

2022

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

An Exploratory Study on the Usage of Quantum Programming

Languages

Felipe Cavalcanti Ferreira

Mestrado em Engenharia Informática

Dissertação orientada por:

Prof. Doutor José Carlos Medeiros de Campos

Acknowledgments

Initially, I would like to thank my family for all the support, always encouraging me
and celebrating my victories. Especially my wife, for her patience, understanding, love,
and taking care of our baby; this project would not be possible without her. To my family,
I thank the encouragement for completing this thesis, which means the conclusion of a
journey of academic and personal growth. To my dissertation supervisor, Prof. José Cam-
pos, I would like to thank him for the guidance provided and for his insights, availability,
support, and sharing of knowledge. Here I express my gratitude to him. Thanks also to
all the others I did not mention here but who contributed to the realization of this thesis.

i

I dedicate this thesis to my wife and my son. Thank you for understanding my hours of
absence.

Resumo

O uso de linguagens de programação quântica na computação quântica permite ins-
truir um computador quântico para executar certas tarefas. Na computação clássica, os
computadores manipulam bits individuais, armazenando dados nos estados binários de 0
e 1. Os computadores quânticos são construı́dos utilizando bits quânticos (qubits), e se-
guem as leis quânticas em vez das leis de Newton, o que lhes permite ter a probabilidade
de serem 0 e 1 simultaneamente. Na computação quântica, essa informação é manipu-
lada aproveitando as principais propriedades da mecânica quântica, como superposição e
emaranhamento. A superposição é a capacidade de um sistema quântico estar em vários
estados ao mesmo tempo até que seja medido. Já o emaranhamento quântico é o fenômeno
fı́sico que ocorre quando um grupo de partı́culas, ao ser gerado, interage ou compartilha
proximidade espacial de tal forma que o estado quântico de cada partı́cula do grupo não
pode ser descrito independentemente do estado das outras, inclusive quando as partı́culas
são separadas por uma grande distância.

As linguagens começaram a ser desenvolvidas já no inı́cio da criação dos dispositivos
quânticos e são usadas para simular algoritmos quânticos. Nesta investigação, identifi-
camos 37 linguagens de programação quântica propostas desde 1996. É provável que
muitas outras estejam em desenvolvimento, dado o rápido desenvolvimento da área de
computação quântica. O grande número de linguagens de programação quântica chama
atenção para melhor investigar por que existem tantas linguagens; como essas linguagens
estão sendo usadas e por quem; o que torna uma linguagem quântica popular; entre outros
aspectos. Embora várias linguagens de programação quântica com diferentes recursos e
objetivos tenham sido desenvolvidas nos últimos 25 anos, até o momento nenhum estudo
havia sido realizado sobre quem, como e para quê se usa uma linguagem de programação
quântica.

Nesta tese, identificamos e descrevemos várias linguagens de programação quântica,
resumindo as caracterı́sticas e principais funcionalidades de cada linguagem, bem como
o ano em que foram criadas; se são open source, ativas, acadêmicas ou industriais; seu
autor; e qual o tipo da linguagem (imperativa, declarativa ou multiparadigma). Também
entrevistamos 251 desenvolvedores para responder a várias questões propostas neste es-
tudo relacionadas ao uso de linguagens de programação quântica. O inquérito foi divul-
gado em canais especı́ficos de redes sociais sobre computação quântica, a exemplo de

iv

grupos no Facebook, Linkedin, Discord e Twitter. A divulgação também foi feita em ou-
tros sı́tios online, como Slack e mailing. Também foi enviado o inquérito, por e-mail, para
autores de artigos sobre linguagens de programação quântica e para outros pesquisadores
no campo da computação quântica.

O inquérito foi realizado em duas fases: a primeira, com apenas 2 participantes para
pré-testar as perguntas, validá-las e calibrar o tempo estimado para respondê-las. Após
essa primeira fase, algumas correções foram necessárias e o inquérito foi atualizado com
as lições aprendidas. Passou-se, então, à segunda fase, quando o inquérito foi divulgado
e realizado com 251 participantes.. O inquérito ficou aberto por aproximadamente 60
dias, e um lembrete foi enviado para os possı́veis participantes após 10 dias. Depois deste
periódo, o inquérito foi encerrado e os dados coletados foram submetidos a análises para
ajudar a responder as questões propostas neste estudo.

Após a análise dos resultados, o estudo mostra que quase 90,0% dos participantes
que responderam ao inquérito e utilizam linguagens de programação quântica são do sexo
masculino e 22,2% deles moram nos Estados Unidos da América. 58,2% têm entre 25 e
44 anos. 63,0% possuem mestrado ou doutorado. 86,2% têm mais de cinco anos de ex-
periência utilizando linguagens de programação clássicas. 42,8% dos participantes usam
linguagens de programação quântica para pesquisa, enquanto 34,6% as usam porque gos-
tam de aprender novas linguagens, 16,4% as usam para trabalhar e 6,3% as usam para
outras tarefas diversas.

De acordo com as respostas dos participantes, Qiskit (Python) é a linguagem de
programação quântica mais utilizada, sendo utilizada por mais de 85,0% dos participantes
que responderam ao inquérito, seguida por Cirq (Python) com 43,8% e OpenQASM com
37,0% dos participantes. Python, por sua vez, é a linguagem clássica mais utilizada para
construir programas quânticos, utilizada por 92,3% dos participantes. Os participantes
mencionaram várias razões pelas quais escolhem utilizar uma linguagem de programação
quântica. As mais mencionadas foram o fato de apresentarem sintaxe de código aberto,
de serem fáceis de aprender (baseadas em uma linguagem de programação existente), a
disponibilidade de documentação, exemplos e recursos, bem como de uma comunidade
ativa.

Cirq, com 25,5%, foi a linguagem de programação quântica mais escolhida pelos
participantes como aquela que gostariam de aprender em um futuro próximo, seguida
de Qiskit com 20,2% e Q# com 18,8%. O principal motivo dessas escolhas, segundo
os entrevistados, foi que “ouviram falar da linguagem”, indicando a credibilidade e a
visibilidade mundial das grandes empresas de tecnologia, como Google, IBM e Microsoft,
responsáveis pelo desenvolvimento de tais linguagens.

Um percentual de 31,7% dos participantes do inquérito respondeu que entende ne-
cessário desenvolver outra linguagem de programação quântica. Em contrapartida, 25,0%,
deles responderam que não pensam desse modo. A principal razão apontada para a ne-

v

cessidade de outra linguagem de programação quântica foi o desenvolvimento de uma
linguagem de programação quântica mais madura, padronizada, de alto nı́vel e com novos
recursos (por exemplo, manipulação de correção de erros em dispositivos reais). Uma fa-
tia de 42,8% dos participantes respondeu que existem muitas linguagens de programação
quântica; em contrapartida, 18,3% responderam que não existem, enquanto 38,9% não
responderam a esta pergunta por diferentes motivos, como não saber ou não ter conheci-
mento para respondê-la.

Ao final da tese, com base nos resultados da investigação, fazemos recomendações
para o desenvolvimento mais aprimorado de linguagens de programação quântica. Em
primeiro lugar, sugerimos que linguagens de programação quântica adotem certos recur-
sos básicos amplamente adotados nas linguagens clássicas (por exemplo, generalidade,
completude, extensibilidade e expressividade). Ainda, sugerimos que, ao desenvolver
uma nova linguagem, os autores forneçam tutoriais, materiais de ensino e recursos para
que os desenvolvedores possam aprender como usar a linguagem para desenvolver seus
algoritmos. Essa documentação deve estar disponı́vel para que os desenvolvedores a con-
sultem sempre que necessário. Os exemplos de código também beneficiam os desen-
volvedores, especialmente para aprender uma nova linguagem. Para incentivar o uso da
linguagem, sugerimos que possua uma comunidade extensa e ativa, permitindo que os
desenvolvedores troquem informações entre si, ajudando-os a solucionar dúvidas e pro-
blemas encontrados em seus códigos.

Sugerimos, ademais, que as linguagens de programação quântica podem ter patrocı́nio
corporativo, inclusive para que sempre haja desenvolvedores trabalhando para evoluir e
dar-lhes suporte. Ainda, sugerimos a possibilidade de que programas quânticos rodem em
computadores quânticos reais, ao invés de serem usados apenas em simuladores, de modo
que os desenvolvedores sejam motivados a aprender e a usar a linguagem de programação
quântica para desenvolver seus programas. Ademais, construı́-las sobre linguagens de
programação clássica, caso suportem, torna provável que os desenvolvedores as utilizem
mais facilmente, porque tendem a adotar linguagens com sintaxe que lhes é familiar.

Concluı́mos, ainda, que uma linguagem de programação quântica, para ser bem-
sucedida, deve fornecer o maior número possı́vel de recursos e ferramentas para os desen-
volvedores construı́rem um programa quântico, como IDE’s especializados em programas
quânticos, simuladores e bibliotecas para programação quântica. Uma última e essencial
recomendação feita na tese é a de consultar os desenvolvedores de programas quânticos
para entender suas reais necessidades, nomeadamente quais os principais recursos de que
precisam, quais os principais problemas encontrados nas linguagens que utilizam atual-
mente e o que pode ser implementado para melhorá-las.

Para trabalhos futuros, pensamos que seria interessante estender o estudo com lingua-
gens de programação quântica adicionais e incluir linguagens recém-projetadas, repetindo
o inquérito de forma a incluir tais linguagens.

vi

Palavras-chave: Computação quântica, Programação quântica, Linguagens de
programação quântica, Linguagens quânticas, Inguérito

vii

Abstract

As in the classical realm, the usage of quantum programming languages in quan-
tum computing allows one to instruct a quantum computer to perform certain tasks. Al-
though several imperative, declarative, and multi-paradigm quantum programming lan-
guages with different features and goals have been developed in the last 25 years, no study
has been conducted on who, how, and what for does one use a quantum programming
language. In this thesis, we first identified and described several quantum programming
languages and then surveyed 251 quantum practitioners to answer several questions re-
lated to the usage of quantum programming languages. Further, an analysis of the results
obtained is presented and shows that most of the quantum practitioners use the languages
for research and that Qiskit (Python) is the most used one. Finally, we make recommen-
dations for further development of quantum programming languages, such as building on
top of a classical programming language, running in real quantum computers, supporting
language documentation, and consulting developers’ needs.

Keywords: Quantum computing, Quantum programming, Quantum programming
languages, Quantum languages, Survey

ix

Contents

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Approach . 2
1.4 Contributions . 2
1.5 Structure of the document . 2

2 Background 5
2.1 Quantum Computing . 5
2.2 Qubits . 5
2.3 Measurement . 6
2.4 Entanglement of States . 6
2.5 Programming Languages . 7
2.6 Summary . 7

3 Related Work 9
3.1 Classical Programming Languages . 9
3.2 Towards a Quantum Programming Language by Selinger (2004) 10
3.3 A Brief Survey of Quantum Programming Languages by Selinger (2004) 11
3.4 Quantum Programming Language by Unruh (2006) 11
3.5 Quantum Programming Language, Survey and Bibliography by Gay (2006) 13
3.6 A Survey of Quantum Programming Languages: History, Methods, and

Tools by Sofge (2008) . 14
3.7 The Modern State of Quantum Programming Language by Rojas (2019) . 14
3.8 Quantum Programming Languages: A Systematic Review of Research

Topic and Top Cited Languages by Garhwal et al. (2019) 15
3.9 Software Engineering for Quantum Programming: How Far Are We? by

De Stefano et al. (2022) . 16

xi

3.10 Summary . 16

4 Quantum Programming Languages 17
4.1 Imperative Quantum Programming Languages 18

4.1.1 QCL . 18
4.1.2 QASM . 19
4.1.3 Silq . 19
4.1.4 Q Language . 19
4.1.5 qGCL . 20
4.1.6 LanQ . 20
4.1.7 Q|SI⟩ . 20
4.1.8 OpenQASM . 20
4.1.9 Scaffold . 20
4.1.10 cQAMS . 21
4.1.11 Quil . 21
4.1.12 QSEL . 21
4.1.13 Ket . 21
4.1.14 NDQJava . 22

4.2 Declarative Quantum Programming Languages 22
4.2.1 QPL and QFC . 22
4.2.2 QML . 22
4.2.3 Sabry’s Language . 23
4.2.4 Lambda Calculi (λq) . 23
4.2.5 Quipper . 23
4.2.6 NDQFP . 24
4.2.7 LIQUi|⟩ . 24
4.2.8 QHaskell . 24

4.3 Multi-paradigm and domain-specific languages 24
4.3.1 QDK (Q#, Python and .NET Languages) 25
4.3.2 cQPL . 25
4.3.3 QPAlg . 25
4.3.4 CQP . 26
4.3.5 QualFL . 26
4.3.6 QHAL . 26
4.3.7 QISKIT (Python) . 26
4.3.8 Cirq (Python) . 27
4.3.9 Braket SDK (Python) . 27
4.3.10 Strawberry Fields (Blackbird and Python) 27
4.3.11 Forest (Python) . 28
4.3.12 DWave Ocean (Python) . 28

xii

4.3.13 Orquestra (Python) . 28

4.3.14 Cove (C#) . 28

4.3.15 ProjectQ (Python) . 29

4.4 Summary . 29

5 Methodology 31
5.1 Questionnaire Platforms . 32

5.2 Questionnaire Guidelines . 32

5.3 Programming Languages Survey Examples 33

5.4 Our survey . 33

5.4.1 Structure . 33

5.4.2 How the survey was conducted 34

5.4.3 Data Analysis . 34

5.5 Threats to Validity . 35

5.5.1 Threats to External Validity . 35

5.5.2 Threats to Internal Validity . 35

5.5.3 Threats to Construct Validity . 36

5.6 Summary . 36

6 Results 37
6.1 RQ1: Who is using quantum programming languages? 37

6.2 RQ2: How are quantum programming languages being used? 40

6.3 RQ3: What are the most used quantum programming languages? Why? . 45

6.4 RQ4: What makes a person choose a quantum programming language?
Why? . 47

6.5 RQ5: Which of them has the best chances of being imposed over the rest? 50

6.6 RQ6: What makes someone propose a new language? 52

6.7 RQ7: Are there too many quantum programming languages? 56

6.8 Summary . 59

7 Implications for New/Existing Quantum Programming Languages 75
7.1 Basic Characteristics . 75

7.2 Document, examples, and community support 76

7.3 Run in real quantum computerss . 76

7.4 Build on top of classical programming language 76

7.5 Features and tools . 77

7.6 Consult developer’s needs . 77

7.7 Summary . 77

xiii

8 Conclusions and Future Work 79
8.1 Conclusions . 79
8.2 Future Work . 79

A Appendix 81
A.1 Survey questions . 81
A.2 Social networks contacted for the survey 85

Bibliography 96

xiv

xvi

List of Figures

4.1 Classification of quantum programming languages according to their pro-
gramming level. Figure taken from [40]. 18

4.2 Evolution of quantum computing languages. 19

6.1 Distribution of participants that worked with quantum programming lan-
guage and could answer the survey. 38

6.2 Distribution of the percentage of the gender of the participants. 39
6.3 Distribution of the percentage of countries where participants live in. . . . 40
6.4 Age of the participants grouped by category and percentage. 41
6.5 Formal education of the participants by percentage. 42
6.6 Relation between the age and education level of the participants by per-

centage. 43
6.7 Experience of the participants in terms of coding by percentage. 44
6.8 Professional experience of the participants in terms of coding by percentage. 45
6.9 How the participants learned to code by percentage. 46
6.10 Classical programming languages the participants used by percentage. . . 47
6.11 The work field of the participants by percentage. 48
6.12 Relation between the primary quantum programming language chosen by

the participants and their major by percentage. 49
6.13 Level of education in terms of knowledge in quantum physics by percentage. 50
6.14 Education of the participants in terms of learning quantum physics by

percentage. 51
6.15 Relation between the primary quantum programming language chosen by

the participants and their knowledge in quantum physics by percentage. . 52
6.16 Current job of the participants by percentage. 53
6.17 Reason the participants use quantum programming languages (e.g., Like

to learn, use it for research, use it for work) by percentage. 54
6.18 Relation between the primary quantum programming language chosen by

the participants and for what they use the language by percentage. 55
6.19 Experience of the participants in terms of using quantum programming

languages by percentage. 56

xvii

6.20 Professional experience of the participants regarding quantum program-
ming languages by percentage. 57

6.21 Relation between the primary quantum programming language chosen by
the participants and their experience by percentage. 58

6.22 Relation between the primary quantum programming language chosen by
the participants and their professional experience by percentage. 59

6.23 Identify if the participants perform tests in their quantum programs by
percentage. 60

6.24 Relation between the primary quantum programming language chosen by
the participants and if they test their quantum programs by percentage. . . 61

6.25 The frequency that the participant tests their quantum programs by per-
centage. 61

6.26 Identify if the participants use automatic or manual tests by percentage. . 62
6.27 Relation between the primary quantum programming language chosen by

the participants and how they test their quantum programs by percentage. 62
6.28 Show what the most used tools to test quantum programs are by percentage. 63
6.29 Relation between the primary quantum programming language chosen by

the participants and the tool they use for testing by percentage. 63
6.30 Relation between the work field of the participants and the reason they

use the quantum programming languages by percentage. 64
6.31 Relation between the current job of the participants and the reason they

are using the quantum programming language by percentage. 64
6.32 Show which quantum programming languages the participants use and

how long by the percentage. (See Table 6.1 for absolute numbers.) 65
6.33 The primary quantum programming language used by the participants by

percentage. 67
6.34 How the participants learned quantum programming languages by per-

centage. 67
6.35 Relation between the primary quantum programming language chosen by

the participants and how they learned the language by percentage. 68
6.36 The rate in terms of ease (e.g., support, forums, features, easy to code,

documentation, code examples) of Qiskit (participant’s primary quantum
programming language most chosen) by percentage. 69

6.37 The most used forums to ask questions on quantum computing by per-
centage. 70

6.38 Relation between the primary quantum programming language chosen by
the participants and the forum used by percentage. 70

6.39 Which is the most like quantum programming language to be used in the
future by percentage. 71

xviii

6.40 Reason why the participant wants to work with the quantum programming
language by percentage. 71

6.41 Relation between the primary quantum programming language the partic-
ipants would like to work or try in the near future and why by percentage. 72

6.42 Participant’s opinion if they think developing another quantum program-
ming language by percentage is necessary. 72

6.43 Relation between the primary quantum programming language chosen by
the participants and their opinion regarding if another quantum program-
ming language is needed by percentage. 73

6.44 Participant’s opinion about the existence of several quantum program-
ming languages by percentage. 73

6.45 Relation between the primary quantum programming language chosen by
the participants and their opinion regarding if there are too many quantum
programming languages by percentage. 74

xix

List of Tables

4.1 Quantum programming languages, ordered descending by year, that have
been proposed by others. 30

6.1 Number of participants per quantum programming language by usage time. 66

A.1 Survey proposed questions. 85
A.2 Social networks contact for the survey. Information was obtained in April

2022. 86

xxi

Chapter 1

Introduction

1.1 Context

All computers are linked to the ability to store and manipulate information. In classical
computing, computers manipulate individual bits, storing data in the binary states of 0
and 1. In quantum computing, this information is manipulated by taking advantage of
key properties of quantum mechanics, like superposition and entanglement [1]. To take
this advantage, quantum computing uses quantum bits or qubits. Therefore, quantum
software allows manipulating qubits, translating a few lines of code into real quantum
physical phenomena in quantum hardware. In this context, programming languages are
needed to communicate with these computers using different levels of programming, from
the lowest level, such as assembly languages, to the highest levels, where we can program
algorithms for quantum hardware. A quantum computer is composed of a hybrid machine
with a quantum device and a traditional computer that sends information to these devices
and processes the result. Quantum programming languages relate to the capability of
classical software capable in help developers implement quantum algorithms. These lan-
guages began to be developed from the beginning of the creation of quantum devices and
are used to simulate quantum algorithms.

1.2 Problem

Over the last 25 years, researchers and worldwide leading software companies (which are
also developing quantum computers) have developed several quantum programming lan-
guages and libraries on top of the existing classical languages for their quantum devices.
For example, Google has developed Cirq, IBM has developed Qiskit, and Microsoft has
developed a new language named Q#. In this thesis (see Figure 4.2), we have identified
37 quantum programming languages that have been proposed since 1996. It is likely that
many others are under development, given the rapid development of the quantum com-
puting area.

1

Chapter 1. Introduction 2

A large number of quantum programming languages call attention to investigate fur-
ther why there are so many languages, how are quantum programming languages being
used and by whom, what makes a quantum language popular, and others. The answer
to these and other questions might shed light on, e.g., whether it would be interesting to
focus our efforts on developing a new language with a universal syntax to make life easier
for developers, whether it would be interesting to focus efforts on the enhancement of
existing ones, or simply provide information for the developing of the next generations of
quantum programming languages that will be more adapted to the developers’ needs.

1.3 Approach

This thesis intends to investigate the usage of quantum programming languages. To
achieve this goal, we first searched for quantum programming languages that have been
proposed either in the literature or computing blogs/forums. The search was conducted at
Google Scholar, Google search engine, and arXiv, and then identified their main function-
alities and characteristics. Secondly, we conducted a survey with 251 quantum developers
and researchers familiar with quantum programming languages to assess their opinion on
languages. Finally, we analyzed the survey data and answered our research questions.

1.4 Contributions

The main contributions of this thesis are as follows:

• An overview of the state of art of quantum programming languages.
• A comparison of 37 quantum programming languages, including their main func-

tionalities and characteristics.
• A survey with 251 developers and researchers to assess what quantum programming

language they use, how they use them, and their thoughts on quantum programming
languages in general.

• A detailed set of implications of our findings for the further development of quan-
tum programming languages.

1.5 Structure of the document

This document is organized as follows: In Section 2, we describe the background of our
work. Section 3 describes the related work and their contributions. In Section 4, we
provide a brief introduction to the fundamental concepts of quantum programming lan-
guages, investigate and compare quantum languages that have been proposed by others.
Then, in Section 5, we describe the structure and details of our survey to assess research
and developers’ thoughts on quantum programming languages. Section 6 presents the

https://scholar.google.com
https://google.com
https://arxiv.org

Chapter 1. Introduction 3

results of the survey and answers our proposed research questions. Section 7 details a
few implications for future development of quantum programming languages. Finally, in
Section 8, we summarize the work conducted in this thesis and provide some ideas for
future work.

Chapter 1. Introduction 4

Chapter 2

Background

2.1 Quantum Computing

Quantum computers are expected to reduce power consumption by 100 to 1000 times
because the processor operates as a superconductor (that is, it can conduct electricity with
almost no resistance), operating at a very low-temperature [2, 3]. Quantum computers, in
contrast, can increase processes, such as machine learning, reducing thousands of years
of learning to a few seconds [4, 5, 6]. Quantum computers are built on quantum bits
(qubits), and they follow quantum laws instead of Newton’s laws, which allows them
to have the probability of being 0 and 1 simultaneously. Quantum computing studies
the type of information processing that can be performed by physical systems governed
by the laws of quantum mechanics. Big technology companies like Google and IBM are
developing their own quantum computers because of the potential of quantum computing.
Furthermore, these companies provide access to their quantum computers for developers
to learn how to program quantum circuits using quantum programming languages.

