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Resumo

O propósito desta dissertação é apresentar um estudo comparativo e de repro-
dução sobre técnicas de Tradução Automática Neuronal Não-Supervisionada (Un-
supervised Neural Machine Translation) para o par de línguas Português (PT) →
Chinês (ZH) e Português (PT) → Coreano (KR) tirando partido de ferramentas e
recursos online.

A escolha destes pares de línguas prende-se com duas grandes razões. A primeira
refere-se à importância no panorama global das línguas asiáticas, nomeadamente do
chinês, e também pela influência que a língua portuguesa desempenha no mundo
especialmente no hemisfério sul. A segunda razão é puramente académica. Como
há escassez de estudos na área de Processamento Natural de Linguagem (NLP)
com línguas não-germânicas (devido à hegemonia da língua inglesa), procurou-se
desenvolver um trabalho que estude a influência das técnicas de tradução não su-
pervisionada em par de línguas poucos estudadas, a fim de testar a sua robustez.

Falada por um quarto da população mundial, a língua chinesa é o“Ás”no bara-
lho de cartas da China. De acordo com o International Chinese Language Education
Week, em 2020 estimava-se que 200 milhões pessoas não-nativas já tinham apren-
dido chinês e que no ano corrente se encontravam mais de 25 milhões a estudá-la.
Com a influência que a língua chinesa desempenha, torna-se imperativo desenvolver
ferramentas que preencham as falhas de comunicação. Assim, nesta conjuntura glo-
bal surge a tradução automática como ponte de comunicação entre várias culturas
e a China.

A Coreia do Sul, também conhecida como um dos quatro tigres asiáticos, con-
cretizou um feito extraordinário ao levantar-se da pobreza extrema para ser um dos
países mais desenvolvidos do mundo em duas gerações. Apesar de não possuir a
hegemonia económica da China, a Coreia do Sul exerce bastante influência devido
ao seu soft power na área de entretenimento, designado por hallyu. Esta“onda”de
cultura pop coreana atraí multidões para a aprendizagem da cultura. De forma a
desvanecer a barreira comunicativa entre os amantes da cultura coreana e os nativos,
a tradução automática é um forte aliado porque permite a interação entre pessoas
instantaneamente sem a necessidade de aprender uma língua nova.
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Apesar de Portugal não ter ligações culturais com a Coreia, há uma forte ligação
com a região administrativa especial de Macau (RAEM) onde o português é uma das
línguas oficiais, sendo que a Tradução Automática entre ambas as línguas oficiais é
uma das áreas estratégicas do governo local tendo sido estabelecido um laboratório
de Tradução Automática no Instituto Politécnico de Macau que visa construir um
sistema que possa ser usado na função pública de auxílio aos tradutores.

Neste trabalho foram realizadas duas abordagens: (i) Tradução Automática
Neuronal Não Supervisionada (Unsupervised Neural Machine Translation) e; (ii)
abordagem pivô (pivot approach). Como o foco da dissertação é em técnicas não-
supervisionadas, nenhuma das arquiteturas fez uso de dados paralelos entre os pares
de línguas em questão. Nomeadamente, na primeira abordagem usou-se dados mo-
nolingues. Na segunda introduziu-se uma terceira língua pivô que é utilizada para
estabelecer a ponte entre a língua de partida e a de chegada.

Esta abordagem à tradução automática surgiu com a necessidade de criar sis-
temas de tradução para pares de línguas onde existem poucos ou nenhuns dados
paralelos. Como demonstrado por Koehn and Knowles [2017a], a tradução automá-
tica neuronal precisa de grandes quantidades de dados a fim de ter um desempenho
melhor que a Tradução Automática Estatística (SMT). No entanto, em pares de lín-
guas com poucos recursos linguísticos isso não é exequível. Para tal, a arquitetura
de tradução automática não supervisionada somente requer dados monolingues. A
implementação escolhida foi a de Artetxe et al. [2018d] que é constituída por uma ar-
quitetura encoder-decoder. Como contém um double-encoder, para esta abordagem
foram consideradas ambas direções: Português ↔ Chinês e Português ↔ Coreano.
Para além da reprodução para línguas dissimilares com poucos recursos, também
foi elaborado um estudo de replicação do artigo original usando os dados de um dos
pares de línguas estudados pelos autores: Inglês ↔ Francês.

Outra alternativa para a falta de corpora paralelos é a abordagem pivô. Nesta
abordagem, o sistema faz uso de uma terceira língua, designada por pivô, que liga
a língua de partida à de chegada. Esta opção é tida em conta quando há existência
de dados paralelos em abundância entre as duas línguas. A motivação deste método
é fazer jus ao desempenho que as redes neuronais têm quando são alimentadas com
grandes volumes de dados. Com a existência de grandes quantidades de corpora pa-
ralelos entre todas as línguas em questão e a pivô, o desempenho das redes compensa
a propagação de erro introduzida pela língua intermediária. No nosso caso, a língua
pivô escolhida foi o inglês pela forte presença de dados paralelos entre o pivô e as
restantes três línguas. O sistema começa por traduzir de português para inglês e de-
pois traduz a pivô para coreano ou chinês. Ao contrário da primeira abordagem, só
foi considerada uma direção de Português → Chinês e Português → Coreano. Para
implementar esta abordagem foi considerada a framework OpenNMT desenvolvida
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por [Klein et al., 2017].
Os resultados foram avaliados usando a métrica BLEU [Papineni et al., 2002b].

Com esta métrica foi possível comparar o desempenho entre as duas arquiteturas
e aferir qual é o método mais eficaz para pares de línguas dissimilares com poucos
recursos.

Na direção Português → Chinês e Português → Coreano a abordagem pivô
foi superior tendo obtido um BLEU de 13,37 pontos para a direção Português →
Chinês e um BLEU de 17,28 pontos na direção Português → Coreano. Já com
a abordagem de tradução automática neural não supervisionada o valor mais alto
obtido na direção Português → Coreano foi de um BLEU de 0,69, enquanto na
direção de Português → Chinês foi de 0,32 BLEU (num total de 100).

Os valores da tradução não supervisionada vão estão alinhados com os obtidos
por [Guzmán et al., 2019], [Kim et al., 2020]. A explicação dada para estes valores
baixos prende-se com a qualidade dos cross-lingual embeddings. O desempenho dos
cross-lingual embeddings tende a degradar-se quando mapeia pares de línguas dis-
tantes e, sendo que modelo de tradução automática não supervisionado é inicializado
com os cross-lingual embeddings, caso estes sejam de baixa qualidade, o modelo não
converge para um ótimo local, resultando nos valores obtidos na dissertação.

Dos dois métodos testados, verifica-se que a abordagem pivô é a que tem melhor
performance. Tal como foi possível averiguar pela literatura corrente e também
pelos resultados obtidos nesta dissertação, o método neuronal não-supervisionado
proposto por Artetxe et al. [2018d] não é suficientemente robusto para inicializar
um sistema de tradução suportado por textos monolingues em línguas distantes.
Porém é uma abordagem promissora porque permitiria colmatar uma das grandes
lacunas na área de Tradução Automática que se cinge à falta de dados paralelos
de boa qualidade. No entanto seria necessário dar mais atenção ao problema dos
cross-lingual embeddings em mapear línguas distantes.

Este trabalho fornece uma visão sobre o estudo de técnicas não supervisiona-
das para pares de línguas distantes e providencia uma solução para a construção
de sistemas de tradução automática para os pares de língua português-chinês e
português-coreano usando dados monolingues.

Palavras-chave: Processamento de Linguagem Natural, Tradução automática
não supervisionada, Coreano, Português, Chinês
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Abstract

This dissertation presents a comparative and reproduction study on Unsuper-
vised Neural Machine Translation techniques in the pair of languages Portuguese
(PT) → Chinese (ZH) and Portuguese (PT) → Korean(KR).

We chose these language-pairs for two main reasons. The first one refers to the
importance that Asian languages play in the global panorama and the influence that
Portuguese has in the southern hemisphere. The second reason is purely academic.
Since there is a lack of studies in the area of Natural Language Processing (NLP)
regarding non-Germanic languages, we focused on studying the influence of non-
supervised techniques in under-studied languages.

In this dissertation, we worked on two approaches: (i) Unsupervised Neural
Machine Translation; (ii) the Pivot approach. The first approach uses only mono-
lingual corpora. As for the second, it uses parallel corpora between the pivot and
the non-pivot languages.

The unsupervised approach was devised to mitigate the problem of low-resource
languages where training traditional Neural Machine Translations was unfeasible
due to requiring large amounts of data to achieve promising results. As such, the
unsupervised machine translation only requires monolingual corpora. In this disser-
tation we chose the implementation of Artetxe et al. [2018d] to develop our work.

Another alternative to the lack of parallel corpora is the pivot approach. In this
approach, the system uses a third language (called pivot) that connects the source
language to the target language. The reasoning behind this is to take advantage of
the performance of the neural networks when being fed with large amounts of data,
making it enough to counterbalance the error propagation which is introduced when
adding a third language.

The results were evaluated using the BLEU metric and showed that for both
language pairs Portuguese → Chinese and Portuguese → Korean, the pivot approach
had a better performance making it a more suitable choice for these dissimilar low
resource language pairs.

Keywords: Natural Language Processing, Unsupervised Neural Machine
Translation, Neural Networks, Chinese, Korean, Portuguese
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Chapter 1

Introduction

1.1 Motivation

In a more globalized and connected world where physical barriers are no longer a
limitation to exploring new cultures, language differences become the only obstacle
to communicating with other civilizations. Despite English’s position as the lingua
franca, the truth is that many people cannot hold a basic conversation in Shake-
speare’s language as, according to Eberhard et al. [2022], only around 1 billion people
can speak English.

Although the act of translating is one of the oldest practices in the world, going
back to the Mesopotamian era where Sumerian poems were translated into Asian
languages, nowadays it has been revamped with the aid of technology. We went from
focusing on translating religious texts to incorporating translation in every aspect of
our society ranging from phone applications that do real-time translation to social
networks adding features that allow us to read comments from other users written
in their native languages. In times like these, technology can work as a bandage
that patches the unintelligibility between cultures.

As we become more dependent on the cyber-world, so do our needs increase to
communicate with every corner of the world. The problem is that the technology
we use nowadays requires large amounts of parallel data. That is, data composed
by texts and their translations, where each sentence and its corresponding transla-
tion are explicitly marked. This means that implementing state-of-the-art Neural
Machine Translation (NMT) techniques is only feasible for languages with a solid
online presence because that allows us to quickly obtain the needed data to train
these data-hungry models. English, being one of the languages with the largest
number of online users, is always on the front-line regarding advances in Natural
Language Processing (NLP). The consequences of this are that many languages are
left out, which hinders the ability of their native speakers to engage in meaningful
cross-cultural interactions. These native speakers usually do not grasp English well,
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Chapter 1. Introduction 2

making them isolated from the rest of the world.
One of the solutions that NLP proposes is using unsupervised techniques that

leverage the abundance of existing monolingual data to train neural machine trans-
lation systems. As people’s online presence increases, tremendous amounts of texts
are generated, which can be used to create and improve machine translation sys-
tems. As such, unsupervised techniques are a promising solution to the dependence
on parallel data, as this type of data are expensive and time-consuming to obtain
since they require a body of expertise to create.

Many of the studies behind these unsupervised techniques have been conducted
in English or other Indo-European languages. There is little scholarship that tests
the feasibility of the unsupervised approaches in dissimilar languages, making it
hard to assess their applicability when dealing with the creation of an MT system
for dissimilar language pairs with little parallel corpora available.

Thus, the motivation behind this dissertation is to contribute to the area of
Machine Translation by providing an in-depth study of the feasibility of unsupervised
techniques for dissimilar language pairs. We chose the following language pairs:
Portuguese → Chinese and Portuguese → Korean. These language pairs were chosen
for two reasons. The first is the lack of good quality parallel corpora, making them
perfect candidates as they are low-resource language pairs. The second is to attest to
the robustness of unsupervised approaches when dealing with distant languages, as
most of the literature is focused on using English paired with other Indo-European
languages.

1.2 Research Context and Goals
This work was developed over 9 months at the NLX—Natural Language and Speech
Group, a Natural Language Processing research group from the University of Lisbon,
Faculty of Sciences.

The goal of this dissertation was to compare and reproduce two different machine
translation systems in the pair of languages Portuguese, Chinese, and Korean. This
dissertation aims to conduct a comparative study of different MT architectures to
better understand how unsupervised machine translation behaves when dealing with
dissimilar languages.

1.3 The Portuguese Language
With around 250 million native speakers and 24 million L2 (second language) speak-
ers, Portuguese is the 6th most spoken language in the world [Eberhard et al.,
2022]. It is the official language of 9 countries (Angola, Brazil, Cape Verde, East
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Timor, Equatorial Guinea, Guinea-Bissau, Mozambique, Portugal, and São Tomé
and Princípe) and the most widely used language in the southern hemisphere.

The Portuguese language traces its roots back to the Ibero-Romance group that
evolved from the vulgar Latin [Posner, 1996].

Its writing system is based on the Latin script containing 26 letters, and there are
9 oral vowels, 2 semivowels and 21 consonants in European Portuguese. Due to being
the official language of many nations spread out over the entire world, Portuguese
boasts a variety of dialects, with European Portuguese and Brazilian Portuguese
being the two most well-known ones. One of the major differences between these
two variants is in the prosody. European Portuguese is considered a stress-timed
dialect whereas Brazilian Portuguese is a syllable-timed one. Like all Romance
languages, Portuguese follows SVO (subject, verb, object) as the canonical sentence
order and preserves from Classical Latin the verb inflection, a feature common to
all of the Romance languages, adding up to over a dozen of conjugational endings.
Moreover, it boasts some grammar idiosyncrasies that are not commonly found in
other languages. Some such features are the usage of the future subjunctive mood
and the personal infinite inflection according to its subject in person and number
(e.g., “é melhor voltarmos”, Eng. is best we-return).

