described in Section 2.5,
this tool also provides several ways to optimize quality aspects. Indeed, if we establish

27

Chapter 4. Approach 28

metrics that characterize the test smells that we want to avoid, then we can implement
these metrics into EvoSuite and take advantage of the different ways in which EvoSuite
already optimizes quality-related aspects to optimize the test smell metrics and, as such,
generate less smelly tests. To optimize test smell metrics in EvoSuite, we decided to:

1. Select the test smells for which we will define metrics (i.e., the metrics that we will
consider to optimize). This process requires us to:

(a) Establish which of the 54 identified test smells (listed in Section 2.3) can affect
the tests generated by EvoSuite;

(b) Select the test smells that we can characterize with optimizable metrics.

2. Define specific metrics for the selected test smells.
3. Identify viable ways to optimize the test smell metrics.

Table 4.1 depicts all the test smells considered in this study. We use this table to summa-
rize the test smell selection process and represent the test smells with metrics that can be
optimized as secondary criteria and/or as additional post-processing steps:

• The “Occur” column identifies which test smells can occur in the tests generated by
the EvoSuite tool. The “Optimize” column identifies which of the test smells that
can arise in the generated tests can be characterized by optimizable metrics. These
two columns summarize the test smell selection process.

• The “Sec. Criteria” column identifies the test smells with metrics that can be
optimized as secondary criteria. The “Post-Proc.” column identifies the smells
with metrics that can be optimized as additional post-processing steps. These two
columns represent the two viable optimization approaches that we have identified.

4.1 Test Smell Selection

We must first establish which of the 54 identified test smells (see in Table 4.1) are relevant
to the context of this work — these are the smells we want to select so that we may create
and optimize the respective metrics and, consequently, improve the quality of the tests
generated by EvoSuite. Specifically, we intend to select test smells that:

1. Can actually arise in the tests generated by EvoSuite.
2. Can be characterized by optimizable metrics.

Hence, to identify the relevant test smells, we: (1) assumed that all considered test smells
could occur in the generated tests; (2) carefully analyzed the description of each test smell;
(3) excluded the test smells that could not arise due to the characteristics of the generated
tests; (4) excluded test smells that could not be characterized by optimizable metrics. We
complemented our findings with the results of prior studies that had already investigated
the presence of test smells in the tests generated by EvoSuite [46, 69, 74].

Chapter 4. Approach 29

Table 4.1: Test smells considered in this study. The rows highlighted in gray correspond to the test
smells with metrics that we will optimize as secondary criteria. Description of each column can be found
at the end of Section 4.

ID Name Abbr. Occur Optimize Sec. Criteria Post-Proc.

1 Abnormal UTF-Use AUU NO — — —
2 Anonymous Test AT YES NO — —
3 Assertion Roulette AR YES YES NO YES
4 Brittle Assertion BA YES NO — —
5 Conditional Test Logic CTL NO — — —
6 Constructor Initialization CI NO — — —
7 Dead Field DF NO — — —
8 Default Test DT NO — — —
9 Duplicate Assert DA YES YES NO YES

10 Eager Test ET YES YES YES YES
11 Empty Shared-Fixture ESF NO — — —
12 Empty Test EmT NO — — —
13 Erratic Test ErT YES NO — —
14 Exception Handling EH NO — — —
15 For Testers Only FTO NO — — —
16 Fragile Test FT YES NO — —
17 Frequent Debugging FD YES NO — —
18 General Fixture GF NO — — —
19 Hard-to-Test Code HTTC NO — — —
20 Ignored Test IgT NO — — —
21 Indirect Testing IT YES YES YES YES
22 Lack of Cohesion of Methods LCM YES YES NO YES
23 Lazy Test LT YES YES NO YES
24 Likely Ineffective Object-Comparison LIOC YES YES YES YES
25 Magic Number Test MNT NO — — —
26 Manual Intervention MI YES NO — —
27 Mixed Selectors MS YES NO — —
28 Mystery Guest MG NO — — —
29 Non-Java Smells NJS NO — — —
30 Obscure In-line Setup OISS YES YES YES YES
31 Overcommented Test OCT NO — — —
32 Overreferencing OF YES YES YES YES
33 Proper Organization PO YES NO — —
34 Redundant Assertion RA YES YES NO YES
35 Redundant Print RP NO — — —
36 Resource Optimism RO NO — — —
37 Returning Assertion ReA NO — — —
38 Rotten Green Tests RGT YES YES YES YES
39 Sensitive Equality SE YES YES NO YES
40 Sleepy Test ST NO — — —
41 Slow Tests SloT YES NO — —
42 Teardown Only Test TOT NO — — —
43 Test Code Duplication TCD YES NO — —
44 Test Logic in Production TLP NO — — —
45 Test Maverick TM NO — — —
46 Test Pollution TP NO — — —
47 Test Redundancy TR YES YES NO YES
48 Test Run War TRW NO — — —
49 Test-Class Name TCN YES NO — —
50 Unknown Test UT YES YES NO YES
51 Unused Inputs UI YES YES NO YES
52 Unusual Test Order UTO YES NO — —
53 Vague Header Setup VHS NO — — —
54 Verbose Test VT YES YES YES YES

Chapter 4. Approach 30

Figure 4.1: Test smell exclusion process. The four test smell exclusion steps that we performed
to establish which of the 54 identified test smells we should combine in different ways to find the optimal
combination of metrics to optimize as secondary criteria.

4.1.1 Test Smells That Cannot Occur

Some test smells cannot arise due to the characteristics of the tests generated by EvoSuite.
Indeed, EvoSuite simply does not contain the code necessary to generate tests with certain
smells. For instance, EvoSuite is unable to generate tests with conditional statements. As
such, we decided to exclude test smells related to:

Implicit setups: Dead Field; Empty Shared-Fixture; General Fixture; Test Maverick.
The test suites generated by EvoSuite do not use implicit setups (i.e., setup methods
used by all the test cases in the test suite). Each test case contains the necessary setup
code; hence, these test smells cannot arise in the generated tests. EvoSuite does generate
scaffolding files that do the necessary setup/pulldown, but these are only used to avoid
flaky tests and are not part of the scope of this work.
Teardown: Teardown Only Test. Given that the test suites generated by EvoSuite do
not use setups, they also do not use teardowns.
Improper setup that is not contained in a test case: Constructor Initialization; Vague
Header Setup. Neither bad smells occur because the test cases generated by EvoSuite
always contain all the necessary setup code.
Problems that do not apply to JUnit tests: Default Test; Non-Java Smells; Returning
Assertion. As these smells are not related to JUnit tests, they cannot be detected.
Non-existent statement types: Conditional Test Logic; Redundant Print; Sleepy Test.
EvoSuite generates test suites that are composed of test cases. A test case corresponds to
a sequence of statements. Each statement has a specific type that defines it. Therefore,
it is impossible to generate test code for a statement type that does not exist.
Problems with the code under test: For Testers Only; Hard-to-Test Code; Test Logic
in Production. These smells are not related to the generated test code. It would be
necessary to analyze the source code to optimize the respective test smell metrics.
Annotations: Abnormal UTF-Use; Exception Handling; Ignored Test. The generated
test cases are annotated only with @Test. The Exception Handling smell is inevitable
because try/catch has to be used to deal with exceptions (i.e., it is necessary).
Comments: Overcommented Test. EvoSuite only adds comments to generated tests if
necessary (e.g., when a try-catch block is used).

Chapter 4. Approach 31

Inline: Magic Number Test. One of the post-processing steps provided by EvoSuite
is used to inline all the primitive values and null references in the generated test cases.
As such, the manifestation of this smell is dependent on whether the person that uses
EvoSuite decides to apply (or not) this post-processing step. Therefore, we assume that
this smell can only occur if the person using EvoSuite makes the conscious decision to
disable the inline post-processing step.
Empty test cases: Empty Test. The minimization post-processing step provided by
EvoSuite already removes all empty test cases in the test suites.
Use of external resources: Mystery Guest; Resource Optimism; Test Pollution; Test
Run War. As stated by Panichella et al. [74], EvoSuite avoids test smells related to
external resources through the usage of mocks and bytecode instrumentation.

Given the initial set of 54 test smells, we have identified 26 smells that definitely cannot
arise in tests generated by EvoSuite. Hence, by excluding these smells, we obtain a subset
of 28 test smells that may affect the generated tests. However, we still need to identify
which of these 28 test smells can be characterized by optimizable metrics.

The “Occur” column of Table 4.1 presents the smells that can and cannot occur in
tests generated by EvoSuite. The exclusion process of the test smells that cannot arise
due to the characteristics of the generated tests is represented in the 1st step of Figure 4.1.

4.1.2 Test Smells Without Optimizable Metrics

We have a set of 28 test smells that may arise in the tests generated by EvoSuite. Still,
before we implement the respective test smell metrics, we have to ponder whether it would
even be possible to define optimizable metrics that characterize these smells. Indeed,
some test smells can arise in the tests generated by EvoSuite, but the respective metrics
cannot be optimized due to technical limitations. For instance, we cannot optimize metrics
related to the code under test. Therefore, to identify the test smells that we should remove,
we use the descriptions provided in Section 2.3 to deduce hypothetical metrics for each
of the 28 remaining smells. Hence, we excluded 12 test smells:

Smells that cannot be automatically detected: Brittle Assertion; Erratic Test; Fragile
Test; Frequent Debugging; Manual Intervention; Mixed Selectors; Proper Organization;
Unusual Test Order. While these test smells can occur, they cannot be automatically
detected: (1) for Brittle Assertion, we would have to identify all the values of the class
under test influenced by test cases; (2) for Erratic Test, it would be necessary to run
the same tests in different contexts; (3) for Fragile Test, it would be necessary to make
changes to the code under test; (4) for Frequent Debugging, it is hard to deduce if the
cause of a failure is unintuitive; (5) for Manual Intervention, we cannot verify whether
the tests require some form of manual action; (6) for Mixed Selectors and Unusual Test
Order, it would be necessary to distinguish production and test code; (7) for Proper
Organization, it would be hard to create an optimization strategy for such a subjective

Chapter 4. Approach 32

concept.
Meaningless/unclear names: Anonymous Test; Test-Class Name. The only way to
optimize metrics related to such smells is to change the way EvoSuite creates these
names in the first place.
Resource intensive metrics: Slow Tests; Test Code Duplication. These two test smells
require metrics that are too resource-intensive: (1) for Slow Tests, it would be necessary
to run the same test multiple times to calculate the respective average1; (2) for Test Code
Duplication, it would be necessary to use a metric such as the Levenshtein Distance to
check whether there are repeated groups of similar statements in a test case.

Given the initial set of 28 test smells, we have identified 12 smells that we definitely
cannot characterize with optimizable metrics. Thus, by excluding these smells, we have
obtained the final subset of 16 test smells for which we can and will define metrics (see
Section 4.2). However, we still need to understand to what extent the tests generated by
EvoSuite are affected by test smells. Indeed, we might be able to detect and optimize
the metrics of the non-excluded test smells, but that does not necessarily imply that these
smells affect the generated tests. Moreover, we do not want to spend resources attempting
to optimize smells that never arise in the tests generated by EvoSuite. Therefore, after
implementing the metrics for the non-excluded test smells into EvoSuite, we will analyze
the diffusion of each test smell and verify whether it should be optimized. Once we
have established the set of smells that arise in practice, we will attempt to optimize the
respective metrics.

The “Optimize” column of Table 4.1 establishes which of the test smells that can arise
in the generated tests can be characterized by optimizable metrics. The exclusion process
of the test smells that cannot be characterized by optimizable metrics is represented in the
2nd step of Figure 4.1.

4.2 Test Smell Metrics

This section presents the set of 16 test smells that we can describe with optimizable met-
rics. For each test smell, we establish:

• Adaptation (optional): How we adapted the original definition of the smell to suit
the context of this work;

• Metric: Description of the test smell metric;
• Computation: How to compute the test smell metric (present in the link to the

source code);
• Threshold: Threshold that we use to investigate the smelliness of the generated

tests (note that we do not utilize this threshold to perform the optimization).

1We have to run the same tests multiple times because the duration of the last execution of a test case
(that EvoSuite calculates by default) is somewhat unreliable and unpredictable.

Chapter 4. Approach 33

There are two main types of test smells:

1. Test case smells (TCS): Evaluated at the test case level;
2. Test suite smells (TSS): Evaluated at the test suite level.

To calculate the smelliness of test case smells, we simply have to analyze a specific test
case. However, to compute the smelliness of test suite smells, we must have access to the
entire test suite and analyze each of the test cases.

Assertion Roulette (TCS):

Adaptation: EvoSuite does not generate assertion messages, so this metric only focuses
on avoiding an excessive number of assertions. A test case is only affected by this smell
if the total number of assertions is greater than the total number of method calls.

Metric: Number of assertions in a test case that exceed the total amount of statements
that call methods of the class under test.

Computation: available in here.

Threshold: 3 (defined by Spadini et al. [86]).

Duplicate Assert (TCS):

Adaptation: Two assertions are equal if they: (1) check the same method of the same
class; (2) correspond to the same type of assertion; (3) have the same expected value.

Metric: Number of assertion statements of the same type that check the same method of
the same class and have the same expected value.

Computation: available in here.

Threshold: 1 (defined by Peruma et al. [77, 78]).

Eager Test (TCS):

Metric: Total number of different methods of the class under test that are checked by a
test case.

Computation: available in here.

Threshold: 4 (defined by Spadini et al. [86]).

Indirect Testing (TCS):

Metric: Total number of methods of other classes that are checked by a test case.

Computation: available in here.

Threshold: 1 (defined by Bavota et al. [13, 14]).

https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/AssertionRoulette.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/DuplicateAssert.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/EagerTest.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/IndirectTesting.java

Chapter 4. Approach 34

Lack Of Cohesion Of Methods (TSS):

Adaptation: A test suite has a specific target class: the class under test. All test cases in
a test suite are supposed to perform tests on the class under test and, in that sense, should
also be related. Therefore, instead of verifying if all test cases perform tests on a common
class, in this context, a test case is considered smelly if it does not perform tests on the
class under test.
Metric: Number of test cases in a test suite that do not perform tests on the class under
test.
Computation: available in here.
Threshold: 1 (regarding the tests generated by EvoSuite, test cases that do not contribute
to satisfying the coverage goals serve no purpose; therefore, a test case that does not even
exercise the class under test will surely be redundant, and the final test suite should never
contain redundant test cases).

Lazy Test (TSS):

Metric: Number of times each production method is called by more than one test case.
Computation: available in here.
Threshold: 1 (defined by Bavota et al. [13, 14] and Peruma et al. [77, 78]).

Likely Ineffective Object-Comparison (TCS):

Metric: Number of times the “equals” method of a class other than the one under test is
used to compare an object with itself.
Computation: available in here.
Threshold: 1 (it only makes sense to use the “equals” method to compare an object
with itself if “equals” corresponds to a method of the class under test; therefore, such a
comparison should never be performed in other circumstances).

Obscure In-line Setup (TCS):

Adaptation: This metric does not consider the variables that store values returned from
methods of the class under test.
Metric: Number of declared variables in a test case.
Computation: available in here.
Threshold: 10 (defined by Greiler et al. [47]).

Overreferencing (TCS):

Metric: Number of unnecessary class instances (i.e., class instances that are created but
never used).

https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/LackOfCohesionOfMethods.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/LazyTest.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/LikelyIneffectiveObjectComparison.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/ObscureInlineSetup.java

Chapter 4. Approach 35

Computation: available in here.
Threshold: 1 (every object created in a test case should have a given purpose and, as
such, should be used at least once).

Redundant Assertion (TCS):

Adaptation: EvoSuite never generates assertions with the same values for the actual and
expected parameters. As such, this metric focuses on another type of redundant assertions:
assertions that check primitive statements.
Metric: Total number of assertions that check primitive statements.
Computation: available in here.
Threshold: 1 (defined by Peruma et al. [77, 78]).

Rotten Green Tests (TCS):

Adaptation: This smell occurs if a test case continues to exercise code after the statement
in which the first exception was raised.
Metric: Number of statements that exist after the statement that raised the first exception.
Computation: available in here.
Threshold: 1 (any code that exists after the first statement that raises an exception will
not be executed and, as such, should be removed).

Test Redundancy (TSS):

Metric: Number of test cases that can be removed from the test suite without decreasing
the code coverage.
Computation: available in here.
Threshold: 1 (regarding the tests generated by EvoSuite, test cases that do not contribute
to satisfying the coverage goals serve no purpose; therefore, the final test suite should
never contain redundant test cases).

Unknown Test (TCS):

Metric: Number of valid assertions in a test case.
Computation: available in here.
Threshold: 1 (defined by Peruma et al. [77, 78]).

Unrelated Assertions (TCS):

Adaptation: This test smell corresponds to an adaptation of the test smell “Sensitive
Equality”. We initially considered that the test smell “Sensitive Equality” should not
be evaluated when an assertion performs an equality check using the toString method

https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/Overreferencing.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/RedundantAssertion.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/RottenGreenTests.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/TestRedundancy.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/UnknownTest.java

Chapter 4. Approach 36

implemented in the class under test. We then realized that the real problem with this new
approach is not that there are assertions that check the toString method but that there are
assertions that check methods not declared in the class under test. As such, we decided
that this metric should instead consider all assertions which check methods not declared
in the class under test. We changed the name of this test smell metric because this newly
proposed metric diverges a lot from the original definition.
Metric: Total number of assertions that check methods that are not declared in the class
under test.
Computation: available in here.
Threshold: 1 (assertions should capture the current behavior of the system under test;
thus, assertions that check methods not declared in the class under test serve no purpose).

Unused Inputs (TCS):

Adaptation: Without having full access to the class under test, it is difficult to know for
sure if an assertion does not check values controlled by the test case. Thus, the proposed
metric only focuses on statements that should necessarily have assertions. Specifically,
every statement which calls a method of the class under test that returns a value should
necessarily have at least one assertion; otherwise, the test is considered smelly.
Metric: Number of assertionless statements that call methods of the class under test.
Computation: available in here.
Threshold: 1 (if a statement calls a method of the class under test that returns a value,
then that statement should necessarily have an assertion to capture the current behavior of
the system under test).

Verbose Test (TCS):

Metric: Total number of statements in a test case.
Computation: available in here.
Threshold: 13 (defined by Spadini et al. [86]).

4.3 Optimize Test Smell Metrics

Although the primary objective of EvoSuite is to maximize coverage, it is also possible
to consider non-coverage aspects to improve the usefulness of the generated tests [70].
Through the analysis of previous studies, we were able to identify three possible ap-
proaches to incorporate non-coverage quality metrics into the EvoSuite tool:

1. Additional criteria [29, 59].
2. Secondary criteria [45, 70].
3. Additional post-processing steps [24, 25].

https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/UnrelatedAssertions.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/UnusedInputs.java
https://github.com/jose/smell-free-tests-evosuite/blob/smell-free-tests/client/src/main/java/org/evosuite/testsmells/smells/VerboseTest.java

Chapter 4. Approach 37

In theory, these three approaches should allow us to optimize test smell metrics. Thus,
in this section, we investigate the advantages/disadvantages of each approach and study
their practical feasibility.

4.3.1 Optimize Test Smell Metrics as Additional Criteria

The EvoSuite tool can optimize multiple coverage criteria simultaneously [71]. Therefore,
it should also be possible to optimize the proposed metrics by regarding the test smell
metrics as additional objectives to consider in addition to code coverage [70].

As demonstrated by Rojas et al. [80], it is possible for EvoSuite to simultaneously
optimize multiple criteria without increasing the computational costs. In fact, by default,
the current version of EvoSuite combines different coverage criteria to generate tests with
higher code coverage [20, 73] and improved fault detection effectiveness [44]. However,
several studies have shown that the combination of coverage and non-coverage-based
objectives negatively impacts the final code coverage, as they tend to conflict with each
other [29, 45, 59, 70].

The optimization of test smell metrics and the maximization of code coverage are
conflicting goals: it would be possible for tests with worse coverage to be chosen because
they are less smelly, which is not desirable. It should be theoretically possible to produce
less smelly tests with this approach. However, as a result, we foresee that there would be
a significant negative impact on code coverage. Therefore, this approach is not viable.