2.2 Qubits

The smallest unit of information in classical computers is the bit. The quantum computing
counterpart is a quantum bit or qubit. A classical bit has a discrete value of 0 or 1;
consequently, a qubit does not have a discrete value. Instead, it represents 0 or 1 with
some probability. More formally, a qubit is simultaneously in a superposition of the states
0 and 1.

A pure qubit state is a coherent superposition of the basis states, meaning that a single
qubit can be described by a linear combination of |0⟩ and |1⟩:

|ψ⟩ = α|0⟩+ β|1⟩
The ket notation, Dyrac notation (|⟩), is used in quantum mechanics for describing

quantum states. The qubit represents a state in the simplest possible quantum system.
Two examples of such systems in real quantum computers are the vertical and horizontal

5

Chapter 2. Background 6

polarization of light and the up and down spin of electrons. For each case, the principle
is the same: there are two levels to the system between which the quantum state can be
measured.

The qubit can be represented with a three-dimensional unit sphere (usually named
as the bloch sphere), which is a geometrical representation of the pure state space of a
two-level quantum mechanical system.

When the quantum computer measures the value of the quantum bit, it forces it to
collapse out of superposition into a classical value (e.g., ’0’ or ’1’). It is impossible to
pause the execution and observe the values of qubits while the programs run because the
measurement disturbs the values of the variables.

An essential aspect of qubits is that they cannot be duplicated, giving rise to the no-
cloning theorem. This theorem states that there is no quantum gate acting on two arbitrary
qubits such that the state of the first qubit is copied onto the other, which in essence, means
that qubits cannot be duplicated.

2.3 Measurement

Measurement and gate transformations are operations that can be performed on qubits.
Applying a gate to a qubit transforms its state, changing the qubit probabilities to collapse
to either |0⟩ or |1⟩. The measurement operation is done by projecting the mathematical
representation of a qubit onto one of the basis vectors. The qubit, which is the vector that
describes the quantum state, then collapses to its projection onto any of the base vectors
depending on its associated probability.

The measurement operation involves physically checking the value of some property
of a quantum system. An example can be the direction of a particle’s spin. The quantum
state is in a superposition of spin-up and spin-down states before measurement, each with
a corresponding amplitude. After measurement, the state collapses to either up or down-
spin with a probability according to its amplitudes.

The measurement either takes the value zero if the qubit is measured in the state |0⟩,
and the value one if the qubit is measured in the state |1⟩. So, it is crucial to remember that
measurement is an irreversible operation, destroying quantum information and converting
it into classical information.

2.4 Entanglement of States

An entangled state of a composite system can be defined as a state that cannot be written
as a product state of the component systems. Because of the relationship between logical
and physical states, a quantum register that contains more than one qubit cannot be de-
scribed by merely listing each qubit state. The state of individual qubits can be entangled

Chapter 2. Background 7

together; as more qubits come into play in a quantum computer, the number of states that
information can be in increases exponentially. For instance, a two qubits system can take
on some values, along with superpositions among these values; also, the two qubits can
even be in a state of entanglement where the two cannot be treated as independent pieces
of information. A system with three qubits has potential superpositions of eight states.
This exponential growth of possible values can show the power that quantum computing
has.

2.5 Programming Languages

A program needs to be implemented using a process that its execution can be simulated
physically. The physical mechanism that is used to simulate program executions is the
computer. A programming language determines how the resources available can be used
to build programs so that they can be simulated on computers. Languages are a set of
resources that can be put together to build specific programs, plus a set of composition
rules that ensure that all programs can be implemented on computers.

Programming languages [7, 8, 9, 10] are designed as formal languages that, through a
series of instructions, permit a developer to write a set of orders, sequential actions, data,
and algorithms to build programs that control a machine’s physical and logical behavior.
In other words, a programming language is a structured interaction system composed of
sets of symbols, keywords, and semantic and syntactic rules that allow an understanding
between a developer and a machine.

Programming languages are the basis for building applications used in everyday life,
and they can be classified into two main types: low-level and high-level language [9].
Low-level programming languages are built to be entirely machine-oriented languages.
These languages are used as an interface that links hardware and software and directly
control the equipment and its physical structure. To apply it correctly, the developer must
know the hardware very well. Some examples of low-level programming languages are
machine and assembly languages. High-level programming language aims to help the
developer’s job, as they use instructions that are much easier to understand and allows
them to write code using a more understandable human language.

2.6 Summary

In this chapter, we establish the context of the research. Quantum computing is a type
of computing that is based on the principles of superposition and quantum entanglement.
Superposition is the ability of a quantum system to be in multiple states at the same time
until it is measured. Quantum entanglement is the physical phenomenon that occurs when
a group of particles is generated, interacts, or shares spatial proximity in a way such that

Chapter 2. Background 8

the quantum state of each particle of the group cannot be described independently of the
state of the others, including when a large distance separates the particles. Finally, we
describe the concept of a programming language to link quantum computing and pro-
gramming languages.

Chapter 3

Related Work

3.1 Classical Programming Languages

According to the online historical encyclopedia of programming languages HOPL [11],
nearly 9000 languages have been created since the 18th century. However, according to
GitHub [12] only about 370 are still active.

According to Lagutin [13], technological evolution is one of the reasons that many
programming languages were created, considering that with technological advancement,
we need new tools to develop new systems for these technologies. The program can
be so unique that to create a solution for it, researchers and companies have to create
a new language to develop it. Another point is that different types of developer jobs
need different languages, as there are different types of software and platforms, and they
may require their own tools and resources. Also, some programming languages have
different needs and goals and are better suited for certain types of tasks than others. Each
programming language has certain features and characteristics that make it suitable for
specific tasks.

In Sherman’s stack overflow post [14], there are four primary points that could answer
how programming languages are being used and why they were created. The first point
is that different tools are needed for different jobs, e.g., Ruby is a very popular language
for developing websites, and R is very popular in statistics. Second, every developer
has different tastes. As programming languages are used for humans to express ideas to
computers, it is only natural that a developer might like to use a specific language for
specific reasons. Third, a language can be used because if it was the company’s choice
based on what the individuals who work there know best. For example, C# is mainly used
on Stack Overflow because it was the primary language used by the founders. Fourth,
variety is a strength, there are many programming languages out there because proposing,
implementing, and distributing a new one is easy and cheap.

Hope [15] proposed a list of significant points about programming languages:

• Readability and maintainability of some languages are easier to learn than others.

9

Chapter 3. Related Work 10

• Performance different languages have different performances, e.g., some languages
are interpreted, and others are compiled, resulting in different execution times.

• Specific use cases languages can be specialized for different types of programs.
• Ease of prototyping the developers can start writing code faster in languages that

allow rapid prototyping.
• Available libraries in different languages provide libraries with standard functions

that allow faster development.
• Security some languages are more secure than others. For example, C is well

known for having many vulnerabilities.
• Community support developers prefer languages with more community support

to help them.
• Expressiveness developers tend to prefer languages they are more familiar with

and feel comfortable with.

Scott’s [16], the main reasons for the variety of programming languages are evolution,
how to learn better ways of doing things, economic advantage factors, such as commercial
and industrial, hardware, and unique purpose orientation; and the diverse ideas of what
developers most like to use.

3.2 Towards a Quantum Programming Language by Selinger
(2004)

According to Selinger [17], quantum algorithms are often expressed at the hardware
level, such as in the quantum circuit model or quantum Turing machines. Structured
programming or abstractions such as data types are not encouraged by these methods.
Selinger [17] proposed the design of a quantum programming language, called QPL,
defining the syntax and semantics of a functional quantum programming language with
characteristics such as loops, recursive procedures, and structured data types. The lan-
guage has some essential characteristics, for example, it is statically typed, and the author
guarantees as it is a functional language that any well-type program does not have run-
time errors. In terms of super operators completing partial orders, it has denotational
semantics.

Selinger [17] work proposed a point of view where quantum computing is expressed
with data and control flow and does not rely on any specific hardware model. The control
stage of the program is classical, but the information manipulated by the programs can
have quantum superposition. In the language proposed, there is no notion of quantum
branching and the superposition of two distinct statements because even if the manipu-
lated data involves quantum superposition, the control state is classical. The author used
the slogan “quantum date, classical control” for the language.

Chapter 3. Related Work 11

The author reviewed some basic concepts from linear algebra and quantum compu-
tation, presented a view of quantum programming language in terms of flow charts, and
presented it in its formal semantics that shows a syntax more textually for quantum pro-
grams. This textual semantics is also more structured in terms of structured programming
languages such as Pascal. Selinger also proposed possible extensions to QPL.

3.3 A Brief Survey of Quantum Programming Languages
by Selinger (2004)

Selinger [18] provided a brief review of quantum programming language research. Some
quantum virtual hardware models are described, such as the quantum circuit model made
up of quantum gates in the same way a classical logic circuit is made up of logic gates.
The model emphasizes the unitary transformations with measurements carried out as the
very last step in a computation. Another model that Selinger summarized is the QRAM
model of Knill [19], which permits unitary transformations and measurements. In this
model, a quantum device is controlled by a universal classical computer and contains
addressable qubits, like a memory in a classical computer. The model contains a classical
controller that sends a sequence of instructions and a quantum device that passes out
these instructions. A third virtual hardware model is the quantum Turing machine; in this
model, the entire operation of the machine is assumed to be unitary, and measurements
are never performed.

The author briefly commented on some semantic projects, such as Girard [20] with
the definition of coherent quantum spaces as possible semantics for higher-order quan-
tum computation. Abramsky and Coecke [21], which models a high-order function and
applications that rely on entanglement and quantum measurement. Edalat [22] with a
domain-theoretic interpretation of Gleason’s theorem and Coecke and Martin [23] with a
domain-theoretic treatment of the von Neumann entropy of a quantum state.

Selinger [18] further raised three challenges for quantum programming languages; the
first is a denotational semantics for a higher-order quantum programming language; the
second is a theory of quantum concurrency, as the network of quantum processes that ex-
changes classical and quantum data can be a challenge. The third one is the development
of quantum programming languages on imperfect hardware. In real hardware implemen-
tations, random errors and decoherence can be predicted, and the challenge is the extent
to which known error detection techniques can be automated.

3.4 Quantum Programming Language by Unruh (2006)

Unruh [24] investigated the development of quantum programming languages and gave
an overview of the current work. Quantum programming languages are divided into two

Chapter 3. Related Work 12

types: the first one that targets practical application and the second one that targets the
theoretical analysis of quantum programs.

For practical programming languages, including simulation or programming in quan-
tum computers, there are several possible features of quantum programming languages
and some essential features that a language should have from a developer’s point of view.

• Simple and powerful. Simple means that the language is easy to understand, and
no great effort is needed before using it. Powerful means that it possesses the fea-
tures necessary so the developer can concentrate their work on the algorithmic.

• Technology independent. The language should be able to translate the code to
a sequence of instructions in a way that the code is not written depending on this
technology.

• Transparently implement optimization and Error correction techniques. The
language should handle optimization and error corrections transparently from the
developer.

• Using simulators. The developers should be able to run the quantum programs
using simulators on a classical computer, making the programs easy to test and
debug.

For the formal programming languages, Unruh [24] separated the quantum program-
ming languages by the syntax and semantics. The author also presented possible features
of quantum programming languages, such as:

• Quantum branching. The problem of branching in quantum languages is that the
value of a qubit in a superposition may be used in the branch conditions. In this
case, the measurement would destroy the superposition. However, the CNOT-gate
is a simple example of quantum branching because it flips the value if the other has
value 1.

• Continuous classical output. Some quantum algorithms may require that the out-
put is given before the program’s termination, even if most algorithms take the
inputs and return the output after its execution.

• Concurrent processes. The language needs to be able to interact with concurrent
processes.

• Infinite data types. Most of the languages proposed have data types only for the
finite-dimensional Hibert space. Moreover, thus, elementary data such as integers
cannot be represented in this model. In classical machines, integers are also finite
data types, but in designing a new algorithm, it might be necessary to use unlimited
integers in the development stage.

• Higher-order data types. Complex quantum data types, like lists, tuples, and
records, can be required for the future development of quantum algorithms.

Chapter 3. Related Work 13

• Powerful reasoning about programs. The language must have a collection of
rules that allows the developers to focus on the algorithms instead of the specific
details of the language.

3.5 Quantum Programming Language, Survey and Bib-
liography by Gay (2006)

Gay [25] briefly summarized the basic concepts of quantum computing, surveyed the lit-
erature on quantum programming languages, and classified the papers studied according
to the central theme of each paper. The classification proposed is the following: program-
ming language design, semantics, and compilation.

For the programming language design, Gay divided into imperative languages, func-
tional languages, and λ-calculi and other language paradigms. In the imperative lan-
guages, he reviewed the quantum Turing Machines of Deutch [26] as the first model
for general quantum computation, which has the property of superposition of machine
states. Gay also described the work of Knill [19] that defined a proposal for a formal-
ized quantum programming language that implements an imperative pseudo-code on a
quantum random-access machine (QRAM). The QRAM model consists of registers that
can execute quantum operations. The author also summarized other imperative quantum
programming languages as QCL [27], Betteli et al. [28], and qGCL [29].

For the functional languages and Lambda-Calculi, the author summarized both exten-
sions of λ-calculus of Maymin [30], the quantum λ-calculus of Van Tonder [31] and also
the work on the definition of the first-order functional programming language QML of
Altenkich et al. [32]. He also mentions several works that investigated quantum program-
ming within Haskell.

For the other languages paradigms, he summarized the work of Gay et al. [33], the
definition of the process calculus CQP (Communication Quantum Process), and Jorrand et
al. [34], the definition of QPAlg (Quantum Process Algebra). The two languages describe
systems combining classical and quantum computation and communication, and both aim
to support the formal specification and verification of quantum cryptography protocols.

In the semantics classification, Gay referred to denotation techniques as many papers
emphasizing language design also defined semantics in an operational style. The papers
which do not define languages (for example, the semantic studies that focus on proto-
cols) and for papers including language definitions but whose emphasis is on denotational
semantics. He also included papers that apply linear logic to the structural aspects of
quantum computation.

For compilation classification, Gay summarized some quantum compilers that can be
used to compile quantum programming languages. The work of Altenkirch et al. [32] have
developed a compiler for their QML language into a representation of quantum circuits,

Chapter 3. Related Work 14

using categorical semantics as an intermediate form.

3.6 A Survey of Quantum Programming Languages: His-
tory, Methods, and Tools by Sofge (2008)

Sofge [35] researched some of the essential quantum programming languages in terms of
their history, methods, and proposed tools. He also mentions Feynman’s proposal in 1982
to build a quantum computer to simulate quantum systems. Making this simulation in a
classical computer would require the exponential use of resources in terms of memory and
computational time. He also described the work in linear logic by Girard [36] in 1987,
which played an essential role in designing quantum programming languages, particularly
those based on lambda calculus.

According to Donald, the first step to creating a quantum programming language was
a work from Knill in 1996, which defines a quantum random-access machine model
(QRAM). According to the author, the proposal described by Knill does not have all
the necessary characteristics to be considered a quantum programming language because
of the informal definition of its structure and also the lack of strong typing, and because
it does not represent some of the necessary quantum properties. Sofge defined a pro-
posal for a taxonomy to represent quantum programming languages, grouping them into
three different types: imperative, functional, and other quantum programming languages
(which include mathematical formalism that was not defined to run on computers).

The author defined some challenges in quantum programming languages as the lack
of quantum computing hardware to execute quantum algorithms, the lack of a definition
regarding the data structures that need to be implemented, and the operations on top of
this data structure. Which operations should be allowed and which should not, and more
information on how to better design a quantum language to better use quantum comput-
ing. Another challenge is that quantum mechanics is still incomplete and, by extension,
the theory concerning quantum computing. There is still much research going on to un-
derstand the physics behind quantum computing better.

3.7 The Modern State of Quantum Programming Lan-
guage by Rojas (2019)

Rojas [37] summarized the core ideals found in a successful quantum programming lan-
guage as proposed by the community of authors and developers. Also, a high-level look
into domain-specific quantum languages and their different expectations. He mentioned
some important designs that a quantum programming language should have, like com-
pleteness, expressivity, efficiency, and hardware independence.

Chapter 3. Related Work 15

The author also provided a table with a historical overview of the development of
quantum programming languages. It shares the conclusion that it is necessary for much
more time to be spent focusing on handling quantum error correction within quantum
programs and designing a software framework that can accommodate the various physical
constraints of quantum devices. With so many languages to choose from and build off,
it is hard to pick a single language with the optimal design format for developers and
quantum computers.

3.8 Quantum Programming Languages: A Systematic Re-
view of Research Topic and Top Cited Languages by
Garhwal et al. (2019)

Garhwal et al. [38] gave an overview of the state of the art in the field of quantum pro-
gramming languages and focused on actual high-level quantum programming languages,
their features, and comparisons. The author also discussed some research questions (e.g.,
what are the different types of Quantum Programming Languages; what are the recent
trends in the development of quantum programming languages; which major Companies,
Groups, Institutes, and Universities are working on developing new quantum languages;
what are the most popular publication venues for quantum programming; and what are
the most cited papers in the area of a quantum programming language).

The authors divided the types of quantum programming languages into multi-paradigm,
imperative, functional, quantum circuit language, and quantum object Language. The au-
thors described various types of quantum imperative and quantum functional languages,
respectively. They also showed the year-wise distribution of papers considered in their
review process, showing that in the recent 4 to 5 years, significant progress was made in
developing new quantum programming languages. However, many research groups are
working in the area of quantum programming languages. Garhwal et al. [38] highlighted
the following groups: Advanced Research Projects Activity (IARPA); Quantum Architec-
tures and Computation Group (QuArC) at Microsoft; The University of Nottingham QML
Harvard University; Center for Quantum Software and Information at the University of
Technology, Sydney, Australia.

They stated that most of the researchers in quantum programming language prefer to
publish on arxiv.org. The top three quantum languages in terms of the number of citations
for the main paper published for quantum languages as per Google and as per Web of
Science based on his study are QFC/QPL, Quantum Lambda Calculus, and Q.

Chapter 3. Related Work 16

3.9 Software Engineering for Quantum Programming:
How Far Are We? by De Stefano et al. (2022)

De Stefano et al. [39] researched GitHub repositories to make code analyses to create a
taxonomy of the quantum technologies that are used and also conducted a survey with
developers that uses quantum programming languages to get their opinion on the current
adoption and challenges of the quantum programming field. The authors analyzed the
GitHub repositories that use one of these three quantum programming frameworks and
languages: Qiskit, Cirq, and Q#, because they stated that they are the most widely used.
The survey proposed has three sections:

• Background, which aims to get data about the background of the participants.
• Current Adoption, which aims to get the participant’s opinions on the use of quan-

tum programming, focuses on the use of Qiskit, Cirq, and Q#, and the context of
using, i.e., academic, research, industry.

• Potential Adoption and Challenges, which aims to get the developer’s opinion on
the challenges in quantum computing technology.

The author proposed to respond to two research questions: what extent and for what
purposes are quantum programming frameworks being used; and what are the main chal-
lenges that quantum developers are experiencing when interacting with quantum frame-
works. For the first research question, according to the survey, most of the quantum
programming technology is being used for personal study purposes (41%), and signifi-
cant effort is put into the framework and research repositories. For the second research
question, the main challenges related to quantum frameworks are the comprehension of
quantum programs and difficulty setting up hardware and software infrastructures.

3.10 Summary

In this chapter, we surveyed the literature that is most related to our main contributions
or that is in line with the research topics studied in this thesis. In [18], Selinger provided
a brief review of quantum programming language research. In [24, 35, 37], the authors
provided an overview of the development of quantum programming languages. In [39],
De Stefano et al. researched GitHub repositories to create a taxonomy of the quantum
technologies and investigate the most used quantum programming framework.

Chapter 4

Quantum Programming Languages

Quantum programming languages are responsible for translating algorithms developed by
developers into instructions that a quantum computer can execute. They are intended to
facilitate the development of quantum algorithms by providing high-level languages with
quantum data types, operators, and functions. They are crucial for making it possible
to perform quantum computer programming. These languages control physical devices,
estimate the computational costs of running programs using simulators and verify and
implement quantum algorithms. The languages are also used by many professionals, such
as researchers, developers, and experienced professionals, to apply quantum computing
concepts to solve real-world problems and make innovative discoveries.

To find the quantum programming languages that have been proposed either by re-
searchers (e.g., on research papers) or companies, we searched for the following key-
words: quantum programming languages, quantum languages, and quantum program-
ming in https://scholar.google.com, https://google.com, and https:
//arxiv.org. We limited our search to 2021 when our study was conducted.

Figure 4.1 shows a classification of some quantum computing languages according
to the level of programming, and Figure 4.2 traces the roots of quantum computing lan-
guages through the ages.

Table 4.1 reports a summary of the quantum programming languages. It summarizes
some information, such as the year they were created, whether they are open-source,
active, academic, or industrial, the author, and type (imperative, declarative or multi-
paradigm). The classification, if they were active or not, was based on the contribution or
support on their page (e.g., GitHub for the open-source). If it passes two years without
issues/comments and new language changes, they are considered inactive for the open-
source. The non-open source is considered inactive when no more support is given by
searching on the website of the company that created the language. For the columns,
without an answer, it means that it was not possible to confirm if they are open source or
active.

Several researchers, like Sofge [35], divided quantum programming languages into

17

https://scholar.google.com
https://google.com
https://arxiv.org
https://arxiv.org

Chapter 4. Quantum Programming Languages 18

Figure 4.1: Classification of quantum programming languages according to their pro-
gramming level. Figure taken from [40].

imperative, declarative (functional), and other paradigms. In this work, we used the exact
taxonomy of quantum programming languages.

4.1 Imperative Quantum Programming Languages

The imperative programming paradigm describes computation as instructions, actions, or
commands that are carried out step-by-step and change the state or variables of a program
to achieve the desired result. Some of the best-known imperative programming languages
are C, Python, Pascal, and others. As a common characteristic among them, the lan-
guages visualize a program in terms of a sequence of operations. When executing each
instruction, it updates the global state of the system. Quantum programming languages
have these same imperative paradigm features as classical languages and can be compiled
or interpreted using the virtual hardware model QRAM. In the following sections, we
describe the imperative quantum programming languages.

4.1.1 QCL

QCL (Quantum Computation Language) [27] was the first quantum programming lan-
guage created. It was developed and improved by Bernhard Ömer between 1998 and
2003. The language allows for the simulation and implementation of quantum algorithms
and is independent of the high-level architecture of computers. The language’s syntax
is based on classical programming C and Pascal and has a coherent formalism. Among
the main features of QCL, we can highlight flow control, functions, classical data types,
quantum data types (qubit registers), quantum operators, functions to manipulate quantum
registers, and quantum memory management, among others.