1.4 The Chinese Language
The Chinese language is better envisaged as a cluster of language families that belong
to the Sino-Tibetan group. According to linguists, there are between 8 to 13 main
dialects with several sub-dialects [Norman, 2002]. They can differ in various ways,
such as in pronunciation, grammar, or vocabulary. An example of this difference
is between Mandarin and Shanghainese. Compared to Mandarin, Shanghainese has
more vowels and consonants. Another difference is in the vocabulary. For example,
“I” in Mandarin is written and spelled as 我 (wo), whereas in Shanghainese it is
pronounced differently 吾 (ngu). For Mandarin speakers, the word 吾 (ngu) would
sound completely foreign as the consonant ng does not exist in Mandarin.

With over a billion speakers, Mandarin is the widest spread dialect from the
Sino-Tibetan family and has been the official language of China since the 1930s.

The Chinese language is a tonal language. In the case of Mandarin, it uses
4 tones to distinguish words, while other dialects use different tones. Cantonese,
for instance, makes use of 9 tones. Tonality is an important feature in the Chinese
language phonology as it is essential for intelligibility due to the vast number of
words that only differ in their tones. In Figure 1.1 there is a description of the tones
in Mandarin Chinese. Failing to correctly pronounce a tone could lead to situations
where, for instance, wrongly pronouncing “mother” could be mixed up with “horse”
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Figure 1.1: Illustrative example of how Chinese tones are pronounced.

Figure 1.2: Stroke order in Chinese writing. The blue line depicts the order in which
the strokes of the character must be written.

since both words only differ by one tone.
The Chinese written system differs from alphabetic systems in the sense that

words are composed by characters rather than letters. For example, while in Ro-
mance languages each letter corresponds to a phoneme, in Chinese each logogram
corresponds to a syllable with a semantic meaning, and each logogram can be mono-
syllabic or part of a polysyllabic word.

Chinese characters are composed by a set of strokes and radical components
which all together make up a character. Figure 1.2 represents a structure of the
character 舞 (Wǔ) where each line highlighted in blue corresponds to the strokes
which must be written in a defined sequence, from the left to the right and from the
top to the bottom. In total it is estimated that there exist around 50,000 charac-
ters, however the average college-educated student masters around 4,000, which are
enough to be literate in the Chinese language.

Records of Chinese primordial writing system were reported from the late Shang
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Dynasty circa 1250–1050 BC. The early Chinese script is called Oracle Bone due to
the writings being carved on bronze vessels and oracle bones1 Throughout Chinese
history, characters went through a succession of alterations, and it was during the
Qin Dynasty (221–206 BC) that they were standardized. By the 20th century, clas-
sical Chinese was replaced by the written vernacular Chinese (i.e., up to this point
the written Chinese and spoken Chinese were mutually unintelligible) and during
the Cultural Revolution (circa 1966–1976), in an effort to increase alphabetization,
the Chinese government simplified a variety of characters gaining the form that is
known nowadays.

Like Portuguese and English, Chinese follows SVO (subject-verb-object) as the
canonical sentence order but, unlike Portuguese, Chinese lacks inflection. Instead,
Chinese uses particles to express verbal aspects (e.g., the particle -了 (le) is used to
denote an action that happened in the past)

1.5 The Korean Language
Korean is the 13th most spoken language in the world, with a total number of
77 million speakers. There are two types of dialect: the Seoul dialect, which is
spoken in South Korea, and the Pyongyang dialect, which is the official version used
in North Korea.

The origins of Korean language remain as a source of mystery up to present times.
It is a source of a heated debate amongst Korean scholars [Song, 2005, Campbell
and Mixco, 2007] whether Korean should be considered an Altaic language, which
is a group of Asian languages such as Japanese, Mongolian and Turkish, or remain
as a “language isolate”.

The Korean writing system is derived from Hangul which is an alphabet created
by King Sejong from the Yi Dynasty in 1443. Before the creation of Hangul, Korean
writing system used Chinese characters. However, due to the significant grammar
differences between the two languages it was a particular challenge writing in Korean.
As such, to make writing more accessible to the masses Hangul was invented.

Considered as one of the most scientific alphabets ever devised, Hangul consists
of 24 letters: 14 consonants and 10 vowels. The letters are formed into building
blocks that represent syllables which are constructed under a set of rules. For
example, if the syllable (i.e., block) starts with a vowel ㅏ (read as a) then it must
be preceded with a silent consonant ㅇ that will act as a placeholder. Another rule
is that a syllable can start with a primary consonant but never a complex one (i.e.,
corresponds to diphthongs). The last rule is that if a syllable starts with a vowel,
it can not occur with consecutive vowels, or if it starts with a consonant, it can not

1Oracle bones were animal bones used for divination, hence their name.
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Figure 1.3: Illustrative example of the rules of the Korean alphabet. The first
character -가 (ga) is written by the consonant -ㄱ (g) and followed by the vowel
-ㅏ (a). On the middle picture there are three blocks and as it can be attested in
the third character 윤 (yoon) it begins with a vowel -유 (yoo) and is followed by a
consonant -ㄴ (n)

occur. consecutive consonants Figure 1.3 exemplifies these writing rules of Hangul.
The Korean language still preserves reminiscences of Confucianism in its struc-

ture. This is particularly noticeably in the case of honorifics which are a form of
speech that reflect the hierarchical social status between the speaker and listener.
It breaks down into three values for the dimensions of formality, politeness and
honorifics.

The formal dimension is used when speaking with people that are close to the
speaker or are of lower age. The formal speech can be identified by the verbs ending
in the particle -다 (da) and by the usage of informal honorific pronouns and markers
such as -님 (nim) or -야 (ya).

The second dimension is called politeness and is widely used in social situations
where the speaker is unfamiliar with the listener and wants to show respect.

The final dimension is used in situations with a defined hierarchical structure like
in a workplace context or in school. To show respect, it is expected that students
approach their professor in this tone and the same is applied to workers when dealing
with their superior. On the other hand, it is not expected for those in higher social
position to use the honorifics or politeness form of speech.

Despite the vast influence of Chinese language on Korean, namely in vocabu-
lary, Korean is considered an agglutinate language with a SOV (subject-object-verb)
canonical sentence order. Such characteristics are also commonly shared with other
Asian languages like Japanese and Mongolian.

1.6 Document Structure
This document has seven chapters and is structured in the following manner:
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• Chapter 2 refers to the planning and goals of the dissertation

• Chapter 3 gives an overview of the field of NLP with special focus on the
various types of Machine Translation architectures.

• Chapter 4 relates previous works done in the topic of the dissertation and
introduces the concept of low-resource language pairs.

• Chapter 5 describes the work performed, the frameworks and tools used.

• Chapter 6 provides the evaluation results and a discussion.

• Chapter 7 gives final remarks and pointers for future work.
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Chapter 2

Planning and Goals

In this chapter the objectives, planning and development of my work will be ad-
dressed. The methodology followed and the comparison between the planned and
the actual work are also detailed below.

2.1 Objectives and Planning
The major objective of this dissertation is to develop a comparative study and
reproduction of two different types of machine translation architectures and evaluate
which method is the most suitable for low resource language pairs that are dissimilar.

To carry out this study three languages were chosen that fulfill the two following
criteria: Having abundant monolingual corpora with little to none parallel data and
being from distant language families. Given these criteria, Portuguese, Chinese and
Korean were selected.

The first goal of this dissertation was to get acquainted with the field of Natural
Language Processing, particularly Neural Machine Translation. As such, the first
two months were dedicated to a review of the literature where it was needed to
understand the differences between Supervised Neural Machine Translation, Unsu-
pervised Neural Machine Translation, and Statistical Machine Translation. Plus, it
was also required to gain familiarization with the state-of-the-art in Unsupervised
Neural Machine Translation.

Given that we will be experimenting with data-driven models for which little
data is already available, data gathering and curation are central to this work. The
second goal was thus to gather and curate all the data necessary for the planned
experiments. This data should be of good quality and in abundance as noisy or poor
quality data could affect the performance of the MT system.

The third goal was to successfully develop the two proposed Machine Trans-
lation systems: the Unsupervised Neural Machine Translation and the Pivot-based
Approach. To develop the pivot-based approach it was needed to grasp the workings

9
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Figure 2.1: Dissertation execution timeline

of the OpenNMT framework. To train the UNMT model, we had to understand
[Artetxe et al., 2018d] code’s repository and do several experiments to test if it
was working correctly. In addition, it was also vital to create our own cross-lingual
embeddings as, without them, it would not have been possible to train the UNMT
model. As such, we had to be familiarized with the VecMap framework developed
by [Artetxe et al., 2018b].

In summary, the following steps were set for the development of my work:

• Acquire knowledge regarding the field of Natural Language Processing and
Neural Machine Translation.

• Gain familiarization with the state of the art in Unsupervised Neural Machine
Translation;

• Gather monolingual data in the three languages addressed by this work;

• Gather parallel data for the study of the pivot NMT model;

• Develop a MT system in the two proposed architectures;

• Develop the cross-lingual embeddings that are needed to train the UNMT
system;

• Understand and test the code’s repository to train the UNMT model;

• Gain familiarization with the OpenNMT framework and use it to build the
pivot-based approach;

2.2 Planning
In order to achieve the aforementioned goals, a set of guidelines carried out during
this dissertation were defined. The plan proposed is as follows:

A) Be familiarized with the field of Natural Language Processing and with Neural
Machine Translation - 2 Months

B) Writing the report for the “Estudo Orientado a Informática” course - 2 Months
(overlapping with A)
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C) Gathering and collecting data - 1 Month (overlapping with A, B)

D) Training and evaluation of the unsupervised NMT system - 2 Months

E) Training and evaluation of the pivot MT system - 2 months

F) Writing of the dissertation - 2 months

2.2.1 Execution of the plan
In this section, we detail the plan’s execution and point out any deviations from the
initial plan.

As we can see in Figure 2.1, the first item to execute was the literature review
(item A). Many information sources were consulted to obtain knowledge in the area
of the NLP, such as the Annual Meetings of the Association for Computational
Linguistics (ACL) and the Conference on Machine Translation (WMT). Item A was
executed according to the plan, taking two months to accomplish. Nonetheless,
given this dissertation’s nature, different research papers were often conferred.

While consulting different research papers to build knowledge in the area of NLP,
the report was being written (item B). The initial plan had an execution time of two
months for this task, from October to December. Nonetheless, since the delivery
time was in January, the execution time was further delayed until January because
the report needed further revision.

During this time, around December, we began to gather the data (item C) needed
to train the MT systems. The previous readings in the literature review phase proved
helpful since the data used to train the UNMT system was referenced from [Artetxe
et al., 2018d] paper: WMT monolingual News Crawl 1 contains millions of sentences
in the three languages with good quality.

The initial plan to train and evaluate the unsupervised NMT (item D) was
scheduled for two months, as shown in Figure 2.1. Experiments were done to assess
whether the model was converging. As a result, we also conducted a reproduction
study in the EN-FR language pair. We ended up deviating over two weeks from
the original plan due to an undetected error in the early stages of training. Once
we successfully trained the models, they were evaluated - a vital step to ensure our
goal was achieved.

As soon as we concluded the evaluation of the UNMT, we advanced to the
training and evaluation of the pivot-based approach (item E). Since we added the
pivot language, which implies training an additional model, and the training time
for each model has two-folded, we set the execution time to three months. That

1http://data.statmt.org/news-crawl/

http://data.statmt.org/news-crawl/
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means we started in March and concluded at the end of May with the training and
evaluation of the pivot-based approach.

Ultimately, we set the writing of the dissertation (item F) to be for two months,
starting from the end of May to the end of July. The execution time is to dedicate
the month of June to the writing and July for the revision.



Chapter 3

Literature Review

This chapter provides an overview of the field of Machine Translation by introducing
some key concepts on word embeddings, neural networks, and the current state of
the art in the unsupervised neural machine translation area.

3.1 Word Embeddings

Word embeddings are vectorial representations of word semantics. Since word mean-
ing is projected into a vector space in a way that ensures that related words are
placed closer to each other than unrelated words, the semantic relatedness of words
can be assessed based on metrics such as their distance within this vector space or
the cosine of their vectors.[Turian et al., 2010].

Word2Vec

There are multiple methods for obtaining word embeddings. Here we take Word2Vec
as an illustrative example.

Word2Vec is a neural network for constructing word embeddings developed by
Mikolov et al. [2013].

A vector represents each word, and the cosine similarity computes the semantic
closeness between each word. The model takes considerable input from corpus text,
and each word in the corpus is assigned a vector represented in the space. Thus
semantically similar words are close to each other in the vector space.

Word2Vec uses two model architectures: Continuous Bag of Words (CBOW)
and Skip-Gram. Skip-gram gives better word representations when the monolingual
data is small. CBOW is faster and more suitable for larger datasets [Mikolov et al.,
2013].

13
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Skip-Gram

In terms of architecture, Skip-gram is a simple neural network with only one hidden
layer. Given a center word Skip-gram iteratively looks at words within a range set by
the window size. In other words, it looks for n words to the right of the center word
and n words to the left of the center word. The goal is to calculate the probability
of each context word occurring given a center word.

At the input layer, words are encoded as a one-hot vector of dimensions V × 1

where V is the vocabulary size. Then, the input is multiplied by a lookup table
to generate a matrix of V ×N dimensions where N corresponds to the word index
in the one-hot encoding vector. The matrix is projected onto a projection layer P

that acts as a hidden layer and will pass through an activation function as shown in
Equation 3.1 that will output a probability distribution of the context words given
the center word.

P (wo|wc) =
exp(vT0 vc)∑
i∈υ exp(vTi vc)

(3.1)

where wo is the context word, wc is the center word and v is vector of word w.

Continuous Bag of Words (CBOW)

Like skip-gram, the architecture of CBOW is a one-layer neural network. The main
difference between these two models is that on CBOW, we predict the target word
based on the context words set up by the sliding window parameter, whereas in
skip-gram we try to predict the context words given the center word.

3.1.1 Cross-Lingual Embeddings
Cross-lingual word embeddings are word embeddings for more than one language,
where words from different languages are mapped into the same vector space, main-
taining the property that words that are semantically related, even across languages,
will be closer together than words that are not related. As such, cross-lingual word
embeddings match the lexicon between the source and the target language in a
common vector space, allowing to measure the semantic distance between words of
different languages [Mikolov et al., 2013].