4.3.2 Optimize Test Smell Metrics as Secondary Criteria

During the search procedure, EvoSuite uses, by default, a secondary non-coverage-based
criterion (i.e., test case length) that promotes test cases that have the shortest possible
length [72]. In a nutshell, when there are multiple test cases with the same fitness value
for a given coverage target, EvoSuite selects the shortest one. Researchers have explored
this functionality and have successfully incorporated non-coverage metrics into EvoSuite
as secondary criteria.

Palomba et al. [70] proposed a secondary criterion to generate more cohesive and less
coupled tests, which combines two metrics: cohesion (LCTM) and coupling (CBTM).
They evaluated their approach and concluded that it: (1) achieved better LCTM and
CBTM scores relative to both MOSA and the whole suite strategy; (2) generated shorter
tests; (3) achieved higher code coverage due to the lower probability of early convergence.
Their study has demonstrated the viability of incorporating quality metrics into EvoSuite
through the usage of a secondary criterion. Moreover, it revealed that adequate quality
metrics could have a wide range of indirect benefits in the final test code.

Grano et al. [45] presented an adaptive search algorithm: aDynaMOSA — which
extends DynaMOSA with performance proxies that estimate test execution costs (runtime

Chapter 4. Approach 38

and memory consumption) as secondary criteria. Furthermore, aDynaMOSA’s adaptive
strategy is capable of temporarily disabling the secondary criteria when adverse effects
on code coverage are identified. According to their results, it was possible to generate
less expensive tests (which have decreased runtime and memory consumption) and also
achieve code coverage and mutation score comparable to DynaMOSA.

Thus, we hypothesize that it might be possible to use secondary criteria to optimize
quality aspects as test smells with minimal impact (if any) on the final code coverage [45].
In particular, test cases are compared in terms of test smell metrics if and only if they cover
the same code elements (e.g., lines, branches, etc.), as opposed to the approach described
in Section 4.3.1. Note that these newly proposed secondary criteria should also be able to
keep the size of the test cases under control (as EvoSuite’s default secondary criterion), as
several types of test smells are directly associated with the size of the test cases [46]. For
these reasons, we conclude that this approach is viable. Nevertheless, when it comes to
implementing this approach, there are a few pitfalls, which we describe in detail below.

Pitfall 1 – Metrics that cannot be directly optimized as secondary criteria

The only test smell metrics that can be optimized as secondary criteria are those that are
possible to compute during the search-based test generation process, i.e., some test smell
metrics simply cannot be optimized as secondary criteria. However, as demonstrated by
Grano et al. [46], the presence of specific test smells may imply the presence of other test
smells. Therefore, it is possible for test smell metrics that cannot be computed during the
test generation process to be indirectly optimized.

Pitfall 2 – More or less coverage

This approach could also negatively or positively affect the coverage achieved by the
generated tests. Incidentally, there is evidence to suggest that code coverage might either
decrease or increase due to “Genetic Drift” [54]. Genetic drift arises when the individuals
of a population become too similar, thus diminishing the ability to explore the search
space. Panichella et al. [72] demonstrated that this problem arises even when using test
case length as the secondary criterion:

• On the one hand, the generated tests (i.e., the final test suite) should be as small and
simple as possible.

• On the other hand, during the search process, complex and large tests have higher
evolutionary potential, i.e., they are more capable of change and, as such, promote
diversity. Consequently, by prioritizing shorter tests, the default secondary criterion
compromises the capability to explore the search space.

For example, as stated by Palomba et al. [70], while redundancy decreases test readability,
it helps to explore the search space; therefore, the optimization of the test smell metric

Chapter 4. Approach 39

“Test Code Duplication” may negatively affect the code coverage. As our secondary
criteria focus on test smells, we expect the size of the tests to increase (at least during the
search process), which may promote more diversity and therefore increase coverage.

Pitfall 3 – Runtime (fewer generations)

Compared to optimizing test case length as the secondary criterion, the optimization of
test smell metrics might be slower. EvoSuite has a limited search budget, e.g., the search
process stops when a specified amount of time runs out. During the search, the population
evolves to optimize objectives related to code coverage. The longer the optimization of
test smell metrics as secondary criteria takes, the less time there is for the population to
evolve and, as such, the lower the code coverage might be. This problem is unavoidable
as the computation of test smell metrics takes longer (given its complexity) than the pro-
cedure to compute the test case length. We, therefore, must ensure that the optimization
of test smell metrics is as fast as possible to avoid a significant impact on the effectiveness
of the generated tests. Alternatively, one could opt for an approach like the one used by
Grano et al. [45] and only enable the secondary criteria after a certain amount of time of
the search has passed (which might reduce any negative impact on the coverage).

Approach Details

We consider each test smell as an independent secondary criterion so that anyone using
EvoSuite can choose any combination of test smells they find most suitable. In particular,
the primary motivation for this design decision is that we seek to find the ideal combi-
nation of test smell metrics to optimize2. However, we had to make two corrections in
the default version of EvoSuite before performing our investigation: one of the problems
prevented users from setting the secondary criteria from the command line, and the other
impeded the usage of multiple secondary criteria simultaneously.

Let ca and cb be the chromosomes under analysis and let S = {s1, ..., sN} denote the
chosen secondary criteria. If both chromosomes are equally good in terms of coverage,
EvoSuite uses the secondary criteria to prioritize tests with other qualities. Our version of
this process works as follows:

compare(ca, cb) =
∑
sk∈S

sk(ca, cb) (4.1)

where sk(ca, cb) ∈ [0, 1] — therefore, all secondary criteria have the same range, so it
becomes possible to determine how much better/worse ca is than cb when considering a
set of test smells with intrinsically different metrics. Indeed, we had to make this change
because, as already established, we intend to optimize metrics instead of the actual test

2From this point forward, although it is possible to combine any test smell with other unrelated sec-
ondary criteria, we will assume that all chosen secondary criteria correspond to test smells.

Chapter 4. Approach 40

smells; as such, given that our approach does not use thresholds, we decided to normalize
the smelliness of each test smell metric to balance out the different types of smells. Each
test smell metric is optimized as follows:

sk(ca, cb) = smell valueca(k)− smell valuecb(k) (4.2)

where smell valueca(k) denotes the smelliness of the metric k for the chromosome ca,
and smell valuecb(k) denotes the smelliness of the metric k for the chromosome cb. After
iterating over S, if compare(ca, cb) < 0, then ca is a better solution than cb.

Note that to ensure that the secondary criteria are computed as fast as possible, given
the fact that EvoSuite has a limited search budget, each test chromosome stores the results
of its computed test smell metrics. Hence, unless a chromosome is modified by the search
procedure, the metrics are only computed once.

4.3.3 Optimize Test Smell Metrics as Post-Processing Steps

EvoSuite applies multiple post-processing steps after the search to improve the quality of
the generated tests [71, 93]. Specifically, EvoSuite [25]: (1) inlines primitive values and
null references; (2) minimizes the tests; (3) adds a minimized set of assertions to each test
case. The post-processing steps are independent of the test generation process, so they can
optimize non-coverage metrics without interfering with the final code coverage [25, 46].

As suggested by Grano et al. [46], it should be possible to optimize test smell metrics
as additional post-processing steps. In fact, the default post-processing steps applied by
EvoSuite can already make the generated tests (potentially) less smelly [93]. While such
an approach is resource intensive, it does not interfere with the evolutionary process.
Moreover, by optimizing the proposed metrics as additional post-processing steps, we
can optimize more test smell metrics than if we were to use secondary criteria (e.g., test
smells related to assertions).

Initially, we considered exploring a post-processing technique similar to the one used
by Daka et al. [25]:

Since automatically generated tests tend to be particularly difficult to read, Daka et
al. [25] incorporated a domain-specific readability model based on human judgments into
the EvoSuite tool. The researchers started by developing a readability model that uses 24
syntactic features to predict test readability. Subsequently, Daka et al. incorporated the
proposed readability model into EvoSuite as an additional post-processing step so as not
to negatively impact the final code coverage. The newly implemented post-processing
step creates a set of alternative versions of a minimized test case and selects the candi-
date test case that has the best readability. The tests generated with this new approach
displayed enhanced readability and high code coverage. Moreover, the researchers vali-
dated the proposed approach with human participants and observed that: (1) the tests with
improved readability were usually preferred; (2) the participants answered maintenance

Chapter 4. Approach 41

questions related to the enhanced tests faster and with the same accuracy. Afterward, Daka
et al. [24] further investigated the proposed approach and confirmed that the readability
model improves test readability without compromising coverage.

However, this approach has one detrimental issue — it is necessary to identify a viable
way to generate equivalent versions of the tests that are sufficiently different to ensure a
significant variation in smelliness. To better understand this problem, let us consider two
ways to generate alternative tests:

Approach 1 – Generate alternative versions of the tests

We could opt for an approach like the one used by Daka et al. [25] to generate alterna-
tive versions of the minimized test cases by determining all viable replacements for each
statement of each test case in the final test suite. Therefore, it would be possible to op-
timize the test smell metrics by selecting the least smelly candidate test cases. However,
as stated by Grano et al. [46], EvoSuite generates smelly tests because the initial popu-
lation is randomly generated; moreover, if the structure of the tests does not change, the
tests remain smelly. Thus, replacing specific statements will not significantly impact the
overall smelliness because the structure of the tests remains unchanged. For example,
replacing the statements of a test case that verifies too much functionality will not reduce
the smelliness. Overall, not only would this approach require a substantial amount of
time/resources, but it would probably lead to negligible improvements (if any).

Approach 2 – Generate new equivalent tests

Instead of generating alternative tests by changing the test cases of the final test suite, we
could generate new equivalent test suites by executing the search process with a different
initial population. However, not only would this consume a lot of time, but EvoSuite does
not even provide such functionality. Indeed, if we were to execute the search process all
over again with a different initial population, the newly generated test suite would likely
not even have the same coverage as the original test suite, so it would be better to select
the one with the highest code coverage (which would defeat the entire purpose of this
approach).

Problem overview

We believe that the optimization of test smell metrics as additional post-processing steps
corresponds to a promising way to generate less smelly tests. However, the EvoSuite
tool does not currently provide a viable way to create alternative tests with the desired
characteristics. Therefore, this approach is not viable. Still, we have already implemented
the test smell metrics required to perform the optimization. As such, if it becomes possible

Chapter 4. Approach 42

to generate equivalent test suites with different test cases in the future, then it would be
possible to use the proposed metrics to optimize test smells.

4.4 Features to Prevent Test Smells

Instead of directly optimizing test smell metrics through a fitness function (e.g., code
coverage) or secondary criteria, EvoSuite could be adapted to generate tests such that the
resulting outcome no longer contains certain smells. Specifically, if EvoSuite deliberately
generates tests with characteristics that can be considered smelly, we could, in theory,
modify the tool to not introduce such smells. For instance, although we cannot optimize
smells related to tests with meaningless/unclear names, Daka et al. [26] have been able
to implement a naming technique into EvoSuite to generate test cases with descriptive
names, i.e., by changing the way EvoSuite creates names, the authors have eliminated the
test smell “Anonymous Test”.

4.5 Summary

In this chapter, we have established the set of 16 test smells that: (1) can affect the tests
generated by EvoSuite; (2) we can describe with optimizable metrics. We then defined
metrics for the 16 selected test smells and integrated those metrics into EvoSuite. Lastly,
we investigated three approaches to optimize test smell metrics and ultimately decided to
optimize test smell metrics as secondary criteria. Overall, we have established the test
smell metrics we intend to optimize and the approach we intend to use to optimize said
metrics; as such, we have everything we need to start implementing our solution.

Chapter 5

Empirical Study

In this chapter, we aim to investigate the following research questions:

RQ1: To what extent are the tests generated by the EvoSuite tool affected by test smells?
RQ2: What combination of test smell metrics leads to the generation of the most effective

(coverage and fault detection wise) and the least smelly tests?
RQ3: Does the optimization of test smell metrics lead to the generation of significantly

less smelly tests?
RQ4: Does the optimization of test smell metrics affect the fault detection effectiveness,

code coverage, or size of the generated tests?

Firstly, we analyze the diffusion of the non-excluded test smells (see Section 4.1 for more
details) and the distribution of the respective metrics (RQ1). After determining the types
of bad programming practices that, in practice, affect the tests generated by EvoSuite, we
identify the optimal combination of test smell metrics to optimize as secondary criteria,
i.e., the one that leads not only to the lowest smelliness but also the highest code coverage
and mutation score (RQ2). Subsequently, we investigate, on a different corpus, whether
the optimal combination of test smell metrics found in RQ2 leads to the generation of
significantly less smelly tests (RQ3). In RQ4, we investigate whether the fault detection
effectiveness, coverage, or size of the generated tests is affected by the optimization of
test smell metrics; particularly, to address this research question, we consider and answer
three sub-research questions:

RQ4.1: Does the optimization of test smell metrics affect the fault detection effectiveness
of the generated tests?

RQ4.2: Does the optimization of test smell metrics affect the final code coverage of the
generated tests?

RQ4.3: Does the optimization of test smell metrics affect the number and the size of the
generated tests?

43

Chapter 5. Empirical Study 44

5.1 Experimental Subjects

In this study, we use a set of 346 non-trivial Java classes extracted from 117 open-source
Java projects1 that has been used, for example, to investigate the performance of several
search-based algorithms (including EvoSuite’s default, DynaMOSA) [19, 20, 72].

We decided to use this corpus of non-trivial classes as several other studies have shown
that the quality/complexity of the production code can affect the presence of test smells in
the test suites generated by EvoSuite [46, 69]. Indeed, given that complex classes typically
imply the generation of smellier tests, experiments on this corpus should provide further
insight into the presence of smells in automatically generated tests (relevant for RQ1).
This corpus of complex classes should also allow us to more thoroughly evaluate the
capabilities of the proposed approach to optimize test smell metrics (relevant for RQ2-4).

To manage the high computational costs associated with RQ2, we decided to use a
random subset of 34 classes from the benchmark2; specifically, this is the subset originally
selected by Campos et al. [19] to find the best parameters for particular genetic algorithms.
In turn, we exclude these 34 classes from all other research questions, i.e., we use the
remaining subset of 312 classes to answer RQ1, RQ3, and RQ4.

5.2 Experimental Procedure

For all research questions, we generate test suites for the selected classes using EvoSuite
version 1.1.1 with the following settings: (1) DynaMOSA as the search algorithm [72]; (2)
the default coverage criteria, i.e., line, branch, exception, weak mutation, output, method,
method exception, and cbranch coverage [34, 71]; (3) a search budget of 180 seconds [45].
Moreover, given that EvoSuite is randomized [34], we repeated each execution 30 times
(as suggested by Arcuri and Briand [6]). All experiments were executed on the Faculty of
Engineering of the University of Porto (Portugal) HPC Cluster [65]. Each cluster nodes
was running Scientific Linux v7.9 (x86 64) and using eight cores at 2.80 GHz with 128
GB of RAM.

5.2.1 RQ1: To what extent are the tests generated by the EvoSuite
tool affected by test smells?

Previous studies may have investigated the distribution of smells in the tests generated by
EvoSuite [46, 69, 74, 75], but none of them have considered the same set of 16 test smells
as the one defined in Section 4.1; moreover, no other study has investigated the smelliness
of the tests generated by the latest version of EvoSuite (i.e., v1.1.1). Thus, in RQ1, we

1https://github.com/jose/non-trivial-java-classes-to-study-search-based-software-testing-approaches
2https://github.com/jose/non-trivial-java-classes-to-study-search-based-software-testing-

approaches/blob/master/data/classes-training.csv

Chapter 5. Empirical Study 45

study the diffusion of the 16 selected smells to identify the least/most prevalent test smells.
To answer RQ1, we first implement the metrics for the selected test smells (as defined in
Section 4.2). Subsequently, we study: (1) the distribution of the test smell metrics; (2) the
diffusion of all types of test smells — we need to run EvoSuite on the subset of 312 classes
from the benchmark and analyze the smelliness before and after post-processing is applied
because test smells can be introduced/removed during the post-processing steps [93].

For each class c in the subset of 312 selected classes C, we generate 30 different test
suites (Rc); for each test suite, we calculate the smelliness of each of the 16 test smell
metrics. Let T = {t1, ..., tN} denote the test cases in a test suite generated by EvoSuite
for a class c in a run r and let S = {s1, ..., sM} designate the set of test smell metrics
under analysis. In each run of class c, we calculate the smelliness of a test suite T ; hence,
for each test case t, we obtain a list containing the smelliness of each test smell metric s.

Firstly, we investigate the distribution of the test smell metrics. Given a test suite T ,
we calculate the smelliness of a specific test smell metric s as follows:

s̄(T) =
1

|T |
∑
t∈T

t(s) (5.1)

where t(s) denotes the smelliness of a specific test smell metric s in a test case t. Since
run EvoSuite on each of the 312 considered classes (C) 30 times with different random
seeds (Rc), we compute the average smelliness of each test smell metric s̄ as follows:

s̄ =
1

|C|
∑
c∈C

(
1

|Rc|
∑
T∈Rc

s̄(T)

)
(5.2)

In turn, to calculate the overall smelliness of a test suite T , for each test case t, we
need to compute the smelliness of all test smell metrics S:

t̄(S) =
1

|S|
∑
s∈S

t(s) (5.3)

where t(s) denotes the smelliness of a specific test smell metric s in a test case t. Given a
test suite T , we calculate the overall smelliness of all test smell metrics S as follows:

T̄ (S) =
1

|T |
∑
t∈T

t̄(S) (5.4)

Since we have to run EvoSuite on each of the 312 considered classes (C) 30 times with
different random seeds (Rc), we compute the average overall smelliness S̄ as follows:

S̄ =
1

|C|
∑
c∈C

(
1

|Rc|
∑
T∈Rc

T̄ (S)

)
(5.5)

We decided to use the thresholds established in Section 4.2 to calculate the percentage
of test cases in a given test suite affected by a specific test smell (i.e., investigate the

Chapter 5. Empirical Study 46

diffusion of test smells). To perform this analysis, we apply the thresholds to each test
smell metric s of each test case t in a test suite T and calculate the percentage of test cases
affected by s:

ratio(T, s) = 100× 1

|T |
∑
t∈T

{
1 if t(s) is above or equal to threshold
0 if t(s) is below threshold

(5.6)

Given a test smell metric s, we calculate the percentage of smelly test cases per test
suite (i.e., the ratio of smelly test cases) as follows:

ratio(s) =
1

|C|
∑
c∈C

(
1

|Rc|
∑
T∈Rc

ratio(T, s)

)
(5.7)

where C denotes the subset of 312 classes, andRc corresponds to the number of runs (i.e.,
30). Finally, we calculate the overall percentage of smelly test cases per test suite for
the combination of all metrics as follows:

ratio(S) =
1

|S|
∑
s∈S

ratio(s) (5.8)

where S denotes the set of test smell metrics under analysis.

5.2.2 RQ2: What combination of test smell metrics leads to the gen-
eration of the most effective (coverage and fault detection wise)
and the least smelly tests?

Concerning RQ2, we perform a tuning study to identify the optimal combination of test
smell metrics to optimize as secondary criteria, i.e., the configuration that achieves not
only the lowest possible smelliness but also the highest possible coverage and mutation
score. To this aim, we examine the results of RQ1 and discard the test smells that never
occur or only affect a negligible portion of the final test suites generated by EvoSuite3; in
particular, we decided to exclude the test smells that affect less than 0.50% of test cases
in a post-processed test suite (Equation 5.7). Given the set of smells that affect the tests
generated by EvoSuite in practice, we identify the test smells with metrics that can be
optimized as secondary criteria — these are the test smells we intend to optimize. We
optimize all possible combinations of metrics as secondary criteria (except for the one that
only optimizes the “Verbose Test” metric, which is equivalent to the default secondary
criterion) and compare the respective results. To manage the high computational costs
associated with the comparison of metrics, we decided to use the subset of 34 classes
from the benchmark (defined in Section 5.1) originally selected by Campos et al. [19] to
find the best parameters for particular genetic algorithms.

3The “final test suites” generated by EvoSuite correspond to test suites that, supposedly, have been
correctly post-processed.