Chapter 4. Quantum Programming Languages 19

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

QLanguage

Silq

QPAlg

CQP

QHaskell

QML

Quipper

Cove (C#)

Sabry's
Language

cQPL

Scaffold

ProjectQ
(Python)

QUAFL

OpenQAMS

Qiskit
(Python)

QASM

LanQ

Strawberry
Fields (Python
and Blackbird)

Quil

Forest
(Python)

Cirq

Orquestra
(Python)

Braked SDK
(Python)

qGCL

QPL and
QFC

QCL

QHAL

𝜆𝑞

cQASM

𝑄|𝑆𝐼 ⟩

𝐿𝐼𝑄𝑈𝑖|⟩ QDK(Q#, Python,
and .NET)

Cirq
(Python)

Ocean So�ware
(Python)

𝜆𝑞

QCL

QSEL

Ket

NDQJava

NDQFP

Pascal

π-
calculus

pGCL

Standard
ML

Python

Visual
Basic

Visual
C++

Java C# F#

Assembly

C

C++

Haskell

FP FL

Figure 4.2: Evolution of quantum computing languages.

4.1.2 QASM

QASM (Quantum Macro Assembler) [70] is a low-level quantum programming language
developed in Python to be used in D-Wave’s quantum computers. It aims to create an
abstraction, so developers do not need to know specific hardware details; developers can
use it to have high control over the hardware or high-level language compilers.

4.1.3 Silq

Silq [46] is a high-level quantum programming language, developed at ETH Zürich, and
whose main features are a robust static type system, variable assignment, conditionals,
generic parameters, classic types, loops, superposition, and others. It was published in
2021, written in the D language, and designed to automatically compute temporary values
without inducing an implicit measurement.

4.1.4 Q Language

Bettelli presents an extension of the C++ language as a model for a high-level quantum
programming language [28]. It has a set of quantum primitives and a simulator with a
runtime environment to calculate and optimize quantum operations. The language has
register handling, manipulation of quantum operators (like QHadamard, QFourier, QNot,
and QSwap, new operators can also be defined using C++ class mechanism), and low-
level primitives.

Chapter 4. Quantum Programming Languages 20

4.1.5 qGCL

The language for quantum programs specification, qGCL [29] (Quantum Guarded Com-
mand Language), presented by Sanders and Zuliani, was based on Dijkstra’s Guarded
Command Language. It is used to express quantum algorithms and contains resources to
develop a “universal” quantum computer. It exhibits several features such as expressivity,
simplicity, control structures, data structures, formal semantics, and uniform observation
treatment. It also contains a new datatype with a vector from a finite-dimensional Hilbert
space.

4.1.6 LanQ

Mlnarik [82] introduced in 2007 a high-level quantum programming language called
LanQ. The language has a syntax similar to C, which is used to prove the correctness of
quantum algorithms. The main features of the language are the possibility of combining
quantum and classical calculations, communication, and parallel execution of processes.

4.1.7 Q|SI⟩

Q|SI⟩ [68] is a quantum programming environment embedded in the .Net language. It
is an extension of while-language that includes a compiler and a suite of tools for sim-
ulation quantum programs. The language has a measurement-based case statement and
a measurement-based while-loop, and these two features help developers describe large-
scale quantum algorithms.

4.1.8 OpenQASM

OpenQASM [69] (open quantum assembly language) is a simple language that defines
different gate sets using a mechanism to specify unitary gates. It was created with syntax
with elements of C and assembly and provides instructions to quantum devices. Open-
QASM is based on QASM, a language that describes quantum circuits and is used by IBM
through Qiskit, which has functionality for generating OpenQASM code from a specific
quantum circuit.

4.1.9 Scaffold

Scaffold [79] is a programming language for expressing quantum algorithms that com-
piles QASM and OpenQASM. It is very similar to the C language and facilitates the
expression of quantum algorithms in data types and operations. Although Scaffold pro-
vides a coding style similar to C, it also incorporates features that make it appropriate for
coding quantum algorithms. The main features provided by the language are quantum and

Chapter 4. Quantum Programming Languages 21

classical data types (e.g., quantum registers, arrays, quantum struct, and quantum union),
quantum gates, loops, and control constructs.

4.1.10 cQAMS

The cQASM [51, 52] (Common Quantum Assembly Language) language describes sim-
ple circuits, ensuring interoperability between quantum compilation and simulation tools,
and also aims to abstract details from qubit technology. This assembly language is based
on QASM, which originated to define a quantum circuit to render images for visualization
purposes. The syntax definition is also based on QASM for language standardization. The
cQASM instructions can be used as input to a quantum computer simulator or a low-level
compiler that generates specific hardware instructions suitable for execution by the target
quantum computer.

4.1.11 Quil

The Quil [62] language is a quantum instruction language analogous to an assembly lan-
guage on classical computers. It has an abstract machine architecture for quantum com-
puters that instructs the quantum computer on which physical ports implement specific
qubits. Quil was created by Smith et al. and introduced a shared quantum and classical
memory model that can be used for many quantum algorithms. It has classic feedback
and control and is used as an intermediate format to be a compilation target for quantum
programming languages. Quil’s main features are arbitrary quantum gates, measuring
qubits and saving measurements in classical memory, and synchronizing the execution of
classical and quantum algorithms, among others.

4.1.12 QSEL

QSEL [57] (Quantum Super Entangled Language) is a quantum programming language
focused on superposition and entanglement. The language compiler was written in Python
with a model where the circuits can create superpositions and entanglement. QSEL only
describes three commands: superposition, entanglement, and measurement.

4.1.13 Ket

Ket [42, 43, 41] is a high-level classical-quantum programming language that provides
rapid learning development and testing of quantum programs using Python constructs
with the addition of quantum specifics. As a Python-embedded language, Ket offers
Python types and two new quantum types, which implement an array reference of qubits
and another for storing variables in a quantum computer. Ket provides a universal set of

Chapter 4. Quantum Programming Languages 22

quantum gates and a quantum measurement that does not directly return the result but
rather a future variable with the promise that the value will be available when needed.

4.1.14 NDQJava

NDQJava [84] is a quantum programming language created in 2006 based on Java. The
language has two parts: a classical part, just Java, and a quantum part, which has quantum
components (quantum data type, quantum variable, quantum declaration, and quantum
expressions). NDQJava was implemented by simulation on classical computers.

4.2 Declarative Quantum Programming Languages

Unlike the imperative in which instructions are executed step-by-step, the declarative pro-
gramming paradigm describes the desired results without explicitly listing the steps that
must be performed. This style of language use programming logic that depends on mathe-
matical functions, which means that inputs are converted into outputs using mathematical
logic. Among the types of declarative languages, the most used are the functional ones
that do not support loops and if/else statements, unlike the imperative ones. All functions
in this type of language have no side effects, and state changes are represented as func-
tions that transform the state. Examples of classic declarative programming languages are
Haskell, Lisp, Erlang, and others. In the following subsections, we describe the declara-
tive quantum programming languages.

4.2.1 QPL and QFC

QFC and QPL are two functional quantum programming languages introduced by Selinger [17]
in 2004. The main difference between the two languages is that QFC uses a syntax based
on flowcharts and QPL uses a textual syntax as a base. QFC flowcharts consist of ele-
mentary building blocks having multiple input and output edges, representing the flow of
program control. Loops and recursion, for example, can be represented by blocks where
one of the output edges is simultaneously the input edge. In QPL, its syntactic structures
are represented through textual representation. Both languages have classical control flow
and can operate quantum and classical data, with unitary operations and measures safely
integrated into the language. There are no runtime type checks or errors.

4.2.2 QML

Altenkirch [32] developed a functional Haskell-like quantum programming language called
QML, the same as QFC and QPL from Selinger. QML is based on linear logic and sup-
ports classical and quantum operators, allowing both data and program control to be quan-
tum. The language allows an if-then-else to be used with a classical condition or condition

Chapter 4. Quantum Programming Languages 23

that measures the qubit value. The language does not support duplication of quantum data,
but two or more variables are allowed to relate to the same quantum system.

4.2.3 Sabry’s Language

Sabry [88] created a functional quantum computing model embedded in Haskell to write
quantum algorithms. Sabry’s model differs from classical programming languages, where
expressions can be grouped into introduction constructs and elimination constructs for
the language’s type connectives. While in the quantum model, it can only have virtual
elimination constructs since the elements of an entangled data structure cannot be divided.

4.2.4 Lambda Calculi (λq)

Lambda calculi (λq) languages were defined to describe quantum algorithms, and they are
based on the classic lambda calculus introduced in 1930. This type of language supports
high-order computational functions, and it was first defined for quantum calculations in
1996.

In 2004, Van Tonder [31] made the first effective effort to create a functional quantum
programming language, λ-calculus. This language uses quantum lambda calculus for
quantum computation. It has a variable substitution rule and a function definition scheme;
as a rule, any computable function can be expressed using language formalism. The only
disadvantage is that it has no measurements.

In 2006, Selinger and Valiron [93], developed a λ-calculus language that is contrary
to van Tonder’s language, supports the measurement of a quantum program as a primitive
in the language. The type of system is differentiated between the types in which the
values are duplicated and those that are not. This system guarantees that violating the
principles of not cloning and deleting quantum data occurs. The authors had to build
a type-inference algorithm that can verify whether a particular term is capable of being
identified as a particular type in the linear system type and find its type.

4.2.5 Quipper

Quipper [77] is a functional quantum programming language, published in 2013, based on
Haskell. The language has the particularity of being suitable for programming physics ap-
plications and provides a high-level circuit language as well as operators for manipulating
these circuits. It has libraries for quantum integer and fixed-point arithmetic manipula-
tion. One of the language’s main features is that it has all Haskell calculations and is not
dependent on any specific quantum hardware.

Chapter 4. Quantum Programming Languages 24

4.2.6 NDQFP

NDQFP [81] is a modular functional quantum programming language created in 2008,
where each program is composed of one or several modules. It is a language with classical
and quantum data types, and there are also input/output components and an exception
feature defined. The design considered languages like FP, FL, Haskell, and NDQJava, but
with differences in the language overview.

4.2.7 LIQUi|⟩

LIQUi|⟩ [73, 74, 75, 76] is a quantum programming language created by Microsoft for
quantum computing. The name stands for Language-Integrated Quantum Operations and
translates quantum algorithms into low-level machine instructions for a quantum device.
It is an extension of F# language and was designed to simulate complex quantum cir-
cuits in different environments. The language has many gates that can be overridden or
extended and three different classes of simulators for different run times.

4.2.8 QHaskell

QHaskell [83] is a functional quantum programming language implemented in Haskell
and inspired by QML that follows the “quantum data and control” paradigm. The lan-
guage has a syntax for handling potentially entangled quantum data based on Haskell’s
arrow notation. It has the typing rules of QML with a type system that is based on linear
logic to control the use of quantum variables.

4.3 Multi-paradigm and domain-specific languages

A programming language can be described as a multi-paradigm when it supports more
than one different programming paradigm. The objective of a language being a multi-
paradigm is to offer the developers several different styles in the same language, in which
they can freely mix the styles, making it possible to develop programs more easily and
efficiently. There are also quantum programming languages that are multi-paradigm and
domain-specific, as shown in the examples in the following sections.

Regardless of the type of language and paradigm used to develop a quantum algo-
rithm, an SDK (Software Development Kit) is required to create, simulate, and execute
code in quantum devices. Many of these software environments are open-source and
use Python programming language as a basis, e.g., Strawberry Fields, Orquestra, Cirq,
and others. Some of the biggest technology companies like IMB, Google, and Microsoft
are developing open-source development kits for their quantum devices. These quantum
SDKs can be used in computers with quantum registers or even in simulator programs
that provide an implementation of quantum gates using classical ones. They also provided

Chapter 4. Quantum Programming Languages 25

some tools for the developers to implement their quantum algorithms by accessing com-
puters and quantum simulators. The main SDKs use classical languages such as Python
or quantum programming languages explicitly developed for quantum computing, such
as the language created by Microsoft, Q#.

4.3.1 QDK (Q#, Python and .NET Languages)

QDK (Quantum Development Kit) [64], developed by Microsoft, provides tools to sup-
port developers in quantum development. This quantum SDK includes libraries to help
developers create quantum operations and have simulators to execute and test quantum
programs that can run in several environments. The programs can use Python or .NET
host programs to execute as a console application, as QDK supports interoperability with
Python and other .Net languages. The quantum programming language Q# is part of the
Microsoft QDK. QDK also has an integration functionality that allows developers work-
ing with Qiskit and Cirq to integrate with QDK and execute their programs on Azure
Quantum, the Microsoft cloud service for quantum computing.

Q# [65, 66] is a multi-paradigm quantum programming language developed by Mi-
crosoft. It is open-source and part of the Quantum Development Kit (QDK). The language
is used to implement and execute quantum algorithms, exploring quantum computing phe-
nomena, such as superposition, entanglement, Grover’s quantum algorithm, and others.

QDK provides a quantum simulator for running and testing Q# programs. In Q#,
qubits are an opaque data type that refers to a two-state quantum system, and both states
can be physical or logical and are used to perform quantum operations. The Q# pro-
grams describe how a classical control computer interacts with qubits rather than directly
modeling the quantum state.

With Q#, the developers can implement quantum algorithms using qubits that use
uncontrolled gates, Hadamard gates, and others. The language uses quantum properties
for qubits like entanglement and superposition and has many quantum operations.

4.3.2 cQPL

Mauerer’s [94] presents an extended version of QPL, a functional language defined by
Peter Selinger, called cQPL. This language is used to support communication between
distributed processes, which allows the exchange of data (classical and quantum) between
an arbitrary number of members. A language compiler is also defined to generate code to
be used in a quantum simulator.

4.3.3 QPAlg

QPAlg (Quantum Process Algebra) was created by Jorrand and Lalire [86] to describe
the interactions between quantum and classical processes using an algebraic process ap-

Chapter 4. Quantum Programming Languages 26

proach. The processes communicate over named gates that are static and given before the
process execution. The language is based on π-calculus. From a quantum point of view,
some of the features of the language are variable entanglement and management; unitary
operations; measurement and probabilistic processes; and communication and physical
transport of qubits to classical or quantum systems.

4.3.4 CQP

CQP [33] (Communicating Quantum Processes) is a quantum process algebra like QPAlg,
defined by Gay and Nagarajan. The language’s syntax is based on an expression language
and π-calculus. CQP was created for modeling the communication of classical and quan-
tum processes. It has a static type and formal operational semantics to transmit a qubit
using a communication channel. The language can be used to analyze and verify quantum
protocols.

4.3.5 QualFL

QualFL, created by Lapets et al., is a type of domain-specific quantum programming lan-
guage (not designed for a general purpose) that have as targets physicists and mathemati-
cians to work on quantum algorithms by focusing on the abstract description of quantum
computation. It can be compiled into logical quantum circuits and defines superposition
and unitary transformations on data.

4.3.6 QHAL

QHAL [44] is a hardware abstraction layer for quantum computers created by Riverlane
to be a universal quantum language. The main object was to define a multi-level hardware
abstraction layer (HAL) to build software portable across platforms and allows developers
to abstract the hardware implementation by providing a set of commands which could be
implemented on most quantum devices. The main features of the language are: define
a multi-level HAL; be portable with minimal loss of performance; have typical features;
and minimum hardware-dependent features and have support to advanced features, like
optimization, measurement-based control, and error correction.

4.3.7 QISKIT (Python)

Qiskit [67], founded by IMB, is an open-source SDK (software development kit) used to
perform quantum computations using the main properties of quantum mechanical prin-
ciples at the level of quantum circuits. Qiskit uses Python programming language and
allows the developers to use their tool to create quantum programs and execute them on

Chapter 4. Quantum Programming Languages 27

a quantum device on IBM Quantum Experience, an online platform to access the cloud-
based quantum computing of IBM.

4.3.8 Cirq (Python)

Cirq [55, 56] is an open-source framework developed by Google AI Quantum Team,
which is a Python library for manipulating quantum circuits. The framework provides
valuable hardware abstractions, where the developers can run their codes on quantum
computers and simulators. The developers can build quantum circuits from gates acting
on qubits. Cirq has built-in simulators, such as a wave function simulator called qsim.
Google provides a quantum computer service to run experiments in their quantum pro-
cessors using Cirq.

4.3.9 Braket SDK (Python)

Amazon Braket [48, 49] is an open-source Python library with a fully managed quantum
computing service. The Braket SDK provides tools to build, test, and run quantum al-
gorithms on AWS. It can be used to design and build quantum circuits and send them as
quantum tasks to Amazon Braket devices. The framework has two types of simulators,
a fully managed one available through Amazon services and a local simulator within the
SDK. The main features are:

• Hardware-independent developer framework to simplify the process of designing
and running quantum algorithms.

• Fully managed runs of classical-quantum algorithms with hybrid jobs.
• Fully managed Jupyter notebooks to build quantum algorithms and manage exper-

iments.
• Use quantum processing units from different vendors such as IonQ, Rigetti, or D-

Wave.

4.3.10 Strawberry Fields (Blackbird and Python)

Strawberry field [50] is an open-source, cross-platform Python library developed by Xanadu
to simulate and run quantum programs. The platform has three main components: an API
for quantum programming based on the Blackbird quantum programming language, three
virtual quantum computer backends, and an engine that can compile Blackbird quantum
programs on many different backends. The main features of this platform are:

• Integration with Xanadu Quantum Cloud, where developers can submit their quan-
tum programs to run on Xanadu’s photonic hardware.

• High-level functions to aid in the development of quantum programs.
• A simulator for photonic algorithms.

Chapter 4. Quantum Programming Languages 28

Blackbird [50] is a quantum assembly language for basic continuous variables states,
gates, and measures. The Strawberry Fields framework uses it and is designed to repre-
sent continuous-variable quantum programs that can run on photonic quantum hardware.
The Blackbird language is built into Strawberry Fields but also exists as a separate Python
package. Blackbird has four types of operations (state preparation, port application, me-
tering, and subsystem addition and removal).

4.3.11 Forest (Python)

Forest [60, 61] is a quantum software framework developed by Rigetti. The Forest suite
includes a QUIL compiler (quilc), a quantum virtual machine (qvm), and pyQuil, an
open-source Python library, for constructing, analyzing, and running quantum programs.
The pyQuil library is built on top of Quil, a quantum instruction language explicitly de-
signed for near-term quantum computers and based on a shared classical/quantum mem-
ory model, which means that the memory has both qubits and classical bits. The main
pyQuil functions are: generating Quil programs from quantum gates, classical operations
Compiling and simulating Quil programs, and the Quantum Virtual Machine to execute
Quil programs on real quantum processors.

4.3.12 DWave Ocean (Python)

Ocean software development kit (SDK) [53, 54] in an open-source framework written in
Python developed by D-Wave. It is used for developing quantum applications to run in
the D-Wave quantum computer. D-Wave provides a quantum cloud service where the
developers can submit problems to their quantum computers using Ocean’s framework.
Ocean provides packages for quadratic models, building hybrid solvers, simulated anneal-
ing samplers, maps constraints to binary quadratic models, and others.

4.3.13 Orquestra (Python)

Orquestra [58, 59] is a framework developed by Zapata Computing. It is a unified workflow-
based toolset for quantum computing. It enables developers to build and run quantum
workflows across multiple quantum and classical devices in a unified quantum operating
environment. Orchestra is based on Python code and libraries and integrates with many
vendors, e.g., Qiskit (IBM), Amazon Braket, IonQ, Rigetti, Cirq (Google), D-Wave, and
others.

4.3.14 Cove (C#)

Cove [80] is a software framework that allows quantum computing to be performed using
a classical language. It is an object-oriented framework implemented in C# that targets

Chapter 4. Quantum Programming Languages 29

commercial software developers. Cove has two main components: interfaces that specify
what must be provided to program quantum computers and implementations that deter-
mine how. Cove is designed to be independent of quantum hardware and for users not to
worry about error correction.

4.3.15 ProjectQ (Python)

ProjectQ [72] is a framework for quantum computing that allows developers to imple-
ment quantum algorithms using Python. This open-source framework was started at ETH
Zurich. It can translate quantum programs to many backends such as IBM Quantum Ex-
perience chip, AQT devices, AWS Braket, or devices provided by the IonQ service. The
main features that ProjectQ offers are:

• Developers can use Python, a high-level language, to write quantum programs.
• Users can implement their own compiler engine.
• Many backends such as simulator, emulator, resource counter, drawing engine, and

command printer.
• A library to help developers solve fermionic problems.

4.4 Summary

In this chapter, we identified and described several quantum programming languages that
have been proposed since 1996, summarizing the characteristics and main features of the
languages, the year they were created, whether they are open-source, active, academic,
or industrial, the author, and type (imperative, declarative or multiparadigm). We also
showed the evolution of quantum programming languages and how they are related to
other quantum and classical programming languages.

Chapter 4. Quantum Programming Languages 30

Name Year Open source Active Academic or Industrial Author Type

Ket [41, 42, 43] 2021 Yes Yes Academic Rosa et al. Imperative
QHAL [44, 45] 2021 Yes No Industrial Riverlane Multi-paradigm
Silq [46, 47] 2020 Yes Yes Academic Bichsel et al. Imperative
Braket SDK (Python) [48,
49]

2020 Yes Yes Industrial Amazon Multi-paradigm

Strawberry Fields
(Python and Black-
bird) [50]

2019 Yes Yes Industrial Killoran et al.
(Xanadu)

Multi-paradigm

cQASM [51, 52] 2018 Yes Yes Academic Khammassi et al. Imperative
Ocean Software
(Python) [53, 54]

2018 Yes Yes Industrial D-Wave Multi-paradigm

Cirq (Python) [55, 56] 2018 Yes Yes Industrial Google AI Quan-
tum Team

Multi-paradigm

QSEL [57] 2018 Yes No Academic Bacon Imperative
Orquestra (Python) [58,
59]

2017 Yes Yes Industrial Zapata Multi-paradigm

Forest (Python) [60, 61] 2017 Yes Yes Industrial Rigetti Multi-paradigm
Quil [62] 2017 Yes Yes Industrial Smith et al. Imperative
QDK (Q#, Python and
.NET Languages) [63, 64,
65, 66]

2017 Yes Yes Industrial Microsoft Multi-paradigm

Qiskit (Python) [67] 2017 Yes Yes Industrial IBM Multi-paradigm
Q|SI⟩ [68] 2017 - - Academic Duan et al. Imperative
OpenQASM [69] 2017 Yes Yes Industrial Bishop et al. Imperative
QASM [70, 71] 2016 Yes Yes Academic Pakin Imperative
ProjectQ (Python) [72] 2016 Yes Yes Academic Han̈er et al. Multi-paradigm
LIQUi|⟩ [73, 74, 75, 76] 2014 Yes No Industrial Wecker et al. Functional
Quipper [77] 2013 Yes No Academic Green et al. Functional
QUAFL [78] 2013 - - Academic Lapets et al. Multi-paradigm
Scaffold [79] 2012 Yes Yes Industrial Abhari et al. Imperative
Cove (C#) [80] 2009 Yes No Academic Purkeypile Multi-paradigm
NDQFP [81] 2008 No No Academic Xu et al. Declarative
LanQ [82] 2007 Yes No Academic Mlnarı́k Imperative
QHaskell [83] 2006 - - Academic Vizzotto et al. Functional
NDQJava [84] 2006 No No Academic Xu et al. Imperative
cQPL [85] 2005 Yes No Academic Mauerer Multi-paradigm
QML [32] 2005 Yes No Academic Altenkirch et al. Functional
CQP [33] 2005 - - Academic Gay et al. Multi-paradigm
QPAlg [86] 2004 - - Academic Jorrand et al. Multi-paradigm
QPL and QFC [17] 2004 - - Academic Selinger Functional
Q Language [87] 2003 Yes No Academic Bettelli et al. Imperative
Sabry’s Language [88] 2003 - - Academic Sabry Functional
qGCL [89] 2000 - - Academic Sanders et al. Imperative
QCL [27, 90, 91] 1998 Yes No Academic Ömer et al. Imperative
λq [92] 1996 - - Academic Maymim et al. Functional

Table 4.1: Quantum programming languages, ordered descending by year, that have been
proposed by others.