The typical approach that is used to obtain cross-lingual embeddings consists of
learning separate word embeddings, one for each language, from monolingual cor-
pora using normal word embedding methods such as Word2Vec (i.e., Skip-gram or
CBOW), and then learning a linear transformation that maps the separate embed-
dings into a shared space, or that transforms the space of one of the embeddings
into the space of the other. Next we cover the most relevant works and approaches.

Mikolov et al. [2013] was the first to popularize the linear projection with a trans-
formation matrix after observing that words have a similar geometric arrangement



Chapter 3. Literature Review 15

in the same shared vector space. To achieve this, the authors first created a small
bilingual dictionary by translating the 5000 most frequent words from the source to
the target language. Then they trained the transformation matrix W by minimizing
the error between the translation output of W and the bilingual dictionary entries.

Lazaridou et al. [2015] suggested the margin-based (max-margin) to solve the
hubness (i.e., some words appear as the nearest neighbors of other words), which is an
observed phenomenon in high-dimensional spaces problem caused by the projection
matrix.

Xing et al. [2015] proposed vector normalization after finding an inconsistency
on the paper of Mikolov et al. [2013] that uses the inner product to compute the
distance measure and then cosine distance to estimate word similarities. In [Mikolov
et al., 2013] the Euclidean distance is used to calculate the loss function used to train
the transformation matrix W . However, when word vectors are applied to estimate
word similarities, the algorithm uses cosine distance. To solve the inconsistency,
Xing et al. [2015] proposed to use cosine distance in the objective function and
replace the inner product as shown in the following equation:

max
W

∑

i

(Wxi)
T zi (3.2)

To achieve this, they normalize the word embeddings as unit vectors and con-
strain the linear transformation W into an orthogonal matrix.

Faruqui and Dyer [2014] propose a technique based on canonical correlation anal-
ysis (CCA) [Hotelling, 1936] to formulate cross-lingual embeddings. Their technique
first constructs independent monolingual word embeddings and then projects them
onto a common vector space. To obtain bilingual embeddings, they use CCA, which
measures the linear relationship between two multidimensional variables. Unlike a
linear projection, CCA learns a transformation matrix for each language.

Artetxe et al. [2016] proposed a new framework based on previous techniques
from Xing et al. [2015] and Faruqui and Dyer [2014]. Like Xing et al. [2015], Artetxe
et al. [2016] proposes the linear transformation to be orthogonal. However, they show
that by doing so, it optimizes the objective function, whereas in [Xing et al., 2015]
orthogonality was used to enforce the word vectors to be of unit length. While the
model of Faruqui and Dyer [2014] changes the monolingual embeddings by applying
restrictions, Artetxe et al. [2016] claim that forcing monolingual invariance in their
model improves the learning of the bilingual mapping.

Seeking to map language pairs without dictionaries or word alignments, Barone
[2016] proposed a new unsupervised method using an adversarial auto-encoder that
does not need parallel data. The method combines an encoder that is used to
transform the source embedding into the target embedding, a discriminator that
discriminates between the actual target embedding and the mapped embedding,



Chapter 3. Literature Review 16

and a decoder that reconstructs from the mapped embedding the source embedding.
Despite the novelty, the author concluded that his approach was not competitive
enough.

Following the same line of work in fully unsupervised cross-lingual embeddings,
Artetxe et al. [2018b] proposes constructing a dictionary in a fully unsupervised
manner by introducing two new methods: a fully unsupervised initialization scheme
as an initial solution and robust self-learning.

Fully unsupervised scheme

The fully unsupervised initialization scheme is based on intra-lingual similarity dis-
tribution. The idea is to take a word in some language (e.g., “dog”) and compute
the similarity between that word and the rest of the words in that language using
the monolingual embeddings. This comparison between one word and the rest of
the words in the monolingual embeddings will give the similarity distribution for
that word. Having done that, the model moves to another language (e.g., Italian)
and repeats the same process for all the words in the vocabulary.

The rationale is that one would expect equivalent words in different languages
to have similar distributions. If we plot two words in different languages, like “dog”
in English and its corresponding word “cane” in Italian, we would expect them to
have a similar distribution, that is have a similar plot.

Robust self-learning

One of the modifications in the cross-lingual mapping proposed in [Artetxe et al.,
2017] is the introduction of the stochastic dictionary induction. This is done by
randomly discarding some entries in the cross-lingual similarity matrix. Doing so
makes the solution change more iteratively, and enables a broader exploration of
the search space, thus escaping from poor local optima. In addition, Artetxe et al.
[2018b] also incorporate a frequency-based vocabulary cutoff. Thanks to this, the
authors produce the search space and simplify the optimization problem. Also,
they incorporate Cross-domain Similarity Local Scaling retrieval (CSLS) 1 [Conneau
et al., 2017b] which is shown to be beneficial in mitigating the hubness problem.
Moreover, they make the dictionary induction process bidirectional. At last, after
the final iteration, they apply symmetric re-weighting [Artetxe et al., 2018a].

Despite the numerous methods to train cross-lingual embeddings, in this disser-
tation we will be focusing on the Vecmap framework forwarded by Artetxe et al.

1CSLS is used to evaluate the quality of cross-lingual embeddings by computing the cosine
similarity between the aligned words. It can be used to reduce the hubness problem by weighting
the cosine similarity scores helping the k-nearest neighbor algorithm to find the correct data points
in an over-represented vector space.
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[2018b]. We chose this framework not only because it has achieved state-of-the-art
results in this area but also due to it being easy to implement.

3.1.2 Sub-word techniques

Neural machine translation is the state of the art in MT [Vaswani et al., 2017]. How-
ever, it faces problems when dealing with out-of-vocabulary (OOV) words [Sennrich
et al., 2016b] (i.e., words that never appeared in the training corpus) and rare words
(i.e., words that appeared only a few times in the corpus), and also when faced with
the open vocabulary issue which is concerned with the limited vocabulary entries
that NMT systems can handle.

To address these issues, some algorithms [Sennrich et al., 2016b, Provilkov et al.,
2020] have been proposed that segment words into smaller units which are always
known to the model, known as sub-words. Any word can be formed by combining a
different number of these sub-words, therefore avoiding the OOV issue.

Sennrich et al. [2016b] proposed a sub-word technique using the Byte Pair En-
coding (BPE) compression algorithm [Gage, 1994]. This algorithm merges the most
frequent pairs of characters in a given corpus and replaces the characters with the
newly merged pair. The model starts with an initial vocabulary containing all the
unique characters in the corpus (e.g., a, b, c, l, o, w). It then counts the most
frequent n-gram occurring in the text. For example, the word “lowest” occurred 9
times and “low” 5 times. Thus, “lo” and “ow” are frequent n-gram pairs and give
rise to new vocabulary entries (viz., “lo” and “ow”). This process is repeated until
the desired size of the vocabulary is reached.

Since BPE splits words in a deterministic fashion, the model is prone to segmen-
tation errors and flawed at accounting for the compositionality of words. This means
that for each word, the model only learns to segment words in one way, failing to
explore the morphology of words at its fullest potential. Provilkov et al. [2020] pro-
posed BPE-dropout incorporate randomness into the approach. In contrast to the
deterministic nature of BPE, which segments words similarly, BPE-dropout allows
for multiple segmentation of the same word. It achieves this by randomly drop-
ping merges during the training phase. In the training phase, the parameter p that
ranges from 0 to 1 controls the drop-out level (i.e., how much segmentation can be
applied to the word). When p = 0, the level of segmentation is equal to that of
BPE, and when p = 1, every single character in the word is segmented. The authors
proposed setting p = 0.1 for several languages as it achieved the best results during
the experimentation [Provilkov et al., 2020].
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3.2 Statistical Machine Translation
Statistical machine translation (SMT) [Koehn et al., 2003] is based on the noisy
channel model [Shannon, 1948]. A SMT model has two components, namely p(e),
which is the language model, and p(f |e), which is the translation model.

The language model calculates the probability of a given sentence e belonging to
the target language. That is, the language model aids in identifying which sentences
are fluent in the target language.

The translation model calculates the probability of a source sentence f being
translated to a target sentence e. That is, the translation model is concerned with
finding the probability that a given target sentence is a translation of the source
sentence.

Having these two models, we can derive p(e|f) using the Bayes rule, obtaining:

arg max
e

p(e|f) = arg max
e

p(f |e)× p(e) (3.3)

where f is the source sentence, e is the target sentence, p(e) is the language model
probability for the target sentence, p(f |e) is the translation model probability for
the source sentence given the target sentence.

To translate from the source language to the target language, we search for the
target sentence e that maximizes the product of the language model probability p(e)

and the translation model probability p(f |e), given the source sentencef . This is
equivalent to finding the target sentence that maximizes the posterior probability
p(e|f) using Bayes rule.

3.2.1 Phrase based models
Figure 3.1 shows a representation of how a phrase based model works. Whereas in
word based models the translations are done word by word, in phrase based models
they are done by phrases. The mathematical model is shown below.

arg max
e

p(e|f) = arg max
e

p(f |e)× pLM(e)× pD(e, f)× ωlength(e) (3.4)

where p(f |e) is the translation model, pLM(e) the language model, pD(e, f) the
reordering model and ωlength(e) is a word penalty. These components are further
explained below.

Phrase translation model

The phrase translation model consists of a table with all the possible translations
that are consistent with the word alignment of the sentence pair, where each phrase
has a score associated. To build a phrase model SMT computes word alignments
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Figure 3.1: Example of how a SMT model works (from [Shah, 2012]).

using IBM models [Knight, 1999, 1997, Brown et al., 1990, 1988] or an EM algorithm
[Dempster et al., 1977]. It then extracts translation phrase pairs and assigns a score
to each of them using the maximum likelihood estimation.

Reordering model

The reordering model is used to tackle a common problem in translation: not all
words in a given sentence can be consecutively translated due to word order differ-
ences between the source and target language.

To do this, the reordering model scores the word order correctness in a sentence,
and is falls under two types, namely distance-based distortion models and a lexical
reordering models.

The former uses a scoring factor that penalizes any deviation from the mono-
tonic order, while the latter conditions reordering in phrases using three types of
movement: (a) monotonic; (b) swap with the previous phrase; and (c) discontinuous.

Language model

Traditional SMT systems use n-grams as language models where the target word
is assigned a probability within a word sequence using a monolingual corpus. The
language model calculates the joint probability of P (w) given a prefix of previous
words from w1 to wn where wn is set by the number of n-grams we want to look
into (e.g., unigram where the probability of each word is independent from previous
words, bigram where P (w) is conditioned on the single previous word, etc). The
model can be extended to trigrams, 4-grams and so on, but this usually leads to
data sparseness issues.

3.3 Neural Machine Translation
With the considerable increase, over the past few years, in computational power
and readily accessible data, Neural Machine Translation (NMT) has become the
mainstream paradigm in machine translation [Sutskever et al., 2014, Cho et al.,
2014b]. It uses an end-to-end approach that, in a single model, directly maps an
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input sequence (e.g., English) to an output sequence (e.g., French). They solve some
of the problems recurring with SMT, such as mitigating the sparsity problem and
overcoming the locality problem by using unconstrained contexts [Artetxe et al.,
2018c].

The most popular architectures in NMT are Sequence-to-Sequence (Seq2Seq)
based on Recurrent Neural Networks (RNN) [Sutskever et al., 2014, Cho et al.,
2014b], and the current state-of-the-art Transformer [Vaswani et al., 2017].

3.3.1 Sequence-to-Sequence (Seq2Seq)

Sutskever et al. [2014] were the first to use Recurrent Neural Networks (RNN) in
Machine Translation to directly map input sequences into output sequences, in an
approach called sequence-to-sequence (Seq2Seq).

To address the inability of Deep Neural Networks (DNN) to deal with sequence
data of variable length, since these networks require the input and output to be
vectors with fixed dimensions, Sutskever et al. [2014] applied the Long Short-Term
Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997], a type of RNN,
to solve the sequence-to-sequence task.

The main idea of Sutskever et al. [2014] is to use two LSTMs: the encoder, which
encodes the source language sequence into a single vector, and the decoder, which
takes that vector and decodes the target language sequence.

The input sequence is processed one word at a time by the encoder. Similarly,
the decoder generates the output sequence one word at a time. Like all RNNs,
information about the state of the process is managed by having the output and the
hidden state of the network at any given time step be used as part of its input in
the next time step.

3.3.2 Sequence-to-Sequence with Attention

The Seq2Seq encoder from the previous section compresses all the information of the
source sentence into a fixed-sized vector. This results in performance problems due to
information loss when dealing with long sentences [Cho et al., 2014a]. As a solution
to this problem, Bahdanau et al. [2015] proposed the mechanism of attention.

The crucial innovation proposed by Bahdanau et al. [2015] consists of having the
encoder expose all intermediate encodings it produces while processing the input,
instead of only exposing the final one. The decoder, in turn, instead of having to
work based solely on a single encoding, computes a weighted sum of all encoder
states, this being the so-called attention mechanism.
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Figure 3.2: Transformer architecture (from [Vaswani et al., 2017])

3.4 Transformers
As stated in Section 3.3.1, RNNs generate sequences of hidden states based on the
previous hidden state and current input. Since, at each time step, RNN models needs
information from the previous time step, any attempt at input data parallelization
is hindered. To reduce sequential computation costs caused by the RNN models,
Vaswani et al. [2017] proposed a new architecture called Transformer that relies on
self-attention, ditching RNNs entirely.

The Transformer also follows an encoder-decoder architecture (see Figure 3.2),
the difference being that all input tokens are processed in parallel. To accomplish
this parallelization, Vaswani et al. [2017] introduced several novel features to the
encoder-decoder architecture.

Positional Encoding

A first novel feature is the introduction of positional encodings. Since the model
does not use recurrence, which inherently maintains some information about word
position, the authors propose a new vector that is added to the input embeddings
to inform about the relative position of a word in a sentence. In this particular case,
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the authors used sinusoidal positional embeddings, based on the sine and cosine
functions, as shown in Equation 3.5.