Chapter 5. Empirical Study 47

To answer RQ2, we compare the relative: smelliness, code coverage, and mutation
score — of the tests generated by multiple versions of EvoSuite (i.e., EvoSuite augmented
with different combinations of test smell metrics). Note that we optimize metrics that are
related to test smells rather than actual test smells; this is relevant in the sense that a
smelliness value greater than zero does not necessarily imply the existence of bad coding
practices. Thus, our main objective is to use these metrics to measure the smelliness of the
tests and, consequently, minimize the smelliness as much as possible. In short, what we
are trying to investigate is not how close we are to generating completely smell-free tests
but how the performance of the different approaches compares to the other alternatives.
Hence, we decided to use relative smelliness (inspired by relative coverage [8, 19]) instead
of the raw values. For the same reasons, we also use relative coverage and mutation score.
Specifically, given a min and a max value, we compute a relative value as follows:

relative value(value,max,min) =
value−min
max−min

(5.9)

Let Ac denote the set of all test suites generated for a particular class c. Given a test
suite T , we calculate the relative smelliness of a specific test smell metric s as follows:

relative smell(s,Ac, T) = relative value

(
s̄(T),min(Ac(s)),max(Ac(s))

)
(5.10)

where s̄(T) designates the smelliness of a test smell metric s (Equation 5.1), min(Ac(s))

denotes the lowest smelliness of s measured across all runs of c, and max(Ac(s)) denotes
the highest smelliness of s measured across all runs of c. We follow a similar procedure
to calculate the relative coverage and the relative mutation score. Since we run each
combination of test smell metrics 30 times (random seeds (Rc)) on the 34 classes (C), we
compute the average relative smelliness of s as follows:

relative smell(s,A) =
1

|C|
∑
c∈C

(
1

|Rc|
∑
T∈Rc

relative smell(s,Ac, T)

)
(5.11)

whereA corresponds to the set of all test suites generated by all combinations of test smell
metrics across all runs of all classes. We also follow a similar approach to calculate the
average relative coverage and the average relative mutation score.

Given a test suite T and the set of test suites Ac, we calculate the relative overall
smelliness of all test smell metrics S as follows:

relative overall smell(T̄ (S), Ac) = relative value

(
T̄ (S),min(Ac(S)),max(Ac(S))

)
(5.12)

where T̄ (S) designates the overall smelliness of S (Equation 5.4), min(Ac(S)) denotes
the lowest overall smelliness measured across all runs of c, and max(Ac(S)) denotes the
highest overall smelliness measured across all runs of c. The average relative overall
smelliness of S is computed as:

relative overall smell(A,S) =
1

|C|
∑
c∈C

(
1

|Rc|
∑
T∈Rc

relative overall smell(T̄ (S), Ac)

)
(5.13)

Chapter 5. Empirical Study 48

Given that we are trying to conjugate three different metrics, the concept of “optimal
combination” is merely subjective (no combination is perfect); therefore, to determine
the “best” configuration, we had to establish a selection technique that considers all three
aspects. Specifically, to identify the optimal combination of test smell metrics to optimize
as secondary criteria, we perform pairwise comparisons of the relative: coverage, muta-
tion score, and overall smelliness — and, for each configuration, we report the number of
tournaments won/lost (i.e., comparisons in which a given combination is statistically and
significantly better/worse than another combination). Essentially, each configuration goes
up against all other configurations: let A and B denote any two different configurations;
for each class c, we compare A against B. We utilize the Vargha-Delaney (Â12) [6, 90]
effect size to determine which of the two configurations performs better on each class c.
In addition, we use the Wilcoxon-Mann-Whitney test [6, 23] with a significance level of
at least 95% (α = 0.05) to assess whether the differences between both configurations
are statistically significant. We only consider tournaments in which A is statistically and
significantly better/worse than B:

• Given that we aim to maximize the code coverage and mutation score:

– If Â12 > 0.50 and p-value < 0.05, configuration B is significantly worse than
configuration A, and therefore A wins the tournament.

– If Â12 < 0.50 and p-value < 0.05, configuration B is significantly better than
configuration A, and therefore B wins the tournament.

– If Â12 = 0.50, the two configurations achieve equal performance and, as such,
neither win nor lose.

• Given that we aim to minimize the smelliness:

– If Â12 > 0.50 and p-value < 0.05, configuration B is significantly better than
configuration A, and therefore B wins the tournament.

– If Â12 < 0.50 and p-value < 0.05, configuration B is significantly worse than
configuration A, and therefore A wins the tournament.

– If Â12 = 0.50, the two configurations achieve equal performance and, as such,
neither win nor lose.

For each tournament type (i.e., coverage, mutation, and overall smelliness), we calculate
the comparison score of each configuration, i.e., the difference between the number of
tournaments won/lost. We use the tournament results to rank the configurations according
to code coverage, mutation score, smelliness, and the combination of coverage, mutation,
and smelliness. For the three individual ranking standards, we simply consider the respec-
tive comparison scores (i.e., a higher comparison score implies a better rank). In turn, for
the overall ranking standard, we combine the comparison scores as follows:

comparison score = comparison score(coverage)+

comparison score(mutation)+

5× comparison score(smelliness)
(5.14)

Chapter 5. Empirical Study 49

where comparison score(coverage|mutation|smelliness) correspond to the compari-
son scores of the coverage, mutation, and smelliness tournament types, respectively. Note
that if we were to consider that the smelliness of the tests was as important as the coverage
and mutation score, we would probably either choose an overall lackluster configuration
that did not excel in any aspect or a combination that improves the code coverage and
mutation score but does not have any significant impact on the smelliness. Therefore,
given that the primary purpose of this work is to reduce the smelliness of the generated
tests, we decided to assign a greater weight to the smelliness. Specifically, we decided to
multiply the smelliness comparison score by five because we wanted a high enough value
to ensure that the smelliness would always be more influential to the final results4, but not
to the point where it could overshadow the other metrics. We consider the following null
hypothesis in RQ2:

RQ2: No combination A performs statistically and significantly better than
another combination B in terms of smelliness, coverage, or mutation score.

It is possible to reject the null hypotheses if p-value < 0.05. In particular, since we
only consider the pairwise comparisons in which a combination of metrics is statistically
and significantly better/worse than another combination, as long a given configuration
wins/loses one or more tournaments, we can reject the null hypothesis.

5.2.3 RQ3: Does the optimization of test smell metrics lead to the
generation of significantly less smelly tests?

Concerning RQ3, we investigate how the optimization of test smell metrics as secondary
criteria affects the smelliness of the automatically generated tests. Therefore, we need to
compare the smelliness of the test suites generated by the following versions of EvoSuite:

1. Vanilla: The default version of EvoSuite;
2. EvoSuite (smell-free): EvoSuite augmented with test smell metrics optimized as

secondary criteria (i.e., the version of EvoSuite that optimizes the ideal combination
of test smell metrics as secondary criteria).

The main objective of this research question is to verify whether the augmented version of
EvoSuite improves the smelliness of the set of test smell metrics we intend to optimize
as secondary criteria (which includes all the non-discarded test smell metrics that could
have been optimized as secondary criteria, i.e., even those not included in the optimal
configuration). Thus, to answer RQ3, we first run EVOSUITE (SMELL-FREE) on the
subset of 312 classes from the benchmark and measure the smelliness of the generated

4Recall that we only consider the tournaments in which one configuration is statistically and significantly
better/worse than another; thus, if the comparisons associated with specific metrics tend to yield significant
differences and those associated with other metrics do not, then we can expect considerable differences
between the respective comparison scores.

Chapter 5. Empirical Study 50

tests before and after post-processing is applied. Subsequently, given the final test suits
generated by both versions of EvoSuite, we perform a pairwise test of the relative overall
smelliness achieved by EVOSUITE (SMELL-FREE) vs. VANILLA. We use the Vargha-
Delaney (Â12) [6, 90] effect size to assess the magnitude of the improvement in smelliness
that results from optimizing the ideal combination of test smell metrics as secondary
criteria:

• If Â12 = 0.50, the augmented and default versions of EvoSuite are equivalent.
• If Â12 > 0.50, the augmented version of EvoSuite generates less smelly tests than

the default version of the tool.
• If Â12 < 0.50, the default version of EvoSuite generates less smelly tests than the

augmented version of the tool.

To investigate whether the difference in smelliness between the two versions of EvoSuite
is statistically significant, we use the non-parametric Wilcoxon-Mann-Whitney test [6, 23]
with a significance level of α = 0.05 and we consider the following null hypothesis:

RQ3: Our approach does not reduce the smelliness of the automatically
generated unit tests.

It is possible to reject the null hypotheses if p-value < 0.05.
To complement the results of the pairwise test, we also compare the average overall

smelliness (Equation 5.5) and the average relative overall smelliness (Equation 5.13)
of the final test suites generated by the two versions of the EvoSuite tool. Furthermore,
for each of the individual test smell metrics we intend to optimize as secondary criteria,
we compare the average smelliness (Equation 5.2) and the average relative smelliness
(Equation 5.11) of the tests generated by both versions of EvoSuite.

Besides the main objective of this research question, we also intend to compare the test
suites generated by the two versions of EvoSuite before/after post-processing is applied to
more thoroughly assess the impact of the newly proposed secondary criteria. Furthermore,
since the optimization of specific smells can have indirect effects on other test smells, we
ultimately decided to analyze two main categories of test smell metrics before and after
post-processing optimization:

• Directly optimized test smell metrics – Test smell metrics included in the optimal
configuration (i.e., directly optimized as secondary criteria).

• Indirectly optimized test smell metrics – Test smell metrics not included in the
optimal configuration, which can correspond to:

– Test smell metrics not included in the optimal configuration but that we still
intend to optimize as secondary criteria;

– Test smells discarded in RQ2;
– Test smell metrics we cannot optimize as secondary criteria.

Chapter 5. Empirical Study 51

Indeed, the main objective of this work is to improve the smelliness of the test suites
generated by EvoSuite (which we assume are properly post-processed); however, to fully
understand the final results, we also have to consider the characteristics of the generated
tests before post-processing is applied.

To study the effects of the post-processing steps and the indirectly optimized test smell
metrics, we utilize a process similar to the one used in RQ1 to investigate the smelliness of
the tests generated by the default version of EvoSuite. Specifically, given the two versions
of EvoSuite, we investigate:

• The distribution of the test smell metrics:

– Average smelliness of each test smell metric (Equation 5.2);
– Average overall smelliness (Equation 5.5).

• The diffusion of test smells:

– Percentage of smelly test cases per test suite (Equation 5.7);
– Overall percentage of smelly test cases per test suite (Equation 5.8).

5.2.4 RQ4: Does the optimization of test smell metrics affect the fault
detection effectiveness, code coverage, or size of the generated
tests?

Regarding RQ4, we investigate how the optimization of test smell metrics as secondary
criteria affects other relevant aspects of the generated tests (besides the smelliness). In
particular, we study the: mutation score, code coverage, number of test cases (i.e., size5),
and number of statements per test suite (i.e., length) — of the set of tests generated by the
vanilla and augmented versions of EvoSuite in RQ1 and RQ3, respectively. Given that
neither the coverage nor the mutation score can be affected by the post-processing steps,
we only have to measure these metrics after post-processing is applied. Since the effects
of the post-processing steps on the size and length are irrelevant to the context of this
work, we also only consider those metrics after post-processing. We answer this research
question by considering three separate sub-research questions:

RQ4.1: To answer RQ4.1, we compare the average mutation score and the average
relative mutation score of the final test suites generated by both versions of EvoSuite.
We decided to use this metric since mutant detection is often considered a good measure
of fault detection effectiveness [34, 40, 51].

RQ4.2: To assess whether the new secondary criteria affect the coverage achieved by
the generated tests, we compare the average coverage and the average relative coverage

5We refer to the “size” of the tests in a general sense (includes the number of test cases and statements
per test suite, as well as the average number of statements per test case). However, the “size” metric (which
derives from the “Size” output variable defined by EvoSuite) only corresponds to the number of test cases.

Chapter 5. Empirical Study 52

of the tests generated by both versions of EvoSuite. Specifically, we aim to analyze the
default coverage criteria used by EvoSuite.

RQ4.3: To compare the general size of the final test suites generated by both versions
of EvoSuite, we use: (1) the average size to examine the number of test cases; (2) the
average length to inspect the total number of statements. We also consider the percentage
of test cases in a test suite affected by the “Verbose Test” smell, as well as the average
smelliness of the respective metric; indeed, the “Verbose Test” should provide useful
insight into the average number of statements in the test cases generated by each version
of the EvoSuite tool.

Given the three considered sub-research questions, we perform pairwise comparisons
of the following metrics:

• RQ4.1: Relative mutation score;
• RQ4.2: Relative coverage;
• RQ4.3 (H0): Size;
• RQ4.3 (H1): Length.

We use the Vargha-Delaney (Â12) [6, 90] effect size to evaluate the magnitude of the
improvement in: (1) mutation score; (2) code coverage; (3) size; (4) length — that results
from optimizing the ideal combination of test smell metrics as secondary criteria:

• Given that we aim to maximize the code coverage and mutation score:

– If Â12 = 0.50, the two versions of EvoSuite are equivalent.
– If Â12 > 0.50, the augmented version of EvoSuite is worse than the default

version of the tool with regards to the investigated metric.
– If Â12 < 0.50, the augmented version of EvoSuite is better than the default

version of the tool with regards to the investigated metric.

• Given that we aim to minimize the size and length:

– If Â12 = 0.50, the two versions of EvoSuite are equivalent.
– If Â12 > 0.50, the augmented version of EvoSuite is better than the default

version of the tool with regards to the investigated metric.
– If Â12 < 0.50, the augmented version of EvoSuite is worse than the default

version of the tool with regards to the investigated metric.

To investigate whether the differences (related to the respective metrics) between the
two versions of the EvoSuite tool are statistically significant, we use the non-parametric
Wilcoxon-Mann-Whitney test [6, 23] with a significance level of α = 0.05. We conceive
four null hypotheses that state that:

RQ4.1: Our approach reduces the final mutation score of the automatically
generated unit tests.

RQ4.2: Our approach reduces the final code coverage of the automatically
generated unit tests.

Chapter 5. Empirical Study 53

RQ4.3 (H0): Our approach increases the size of the automatically generated
unit tests.

RQ4.3 (H1): Our approach increases the total length of the automatically
generated unit tests.

It is possible to reject the null hypotheses if p-value < 0.05.

5.3 Threats to Validity

Based on the guidelines reported by Wohlin et al. [94], we discuss below the threats to
validity to our study.

Threats to External Validity:

Associated with the generalization of our results. We conducted our investigation on a
corpus composed by 346 Java classes from 117 open-source Java projects. Although our
results might not generalize to other classes/projects (e.g., industrial systems), we attempt
to minimize this threat by using the largest and most diverse set of classes available and
that others have used (e.g., to investigate the performance of several search-based algo-
rithms). Moreover, our results and conclusions are limited to the tests generated by one
single tool, EvoSuite. Although other tools have been proposed (e.g., Randoop [66])
EvoSuite is the only that allow us to implement the novel secondary criteria.

Threats to Internal Validity:

Associated with uncontrollable internal factors that may influence our results. Given that
EvoSuite is randomized, it is necessary to run repetitions and do a statistical analysis of
the data. To minimize this threat, we repeat each experiment 30 times, as suggested by
Arcuri and Briand [6]. However, due to time constraints and limited resources, we have
only been able to run the vanilla and augmented versions of EvoSuite (which includes
RQ1, RQ2, and RQ4) five times. Any change performed in EvoSuite and all the scripts
developed to perform the statistical analysis were reviewed by all the authors and formally
tested (we have created unit tests for all implemented test smell metrics).

Threats to Construct Validity:

Associated with the correspondence between theory and observation. We optimize test
smell metrics inspired by the available definitions. Furthermore, when possible, we adapt
test smell metric implementations and thresholds from tools with available source code.

Chapter 5. Empirical Study 54

5.4 Summary

In this chapter, we presented four research questions and gave a detailed explanation of
how we intended to approach each of them:

• RQ1: Investigate the diffusion of test smells and the distribution of the respective
metrics in the tests generated by the vanilla version of EvoSuite.

• RQ2: Firstly, establish the smells that, in practice, affect the tests generated by
EvoSuite. Subsequently, identify the optimal combination of test smell metrics to
optimize as secondary criteria.

• RQ3: Perform a pairwise test to compare EVOSUITE (SMELL-FREE) vs. VANILLA.
Moreover, investigate the directly/indirectly optimized test smell metrics.

• RQ4: Perform pairwise comparisons of the following metrics: mutation score; code
coverage; size — to compare EVOSUITE (SMELL-FREE) vs. VANILLA.

Chapter 6

Results

This chapter presents and discusses the results of this study and answers the research
questions proposed in Section 5.

6.1 RQ1 - Identify the Test Smell Metrics to Optimize

To investigate the extent to which the tests automatically generated by the EvoSuite tool
are affected by test smells, we analyze:

• The distribution of the test smell metrics;
• The percentage of smelly test cases per test suite;
• The correlation between test smell metrics.

Table 6.1 depicts the distribution of the 16 considered test smell metrics. Given the tests
generated by the vanilla version of EvoSuite, we report the average: (1) smelliness of the
individual metrics; (2) overall smelliness of the combination of all metrics — before/after
post-processing is applied, as well as the relative improvement in smelliness that results
from applying post-processing optimization. We also report the standard deviation (σ)
and confidence intervals (CI) using bootstrapping at 95% significance level. To make the
distribution of each metric more perceptible, Figure 6.1 presents two types of boxplots:
the left ones represent the distribution of the test smell metrics before post-processing, and
the right ones represent the distribution of the test smell metrics after post-processing.

Table 6.2 reports the percentage of test cases in a test suite affected by test smells
(i.e., the diffusion of test smells in the generated tests). For both individual metrics and
the combination of all metrics, we present the ratio of smelly test cases before and after
post-processing is applied, as well as the relative improvement in the percentage of smelly
test cases that results from applying the post-processing optimization. Furthermore, we
display the standard deviation (σ) and confidence intervals (CI) using bootstrapping at
95% significance level. Figure 6.2 provides a visual representation of these results.

In this section, we initially discuss the properties of the tests generated by EvoSuite
before post-processing is applied. Subsequently, we investigate the characteristics of the

55

Chapter 6. Results 56

Table 6.1: Vanilla – Distribution of the 16 considered test smell metrics. Equation 5.2
demonstrates how to calculate the average smelliness of each test smell metric; Equation 5.5 demonstrates
how to calculate the average overall smelliness.

Before post-process After post-process Relative
Metric x̄ σ CI x̄ σ CI improvement

AssertionRoulette 0.00 0.00 [0.00, 0.00] 0.38 2.21 [0.11, 0.54] 100.00%
DuplicateAssert 0.00 0.00 [0.00, 0.00] 0.11 1.72 [-0.09, 0.21] 100.00%
EagerTest 2.15 1.07 [2.03, 2.28] 1.23 0.78 [1.14, 1.31] -42.64%
IndirectTesting 1.44 1.08 [1.33, 1.55] 0.58 1.09 [0.43, 0.68] -59.77%
LackOfCohesionOfMethods 0.08 0.73 [-0.02, 0.14] 0.00 0.06 [-0.00, 0.01] -93.97%
LazyTest 0.16 0.99 [0.02, 0.25] 0.04 0.05 [0.03, 0.05] -74.85%
LikelyIneffectiveObjectComparison 0.00 0.00 [-0.00, 0.00] 0.00 0.00 [-0.00, 0.00] -41.57%
ObscureInlineSetup 8.54 3.43 [8.15, 8.91] 2.54 1.57 [2.36, 2.72] -70.22%
Overreferencing 0.31 0.29 [0.28, 0.34] 0.05 0.17 [0.03, 0.07] -82.54%
RedundantAssertion 0.00 0.00 [0.00, 0.00] 0.00 0.00 [-0.00, 0.00] 100.00%
RottenGreenTests 2.47 1.73 [2.26, 2.65] 0.03 0.15 [0.01, 0.04] -98.83%
TestRedundancy 0.69 5.21 [0.08, 1.23] 0.00 0.00 [0.00, 0.00] -99.85%
UnknownTest 1.00 0.00 [1.00, 1.00] 0.46 0.27 [0.43, 0.49] -53.87%
UnrelatedAssertions 0.00 0.00 [0.00, 0.00] 0.24 0.99 [0.10, 0.32] 100.00%
UnusedInputs 2.23 1.66 [2.05, 2.43] 0.31 0.33 [0.27, 0.34] -86.33%
VerboseTest 12.11 3.13 [11.79, 12.46] 3.70 1.71 [3.51, 3.90] -69.48%

Smelliness 0.28 0.02 [0.27, 0.28] 0.18 0.03 [0.17, 0.18] -35.58%

UnknownTest UnrelatedAssertions UnusedInputs VerboseTest

Overreferencing RedundantAssertion RottenGreenTests TestRedundancy

LackOfCohesionOfMethods LazyTest LikelyIneffectiveObjectComparison ObscureInlineSetup

AssertionRoulette DuplicateAssert EagerTest IndirectTesting

0

5

10

15

0

10

20

0

10

20

30

40

50

0

10

20

0

2

4

6

0.00

0.01

0.02

0.03

0.04

0

5

10

0.0

2.5

5.0

7.5

0

10

20

30

0

5

10

15

0.00

0.01

0.02

0.03

0.04

0

5

10

15

0

10

20

30

0.0

2.5

5.0

7.5

0

1

2

0.00

0.25

0.50

0.75

1.00

R
a
w

 m
e

tr
ic

 v
a

lu
e

Before post−process After post−process

Figure 6.1: Vanilla – Distribution of metrics’ raw values before/after post-processing.

generated tests after post-processing is applied and associate the observed changes with
the effects of the post-processing steps.