Chapter 5

Methodology

In this study, we investigated the following research questions:

RQ1: Who is using quantum programming languages?
It aims to profile the participants who use quantum programming languages and
find out in which field of study they work.

RQ2: How are quantum programming languages being used?
It aims to identify how the participants use quantum programming languages and
how languages are being used in practice (e.g., to work, study, and research).

RQ3: What are the most used quantum programming languages? Why?
In this research question, we aim to obtain an overview of the most used quan-
tum programming languages and classify the most used quantum programming
paradigm. Based on the answers in the survey, we categorized the languages by
the ones the developers claim to use the most.

RQ4: What makes a person choose a quantum programming language? Why?
It aims to identify which functionalities and characteristics participants are most
interested in and what makes them choose to use one language over the others by
analyzing what they prefer the most in the languages they use.

RQ5: Which of the studied quantum programming languages have the best chance of
being imposed over the rest?
It aims to find out which language is more likely to stand out over the others and
the reasons that lead the language to impose itself on others.

RQ6: What makes someone propose a new quantum programming language?
It aims to discover the reasons the participants use to propose and create a new
quantum programming language.

31

Chapter 5. Methodology 32

RQ7: Are there too many quantum programming languages?
It aims to identify the participants’ opinions concerning the number of quantum
programming languages created and why.

5.1 Questionnaire Platforms

We conducted a study to identify the best questionnaire platform to conduct then our
survey with quantum developers and researchers (more information in Section 5.4.

We identified six platforms SoGoSurvey [95], Google Forms [96], Survio [97], Mind-
Miners [98], Typeform [99] and SurveyMonkey [100]. All are free to use or with a limited
free license. These platforms have the main features needed to prepare a survey, such as
usability, practical data collection, the possibility to add collaborators, add images and
videos, integrate with emails and websites, insert themes, and viewer-collected data. The
only platform adherent with all the features mentioned and no limitation on the number
of questions, answers, and collaborators was the Google Forms platform, which is totally
free. For these reasons, we elected Google Forms for our survey.

5.2 Questionnaire Guidelines

The paper Survey Methods: Questionnaires and Interviews [101] presented some steps
for the elaboration of a questionnaire, such as: setting the goals, deciding on the tar-
get population and sample size, determining the questions, pre-test the survey, testing
the questions, conducting the survey, analyze the collected data and produce the report.
Others [102, 103] have proposed methods to conduct a survey with human developers.

Dalati and Gómez [102] presented the advantages and disadvantages of a self-administered
survey questionnaire and presented the following 6-W Model to design and questionnaire:

• What is the appropriate type of scale required to perform the research analysis?
• What type of response strategy is required (structured or unstructured)?
• What type of communication approach is required (disguised or non-disguised)?
• What is the unit of analysis for which the questionnaire is designed?
• What questionnaire sequence should the questions be arranged?
• What questionnaire layout is required to accomplish research objectives?

Regmi et al. [103] showed a methodological aspect of online questionnaire surveys
and some ethical concerns, privacy, and confidentiality that must be considered.

These guidelines that were studied are essential and helped us define and prepare all
stages of the process of the elaboration and execution of the survey, taking into account
how to define and who were the target population of the survey, how to prepare the ques-
tions and to perform a pre-test to validate the format and questions of the survey.

Chapter 5. Methodology 33

5.3 Programming Languages Survey Examples

Some important surveys about programming languages were studied to see what ques-
tions are used in these surveys, e.g., Stackoverflow Annual Developer Survey [104]. Stack
Overflow is one of the largest professional software developers’ communities; their survey
contains nearly 80,000 responses from over 180 countries. It examines all aspects of the
developer experience, from career satisfaction and job search to education and opinions
on open-source software. Jetbrains’ annual report [105] has reported that 31,743 develop-
ers from 183 countries or regions answer this survey. The Jetbrains’ survey has found the
latest trends in the tech industry and facts about tools, technologies, programming lan-
guages, and other facets of the programming world. Other web pages that proposed ques-
tions about programming languages were also studied as Computer Science.org [106] and
Increment.com [107], to identify the most used questions about programming language
surveys.

The survey examples studied help us identify the main questions about programming
languages and the type and scale of the predefined answers to the proposed questions.

5.4 Our survey

In this thesis, we conducted a survey with questions about quantum programming lan-
guages to help understand the basis of quantum language uses.

5.4.1 Structure

The questions were divided into six groups:

• Group 1, describes a small introduction about the questionnaire, the scope, the
confidentiality agreement, the estimated duration, and assesses if the participant
ever used any Quantum Programming Languages.

• Group 2, summarizes demographic data about the participants, like age, place
where they live, gender, and ethnicity.

• Group 3, summarizes information about the education and experience of the par-
ticipants.

• Group 4, questions about the quantum programming languages the participant uses.
• Group 5, questions about the usage and tools for quantum programming languages.
• Group 6, wrap-up group where the participants answer questions related to the field

of quantum programming languages.

Table A.1 describes, by group, the questions that were asked in the survey, the reason for
each question, and the type/domain of each answer.

Chapter 5. Methodology 34

5.4.2 How the survey was conducted

The survey was published on specific channels of social networks about Quantum Com-
puting, such as in groups on Facebook, LinkedIn, discord, and Twitter. The publication
was also carried out in other online places, such as Slack and in mailing lists. It was also
emailed to authors of papers on quantum programming languages and other researchers
in the field of quantum computing. Table A.2 shows the information about the social
networks contacted for the survey.

To obtain more answers for the survey, a mining was performed on GitHub to find
developers of quantum programs. For this, a piece of code written in Python was im-
plemented using a library called PyGitHub [108], a Python client library for the GitHub
REST APIs. This library was used to search a list of repositories with topics related to
quantum computing (e.g., quantum computing, quantum algorithms, quantum programs,
and quantum programming languages). Afterward, we extract the public mailing list of
their developers.

This survey was conducted in two phases. The first phase was done with 2 participants
to pre-test the survey, validate the questions and calibrate the estimated time for answering
this survey. After the first phase, some corrections were necessary, and the survey was
updated with the lessons learned in the first phase. The survey was released and conducted
with 251 participants in the second phase. The survey was open for 60 days, and one
reminder was sent after ten days

After 60 days, the survey was closed, and the data collected was used for analyses and
to help answer our research questions.

5.4.3 Data Analysis

The data analysis of this survey was made after we collected all data from the question
answers. The first question, “Have you ever used any Quantum Programming Language?”
is used to assess if the participant is familiar with quantum programming languages and
enables the participant to go to all of the questions from the survey. We analyzed the
answers to the survey questions to answer each research question.

Questions 2 to 13 were analyzed to identify the profile of those using quantum pro-
gramming languages to answer RQ1. They identify their age, gender, country of living,
education level, profession, experience in coding, and how they learned quantum pro-
gramming languages and quantum physics, among other aspects.

In questions 15, 16, and 28 to 33, aspects of how quantum programming languages
are being used were analyzed to answer RQ2. It analyzed how developers and researchers
use languages in practice, such as for work, study, and research, among others. Questions
about how tests are being performed were also analyzed to answer the RQ2.

Questions 14, 17, 18, 19, 21, and 22 were analyzed to answer RQ3 to identify which

Chapter 5. Methodology 35

programming languages are most used and which ones developers like the most. Ques-
tions 20, 23, and 27 were analyzed to answer the RQ4 and aim to answer why a developer
chooses to work with a particular language and the main features they look for in the
language.

To answer RQ5, questions 24 and 25 were analyzed to identify which quantum pro-
gramming language is more likely to be used soon and the main reasons for choosing this
specific language. Questions 26 and 35 were analyzed to discover the reasons that led
someone to propose the creation of a new quantum programming language and answer
RQ6. Finally, the analysis of the answers to question 34 aims to verify the participants’
opinion regarding the number of quantum programming languages developed so far, ana-
lyzing whether they think there are too many or too few languages.

5.5 Threats to Validity

Based on the guidelines reported Wohlin et al. [109], we discuss below the threats to
validity of our study.

5.5.1 Threats to External Validity

Threats to external validity are related to the generalization of our results. The study may
not contain all the quantum programming languages ever proposed. However, extensive
research was conducted to find as many languages as possible to mitigate this risk. The
survey allowed the participants to use the “Others” text box to inform a different pro-
gramming language. Some languages were informed in the “Others” text box, such as
Xanadu’s Pennylane, QUTIP, FunQy, SQIR, Quingo, and Perceval. These languages rep-
resent a ratio of 16.2% based on the 37 languages studied in this thesis. The number of
participants who carried out the study may not contain a representation of the quantum
program developers. Still, to reduce this risk, the survey was sent to many participants
and shared on several social networks, as seen in Table A.2. In summary, we can see in
Figure 6.3 the diversity of countries where the participants live, in Figure 6.11 the diver-
sity of majors, and in Figure 6.16 the current job, which may indicate the amplitude of
participants.

5.5.2 Threats to Internal Validity

Threats to internal validity are associated with uncontrollable internal factors that may
influence our results. Our research questions were analyzed using plots and reports gen-
erated from scripts written using the R programming language [110], which is typically
used for statistic analysis. In the construction of these scripts, there is a risk of imple-
mentation errors, which can generate mistakes in the analysis of research questions. To

Chapter 5. Methodology 36

minimize these risks, the scripts were reviewed by all authors of this thesis.

5.5.3 Threats to Construct Validity

Threats to construct validity are related to the design of the experiment. There is a risk that
the questions used in the survey were not enough to analyze and answer all the questions
proposed in this work. To mitigate this risk, a study was carried out with other surveys, as
we can see in Section 5.2, to identify the main questions used in surveys for programming
languages, as well as a study of methods on how to carry out surveys, as we can see
in Section 5.3. The questions used in this study were designed based on the research
questions we proposed to study. The survey was tested with a few participants before
being made available to the public, so we could obtain feedback and make the necessary
adjustments.

5.6 Summary

In this chapter, we described the methodology of our study and how it was conducted.
We surveyed 251 quantum practitioners to answer the research questions proposed in this
study related to the usage of quantum programming languages. The survey was published
on specific channels of social networks about Quantum Computing, such as in groups
on Facebook, LinkedIn, Discord, and Twitter. The publication was also carried out in
other online places, such as Slack and in mailing lists. It was also emailed to authors of
papers on quantum programming languages and other researchers in the field of quantum
computing. This survey was conducted in two phases. The first phase was to pre-test and
validated the survey, and the second was with all 251 participants. We also discussed the
threats to the validity of our study.

Chapter 6

Results

In this section, we reported the findings of our study based on the information we gathered
from the survey that was applied between March 31, 2022, and May 31, 2022. We had
251 responses, of which 208 (82.9%) answered that they had already used quantum pro-
gramming languages and could move on to answering the following sections of the survey
(see Figure 6.1). Furthermore, 43 (17.1%) answered that they had never used quantum
programming languages and thus could not answer the questionnaire.

6.1 RQ1: Who is using quantum programming languages?

This research question aims to identify the profile of participants using quantum program-
ming languages, whether academically, researching, or professionally. To determine their
profile, we asked how old the participants were, what country they lived in, and what were
their current job, among others.

Regarding gender, we can see that almost 90.0% of participants are male, as shown in
Figure 6.2 and regarding the country where they live, we can see a great diversity, with
the United States being the country with the most participants (22.1%), see Figure 6.3.

Figure 6.4 shows that 39.9% of the participants have the age from 25 to 34 years old,
while 26.4% have the age from 18 to 24 years old and 18.3% have the age from 35 to 44
years old. Figure 6.5 shows that 27.9% have a doctoral degree, 35.1% have a master’s
degree, and 21.6% have a bachelor’s degree. The reason that most of the participants
have between 25 and 44 years old (58.1%) could be that they are more able to work
with quantum programming in their master’s and doctoral degrees since 63.0% of the
participants have one of these two degrees, and 42.8% of them use it for research. The
relation between participants’ age and education level is shown in Figure 6.6. It shows
that more than 80.0% of the participants between 25 and 64 years old have a master’s or
doctorate degree.

Regarding the participants’ experience, they are coding using classical programming
languages, both in total and professionally, as part of their work. We can see that most par-

37

Chapter 6. Results 38

17.1%

82.9%

No Yes

Figure 6.1: Distribution of participants that worked with quantum programming language
and could answer the survey.

ticipants have many experiences, with 86.2% having more than five years of experience,
and 50.0% over ten years, as shown in Figure 6.7. Regarding professional experience, we
have a slight decrease in experience, with 50.0% having over five years of experience and
28.8% over ten years, as per Figure 6.8.

We also added a question to the survey to find out how participants learned to code
and that most learned from Books and other online resources. In Figure 6.9, we can see
that most participants used books to learn to code (66.8%), learned using an online forum
(61.5%), and learned at school (60.6%). Most participants program in Python (92.3%),
a classical programming language. Consequently, this is the classical programming lan-
guage on which most quantum programming languages are based, as shown in Figure 4.2,
which describes the roots of programming languages. Other languages are also widely
used like C++ (60.1%) and C (55.3%), as we can see in Figure 6.10.

As expected from the participants who completed a major, most are related to Com-
puter Science (47.1%) and Physics (37.6%), as shown in Figure 6.11. Figure 6.12 shows
the relation between the primary quantum programming language used by the participant
and their major.

An important question regarding the profile of the participants is related to their
knowledge of quantum physics, considering that for the development of quantum algo-
rithms, it is necessary to know this area. In the survey, we asked the participant’s level
of knowledge concerning quantum physics, classifying them from 0 (no knowledge) to

Chapter 6. Results 39

88.9%

1.9%
6.2%

2.9%

Man Non−binary, genderqueer, or gender non−conforming Woman Prefer not to say

Figure 6.2: Distribution of the percentage of the gender of the participants.

5 (expert). We found out that all participants have some knowledge of quantum physics,
with the level of experience being quite balanced between 1 and 5, as shown in Fig-
ure 6.13. We also asked how they learned quantum physics, with most of them having
learned using books and/or at the university with 69.6% and 64.7%, respectively, accord-
ing to Figure 6.14.

As shown in Figure 6.15, there is a relation between the participants’ language and
their knowledge of quantum physics. Some languages might not require an expert level
in quantum physics, Braket SDK, QASM, QML, and Q# are used by participants with
a novice knowledge in quantum physics, while others like Strawberry fields, Quil, and
Quipper are used by participants with expert knowledge in quantum physics. Qiskit is
used for participants with different knowledge of quantum physics, which may indicate
that it has features that participants can use with different levels of knowledge.

Regarding the current job of the participants, as shown in Figure 6.16, most are Devel-
opers/Programmers/Software Engineers (37.5%), students (35.1%), or Scientists/Researchers
(33.2%). As participants can choose more than one item, we verified in the answers
that most of them have more than one role, such as Academic Research and Student,
Academic Research and Teacher, Scientist/Researcher and Developer, and Developer and
Other roles like Team Lead.

Summary RQ1: Almost 90.0% of the participants that answered the survey and
are using quantum programming languages are male, and 22.2% of them live in the

Chapter 6. Results 40

0.5%
1%
1%

0.5%
3.8%

5.8%
3.8%

0.5%
0.5%

1%
1.4%

2.4%
2.9%

0.5%
1.4%

0.5%
5.8%

0.5%
0.5%
0.5%

4.3%
2.9%

0.5%
0.5%

1.4%
0.5%
0.5%

1%
1%

1.4%
3.4%
3.4%

2.9%
1%

0.5%
0.5%

5.8%
0.5%

4.8%
0.5%

1%
4.3%

22.1%
0.5%
0.5%

Australia
Austria

Bangladesh
Belgium

Brazil
Canada

China
Colombia
Denmark
England
Finland
France

Germany
Greece
Holland

Hungary
India

Indonesia
Ireland

Israel
Italy

Japan
Laos

Mauritius
Mexico
Nepal

New Zealand
Nigeria
Norway

Pakistan
Poland

Portugal
Russia

Singapore
South Africa
South Korea

Spain
Sweden

Switzerland
Thailand

Turkey
United Kingdom

United States of America
Uruguay

Uzbekistan

0% 10% 20%

% participants

Figure 6.3: Distribution of the percentage of countries where participants live in.

United States of America. 58.2% have between 25 and 44 years old. 63.0% have
master or doctoral degrees. 86.2% have more than five years of experience using
classical programming languages.

6.2 RQ2: How are quantum programming languages be-
ing used?

The main purpose of this research question is to identify how the participants use quan-
tum programming languages in practice. According to the survey’s data, 42.8% use quan-
tum programming languages for research, while 34.6% because they like to learn new
languages, and 16.4% use them for work. The fact most use quantum programming
languages indicates that this is a relatively new field as many students and researchers
carry out innovative research in this area. Figure 6.17 shows the participants’ responses.
De Stefano [111] conducted an empirical study on the current adoption of quantum pro-
gramming to answer to what extent and to what kind of tasks are quantum programming
languages being used. In that study, the author searched GitHub repositories that use
Qiskit, Cirq, and Q#. Then he analyzed the README file in each repository to identify
what these languages are used for. As a result, he identified that the main purpose of the
use is for exercise, research, and teaching. The other primary purpose for quantum pro-
gramming is to develop quantum libraries or frameworks, which represent 16.0% of the

Chapter 6. Results 41

2.9%

26.4%

39.9%

18.3%

6.7%

2.9%

1.9%

1%

Under 18 years old

18−24 years old

25−34 years old

35−44 years old

45−54 years old

55−64 years old

65 years or older

Prefer not to say

0% 10% 20% 30% 40%

% participants

Figure 6.4: Age of the participants grouped by category and percentage.

total repositories analyzed. In line with our study, we can verify that the use of quantum
programming languages in GitHub repositories is related to the participant’s responses to
the survey, in which most use them to research and learn it.

The relation between the quantum programming language used by the participants and
for what they use is shown in Figure 6.18. Some languages like Ket, QASM, Quipper,
Silq, and Strawberry Fields are used mainly for research, while Orquestra and Quil are
used for work.

In terms of the use of quantum programming languages in general and profession-
ally, according to Figures 6.19 and 6.20. We can see that in terms of experience, the
participants have much less experience in quantum languages than in classical languages.
Overall, 83.7% of participants have less than four years of experience with quantum pro-
gramming languages, and they have the same percentage for classical languages with
more than five years of experience. Only 16.3% of participants have more than five years
of experience with quantum programming languages. Regarding their professional use,
this number is much lower, with 38.0% never used quantum programming languages for
work and 22.6% having less than one year of experience.

Figure 6.21 and Figure6.22 show the experience and professional experience of the
participants in terms of quantum programming language. Most participants have less than
four years of experience, which might be because most languages were created recently.

We asked the participants what tools they think are necessary or missing to develop

Chapter 6. Results 42

21.6%

0.5%

35.1%

27.9%

1%

1.9%

4.3%

6.7%

0.5%

0.5%

Bachelor...s degree (B.A., B.S., B.Eng., etc.)

Completed B.A., some graduate school without earning degree

Master...s degree (M.A., M.S., M.Eng., MBA, etc.)

Other doctoral degree (Ph.D., Ed.D., etc.)

Primary/elementary school

Professional degree (JD, MD, etc.)

Secondary school

Some college/university study without earning a degree

Some graduate study

currently enrolled in PhD program

0% 10% 20% 30% 40%

% participants

Figure 6.5: Formal education of the participants by percentage.

better and faster Quantum Programs. We found out that most of them think that a tailored
quantum IDE and tools for testing and debugging are currently missing. Another point al-
ready seen in other answers is the lack of a higher-level quantum programming language,
indicating that some participants think creating a new high-level language is necessary
to facilitate the effective development of quantum programs. The participants also raised
some other points, such as:

• Quantum debugging tools and classical simulations running parallel to a quantum
IDE.

• Quantum IDEs, with proper debug and circuit visualization tools.
• Implementation of error correction.
• Better device level optimizers, simulators, and device access. Improving device

specifications for cross-QPU development.
• Meaningful standardised benchmark suites.
• Easy interoperability between frameworks.

Many participants complained about tools to test and debug their quantum programs.
As we can see in Figure 6.23, 76.4% of participants test their quantum programs while
23.6% do not. Figure 6.24 shows that for some quantum programming languages, all
participants perform tests, e.g., Braked SDK, QHaskell, Orquestra, and other languages
they do not perform a test, such as QASM and Ket. The number of participants who do

Chapter 6. Results 43

16.7%50%33.3%

54.5%20%1.8%9.1%12.7%1.8%

10.8%51.8%31.3%2.4%1.2%2.4%

13.2%2.6%26.3%52.6%5.3%

35.7%57.1%7.1%

33.3%50%16.7%

25%50%25%

50%50%

Under 18 years old

18−24 years old

25−34 years old

35−44 years old

45−54 years old

55−64 years old

65 years or older

Prefer not to say

0% 25% 50% 75% 100%

Bachelor...s degree (B.A., B.S., B.Eng., etc.) Completed B.A., some graduate school without earning degree Master...s degree (M.A., M.S., M.Eng., MBA, etc.)

Other doctoral degree (Ph.D., Ed.D., etc.) Primary/elementary school Professional degree (JD, MD, etc.)

Secondary school (e.g. American high school, German Realschule or Gymnasium, etc.) Some college/university study without earning a degree Some graduate study

currently enrolled in PhD program

Figure 6.6: Relation between the age and education level of the participants by percent-
age.

not perform tests is very high, considering that 100.0% of quantum programs should be
tested to ensure they are correct. Of the participants who perform tests, we can see that the
majority, 64.7%, perform tests every time they change their code. In contrast, 16.2% only
perform tests before going to production, and 6.6% perform tests every day, according to
Figure 6.25.