PEpos,2i = sin(pos/100002i/d)
PEpos,2i+1 = cos(pos/100002i/d)

(3.5)

where pos is the position of the word in the sentence, d is the embedding dimension,
and i is the index of the word in the embedding vector (even indices use sin while
odd indices use cos).

Self-Attention

In RNNs, we needed the previous hidden state of the model to learn the context of
the current input. However, as mentioned before, this caused long-term dependen-
cies issues and computational costs due to the input being processed sequentially.
To address this issue, Transformers use a mechanism called self-attention inspired
by the attention that models the relationship between all the words in the sequence
regardless of their position via an attention score.

The attention function maps a query to a set of key-value pairs where the output
of the function is a weighted sum of the values where the weight of each value is
computed by the dot product between the scaled query and keys.

Different functions can be used to calculate the weights for the attention weighted
sum. Vaswani et al. [2017] use the scaled dot product. It takes as input a query Q,
keys K and values V. Mathematically is represented as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3.6)

where QKT is the dot product between the query and keys,
√
dk is a normalization

operation to scale down the dot product and lead to more stable gradients, and V

is the value vector that is multiplied with the softmax to obtain the weighted sum.

Multi-Head Attention

Vaswani et al. [2017] also introduces the concept of Multi-Head Attention. It is
an extension of attention that allows the model to focus on different aspects of
the sequence by computing multiple attentions, each with their own set of learned
weights. It is computed as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (3.7)

where
headi = Attention(QWQ

i , KWK
i , V W V

i ) (3.8)
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Figure 3.3: Example of how pivot machine translation works.

Conceptually each attention head is calculated individually via the Scaled Dot
Product. Then they are combined into a final matrix W by concatenating the result
of each head.

3.5 Pivot Machine Translation
When dealing with low resource language pairs for which there is little to no parallel
data, an alternative to building MT systems is using a pivot language. This approach
assumes the existence of a third language, the pivot language, where parallel corpora
between the source-pivot and pivot-target languages are abundant. Conceptually,
the pivot language connects the two models by acting as an intermediary, through
two separate models, one from source to pivot and another from pivot to target.

Figure 3.3 shows an illustrative example showing how pivot translation works.

3.5.1 Joint-Training
To reduce the error propagation caused by the additional training of a third lan-
guage, Cheng [2019] introduced a new joint-training approach. The motivation
behind this is to connect the source-to-pivot model and the pivot-to-target model
during the training, instead of training them separately as is commonly done in
other pivot-based approaches. To accomplish this, the authors proposed a training
objective composed of three parts, as shown in the following equation.

J (Θx→z,Θz→y) = L(Θx→z) + L(Θz→y) + λR(Θx→z,Θz→y) (3.9)

Where Θx→z is the likelihood of the source-to-pivot, Θz→y is the likelihood of the
pivot-to-target and λR(Θx→z,Θz→y) is the connection term where λ is the hyper-
parameter used to tune between the likelihoods and connection term.

The authors used pivot word embeddings to make the connection between the
models as it is naturally present in both the source and target model parameters.
The approach introduces three connection terms used in the training objective to
associate the source to the target model.

1. The first connection term encourages both models to generate the same vector
representations of the pivot words.
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Figure 3.4: Unsupervised NMT architecture (from [Artetxe et al., 2018d])

2. In the second term, the authors introduced a penalization of the Euclidean
distance between the two vectors to soften the constraint in the first term
because vectors of different languages are not identical.

3. The final connection term assumes that there is a small bridging corpus be-
tween the source and the target parallel corpus.

3.6 Unsupervised Neural Machine Translation
The field of Machine Translation has reached state-of-the-art performances [Vaswani
et al., 2017, Bahdanau et al., 2015, Sutskever et al., 2014] using Neural Networks.
However, as Neural Machine Translation (NMT) systems are data-hungry models
that require a considerable amount of parallel corpora to yield good results, low
resource languages tend to perform poorly [Koehn and Knowles, 2017b]. To address
this problem Artetxe et al. [2018d] introduced a novel method using only mono-
lingual corpora to train NMT systems, achieving BLEU scores of [Papineni et al.,
2002a] scores of the tests of 15.56 points (French to English) and 10.21 (German to
English).

The Unsupervised NMT uses the standard encoder-decoder architecture [Bah-
danau et al., 2015, Sutskever et al., 2014]. In Figure 3.4 there is an example depicting
the UNMT architecture. It differs from the standard NMT models in five distinctive
aspects:

Dual structure The Unsupervised NMT system translates to both directions rather
than being unidirectional (e.g., Chinese to Portuguese or Portuguese to Chi-
nese).

Shared Encoder It uses only one encoder to be shared by both languages. The
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shared encoder mechanism aims to reproduce an independent language repre-
sentation that a decoder will decode when generating the translated text.

Cross-lingual Embeddings Another fundamental change from standard NMT is
using fixed embeddings via cross-lingual embeddings that remain fixed during
training. The authors proposed these pre-trained fixed embeddings to make
the model learn how to generate independent word-level representations. The
training model relies on monolingual corpora, so the procedures used to train
supervised models are impossible. However, the authors propose two strategies
to solve this constraint.

Denoising autoencoding The UNMT model requires some constraints to acquire
knowledge. Otherwise, it would be a mere copying task [Artetxe et al., 2019a]2.
To achieve that, the model uses the denoising auto-encoder [Vincent et al.,
2010] which works the following way: It injects random noise in the input
sentence (i.e., swapping words and performing local substitutions) to force the
system to reconstruct the original sentence given the corrupted version. By
reconstructing the noisy sentence, the system learns the ins and outs of the
language structure.

On-the-fly backtranslation It is an adaptation of back-translation proposed by
Sennrich et al. [2016a]. Given a sentence of a language, it translates to an-
other language in inference mode. Then it uses the newly generated synthetic
parallel data to train the model to predict the original sentence. The novelty
of this proposed system is that it improves the quality of the synthetic par-
allel data on each iteration. Given its dual structure architecture, during the
training phase of each iteration, it performs mini-batch denoising in the two
languages and one mini-batch of on-the-fly back-translation of one language
to the other vice-versa. This allows the model to upgrade on each iteration.

3.7 Unsupervised Statistical Machine Translation
Lample et al. [2018b] and Artetxe et al. [2018c] made some advances in unsupervised
statistical machine translation obtaining 7–10 BLEU points [Artetxe et al., 2018c]
more than UNMT. The proposed method takes two monolingual corpora, learns
from their n-gram embeddings, and then maps them into a cross-lingual mapping in
a fully unsupervised manner using self-learning [Artetxe et al., 2018c] or adversarial
learning [Lample et al., 2018b].

2Without adding a constraint, the auto-encoder would simply learn to copy the input words. It
would not be able to understand the language structure. If the input was a sentence full of random
words, the model would simply copy those words in the same order indicating that it did not learn
how the language works.
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These newly formed cross-lingual phrase embeddings are utilized to induce a
phrase-table model. To do so, the method looks up each source phrase and its 100
nearest neighbors in the L2 language pair using cosine similarity to calculate the
distance between the source phrase and the possible translation candidates. Then, it
applies a softmax function over the cosine similarity to obtain the phrase translation
probabilities which is calculated as follows:

φ(f̄ |ē) = cos(ē, f̄)/τ∑
f̄ ′ cos(ē, f̄ ′)/τ

(3.10)

where ē is the source language phrase f̄ is the translation candidate, and τ a tem-
perature parameter is used to regulate the confidence in the predictions.

Statistical Machine Translation is a log-linear combination of several statistical
models where a tuning process is used to optimize the weights. A popular choice
to maximize the evaluation metric (e.g., BLEU) in the validation corpus is the
Minimum Error Rate Training (MERT)[Och, 2003].

In standard SMT, a parallel corpus would be used to tune and update the weights
that maximize the model. However, since using parallel data would violate the
constraint of the system being fully unsupervised, the authors proposed two methods
to optimize the model using monolingual data.

Unsupervised Tuning

Having trained all these different models, a tuning process is applied to optimize their
weights in the resulting log-linear model, which typically maximizes some evaluation
metric in a separate validation parallel data. The authors propose back-translation
to create a synthetic parallel corpus. A small monolingual corpus (e.g., 10,000
sentences) in the source language is used to create a synthetic parallel corpus by
translating it to the target language. This synthetic parallel corpus is then utilized
to tune the model, which is subsequently used to translate in the opposite direction
(i.e., from target to source). It performs the same in the reverse direction by making
small batches of a monolingual corpus, uses to tune the model, and iterating until
convergence.

Joint refinement

Refinement is applied to solve performance issues related to the phrase table initially
induced with the cross-lingual embeddings. The joint refinement begins by building
two synthetic corpora in opposite directions using the initial SMT system. After
the synthetic data is created, it extracts phrase pairs from each parallel corpora
and induces a new phrase table by taking their intersection. Doing so not only
guarantees that the probability estimates of the phrase-table are meaningful but



Chapter 3. Literature Review 27

also discards the ungrammatical phrases initially introduced by the cross-lingual
fused phrase-table.

3.8 Evaluation Metrics
Machine Translation evaluation is a hot topic within NLP. The main advantage of
using an automatic metric is to evaluate the translation output quickly and inex-
pensively. However, one of its shortcomings is the lack of correlation with human
judgment [Callison-Burch et al., 2006].

There are many evaluation metrics such as METEOR, hLepor, TER, chrF,
COMET, BertScore meteor, and BLEU [Papineni et al., 2002b]. Due to its wide
acceptance within the scientific field, BLEU was used to evaluate the MT systems
in this dissertation.

The core idea of BLEU (Bilingual Evaluation Understudy) is to assign a single
numerical score to a translation to tell how good the generated text is compared
to one or more reference translations. BLEU works by computing the modified
precision of the n-grams. This is done by summing up the count clips, which are
the number of times the n-gram appears in the reference text divided by the total
n-grams of the generated translation. Equations 3.11, 3.12 and 3.13 present this
more formally:

Score(y, ŷ) = exp
(

1

N

N∑

n=1

Pn(y, ŷ)× BP(y, ŷ)
)

(3.11)

where y is the reference translation, ŷ is the predicted translation, Pn is the
modified precision function, and BP is a brevity penalty function.

Pn(y, ŷ) =

∑
ngrams CountClip(ngram)
∑

ngrams Count(ngram)
(3.12)

with CountClip being the minimum between the n-gram count in the predicted
sentence ŷ and the n-gram count in the reference sentence y, and Count the number
of n-grams in the predicted sentence ŷ.

The brevity penalty is used to penalize translations that are too short using the
following calculation.

BP(y, ŷ) =






1 if length(ŷ) > length(y)

exp
(
1− length(ŷ)

length(y)

)
otherwise

(3.13)
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Chapter 4

Related Work and Low-Resource
Language Pairs

In this chapter we address two major topics. The first section covers the related
work on the machine translation systems studied in this dissertation. The second
section explains the motivation behind the choice of the low-resource language pairs
addressed in this work.

4.1 Unsupervised Neural Machine Translation
Unsupervised Neural Machine Translation (UNMT) began to gain traction with the
publication of two papers in 2018, one by Artetxe et al. [2018d] and another by Lam-
ple et al. [2018a], where the authors proposed a new approach1 using monolingual
corpora only.

When applied to high-resource language pairs, these methods achieved some de-
gree of success [Artetxe et al., 2018d, Lample et al., 2018a, Artetxe et al., 2019a, Sen
et al., 2019], however when applied to low-resource language pairs they performed
poorly.

Guzmán et al. [2019] obtained BLEU scores of 0.1 and 0.5 in a dataset called
Flores on Nepali-English and Sinhala-English. The authors attributed the poor
performance to the initialization of the cross-lingual word embeddings.

Marchisio et al. [2020] made an empirical evaluation in dissimilar languages.
They found that translation performance deteriorates when the source and target
corpora are from different language families. For instance, they observed that the
performance for the English-Russian pair was worse than for the English-French pair
(i.e., FR-EN loses 2.9 BLEU scores versus the 5.9 loss for RU-EN, when compared
to supervised) due to having different scripts.

1The only difference between Lample et al. [2018a] and Artetxe et al. [2018d] is that the former
incorporate adversarial training.

29
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Kim et al. [2020] studies corroborate the findings of Marchisio et al. [2020] that
state-of-the-art unsupervised neural machine translation fares poorly when dealing
with language dissimilarity and domain mismatch between source and target lan-
guage.

Given that phrase-based statistical machine translation (PBSMT) [Koehn et al.,
2003] models perform better than UNMT when dealing with scarce labeled data
[Lample et al., 2018b], Artetxe et al. [2019a] and Lample et al. [2018b] adapted
UNMT to train unsupervised statistical machine translation, ending up to overpass
previous state-of-the-art results in UNMT. Both approaches use cross-lingual em-
beddings from monolingual corpora, which are then used to train the initial phrase
model combined with a distortion and n-gram language model.

However, as noted by Artetxe et al. [2019a], unsupervised statistical machine
translation has some deficiencies and a new line of research looked into combining
unsupervised NMT with unsupervised statistical machine translation into a hybrid
approach[Lample et al., 2018b, Artetxe et al., 2019a, Marie and Fujita, 2018, Ren
et al., 2019].

Lample et al. [2018b] conducted a study on five language pairs, including low
resource (e.g., English-Urdu) and unrelated script (English-Russian). In all of the
language pairs examined, the hybrid approach achieved state-of-the-art results com-
pared to the previous approach that used the UNMT architecture.

Marie and Fujita [2018] proposed a new method using supervised NMT frame-
work and synthetic data generated using the unsupervised statistical machine trans-
lation, achieving state-of-the-art results on WMT’16 English-German dataset. The
authors claim that their approach could outperform previous works in dissimilar
languages [Kim et al., 2020] due to assuming relatedness between source and target
pairs.

The work of Artetxe et al. [2019a] began as an improvement of their previous
unsupervised SMT, where they added subword information and developed a joint
refinement procedure. Their proposed system achieved the best results compared
to previous studies using the hybrid system USTM/UNMT, improving the BLEU
scores by 5.5 points in English-to-German WMT’14 and 7.4 points more in English-
German WMT’16 and achieving 0.5 points more than the winning supervised system
in 2014.