Chapter 6. Results 57

Table 6.2: Vanilla – Diffusion of the 16 considered test smells. Equation 5.7 demonstrates how
to calculate the percentage of smelly test cases per test suite; Equation 5.8 demonstrates how to calculate
the overall percentage of smelly test cases per test suite.

Before post-process After post-process Relative
Metric x̄ σ CI x̄ σ CI improvement

AssertionRoulette 0.00% 0.00 [0.00, 0.00] 2.48% 0.09 [0.01, 0.03] 100.00%
DuplicateAssert 0.00% 0.00 [0.00, 0.00] 0.52% 0.04 [0.00, 0.01] 100.00%
EagerTest 17.72% 0.15 [0.16, 0.19] 3.73% 0.12 [0.02, 0.05] -78.97%
IndirectTesting 46.30% 0.25 [0.44, 0.49] 35.20% 0.27 [0.32, 0.38] -23.97%
LackOfCohesionOfMethods 0.98% 0.09 [-0.00, 0.02] 0.33% 0.06 [-0.00, 0.01] -66.67%
LazyTest 1.37% 0.10 [0.00, 0.02] 0.00% 0.00 [0.00, 0.00] -100.00%
LikelyIneffectiveObjectComparison 0.02% 0.00 [-0.00, 0.00] 0.01% 0.00 [-0.00, 0.00] -41.57%
ObscureInlineSetup 29.04% 0.16 [0.27, 0.31] 1.17% 0.04 [0.01, 0.02] -95.98%
Overreferencing 22.95% 0.17 [0.21, 0.25] 4.94% 0.15 [0.03, 0.07] -78.46%
RedundantAssertion 0.00% 0.00 [0.00, 0.00] 0.02% 0.00 [-0.00, 0.00] 100.00%
RottenGreenTests 25.49% 0.13 [0.24, 0.27] 0.81% 0.04 [0.00, 0.01] -96.82%
TestRedundancy 1.89% 0.13 [0.00, 0.03] 0.00% 0.00 [0.00, 0.00] -100.00%
UnknownTest 100.00% 0.00 [1.00, 1.00] 46.13% 0.27 [0.43, 0.49] -53.87%
UnrelatedAssertions 0.00% 0.00 [0.00, 0.00] 16.31% 0.20 [0.14, 0.18] 100.00%
UnusedInputs 69.00% 0.31 [0.65, 0.73] 25.90% 0.24 [0.23, 0.29] -62.47%
VerboseTest 35.82% 0.13 [0.34, 0.37] 1.22% 0.05 [0.01, 0.02] -96.60%

Average 21.91% 0.10 [0.21, 0.23] 8.67% 0.10 [0.07, 0.10] -30.96%

21.918.67
AssertionRoulette

DuplicateAssert

EagerTest

IndirectTesting

LackOfCohesionOfMethods

LazyTest

LikelyIneffectiveObjectComparison

ObscureInlineSetup

Overreferencing

RedundantAssertion

RottenGreenTests

TestRedundancy

UnknownTest

UnrelatedAssertions

UnusedInputs

VerboseTest

0 25 50 75 100

% of test cases with smell X

S
m

e
ll

a aBefore post−process After post−process

Figure 6.2: Vanilla – Distribution of the percentage of smelly test cases before and after
post-processing. The vertical dashed lines represent the average smelliness before/after post-processing.

6.1.1 Before Post-Processing is Applied

First and foremost, as expected, we see that the “Assertion Roulette”, “Duplicate Assert”,
“Redundant Assertion”, and “Unrelated Assertions” smells never occur: from Table 6.1,
we can observe that these metrics have an average smelliness of 0; in turn, as reported

Chapter 6. Results 58

in Table 6.2, 0% of test cases in a test suite are affected by these four smells. Indeed, it
is only natural that assertion-related test smells do not arise because EvoSuite only adds
assertions during the post-processing steps. The “Unknown Test” and “Unused Inputs”
smells are also related to assertions, but they affect the generated tests because: (1) the
“Unknown Test” smell is related to the absence of assertions in test cases; (2) the “Unused
Inputs” smell is associated with statements that call methods of the class under test and
that have no assertions.

The most diffused test smells unrelated to assertions: “Indirect Testing” (46.30%),
“Verbose Test” (35.82%), and “Obscure In-line Setup” (29.04%). It may seem unexpected
that the “Verbose Test” and, to a lesser extent, “Obscure In-line Setup” smells are not the
most diffused types of test smells; however, whereas the “Indirect Testing” smell has a
threshold of 1, “Verbose Test” and “Obscure In-line Setup” have thresholds of 13 and 10,
respectively (see Section 4.2 for more information about the established thresholds).

The least diffused test smells unrelated to assertions: “Lazy Test” (1.37%), “Lack
of Cohesion of Methods” (0.98%), and “Likely Ineffective Object-Comparison” (0.02%).
Interestingly, “Likely Ineffective Object-Comparison” is the only test smell unrelated to
assertions that essentially never affects the generated tests: on the one hand, as shown in
Table 6.1, this smell has an average smelliness of 0; on the other hand, only 0.02% of test
cases are affected by this test smell (see Table 6.2).

Before post-processing, the generated tests cannot be affected by four types of test
smells. Even so, the combination of all metrics has an average overall smelliness of 0.28
(Table 6.1); moreover, 21.91% of all test cases in a test suite are smelly (Table 6.2).

6.1.2 After Post-Processing is Applied

First of all, we can observe significant general improvements that result from applying
post-processing optimization: as reported in Table 6.1, the average overall smelliness
decreased by 35.58% (from 0.28 to 0.18); in turn, as shown in Table 6.2, only 8.67% of
the generated test cases are affected by test smells after post-processing, which indicates
that the percentage of smelly test cases per test suite reduced by 30.96%. Indeed, these
improvements are particularly remarkable because EvoSuite only adds assertions during
the post-processing steps, which implies that the tests are susceptible to more types of
test smells. Therefore, our results confirm that the post-processing steps are undoubtedly
essential to ensure the generation of high-quality tests.

Regarding the test smells unrelated to assertions

As shown in Table 6.1, all test smell metrics that had an average smelliness greater than
0 before post-processing improved considerably after post-processing: in particular, the
average smelliness of the “Lack of Cohesion of Methods” (reduced by 93.97%) and, more

Chapter 6. Results 59

notably, “Test Redundancy” (reduced by 99.85%) test smell metrics decreased to 0 after
post-processing. Moreover, as reported in Table 6.2, the smells that affected the generated
tests before post-processing also greatly improved; notably, after post-processing, 0% of
test cases in a test suite are affected by the “Lazy Test” and “Test Redundancy” smells.
The observed improvements may occur because EvoSuite:

• Removes redundant statements from test cases, which may improve the “Eager
Test”, “Indirect Testing”, “Lazy Test”, “Likely Ineffective Object-Comparison”,
“Overreferencing”, and “Verbose Test” smells.

• Removes redundant test cases, which may improve the “Indirect Testing”, “Lack
Of Cohesion Of Methods”, “Lazy Test”, and “Test Redundancy” smells.

• Inlines all primitive values and null references, which may improve the “Obscure
In-line Setup” and “Verbose Test” smells.

• Removes any code after the first statement that raises an exception in a test case,
which may improve the “Rotten Green Tests” smell.

Surprisingly, 0.33% of test cases in a test suite are affected by the “Lack Of Cohesion Of
Methods” smell after post-processing, i.e., some test cases that did not exercise the class
under test were not removed by the post-processing steps. Most likely, EvoSuite did not
remove such test cases because the minimization process reached its timeout.

Despite the reported improvements, we can observe that the “Indirect Testing” smell
remains highly diffused (35.20%). Specifically, the “Indirect Testing” smell is by far
the most diffused test smell unrelated to assertions (the second most diffused test smell,
“Overreferencing”, affecting only 4.94% of test cases); moreover, this is also the second
most diffused of all test smells.

Regarding the test smells related to assertions

Firstly, let us consider the assertion-related smells that affected the generated tests before
post-processing, i.e., the “Unknown Test” and “Unused Inputs” test smells. As reported
in Table 6.2, the “Unknown Test” (46.13%) is the most diffused of all test smells; in turn,
the “Unused Inputs” (25.90%) is the third most diffused test smell. The high percentage
of test cases affected by these two smells is most likely related to the existence of test
cases with exceptions (which do not have assertions).

Out of the newly introduced test smells, “Unrelated Assertions” (16.31%) corresponds
to the most diffused test smell; indeed, as other researchers had stated [74, 75], EvoSuite
generates many test cases with assertions that check methods not declared in the class
under test. The high percentage of test cases affected by the “Unrelated Assertions” smell
is most likely related to the high diffusion of the “Indirect Testing” smell: test cases that
check methods not declared in the class under test are also likely to have assertions that
check said methods (not declared in the class under test). In turn, as reported in Table 6.1,
the “Redundant Assertion” smell is the only assertion-related test smell metric with an

Chapter 6. Results 60

average smelliness of 0; moreover, only 0.02% of test cases are affected by this test smell.
Additionally, the “Assertion Roulette” smell only affects 2.48% of the generated test cases
because, to avoid overlap between this smell and the “Eager Test” smell, we only consider
the assertions in a test case that exceed the total amount of statements that call methods
of the class under test (see Section 4.2 for more details).

RQ1: On average, 8.67% of the test cases generated by the EvoSuite tool are smelly;
however, if not for the post-processing steps, the percentage of smelly test cases
would be much higher. The final test suites generated by EvoSuite are primarily
affected by the “Unknown Test”, “Indirect Testing”, and “Unused Inputs” test smells.

6.2 RQ2 - Finding the Ideal Combination of Metrics

6.2.1 Test Smell Metrics to Optimize

To establish the set of test smell metrics to be optimized, we intend to exclude the smells
that affect an insignificant fraction of the generated test cases, i.e., we want to discard the
trivially diffused test smells. In particular, we decided to exclude the smells that affect less
than 0.50% of test cases in a post-processed test suite. By analyzing the ratio of smelly
test cases after post-processing is applied (Table 6.2), we can identify the test smells
that we should discard: “Lack Of Cohesion Of Methods” (0.33%), “Lazy Test” (0.00%),
“Likely Ineffective Object Comparison” (0.01%), “Redundant Assertion” (0.02%), and
“Test Redundancy” (0.00%). The exclusion process of the test smells that do not occur in
practice is represented in the 3rd step of Figure 4.1.

Test smell metrics that can be optimized as secondary criteria

Given the initial set of 16 test smells, we have identified 5 (trivially diffused) test smells
that affect less than 0.50% of the test cases in a test suite. Out of the 11 remaining test
smells, it is possible to optimize the following metrics as secondary criteria:

1. Eager Test;
2. Indirect Testing;
3. Obscure In-line Setup;
4. Overreferencing;
5. Rotten Green Tests;
6. Verbose Test.

The exclusion process of the test smell metrics that cannot be optimized as secondary
criteria is represented in the 4th step of Figure 4.1. Moreover, the six test smell metrics
we intend to optimize as secondary criteria are highlighted in gray in Table 4.1.

Chapter 6. Results 61

6.2.2 Optimal Configuration to Optimize as Secondary Criteria

Given the bad smells that affect a significant portion of the tests generated by EvoSuite,
we have selected six metrics to optimize as secondary criteria: “Eager Test”; “Indirect
Testing”; “Obscure In-line Setup”; “Overreferencing”; “Rotten Green Tests”; “Verbose
Test”. Considering that simply optimizing all six test smell metrics as secondary criteria
might not be the best solution to our problem, we decided to go the extra mile and search
for the best possible metric combination to use with our approach.

For each combination of test smell metrics, Table A.1 reports the average raw/relative:
code coverage, mutation score, and overall smelliness — and their respective standard
deviations (σ) and confidence intervals (CI). We also report the average raw/relative
smelliness of the individual test smell metrics. Across all configurations:

• The worst measured average relative code coverage is 0.65, and the best is 0.74.
• The worst measured average relative mutation score is 0.54, and the best is 0.61.
• The worst measured average relative smelliness is 0.44, and the best is 0.32.

To identify the optimal combination of test smell metrics to optimize as secondary criteria,
we first perform pairwise comparisons of the relative: code coverage, mutation score,
and overall smelliness. Subsequently, for each of these three types of tournaments, we
calculate the comparison score of each configuration. Finally, we use the tournament
results (i.e., the comparison scores) to rank the configurations according to code coverage,
mutation score, smelliness, and the combination of all three metrics.

Table 6.3 presents the results of the pairwise tournaments. Specifically, for each of the
four ranking standards, we report the top-10 best metric combinations: the configurations
are ranked such that the best configuration occupies the highest position in the respective
standard. Additionally, for each configuration, we report the total number of tournaments
won/lost — the comparison score of each of the three tournament types corresponds to
the difference between the number of tournaments won/lost.

Selecting the optimal configuration to optimize as secondary criteria

As shown in the overall ranking standard of Table 6.3, the best overall configuration
is the one that optimizes the “Eager Test”, “Indirect Testing”, “Obscure In-line Setup”,
and “Verbose Test” metrics; moreover, this is also the ninth best configuration in the
code coverage ranking standard and the tenth best configuration in the mutation score
ranking standard. Interestingly, the “ET, IT, OISS, and VT” configuration does not rank
among the ten best combinations of test smell metrics in the smelliness ranking standard;
still, whereas this configuration has a smelliness comparison score of 341 (because it
won 433 tournaments and lost 92), the tenth best configuration in the smelliness ranking
standard (“ET, IT, OISS, and RGT”) has a smelliness comparison score of 367 (won 414
tournaments and lost 47), so the difference between the two is not substantial (in fact, the

Chapter 6. Results 62

Table 6.3: Top-10 of 132,804 pairwise tournaments. The Coverage, Mutation, and Smelliness
columns report the number of tournaments won/lost. Example: ET, RGT, and VT is the best configuration
in the coverage ranking standard because it statistically won 877 tournaments and lost 46 out of 132,804.

Coverage Coverage Mutation Mutation Smelliness Smelliness
Configuration better on Â12 worse on Â12 better on Â12 worse on Â12 better on Â12 worse on Â12

ranked by Coverage
ET, RGT, and VT 877 0.75 46 0.27 503 0.72 19 0.23 194 0.23 356 0.72
OISS, RGT, and VT 745 0.74 56 0.27 408 0.71 36 0.26 225 0.23 291 0.71
OISS, OF, RGT, and VT 712 0.73 65 0.24 390 0.71 67 0.28 220 0.23 362 0.72
IT, OISS, RGT, and VT 670 0.74 69 0.29 298 0.72 35 0.25 452 0.24 173 0.72
ET, OF, and VT 638 0.72 66 0.25 321 0.71 57 0.28 180 0.23 435 0.72
RGT 711 0.81 195 0.28 521 0.78 150 0.34 39 0.23 1025 0.83
ET, IT, and OISS 568 0.73 67 0.24 276 0.71 55 0.27 409 0.24 167 0.71
ET, OISS, OF, and VT 566 0.73 72 0.24 337 0.71 68 0.27 219 0.23 307 0.72
ET, IT, OISS, and VT 532 0.73 69 0.24 236 0.71 46 0.25 433 0.24 92 0.69
OISS, OF, and RGT 593 0.75 136 0.28 378 0.73 87 0.29 245 0.23 342 0.73

ranked by Mutation
ET, RGT, and VT 877 0.75 46 0.27 503 0.72 19 0.23 194 0.23 356 0.72
OISS, RGT, and VT 745 0.74 56 0.27 408 0.71 36 0.26 225 0.23 291 0.71
RGT 711 0.81 195 0.28 521 0.78 150 0.34 39 0.23 1025 0.83
OISS, OF, RGT, and VT 712 0.73 65 0.24 390 0.71 67 0.28 220 0.23 362 0.72
OISS, OF, and RGT 593 0.75 136 0.28 378 0.73 87 0.29 245 0.23 342 0.73
ET, OISS, OF, and VT 566 0.73 72 0.24 337 0.71 68 0.27 219 0.23 307 0.72
ET, OF, and VT 638 0.72 66 0.25 321 0.71 57 0.28 180 0.23 435 0.72
IT, OISS, RGT, and VT 670 0.74 69 0.29 298 0.72 35 0.25 452 0.24 173 0.72
ET, IT, and OISS 568 0.73 67 0.24 276 0.71 55 0.27 409 0.24 167 0.71
ET, IT, OISS, and VT 532 0.73 69 0.24 236 0.71 46 0.25 433 0.24 92 0.69

ranked by Smelliness
IT and OISS 159 0.72 382 0.27 58 0.68 229 0.27 542 0.25 60 0.69
IT and VT 134 0.71 296 0.27 90 0.69 194 0.28 518 0.24 38 0.68
ET, IT, and VT 163 0.71 262 0.26 111 0.69 212 0.27 504 0.24 32 0.69
IT, OISS, and VT 174 0.70 195 0.27 51 0.68 215 0.29 461 0.24 38 0.68
IT, OISS, and RGT 349 0.72 172 0.28 181 0.69 158 0.30 496 0.25 86 0.72
ET, IT, OISS, RGT, and VT 132 0.74 304 0.28 59 0.70 201 0.29 458 0.24 50 0.69
ET, IT, OISS, OF, and VT 157 0.72 269 0.27 47 0.69 253 0.28 447 0.24 56 0.69
IT, OISS, OF, and RGT 127 0.72 413 0.26 92 0.69 223 0.28 486 0.25 99 0.68
ET, IT, RGT, and VT 155 0.73 229 0.25 119 0.70 190 0.28 461 0.23 84 0.69
ET, IT, OISS, and RGT 153 0.73 242 0.27 92 0.71 185 0.28 414 0.24 47 0.68

ranked by Coverage, Mutation, and Smelliness
ET, IT, OISS, and VT 532 0.73 69 0.24 236 0.71 46 0.25 433 0.24 92 0.69
IT, OISS, RGT, and VT 670 0.74 69 0.29 298 0.72 35 0.25 452 0.24 173 0.72
IT, OISS, and RGT 349 0.72 172 0.28 181 0.69 158 0.30 496 0.25 86 0.72
ET, IT, and VT 163 0.71 262 0.26 111 0.69 212 0.27 504 0.24 32 0.69
IT and VT 134 0.71 296 0.27 90 0.69 194 0.28 518 0.24 38 0.68
IT and OISS 159 0.72 382 0.27 58 0.68 229 0.27 542 0.25 60 0.69
ET, IT, and OISS 568 0.73 67 0.24 276 0.71 55 0.27 409 0.24 167 0.71
IT, OISS, and VT 174 0.70 195 0.27 51 0.68 215 0.29 461 0.24 38 0.68
ET, IT, RGT, and VT 155 0.73 229 0.25 119 0.70 190 0.28 461 0.23 84 0.69
ET, IT, OISS, RGT, and VT 132 0.74 304 0.28 59 0.70 201 0.29 458 0.24 50 0.69

best overall configuration won more tournaments). In turn, besides the “ET, IT, OISS,
and VT” configuration, there are only two other configurations with positive smelliness
comparison scores that rank among the ten best combinations of test smell metrics in
the coverage and mutation ranking standards, both of which have a significantly lower
smelliness comparison score than the best overall configuration: the “ET, IT, and OISS”
configuration, which has a smelliness comparison score of 242; the “IT, OISS, RGT, and
VT” configuration, which has a smelliness comparison score of 279.