Another point that drew attention, according to Figure 6.26, was that 57.4% of the
participants performed tests manually, while 42.6% performed them automatically, which
indicates a lack of test automation tools for the development of quantum programs. Also,
Figure 6.27 shows that in languages such as QML and Orquestra, Cirq, and Quil, the
participants mainly perform automatic tests. In contrast, the other participants perform
both manual and automatic tests, mainly manual ones.

To identify which tools participants use to test their programs, we listed the main
testing tools for quantum software, with the option for participants to enter another tool
to find out which tools they use. The tool most used by participants is Qiskit - QASM
Simulator, which is used by 77.1%, as shown in Figure 6.28. This number is coherent,
given that Qiskit is the primary language used by participants (64.9%), as we can see in
Figure 6.33. Figure 6.29 shows the relation between the quantum programming language
and the tool used for tests.

The participants use quantum programming languages for different reasons. As we

Chapter 6. Results 44

1.4%

12.5%

36.1%

19.2%

7.7%

9.6%

4.8%

3.4%

1%

2.4%

1%

1%

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 to 19 years

20 to 24 years

25 to 29 years

30 to 34 years

35 to 39 years

40 to 44 years

45 to 49 years

More than 50 years

0% 10% 20% 30% 40%

% participants

Figure 6.7: Experience of the participants in terms of coding by percentage.

can see in Figure 6.17, most participants use the languages for research or because they
like to learn. Figure 6.30 shows the relation between the reason the participants use
the languages and their work field. Most participants who work with economics use
quantum languages because they like to learn, while those who work with physics use
them for research. The interesting point is that most of the participants who have a major
in art/humanities use quantum programming languages for other reasons than to learn,
research or work.

Figure 6.31 shows the relation between the current job of the participants and the rea-
son they use the quantum programming languages. The participants who are working as
Architect, Product Managers, Technical Support and Technical Writer are mainly using
the language for work, while those who are working as Academic Research, Instruc-
tor/Teacher/Tutors, Scientist/Researchers, and Students are mainly using it for research;
and Tester/QA Engineer, UX/UI Designer and DBA (Database Administrator) are using
it because they like to learn the languages.

Summary RQ2: 42.8% of the participants use quantum programming languages for
research, 34.6% use them because they like to learn new quantum languages, 16.4%
use them for work, and 6.3% use them for other miscellaneous tasks.

Chapter 6. Results 45

9.6%

6.7%

33.7%

21.2%

13.9%

4.8%

3.8%

2.9%

1.4%

1%

0.5%

0.5%

None

Less than 1 year

1 to 4 years

5 to 9 years

10 to 14 years

15 to 19 years

20 to 24 years

25 to 29 years

30 to 34 years

35 to 39 years

40 to 44 years

45 to 49 years

More than 50 years

0% 10% 20% 30% 40%

% participants

Figure 6.8: Professional experience of the participants in terms of coding by percentage.

6.3 RQ3: What are the most used quantum program-
ming languages? Why?

In the survey, questions were carried out to identify which quantum programming lan-
guages the participants had already used and for how long they had used the languages, as
the question’s answers are shown in Figure 6.32. According to the participant’s responses,
the vast majority of participants, 177 (85.1%), have already used Qiskit (Python), the most
used quantum programming language. Qiskit is also the most used language by partic-
ipants for up to 6 years. From 7 to 8 years, cQAMS, OpenQAMS, and Qiskit (Python)
are tied as the quantum programming language most used. From 9 to 10 years and more
than 11 years, Quipper is the most used. Overall the second most used language is Cirq
(Python) with 91 (43.8%) responses, and in third, OpenQASM with 77 (37.0%) responses,
as shown in Table 6.1.

We also asked what the primary quantum programming languages the participants
use are. We can see that most participants use Qiskit (64.9%) as their primary quan-
tum programming language, the second most used being Cirq (5.3%), as we can see in
Figure 6.33.

Some participants mentioned some languages that were not among the options in the
survey. Among the most mentioned are Xanadu’s Pennylane (4 participants) and QUTIP
(2 participants). Others were mentioned only once, e.g., FunQy, SQIR, Quingo, and

Chapter 6. Results 46

66.8%

11.1%

30.8%

20.2%

41.8%

39.4%

61.5%

60.6%

8.2%

Books / Physical media

Coding Bootcamp

Colleague

Friend or family member

Online Courses or Certification

Online Forum

Other online resources (videos, blogs, etc)

School

Other

0% 10% 20% 30% 40% 50% 60% 70% 80%

% participants

Figure 6.9: How the participants learned to code by percentage.

Perceval.
We also asked how the participants learned quantum programming languages, and we

concluded that most of them, 60.6% learned from the languages’ documentation. In con-
trast, 41.3% learned through online courses, and 38.9% learned from books, according to
Figure 6.34. It is evident the importance of language documentation concerning learning,
and the more documentation the language has, the more likely participants will use it.
Figure 6.35 shows where the participants learned their language. For the Orquestra lan-
guage, all participants learned using the language documentation, which might indicate
that the language provides good documentation, while the participants at the University
learned QHaskell.

There are several reasons why Qiskit (Python) is the most used quantum programming
language by participants. An important factor is the large number of tutorials, course
materials, and resources for learning quantum programming and Qiskit. It is a framework
based on Python, and the participant is not limited to using only the features of Qiskit.
However, it can also use all the Python language and its libraries, making it possible
to start learning and developing quickly and easily. Furthermore, another point is the
policy of democratizing the use of quantum computers through free access to real quantum
hardware, making it possible for users to write code and run their codes on IBM’s quantum
computer.

Although not a quantum programming language, Python is the most used classical

Chapter 6. Results 47

20.2%

38.9%

55.3%

17.3%

60.1%

3.8%

1.9%

2.9%

3.4%

13.5%

13%

1.4%

9.1%

39.4%

35.1%

16.3%

10.6%

26.9%

5.8%

7.2%

8.2%

5.8%

16.8%

3.4%

6.2%

92.3%

7.2%

28.8%

4.3%

7.7%

9.6%

4.3%

17.3%

Assembly

Bash

C

C#

C++

Classic Visual Basic

COBOL

Delphi/Object Pascal

F#

Fortran

Go

Groovy

Haskell

Java

JavaScrpit

Julia

Lisp

Matlab

ML

Objective−C

Pascal

Perl

PHP

PowerShell

Prolog

Python

Ruby

SQL

Standard ML

Swift

Visual Basic

Visual C++

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% participants

Figure 6.10: Classical programming languages the participants used by percentage.

language for building quantum programs, making use of quantum frameworks, libraries,
and language extensions. Python is used by 92.3% of the participants in general and
73.6% as a primary language.

Summary RQ3: According to the participant’s responses, Qiskit (Python) is the
most used quantum programming language, used by more than 85.0% of the par-
ticipants that responded to the survey, followed by Cirq (Python) with 43.8% and
OpenQASM with 37.0% of the participants. Python is the most used classical lan-
guage to build quantum programs, used by 92.3% of the participants.

6.4 RQ4: What makes a person choose a quantum pro-
gramming language? Why?

Several reasons lead a person to choose which programming language he or she wants
to use, e.g., easy-to-learn syntax, online documentation, examples, and several forums.
Regarding quantum programming languages, we can see a significant lead from Qiskit
(Python) in terms of usage and understanding of why the participants use this quantum
programming language the most. We asked them to rate it using a scale of one to five in
terms of features, available documentation, code examples, several forums, support, and

Chapter 6. Results 48

2.1%

47.1%

1.6%

13.2%

9%

37.6%

2.1%

13.8%

7.9%

Art / Humanities

Computer Science

Economics

Math

Other Engineering

Physics

Social Sciences

Software Engineering

Other

0% 10% 20% 30% 40% 50%

% participants

Figure 6.11: The work field of the participants by percentage.

easy-to-code. As shown in Figure 6.36, Qiskit was rated with a three or higher rank by
more than 88.0% of the participants.

Most participants who have chosen Qiskit reported that it is open-source, easy to
understand, easy to code, Python-based, has many tutorials, continuous updates, operators
available, and has a very active community. Some participants also reported that the
fact that the framework is from IBM was also a positive factor, and others, the number
of modules that the language provides, as one participant mentioned: “There are many
modules help us to run real quantum hardware.”.

The points most mentioned by the participants about Qiskit were that the framework
uses Python, a language in which more than 92.3% of the participants who responded to
the survey have already used it, and also the fact that it has a large and active community.

Regarding what participants do not like or miss about Qiskit, we can highlight the
performance and consumption of RAM memory, over-complicated architecture, the fact
that it is still low-level, and the fact that it has few examples to run on current quantum
hardware.

An extensive and active community was one of the biggest reasons participants’ chose
a programming language. We asked the participants which are the most used forums, and
the answers were StackOverflow, used by 76.2% of the participants, Slack by 47.1%, and
QOSF by 22.7%, as we can see in Figure 6.37. StackOverflow is the only forum used for
some languages, e.g., QML, QHaskell, and QASM, as shown in Figure 6.38.

Chapter 6. Results 49

50%50%

41.2%5.9%5.9%35.3%5.9%5.9%

40%20%20%20%

100%

50%25%25%

50%50%

50%50%

100%

45.5%9.1%9.1%18.2%18.2%

100%

1.9%35.1%0.6%7.1%5.8%29.9%1.9%10.4%7.1%

50%50%

33.3%16.7%16.7%16.7%16.7%

33.3%50%16.7%

50%50%

100%

24.2%3%21.2%9.1%36.4%3%3%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Art / Humanities Computer Science Economics

Math Other Engineering Physics

Social Sciences Software Engineering Other

Figure 6.12: Relation between the primary quantum programming language chosen by
the participants and their major by percentage.

An essential factor to verify what makes a participant choose a quantum programming
language or to know their opinion on why it is essential to learn quantum programming
languages and to find out the participants’ opinions concerning this topic, we asked the
question “What makes learning Quantum Programming Language important” in the sur-
vey. We observed several answers, e.g., “very interesting”; “research”; “quantum com-
puters are the next evolutionary step”; “solving optimization problems”; “opportunities in
the future”. However, the most common answers given by the participants were:

• It is an important emerging field.
• Development of quantum algorithms.
• Use familiar programming languages, such as Python.
• Features to implement quantum concepts.
• Their future application in Software Engineering.
• It is necessary in order to manipulate the technology hands-on.
• They are the future of programming.
• Technological applications, fundamental research, and democratization of quantum

computing.

The fact that quantum computing is an innovative area with much potential in the
future is a significant factor for the participants to work with a quantum programming

Chapter 6. Results 50

19.2%

22.1%

24.5%

15.4%

18.8%

1 (novice) 2 3 4 5 (expert)

Figure 6.13: Level of education in terms of knowledge in quantum physics by percentage.

language. We can conclude that the closer a language gets to the real world and be used
in actual quantum hardware, the more motivated the participants are to learn the quantum
programming language.

Summary RQ4: Participants mentioned several reasons for choosing a quantum
programming language. The most mentioned ones were open-source, easy-to-learn
syntax (based on an existing programming language), available documentation and
examples, an active community, and available features.

6.5 RQ5: Which of them has the best chances of being
imposed over the rest?

To answer this research question on which quantum programming language has the great-
est chance of imposing itself on top of the others, two questions were added to the survey
to find out which language the participants would like to use in the near future. The an-
swers can be found in Figure 6.39 and also what leads them to try a new language, as we
can see the answers in Figure 6.40.

Regarding the question on which quantum programming languages the participants
would like to try in the near future, we can see that the most languages chosen in the
answers were Cirq (25.5%), Qiskit (20.2%), and Q# (18.8%), which are the languages
of the largest technology companies (Google, IBM, and Microsoft, respectively). These

Chapter 6. Results 51

69.6%

41.5%

27.1%

64.7%

26.1%

7.2%

Books

Online Course

Search Sites

University

Work

Other

0% 10% 20% 30% 40% 50% 60% 70% 80%

% participants

Figure 6.14: Education of the participants in terms of learning quantum physics by per-
centage.

choices are strongly linked to the main reason they chose why they would like to try these
languages, in which 63.9% of participants said they would choose them because they
“heard about the language.”. Figure 6.41 also shows the relation between the quantum
programming languages and the reason why the participants want to use the language,
which also shows that for most of them, it is because they “heard about the language”.
The big companies have excellent worldwide visibility, and their software also has great
visibility and a good chance of being tried by developers. Other reasons that participants
chose why they would try one of these languages were: Widely used (24.0%) and Reading
an article about the language (23.6%).

The quantum programming languages created by large companies that have high visi-
bility and are aligned with the hardware of a real quantum computer have the best chances
of being used in the near future. The reason is that most users want to work with cutting-
edge technology and a real quantum computer instead of simulators. The language that
aligns with these expectations and with an easy syntax based on existing programming
languages, like Python, has significant changes to impose itself concerning the others.

Summary RQ5: Cirq with 25.5% was the most chosen quantum programming lan-
guage by the participants, followed by Qiskit with 20.2% and Q# with 18.8%. The
main reason for these choices was that they “heard about the language”, indicating

Chapter 6. Results 52

100%

27.3%18.2%9.1%45.5%

33.3%33.3%33.3%

100%

25%50%25%

100%

100%

100%

44.4%11.1%33.3%11.1%

100%

20.7%21.5%27.4%16.3%14.1%

50%50%

40%20%40%

40%20%40%

50%50%

100%

12.5%25%12.5%16.7%33.3%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

1 (novice) 2

3 4

5 (expert)

Figure 6.15: Relation between the primary quantum programming language chosen by
the participants and their knowledge in quantum physics by percentage.

big technology companies’ credibility and worldwide visibility.

6.6 RQ6: What makes someone propose a new language?

To answer the question of what makes someone propose a new language, we first investi-
gated the main challenges developers find in quantum programming languages and if they
think it is still necessary to create other languages.

Regarding the main challenges they encounter, many participants responded that the
lack of documentation and examples to use the language is one of the main challenges
they currently face. One participant responded, “Lack of documentation and examples,”
while another responded, “The lack of documentation and videos, tutorials, etc. showing
the basics of these languages.”. Many of the participants have difficulties in finding docu-
mentation online as well as some participants also reported a lack of communities to ask
questions about the languages.

Another challenge reported by the participants is that many quantum programming
languages are very different, making a choice very difficult for them. One participant
said, “too many choices, and they are all different.” while another “There are so many
frameworks and difficulty to try and find the best one.”. In addition to many languages and
lack of documentation, participants reported that many languages have design limitations

Chapter 6. Results 53

31.7%

3.8%

1.4%

7.2%

10.1%

0.5%

37.5%

2.9%

4.8%

11.1%

0.5%

1.9%

2.9%

33.2%

35.1%

1.4%

9.6%

2.9%

2.9%

0.5%

0.5%

4.3%

Academic researcher

Architect

Business Analyst

CIO / CEO / CTO

Data Analyst / Data Engineer/ Data Scientist

DBA (Database Administrator)

Developer / Programmer / Software Engineer

Developer Advocate

DevOps Engineer / Infrastructure Developer

Instructor / Teacher / Tutor

Marketing Manager

Product Manager

Project Manager

Scientist / Researcher

Student

Systems Analyst

Team Lead

Technical Support

Technical Writer

Tester / QA Engineer

UX / UI Designer

Other

0% 10% 20% 30% 40%

% participants

Figure 6.16: Current job of the participants by percentage.

and missing features.
The lack of conceptual knowledge about qubit, measurement, and quantum physics

was also reported as a factor that made it very difficult for the participants. According to
the participants, it is difficult to choose a language and write algorithms/programs with it
as most of them also lack tooling for abstractions and high-level reusability.

A summary of the main challenges encountered by the participants:

• Lack of online documentation, videos, tutorials, and examples.
• Lack of conceptual knowledge about quantum physics.
• Design limitations and missing features in the languages.
• Not having a universal language.
• Not enough software engineering concepts.
• Manufacturer dependency on the languages and lack of interoperability.
• The variety of available languages.
• Lack of tooling for abstractions and use of quantum programming languages.
• Small community of users to help use the languages and answer questions.
• Syntax of the languages is very different from language to language.
• Availability to test the languages in real quantum computers instead of simulators.

Regarding the participants’ opinion, if they would need yet another Quantum Pro-
gramming Languages in the near future, we can see in Figure 6.42. While some par-

Chapter 6. Results 54

34.6%

42.8%

16.3%

6.2%

Like to learn Use it for research Use it for work Other

Figure 6.17: Reason the participants use quantum programming languages (e.g., Like to
learn, use it for research, use it for work) by percentage.

ticipants think yes, new languages will be needed shortly, as one participant said, “Yes.
Higher-level programming. Right now, everything is low level with very little optimiza-
tion for compilation.” others think it is unnecessary, as one of the participants said: “No, it
is better to learn the current languages and, if necessary, contribute to their improvement.”.

Figure 6.43 shows that depending on the language used, the participant’s opinion re-
garding the need for another quantum programming language can differ. All of the partic-
ipants who use OpenQASM, QHaskell, Silq, and Strawberry fields responded that there
is a need to create a new language. However, the participants who use Quipper, QML,
Ket, Ocean Software, and Q|SI⟩ do not think another language is necessary. Based on
the open answers, we can conclude that these languages have most or all of the features
they think are necessary to develop their quantum programs or because they believe that
adding new features to the existing languages is better.

The main reasons that participants reported as being necessary for the creation of a
new language for quantum programming are:

• The creation of a universal language.
• More standardized quantum programming languages.
• High-level programming languages are needed instead of low-level languages.
• The languages are not yet mature enough, and the hardware is quickly changing.
• New algorithms will require new languages.
• To support cryptography and post-quantum cryptography concepts.

Chapter 6. Results 55

50%50%

27.3%72.7%

66.7%33.3%

100%

50%25%25%

100%

100%

100%

55.6%44.4%

100%

37.8%43%14.8%4.4%

50%50%

80%20%

100%

100%

100%

29.2%29.2%25%16.7%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Like to learn Use it for research Use it for work Other

Figure 6.18: Relation between the primary quantum programming language chosen by
the participants and for what they use the language by percentage.

• Many ideas need to be explored, especially as the number of qubits scales.
• Most of the current programs are based on circuits that are way too low-level.
• Languages for handling error correction in real devices.
• There is room for a language that enables orchestration between quantum expres-

sion and control hardware more effectively.

As for the participants who disagreed with the need to create new quantum program-
ming languages, the main reasons were:

• The problem concerns standard libraries of generic, optimized, and verified subrou-
tines and languages rather than programming languages.

• A new language is unnecessary unless it adds something new to the quantum field.
• Many languages overlap, and a standard language for quantum computation could

accelerate development.
• It is better to learn the current languages and, if necessary, contribute to their im-

provement.
• The popular languages like Qiskit (Python), Q#, and Cirq (Python) are enough.
• Too many already, and consolidation is needed.
• The existing ones are sufficient.

Chapter 6. Results 56

25.5%

58.2%

13%

2.9%0.5%

Less than 1 year
1 to 4 years
5 to 9 years

10 to 14 years
15 to 19 years
20 to 24 years

25 to 29 years
30 to 34 years
35 to 39 years

40 to 44 years
45 to 49 years
More than 50 years

Figure 6.19: Experience of the participants in terms of using quantum programming lan-
guages by percentage.

Summary RQ6: Most participants responded that developing another quantum pro-
gramming language is necessary, 31.7%. In contrast, 25.0% of them responded not.
The main reasons for the need for another quantum programming language were a
more mature, standardized, high-level quantum programming language and new fea-
tures (e.g., handling error correction in real devices).

6.7 RQ7: Are there too many quantum programming
languages?

Regarding this research question, we aim to find out if there were too many quantum
programming languages created and, if so, why. In the survey, a question about the par-
ticipants’ opinion regarding the number of quantum programming languages, we try to
find the answer to this question. As shown in Figure 6.44, most participants (42.8%) an-
swered yes. In contrast, 18.3% answered no, and 38.9% did not answer this question for
different reasons like they did not know or did not have the knowledge to answer it.

One of the participants answered the question, “Too many - there’s a lot of overlap
between the languages, most could be done if a single language was settled on.”.

Several important points were raised as reasons by the participants:

• There are many languages with overlapping features that are not standardized.

Chapter 6. Results 57

38%

22.6%

27.9%

8.7%
2.4%0.5%

None
Less than 1 year
1 to 4 years

5 to 9 years
10 to 14 years
15 to 19 years

20 to 24 years
25 to 29 years
30 to 34 years

35 to 39 years
40 to 44 years
45 to 49 years

More than 50 years

Figure 6.20: Professional experience of the participants regarding quantum programming
languages by percentage.

• Because quantum programming is still in the early stages of development, there are
many different proposals for languages.

• Many of these languages are research languages that do not have great community
support.

• Many languages are needed until we find which features are required in a quantum
programming language.

• Many participants want to make their own language or have a better abstraction for
them. In classical computing, everyone tries to write their language, interpreter, or
compiler, which is the same as quantum computing.

• The languages have too little interoperability, and too many were created by start-
ups that will die soon.

• There must be a standard for the creation of a universal language.
• There are many overlaps between the languages, which could be solved if a single

language were established.
• Many languages are created because the developers encounter problems within a

specific language.
• Many companies run hardware platform competitions and create languages for their

hardware.

Figure 6.45 shows the relation between the quantum programming language used by
the participant and their opinion regarding the number of languages. The participants

Chapter 6. Results 58

50%50%

18.2%63.6%9.1%9.1%

33.3%66.7%

100%

25%50%25%

100%

100%

100%

55.6%33.3%11.1%

100%

26.7%60%11.9%1.5%

50%50%

80%20%

20%20%40%20%

100%

100%

20.8%50%25%4.2%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Less than 1 year 1 to 4 years 5 to 9 years

10 to 14 years 15 to 19 years 20 to 24 years

25 to 29 years 30 to 34 years 35 to 39 years

40 to 44 years 45 to 49 years More than 50 years

Figure 6.21: Relation between the primary quantum programming language chosen by
the participants and their experience by percentage.

responded that there are too many languages for most of the languages used. For some of
them (e.g., QASM, QML, Braket SKD), all participants answered that there are too many
languages currently available.

There are several reasons to justify a large amount of quantum programming language.
For example, many languages were created for an application area, and others were cre-
ated to take advantage of some specific quantum computing properties. Another point
is that as it is a recent and innovative area with great growth potential, many companies
are investing in creating hardware (quantum computers) and software. According to most
participants’ opinions, there are many quantum programming languages, which does not
mean that many others will not be created for different reasons, such as the natural evo-
lution of languages as quantum programming languages emerged for many reasons and
as developers realized that things could be done from better, more intuitive, and therefore
faster, they were creating their own languages. Adaptation to the historical moment, for
example, with the creation of new hardware with different technologies, new languages
will be needed to operate them. A universal language for quantum computing would be
fascinating, which is unlike to happen because specialization is always needed to deal
with specific problems.