Unlike the other methods [Artetxe et al., 2019c, 2018c, Lample et al., 2018b,
Marie and Fujita, 2018] previously mentioned where SMT was used to initialize
the system, Ren et al. [2019] employ SMT during the training phase. Looking
to solve the introduction of noise when using iterative back-translation in UNMT,
the authors proposed improving the quality of translation by combining SMT with
UNMT with a training EM algorithm where SMT boosts UNMT performance by
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dealing with the denoising while NMT is concerned with the fluency.
Marie et al. [2019b] proceeded to follow the same framework as Ren et al. [2019]

by making some adjustments using both backward and forward translation in the
induction of the phrase-model during the training of the USMT whereas previous
works only used backward [Artetxe et al., 2019a] or forward [Ren et al., 2019] trans-
lation.

To curb the lack of supervision signals in UNMT, Li et al. [2020] proposed the
reference language-based UNMT. It uses a pivot language that shares a parallel
corpus with the source language and is supposed to aid the translation task through
a proposed reference agreement mechanism.

4.2 Pivot Translation
Pivot translation has been widely studied in SMT [Cohn and Lapata, 2007, Wu and
Wang, 2007, Utiyama and Isahara, 2007, Bertoldi et al., 2008, Zahabi et al., 2013].
It was adapted to NMT by Johnson et al. [2017]. As mentioned in Section 3.5, the
main idea of pivot translation is to bridge the source and language target via an
intermediate language that is highly resourceful.

Liu et al. [2018] did a comparative study between the direct and pivot-based
approaches. In their experiments, they reported a better performance in both direc-
tions for the direct approach, with BLEU scores of 25.11 for ZH-PT and a BLEU of
18.68 for PT-ZH. Meanwhile, with the pivot method, they achieved a BLEU score
of 14.60 in the ZH→EN→PT direction and a BLEU score of 11.29 in the opposite
direction.

Liu et al. [2019] performed a comparative study using Chinese and English as
the pivot languages to translate among 3 languages which were Russian, French and
Spanish. They found that using a pivot that is linguistically close to both the source
and target languages leads to a performance increase. In their experiments, they
noticed that using English as a pivot rather than Chinese improved the model by
12 BLEU points on average.

Santos et al. [2019] achieved state-of-the-art results in the Portuguese-Chinese
direction, also using English as pivot, with a score of 17.48 BLEU, surpassing the
Google baseline.

We did not find previous works for the Portuguese-Korean direction. However,
somewhat extensive literature exists for pivot-based approaches to Korean paired up
with other languages. In a similar study by Liu et al. [2019] they compared English
and Chinese as the pivot language for Indo-European languages, Paul et al. [2009]
conducted comparative experiments using Asian languages. In the total of the eight
Asian languages explored, they found that using Asian languages as pivot had a



Chapter 4. Related Work and Low-Resource Language Pairs 32

better performance than using English as the pivot. For example, when the authors
tested Korean as the source language, it achieved the highest BLEU points when
Japanese was the pivot language and Chinese was the target. In comparison, the
BLEU scored slightly lower when they trained Korean-to-Chinese direction using
English as the pivot.

Kim et al. [2015] paper focuses on building a direct MT system from Korean to
Spanish using a pivot approach for Bilingual Lexicon Extraction. Choi et al. [2018]
tackled the low-resource language pair problem by devising a corpus extension on
low-resource language pairs and training a multi-source neural machine translation
system. The baseline model created was Korean-Arabic. The training data to
improve the baseline model was Korean-Arabic, English-Arabic, Japanese-Arabic,
and Chinese-Arabic corpora. With their experiments, the authors concluded that
using the two approaches in synergy (i.e., augmenting the corpora synthetically and
training a multi-source MT) improves the performance of the NMT in a low-resource
setting as attested with the Korean-Arabic direction. As shown in the paper, the
BLEU of the baseline model was 21.92 points, and with the two approaches together,
it jumped over 6 points, achieving a BLEU of 27.07.

4.3 Low-Resource Language Pairs
The conventional NMT systems that achieve a translation output similar in quality
to that of human translators require large amounts of good-quality parallel data.
However, datasets of this magnitude exist only for very few language pairs. The
consequence is that, due to data scarcity, using traditional NMT techniques to
train in other language pairs becomes impractical. As noted before, for NMT to
achieve comparable results to that of SMT it needs heaps of parallel data [Koehn
and Knowles, 2017a]. As such, it is essential to study methods that alleviate the
low-resource language (LRLs) problem as it hinders the capability of building robust
NMT systems for all existing languages.

There are many indicators to classify a language pair as being low-resource.
However, for this dissertation, we followed the criteria from [Lakew et al., 2019,
Platanios et al., 2018, Qi et al., 2018] that classifies a language pair to be low-
resource if the parallel corpora are below 0.5 million lines.

In our case, we opted for choosing the language pairs Korean-Portuguese and
Chinese-Portuguese as it exists an abundance of monolingual corpora for all of them
but the available parallel corpora is scarce and of poor quality.

Low-resource languages can be trained in several NMT architectures such as
semi-supervised [Edunov et al., 2018, Stahlberg et al., 2018], using data augmen-
tation methods [Platanios et al., 2018, Peng et al., 2020, Sennrich et al., 2016a],
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apply transfer-learning techniques [Neubig and Hu, 2018, Johnson et al., 2017,
Cooper Stickland et al., 2021] or with zero-shot approaches [Kim et al., 2019, Cheng
et al., 2016]. In our dissertation, we employed the unsupervised NMT approach,
considered the most extreme case of LRLs where no parallel data is available. De-
spite already existing small parallel corpora between the studied language pairs, we
wanted to test the feasibility of building NMT solutions for extreme settings of dis-
similar low-resource language pairs. As such, we constrained only to use monolingual
data.
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Chapter 5

Implementation

This chapter will discuss the implementation used to build the trilingual MT system.
Section 5.1 discusses the preprocessing, and the corpora we chose to train the

systems.
Section 5.2 will present and explain the two approaches studied in this disserta-

tion: (i) Unsupervised Neural Machine Translation and (ii) Pivot-Machine Transla-
tion.

Section 5.3 describes in detail how we implemented the two systems, and sec-
tion 5.4 concludes this chapter with a summary of the work done in constructing
these approaches.

5.1 Data and Preprocessing
In this section, we describe the data we used to train both NMT systems and the
preprocessing that was needed.

5.1.1 UNMT Corpora
We extracted the datasets used in our translation task from WMT monolingual
News Crawl.1 To train the UNMT system, we extracted 140 million words from
the Portuguese dataset and 180 million words from the Korean dataset. As for the
Chinese dataset we extracted 30 million words. Table 5.1 reports the size of the
datasets. To evaluate the results (i.e., cross-lingual embeddings), we obtained three
WordSim-353 datasets, one in Portuguese2, one in Korean3 [Park et al., 2018] and
one in Chinese4 [Chen and Ma, 2018]. All datasets are a result of the translation of
WordSim-353 and classified according to Agirre et al. [2009].

1http://data.statmt.org/news-crawl/
2https://portulanclarin.net/repository/browse/lx-wordsim-353/

c4e08b72e6dd11e6a2aa782bcb074135a5ac38ba70a14fb3adbd5782b21dacb0/
3https://github.com/SungjoonPark/KoreanWordVectors
4http://ckipsvr.iis.sinica.edu.tw/cembeval/reg.php
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Dataset Source Words
Portuguese NewsCrawl 140M

Korean NewsCrawl 180M
Chinese NewsCrawl 30M

Table 5.1: Number of words from the datasets and source from where they were
extracted

PT-EN Domain Sentences
Scielo Literature 3M

Europarl Legal 1.3M
Wikipedia NetCrawl 38M

TED Subtitles 300k
Paracrawl NetCrawl 2.8M

Table 5.2: PT-EN: parallel corpora distribution

5.1.2 Pivot Corpora
For the pivot approach, it was needed to find parallel corpora for Portuguese, Chi-
nese, Korean, and the pivot language, which in this case was English, as it was the
only language available among all the studied languages.

Portuguese → English Corpora

The corpora shown in Table 5.2 was taken from OPUS repository5 [Tiedemann,
2012]. The first dataset has around 3 million sentences and corresponds to trans-
lations, from Portuguese to English, of literary works. The second dataset, with
around 1.3 million sentences, refers to legal translations retrieved from the proceed-
ings of the European Parliament. The Wikipedia dataset is a compilation of articles
written in both Portuguese and English. Followed by that is the TED dataset with
around 300 thousand sentences which refers to a transcription of videos from Por-
tuguese to English, and finally, is the Paracrawl dataset, which is a compilation of
data crawled from the web, with 2.8 million parallel sentences. In total, 7.8 million
sentences were used.

English → Chinese Corpora

We used three datasets to train the NMT model from English to Chinese, with
around 2.24 million parallel sentences. The first one was Ted2020, which is comprised
of video transcripts. The second is Tanzil, a compilation of Quran texts, and the

5https://opus.nlpl.eu

https://opus.nlpl.eu
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EN-ZH Domain Sentences
TED2020 Subtitles 122k

Tanzil Religious 2M
WMT-News News 120k

Table 5.3: EN-ZH: parallel corpora distribution

EN-KR Domain Sentences
Paracrawl NetCrawl 4.0M

Tanzil Religious 93.6k
TED2020 Subtitles 400k

Wikimatrix NetCrawl 1.3M

Table 5.4: EN-KR: parallel corpora distribution

third is WMT-News which corresponds to data crawled from news articles. In
Table 5.3 there is a summarized version of the dataset used to train this model.

English → Korean Corpora

The data shown in Table 5.4 was also obtained from the OPUS repository. In
this model, 4 datasets were obtained comprising 5 million parallel sentences. As
mentioned above, Tanzil is of religious domain with a total of 1 million sentences.
Paracrawl is a collection of data crawled from the internet. Wikimatrix corresponds
to articles and texts retrieved from the internet and Wikipedia. At last, Ted2020 is
a collection of subtitles from the Ted Talkshow gathered from the year 2020.

As we can see from the Tables 5.2, 5.3 and 5.4, the datasets are of the same
domain as we tried to have datasets that were as close to each other as possible.
This is because domain mismatch is one of the causes of the error-propagation that
often plagues the performance of pivot NMT systems [Cheng, 2019].

5.1.3 Preprocessing
As mentioned in Section 3.1.2, subwording is a process that divides words into
smaller units. This preprocessing step is helpful in NMT because it helps to alle-
viate the out-of-vocabulary (OOV) words. This is due to conventional NMT being
inadequate to translate rare words. What subwording helps to form a dictionary
based on the partition of words into smaller units that will be used to translate
OOV words rather than replace them with a <unk> symbol.

There are many subword implementations like Byte-Pair-Encoding (BPE) [Sen-
nrich et al., 2016b], WordPiece [Schuster and Nakajima, 2012] and Sentence-Piece
[Kudo and Richardson, 2018]. In our case we opted for sentence-piece for two rea-
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sons: It does not require the raw text to be tokenized in order to implement the
algorithm, unlike BPE which assumes a preprocessing to the text has been done
before applying it; and it is already incorporated in the OpenNMT ecosystem and,
to standardize the same preprocessing steps in both NMT architectures, we chose it
so it could be implemented in the unsupervised NMT input.

Despite using the same subwording algorithm, the implementation pipeline dif-
fers. For the UNMT, the training was done separately on the monolingual corpus of
each language with a vocabulary of 50,000 entries. As for the pivot approach, it is
already embedded in the code from the OpenNMT framework.6 The only essential
step was configuring it to choose the vocabulary size and the input data path.

5.2 Unsupervised Neural Machine Translation

Figure 5.1: UNMT system pipeline

Figure 5.1 provides an overview of the steps needed to train the unsupervised
neural machine translation. It starts by gathering large amounts of monolingual
data converted to word embeddings. Afterward, the cross-lingual embeddings are
generated and fed as inputs to the UNMT system. The quality of the cross-lingual
embeddings is vital for the training of the UNMT. This is because cross-lingual
embeddings are used to initialize the system, and if so happens to be of poor quality,
then the entire model will be corrupted and converge to a poor local optima [Artetxe
et al., 2018c].

5.2.1 Monolingual Embeddings

The monolingual embeddings were obtained using Fasttext7. We followed the same
parameters used in the original training, the monolingual embeddings with a cbow
model of 10 negative samples, a context window of five words, and embeddings of
three hundred dimensions. We opted to use fasttext because it differs from word2vec
since the vectors are constructed as an averaged sum of the character n-grams. This
has the advantage of dealing with rare and OOV (out of vocabulary) words.

6It is the framework chosen to train the NMT models for the pivot approach
7https://fasttext.cc/

https://fasttext.cc/
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5.2.2 Cross-lingual Embeddings

After training the monolingual embeddings for each language used in this study, we
will use them to initialize the cross-lingual embedding algorithm. The most widely
used algorithms are MUSE [Lample et al., 2018a] and VecMap [Artetxe et al., 2018c].
We chose VecMap as it is the current state-of-the-art method. In an empirical study
conducted by Glavaš et al. [2019] where several unsupervised cross-lingual embed-
ding algorithms were tested, they found that VecMap had the best performance.

As Section 3.1.1 refers, VecMap is a cross-lingual embedding algorithm that re-
quires only monolingual corpora to project both monolingual embeddings into a
shared vector space. Previous methods required a bilingual training dictionary of a
few thousand words which could be a strenuous task for low-resource language pairs
such as the ones used in this work. To achieve this, the authors proposed a fully un-
supervised bilingual dictionary induction based on the assumption of isometry (i.e.,
corresponding words in different languages have a similar geometric arrangement)
and a robust self-learning algorithm. They formulate that similar words in different
languages have the same values and use this principle to build an initial dictionary
that will improve iteratively until convergence using the self-learning algorithm.

To achieve this, we used the publicly available authors’ repository8 and ran the
method for both pairs of languages on the command line interface: Portuguese-
Korean and Portuguese-Chinese. We ran it on GPU, taking approximately 10 min-
utes for each training session to converge.