As reported in Table A.1, the “ET, IT, OISS, and VT” configuration has an average
relative code coverage of 0.71, an average relative mutation score of 0.58, and an average
relative overall smelliness of 0.33; indeed, by comparing these results to the best values

Chapter 6. Results 63

measured across all configurations, we can confirm that this combination of metrics si-
multaneously excels in all considered aspects. Moreover, regarding the individual metrics
optimized as secondary criteria, in comparison to the best configuration in the smelliness
ranking standard (“IT and OISS”), the “ET, IT, OISS, and VT” configuration exhibits:

1. The same relative smelliness for the “Rotten Green Tests” metric;
2. Better relative smelliness for both the “Eager Test” (difference of 0.02) and the

“Overreferencing” (difference of 0.01) metrics;
3. Worse relative smelliness for the “Indirect Testing” (difference of 0.01), “Obscure

In-line Setup” (difference of 0.03) and “Verbose Test” (difference of 0.01) metrics.

Specifically, this implies that not only does the “ET, IT, OISS, and VT” configuration far
outperform the best configuration in the smelliness ranking standard in terms of both code
coverage and mutation score, but it is also nearly on par with it in terms of smelliness.

By analyzing the individual ranking standards, we can see some interesting patterns.
First and foremost, the coverage and mutation ranking standards contain the same top-10
best metric combinations (but some configurations occupy different positions) — these
results are in line with our expectations since there exists a strong positive correlation
between code coverage and fault detection effectiveness (in fact, EvoSuite’s default set of
coverage criteria includes the weak mutation criterion). In turn, the smelliness ranking
standard does not have a single configuration in common with the other two individual
ranking standards; indeed, we can see that, in general, the top-10 best combinations of
test smell metrics in the smelliness ranking standard have very low coverage and mutation
comparison scores (in fact, the “IT, OISS, and RGT” configuration is the only one with
positive code coverage and mutation comparison scores).

Overall, these results suggest that, by minimizing the smelliness of the generated tests,
we also decrease the coverage and mutation score; however, the best overall configuration
(“ET, IT, OISS, and VT”) seems to strike a good balance between the: coverage, mutation
score, and smelliness — of the generated tests. Therefore, we consider that the “ET, IT,
OISS, and VT” corresponds to the optimal combination of test smell metrics to optimize
as secondary criteria.

RQ2: The final test suites generated by EvoSuite are primarily affected by 11 types
of test smells, six of which can be directly optimized as secondary criteria. Given
the proposed selection technique, the optimal combination of test smell metrics to
optimize as secondary criteria is the one that optimizes the “Eager Test”, “Indirect
Testing”, “Obscure In-line Setup”, and “Verbose Test” metrics. We selected the “ET,
IT, OISS, and VT” configuration because it seems to strike a good balance between
the: coverage, mutation score, and smelliness — and, as such, shows potential as a
viable replacement for the default secondary criterion.

Chapter 6. Results 64

6.3 RQ3 - Smelliness Improvements

We have replaced EvoSuite’s default secondary criterion with new secondary criteria that
optimize test smell metrics; in particular, we decided to optimize the following metrics:
“Eager Test”, “Indirect Testing”, “Obscure In-line Setup”, and “Verbose Test”. Indeed,
out of all possible combinations of metrics that we could have optimized as secondary
criteria, the selected combination was the one that exhibited the most potential as a viable
replacement for the default secondary criterion.

To verify whether the newly proposed optimization approach induces a statistically
significant reduction in the smelliness of the six test smell metrics we intend to optimize
as secondary criteria, we perform a pairwise test of the relative overall smelliness achieved
by EVOSUITE (SMELL-FREE) vs. VANILLA.

In this section, we first analyze the results of the pairwise test to verify if the tests
generated by the augmented version of EvoSuite are less smelly than those generated by
the default version of the tool; moreover, we also consider the number of classes in which
one version of EvoSuite performed worse/better than the other. Subsequently, to fully
understand the impact of our approach, we investigate the distribution/diffusion of the 16
considered metrics/smells before and after post-processing is applied.

Table 6.4 summarises the relevant differences between the final test suites generated
by the vanilla and augmented versions of EvoSuite. Specifically, we report the average
raw/relative overall smelliness of the generated tests, as well as the standard deviation
(σ) and confidence intervals (CI) using bootstrapping at 95% significance level. We also
present the average raw/relative smelliness of the individual test smell metrics.

Table 6.5 reports the results of the pairwise test. Given the EVOSUITE (SMELL-FREE)
vs. VANILLA comparison, we present the effect size, p-value, and the relative smelliness
improvement that results from optimizing test smell metrics. In turn, Table A.2 reports
the number of classes in which the vanilla version of EvoSuite performs worse/better than
the augmented version.

Table 6.6 depicts the distribution of the 16 considered test smell metrics in the tests
generated by EVOSUITE (SMELL-FREE). We report the average: (1) smelliness of the
individual metrics; (2) overall smelliness — before/after post-processing is applied, as
well as the relative improvement in smelliness that results from applying post-processing
optimization. In addition, we present the standard deviation (σ) and confidence intervals
(CI) using bootstrapping at 95% significance level.

Table 6.7 reports the diffusion of test smells in the tests generated by the augmented
version of EvoSuite. For both individual metrics and the combination of all metrics, we
present the ratio of smelly test cases before and after post-processing is applied, as well as
the relative improvement in the percentage of smelly test cases that results from applying
the post-processing optimization. Furthermore, we display the standard deviation (σ) and
confidence intervals (CI) using bootstrapping at 95% significance level.

Chapter 6. Results 65

Table 6.4: Average Raw/Relative Coverage, Mutation score, and (Overall) Smelliness per
configuration.

Coverage Mutation Smelliness
Configuration # Tests # Length x̄ σ CI x̄ σ CI EagerTest IndirectTesting ObscureInlineSetup Overreferencing RottenGreenTests VerboseTest x̄ σ CI

Raw values
ET, IT, OISS, and VT 56 264 0.78 0.20 [0.76, 0.81] 0.35 0.26 [0.33, 0.38] 0.46 0.19 0.61 0.03 0.00 0.74 0.34 0.06 [0.33, 0.34]
Vanilla 57 265 0.78 0.20 [0.76, 0.81] 0.35 0.26 [0.32, 0.38] 0.47 0.20 0.60 0.03 0.01 0.74 0.34 0.06 [0.33, 0.35]

Relative values
ET, IT, OISS, and VT 56 264 0.64 0.24 [0.61, 0.66] 0.56 0.25 [0.53, 0.59] 0.57 0.47 0.51 0.62 0.78 0.53 0.47 0.21 [0.45, 0.49]
Vanilla 57 265 0.63 0.25 [0.60, 0.66] 0.57 0.25 [0.54, 0.60] 0.58 0.56 0.50 0.61 0.78 0.52 0.52 0.20 [0.50, 0.55]

Table 6.5: Vanilla vs. Optimized. Pairwise test results for the size, length, coverage, mutation score,
and smelliness metrics.

Relative
Configuration x̄ σ CI Â12 p-value improvement

Size
Vanilla 56.51 89.56 [45.45, 65.79] — — —
ET, IT, OISS, and VT 56.13 90.55 [44.93, 65.82] 0.51 0.52 -0.66%

Length
Vanilla 264.88 996.61 [134.95, 345.64] — — —
ET, IT, OISS, and VT 264.48 1038.04 [128.62, 348.09] 0.49 0.54 -0.15%

Coverage
Vanilla 0.63 0.25 [0.60, 0.65] — — —
ET, IT, OISS, and VT 0.64 0.24 [0.61, 0.67] 0.50 0.43 1.41%

Mutation score
Vanilla 0.57 0.25 [0.54, 0.60] — — —
ET, IT, OISS, and VT 0.56 0.25 [0.53, 0.59] 0.51 0.49 -1.86%

Smelliness
Vanilla 0.52 0.20 [0.50, 0.55] — — —
ET, IT, OISS, and VT 0.47 0.21 [0.45, 0.49] 0.55 0.50 -10.13%

6.3.1 Pairwise Tournament Results

First off, as reported in Table 6.4, whereas the augmented version of EvoSuite has an
average relative overall smelliness of 0.47, the vanilla version of the tool has an average
relative overall smelliness of 0.52 (i.e., the average relative overall smelliness decreased
by 0.05); moreover, both versions of EvoSuite have an average overall smelliness of 0.34.
Regarding the results of the pairwise tournaments (Table 6.5), we can see that the overall
smelliness of the tests generated by the augmented version of EvoSuite decreased by
10.13%; furthermore, the EVOSUITE (SMELL-FREE) vs. VANILLA comparison has an
effect size of 0.55 and a p-value of 0.50 — given that Â12 > 0.5, we can conclude that
the augmented version of EvoSuite is less smelly than the default version of the tool.

As depicted in Table A.2, EVOSUITE (SMELL-FREE) is better than VANILLA in 169
out of 307 classes (55.05% of classes); in turn, VANILLA is better in 40.07% of classes,
and both versions are equivalent for 4.89% of classes. Taking these results into account:

• When EVOSUITE (SMELL-FREE) is better than VANILLA, we observe an average
relative smelliness improvement of -37.04%.

• When EVOSUITE (SMELL-FREE) is better than or equal to VANILLA, we observe

Chapter 6. Results 66

an average relative smelliness improvement of -30.48%.
• When EVOSUITE (SMELL-FREE) is worse than VANILLA, we observe an average

relative smelliness improvement of +70.92%.

Overall, the reported results suggest that the augmented version of EvoSuite improves
the smelliness of the six test smell metrics we intended to optimize as secondary criteria.
However, to better grasp the overall impact of the proposed approach to optimize test
smell metrics, let us consider the smelliness of the 16 considered test smells in the tests
generated by both versions of EvoSuite before/after post-processing is applied.

6.3.2 Before Post-Processing is Applied

Directly optimized test smell metrics

By comparing the distribution of the individual test smell metrics in the tests generated by
the vanilla (Table 6.1) and augmented (Table 6.6) versions of EvoSuite, we can see that
only two of the four metrics optimized with this approach (i.e., “Eager Test” and “Indirect
Testing”) exhibit a lower average smelliness in the augmented version of EvoSuite: the
“Eager Test” metric improved by 0.05 and the “Indirect Testing” metric improved by 0.09.

By comparing the diffusion of the individual smells in the tests generated by the
vanilla (Table 6.2) and augmented (Table 6.7) versions of EvoSuite, we observe that the
percentage of test cases in a test suite affected by the “Eager Test” and “Indirect Testing”
smells decreased and that the ratio of test cases affected by the “Obscure In-line Setup”
and “Verbose Test” smells increased. The most significant difference between the two
versions of EvoSuite is the percentage of test cases affected by the “Indirect Testing”
smell, which decreased from 46.30% to 42.28% (difference of 4.02%).

Indirectly optimized test smell metrics

Regarding the “Overrefencing” and “Rotten Green Tests” metrics (i.e., the two metrics not
included in the optimal configuration that we intend to optimize as secondary criteria), we
can see that: (1) the distribution of both metrics increased; (2) the percentage of test cases
in a test suite affected by the “Overrefencing” smell increased; (3) the percentage of test
cases affected by the “Rotten Green Tests” smell decreased.

The proposed optimization approach does not jeopardize the smelliness of any of the
four discarded metrics that we could have optimized as secondary criteria: on the one
hand, the distribution/diffusion of the “Lack Of Cohesion Of Methods”, “Lazy Test”, and
“Test Redundancy” metrics/smells decreased; on the other hand, the distribution/diffusion
of the “Likely Ineffective Object Comparison” metric/smell remained the same.

Chapter 6. Results 67

Table 6.6: Augmented – Distribution of the 16 considered test smell metrics. Equation 5.2
demonstrates how to calculate the average smelliness of each test smell metric; Equation 5.5 demonstrates
how to calculate the average overall smelliness.

Before post-process After post-process Relative
Metric x̄ σ CI x̄ σ CI improvement

AssertionRoulette 0.00 0.00 [0.00, 0.00] 0.40 2.06 [0.14, 0.56] 100.00%
DuplicateAssert 0.00 0.00 [0.00, 0.00] 0.12 1.66 [-0.09, 0.22] 100.00%
EagerTest 2.10 1.09 [1.98, 2.23] 1.23 0.78 [1.14, 1.32] -41.30%
IndirectTesting 1.35 1.06 [1.24, 1.46] 0.52 0.59 [0.45, 0.58] -61.86%
LackOfCohesionOfMethods 0.02 0.23 [-0.01, 0.04] 0.00 0.06 [-0.00, 0.01] -79.80%
LazyTest 0.11 0.51 [0.04, 0.16] 0.04 0.04 [0.03, 0.04] -63.85%
LikelyIneffectiveObjectComparison 0.00 0.00 [-0.00, 0.00] 0.00 0.00 [-0.00, 0.00] -45.92%
ObscureInlineSetup 8.83 3.72 [8.38, 9.25] 2.57 1.59 [2.39, 2.76] -70.85%
Overreferencing 0.39 0.37 [0.35, 0.43] 0.06 0.17 [0.04, 0.07] -85.79%
RedundantAssertion 0.00 0.00 [0.00, 0.00] 0.00 0.00 [-0.00, 0.00] 100.00%
RottenGreenTests 2.50 1.86 [2.28, 2.70] 0.02 0.09 [0.01, 0.03] -99.18%
TestRedundancy 0.66 5.11 [0.06, 1.17] 0.00 0.00 [0.00, 0.00] -99.83%
UnknownTest 1.00 0.00 [1.00, 1.00] 0.46 0.27 [0.43, 0.49] -53.91%
UnrelatedAssertions 0.00 0.00 [0.00, 0.00] 0.20 0.34 [0.16, 0.24] 100.00%
UnusedInputs 2.23 1.72 [2.04, 2.43] 0.31 0.35 [0.27, 0.35] -86.12%
VerboseTest 12.40 3.43 [12.05, 12.78] 3.74 1.72 [3.55, 3.94] -69.85%

Smelliness 0.27 0.02 [0.27, 0.28] 0.18 0.03 [0.17, 0.18] -35.32%

Table 6.7: Augmented – Diffusion of the 16 considered test smells. Equation 5.7 demon-
strates how to calculate the percentage of smelly test cases per test suite; Equation 5.8 demonstrates how to
calculate the overall percentage of smelly test cases per test suite.

Before post-process After post-process Relative
Metric x̄ σ CI x̄ σ CI improvement

AssertionRoulette 0.00% 0.00 [0.00, 0.00] 2.73% 0.10 [0.02, 0.04] 100.00%
DuplicateAssert 0.00% 0.00 [0.00, 0.00] 0.73% 0.04 [0.00, 0.01] 100.00%
EagerTest 17.40% 0.15 [0.16, 0.19] 3.95% 0.12 [0.03, 0.05] -77.31%
IndirectTesting 42.28% 0.24 [0.40, 0.45] 33.06% 0.27 [0.30, 0.36] -21.81%
LackOfCohesionOfMethods 0.78% 0.08 [-0.00, 0.01] 0.33% 0.06 [-0.00, 0.01] -58.33%
LazyTest 1.17% 0.09 [0.00, 0.02] 0.00% 0.00 [0.00, 0.00] -100.00%
LikelyIneffectiveObjectComparison 0.02% 0.00 [-0.00, 0.00] 0.01% 0.00 [-0.00, 0.00] -45.92%
ObscureInlineSetup 30.65% 0.17 [0.29, 0.33] 1.34% 0.05 [0.01, 0.02] -95.64%
Overreferencing 26.80% 0.19 [0.25, 0.29] 5.22% 0.16 [0.03, 0.07] -80.51%
RedundantAssertion 0.00% 0.00 [0.00, 0.00] 0.01% 0.00 [-0.00, 0.00] 100.00%
RottenGreenTests 25.19% 0.14 [0.24, 0.27] 0.66% 0.03 [0.00, 0.01] -97.39%
TestRedundancy 1.76% 0.12 [0.00, 0.03] 0.00% 0.00 [0.00, 0.00] -100.00%
UnknownTest 100.00% 0.00 [1.00, 1.00] 46.09% 0.27 [0.43, 0.49] -53.91%
UnrelatedAssertions 0.00% 0.00 [0.00, 0.00] 16.29% 0.20 [0.14, 0.18] 100.00%
UnusedInputs 66.76% 0.31 [0.63, 0.71] 25.62% 0.24 [0.23, 0.28] -61.62%
VerboseTest 37.13% 0.14 [0.35, 0.39] 1.40% 0.05 [0.01, 0.02] -96.23%

Average 21.87% 0.10 [0.21, 0.23] 8.59% 0.10 [0.07, 0.10] -30.54%

Overall Smelliness

We can see that the average overall smelliness of the combination of all metrics decreased
from 0.28 to 0.27 (difference of 0.01); in turn, the ratio of smelly test cases per test
suite decreased from 21.91% to 21.87% (difference of 0.04%). The diffusion of test
smells and the distribution of the respective metrics improved; however, the reported

Chapter 6. Results 68

differences may not have been as substantial as one would initially expect because the
size of the test cases increased. The vanilla version of EvoSuite uses test case length
as the default secondary criterion, which is equivalent to optimizing the “Verbose Test”
metric; therefore, considering that EVOSUITE (SMELL-FREE) optimizes other test smell
metrics (besides the “Verbose Test”) as secondary criteria, it seems reasonable that the
vanilla version of EvoSuite (which uses a secondary criterion that exclusively focuses
on producing test cases with as few statements as possible) generates tests with a lower
average smelliness for the “Verbose Test” metric. As a result, the average smelliness of
other test smells related to the size of test cases may also have increased. Specifically, the
generation of test cases with more statements might have induced the increased average
smelliness for the “Obscure Inline Setup” and “Overrefencing” metrics.

6.3.3 After Post-Processing is Applied
Directly optimized test smell metrics

The “Indirect Testing” metric is the only one of the four test smell metrics that we opti-
mize as secondary criteria that has a lower average smelliness in the augmented version
of EvoSuite: the average smelliness improved from 0.58 to 0.52 (difference of 0.06). The
“Indirect Testing” is also the only smell that is less diffused in the augmented version of
the tool: the percentage of test cases affected by this smell decreased from 35.20% to
33.06% (difference of 2.14%).

EVOSUITE (SMELL-FREE) has a lower average smelliness for the “Eager Test” metric
before post-processing is applied; however, after post-processing, it has the same average
smelliness as the default version of the tool. Interestingly, after post-processing is applied,
the percentage of test cases in a test suite affected by the “Eager Test” smell is higher in
the augmented version of the tool.

The average smelliness of the “Obscure Inline Setup” and “Verbose Test” metrics is
still lower in the vanilla version of EvoSuite, but the difference between the two versions
became smaller. Likewise, the percentage of test cases affected by these two smells is
lower in the default version of the tool, but the difference is less significant.

Indirectly optimized test smell metrics

Regarding the test smells unrelated to assertions:

• The distribution of the “Overrefencing” metric is still lower in the vanilla version
of the tool, but the difference became even more minute (difference of 0.01). The
same applies to the ratio of smelly test cases.

• “The Rotten Green Tests” smell remains less diffused in EVOSUITE (SMELL-FREE).
Furthermore, the average smelliness of the respective metric is now lower in EVO-
SUITE (SMELL-FREE).

Chapter 6. Results 69

• Both versions of EvoSuite have the same average smelliness for the four discarded
test smell metrics unrelated to assertions. The respective test smells are also equally
diffused in the two versions of the tool.

Regarding the assertion-related test smells, we can see that:

• The “Assertion Roulette” and “Duplicate Assert” are the only assertion-related test
smells that are more diffused in EVOSUITE (SMELL-FREE). These are also the only
two assertion-related smells with metrics that have a higher average smelliness in
EVOSUITE (SMELL-FREE).

• Both versions of EvoSuite have the same average smelliness for the “Redundant
Assertion”, “Unknown Test”, and “Unused Inputs” test smell metrics; however, the
percentage of test cases in a test suite affected by the respective test smells is lower
in the augmented version of EvoSuite.

• The average smelliness of the “Unrelated Assertions” test smell metric is lower in
EVOSUITE (SMELL-FREE); moreover, the percentage of test cases affected by this
smell is also lower in EVOSUITE (SMELL-FREE).