Chapter 6. Results 59

50%50%

9.1%18.2%54.5%9.1%9.1%

66.7%33.3%

100%

50%50%

100%

100%

100%

77.8%11.1%11.1%

100%

41.5%24.4%25.9%6.7%1.5%

50%50%

40%40%20%

40%20%20%20%

100%

100%

29.2%25%20.8%20.8%4.2%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

None Less than 1 year 1 to 4 years 5 to 9 years

10 to 14 years 15 to 19 years 20 to 24 years 25 to 29 years

30 to 34 years 35 to 39 years 40 to 44 years 45 to 49 years

More than 50 years

Figure 6.22: Relation between the primary quantum programming language chosen by
the participants and their professional experience by percentage.

Summary RQ7: 42.8% of the participants answered that there are too many quan-
tum programming languages. In contrast, 18.3% answered no, and 38.9% did not
answer this question for different reasons like they did not know or did not have the
knowledge to answer it.

6.8 Summary

In this chapter, we presented the results and answers to each proposed research question
in this thesis. Regarding the RQ1, which aims to identify who is using quantum program-
ming languages, the results showed that most participants are male (almost 90.0%); 58.2%
have between 25 and 44 years old; 63.0% have master’s or doctoral degrees; 86.2% have
more than five years of experience using classical programming languages. About RQ2,
to identify how the quantum programming languages are being used, the results showed
that 42.8% of the participants use quantum programming languages for research, 34.6%
use them because they like to learn new quantum languages, 16.4% use them for work,
and 6.3% use them for other tasks. The study showed that Qiskit (Python) is the most
used quantum programming language, used by more than 85.0% of the participants that
responded to the survey, and Python is the most used classical language to build quantum
programs, answering RQ3.

Chapter 6. Results 60

23.6%

76.4%

No Yes

Figure 6.23: Identify if the participants perform tests in their quantum programs by per-
centage.

Participants mentioned several reasons for choosing a quantum programming lan-
guage and responded to the RQ4. The most mentioned ones were open-source, based
on an existing programming language, available documentation and examples, an active
community, and available features. Cirq with 25.5% was the most chosen quantum pro-
gramming language by the participants to work in the near future, answering RQ5.

Regarding RQ6, the main reasons to propose a new language are the need for a more
mature, standardized, high-level quantum programming language with new features (e.g.,
handling error correction in real devices). Regarding RQ7, most participants answered
that there are too many quantum programming languages (42.8%), 38.9% did not know,
and 18.3% answered that there are not too many quantum programming languages.

Chapter 6. Results 61

100%

18.2%81.8%

66.7%33.3%

100%

100%

100%

100%

100%

55.6%44.4%

100%

21.5%78.5%

100%

20%80%

20%80%

50%50%

100%

25%75%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

No Yes

Figure 6.24: Relation between the primary quantum programming language chosen by
the participants and if they test their quantum programs by percentage.

16.2%

6.6%

64.7%

12.6%

Before go to production Every day Every time you change the code Other

Figure 6.25: The frequency that the participant tests their quantum programs by percent-
age.

Chapter 6. Results 62

42.6%

57.4%

Automatically (e.g., unit test) Manually

Figure 6.26: Identify if the participants use automatic or manual tests by percentage.

50%50%

55.6%44.4%

100%

100%

33.3%66.7%

100%

100%

100%

50%50%

100%

37.8%62.2%

100%

60%40%

20%80%

100%

100%

63.2%36.8%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Automatically (e.g., unit test) Manually

Figure 6.27: Relation between the primary quantum programming language chosen by
the participants and how they test their quantum programs by percentage.

Chapter 6. Results 63

18.5%

5.1%

0.6%

1.9%

3.8%

77.1%

0.6%

0.6%

3.8%

24.8%

Cirq Simulator and Testing − cirq.testing

Forest using pytest

Muskit: A Mutation Analysis Tool for Quantum Software Testing

ProjectQ Simulator

QDK − xUnit

Qiskit − QASM Simulator

QuanFuzz − Fuzz Testing of Quantum Program

Quito − A Coverage−Guided Test Generator for Quantum Programs

Straberry Fields using pytest

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

% participants

Figure 6.28: Show what the most used tools to test quantum programs are by percentage.

50%50%

58.8%11.8%29.4%

50%50%

33.3%16.7%16.7%16.7%16.7%

100%

50%50%

15.4%7.7%15.4%7.7%38.5%15.4%

9.2%0.8%0.8%6.9%1.5%2.3%74.8%0.8%3.1%

33.3%33.3%33.3%

37.5%50%12.5%

75%25%

100%

100%

8.3%8.3%54.2%4.2%25%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Cirq Simulator and Testing − cirq.testing Forest using pytest Muskit: A Mutation Analysis Tool for Quantum Software Testing

Other ProjectQ Simulator QDK − xUnit

Qiskit − QASM Simulator QuanFuzz − Fuzz Testing of Quantum Program Quito − A Coverage−Guided Test Generator for Quantum Programs

Straberry Fields using pytest

Figure 6.29: Relation between the primary quantum programming language chosen by
the participants and the tool they use for testing by percentage.

Chapter 6. Results 64

25%25%50%

33.7%42.7%16.9%6.7%

66.7%33.3%

32%48%20%

35.3%29.4%23.5%11.8%

23.9%50.7%19.7%5.6%

25%25%25%25%

42.3%34.6%15.4%7.7%

40%53.3%6.7%

Art / Humanities

Computer Science

Economics

Math

Other Engineering

Physics

Social Sciences

Software Engineering

Other

0% 25% 50% 75% 100%

Like to learn Use it for research Use it for work Other

Figure 6.30: Relation between the work field of the participants and the reason they use
the quantum programming languages by percentage.

19.7%65.2%10.6%4.5%

37.5%12.5%50%

66.7%33.3%

40%20%20%20%

57.1%28.6%9.5%4.8%

100%

37.2%25.6%28.2%9%

16.7%16.7%33.3%33.3%

70%10%10%10%

34.8%52.2%13%

100%

25%75%

100%

26.1%47.8%18.8%7.2%

35.6%52.1%8.2%4.1%

100%

35%10%35%20%

33.3%66.7%

33.3%16.7%50%

100%

100%

33.3%44.4%11.1%11.1%

Academic researcher

Architect

Business Analyst

CIO / CEO / CTO

Data Analyst / Data Engineer/ Data Scientist

DBA (Database Administrator)

Developer / Programmer / Software Engineer

Developer Advocate

DevOps Engineer / Infrastructure Developer

Instructor / Teacher / Tutor

Marketing Manager

Product Manager

Project Manager

Scientist / Researcher

Student

Systems Analyst

Team Lead

Technical Support

Technical Writer

Tester / QA Engineer

UX / UI Designer

Other

0% 25% 50% 75% 100%

Like to learn Use it for research Use it for work Other

Figure 6.31: Relation between the current job of the participants and the reason they are
using the quantum programming language by percentage.

Chapter 6. Results 65

15.5%

1.9%

9.7%

26.2%
12.1%

5.8%

10.2%

10.7%
2.4%

1.5%
13.6%

2.4%
1.9%

1%
9.2%

1%

12.1%
0.5%
0.5%

10.2%

0.5%

9.7%

0.5%

9.7%

10.2%

17%
8.7%

9.2%
1.9%

0.5%
9.7%

1.5%
0.5%

12.1%
3.4%

3.9%
1.9%

1%
11.7%

2.4%
2.4%

0.5%
11.2%

0.5%
0.5%

13.1%
4.9%

2.4%
10.7%

1.5%
0.5%

12.6%
2.9%

1.9%
19.9%

5.8%
2.4%

8.7%
0.5%
0.5%

9.7%
0.5%
0.5%
0.5%

13.6%
1.9%

1.5%
0.5%

9.7%

10.2%

0.5%

9.7%

27.7%
32.5%

19.9%
5.3%

0.5%

10.2%

12.1%
2.4%

1.9%
1%

9.7%
2.4%

1.9%
1%
1%

9.7%

9.2%

0.5%
10.2%

0.5%
0.5%
0.5%

11.2%
1%

1.5%
10.2%

0.5%
0.5%

16%
3.4%

1.9%
0.5%

11.2%
1.9%

1.5%
0.5%

9.7%

1%

9.2%

0.5%

Braket SDK (Python)
CQP

Cirq (Python)
Cove (C#)

DWave Ocean (Python)
Forest (Python)

Ket
LIQUi|>

Lambda Calculi
LanQ

NDQFP
NDQJava

OpenQASM
Orquestra (Python)

Other
ProjectQ (Python)

Q Language
QASM

QCL
QDK (Python)

QDK (Q#)
QHAL

QHaskell
QML

QPAlg
QPL and QFC

QSEL
Qiskit (Python)

QuaFL
Quil

Quipper
Q|SI>

Sabry Language
Scaffold

Silq
Strawberry Fields (Blackbird)

Strawberry Fields (Python)
cQASM

cQPL
qGCL

0% 10% 20% 30%

% participants

Less than 1 year
1 to 2 years

3 to 4 years
5 to 6 years

7 to 8 years
9 to 10 years

More then 11 years

Figure 6.32: Show which quantum programming languages the participants use and how
long by the percentage. (See Table 6.1 for absolute numbers.)

Chapter 6. Results 66

Quantum Programming Language Less than 1 year 1 to 2 years 3 to 4 years 5 to 6 years 7 to 8 years 9 to 10 years More then 11 years Total

Braket SDK (Python) 32 4 0 0 0 0 0 36
Cirq (Python) 54 25 12 0 0 0 0 91
Cove (C#) 21 0 0 0 0 0 0 21
cQASM 23 4 3 0 1 0 0 31
CQP 20 0 0 0 0 0 0 20
cQPL 20 2 0 0 0 0 0 22
DWave Ocean (Python) 22 5 3 0 0 0 0 30
Forest (Python) 28 5 4 2 0 0 0 39
Ket 19 2 0 0 0 0 0 21
λq 21 0 1 0 0 0 0 22
LanQ 20 1 0 0 0 0 0 21
LIQUi|⟩ 25 1 0 1 0 0 0 27
NDQFP 20 0 0 0 0 0 0 20
NDQJava 21 0 0 0 0 0 0 21
OpenQASM 35 18 19 4 1 0 0 77
Orquestra (Python) 20 3 1 0 0 0 0 24
ProjectQ (Python) 24 5 5 1 0 0 0 35
Q Language 23 1 1 0 0 0 0 25
Q|SI⟩ 20 0 0 0 0 0 0 20
QASM 27 10 5 0 0 0 0 42
QCL 22 3 0 1 0 0 0 26
QDK (Python) 26 6 4 0 0 0 0 36
QDK (Q#) 41 12 5 0 0 0 0 58
qGCL 19 1 0 0 0 0 0 20
QHAL 18 1 1 0 0 0 0 20
QHaskell 20 1 1 1 0 0 0 23
Qiskit (Python) 57 67 41 11 1 0 0 177
QML 28 4 3 0 0 0 1 36
QPAlg 20 0 0 0 0 0 0 20
QPL and QFC 21 0 0 0 0 0 1 22
QSEL 20 0 0 0 0 0 0 20
QuaFL 21 0 0 0 0 0 0 21
Quil 25 5 4 2 0 0 0 36
Quipper 20 5 4 0 0 2 2 33
Sabry Language 19 0 0 1 0 0 0 20
Scaffold 21 1 1 0 0 0 1 24
Silq 23 2 3 0 0 0 0 28
Strawberry Fields (Blackbird) 21 1 1 0 0 0 0 23
Strawberry Fields (Python) 33 7 4 1 0 0 0 45
Other 25 7 8 4 0 0 2 46

Table 6.1: Number of participants per quantum programming language by usage time.

Chapter 6. Results 67

1%

5.3%

1.4%

0.5%

1.9%

0.5%

0.5%

0.5%

4.3%

0.5%

64.9%

1%

2.4%

2.4%

1%

0.5%

11.5%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 10% 20% 30% 40% 50% 60% 70%

% participants

Figure 6.33: The primary quantum programming language used by the participants by
percentage.

38.9%

60.6%

41.3%

30.3%

30.8%

26%

26%

8.7%

Books

Language documentation

Online Course

Online Forums

Search Sites

University

Work

Other

0% 10% 20% 30% 40% 50% 60% 70%

% participants

Figure 6.34: How the participants learned quantum programming languages by percent-
age.

Chapter 6. Results 68

16.7%16.7%33.3%16.7%16.7%

9.4%28.1%15.6%9.4%3.1%18.8%12.5%3.1%

22.2%22.2%11.1%11.1%11.1%22.2%

33.3%33.3%33.3%

20%20%10%10%10%20%10%

100%

20%20%20%20%20%

100%

21.4%25%7.1%10.7%17.9%7.1%10.7%

100%

16.6%21.6%19.7%12.7%11.6%9.7%6.4%1.7%

16.7%33.3%16.7%16.7%16.7%

10%30%10%40%10%

11.1%22.2%11.1%22.2%33.3%

11.1%22.2%11.1%11.1%11.1%11.1%22.2%

100%

9.3%27.8%5.6%9.3%13%5.6%20.4%9.3%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Books Language documentation

Online Course Online Forums

Search Sites University

Work Other

Figure 6.35: Relation between the primary quantum programming language chosen by
the participants and how they learned the language by percentage.

Chapter 6. Results 69

5.2%

8.1%

25.2%

36.3%

25.2%

5.2%

6.7%

20.7%

34.8%

32.6%

3.7%

5.2%

30.4%

35.6%

25.2%

3.7%

10.4%

28.9%

35.6%

21.5%

7.4%

16.3%

30.4%

26.7%

19.3%

5.9%

14.1%

35.6%

23%

21.5%

code examples

documentation

easy to code

features

forums

support

0% 10% 20% 30% 40%

% participants

1 2 3 4 5

Figure 6.36: The rate in terms of ease (e.g., support, forums, features, easy to code,
documentation, code examples) of Qiskit (participant’s primary quantum programming
language most chosen) by percentage.

Chapter 6. Results 70

1.7%

22.7%

47.1%

76.2%

17.4%

Devtalk

Quantum Open Source Foundation

Slack

StackOverflow

Other

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

% participants

Figure 6.37: The most used forums to ask questions on quantum computing by percent-
age.

25%50%25%

33.3%55.6%11.1%

100%

100%

12.5%12.5%25%50%

50%50%

50%50%

100%

18.2%9.1%54.5%18.2%

100%

0.5%15.1%31.7%45.9%6.8%

100%

50%50%

100%

100%

3.1%9.4%21.9%40.6%25%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Devtalk Quantum Open Source Foundation

Slack StackOverflow

Other

Figure 6.38: Relation between the primary quantum programming language chosen by
the participants and the forum used by percentage.

Chapter 6. Results 71

13%

25.5%

0.5%

2.9%

1.4%

1.9%

8.2%

5.8%

7.7%

1%

1%

0.5%

1%

11.1%

5.8%

4.3%

4.3%

1%

6.2%

3.8%

5.8%

18.8%

0.5%

0.5%

6.7%

20.2%

8.2%

1.9%

1.4%

0.5%

0.5%

4.8%

3.4%

1.4%

2.4%

6.7%

6.2%

13%

14.9%

Braket SDK (Python)

Cirq (Python)

Cove (C#)

cQASM

CQP

DWave Ocean (Python)

Forest (Python)

Ket

Lambda Calculi

LanQ

LIQUi|>

NDQFP

NDQJava

OpenQASM

Orquestra (Python)

ProjectQ (Python)

Q Language

Q|SI>

QASM

QCL

QDK (Python)

QDK (Q#)

qGCL

QHAL

QHaskell

Qiskit (Python)

QML

QPAlg

QPL and QFC

QSEL

QuaFL

Quil

Quipper

Sabry Language

Scaffold

Silq

Strawberry Fields (Blackbird)

Strawberry Fields (Python)

Other

0% 10% 20% 30%

% participants

Figure 6.39: Which is the most like quantum programming language to be used in the
future by percentage.

63.9%

5.8%

11.1%

23.6%

24%

14.9%

Heard about the language

Is part of a course about the language

Other features

Read an article about the language

Widely used

Other

0% 10% 20% 30% 40% 50% 60% 70%

% participants

Figure 6.40: Reason why the participant wants to work with the quantum programming
language by percentage.

Chapter 6. Results 72

52.4%4.8%7.1%14.3%16.7%4.8%

51.2%2.5%5%16.2%23.8%1.2%

100%

75%12.5%12.5%

50%25%25%

50%16.7%16.7%16.7%

51.9%3.7%25.9%18.5%

39.1%17.4%4.3%17.4%17.4%4.3%

47.8%17.4%30.4%4.3%

100%

100%

100%

100%

45%7.5%7.5%25%12.5%2.5%

52.6%5.3%15.8%10.5%15.8%

53.8%7.7%7.7%15.4%15.4%

50%8.3%25%8.3%8.3%

50%50%

52.6%15.8%21.1%10.5%

50%7.1%28.6%14.3%

45.5%13.6%9.1%18.2%13.6%

55.9%1.7%5.1%18.6%18.6%

100%

100%

70.6%5.9%11.8%5.9%5.9%

38.6%7.1%2.9%14.3%34.3%2.9%

45.2%6.5%9.7%16.1%19.4%3.2%

57.1%14.3%28.6%

50%25%25%

100%

100%

61.5%15.4%23.1%

50%20%30%

42.9%14.3%14.3%28.6%

33.3%11.1%11.1%22.2%22.2%

54.5%22.7%18.2%4.5%

40.9%9.1%9.1%27.3%9.1%4.5%

54.5%2.3%11.4%18.2%6.8%6.8%

24.3%2.7%8.1%5.4%2.7%56.8%

Braket SDK (Python)
Cirq (Python)

Cove (C#)
cQASM

CQP
DWave Ocean (Python)

Forest (Python)
Ket

Lambda Calculi
LanQ

LIQUi|>
NDQFP

NDQJava
OpenQASM

Orquestra (Python)
ProjectQ (Python)

Q Language
Q|SI>

QASM
QCL

QDK (Python)
QDK (Q#)

qGCL
QHAL

QHaskell
Qiskit (Python)

QML
QPAlg

QPL and QFC
QSEL

QuaFL
Quil

Quipper
Sabry Language

Scaffold
Silq

Strawberry Fields (Blackbird)
Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

Heard about the language Is part of a course about the language

Other features Read an article about the language

Widely used Other

Figure 6.41: Relation between the primary quantum programming language the partici-
pants would like to work or try in the near future and why by percentage.

25%

43.27%

31.73%

No No Answer Yes

Figure 6.42: Participant’s opinion if they think developing another quantum programming
language by percentage is necessary.

Chapter 6. Results 73

50%50%

16.7%83.3%

100%

100%

100%

100%

28.6%71.4%

100%

46.5%53.5%

100%

50%50%

100%

100%

100%

40%60%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

No Yes

Figure 6.43: Relation between the primary quantum programming language chosen by
the participants and their opinion regarding if another quantum programming language is
needed by percentage.

18.27%

38.94%

42.79%

No No Answer Yes

Figure 6.44: Participant’s opinion about the existence of several quantum programming
languages by percentage.

Chapter 6. Results 74

100%

14.3%85.7%

100%

100%

100%

100%

100%

62.5%37.5%

100%

25.3%74.7%

100%

25%75%

33.3%66.7%

50%50%

100%

41.2%58.8%

Braket SDK (Python)

Cirq (Python)

DWave Ocean (Python)

Ket

OpenQASM

Orquestra (Python)

Q|SI>

QASM

QDK (Q#)

QHaskell

Qiskit (Python)

QML

Quil

Quipper

Silq

Strawberry Fields (Python)

Other

0% 25% 50% 75% 100%

No Yes

Figure 6.45: Relation between the primary quantum programming language chosen by
the participants and their opinion regarding if there are too many quantum programming
languages by percentage.

Chapter 7

Implications for New/Existing Quantum
Programming Languages

The purpose of this section is to describe the implications our study might have in devel-
oping new quantum programming languages or updating existing ones.

7.1 Basic Characteristics

Quantum programming languages might have some basic features that are widely adopted,
such as:

• Generality. Languages can be used for many problems.
• Completeness. Possibility to develop any quantum algorithm using the language.
• Extensibility. New features can be easily added to the languages, as new features

will be needed with the evolution of quantum computers.
• Expressivity. Provide high-level structures.
• Easy and standardized syntax. Use the familiar syntax of programming lan-

guages, like C and Python.
• Open source. Developers prefer when a single vendor does not wield too much

control over a language. Open source assures them that the code they write today
cannot be made obsolete tomorrow by changes to the tools, language, or license.

• Portability. Possibility to use the language on multiple platforms, meaning that
a quantum program might be easy to transfer from which they are developed to
another hardware.

• Classical Data Types. Provide different classical data types (int, real, boolean,
string).

• Quantum Data Types. Provide qubit registers to work with quantum data types.
• Quantum Functions. Functions to handle quantum registers.
• Quantum Memory Management. Provide memory management for quantum

variables.

75

Chapter 7. Implications for New/Existing Quantum Programming Languages 76

7.2 Document, examples, and community support

The purpose of documentation is to explain to a human reader how a program works so
that it can be successfully adapted, either to meet the changing requirements of its users,
to improve it in light of increasing knowledge, or to remove latent errors and oversights.
When developing a new language, the authors must provide many tutorials, course mate-
rials, and resources so that developers can learn how to use the language to develop their
algorithms. This documentation must be available so that developers can consult them
whenever necessary. Code examples also benefit developers, especially when learning a
new language. To encourage the use of the language, it must have an extensive and active
community, allowing developers to exchange information with each other, and helping
them to resolve doubts and issues encountered in their codes.

The quantum programming languages might also have corporate sponsorship so that
the language supports its development by a company and that there are always develop-
ers working to evolve and support the quantum programming language. Big technology
companies can put their weight behind a language by providing enough resources and a
certain trust. Other companies and developers must be assured that the language they base
their code on in a couple of years is still relevant.

Language documentation and community support are not just necessary for quantum
programming languages, as stated by Hope [15], this is already a well-known case for
classical programming languages, being a success factor for its wide use.

7.3 Run in real quantum computerss

The fact that quantum computing is an innovative area with much potential in the future
is one of the big reasons why many developers are willing to learn new programming lan-
guages. That is why quantum programs might have the possibility to run on a real quan-
tum computer instead of being used only in simulators so that developers are motivated
to learn and use the quantum programming language to develop their programs. Further-
more, the companies might give the developers free access to their quantum computers
to test their quantum programs; thus, as many developers use the quantum programming
language as possible.

7.4 Build on top of classical programming language

A language can solve many problems and offer many features, but if it is not easy to use
and learn, it is hard to use. If new languages support familiar programming styles that
developers are used to, chances are developers will more easily use them because they
tend to adopt languages with familiar syntax. We can see in Figures 6.10 and 6.32 that

Chapter 7. Implications for New/Existing Quantum Programming Languages 77

the quantum programming languages most used by developers are based on the classical
languages most used by them.

A quantum programming language based on a well-known classical language makes
it easy for developers to build their code and not limit them only to the features of the
quantum programming language. However, they can also use all of the features of the
classical language and its libraries, making it possible to start learning and developing
quickly and easily.