5.2.3 Unsupervised Neural Machine Translation

Given that the unsupervised Neural Machine translation system uses fixed cross-
lingual embedding in the encoder, we had to train both languages using VecMap as
described in Section 3. Having done that, we are ready to train the system. We will
be reproducing the unsupervised machine translation system of Artetxe et al. [2017],
available to test on GitHub.9 We followed the parameters used in the original paper
to train the system with a batch size of 50 sentences and a vocabulary cutoff of up
to 50,000 words. As suggested by the authors, this cutoff is needed to deal with out-
of-memory issues due to hardware constraints. As the original paper reported, we
used Adam as the optimizer and a learning rate of 0.0002, a dropout regularization
with a drop probability 0.3 during training, and performed 300,000 iterations to
train each language variant.

8https://github.com/artetxem/vecmap
9https://github.com/artetxem/undreamt

https://github.com/artetxem/vecmap
https://github.com/artetxem/undreamt
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5.3 Pivot Neural Machine Translation
Pivot-based NMT is a two-step process where two systems are trained using source-
to-pivot and pivot-to-target data. This approach is an alternative to the direct
NMT, where concatenating the two trained systems allows for a better performance
than a direct approach with low resources. Since we are concerned with the impact of
low-resource languages on dissimilar languages, we trained two pivot systems in the
direction Portuguese→Korean and Portuguese→Chinese. One of the requirements
to build a pivot NMT is choosing a high-resource language to bridge the two models.
We opted out for English as the pivot since it exists large parallel corpora between
English and the remaining languages. In total, we trained three different systems,
and they followed the general pipeline:

• Portuguese-English-Korean: Since Portuguese is the source language, we start
by translating a model from Portuguese→English and then train an indepen-
dent model from English→Korean. In the end, we concatenate the two models
to translate from the source to the target.

• Portuguese-English-Chinese: As the Portuguese→English model has already
been trained, we train an independent model from English→Chinese and fol-
low the same procedure mentioned above.

5.3.1 Training Options

The hyperparameters used to train the transformer model are the same as in [Vaswani
et al., 2017] with 6 encoder and 8 decoder layers, 8 attention heads, and a word vector
size of 512. For a correct initialization of the parameters we set param_init_glorot

equal to true and param_init equal to 0. The batch type used was tokens and we
set it to 1000 tokens10 The optimizer used was Adam, with a learning rate of 2. We
performed 500,000 iterations to train each model and performed validation at every
10,000 steps. The entire configuration used to train the pivot-based approach can
be consulted in the appendix A.

5.3.2 Open-NMT Framework

Nowadays it exists many frameworks that aid in the implementation of NMT sys-
tems. The most common ones are Marian Framework11 from the University of Ed-

10In openNMT configuration guideline, they set it to 4095. However, we faced memory issues
and had to reduce the batch size until training converged.

11https://marian-nmt.github.io/

https://marian-nmt.github.io/
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inburgh, Fairseq12 from Meta, tensor2tensor13 from Google, and OpenNMT14 from
Harvard.

To aid in implementing the pivot model, we adopted the OpenNMT framework
[Klein et al., 2017]. This framework was initially developed by the Harvard NLP
labs and is currently maintained by SYSTRAN and Ubiqus.

It is implemented in Python and can be used in the two most popular deep
learning frameworks: Pytorch and Tensorflow. We chose OpenNMT because it is
fast, frequently updated, easy to use, and boasts an extensive array of features that
allow the developer to customize its models.

5.4 Summary
The goal of this chapter was to provide an overview of the work done to implement
the two NMT systems: (i) Unsupervised Neural Machine Translation and (ii) Pivot
approach.

The chapter began by describing the type of parallel corpora chosen (viz., data
source, data size, and domain) and the preprocessing steps.

Then, it introduced the implementation of the first model, explaining the steps
needed, such as obtaining the monolingual word embeddings and cross-lingual em-
beddings and then training the UNMT system.

Finally, it presented the latter NMT model, which mentions the training options,
the pivot approach pipeline, and the framework used.

The code described here can be found at https://github.com/nlx-group/UNMT-
between-PT-and-ZH-KR.git.

12https://ai.facebook.com/tools/fairseq
13https://github.com/tensorflow/tensor2tensor
14http://opennmt.net/

https://ai.facebook.com/tools/fairseq
https://github.com/tensorflow/tensor2tensor
http://opennmt.net/
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Chapter 6

Evaluation

In this chapter, we present the results obtained in our dissertation.
Section 6.1 shows the results obtained in the UNMT approach, where each sub-

section corresponds to an evaluation and analysis of our proposed system. Sub-
section 6.1.1 concerns an ablation study from the original paper of Artetxe et al.
[2018b] and a detailed evaluation of our reproduced values. Subsection 6.1.2 con-
tains a replication of [Artetxe et al., 2018d] in the pair of language EN⇐⇒FR and
our results in the pair of languages PT⇐⇒ZH and PT⇐⇒KR.

Section 6.2 refers to the results obtained in the pivot-based approach and a
qualitative analysis where we extracted three sentences from each language pair to
assess the model’s translation output better.

The data for replicating the evaluation reported here can be found at https://github.com/nlx-
group/UNMT-between-PT-and-ZH-KR/.

6.1 Unsupervised Neural Machine Translation
This section is divided into two subsections. The first subsection refers to the cross-
lingual embeddings evaluation. The second subsection provides an in-detail evalua-
tion of the UNMT translation output.

6.1.1 Cross-lingual evaluation datasets
Ablation Study

Following the original paper [Artetxe et al., 2017], we also performed an ablation
study. These results are reported in Tables 6.1 and 6.2.1 A more comprehensive
version of the latter table may be seen in Table B.1, in Appendix B.

We conducted five runs per ablation test, and our accuracy results follow the
original paper differing only with the unsupervised initialization and CSLS.

1The results for English-Finnish were left out because we could not replicate the experiment
due to the absence of the dataset for this language pair.
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Pearson Spearman s t
EN-DE 73.88 75.01 1.0 6.0
EN-ES 76.12 76.64 1.0 7.8
EN-FI — — 1.0 14.0
EN-IT 60.37 62.64 1.0 6.8

Table 6.1: Ablation study results evaluated using the WordSim 353 dataset.

EN-DE EN-ES EN-FI EN-IT
best best best best

Full System 48.5 37.6 33.5 32.6
Reproduced 48.33 36.98 33.50 47.87
- Stochastic 48.1 37.8 0.28 48.2
Reproduced 48.47 37.87 0.35 48.33
- Cutoff 48.3 35.5 31.9 46.9
Reproduced 31.11 37.07 33.50 48.13
- CSLS 0.0 0.0 0.0 0.0
Reproduced 48.33 37.0 33.30 36.93
Bidirectional 48.3 36.2 31.4 46.0
Reproduced 48.53 47.87 33.50 36.93
- Re-weighting 48.1 36.0 32.9 46.1
Reproduced 47.13 36.33 33.50 47.73

Table 6.2: Ablation study results of [Artetxe et al., 2017] and our reproduction,
evaluated using bilingual lexicon induction. Full table in Table B.1, in Appendix B.
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The accuracy reported for CSLS in the original paper can be explained due
to a bug found in the authors’ code. The code available by the authors does not
contemplate the method to run the unsupervised initialization. Thus, it was unclear
how to reproduce it and opted not to include it in the ablation study.

As for the vocabulary cutoff, we also faced some constraints due to computational
limitations. In the original paper, the authors conducted the ablation study by
setting K = 100. However, when we tried reproducing it, we ran against GPU
memory issues. As a solution, we were faced with two possibilities: either run it in
the CPU or reduce the K parameter. We opted for the second option due to the
expensive computation cost of running in CPU, which would take more than 3 days
to achieve convergence as tested by Garneau et al. [2020].

Cross-lingual embeddings

To evaluate the results of our experiment, we needed to have a gold standard dataset
to assess the quality of the embeddings. In the original paper, the authors used bilin-
gual dictionaries to obtain the accuracy of the cross-lingual embeddings. Instead, we
evaluated our task using cross-lingual word similarity datasets. The reason is that
we wanted to maintain the method fully unsupervised (i.e., recreate the method
without any bilingual signal), and to the best our knowledge there are no bilin-
gual dictionaries in the pairs of languages used in this experiment. To create the
cross-lingual word similarity datasets, we performed the following steps:

1. Obtain WordSim 353: This is a gold standard dataset developed by Finkel-
stein et al. [2002] and used to evaluate word similarity and relatedness in
English. It contains 353-word pairs associated with an average of 13 to 16
human judgments. The dataset is divided into two subsets: The first subset
has 153-word pairs evaluated by 13 human evaluators, and the second subset
has 200-word pairs evaluated by 16 subjects. Each word pair receives a score
from the annotators on a scale from 0 to 10, where 0 means unrelated and 10
refers to the same word.

2. Using the Camacho-Collados et al. [2015] framework: This framework
is a generalization of the method of Kennedy and Hirst [2012], which created
a manual cross-lingual word similarity data-set from two monolingual word
similarity dataset in French-English. Camacho-Collados et al. [2015] expanded
this to any pair of languages done automatically. This is done by pairing two
monolingual datasets that were previously aligned. Then the algorithm seeks
to pair them into a new paired dataset a’-b’ using a mapping function that
attributes a new similarity value (e.g., 0–4 in RG-65). It discards new pairs
a’-b’ if the difference between the scores is a quarter more significant than the
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PT KR PT ZH Score
computador 키보드 7.62 advogado 法律 8.38

manteiga 빵 6.19 valores 市场 8.08
jaguar 고양이 7.42 telemóvel 股票 1.62

minoria 평화 3.69 reserva 电话 1.62
atraso 뉴스 3.31 CD 股票 1.31
centro 학교 3.44 estrela 电影 7.38

atividade 여행 5.0 utensílio 工具 6.46
roupeiro 옷 8.0 ave 鹤 7.38

lucro 미디어 2.88 acorde 微笑 0.54
software 컴퓨터 8.5 mágico 玻璃 2.08

Table 6.3: Sample pairs from the PT-KR and PT-ZH cross-lingual word similarity
datasets (PT: Portuguese, KR: Korean, ZH: Chinese).

similarity scale size (e.g., 1.0 in RG-65). However, if smaller, a new aligned
pair is merged with a score equal to the average of the original similarity
scores.

Following this procedure, we created two cross-lingual word similarity datasets
based on the WordSim-353 in Portuguese-Korean and Portuguese-Chinese. To create
them we extracted from the internet three monolingual WordSim-353 datasets in
Portuguese2, Chinese3 [Chen and Ma, 2018] and Korean4 [Park et al., 2018]. Since
they are all translated from the original English WordSim-353 [Finkelstein et al.,
2002] data set they are aligned and thus can be used in the framework of Camacho-
Collados et al. [2015] to generate cross-lingual word similarity data-sets. Table 6.3
shows the sample pairs with their corresponding similarity scores from two of the
cross-lingual data sets.

Cross-lingual Embeddings on PT-KR and PT-ZH

The results of our experiments are reported in Tables 6.4 and 6.5. The first thing
that stands out is the discrepancy in the values between Portuguese-Korean and
Portuguese-Chinese. Although the scores of both languages are not statistically
significant, the gap between them is moderately broad. Though we do not have a
specific reason for this, we can speculate that one of the contributing factors is the
vocabulary size of the Chinese word embeddings.

Despite everything, the values obtained seem to be following the current liter-
ature as noted in [Vulić et al., 2019], where the authors noticed that unsupervised

2LX-WordSim-353 (https://hdl.handle.net/21.11129/0000-000B-D38E-7)
3http://ckipsvr.iis.sinica.edu.tw/cembeval/reg.php
4https://github.com/SungjoonPark/KoreanWordVectors

https://hdl.handle.net/21.11129/0000-000B-D38E-7
http://ckipsvr.iis.sinica.edu.tw/cembeval/reg.php
https://github.com/SungjoonPark/KoreanWordVectors
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PT-ZH
Pearson Spearman Pearson Spearman s t
(best) (best) (avg) (avg)

VecMap 8.66 9.69 8.0 9.0 1.0 6.8
Stochastic – – – – – –

Cutoff 12.97 12.72 11.36 10.73 1.0 25
CSLS 15.64 11.84 16.55 13.60 1.0 14

Bidirectional 8.4 9.60 9.69 7.2 1.0 8.2
Re-weighting 9.60 9.69 7.2 8.2 1.0 8.4

Table 6.4: Ablation study conducted in the language pair Portuguese-Chinese.

PT-KR
Pearson Spearman Pearson Spearman s t
(best) (best) (avg) (avg)

VecMap 42.46 40.79 40 41 1.0 6
Stochastic 44.00 43.51 41.81 41.35 1.0 14

Cutoff 44.00 43.51 41.81 41.35 1.0 14
CSLS 40.69 38.54 40.32 38.22 1.0 14

Bidirectional 40.52 38.27 34.78 32.52 1.0 13.31
Re-weighting 40.52 38.27 34.78 32.52 1.0 19.6

Table 6.5: Ablation study conducted in the language pair Portuguese-Korean.

word translation methods fail when language pairs are distant, and in [Garneau
et al., 2020], where they tested the method using four languages that are distant
from English, concluding that the method failed when dealing with Latvian and
Vietnamese languages.

We also conducted an ablation study as in the original paper to test the robust-
ness of the hyperparameters in dissimilar languages. Unlike Artetxe et al. [2018b],
who reported that the method did not converge without stochastic procedure in
dissimilar languages, we did not find a drop in performance in our experiments. Nor
did the system struggle to converge when CSLS was turned off, unlike what was
noticed by Garneau et al. [2020].

We want to highlight that our method was evaluated with a cross-lingual simi-
larity dataset instead of bilingual lexicon induction5. To compare the results of our

5Cross-lingual embeddings evaluated using a bilingual lexicon induction are focused on measur-
ing the accuracy of word translations and use a dictionary to induce the evaluation. Cross-lingual
similarity data-sets evaluate the semantic similarity between the alignments and do not require a
bilingual dictionary, thus making it more suitable for our task.
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cross-lingual embeddings from the original paper, refer to Table 6.1. At first glance,
these results show that the model performance is robust enough to changes done in
the hyperparameters.