These results suggest that, overall, the optimization of test smell metrics as secondary
criteria has positive effects on assertion-related test smells. In particular, the smelliness of
the “Unrelated Assertions” test smell likely improved because we optimized the “Indirect
Testing” metric as a secondary criterion; indeed, by ensuring that the generated test cases
resort less often to methods not declared in the class under test, we also decrease the
chances of having assertions that check methods not declared in the class under test. The
reduction in the number of test cases in a test suite affected by the “Unknown Test” and
“Unused Inputs” smells should be associated with the decreased distribution/diffusion of
the “Rotten Green Tests” metric/smell (which was only indirectly optimized).

The smelliness of the “Assertion Roulette” test smell did not improve as originally
predicted because the smelliness of the “Eager Test” smell did not improve.

6.3.4 Overall Smelliness of the Final Test Suites

According to the results of the pairwise tournaments, the final test suites generated by the
augmented version of EvoSuite are less smelly than those generated by the vanilla version
of the tool (relative improvement of 10.13%).

The only one of the six test smells considered in the pairwise tournament that exhibits
significant improvements is the “Indirect Testing”; in turn, this improvement may have
also been the cause for the significant reduction in the distribution/diffusion of the “Unre-
lated Assertions” metric/smell. Note that, in certain circumstances, the “Indirect Testing”
smell may arise because a test case is (indirectly) checking the respective production class
using methods of other classes; however, from Table 6.4, we can see that neither the final
code coverage nor the mutation score decreased significantly (in fact, the final code cov-

Chapter 6. Results 70

erage increased), i.e., it was possible to achieve approximately the same results without
resorting as extensively to methods not declared in the class under test. This substantial
improvement is exceedingly relevant because: on the one hand, as depicted in Table 6.1,
the “Indirect Testing” metric has the fourth highest average smelliness in the final test
suites generated by the vanilla version of EvoSuite; on the other hand, as depicted in Ta-
ble 6.2, the “Indirect Testing” is the second most diffused type of test smell in the final
test suites generated by the default version of the tool. Automated test generation tools
should only resort to methods not declared in the class under test when necessary; in turn,
we demonstrated that it is possible to achieve similar results in EvoSuite without resorting
as extensively to methods not declared in the class under test.

By optimizing test smell metrics as secondary criteria, the overall percentage of test
cases in a test suite affected by test smells improved from 8.67% to 8.59%. Moreover, the
augmented version of EvoSuite performed: better than the default version of the tool in
55.05% of all classes; equally to the default version of the tool in 4.89% of classes.

RQ3: The final test suites generated by EVOSUITE (SMELL-FREE) are overall less
smelly than those generated by VANILLA. The selected combination of test smell
metrics to optimize as secondary criteria induced a considerable improvement in the
diffusion of the “Indirect Testing” and “Unrelated Assertions” smells (i.e., two of the
most diffused smells in the tests generated by the vanilla version of EvoSuite).

6.4 RQ4 - Impact on the Fault Detection Effectiveness,
Code Coverage, and Size

In this section, we investigate other relevant aspects of the generated tests (besides the
smelliness). Specifically, we verify if the optimization of test smell metrics as secondary
criteria impacts the fault detection effectiveness, coverage, or size of the generated tests.
To study these metrics, we only have to consider the characteristics of the generated tests
after post-processing is applied.

6.4.1 RQ4.1 - Impact on the Fault Detection Effectiveness

As reported in Table 6.4, the average relative mutation score of the tests generated by the
augmented version of EvoSuite decreased from 0.57 to 0.56; moreover, both versions of
EvoSuite have an average mutation score of 0.35. According to the results of the pairwise
tournaments (Table 6.5), the fault detection effectiveness of the generated tests decreased
by 1.86%. In turn, the EVOSUITE (SMELL-FREE) vs. VANILLA comparison has an effect
size of 0.51 (Â12 > 0.5) and a p-value of 0.49. Therefore, we can conclude that the
tests generated by the augmented version of EvoSuite have slightly worse fault detection
effectiveness than those generated by VANILLA (but nothing substantial).

Chapter 6. Results 71

The decreased fault detection effectiveness of the final test suites generated by the
augmented version of EvoSuite is most likely associated with genetic drift; indeed, we
may be optimizing metrics that are inherently responsible for decreasing test diversity.
This decrease is most likely related to the “Eager Test” and/or “Indirect Testing” metrics:
on the one hand, the optimization of the “Eager Test” metric promotes test cases that
exercise the fewest possible number of different methods of the class under test; on the
other hand, the optimization of the “Indirect Testing” metric promotes test cases that avoid
resorting to methods not declared in the class under test.

We expected this reduction in fault detection effectiveness to be related to a decrease in
the number of generations created during the evolutionary process. However, on average,
the augmented version of EvoSuite creates more generations than the vanilla version of
the tool: whereas the vanilla version of EvoSuite has an average generation count of
487.72, the augmented version of EvoSuite has an average generation count of 495.33.

Overall, the optimization of test smell metrics as secondary criteria caused a decrease
in the fault detection effectiveness of the generated tests. However, the difference is far
too small to be considered detrimental. Nevertheless, this decrease is, to some extent,
unexpected; indeed, as reported in the tuning study (RQ2), the “ET, IT, OISS, and VT”
configuration was the tenth best combination of test smell metrics in terms of fault de-
tection effectiveness. Therefore, it seems that, in general, the optimization of test smell
metrics as secondary criteria has adverse effects on the fault detection effectiveness.

RQ4.1: The final test suites generated by the augmented and vanilla versions of
EvoSuite achieve similar levels of fault detection effectiveness. However, the results
suggest that most combinations of test smell metrics tend to have detrimental effects
on the mutation score.

6.4.2 RQ4.2 - Impact on the Final Code Coverage

As reported in Table 6.4, the average relative code coverage of the tests generated by the
augmented version of EvoSuite increased from 0.63 to 0.64; moreover, both versions of
EvoSuite have an average code coverage of 0.78. In turn, according to the results of the
pairwise tournaments (Table 6.5), the final code coverage improved by 1.41%. However,
given that the EVOSUITE (SMELL-FREE) vs. VANILLA comparison has an effect size of
0.50 (Â12 = 0.5) and a p-value of 0.43, we conclude that the two versions of the tool are
actually equivalent in terms of code coverage.

Considering that the test suites generated by the augmented version of EvoSuite are
less smelly than those generated by the vanilla version of the tool, the fact that we also
managed to maintain the final code coverage of the generated tests is a good achievement.

Chapter 6. Results 72

RQ4.2: The final test suites generated by the augmented and vanilla versions of
EvoSuite are equivalent in terms of code coverage.

6.4.3 RQ4.3 - Impact on Test Size

As reported in Table 6.4, the average size of the tests generated by the augmented version
of EvoSuite decreased from 57 to 56; in turn, the average length of the tests decreased
from 265 to 264. According to the results of the pairwise tournaments (Table 6.5), the
size of the generated tests decreased by 0.66%, and the length decreased by 0.15%. In
turn, for the size, the EVOSUITE (SMELL-FREE) vs. VANILLA comparison has an effect
size of 0.51; for the length, the EVOSUITE (SMELL-FREE) vs. VANILLA comparison has
an effect size of 0.49. Indeed, these differences are far too small to be considered relevant.
Therefore, we can conclude that the optimization of test smell metrics as secondary does
not have any impact on the number of test cases per test suite or the total number of
statements per test suite.

Number of statements per test case

At first glance, it may seem surprising that the difference in the average smelliness of
the “Verbose Test” test smell metric is not more substantial between the two versions of
EvoSuite; indeed, VANILLA only has one secondary criterion that prioritizes shorter tests
(i.e., it only focuses on the number of statements per test case). However, if we take
into account the type of operations performed in the post-processing steps to improve test
readability, we realize that simply prioritizing tests with fewer statements is not ideal.
Indeed, given that the post-processing steps already remove specific types of statements,
we might as well focus on avoiding the smelly statements that are likely to persist. For
instance, we know that primitive values are inlined, so, if possible, it might be better to
focus on other types of statements.

RQ4.3: The size and length of final test suites generated by the augmented and
vanilla versions of EvoSuite are similar.

6.5 Summary

In this chapter, we compared the tests generated by the vanilla and augmented versions
of EvoSuite. Firstly, we compared the smelliness of the generated tests and observed
that those generated by the augmented version of EvoSuite were overall less smelly; in
particular, the “Indirect Testing’ smell became significantly less diffused. Subsequently,
we compared the mutation score, coverage, and size of the tests generated by both version

Chapter 6. Results 73

of EvoSuite and observed that they are on an equal footing when it comes to these three
metrics. Overall, the tests generated by our version of EvoSuite are less smelly than those
generated by the vanilla version of the tool and achieve similar levels of coverage and
mutation score.

Chapter 6. Results 74

Chapter 7

Conclusion and Future Work

The original objective of this study was to integrate test smell metrics into EvoSuite and
optimize said metrics to make the generated test code smell-free; furthermore, we were
determined to achieve this goal without compromising the final code coverage or fault
detection effectiveness of the generated tests.

We started this study by compiling test smells from several sources (Section 2.3) and
selecting those that were relevant to the context of this work, i.e., that could both affect the
tests generated by EvoSuite (Section 4.1.1) and be characterized by optimizable metrics
(Section 4.1.2). After implementing the selected metrics into EvoSuite (Section 4.2), we
investigated three approaches to optimize test smell metrics (Section 4.3); however, we
ultimately decided to optimize test smell metrics as secondary criteria.

Research Findings

Firstly, we investigated the diffusion of test smells and the distribution of the respective
metrics in the tests generated by the vanilla version of EvoSuite. We observed that, be-
fore post-processing optimization, the tests generated by EvoSuite are reasonably smelly;
however, the post-processing steps significantly improve the smelliness of the generated
tests. Nevertheless, the generated tests are still affected by bad programming practices.
In particular, “Unknown Test”, “Indirect Testing”, and “Unused Inputs” correspond to the
most diffused types of test smells in the final test suites generated by EvoSuite.

After determining the smells that, in practice, affect the tests generated by the vanilla
version of EvoSuite, we performed a tuning study to identify the optimal combination of
test smell metrics to optimize as secondary criteria, i.e., the configuration that achieves not
only the lowest possible smelliness but also the highest possible coverage and mutation
score. We observed that the choice of combination of test smell metrics had a significant
impact on the coverage, mutation score, and smelliness of the generated tests. Although
the less smelly combinations of test smell metrics also had lower code coverage and fault
detection effectiveness, we managed to identify a configuration that seemed to strike a

75

Chapter 7. Conclusion and Future Work 76

good balance between coverage, mutation score, and smelliness. Specifically, we selected
the configuration that optimizes the “Eager Test”, “Indirect Testing”, “Obscure In-line
Setup”, and “Verbose Test” metrics.

We compared the tests generated by the version of EvoSuite augmented with test smell
metrics optimized as secondary criteria with those generated by the vanilla version of the
tool and observed that:

• The overall smelliness of the generated tests improved considerably. In particular,
we observed the most significant decrease in the diffusion of the “Indirect Testing”
and “Unrelated Assertions” smells.

• The final test suites generated by the augmented and vanilla versions of EvoSuite
are similar in terms of code coverage and fault detection effectiveness.

• The size and length of the generated tests are similar in both versions.

Overall, we managed to accomplish what we set out to achieve: improve the smelliness
of the tests generated by the EvoSuite tool without compromising the code coverage or
fault detection effectiveness of the generated tests.

Future Work

According to the proposed approach, each test smell metric corresponds to an independent
secondary criterion. As such, it is possible to: (1) optimize any combination of test smell
metrics; (2) incorporate new test smell metrics into EvoSuite. We conducted a tuning
study to identify the “optimal” combination of test smell metrics to optimize as secondary
criteria. Nevertheless, there may be other combinations of metrics that outperform the
selected combination (or other metrics that we did not even consider in this study). As
future work, we plan to optimize more complex test smell metrics (such as the “Test Code
Duplication” smell) as secondary criteria; moreover, we want to investigate the viability
of enabling the secondary criteria after a certain amount of time of the search has passed.

At first, we also intended to optimize test smell metrics as additional post-processing
steps. However, we realized that, for such an approach to be viable, we would have to find
a way to change the overall structure of the generated test suite without interfering with
the coverage or mutation score of the generated tests. If it becomes possible to generate
equivalent test suites with different test cases in the future, then it would be interesting to
optimize test smell metrics during the EvoSuite’s post-processing step.

Finally, considering that test smells can compromise the understandability and main-
tainability of the generated tests, we plan to conduct a user study with developers to
quantify the true (negative) impact of test smells in day-to-day tasks.

Appendix A

Appendix

A.1 Detailed tuning results

A.2 Detailed comparison of the number of classes for which
Vanilla performed worst/better than EvoSuite (smell-
free)

Table A.2: Relative smelliness — Vanilla vs. EvoSuite (smell-free)

Project # Classes Vanilla other # Better # Worse # No diff.

100-jgaap 1 0.31 0.36 0 1 0
101-netweaver 2 0.47 0.49 1 1 0
102-squirrel-sql 2 0.44 0.51 0 2 0
103-sweethome3d 4 0.39 0.27 2 2 0
104-vuze 2 0.42 0.36 2 0 0
105-freemind 1 0.40 0.50 0 1 0
107-weka 3 0.54 0.37 3 0 0
108-liferay 2 0.31 0.53 0 2 0
109-pdfsam 1 0.45 0.46 0 1 0
10-water-simulator 2 0.66 0.51 2 0 0
110-firebird 2 0.68 0.39 2 0 0
11-imsmart 1 0.48 0.57 0 1 0
12-dsachat 2 0.36 0.67 0 2 0
13-jdbacl 2 0.45 0.16 2 0 0
14-omjstate 1 0.70 0.38 1 0 0
15-beanbin 2 0.36 0.48 0 2 0
17-inspirento 2 0.37 0.45 1 1 0
18-jsecurity 2 0.50 0.58 1 1 0
19-jmca 2 0.36 0.40 1 1 0
1-tullibee 2 0.34 0.38 0 2 0
21-geo-google 2 0.76 0.56 2 0 0
22-byuic 2 0.48 0.37 1 1 0
23-jwbf 2 0.39 0.45 1 1 0
24-saxpath 2 0.82 0.73 1 0 1
26-jipa 2 0.40 0.43 1 1 0
27-gangup 1 0.75 0.96 0 1 0
29-apbsmem 1 0.49 0.38 1 0 0
2-a4j 1 0.82 0.62 1 0 0
31-xisemele 1 0.42 0.28 1 0 0
32-httpanalyzer 2 0.50 0.10 2 0 0
33-javaviewcontrol 3 0.33 0.32 2 1 0
35-corina 1 0.28 0.52 0 1 0
36-schemaspy 2 0.71 0.71 1 1 0
37-petsoar 2 0.37 0.45 1 1 0

77

Appendix A. Appendix 78

Table A.2: Relative smelliness — Vanilla vs. EvoSuite (smell-free)

Project # Classes Vanilla other # Better # Worse # No diff.

38-javabullboard 2 0.40 0.30 2 0 0
39-diffi 2 0.50 0.47 2 0 0
40-glengineer 2 0.50 0.39 2 0 0
41-follow 1 0.43 0.67 0 1 0
42-asphodel 1 1.00 1.00 0 0 1
44-summa 3 0.61 0.56 1 1 1
45-lotus 2 0.54 0.38 1 1 0
46-nutzenportfolio 2 0.41 0.53 0 2 0
47-dvd-homevideo 3 0.58 0.76 0 2 1
49-diebierse 1 0.55 0.87 0 1 0
4-rif 1 0.15 0.48 0 1 0
50-biff 1 0.97 0.77 1 0 0
51-jiprof 4 0.43 0.44 2 2 0
52-lagoon 2 0.58 0.69 1 1 0
54-db-everywhere 1 0.33 0.07 1 0 0
55-lavalamp 1 0.45 0.83 0 1 0
56-jhandballmoves 2 0.74 0.54 1 0 1
57-hft-bomberman 2 0.73 0.42 2 0 0
58-fps370 2 1.00 1.00 0 0 2
59-mygrid 2 0.27 0.45 0 2 0
5-templateit 1 0.57 0.72 0 1 0
60-sugar 2 0.45 0.57 0 2 0
61-noen 1 0.64 0.49 1 0 0
63-objectexplorer 2 0.61 0.50 1 0 1
64-jtailgui 2 0.32 0.41 0 2 0
65-gsftp 1 0.68 0.74 0 1 0
66-openjms 2 0.47 0.51 1 1 0
68-biblestudy 2 0.76 0.55 2 0 0
69-lhamacaw 2 0.42 0.34 1 1 0
71-ext4j 2 0.61 0.54 1 1 0
72-battlecry 2 0.49 0.77 0 1 1
73-fim1 1 0.48 0.10 1 0 0
74-fixsuite 2 0.42 0.48 1 1 0
75-openhre 2 0.47 0.55 0 2 0
77-io-project 1 0.22 0.38 0 1 0
78-caloriecount 3 0.61 0.41 2 1 0
79-twfbplayer 2 0.40 0.32 1 1 0
7-sfmis 1 0.55 0.57 0 1 0
80-wheelwebtool 3 0.47 0.33 2 1 0
81-javathena 3 0.43 0.45 1 2 0
82-ipcalculator 2 0.41 0.59 0 2 0
83-xbus 2 0.43 0.62 0 2 0
84-ifx-framework 1 0.53 0.75 0 1 0
85-shop 4 0.58 0.52 2 2 0
86-at-robots2-j 2 0.50 0.45 2 0 0
87-jaw-br 2 0.70 0.77 0 1 1
88-jopenchart 2 0.41 0.37 1 1 0
89-jiggler 4 0.54 0.41 3 1 0
8-gfarcegestionfa 2 0.67 0.56 1 1 0
90-dcparseargs 1 0.51 0.70 0 1 0
91-classviewer 2 0.79 0.78 1 0 1
92-jcvi-javacommon 2 0.53 0.38 2 0 0
93-quickserver 3 0.44 0.48 1 2 0
94-jclo 1 0.78 0.47 1 0 0
95-celwars2009 1 1.00 1.00 0 0 1
96-heal 2 0.37 0.37 1 1 0
97-feudalismgame 3 0.67 0.43 2 1 0
98-trans-locator 2 0.72 0.78 0 1 1
99-newzgrabber 2 0.51 0.50 1 1 0
checkstyle 6 0.61 0.57 3 2 1
commons-cli 1 0.60 0.50 1 0 0
commons-codec 1 0.71 0.31 1 0 0
commons-collections 3 0.56 0.44 3 0 0
commons-lang 14 0.58 0.41 12 2 0
commons-math 18 0.49 0.51 8 10 0
compiler 7 0.65 0.42 6 1 0

Appendix A. Appendix 79

Table A.2: Relative smelliness — Vanilla vs. EvoSuite (smell-free)

Project # Classes Vanilla other # Better # Worse # No diff.

guava 10 0.51 0.47 6 4 0
hibernate 1 1.00 1.00 0 0 1
javaml 6 0.47 0.45 3 3 0
javex 1 0.15 0.40 0 1 0
jdom 5 0.53 0.29 4 1 0
jfree-chart 12 0.50 0.36 9 3 0
joda 13 0.64 0.30 13 0 0
jsci 3 0.37 0.53 0 3 0
scribe 6 0.52 0.49 4 2 0
tartarus 3 0.37 0.59 0 3 0
trove 9 0.48 0.38 6 3 0
twitter4j 7 0.52 0.37 6 1 0
wikipedia 4 0.46 0.47 2 2 0
xmlenc 1 0.50 0.70 0 1 0

Average 0.52 0.47 169 (55.05%) 123 (40.07%) 15 (4.89%)

Appendix A. Appendix 80

Table A.1: Vanilla – Tuning results. Average Raw/Relative Coverage, Mutation score, and (Overall)
Smelliness per configuration.