7.5 Features and tools

A quantum programming language, to be successful, might provide as many features and
tools as possible for the developers to build a quantum program. For example:

• IDEs tailed for quantum programs, having a set of common development tools in a
single graphical interface, such as a source code editor, local compilation automa-
tion, and tools for testing and debugging.

• Simulators.
• Libraries for quantum programming (e.g., standard quantum programs, quantum

machine learning, and others).

An example of one functionality is the Qiskit draw function, which translates the
source code into an image of the quantum circuit. This feature makes a quantum physics
person who does not understand programming to be able to interact with the developer,
and both understand the same code as seen in different ways.

7.6 Consult developer’s needs

A last and essential implication is to consult the developers of quantum programs to un-
derstand their needs, what are the main features they need, what are the main problems
encountered in the languages they currently use, and what can be developed to improve
the language. The language users might always be consulted before creating or extend-
ing a quantum programming language because they know what they need to write better
algorithms and what is missing in the language they are currently using.

7.7 Summary

In this chapter, we made some recommendations for further development of quantum
programming languages, such as: quantum programming languages might have some
basic features that are widely adopted (e.g., generality, completeness, extensibility, and

Chapter 7. Implications for New/Existing Quantum Programming Languages 78

expressivity); when developing a new language, the authors might provide many tutori-
als, course materials, and resources; an extensive and active community; run on a real
quantum computer instead of being used only in simulators; build on top of a classical
programming language; provide as many features and tools as possible for the developers
to build a quantum program; consult developer’s needs.

Chapter 8

Conclusions and Future Work

Quantum programming language is an evolving area, and the number of languages devel-
oped is growing and expected to evolve with the development of real quantum computers.
In this work, an exploratory study was conducted on the usage of quantum programming
languages.

8.1 Conclusions

First, extensive research was carried out about the state of the art of quantum program-
ming languages. They were classified according to their paradigm, and an overview was
elaborated. A study on the history of quantum programming languages was made to trace
their roots through the ages. We hope this list of languages gives credit to the authors and
proves valuable to the growing quantum programming languages community. Secondly,
a survey was created in this study and answered by 251 participants to help answer the re-
search questions proposed on the usage of quantum programming languages. The results
showed the profile of the participants who are using the languages, how they are being
used, which language is most used, which language tends to be used in the near future,
and the opinion of the participants about the number of quantum programming languages
available, and the need to create new languages. The results reported that quantum lan-
guages are mainly used for learning and research, and that Python, a classical program-
ming language, is the most widely used language to develop quantum programs. Finally,
implications for the future development of a quantum programming language were given
that may be useful for those who will develop new languages or update existing ones.

8.2 Future Work

For future work, we plan to extend the study with additional quantum programming lan-
guages that were not aware of when the survey was conducted. New questions, which
were only identified after analyzing the answers of the survey, could augment our results’

79

Chapter 8. Conclusions and Future Work 80

value, e.g.,: what type of quantum programs and/or algorithms are developers developing
with quantum programming languages, what kind of projects are developers working on.
These and other questions might further shed light on the day-to-day usage of quantum
programming languages and the developement of quantum programs.

Appendix A

Appendix

A.1 Survey questions

This appendix describes, by group, the questions that were asked in the survey, the reason
for each question, and the type/domain of each answer.

Question Reason Answer Type Possible Answers

Group 1
1 Have you ever used any Quan-

tum Programming Language?
Identify if the participant
worked with quantum pro-
gramming languages and
can answer the rest of the
survey

Multiple Choice Yes; No

Group 2
2 What is your age? This question was chosen

to identify the participants
of this survey demograph-
ically.

Dropdown Under 18 years old; 18-24 years
old; 25-34 years old; 35-44 years
old; 45-54 years old; 55-64 years
old; 65 years or older; Prefer not to
say

3 Where do you live? (Country) Identify where the partic-
ipants are geographically
concentrated.

Dropdown Brazil; Portugal; Spain; etc

4 Which of the following de-
scribe you?

Identify the gender of the
participants.

Multiple Choice Man; Woman; Non-binary,
genderqueer, or gender non-
conforming; Prefer not to say;
Other

Group 3
5 How many years have you been

coding?
Assess the experience and
education of the partici-
pants in terms of coding.

Dropdown Less than 1 year; 1 to 4 years; 5
to 9 years; 10 to 14 years; 15 to
19 years; 20 to 24 years; 25 to
29 years; 30 to 34 years; 35 to
39 years; 40 to 44 years; 45 to 49
years; More than 50 years

6 How many years have you
coded professionally (as a part
of your work)?

Assess the professional ex-
perience of the partici-
pants.

Dropdown None; Less than 1 year; 1 to 4
years; 5 to 9 years; 10 to 14 years;
15 to 19 years; 20 to 24 years; 25
to 29 years; 30 to 34 years; 35 to
39 years; 40 to 44 years; 45 to 49
years; More than 50 years

7 How did you learn to code? Se-
lect all that apply.

Assess the education of the
participants.

Checkboxes Books / Physical media; Coding
Bootcamp; Colleague; Friend or
family member; Online Courses or
Certification; Online Forum; Other
online resources (videos, blogs,
etc.); School; Other

81

Appendix A. Appendix 82

8 What are the most used pro-
gramming, scripting, and
markup languages you have
used? Select all that apply.

Identify the languages that
the participant has used.

Checkboxes Assembly; Bash C; Classic Visual
Basic; COBOL C++; C#; Del-
phi/Object Pascal; Fortran; F#; Go;
Groovy; Haskell; Java; JavaScrpit;
Julia; Lisp; Matlab; ML; Objective-
C; Pascal; Perl; pGCL; PHP; Pow-
erShell; Prolog; Python; Ruby;
SQL; Standard ML; Swift; Visual
Basic; Visual C++; Other

9 What is your level of knowl-
edge in Quantum Physics?

Assess level of education
in terms of knowledge in
quantum physics.

Multiple Choice 0 (no knowledge); 1 (novice); 2; 3;
4; 5 (expert)

10 Where did you learn Quantum
Physics?

Assess the education of
the participants in terms of
learning quantum physics.

Checkboxes Books; Online Course; Search
Sites; University; Work; Other

11 Which of the following best
describes the highest level of
education that you have com-
pleted?

Identify the formal educa-
tion of the participants.

Multiple Choices Primary/elementary school; Sec-
ondary school (e.g., American
high school, German Realschule
or Gymnasium, etc.); Some col-
lege/university study without
earning a degree; Associate degree
(A.A., A.S., etc.); Bachelor’s
degree (B.A., B.S., B.Eng., etc.);
Master’s degree (M.A., M.S.,
M.Eng., MBA, etc.); Professional
degree (JD, MD, etc.); Other doc-
toral degrees (Ph.D., Ed.D., etc.);
Other

12 If you have completed a major,
what is the subject?

Assess the work field of
the participants.

Checkboxes Art / Humanities; Computer Sci-
ence; Economics; Software Engi-
neering; Math; Other Engineering;
Physics; Social Sciences; Other

13 Which of the following de-
scribes your current job?
Please select all that apply.

Identify the roles of the
participants.

Checkboxes Academic researcher; Architect;
Business Analyst; CIO / CEO /
CTO; DBA (Database Administra-
tor); Data Analyst / Data Engi-
neer/ Data Scientist; Developer Ad-
vocate; Developer / Programmer /
Software Engineer; DevOps Engi-
neer / Infrastructure Developer; In-
structor / Teacher / Tutor; Mar-
keting Manager; Product Manager;
Project Manager; Scientist / Re-
searcher; Student; Systems Ana-
lyst; Team Lead; Technical Sup-
port; Technical Writer; Tester / QA
Engineer; UX / UI Designer; Other

Group 4
14 Where and how did you learn

Quantum Programming Lan-
guages?

Assess the education of
the participants in terms
of learning quantum pro-
gramming languages.

Checkboxes Books; Language documentation;
University; Online Course; Online
Forums; Search Sites; Work; Other

15 How many years have you been
coding using Quantum Pro-
gramming Languages in total?

Assess the experience and
education of the partici-
pants in using quantum
programming languages.

Dropdown Less than 1 year; 1 to 4 years; 5
to 9 years; 10 to 14 years; 15 to
19 years; 20 to 24 years; 25 to
29 years; 30 to 34 years; 35 to
39 years; 40 to 44 years; 45 to 49
years; More than 50 years

16 How many years have you
coded professionally using
Quantum Programming Lan-
guages (as a part of your
work)?

Assess the professional ex-
perience of the partici-
pants regarding quantum
programming languages.

Dropdown None; Less than 1 year; 1 to 4
years; 5 to 9 years; 10 to 14 years;
15 to 19 years; 20 to 24 years; 25
to 29 years; 30 to 34 years; 35 to
39 years; 40 to 44 years; 45 to 49
years; More than 50 years

Appendix A. Appendix 83

17 What Quantum Programming
Languages have you been us-
ing, and for how long?

Assess which quantum
programming languages
the participants use and
how long.

Multiple Choice
Grid

Rows (Blackbird; Braket SDK;
Cirq; Cove; cQASM; CQP
(Communication Quantum Pro-
cesses); cQPL; Forest; Ket; LanQ;
LIQUi|⟩; NDQFP; NDQJava;
Ocean Software; OpenQASM;
Orquestra; ProjectQ; Q Language;
QASM (Quantum Macro Assem-
bler); QCL (Quantum Computation
Language); QDK (Quantum De-
velopment Kit); QHAL; Qiskit;
qGCL; QHaskell; QML; QPAlg
(Quantum Process Algebra); QPL
and QFC; QSEL; QuaFL (DSL
for quantum programming); Quil;
Quipper; Q#; Q|SI⟩; Sabry’s
Language; Scaffold; Silq; Straw-
berry Fields; λq (Lambda Calculi);
Other) and Columns (Less than 1
year; 1 to 2 years; 3 to 4 years; 5 to
6 years; 7 to 8 years; 9 to 10 years;
More than 11 years)

18 Is there any other Quantum
Programming Language not
listed that you have been us-
ing?

Identify other quantum
programming languages
not listed that the partici-
pant used.

Open Text -

19 Which of the following is
your primary Quantum Pro-
gramming Languages?

Identify the most used
quantum programming
language by the partici-
pants.

Dropdown Blackbird; Braket SDK; Cirq;
Cove; cQASM; CQP (Communi-
cation Quantum Processes); cQPL;
Forest; Ket; LanQ; LIQUi|⟩;
NDQFP; NDQJava; Ocean Soft-
ware; OpenQASM; Orquestra;
ProjectQ; Q Language; QASM
(Quantum Macro Assembler);
QCL (Quantum Computation
Language); QDK (Quantum De-
velopment Kit); QHAL; Qiskit;
qGCL; QHaskell; QML; QPAlg
(Quantum Process Algebra); QPL
and QFC; QSEL; QuaFL (DSL
for quantum programming); Quil;
Quipper; Q#; Q|SI⟩; Sabry’s Lan-
guage; Scaffold; Silq; Strawberry
Fields; λq (Lambda Calculi); Other

20 In terms of ease, rate your pri-
mary Quantum Programming
Language.

Rate the main characteris-
tics of the participant’s fa-
vorite quantum program-
ming languages.

Multiple Choice
Grid

Rows (Features / functionalities of
the language; Documentation avail-
able; Code examples; Several fo-
rums; Support (e.g., GitHub is-
sues); Easy to code) and Columns
(1; 2; 3; 4; 5)

21 Is there anything else you like
the most in your primary Quan-
tum Programming Language?

Assess the main charac-
teristic that the partici-
pants like in their pri-
mary quantum program-
ming language.

Open Text -

22 Is there anything else you do
not like in your primary Quan-
tum Programming Language?

Assess the main character-
istic that the participants
do not like in their pri-
mary quantum program-
ming language.

Open Text -

23 Which forums, e.g., to ask for
help, search for examples, do
you use? (if any)

Evaluate the most used fo-
rums to ask questions on
quantum computing.

Checkboxes Devtalk; Quantum Open Source
Foundation; Slack; StackOverflow;
Other

Appendix A. Appendix 84

24 Which Quantum Programming
Languages would you like to
work or try in the near future?

Identify which is the most
like quantum program-
ming language to be used
in the future.

Checkboxes Blackbird; Braket SDK; Cirq;
Cove; cQASM; CQP (Communi-
cation Quantum Processes); cQPL;
Forest; Ket; LanQ; LIQUi|⟩;
NDQFP; NDQJava; Ocean Soft-
ware; OpenQASM; Orquestra;
ProjectQ; Q Language; QASM
(Quantum Macro Assembler);
QCL (Quantum Computation
Language); QDK (Quantum De-
velopment Kit); QHAL; Qiskit;
qGCL; QHaskell; QML; QPAlg
(Quantum Process Algebra); QPL
and QFC; QSEL; QuaFL (DSL
for quantum programming); Quil;
Quipper; Q#; Q|SI⟩; Sabry’s Lan-
guage; Scaffold; Silq; Strawberry
Fields; λq (Lambda Calculi); Other

25 Why would you like to work or
try those languages?

The reason why the partic-
ipant wants to work with
the quantum programming
language.

Checkboxes Heard about the language; Is part
of a course about the language;
Read an article about the language;
Widely used; Other features; Other

26 What challenges did you run
into when choosing a Quantum
Programming Language?

Assess the challenges the
participant faces when
choosing a quantum
programming language.

Open Text -

27 In your opinion, what makes
learning Quantum Program-
ming Languages important?

Assess why the par-
ticipants want to learn
quantum programming
languages.

Open Text -

Group 5
28 How do you use Quantum Pro-

gramming Languages?
Assess how the partici-
pants use quantum pro-
gramming languages.

Multiple Choice Use it for work; Use it for research;
Like to learn; Other

29 What type of tools do you think
are necessary or missing to de-
velop better and faster Quan-
tum Programs?

Evaluate what tools are
missing in the quantum
programming languages.

Open Text -

30 Do you test your Quantum Pro-
grams?

Identify if the participants
perform tests.

Multiple Choice Yes and No

31 How often do you test your
Quantum Programs?

Evaluate the frequency
that the participant tests
their quantum programs.

Multiple Choice Before go to production; Every day;
Every time you change the code;
Other

32 How do you test your Quantum
Programs?

Identity if the participants
use automatic or manual
tests

Multiple Choice Automatically (e.g., unit test);
Manually

Appendix A. Appendix 85

33 What tools do you use to test
your Quantum Programs?

Identify what the most
used tools to test quantum
programs are.

Checkboxes Cirq Simulator and Testing
- cirq.testing (https://
quantumai.google/cirq);
Forest using pytest (https:
//github.com/rigetti/
forest-software);
MTQC - Mutation Test-
ing for Quantum Comput-
ing (https://javpelle.
github.io/MTQC/); Muskit: A
Mutation Analysis Tool for Quan-
tum Software Testing (https:
//ieeexplore.ieee.org/
document/9678563); ProjectQ
Simulator (https://arxiv.
org/abs/1612.08091);
QDiff - Differential Testing
of Quantum Software Stacks
(https://ieeexplore.
ieee.org/abstract/
document/9678792); QDK
- xUnit (https://azure.
microsoft.com/en-us/
resources/development-
kit/quantum-computing/);
Qiskit - QASM Simulator
(https://qiskit.org/);
QuanFuzz - Fuzz Testing of Quan-
tum Program (https://arxiv.
org/abs/1810.10310); Quito
- A Coverage-Guided Test Gen-
erator for Quantum Programs
(https://ieeexplore.
ieee.org/abstract/
document/9678798); Straw-
berry Fields using pytest (https:
//strawberryfields.ai/);
Other

Group 6
34 In your opinion, do you think

there are too many or too few
Quantum Programming Lan-
guages? Why?

Assess the opinion of the
participants on why ex-
ists or not several quantum
programming languages.

Open Text -

35 In your opinion, do you think
we would need yet another
Quantum Programming Lan-
guage in the near future? Why?

Assess if the participant
thinks that it is neces-
sary the development of
another quantum program-
ming language

Open Text -

Table A.1: Survey proposed questions.

A.2 Social networks contacted for the survey

This appendix shows the information about the social networks contacted for the survey,
such as name, type, link, members and any observations.

Name Type Link # Members Observation

Exploring Quantum
Computing

Facebook https://www.facebook.com/
groups/525270931156832

2,900

Quantum Computing
Now

Facebook https://www.facebook.com/
groups/328231110942652

6,900

https://quantumai.google/cirq
https://quantumai.google/cirq
https://github.com/rigetti/forest-software
https://github.com/rigetti/forest-software
https://github.com/rigetti/forest-software
https://javpelle.github.io/MTQC/
https://javpelle.github.io/MTQC/
https://ieeexplore.ieee.org/document/9678563
https://ieeexplore.ieee.org/document/9678563
https://ieeexplore.ieee.org/document/9678563
https://arxiv.org/abs/1612.08091
https://arxiv.org/abs/1612.08091
https://ieeexplore.ieee.org/abstract/document/9678792
https://ieeexplore.ieee.org/abstract/document/9678792
https://ieeexplore.ieee.org/abstract/document/9678792
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://qiskit.org/
https://arxiv.org/abs/1810.10310
https://arxiv.org/abs/1810.10310
https://ieeexplore.ieee.org/abstract/document/9678798
https://ieeexplore.ieee.org/abstract/document/9678798
https://ieeexplore.ieee.org/abstract/document/9678798
https://strawberryfields.ai/
https://strawberryfields.ai/
https://www.facebook.com/groups/525270931156832
https://www.facebook.com/groups/525270931156832
https://www.facebook.com/groups/328231110942652
https://www.facebook.com/groups/328231110942652

Appendix A. Appendix 86

Quantum Information
and Quantum Com-
puter Scientists of the
World Unite

Facebook https://www.facebook.com/
groups/qinfo.scientists.
unit

15,900

Quantum AI Facebook https://www.facebook.
com/groups/quantumai/
?multi_permalinks=
1398423033952553

5,200

Quantum Computing Facebook https://www.facebook.com/
groups/896233200461905/

25,200

Quantum Open-
Source Foundation

Linkedin https://www.linkedin.com/
company/qosf/

2,971 Does not allow
posts from group
members

Quantum Computing
and Quantum Infor-
mation

Linkedin https://www.linkedin.com/
groups/1416467/

10,159 Did not ac-
cepted group
membership

Quantum Information
Science

Linkedin https://www.linkedin.com/
groups/1172457/

3,147 Did not ac-
cepted group
membership

Quantum Computing Linkedin https://www.linkedin.com/
groups/3748642/

10,378

European Quantum
Computing Applica-
tions Community

Linkedin https://www.linkedin.com/
groups/9015002/

2,413

Quantum Computing
Technology

Linkedin https://www.linkedin.com/
groups/4139130/

2,352

Quantum Computing
and AI Professionals

Linkedin https://www.linkedin.com/
groups/12083423/

1,049

Quantum program-
ming

Linkedin https://www.linkedin.com/
groups/8979014/

13 Did not ac-
cepted group
membership

Quantum Computing
and Programming

Linkedin https://www.linkedin.com/
groups/7468626/

14 Did not ac-
cepted group
membership

IBM Quantum Com-
puting

Linkedin https://www.linkedin.com/
groups/12376868/

3,381

Q# Community Discord https://discord.qsharp.
community/

200

@quantum comput Twitter https://twitter.com/
quantum_comput

3,008

Quantum Open-
Source Foundation

Slack https://qosf.slack.com/ 2,546

Strawberry Fields
Community

Slack https://u.
strawberryfields.ai/slack

1,638

Quantum Computing
Slack Community

Slack https://quantum-computing.
slack.com

519

myQLM Slack https://myqlmworkspace.
slack.com

73

Quantum Foundations Mailing List quantum-
foundations@maillist.ox.ac.uk

- Did not accepted
the e-mail

Quantum Announce-
ments

Mailing List quantum-announcements@cs.ox.ac.uk -

Quantum Computing
Institute

Mailing List qci-external@elist.ornl.gov - Did not accepted
the e-mail

Quantum Computing
StackExchange

Forums and
Communi-
ties

https://quantumcomputing.
stackexchange.com/

- Message rejected
by the forum ad-
ministrator

Reddit Quantum
Computing

Forums and
Communi-
ties

https://www.reddit.com/r/
QuantumComputing/

33,600

Reddit Quantum Forums and
Communi-
ties

https://www.reddit.com/r/
quantum/

39,100

Researches e-mails E-mails 155
Developers e-mails E-mails GitHub quantum program repositories 1,242

Table A.2: Social networks contact for the survey. Information was obtained in April
2022.

https://www.facebook.com/groups/qinfo.scientists.unit
https://www.facebook.com/groups/qinfo.scientists.unit
https://www.facebook.com/groups/qinfo.scientists.unit
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/quantumai/?multi_permalinks=1398423033952553
https://www.facebook.com/groups/896233200461905/
https://www.facebook.com/groups/896233200461905/
https://www.linkedin.com/company/qosf/
https://www.linkedin.com/company/qosf/
https://www.linkedin.com/groups/1416467/
https://www.linkedin.com/groups/1416467/
https://www.linkedin.com/groups/1172457/
https://www.linkedin.com/groups/1172457/
https://www.linkedin.com/groups/3748642/
https://www.linkedin.com/groups/3748642/
https://www.linkedin.com/groups/9015002/
https://www.linkedin.com/groups/9015002/
https://www.linkedin.com/groups/4139130/
https://www.linkedin.com/groups/4139130/
https://www.linkedin.com/groups/12083423/
https://www.linkedin.com/groups/12083423/
https://www.linkedin.com/groups/8979014/
https://www.linkedin.com/groups/8979014/
 https://www.linkedin.com/groups/7468626/
 https://www.linkedin.com/groups/7468626/
https://www.linkedin.com/groups/12376868/
https://www.linkedin.com/groups/12376868/
https://discord.qsharp.community/
https://discord.qsharp.community/
https://twitter.com/quantum_comput
https://twitter.com/quantum_comput
https://qosf.slack.com/
https://u.strawberryfields.ai/slack
https://u.strawberryfields.ai/slack
https://quantum-computing.slack.com
https://quantum-computing.slack.com
https://myqlmworkspace.slack.com
https://myqlmworkspace.slack.com
https://quantumcomputing.stackexchange.com/
https://quantumcomputing.stackexchange.com/
https://www.reddit.com/r/QuantumComputing/
https://www.reddit.com/r/QuantumComputing/
https://www.reddit.com/r/quantum/
https://www.reddit.com/r/quantum/

Appendix A. Appendix 88

Bibliography

[1] Chris Bernhardt. Quantum computing for everyone. Mit Press, 2019.

[2] Sarah Moore. How Much Power Does Quantum Computing Need? https://
www.azoquantum.com/Article.aspx?ArticleID=136. [Online;
accessed December-2021].

[3] Princy A. J. Quantum Computing: A Big Wave of Revolution in the Comput-
ing Arena. https://www.researchdive.com/blog/what- is-
quantum-computing-is-it-a-replacement-to-traditional-
computing. [Online; accessed December-2021].