Hyperparameters analysis. Following the recommendation of Garneau et al.
[2020], we also decided to test the VecMap framework robustness by conducting
experiments in the hyperparameters where we altered a key hyperparameter and
let the remaining ones stay fixed. The critical parameters chosen were the follow-
ing: (1) Number of neighbors in CSLS, (2) frequency-based vocabulary cutoff, and
(3) stochastic initialization p value.

Below, we explore in detail the impact on the performance of this assessment in
all of the tested languages (e.g., original paper and our experiments) and the average
runtime cost.

CSLS. We varied the k parameter within a range between 1 and 10. The results
are reported in Tables 6.2, 6.4 and 6.5. We noticed that the values did not show
a significant variation for all the tested language pairs. However, as expected, the
performance tends to drop as k increases, as well as the runtime and number of
iterations.

Frequency based vocabulary cutoff. To conduct the experiments under this
parameter, we tested several k values ranging from 10,000 to 50,000 with an in-
crement of 10,000 per run. As mentioned above, we had some initial difficulties
implementing the cutoff when k parameter passed a threshold above 50,000.

As expected, when the method was initialized with the lowest k value, the ac-
curacy dropped, and the runtime was faster. The only exception occurred when
running EN-IT, where the highest value obtained was when k is 10,000. However,
it remained remarkably stable throughout all the runs with variations around 1%.
In other language pairs, the model’s accuracy grew as k increased.

Our findings corroborate the results of Artetxe et al. [2018b], who noticed an
improved model performance as k was set to a higher value minus in the language
pair en-es where it dropped when vocabulary cutoff increased.

Stochastic dictionary induction. To conduct this experiment, we opted for
values between 0.05 and 0.3 for the initial keep probability (p0). As for p’s growth
factor pfactor we opted for a linear space of values between 1.5 and 3. Compared to
the entire system reproduction, the stochastic induction showed a slight performance
increase across all language pairs minus in EN-IT. Nonetheless, the variation was
minimal (less than 1%).
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Languages BLEU
EN-FR 8.47
FR-EN 7.45

Table 6.6: BLEU scores in newstest2014 in language-pair EN-FR

Throughout all the runs conducted, we verified that the model performs best
when the initial factor probability (p0) is set to 0.1, which is the default parameter
in the original paper.

6.1.2 Unsupervised Neural Machine Translation
This section will present the results of our study conducted in the pair of languages
PT-ZH and PT-KR. Moreover, a subsection is dedicated to a reproduction study
from the original paper in the language pair EN-FR.

Reproduction study

For the English-French dataset, the authors used the News Crawl6 corpora articles
from 2007 to 2013. Table 6.6 shows the results obtained in our reproduction.

The original paper obtained a BLEU of 9.98 in the direction FR-EN and a
BLEU of 6.25 in the direction EN-FR using the baseline model. To conduct these
experiments, we gathered data from the same source as the authors. However, we
circumscribed the data to the news articles from the years 2007 to 2009 due to
memory limitations.

To evaluate the unsupervised system, we used the test dataset NewsCommentary
v167 which contained around 2,000 sentences. We obtained a BLEU of 7.48 in the
direction FR-EN and a BLEU of 8.47 in the direction EN-FR, as presented in the
table 6.6. Judging from our results, we were able to reproduce with success the
UNMT system.

Low-Resource Language Pairs Evaluation

Tables 6.8 and 6.9 present the scores obtained from the unsupervised neural machine
translation. Due to the dual encoder nature of the UNMT architecture, we could
evaluate this approach’s performance in both directions. Based on these results,
it is possible to conclude that UNMT is not a viable approach for low-resource
language pairs. Our results seem to be following the current literature regarding
this approach.

6https://data.statmt.org/news-crawl/
7https://opus.nlpl.eu/News-Commentary.php

https://data.statmt.org/news-crawl/
https://opus.nlpl.eu/News-Commentary.php
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Source Reference System
L’or à 10.000 dollars
l’once ?

10,000 Gold? to 10,000 dollars

Mais devinez ce qui s’est
passé ?

Wouldn’t you know it? But what would come ?

Une réponse est bien sûr
un effondrement complet
du dollar.

One answer, of course, is
a complete collapse of the
US dollar.

An answer is like a full
collapse of the dollar.

Table 6.7: Translation output sample from FR→EN

Languages BLEU
PT-ZH 0.32
PT-KR 0.69

Table 6.8: UNMT BLEU scores for PT→ZH and PT→KR

Kim et al. [2020] researched the feasibility of the unsupervised NMT. In their
research, they tested 5 languages and found that on dissimilar language pairs, they
obtained a BLEU of less than 3 points. As previously mentioned in Section 4.1,
Guzmán et al. [2019] reported similar BLEU to ours in distant language pairs. In
the Nepali-English direction, they obtained a BLEU of 0.5 and a BLEU of 0.1 in
the direction English-Nepali and English-Sinhala.

In an empirical study conducted by Marchisio et al. [2020], where the authors
stress-tested UNMT under several situations, including the behavior of UNMT under
dissimilar language pairs with different scripts, like Guzmán et al. [2019] they also
tested UNMT on the English-Nepali and English-Sinhala on a dataset provided by
Facebook and obtained BLEU scores as low as 0.2.

A plausible explanation for these low scores is the poor cross-lingual embed-
ding initialization. Since UNMT is initialized with the cross-lingual embeddings,
which are used to provide the bilingual signal needed to initiate the iterative back-
translation, the quality of the UNMT depends on the cross-lingual embeddings.
If they have a poor degrading performance, then UNMT will not yield favorable
results.

Cross-lingual embeddings have a poor performance when dealing with distant

Languages BLEU
ZH-PT 0.07
KR-PT 0.59

Table 6.9: UNMT BLEU scores for ZH→PT and KR→PT
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language pairs [Vulić et al., 2019, Bojanowski et al., 2016, Glavaš et al., 2019, Hoshen
and Wolf, 2018]. The reason is that modern cross-lingual algorithms are built upon
the hypothesis that languages are isomorphic, that is the assumption that words in
different languages have a similar geometric distribution.

Despite this holding true in several languages, it fails for distant language pairs.
For instance, Bojanowski et al. [2016] noticed different structures for the word girl
in English and Japanese; Hoshen and Wolf [2018] did a similar study where they
mapped orthogonal mappings using fastText embeddings and noticed an 81% ac-
curacy for English-Spanish and a low 2% accuracy for English-Japanese; and Vulić
et al. [2019] noticed the worst performers were Korean, Thai, and Basque, whose
morphology is most distinct, while the best performers were found with similar lan-
guages and that none of the best performers in the fully unsupervised approach
surpassed the weakly supervised method.

Our hypothesis that the failure of UNMT is due to the weak cross-lingual embed-
dings performance is backed up by [Marchisio et al., 2020], who in their study explain
the poor performance of EN-SI and EN-NE as being due to “weak isomorphism”
between dissimilar languages.

As a comparison, the BLEU of the EN→DE was around 6.89 points,8 and the
cross-lingual embeddings were around 73.88% in a Pearson’s scale as shown in Ta-
ble 6.1. Whereas in the PT→ZH direction the cross-lingual evaluation was around
9% and the BLEU of the UNMT was less than 1.

Qualitative Analysis

To better assess the quality of the UNMT translation output, we selected around
30 parallel sentences and manually analyzed them in the PT⇐⇒ZH and PT⇐⇒KR
directions. Tables 6.10 and 6.11 present a small sample of the translation output in
both directions for the language pairs studied in this dissertation.

At first glance, our analysis shows that the model can decode the target language
but fails at conveying its meaning. For instance, in Table 6.10 in the first example,
it translates Uma Europa Alemã into 在哪里 which roughly means where?. On the
next example, it fails to translate Líderes para um Mundo sem Liderança into 实际
上, 这也并非易事 which means it is not easy in reality when the correct translation
should have been 领导缺乏领袖的世界 (Leaders of a World without Leadership).

On the same note, we noticed that the model seems to be able to capture the
topic of the translating sentences but acts poorly at decoding the correct meaning.
This example can be verified in Table 6.11 where in the first line, the reference
text mentions a golf tournament and the proposed system comments on American
football.

8This value is from the original paper [Artetxe et al., 2018d].
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Source Reference System
Uma Europa Alemã? 德国的欧洲? 在哪里?
Líderes para um Mundo
sem Liderança

领导缺乏领袖的世界 实际上, 这也并非易事.

Por exemplo, o Pres-
idente Francês Nicolas
Sarkozy impediu uma
posição Europeia comum
relativamente à proposta
de soberania Palestini-
ana às Nações Unidas em
Setembro. Por outras
palavras, mesmo quando
a França lidera, não o faz
sempre de uma maneira
construtiva.

但法国的单边主义做法
往往使其与欧洲伙伴敌
对。例如, 9 月份, 法国
总统萨尔科齐在联合国
巴勒斯坦建国投票中抢
占了欧洲共同立场。换
句话说, 即使由法国来领
导, 它也并不总是用这样
建设性的方式.

王沪宁在当天上午在全
国生态保护工作会议上
表示, “在长江中下游面
临的“太严重”. 问题”最
近, 长江经济带的发展,
也将成为“一带一路”的
重要组成部分。.

Table 6.10: UNMT translation output sample from PT→ZH

These results are a stark contrast with the translation output of the EN→FR
system, as shown in Table 6.7, where the model was able to output a translation
that is faithful to the meaning of the original sentence, despite the ungrammatical
phrase constructions.

6.2 Pivot Neural Machine Translation

In this section, we present the results from the pivot-based approach in the language
pairs PT→ZH and PT→KR. The results are shown in Table 6.12.

The pivot approach obtains 17.28 BLEU points in the PT→KR translation di-
rection. To evaluate it, we used 2,000 parallel sentences from the Tanzil dataset9

[Tiedemann, 2012] test set. For the language pair PT→ZH we used the News Com-
mentary v11 test set available at Opus NLP10. As highlighted by Santos et al. [2019],
to evaluate the PT→ZH approach, we had to use the jieba11 tokenizer on the test
set and in our proposed translation. Failing to do so would cause a decrease in the
BLEU score due to the algorithm being based on a white-space token overlap.

9https://opus.nlpl.eu/Tanzil-v1.php
10https://opus.nlpl.eu/News-Commentary-v11.php
11https://github.com/fxsjy/jieba

https://opus.nlpl.eu/Tanzil-v1.php
https://opus.nlpl.eu/News-Commentary-v11.php
https://github.com/fxsjy/jieba
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Source Reference System
일반적으로메이저대회
로알려져있고간단히메
이저라고도불리는남자
메이저골프대회는프로
골프에서가장권위있는
네개의연간토너먼트이
다.

Os principais torneios
masculinos do golfe,
geralmente conhecidos
como Major Champi-
onships, e muitas vezes
referidos simplesmente
como majors, são os
quatro prestigiados
torneios anuais de golfe
profissional.

O percurso da seleção
feminina de ouro, que
chegou a um ano após a
2000, durante a medalha
de prata da equipa da
pela equipa inglesa de
futebol americano .

그래서이들을먼저시험
한다.

É por isto que estou con-
tando a vocês primeiro.

Foi e se dedica à insta-
lação.

그두지역사이에는초등
학교하나가위치한다.

Estudo primário entre as
duas cidades .

Também há uma partici-
pação na faculdade.

Table 6.11: UNMT translation output sample from KR→PT

Languages BLEU
PT-KR 17.28
PT-ZH 13.28

Table 6.12: Pivot based approach BLEU scores for PT→KR and PT→ZH
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Qualitative Analysis

Similar to the analysis done in Section 6.1.2 where we analyzed the output of the
UNMT, we decided to follow the same evaluation on the pivot-based approach. Since
the pivot-based approach was trained on the direction PT→KR and PT→ZH, we
will only present an evaluation of this direction.

Table 6.13 shows an excerpt of the translation output of the pivot model from
PT→ZH.

In the first example, the model can accurately translate the Portuguese phrase
O que falhou em 2018? into Chinese. The only catch is that our proposed system
added an unrelated word 共和党 which translates to Republican Party. As we can
verify in this example, the Portuguese phrase which means What happened in 2008?
makes no reference to political parties. Despite translating this phrase accurately,
it added an unnecessary detail.

As for the second example Um consenso de Berlim? which in English means A
consensus from Berlin? the model was able to translate perfectly into Chinese, even
translating the city name Berlin into its official Chinese transliteration.

We also included an example of a lengthy sentence to test how the model would
behave. At first look, the proposed system behaved well in dealing with a long
sentence. Some examples are noticeable with the correct translation of European
Union (“União Europeia” in Portuguese), which our system translated to 欧盟.
Another example is accurate translation into Chinese of this complex sentence Com
efeito, as regras de origem (...), revelaram-se problemáticas em alguns dos anteriores
acordos de reconhecimento da UE. which refers to the excessive bureaucracy of EU
in the origin of products.

We also detected some deficiencies. For instance, in the original sentence Embora
uma laranja de origem brasileira, cuja venda é permitida em Portugal there is a
reference to Brazilian oranges; however, our system failed to mention Brazil when
referring to the oranges in the passage 尽管可以向葡萄牙出售的子橙.

The main difference between the reference text and our proposed system is that
our system is a literal translation of the Portuguese text, whereas the reference
strays away from the source sentence, writing it in a more target audience-focused
way. The goal of translation is to produce a text that sounds fluent in the target
language so that the audience does not realize that the text they are reading is a
product of a translation. Despite our proposed system capturing the meaning of
the source text, it still struggles in translation fluency and readers might find some
passages awkward.

We also incorporated a detailed analysis of the PT→KR, which can be consulted
in Table 6.14. In the first example, the model did poorly translating the source
sentence into Korean. Compared with the reference, our proposed system fails to
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capture the meaning of the Portuguese sentence. In the reference sentence뒤에남아
있던늙은한여인과 which roughly translates to an older woman who was left behind
our proposed system outputs two words that are not part of the Korean dictionary.