Coverage Mutation Smelliness
Configuration # Tests # Length x̄ σ CI x̄ σ CI EagerTest IndirectTesting ObscureInlineSetup Overreferencing RottenGreenTests VerboseTest x̄ σ CI

Raw values
ET 35 158 0.70 0.24 [0.63, 0.78] 0.26 0.21 [0.20, 0.33] 0.44 0.20 0.60 0.04 0.01 0.72 0.33 0.06 [0.32, 0.36]
ET and IT 36 154 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.59 0.04 0.00 0.72 0.33 0.05 [0.31, 0.35]
ET, IT, and OISS 38 142 0.72 0.24 [0.64, 0.79] 0.28 0.21 [0.20, 0.35] 0.45 0.17 0.59 0.04 0.01 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OISS, and OF 36 146 0.70 0.24 [0.63, 0.79] 0.26 0.20 [0.19, 0.33] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OISS, OF, and RGT 37 147 0.71 0.23 [0.63, 0.78] 0.27 0.21 [0.20, 0.33] 0.45 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OISS, OF, RGT, and VT 36 142 0.71 0.24 [0.63, 0.78] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OISS, OF, and VT 37 147 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.33] 0.44 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.34]
ET, IT, OISS, and RGT 37 140 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.34] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OISS, RGT, and VT 37 143 0.71 0.23 [0.64, 0.78] 0.26 0.21 [0.20, 0.33] 0.44 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OISS, and VT 38 134 0.71 0.24 [0.64, 0.80] 0.28 0.21 [0.20, 0.34] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.34]
ET, IT, and OF 36 141 0.71 0.24 [0.63, 0.78] 0.26 0.21 [0.19, 0.33] 0.45 0.17 0.59 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OF, and RGT 36 154 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.59 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OF, RGT, and VT 37 146 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.44 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, OF, and VT 36 143 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.33] 0.44 0.17 0.58 0.03 0.00 0.72 0.32 0.06 [0.31, 0.35]
ET, IT, and RGT 37 155 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.59 0.04 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, RGT, and VT 37 148 0.71 0.24 [0.62, 0.79] 0.27 0.21 [0.20, 0.34] 0.44 0.17 0.58 0.04 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, IT, and VT 37 142 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.34] 0.44 0.17 0.58 0.03 0.00 0.71 0.32 0.06 [0.31, 0.34]
ET and OISS 37 143 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.34] 0.44 0.18 0.58 0.04 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, and OF 37 142 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.21, 0.34] 0.45 0.20 0.59 0.02 0.02 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, OF, and RGT 37 152 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.33] 0.45 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, OF, RGT, and VT 37 146 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.34] 0.44 0.19 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, OF, and VT 37 139 0.72 0.24 [0.64, 0.80] 0.28 0.21 [0.20, 0.34] 0.44 0.19 0.59 0.03 0.01 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, and RGT 37 147 0.71 0.24 [0.63, 0.78] 0.27 0.21 [0.20, 0.33] 0.44 0.19 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, RGT, and VT 37 145 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.33] 0.44 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, OISS, and VT 37 144 0.71 0.23 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.44 0.18 0.58 0.03 0.00 0.71 0.33 0.06 [0.31, 0.35]
ET and OF 35 146 0.70 0.24 [0.63, 0.78] 0.27 0.21 [0.20, 0.33] 0.44 0.21 0.60 0.02 0.01 0.73 0.34 0.06 [0.32, 0.36]
ET, OF, and RGT 37 159 0.72 0.24 [0.64, 0.80] 0.27 0.21 [0.20, 0.33] 0.45 0.20 0.60 0.03 0.01 0.73 0.34 0.06 [0.32, 0.36]
ET, OF, RGT, and VT 37 147 0.71 0.24 [0.63, 0.79] 0.26 0.21 [0.19, 0.33] 0.44 0.19 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET, OF, and VT 38 145 0.72 0.24 [0.64, 0.80] 0.28 0.21 [0.21, 0.35] 0.44 0.19 0.59 0.03 0.01 0.72 0.33 0.06 [0.31, 0.35]
ET and RGT 36 139 0.71 0.24 [0.64, 0.80] 0.27 0.20 [0.20, 0.34] 0.44 0.20 0.60 0.04 0.00 0.72 0.33 0.06 [0.32, 0.35]
ET, RGT, and VT 39 139 0.72 0.24 [0.65, 0.81] 0.28 0.21 [0.21, 0.35] 0.45 0.18 0.59 0.04 0.00 0.72 0.33 0.06 [0.31, 0.35]
ET and VT 37 144 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.34] 0.44 0.18 0.58 0.04 0.00 0.72 0.33 0.06 [0.31, 0.35]
IT 36 153 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.34] 0.46 0.16 0.59 0.04 0.01 0.72 0.33 0.06 [0.31, 0.35]
IT and OISS 36 143 0.70 0.24 [0.63, 0.78] 0.27 0.21 [0.19, 0.33] 0.45 0.17 0.58 0.03 0.00 0.71 0.33 0.06 [0.31, 0.35]
IT, OISS, and OF 36 155 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.47 0.17 0.58 0.01 0.03 0.72 0.33 0.05 [0.31, 0.35]
IT, OISS, OF, and RGT 36 155 0.70 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.33] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
IT, OISS, OF, RGT, and VT 37 146 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.34]
IT, OISS, OF, and VT 37 145 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.33] 0.47 0.17 0.58 0.01 0.03 0.72 0.33 0.05 [0.31, 0.35]
IT, OISS, and RGT 37 145 0.71 0.24 [0.64, 0.80] 0.28 0.22 [0.20, 0.35] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
IT, OISS, RGT, and VT 38 136 0.72 0.24 [0.64, 0.80] 0.28 0.21 [0.20, 0.35] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.34]
IT, OISS, and VT 37 143 0.71 0.24 [0.62, 0.79] 0.27 0.21 [0.19, 0.34] 0.45 0.17 0.58 0.04 0.00 0.72 0.33 0.06 [0.31, 0.34]
IT and OF 34 158 0.70 0.24 [0.63, 0.78] 0.27 0.22 [0.20, 0.34] 0.47 0.16 0.60 0.02 0.02 0.73 0.33 0.05 [0.32, 0.35]
IT, OF, and RGT 35 152 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.60 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
IT, OF, RGT, and VT 36 144 0.70 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.59 0.03 0.00 0.72 0.33 0.06 [0.31, 0.34]
IT, OF, and VT 36 141 0.70 0.24 [0.63, 0.79] 0.26 0.21 [0.19, 0.33] 0.47 0.17 0.58 0.01 0.03 0.72 0.33 0.05 [0.31, 0.35]
IT and RGT 35 153 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.16 0.60 0.04 0.00 0.72 0.33 0.06 [0.31, 0.35]
IT, RGT, and VT 37 142 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.17 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.34]
IT and VT 37 143 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.33] 0.45 0.17 0.58 0.04 0.00 0.71 0.32 0.06 [0.31, 0.35]
OISS 36 153 0.70 0.24 [0.62, 0.79] 0.27 0.21 [0.19, 0.34] 0.45 0.18 0.58 0.04 0.00 0.71 0.33 0.06 [0.31, 0.35]
OISS and OF 37 153 0.71 0.24 [0.64, 0.80] 0.27 0.21 [0.20, 0.34] 0.47 0.19 0.58 0.01 0.03 0.72 0.33 0.06 [0.32, 0.35]
OISS, OF, and RGT 38 150 0.71 0.24 [0.63, 0.80] 0.28 0.21 [0.21, 0.35] 0.45 0.19 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
OISS, OF, RGT, and VT 38 134 0.72 0.24 [0.64, 0.80] 0.28 0.21 [0.21, 0.35] 0.45 0.18 0.59 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
OISS, OF, and VT 38 137 0.71 0.24 [0.64, 0.80] 0.27 0.21 [0.20, 0.34] 0.47 0.18 0.58 0.01 0.03 0.72 0.33 0.05 [0.31, 0.35]
OISS and RGT 37 154 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.33] 0.45 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
OISS, RGT, and VT 38 132 0.72 0.24 [0.64, 0.80] 0.28 0.21 [0.21, 0.35] 0.45 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
OISS and VT 37 138 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.18 0.58 0.03 0.00 0.71 0.33 0.06 [0.31, 0.35]
OF 34 168 0.71 0.24 [0.63, 0.79] 0.27 0.22 [0.19, 0.34] 0.46 0.21 0.60 0.02 0.02 0.73 0.34 0.06 [0.32, 0.36]
OF and RGT 35 163 0.71 0.24 [0.64, 0.79] 0.27 0.21 [0.20, 0.34] 0.46 0.20 0.60 0.03 0.01 0.73 0.34 0.06 [0.32, 0.36]
OF, RGT, and VT 37 148 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.20, 0.34] 0.45 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]
OF and VT 36 140 0.70 0.24 [0.63, 0.78] 0.27 0.21 [0.20, 0.34] 0.47 0.18 0.58 0.01 0.03 0.72 0.33 0.05 [0.31, 0.35]
RGT 37 157 0.72 0.24 [0.65, 0.81] 0.29 0.22 [0.21, 0.36] 0.46 0.20 0.60 0.04 0.01 0.73 0.34 0.06 [0.32, 0.36]
RGT and VT 37 148 0.71 0.24 [0.63, 0.79] 0.27 0.21 [0.19, 0.33] 0.45 0.18 0.58 0.03 0.00 0.72 0.33 0.06 [0.31, 0.35]

Relative values
ET 35 158 0.65 0.23 [0.58, 0.73] 0.54 0.29 [0.45, 0.64] 0.41 0.36 0.50 0.31 0.28 0.45 0.40 0.20 [0.33, 0.47]
ET and IT 36 154 0.66 0.25 [0.58, 0.75] 0.56 0.29 [0.46, 0.65] 0.43 0.29 0.48 0.29 0.28 0.44 0.36 0.20 [0.30, 0.43]
ET, IT, and OISS 38 142 0.71 0.24 [0.63, 0.80] 0.58 0.28 [0.49, 0.68] 0.44 0.29 0.45 0.28 0.28 0.42 0.34 0.18 [0.28, 0.40]
ET, IT, OISS, and OF 36 146 0.66 0.26 [0.58, 0.75] 0.55 0.29 [0.44, 0.65] 0.44 0.29 0.44 0.26 0.28 0.40 0.33 0.18 [0.27, 0.40]
ET, IT, OISS, OF, and RGT 37 147 0.67 0.25 [0.59, 0.76] 0.56 0.29 [0.47, 0.67] 0.43 0.30 0.44 0.27 0.28 0.41 0.33 0.18 [0.27, 0.39]
ET, IT, OISS, OF, RGT, and VT 36 142 0.67 0.26 [0.59, 0.76] 0.57 0.29 [0.47, 0.67] 0.43 0.30 0.44 0.26 0.28 0.41 0.33 0.18 [0.28, 0.40]
ET, IT, OISS, OF, and VT 37 147 0.67 0.26 [0.59, 0.76] 0.55 0.29 [0.44, 0.64] 0.43 0.30 0.44 0.26 0.28 0.40 0.33 0.18 [0.26, 0.39]
ET, IT, OISS, and RGT 37 140 0.67 0.26 [0.58, 0.76] 0.56 0.29 [0.46, 0.65] 0.43 0.30 0.44 0.27 0.28 0.40 0.33 0.18 [0.27, 0.39]
ET, IT, OISS, RGT, and VT 37 143 0.67 0.26 [0.58, 0.75] 0.55 0.29 [0.47, 0.65] 0.42 0.29 0.43 0.27 0.28 0.40 0.33 0.18 [0.26, 0.39]
ET, IT, OISS, and VT 38 134 0.71 0.25 [0.63, 0.79] 0.58 0.29 [0.49, 0.68] 0.43 0.30 0.44 0.27 0.28 0.41 0.33 0.18 [0.27, 0.39]
ET, IT, and OF 36 141 0.67 0.25 [0.59, 0.75] 0.56 0.29 [0.46, 0.65] 0.44 0.28 0.49 0.27 0.28 0.45 0.36 0.20 [0.29, 0.43]
ET, IT, OF, and RGT 36 154 0.67 0.25 [0.59, 0.75] 0.56 0.29 [0.46, 0.65] 0.44 0.29 0.49 0.27 0.28 0.45 0.37 0.19 [0.30, 0.42]
ET, IT, OF, RGT, and VT 37 146 0.67 0.25 [0.59, 0.76] 0.56 0.29 [0.46, 0.66] 0.42 0.30 0.45 0.26 0.28 0.41 0.33 0.18 [0.27, 0.40]
ET, IT, OF, and VT 36 143 0.68 0.25 [0.60, 0.77] 0.56 0.29 [0.47, 0.66] 0.42 0.29 0.44 0.27 0.27 0.40 0.33 0.18 [0.27, 0.39]
ET, IT, and RGT 37 155 0.68 0.24 [0.60, 0.76] 0.57 0.28 [0.48, 0.66] 0.43 0.29 0.49 0.30 0.28 0.44 0.37 0.20 [0.31, 0.43]
ET, IT, RGT, and VT 37 148 0.68 0.25 [0.60, 0.76] 0.56 0.29 [0.47, 0.65] 0.42 0.30 0.44 0.27 0.28 0.40 0.33 0.18 [0.27, 0.39]
ET, IT, and VT 37 142 0.67 0.26 [0.58, 0.76] 0.56 0.29 [0.46, 0.66] 0.42 0.29 0.43 0.28 0.28 0.39 0.32 0.18 [0.26, 0.39]
ET and OISS 37 143 0.68 0.25 [0.60, 0.76] 0.56 0.29 [0.47, 0.65] 0.42 0.32 0.44 0.28 0.28 0.40 0.34 0.18 [0.27, 0.39]
ET, OISS, and OF 37 142 0.69 0.25 [0.61, 0.77] 0.57 0.29 [0.49, 0.66] 0.44 0.36 0.46 0.23 0.31 0.44 0.37 0.17 [0.31, 0.43]
ET, OISS, OF, and RGT 37 152 0.67 0.25 [0.59, 0.75] 0.57 0.29 [0.47, 0.66] 0.44 0.32 0.45 0.26 0.28 0.42 0.35 0.18 [0.29, 0.41]
ET, OISS, OF, RGT, and VT 37 146 0.67 0.26 [0.60, 0.76] 0.56 0.29 [0.46, 0.65] 0.43 0.33 0.45 0.26 0.28 0.41 0.35 0.17 [0.29, 0.41]
ET, OISS, OF, and VT 37 139 0.71 0.25 [0.63, 0.80] 0.59 0.28 [0.49, 0.69] 0.44 0.33 0.46 0.25 0.29 0.43 0.35 0.18 [0.30, 0.42]
ET, OISS, and RGT 37 147 0.67 0.25 [0.59, 0.76] 0.55 0.29 [0.46, 0.64] 0.43 0.33 0.44 0.27 0.28 0.41 0.35 0.18 [0.29, 0.41]
ET, OISS, RGT, and VT 37 145 0.67 0.25 [0.59, 0.76] 0.56 0.29 [0.46, 0.65] 0.41 0.32 0.44 0.27 0.28 0.40 0.33 0.17 [0.28, 0.40]
ET, OISS, and VT 37 144 0.67 0.26 [0.59, 0.76] 0.56 0.29 [0.46, 0.66] 0.42 0.31 0.43 0.27 0.28 0.39 0.33 0.18 [0.27, 0.39]
ET and OF 35 146 0.67 0.23 [0.59, 0.75] 0.56 0.28 [0.46, 0.65] 0.42 0.37 0.52 0.25 0.30 0.48 0.41 0.19 [0.35, 0.48]
ET, OF, and RGT 37 159 0.71 0.23 [0.63, 0.80] 0.58 0.28 [0.48, 0.67] 0.44 0.37 0.53 0.27 0.28 0.49 0.42 0.20 [0.35, 0.48]
ET, OF, RGT, and VT 37 147 0.67 0.26 [0.58, 0.76] 0.56 0.29 [0.46, 0.65] 0.42 0.33 0.45 0.26 0.28 0.41 0.35 0.18 [0.29, 0.41]
ET, OF, and VT 38 145 0.72 0.24 [0.64, 0.80] 0.58 0.28 [0.48, 0.67] 0.43 0.34 0.47 0.25 0.30 0.44 0.36 0.17 [0.30, 0.42]
ET and RGT 36 139 0.69 0.23 [0.61, 0.77] 0.57 0.27 [0.48, 0.66] 0.43 0.35 0.51 0.29 0.28 0.47 0.40 0.20 [0.34, 0.48]
ET, RGT, and VT 39 139 0.73 0.25 [0.66, 0.82] 0.61 0.28 [0.51, 0.69] 0.44 0.32 0.47 0.28 0.28 0.43 0.36 0.19 [0.29, 0.42]
ET and VT 37 144 0.69 0.25 [0.61, 0.77] 0.56 0.29 [0.47, 0.67] 0.42 0.32 0.45 0.28 0.28 0.41 0.34 0.18 [0.28, 0.41]
IT 36 153 0.69 0.24 [0.61, 0.78] 0.58 0.29 [0.48, 0.68] 0.47 0.27 0.49 0.31 0.29 0.47 0.38 0.21 [0.30, 0.45]
IT and OISS 36 143 0.65 0.27 [0.56, 0.74] 0.55 0.29 [0.46, 0.65] 0.45 0.29 0.41 0.28 0.28 0.40 0.32 0.17 [0.27, 0.38]
IT, OISS, and OF 36 155 0.68 0.26 [0.59, 0.77] 0.56 0.29 [0.46, 0.66] 0.52 0.29 0.43 0.19 0.36 0.45 0.36 0.20 [0.29, 0.43]
IT, OISS, OF, and RGT 36 155 0.65 0.26 [0.57, 0.74] 0.55 0.29 [0.47, 0.65] 0.45 0.29 0.43 0.26 0.28 0.41 0.33 0.17 [0.27, 0.38]
IT, OISS, OF, RGT, and VT 37 146 0.68 0.25 [0.60, 0.77] 0.56 0.30 [0.45, 0.65] 0.43 0.29 0.45 0.27 0.27 0.42 0.33 0.18 [0.27, 0.39]
IT, OISS, OF, and VT 37 145 0.67 0.26 [0.58, 0.76] 0.55 0.29 [0.45, 0.64] 0.51 0.29 0.43 0.19 0.35 0.44 0.36 0.20 [0.29, 0.42]
IT, OISS, and RGT 37 145 0.69 0.25 [0.60, 0.78] 0.57 0.28 [0.48, 0.66] 0.45 0.29 0.42 0.27 0.28 0.41 0.33 0.18 [0.27, 0.39]
IT, OISS, RGT, and VT 38 136 0.71 0.25 [0.63, 0.80] 0.59 0.28 [0.49, 0.69] 0.44 0.29 0.44 0.28 0.28 0.42 0.34 0.19 [0.27, 0.40]
IT, OISS, and VT 37 143 0.68 0.25 [0.60, 0.77] 0.56 0.28 [0.46, 0.65] 0.44 0.29 0.43 0.28 0.28 0.40 0.33 0.18 [0.27, 0.38]
IT and OF 34 158 0.65 0.24 [0.57, 0.73] 0.56 0.29 [0.47, 0.65] 0.51 0.28 0.50 0.23 0.32 0.49 0.39 0.19 [0.33, 0.45]
IT, OF, and RGT 35 152 0.66 0.23 [0.58, 0.74] 0.57 0.29 [0.47, 0.66] 0.47 0.28 0.49 0.27 0.28 0.47 0.37 0.20 [0.31, 0.44]
IT, OF, RGT, and VT 36 144 0.65 0.26 [0.57, 0.74] 0.55 0.29 [0.46, 0.64] 0.44 0.29 0.45 0.26 0.28 0.42 0.34 0.18 [0.28, 0.40]
IT, OF, and VT 36 141 0.67 0.25 [0.59, 0.75] 0.55 0.29 [0.45, 0.66] 0.50 0.29 0.44 0.19 0.35 0.44 0.36 0.21 [0.29, 0.42]
IT and RGT 35 153 0.67 0.24 [0.59, 0.76] 0.57 0.28 [0.48, 0.67] 0.47 0.28 0.49 0.30 0.28 0.47 0.38 0.20 [0.31, 0.45]
IT, RGT, and VT 37 142 0.68 0.26 [0.59, 0.77] 0.56 0.29 [0.46, 0.66] 0.43 0.29 0.44 0.27 0.28 0.41 0.33 0.19 [0.27, 0.40]
IT and VT 37 143 0.67 0.26 [0.58, 0.76] 0.56 0.29 [0.47, 0.65] 0.43 0.29 0.42 0.28 0.28 0.39 0.32 0.18 [0.26, 0.38]
OISS 36 153 0.65 0.27 [0.56, 0.73] 0.55 0.29 [0.46, 0.66] 0.45 0.32 0.40 0.28 0.28 0.39 0.33 0.17 [0.27, 0.39]
OISS and OF 37 153 0.69 0.25 [0.61, 0.78] 0.57 0.29 [0.48, 0.67] 0.52 0.33 0.42 0.19 0.36 0.46 0.38 0.19 [0.31, 0.44]
OISS, OF, and RGT 38 150 0.70 0.25 [0.62, 0.78] 0.59 0.28 [0.49, 0.68] 0.46 0.32 0.44 0.26 0.28 0.43 0.35 0.18 [0.29, 0.41]
OISS, OF, RGT, and VT 38 134 0.72 0.24 [0.64, 0.81] 0.59 0.28 [0.50, 0.69] 0.45 0.32 0.46 0.27 0.28 0.43 0.35 0.18 [0.30, 0.41]
OISS, OF, and VT 38 137 0.70 0.24 [0.63, 0.79] 0.57 0.28 [0.48, 0.67] 0.51 0.32 0.43 0.18 0.36 0.44 0.37 0.19 [0.30, 0.43]
OISS and RGT 37 154 0.68 0.25 [0.61, 0.76] 0.57 0.28 [0.48, 0.66] 0.45 0.32 0.42 0.27 0.28 0.41 0.34 0.18 [0.28, 0.39]
OISS, RGT, and VT 38 132 0.72 0.24 [0.64, 0.80] 0.60 0.28 [0.51, 0.69] 0.45 0.32 0.45 0.27 0.28 0.42 0.35 0.18 [0.29, 0.41]
OISS and VT 37 138 0.68 0.25 [0.59, 0.77] 0.56 0.29 [0.48, 0.67] 0.43 0.31 0.41 0.27 0.28 0.39 0.32 0.18 [0.27, 0.38]
OF 34 168 0.68 0.22 [0.62, 0.76] 0.56 0.29 [0.47, 0.66] 0.49 0.38 0.53 0.23 0.34 0.51 0.44 0.20 [0.38, 0.51]
OF and RGT 35 163 0.69 0.24 [0.61, 0.76] 0.56 0.27 [0.47, 0.65] 0.49 0.37 0.53 0.27 0.29 0.51 0.44 0.21 [0.37, 0.51]
OF, RGT, and VT 37 148 0.67 0.26 [0.59, 0.75] 0.56 0.29 [0.45, 0.65] 0.44 0.32 0.45 0.26 0.28 0.41 0.34 0.18 [0.28, 0.41]
OF and VT 36 140 0.67 0.25 [0.59, 0.75] 0.55 0.28 [0.46, 0.65] 0.49 0.32 0.44 0.19 0.36 0.44 0.37 0.19 [0.30, 0.43]
RGT 37 157 0.74 0.23 [0.66, 0.81] 0.60 0.28 [0.51, 0.70] 0.50 0.37 0.53 0.31 0.28 0.51 0.44 0.22 [0.37, 0.52]
RGT and VT 37 148 0.68 0.25 [0.60, 0.76] 0.56 0.29 [0.47, 0.66] 0.43 0.31 0.44 0.27 0.28 0.41 0.34 0.18 [0.28, 0.39]