Regarding the second example, there are some mismatches between the reference
system “하나님께 권능이있으시니라” and our proposed system “사람들중에는
그들은아니거늘.” The reference text says Do not think God will break his promise
to his seekers. Truly, God has the power of retribution.. The proposed translation
means There are many among people that only pretend to believe in God and the
afterlife; however, they are genuinely not.

The final example contains some mismatches between the reference and our
proposal system. Interestingly, the original text contains an error regarding the
misspelling of Ezra as 아자르 (reads as ajare) when in fact, it should have been
written as 에즈라 (ejera). The reference text can be translated into Does Abraham
worship the idol of his father Ezra as a god? You and your people are wrong whereas
our proposed system translated into He created you, shaped you, and gave you
balance. From this, we can observe that our proposed system understands that God
is mentioned in the original text. However, it fails to do an accurate translation.
The original text questions whether Abraham worships his father, Ezra, as a god,
whereas our proposed system translated into God having created the subject and
shaped him.
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Source Reference System
O que falhou em 2008? 2008 年败在何处? 共和党,2008 年什么失

败?
Um consenso de Berlim ? 柏林共识? 柏林达成共识?
Com efeito , as regras de
origem excessivamente
restritivas, como por
exemplo as que regem
as normas dos serviços
profissionais, revelaram-
se problemáticas em
alguns dos anteriores
acordos de reconheci-
mento da UE. Embora
uma laranja de origem
brasileira , cuja venda é
permitida em Portugal,
possa ser vendida em
toda a UE, um engen-
heiro ou contabilista de
nacionalidade brasileira
habilitados para exercer
em Portugal, têm de
cumprir exigências dis-
tintas em matéria de
autorização se quiserem
exercer a sua profissão
noutro país da UE, difi-
cultando a tão necessária
mobilidade laboral, obri-
gando os trabalhadores
não-europeus a enfrentar
procedimentos buro-
cráticos dispendiosos e
ineficazes .

事实上, 欧盟此前的不少
承认协议 ( 比如在专业
服务标准方面) 表明, 过
度约束的来源地规则很
有问题大有问题。尽管
获准在葡萄牙出售的巴
西橙可以在整个欧盟出
售, 但获得葡萄牙执照的
巴西工程师和会计师仍
必须满足欧盟其他地区
各自的执业要求, 这迫使
非欧洲工人忍受费时费
力的官僚主义流程, 不利
于急需的劳动力流动。

事实上, 过度限制性来源
的规则, 如治理专业服务
规则的人, 在此前的欧盟
识别协议中, 被证明是有
问题的。尽管可以向葡
萄牙出售的子橙, 可以在
整个欧盟中, 但大多是工
程师和会计师让葡萄牙
得以在葡萄牙锻炼, 如果
它们想在另一个欧盟国
家执业时满足不同的要
求, 从而迫使非欧洲劳工
流动。

Table 6.13: Pivot-based approach output sample for PT→ZH
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Source Reference System
Exceto uma a anciã, que
foi deixada para trás.

뒤에남아있던늙은한여
인과

오직와! 만도움!

Nunca penseis que Deus
falte à promessa feita
aos Seus mensageiros,
porque Deus é Punidor,
Poderosíssimo.

하나님께그분의선지자
들에게약속을어길것이
라생각치말라실로하나
님은웅보의권능이있으
시니라

사람들중에는하나님과
내세를믿는척말하는무
리가있으나실로그들은
아니거늘

Quando Abraão disse a
Ezra, seu pai: Tomas os
ídolos por deuses ? Eis
que te vejo a ti e a teu
povo em evidente erro.

일러가로되아브라함이
그의아버지아자르깨우
상을신으로모시나이까
당신과그리고당신백성
은분명히잘못하고있습
니다.

그분께서너희를창조하
고형상을만든후균형을
주시었고.

Table 6.14: Pivot-based approach output sample for PT→KR
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Chapter 7

Conclusion

The work conducted in this dissertation allowed me to grasp the basics of Machine
Translation and understand a range of approaches and techniques which can be used
when dealing with low-resource languages. As covered in this dissertation, there is
still much work to be done to reach a situation where low-resource languages can be
as competitive as their high-resource language counterparts. Nonetheless, we will
mention some future research guidelines that can help mitigate the performance gap
between low and high-resource language pairs.

This Chapter concludes our dissertation. It summarizes the main results in
Section 7.1. Then, Section 7.2 lists the contributions of this dissertation. The final
Section 7.3 closes this work by providing some guidelines for future research.

7.1 Summary
This dissertation aimed to study the feasibility of devising a machine translation
system using only monolingual corpora. For this purpose, we tested two architec-
tures: (i) Unsupervised Neural Machine Translation and (ii) Pivot-based approach.
As for the languages chosen, we wanted to recreate a realistic setting. Thus we opted
for low-resource language pairs that are from distant language families. By choosing
PT→KR and PT→ZH, we get an insight into how unsupervised techniques behave
in this setting, and a reference on how to proceed should be needed in the future to
build an MT system for distant low-resource language pairs.

With a BLEU of 17.28 points for the PT→KR and a BLEU of 13.37 for PT→ZH,
it is possible to gauge that the pivot-based approach is the most suitable choice
for both language pairs. The results of the UNMT, as shown in Table 6.9 are
aligned with the current literature [Marchisio et al., 2020, Guzmán et al., 2019, Kim
et al., 2020] where they also tested an unsupervised based approach on low-resource
languages and obtained low BLEU scores.

The code and data for the experiments reported here can be found at the footnote
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below. 1

7.2 Contributions
The major contributions made in this dissertation are as follows:

• An exploratory study in dissimilar low-resource language pairs
To study the feasibility and robustness of building NMT systems using only
monolingual corpora, two NMT systems were devised: (i) Unsupervised Neu-
ral Machine Translation; (ii) Pivot approach. As mentioned before, we con-
cluded that UNMT is unfeasible for distant languages due to the cross-lingual
embedding initialization that leads to poor performance of the model.

• A comparative study of cross-lingual embeddings
Cross-lingual embeddings play a major part in the success of the UNMT ap-
proach. This is noticeable in our results that highlight the differences between
the cross-lingual scores of Indo-European languages and their BLEU scores
on the UNMT system versus our experiments. An extensive body of litera-
ture [Doval et al., 2020, Søgaard et al., 2018, Glavaš et al., 2019] has been
conducted in studying the impact of distant languages in cross-lingual em-
bedding algorithms. The consensus is that cross-lingual embeddings provide
unsatisfactory solutions to distant language pairs due to a lack of isomorphism
between the languages in the pair. Our results (cf. Tables 6.8 and 6.9) align
with those found in the current literature.

• The creation of competitive PT→ZH and PT→KR NMT systems
Using the pivot-based approach on the direction PT→KR and PT→ZH, we
achieved competitive scores on a methodology that did not require parallel
corpora between the tested languages. It achieves 17.28 BLEU on PT→KR
and 13.37 BLEU on PT→ZH..

7.3 Future Work
Despite the pivot-based approach having obtained good scores, there is still work to
improve the accuracy of MT models for low-resource language pairs. With that in
mind, we present two research topics that can be further explored to improve the
performance of unsupervised machine translation.

1https://github.com/nlx-group/UNMT-between-PT-and-ZH-KR.git - Mestrado de Informática
- NLX-Group
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7.3.1 Hybrid model

As mentioned in Section 3.7, the hybrid model is a viable architecture that con-
nects statistical machine translation with neural machine translation. The primary
purpose of using SMT is to provide a better initialization which was the major
degrading factor in UNMT.

This approach follows the idea of using a phrase table to initialize the model
and then feeding the phrase table to a standard NMT system that is improved
iteratively. The idea of using a phrase-table comes from research conducted by
Artetxe et al. [2018c] and Lample et al. [2018b], where it was noticed that UNMT
systems were superseded by SMT approaches. This phrase-table is induced through
cross-lingual embeddings in combination with an n-gram language model and is
improved iteratively via back-translation.

Recent work [Artetxe et al., 2019c, Lample et al., 2018b] into hybrid models has
yielded better results than UNMT approaches. Artetxe et al. [2019c] achieved 5.5
points more than the previous state-of-art unsupervised approach, obtaining a total
score of 22.5 BLEU points in English-to-German WMT 2014.

This technique could prove its usefulness for PT ↔ ZH and PT ↔ KR language
pairs since it only requires monolingual data and has achieved far better scores than
the previous state-of-art UNMT system.

7.3.2 Cross-lingual embeddings

The assumption of approximate isomorphism between languages is the a critical
factor the method of Artetxe et al. [2018b]. As mentioned before, this assumption
assumes that words in different languages share a similar geometric composition.
However, this isomorphism can only be attested for similar languages and domains,
and for distant language pairs it leads to a degradation in performance.

One of the lines of research to mitigate this degrading factor is to explore new
methods that can increase the isomorphism of monolingual spaces, as presented by
the work of Zhang et al. [2019]. Many current cross-lingual embeddings methods
[Conneau et al., 2017a, Artetxe et al., 2018b] introduced an orthogonal constraint
into their algorithms. It is argued that by adding this constraint, the original struc-
ture of the monolingual embeddings is maintained and enriched by connecting with
the other languages. Nonetheless, the success of using orthogonal methods is still
tied to isomorphism. Concerned with that, Zhang et al. [2019] proposed an itera-
tive approach that normalizes the length of the monolingual embeddings to make
them more similar, which in return improves the alignment. The method is called
Iterative Normalization and is backed up by two properties: length-invariance and
center-invariance.
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Length-Invariance: This property refers that all vectors should be of equal
length. This constraint is added to solve an inconsistency in the cross-lingual em-
bedding algorithms where the training objective is to maximize the dot product and
cosine similarity by minimizing the Euclidean distance. In addition, length invari-
ance satisfies another prerequisite of bilingual orthogonal mapping that refers to
translation pairs should be of equal length.

Center-Invariance: It mentions that the mean vector of different languages
should have the same length. This proposal has already been exploited by Artetxe
et al. [2016], who reported that zero-mean centering (i.e., ensuring that the mean
vector is zero) improved dictionary induction. The only difference between the
approach of Artetxe et al. [2016] and that of Zhang et al. [2019] is the motivation
behind zero-mean centering. Artetxe et al. [2016] assume that two randomly picked
words should not be similar or dissimilar. However, as Zhang et al. [2019] argue,
there is not an even semantic distribution of words as there are words prone to
having more synonyms than other words. Instead, zero-mean should be implemented
because it satisfies the center-invariance constraint.

Zhang et al. [2019] tested their approach using MUSE [Conneau et al., 2017a]
dictionaries and reported a performance increase when Iterative Normalization was
applied. The most exciting finding was a 40% accuracy improvement when their
method was applied in the language pair English-Japanese.

Since this method provides a solution for orthogonal mapping for language pairs
where isomorphism is not found and presented by the results in the dissimilar lan-
guage pair English-Japanese, it could be advantageous to map the cross-lingual
embeddings on this approach and then train a UNMT system. As the performance
of UNMT is bound to the quality of the cross-lingual embeddings, it can be assumed
that this would lead to a better translation output for dissimilar languages.



Appendix A

Hyper-Parameters for Training

The following hyperparameters were used to train the Transformer model on the
openNMT framework:

• Train steps: valid steps: 10000 train steps: 500000

• Batching: queue size: 10000 bucket size: 32768 world size: 4 gpu ranks: [0]
batch type: tokens batch size: 4096 valid batch size: 8 max generator batches:
2 accum-count: [4] accum-steps: [0]

• Optimization: model-dtype: fp32 optim: adam learning rate: 2 warmup-
steps: 8000 decay-method: noam adam-beta2: 0.998 max-grad-norm: 0 label-
smoothing: 0.1 param-init: 0 param-init-glorot: true normalization: tokens

• Model: encoder type: transformer decoder type: transformer position encod-
ing: true encoder layers: 6 decoder layers: 6 heads: 8 rnn size: 512 word
vector size: 512 transformer-ff: 2048 dropout-steps: [0] dropout: [0.1] atten-
tion dropout: [0.1]
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Appendix B

Ablation Study on Cross-lingual
Embeddings

EN-DE EN-ES EN-FI EN-IT

best avg s t best avg s t best avg s t best avg s t

Full System 48.5 48.2 1.0 7.3 37.6 37.3 1.0 9.1 33.5 32.6 1.0 12.9 48.5 48.1 1.0 8.9
Reproduced 48.3348.331.0 6 36.9836.981.0 6.8 33.5033.50 10 14 47.8747.871.0 7.8

- Stochastic 48.1 48.351.0 2.5 37.8 37.8 1.0 2.6 0.28 0.28 0 4.3 48.2 48.2 1.0 2.7
Reproduced 48.4748.331.0 5.2 37.8737.291.0 4.46 0.35 0.35 0 5.2 48.3348.181.0 4.33

- Cutoff 48.3 48.1 1.0105.3 35.5 34.9 1.0185.2 31.9 30.8 1.0162.5 46.9 46.5 1.0114.5
Reproduced 31.1129.161.0 28 37.07 36.6 1.0 7.7 33.5033.501.0 14 48.1347.971.0 35

- CSLS 0.0 0.0 0 13.6 0.0 0.0 0.0 14.1 0.0 0.0 0.0 13.1 0.0 0.0 0.0 15.0
Reproduced 48.3348.33 10 6 37.0 36.711.0 9.4 33.30 32.2 1.0 15 36.9336.98 10 7.67

Bidirectional 48.3 48.0 1.0 5.5 36.2 35.8 1.0 7.3 31.4 24.9 0.8 5.6 46.0 45.4 1.0 5.6
Reproduced 48.5348.131.0 3.8 47.8747.871.0 6.8 33.5033.50 10 14 36.9836.931.0 8.1

- Re-weighting 48.1 47.4 1.0 7.0 36.0 35.5 1.0 9.1 32.9 31.8 1.0 11.2 46.1 45.6 1.0 8.4
Reproduced 47.1347.131.0 7.5 36.3336.33 10 6.8 33.5033.501.0 5.50 47.7347.201.0 6.8

Table B.1: Full table results on the ablation study conducted on cross-lingual em-
beddings.
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