Bibliography

[1] Nitin Agarwal and Urvashi Rathod. Defining ‘success’ for software projects: An
exploratory revelation. International journal of project management, 24(4):358–
370, 2006.

[2] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-
hamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif Ghallab, and
Stephanie Ludi. Test smell detection tools: A systematic mapping study. Evaluation
and Assessment in Software Engineering, pages 170–180, 2021.

[3] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-
felds. An industrial evaluation of unit test generation: Finding real faults in a fi-
nancial application. In 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), pages 263–272.
IEEE, 2017.

[4] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, et al. An orchestrated survey of methodologies for automated software
test case generation. Journal of Systems and Software, 86(8):1978–2001, 2013.

[5] Vincent Aranega, Julien Delplanque, Matias Martinez, Andrew P Black, Stéphane
Ducasse, Anne Etien, Christopher Fuhrman, and Guillermo Polito. Rotten green
tests in java, pharo and python. Empirical Software Engineering, 26(6):1–41, 2021.

[6] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assess-
ing randomized algorithms in software engineering. Software Testing, Verification
and Reliability, 24(3):219–250, 2014.

[7] Andrea Arcuri, José Campos, and Gordon Fraser. Unit test generation during soft-
ware development: Evosuite plugins for maven, intellij and jenkins. In 2016 IEEE
International Conference on Software Testing, Verification and Validation, ICST
2016, Chicago, IL, USA, April 11-15, 2016, pages 401–408. IEEE Computer So-
ciety, 2016.

81

Bibliography 82

[8] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an empirical
investigation in search-based software engineering. Empirical Software Engineer-
ing, 18(3):594–623, 2013.

[9] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. Enhanc-
ing symbolic execution with veritesting. In Proceedings of the 36th International
Conference on Software Engineering, pages 1083–1094, 2014.

[10] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. Managing
technical debt in software engineering (dagstuhl seminar 16162). In Dagstuhl Re-
ports, volume 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[11] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. Architectural smells
detected by tools: a catalogue proposal. In 2019 IEEE/ACM International Confer-
ence on Technical Debt (TechDebt), pages 88–97. IEEE, 2019.

[12] Paul Baker, Dominic Evans, Jens Grabowski, Helmut Neukirchen, and Benjamin
Zeiss. Trex-the refactoring and metrics tool for ttcn-3 test specifications. In Test-
ing: Academic & Industrial Conference-Practice And Research Techniques (TAIC
PART’06), pages 90–94. IEEE, 2006.

[13] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave Bink-
ley. Are test smells really harmful? an empirical study. Empirical Software Engi-
neering, 20(4):1052–1094, 2015.

[14] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. An empirical analysis of the distribution of unit test smells and their impact
on software maintenance. In 2012 28th IEEE International Conference on Software
Maintenance (ICSM), pages 56–65. IEEE, 2012.

[15] Richard Berntsson-Svensson and Aybüke Aurum. Successful software project and
products: An empirical investigation. In Proceedings of the 2006 ACM/IEEE inter-
national symposium on Empirical software engineering, pages 144–153, 2006.

[16] Manuel Breugelmans and Bart Van Rompaey. Testq: Exploring structural and main-
tenance characteristics of unit test suites. In WASDeTT-1: 1st International Work-
shop on Advanced Software Development Tools and Techniques. Citeseer, 2008.

[17] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, 2013.

[18] Denivan Campos, Larissa Rocha, and Ivan Machado. Developers perception on the
severity of test smells: an empirical study. arXiv preprint arXiv:2107.13902, 2021.

Bibliography 83

[19] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. An empirical evaluation of evolutionary algorithms for unit test suite gener-
ation. Information and Software Technology, 104:207–235, 2018.

[20] José Campos, Yan Ge, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. An empir-
ical evaluation of evolutionary algorithms for test suite generation. In International
Symposium on Search Based Software Engineering, pages 33–48. Springer, 2017.

[21] José Campos, Annibale Panichella, and Gordon Fraser. Evosuite at the sbst 2019
tool competition. In 2019 IEEE/ACM 12th International Workshop on Search-Based
Software Testing (SBST), pages 29–32. IEEE, 2019.

[22] David M Cohen, Siddhartha R Dalal, Ajay Kajla, and Gardner C Patton. The auto-
matic efficient test generator (aetg) system. In Proceedings of 1994 IEEE Interna-
tional Symposium on Software Reliability Engineering, pages 303–309. IEEE, 1994.

[23] William Jay Conover. Practical nonparametric statistics, volume 350. john wiley
& sons, 1999.

[24] Ermira Daka, José Campos, Jonathan Dorn, Gordon Fraser, and Westley Weimer.
Generating readable unit tests for guava. In International Symposium on Search
Based Software Engineering, pages 235–241. Springer, 2015.

[25] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
Modeling readability to improve unit tests. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, pages 107–118, 2015.

[26] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2? In Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 57–67, 2017.

[27] Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P Black, and Anne
Etien. Rotten green tests. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 500–511. IEEE, 2019.

[28] Jon Edvardsson. A survey on automatic test data generation. In Proceedings of
the 2nd Conference on Computer Science and Engineering, pages 21–28. Citeseer,
1999.

[29] Javier Ferrer, Francisco Chicano, and Enrique Alba. Evolutionary algorithms for the
multi-objective test data generation problem. Software: Practice and Experience,
42(11):1331–1362, 2012.

Bibliography 84

[30] Francesca Arcelli Fontana, Paris Avgeriou, Ilaria Pigazzini, and Riccardo Roveda.
A study on architectural smells prediction. In 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pages 333–337. IEEE,
2019.

[31] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic detection
of bad smells in code: An experimental assessment. J. Object Technol., 11(2):5–1,
2012.

[32] Francesca Arcelli Fontana, Marco Mangiacavalli, Domenico Pochiero, and Marco
Zanoni. On experimenting refactoring tools to remove code smells. In Scientific
Workshop Proceedings of the XP2015, pages 1–8, 2015.

[33] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[34] Gordon Fraser. A tutorial on using and extending the evosuite search-based test gen-
erator. In International Symposium on Search Based Software Engineering, pages
106–130. Springer, 2018.

[35] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
416–419, 2011.

[36] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276–291, 2012.

[37] Gordon Fraser and Andrea Arcuri. Evosuite: On the challenges of test case gen-
eration in the real world. In 2013 IEEE sixth international conference on software
testing, verification and validation, pages 362–369. IEEE, 2013.

[38] Gordon Fraser and Andrea Arcuri. A Large-Scale Evaluation of Automated Unit
Test Generation Using EvoSuite. ACM Trans. Softw. Eng. Methodol., 24(2), dec
2014.

[39] Gordon Fraser and Andrea Arcuri. 1600 faults in 100 projects: automatically finding
faults while achieving high coverage with evosuite. Empirical software engineering,
20(3):611–639, 2015.

[40] Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783–812, 2015.

[41] Gordon Fraser and José Miguel Rojas. Software testing. In Handbook of Software
Engineering, pages 123–192. Springer, 2019.

Bibliography 85

[42] Gordon Fraser, José Miguel Rojas, and Andrea Arcuri. Evosuite at the sbst 2018 tool
competition. In Proceedings of the 11th International Workshop on Search-Based
Software Testing, SBST ’18, page 34–37, New York, NY, USA, 2018. Association
for Computing Machinery.

[43] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Iden-
tifying architectural bad smells. In 2009 13th European Conference on Software
Maintenance and Reengineering, pages 255–258. IEEE, 2009.

[44] Gregory Gay. Generating effective test suites by combining coverage criteria. In
International Symposium on Search Based Software Engineering, pages 65–82.
Springer, 2017.

[45] Giovanni Grano, Christoph Laaber, Annibale Panichella, and Sebastiano Panichella.
Testing with fewer resources: An adaptive approach to performance-aware test case
generation. IEEE Transactions on Software Engineering, 2019.

[46] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C
Gall. Scented since the beginning: On the diffuseness of test smells in automatically
generated test code. Journal of Systems and Software, 156:312–327, 2019.

[47] Michaela Greiler, Arie Van Deursen, and Margaret-Anne Storey. Automated detec-
tion of test fixture strategies and smells. In 2013 IEEE Sixth International Confer-
ence on Software Testing, Verification and Validation, pages 322–331. IEEE, 2013.

[48] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. Reliable testing: De-
tecting state-polluting tests to prevent test dependency. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, pages 223–233, 2015.

[49] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open problems and
challenges for search based software testing. In 2015 IEEE 8th International Con-
ference on Software Testing, Verification and Validation (ICST), pages 1–12. IEEE,
2015.

[50] Chen Huo and James Clause. Improving oracle quality by detecting brittle assertions
and unused inputs in tests. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 621–631, 2014.

[51] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 654–665, 2014.

Bibliography 86

[52] Manju Khari and Prabhat Kumar. An extensive evaluation of search-based software
testing: a review. Soft Computing, 23(6):1933–1946, 2019.

[53] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. An exploratory
study of the impact of code smells on software change-proneness. In 2009 16th
Working Conference on Reverse Engineering, pages 75–84. IEEE, 2009.

[54] Fitsum M Kifetew, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Paolo
Tonella. Orthogonal exploration of the search space in evolutionary test case gener-
ation. In Proceedings of the 2013 International Symposium on Software Testing and
Analysis, pages 257–267, 2013.

[55] James C King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[56] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[57] Negar Koochakzadeh and Vahid Garousi. Tecrevis: a tool for test coverage and test
redundancy visualization. In International Academic and Industrial Conference on
Practice and Research Techniques, pages 129–136. Springer, 2010.

[58] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
Code smells and refactoring: A tertiary systematic review of challenges and obser-
vations. Journal of Systems and Software, 167:110610, 2020.

[59] Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to
search-based test data generation. In Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 1098–1105, 2007.

[60] Phil McMinn. Search-based software test data generation: a survey. Software test-
ing, Verification and reliability, 14(2):105–156, 2004.

[61] Phil McMinn. Search-based software testing: Past, present and future. In 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops, pages 153–163. IEEE, 2011.

[62] José Carlos Medeiros de Campos. Search-based Unit Test Generation for Evolving
Software. PhD thesis, University of Sheffield, 2017.

[63] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[64] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

Bibliography 87

[65] Faculty of Engineering of the University of Porto (FEUP). HPC Cluster.

[66] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing
for java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion, pages 815–816, 2007.

[67] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. A large-scale empirical study on the lifecycle of
code smell co-occurrences. Information and Software Technology, 99:1–10, 2018.

[68] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation. Empirical Software Engineer-
ing, 23(3):1188–1221, 2018.

[69] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. On the diffusion of test smells in automatically generated test code: An
empirical study. In 2016 IEEE/ACM 9th International Workshop on Search-Based
Software Testing (SBST), pages 5–14. IEEE, 2016.

[70] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. Automatic test case generation: What if test code quality matters? In
Proceedings of the 25th International Symposium on Software Testing and Analysis,
pages 130–141, 2016.

[71] Annibale Panichella, José Campos, and Gordon Fraser. Evosuite at the sbst 2020
tool competition. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, pages 549–552, 2020.

[72] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection
of the targets. IEEE Transactions on Software Engineering, 44(2):122–158, 2017.

[73] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Incremental
control dependency frontier exploration for many-criteria test case generation. In
International Symposium on Search Based Software Engineering, pages 309–324.
Springer, 2018.

[74] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant,
and Vincent J. Hellendoorn. Revisiting test smells in automatically generated tests:
Limitations, pitfalls, and opportunities. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 523–533, 2020.

Bibliography 88

[75] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant,
and Vincent J. Hellendoorn. Test smells 20 years later: Detectability, validity, and
reliability, 2022.

[76] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem Mkaouer,
Ali Ouni, and Fabio Palomba. Tsdetect: An open source test smells detection tool.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, pages
1650–1654, 2020.

[77] Anthony Peruma, Khalid Saeed Almalki, Christian D Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. On the distribution of test smells in open
source android applications: An exploratory study. 2019.

[78] Anthony Peruma, Mohamed Wiem Mkaouer, Khalid Almalki, Christian D. New-
man, Ali Ouni, and Fabio Palomba. Software unit test smells. https://

testsmells.org/. Accessed: 2021-12-25.

[79] Stefan Reichhart, Tudor Gı̂rba, and Stéphane Ducasse. Rule-based assessment of
test quality. J. Object Technol., 6(9):231–251, 2007.

[80] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Ar-
curi. Combining multiple coverage criteria in search-based unit test generation. In
International Symposium on Search Based Software Engineering, pages 93–108.
Springer, 2015.

[81] Darius Sas, Ilaria Pigazzini, Paris Avgeriou, and Francesca Arcelli Fontana.
The perception of architectural smells in industrial practice. arXiv preprint
arXiv:2110.06750, 2021.

[82] Sina Shamshiri. Automated Unit Testing of Evolving Software. PhD thesis, Univer-
sity of Sheffield, 2016.

[83] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn. Random or
genetic algorithm search for object-oriented test suite generation? In Proceedings of
the 2015 annual conference on genetic and evolutionary computation, pages 1367–
1374, 2015.

[84] Sina Shamshiri, José Miguel Rojas, Juan Pablo Galeotti, Neil Walkinshaw, and Gor-
don Fraser. How do automatically generated unit tests influence software mainte-
nance? In 2018 IEEE 11th International Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 250–261. IEEE, 2018.

https://testsmells.org/
https://testsmells.org/

Bibliography 89

[85] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto Bac-
chelli. On the relation of test smells to software code quality. In 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages 1–12.
IEEE, 2018.

[86] Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel Bruntink, and
Alberto Bacchelli. Investigating severity thresholds for test smells. In Proceedings
of the 17th International Conference on Mining Software Repositories, pages 311–
321, 2020.

[87] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. An empirical investigation into
the nature of test smells. In Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 4–15, 2016.

[88] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. Refac-
toring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001), pages 92–
95. Citeseer, 2001.

[89] Eva Van Emden and Leon Moonen. Java quality assurance by detecting code smells.
In Ninth Working Conference on Reverse Engineering, 2002. Proceedings., pages
97–106. IEEE, 2002.

[90] András Vargha and Harold D Delaney. A critique and improvement of the cl com-
mon language effect size statistics of mcgraw and wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[91] Tássio Virgı́nio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz,
Heitor Costa, and Ivan Machado. Jnose: Java test smell detector. In Proceedings of
the 34th Brazilian Symposium on Software Engineering, pages 564–569, 2020.

[92] Tássio Virgı́nio, Railana Santana, Luana Almeida Martins, Larissa Rocha Soares,
Heitor Costa, and Ivan Machado. On the influence of test smells on test coverage.
In Proceedings of the XXXIII Brazilian Symposium on Software Engineering, pages
467–471, 2019.

[93] Sebastian Vogl, Sebastian Schweikl, Gordon Fraser, Andrea Arcuri, Jose Campos,
and Annibale Panichella. Evosuite at the sbst 2021 tool competition. In 2021
IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST),
pages 28–29. IEEE, 2021.

Bibliography 90

[94] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012.

[95] Aiko Yamashita and Leon Moonen. Do code smells reflect important maintainability
aspects? In 2012 28th IEEE international conference on software maintenance
(ICSM), pages 306–315. IEEE, 2012.

	List of Figures
	List of Tables
	Introduction
	Context
	Problem Statement
	Approach
	Contributions
	Structure of the Document

	Background
	Code Smells
	Architectural Smells
	Test Smells
	Automatic Test Generation
	Random-Based Software Testing
	Symbolic Execution
	Search-Based Software Testing

	The EvoSuite Tool
	Search Process
	Post-Processing

	Summary

	Related Work
	Approach
	Test Smell Selection
	Test Smells That Cannot Occur
	Test Smells Without Optimizable Metrics

	Test Smell Metrics
	Optimize Test Smell Metrics
	Optimize Test Smell Metrics as Additional Criteria
	Optimize Test Smell Metrics as Secondary Criteria
	Optimize Test Smell Metrics as Post-Processing Steps

	Features to Prevent Test Smells
	Summary

	Empirical Study
	Experimental Subjects
	Experimental Procedure
	RQ1: To what extent are the tests generated by the EvoSuite tool affected by test smells?
	RQ2: What combination of test smell metrics leads to the generation of the most effective (coverage and fault detection wise) and the least smelly tests?
	RQ3: Does the optimization of test smell metrics lead to the generation of significantly less smelly tests?
	RQ4: Does the optimization of test smell metrics affect the fault detection effectiveness, code coverage, or size of the generated tests?

	Threats to Validity
	Summary

	Results
	RQ1 - Identify the Test Smell Metrics to Optimize
	Before Post-Processing is Applied
	After Post-Processing is Applied

	RQ2 - Finding the Ideal Combination of Metrics
	Test Smell Metrics to Optimize
	Optimal Configuration to Optimize as Secondary Criteria

	RQ3 - Smelliness Improvements
	Pairwise Tournament Results
	Before Post-Processing is Applied
	After Post-Processing is Applied
	Overall Smelliness of the Final Test Suites

	RQ4 - Impact on the Fault Detection Effectiveness, Code Coverage, and Size
	RQ4.1 - Impact on the Fault Detection Effectiveness
	RQ4.2 - Impact on the Final Code Coverage
	RQ4.3 - Impact on Test Size

	Summary

	Conclusion and Future Work
	Appendix
	Detailed tuning results
	Detailed comparison of the number of classes for which Vanilla performed worst/better than EvoSuite (smell-free)

	Bibliography