[4] Maciej Adamiak. Machine learning — what I’ve learned when experimenting
with quantum computing. https://blog.softwaremill.com/machine-
learning- what- ive- learned- when- experimenting- with-
quantum-computing-2a76da1d6fee. [Online; accessed December-2021].

[5] Daphne Leprince-Ringuet. A quantum computer just solved a decades-old prob-
lem three million times faster than a classical computer. https : / / www .
zdnet.com/article/a-quantum-computer-just-solved-a-
decades-old-problem-three-million-times-faster-than-
a-classical-computer/. [Online; accessed December-2021].

[6] ICT Reverse. What are Quantum Computers and Why are They Important? https:
//ictreverse.com/what-are-quantum-computers-and-why-
are-they-important/. [Online; accessed December-2021].

[7] Bruce J MacLennan. Principles of programming languages: design, evaluation,
and implementation. Holt, Rinehart & Winston, 1986.

[8] Ravi Sethi. Programming languages concepts and constructs. Addison Wesley
Longman Publishing Co., Inc., 1996.

[9] David Thomas and Andrew Hunt. The Pragmatic Programmer: your journey to
mastery. Addison-Wesley Professional, 2019.

[10] Alfred V. Aho. Compilers: principles, techniques and tools. Addison Wesley,
2006.

[11] HOPL. Online Historical Encyclopaedia of Programming Languages. https:
//hopl.info/. [Online; accessed March-2022]. 2020.

[12] GitHub. Developer feedback helps steer GitHub Public Policy commitments. https:
//octoverse.github.com/#developer-feedback-helps-steer-
git- hub- public- policy- commitments. [Online; accessed March-
2022]. 2021.

89

https://www.azoquantum.com/Article.aspx?ArticleID=136
https://www.azoquantum.com/Article.aspx?ArticleID=136
https://www.researchdive.com/blog/what-is-quantum-computing-is-it-a-replacement-to-traditional-computing
https://www.researchdive.com/blog/what-is-quantum-computing-is-it-a-replacement-to-traditional-computing
https://www.researchdive.com/blog/what-is-quantum-computing-is-it-a-replacement-to-traditional-computing
https://blog.softwaremill.com/machine-learning-what-ive-learned-when-experimenting-with-quantum-computing-2a76da1d6fee
https://blog.softwaremill.com/machine-learning-what-ive-learned-when-experimenting-with-quantum-computing-2a76da1d6fee
https://blog.softwaremill.com/machine-learning-what-ive-learned-when-experimenting-with-quantum-computing-2a76da1d6fee
https://www.zdnet.com/article/a-quantum-computer-just-solved-a-decades-old-problem-three-million-times-faster-than-a-classical-computer/
https://www.zdnet.com/article/a-quantum-computer-just-solved-a-decades-old-problem-three-million-times-faster-than-a-classical-computer/
https://www.zdnet.com/article/a-quantum-computer-just-solved-a-decades-old-problem-three-million-times-faster-than-a-classical-computer/
https://www.zdnet.com/article/a-quantum-computer-just-solved-a-decades-old-problem-three-million-times-faster-than-a-classical-computer/
https://ictreverse.com/what-are-quantum-computers-and-why-are-they-important/
https://ictreverse.com/what-are-quantum-computers-and-why-are-they-important/
https://ictreverse.com/what-are-quantum-computers-and-why-are-they-important/
https://hopl.info/
https://hopl.info/
https://octoverse.github.com/#developer-feedback-helps-steer-git-hub-public-policy-commitments
https://octoverse.github.com/#developer-feedback-helps-steer-git-hub-public-policy-commitments
https://octoverse.github.com/#developer-feedback-helps-steer-git-hub-public-policy-commitments

Bibliography 90

[13] Vasyl Lagutin. Why are there so many programming language. https : / /
www . freecodecamp . org / news / why - are - there - so - many -
programming-languages/. [Online; accessed March-2022]. 2021.

[14] Matt Sherman. Why are there so many programming language. https : / /
stackoverflow.blog/2015/07/29/why-are-there-so-many-
programming-languages/. [Online; accessed March-2022]. 2015.

[15] Computer Hope. Why are there so many programming language. https://
www.computerhope.com/issues/ch000569.htm. [Online; accessed
March-2022]. 2020.

[16] Michael L. Scott. Programming language Pragmatics. http://www.cs.
yorku . ca / ˜billk / cse3301 _ S06 / lectures / cse3301 _ S06 _
july17_6slides.pdf. [Online; accessed March-2022]. 2017.

[17] Peter Selinger. “Towards a Quantum Programming Language”. In: Mathematical.
Structures in Comp. Sci. 14.4 (Aug. 2004), 527–586. ISSN: 0960-1295. DOI: 10.
1017/S0960129504004256. URL: https://doi.org/10.1017/
S0960129504004256.

[18] Peter Selinger. “A brief survey of quantum programming languages”. In: In Pro-
ceedings of the 7th International Symposium on Functional and Logic Program-
ming. Springer, 2004, pp. 1–6.

[19] E Knill. “Conventions for quantum pseudocode”. In: (June 1996). DOI: 10 .
2172/366453. URL: https://www.osti.gov/biblio/366453.

[20] Jean-Yves Girard. Between logic and quantic: a tract. Tech. rep. MATHEMATI-
CAL STRUCTURES IN COMPUTER SCIENCE, 2003.

[21] Samson Abramsky and Bob Coecke. “Physical Traces: Quantum vs. Classical
Information Processing”. In: CoRR cs.CG/0207057 (2002). URL: https://
arxiv.org/abs/cs/0207057.

[22] Abbas Edalat. “An Extension of Gleason’s Theorem for Quantum Computation”.
In: International Journal of Theoretical Physics 43.7/8 (2004), 1827–1840. ISSN:
0020-7748. DOI: 10.1023/b:ijtp.0000048823.93080.7e. URL:
http://dx.doi.org/10.1023/B:IJTP.0000048823.93080.7e.

[23] B. Coecke and K. Martin. “A Partial Order on Classical and Quantum States”.
In: New Structures for Physics. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 593–683. ISBN: 978-3-642-12821-9. DOI: 10.1007/978-3-642-
12821-9_10. URL: https://doi.org/10.1007/978-3-642-
12821-9_10.

[24] Dominique Unruh. “Quantum programming languages”. In: Inform., Forsch. En-
twickl. 21 (Oct. 2006), pp. 55–63. DOI: 10.1007/s00450-006-0012-y.

[25] Simon J Gay. “Quantum programming languages: Survey and bibliography”. In:
Mathematical Structures in Computer Science 16.4 (2006), pp. 581–600.

[26] David Deutsch. “Quantum theory, the Church–Turing principle and the universal
quantum computer”. In: Proceedings of the Royal Society of London. A. Mathe-
matical and Physical Sciences 400.1818 (1985), pp. 97–117.

https://www.freecodecamp.org/news/why-are-there-so-many-programming-languages/
https://www.freecodecamp.org/news/why-are-there-so-many-programming-languages/
https://www.freecodecamp.org/news/why-are-there-so-many-programming-languages/
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
https://stackoverflow.blog/2015/07/29/why-are-there-so-many-programming-languages/
https://www.computerhope.com/issues/ch000569.htm
https://www.computerhope.com/issues/ch000569.htm
http://www.cs.yorku.ca/~billk/cse3301_S06/lectures/cse3301_S06_july17_6slides.pdf
http://www.cs.yorku.ca/~billk/cse3301_S06/lectures/cse3301_S06_july17_6slides.pdf
http://www.cs.yorku.ca/~billk/cse3301_S06/lectures/cse3301_S06_july17_6slides.pdf
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.2172/366453
https://doi.org/10.2172/366453
https://www.osti.gov/biblio/366453
https://arxiv.org/abs/cs/0207057
https://arxiv.org/abs/cs/0207057
https://doi.org/10.1023/b:ijtp.0000048823.93080.7e
http://dx.doi.org/10.1023/B:IJTP.0000048823.93080.7e
https://doi.org/10.1007/978-3-642-12821-9_10
https://doi.org/10.1007/978-3-642-12821-9_10
https://doi.org/10.1007/978-3-642-12821-9_10
https://doi.org/10.1007/978-3-642-12821-9_10
https://doi.org/10.1007/s00450-006-0012-y

Bibliography 91

[27] Bernhard Ömer. “A Procedural Formalism for Quantum Computing”. In: (Dec.
1998).

[28] S. Bettelli, Luciano Serafini, and Tommaso Calarco. “Toward an architecture for
quantum programming”. In: The European Physical Journal D 25 (Mar. 2001).
DOI: 10.1140/epjd/e2003-00242-2.

[29] J. W. Sanders and P. Zuliani. “Quantum Programming”. In: Mathematics of Pro-
gram Construction. Ed. by Roland Backhouse and José Nuno Oliveira. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 80–99. ISBN: 978-3-540-45025-
2.

[30] Philip Maymin. “The lambda-q calculus can efficiently simulate quantum com-
puters”. In: arXiv preprint quant-ph/9702057 (1997).

[31] André Van Tonder. “A lambda calculus for quantum computation”. In: SIAM Jour-
nal on Computing 33.5 (2004), pp. 1109–1135.

[32] T. Altenkirch and J. Grattage. “A functional quantum programming language”. In:
20th Annual IEEE Symposium on Logic in Computer Science (LICS’ 05). 2005,
pp. 249–258. DOI: 10.1109/LICS.2005.1.

[33] Simon J Gay and Rajagopal Nagarajan. “Communicating quantum processes”.
In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming languages. 2005, pp. 145–157.

[34] Philippe Jorrand and Marie Lalire. “Toward a quantum process algebra”. In: Pro-
ceedings of the 1st Conference on Computing Frontiers. 2004, pp. 111–119.

[35] Donald A. Sofge. “A Survey of Quantum Programming Languages: History, Meth-
ods, and Tools”. In: Second International Conference on Quantum, Nano and Mi-
cro Technologies (ICQNM 2008). 2008, pp. 66–71. DOI: 10.1109/ICQNM.
2008.15.

[36] Jean-Yves Girard. “Linear logic”. In: Theoretical computer science 50.1 (1987),
pp. 1–101.

[37] Devon Rojas. “The Modern State of Quantum Programming Language”. In: (2019).

[38] Sunita Garhwal, Maryam Ghorani, and Amir Ahmad. “Quantum programming
language: A systematic review of research topic and top cited languages”. In:
Archives of Computational Methods in Engineering 28.2 (2021), pp. 289–310.

[39] Manuel De Stefano, Fabiano Pecorelli, Dario Di Nucci, Fabio Palomba, and An-
drea De Lucia. “Software Engineering for Quantum Programming: How Far Are
We?” In: arXiv preprint arXiv:2203.16969 (2022).

[40] QWA team member Alba Cervera-Lierta and researcher at Quantic group. Quan-
tum Computing languages landscape. https://medium.com/@quantum_
wa/quantum-computing-languages-landscape-1bc6dedb2a35.
[Online; accessed Dezember-2021]. 2018.

[41] Evandro Chagas Ribeiro Da Rosa and Rafael De Santiago. “Ket Quantum Pro-
gramming”. In: J. Emerg. Technol. Comput. Syst. 18.1 (Oct. 2021). ISSN: 1550-
4832. DOI: 10.1145/3474224. URL: https://doi.org/10.1145/
3474224.

https://doi.org/10.1140/epjd/e2003-00242-2
https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1109/ICQNM.2008.15
https://doi.org/10.1109/ICQNM.2008.15
https://medium.com/@quantum_wa/quantum-computing-languages-landscape-1bc6dedb2a35
https://medium.com/@quantum_wa/quantum-computing-languages-landscape-1bc6dedb2a35
https://doi.org/10.1145/3474224
https://doi.org/10.1145/3474224
https://doi.org/10.1145/3474224

Bibliography 92

[42] Evandro Chagas Ribeiro da Rosa. Ket Quantum Programming Git. https://
github.com/quantum-ket/ket. [Online; accessed March-2022].

[43] Rafael de Santiago Evandro Chagas Ribeiro da Rosa. Ket Quantum Programming.
https://quantumket.org/. [Online; accessed March-2022].

[44] Riverlane. Quantum HAL Specifications. https://riverlane.github.
io/QHAL_internal/v0.2.0/. [Online; accessed Dezember-2021].

[45] Riverlane. QHAL - Quantum Hardware Abstraction Layer. https://github.
com/riverlane/QHAL. [Online; accessed Dezember-2021].

[46] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. “Silq: A
High-Level Quantum Language with Safe Uncomputation and Intuitive Seman-
tics”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2020. London, UK: Association for
Computing Machinery, 2020, 286–300. ISBN: 9781450376136. DOI: 10.1145/
3385412.3386007. URL: https://doi.org/10.1145/3385412.
3386007.

[47] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. Silq.
https://github.com/eth-sri/silq. [Online; accessed Dezember-
2021].

[48] Amazon. Amazon Braket Documentation. https://docs.aws.amazon.
com/braket/?id=docs_gateway. [Online; accessed Dezember-2021].
2020.

[49] Amazon. Amazon Braket GitHub. https://github.com/aws/amazon-
braket-sdk-python. [Online; accessed Dezember-2021]. 2020.

[50] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy,
and Christian Weedbrook. “Strawberry fields: A software platform for photonic
quantum computing”. In: Quantum 3 (2019), p. 129.

[51] Nader Khammassi, Gian G Guerreschi, Imran Ashraf, Justin W Hogaboam, Car-
men G Almudever, and Koen Bertels. “cqasm v1. 0: Towards a common quantum
assembly language”. In: arXiv preprint arXiv:1805.09607 (2018).

[52] Quantum Inspire. cQASM: A Quantum Programming Language. https://
www.quantum-inspire.com/kbase/cqasm/. [Online; accessed March-
2022].

[53] D-Wave. D-Wave Ocean Software Documentation. https://docs.ocean.
dwavesys.com/en/stable/. [Online; accessed Dezember-2021].

[54] D-Wave. Ocean is D-Wave’s suite of tools for solving hard problems with quantum
computers. https://github.com/dwavesystems/dwave-ocean-
sdk. [Online; accessed Dezember-2021].

[55] Google. Cirq - An open source framework for programming quantum computers.
https://quantumai.google/cirq. [Online; accessed March-2022].

[56] Google. Cirq. https://github.com/quantumlib/Cirq. [Online; ac-
cessed March-2022].

https://github.com/quantum-ket/ket
https://github.com/quantum-ket/ket
https://quantumket.org/
https://riverlane.github.io/QHAL_internal/v0.2.0/
https://riverlane.github.io/QHAL_internal/v0.2.0/
https://github.com/riverlane/QHAL
https://github.com/riverlane/QHAL
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://github.com/eth-sri/silq
https://docs.aws.amazon.com/braket/?id=docs_gateway
https://docs.aws.amazon.com/braket/?id=docs_gateway
https://github.com/aws/amazon-braket-sdk-python
https://github.com/aws/amazon-braket-sdk-python
https://www.quantum-inspire.com/kbase/cqasm/
https://www.quantum-inspire.com/kbase/cqasm/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://quantumai.google/cirq
https://github.com/quantumlib/Cirq

Bibliography 93

[57] Dave Bacon. Quantum Super Entangled Language (QSEL). https://github.
com/dabacon/qsel. [Online; accessed March-2022].

[58] A Zapata Computing Product. Orquestra. https://www.orquestra.io/.
[Online; accessed Dezember-2021].

[59] Zapata. Zapata Computing Git. https://github.com/zapatacomputing.
[Online; accessed Dezember-2021].

[60] Rigetti. Welcome to Quantum Cloud Services. https://docs.rigetti.
com/qcs/. [Online; accessed Dezember-2021].

[61] Rigetti. Projects Developed using Forest. https://github.com/rigetti/
forest-software. [Online; accessed Dezember-2021].

[62] Robert S Smith, Michael J Curtis, and William J Zeng. “A practical quantum
instruction set architecture”. In: arXiv preprint arXiv:1608.03355 (2016).

[63] Microsoft. Quantum Development Kit. https://github.com/microsoft/
Quantum. [Online; accessed November-2021]. 2017.

[64] Microsoft. Azure Quantum documentation. https://docs.microsoft.
com/en- us/azure/quantum/?view=qsharp- preview. [Online;
accessed Dezember-2021]. 2021.

[65] Krysta M Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. “Q#: Enabling scalable quantum computing and development with a
high-level domain-specific language”. In: arXiv preprint arXiv:1803.00652 (2018).

[66] Microsoft. Azure Quantum documentation. https://docs.microsoft.
com/pt-br/azure/quantum/. [Online; accessed 26-October-2021]. 2021.

[67] IBM. Qiskit An open-source SDK for working with quantum computers at the
level of pulses, circuits, and algorithms. https://github.com/Qiskit.
[Online; accessed November-2021]. 2017.

[68] Shusen Liu, Xin Wang, Li Zhou, Ji Guan, Yinan Li, Yang He, Runyao Duan, and
Mingsheng Ying. Q|SI⟩: A Quantum Programming Environment. 2017. arXiv:
1710.09500 [quant-ph].

[69] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. “Open
quantum assembly language”. In: arXiv preprint arXiv:1707.03429 (2017).

[70] Scott Pakin. “A quantum macro assembler”. In: 2016 IEEE High Performance
Extreme Computing Conference (HPEC). 2016, pp. 1–8. DOI: 10.1109/HPEC.
2016.7761637.

[71] Scott Pakin. QMASM: A Quantum Macro Assembler. https://github.
com/lanl/qmasm. [Online; accessed Dezember-2021].

[72] Damian S Steiger, Thomas Häner, and Matthias Troyer. “ProjectQ: an open source
software framework for quantum computing”. In: Quantum 2 (2018), p. 49.

[73] Dave Wecker and Krysta M Svore. “LIQUi|⟩: A software design architecture and
domain-specific language for quantum computing”. In: arXiv preprint arXiv:1402.4467
(2014).

https://github.com/dabacon/qsel
https://github.com/dabacon/qsel
https://www.orquestra.io/
https://github.com/zapatacomputing
https://docs.rigetti.com/qcs/
https://docs.rigetti.com/qcs/
https://github.com/rigetti/forest-software
https://github.com/rigetti/forest-software
https://github.com/microsoft/Quantum
https://github.com/microsoft/Quantum
https://docs.microsoft.com/en-us/azure/quantum/?view=qsharp-preview
https://docs.microsoft.com/en-us/azure/quantum/?view=qsharp-preview
https://docs.microsoft.com/pt-br/azure/quantum/
https://docs.microsoft.com/pt-br/azure/quantum/
https://github.com/Qiskit
https://arxiv.org/abs/1710.09500
https://doi.org/10.1109/HPEC.2016.7761637
https://doi.org/10.1109/HPEC.2016.7761637
https://github.com/lanl/qmasm
https://github.com/lanl/qmasm

Bibliography 94

[74] Microsoft. The Language-Integrated Quantum Operations (LIQUi|⟩) simulator.
https://github.com/StationQ/Liquid. [Online; accessed March-
2022].

[75] Microsoft. LIQUi|⟩ The Language Integrated Quantum Operations Simulator.
http://stationq.github.io/Liquid/. [Online; accessed March-
2022].

[76] Microsoft. Language-Integrated Quantum Operations: LIQUi|⟩. https://
www.microsoft.com/en- us/research/project/language-
integrated-quantum-operations-liqui/. [Online; accessed March-
2022].

[77] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoı̂t Valiron. “Quipper: A Scalable Quantum Programming Language”. In:
arXiv e-prints, arXiv:1304.3390 (Apr. 2013), arXiv:1304.3390. arXiv: 1304.
3390 [cs.PL].

[78] Andrei Lapets, Marcus P da Silva, Mike Thome, Aaron Adler, Jacob Beal, and
Martin Rötteler. “QuaFL: A typed DSL for quantum programming”. In: Proceed-
ings of the 1st annual workshop on Functional programming concepts in domain-
specific languages. 2013, pp. 19–26.

[79] Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana
Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, Fred
Chong, et al. “Scaffold: Quantum Programming Language”. In: (2012).

[80] Matt Purkeypile. “Cove: A practical quantum computer programming framework”.
In: arXiv preprint arXiv:0911.2423 (2009).

[81] JiaFu Xu and FangMin Song. “Quantum programming languages: A tentative
study”. In: Science in China Series F: Information Sciences 51.6 (2008), pp. 623–
637.

[82] Hynek Mlnarik. “Operational semantics and type soundness of quantum program-
ming language LanQ”. In: arXiv preprint arXiv:0708.0890 (2007).

[83] Juliana Kaizer Vizzotto and Antonio Carlos da Rocha Costa. “Towards quantum
haskell via quantum arrows”. In: Workshop-Escola de Computação e Informação
Quântica. Vol. 52. Citeseer. 2006.

[84] Jiafu Xu and Fanming Song. “Quantum programming languages”. In: Frontiers
of Computer Science in China 2.2 (2008), pp. 161–166.

[85] Wolfgang Mauerer. “Semantics and simulation of communication in quantum
programming”. In: arXiv e-prints, quant-ph/0511145 (Nov. 2005), quant–ph/0511145.
arXiv: quant-ph/0511145 [quant-ph].

[86] Philippe Jorrand and Marie Lalire. “From quantum physics to programming lan-
guages: a process algebraic approach”. In: International Workshop on Unconven-
tional Programming Paradigms. Springer. 2004, pp. 1–16.

https://github.com/StationQ/Liquid
http://stationq.github.io/Liquid/
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui/
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui/
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui/
https://arxiv.org/abs/1304.3390
https://arxiv.org/abs/1304.3390
https://arxiv.org/abs/quant-ph/0511145

Bibliography 95

[87] S. Bettelli, T. Calarco, and L. Serafini. “Toward an architecture for quantum pro-
gramming”. In: The European Physical Journal D - Atomic, Molecular and Op-
tical Physics 25.2 (2003), 181–200. ISSN: 1434-6079. DOI: 10.1140/epjd/
e2003- 00242- 2. URL: http://dx.doi.org/10.1140/epjd/
e2003-00242-2.

[88] Amr Sabry. “Modeling Quantum Computing in Haskell”. In: Proceedings of the
2003 ACM SIGPLAN Haskell Workshop (Jan. 2003). DOI: 10.1145/871895.
871900.

[89] J. W. Sanders and P. Zuliani. “Quantum Programming”. In: In Mathematics of
Program Construction. Springer-Verlag, 1999, pp. 80–99.

[90] Bernhard Ömer. QCL – A Programming Language for Quantum Computers. http:
//tph.tuwien.ac.at/˜oemer/qcl.html. [Online; accessed October-
2021]. 2014.

[91] Bernhard Oemer. QCL (Quantum Computing Language). https://github.
com/aviggiano/qcl. [Online; accessed November-2021]. 2018.

[92] Philip Maymin. “The lambda-q calculus can efficiently simulate quantum com-
puters”. In: arXiv e-prints, quant-ph/9702057 (Feb. 1997), quant–ph/9702057.
arXiv: quant-ph/9702057 [quant-ph].

[93] Peter Selinger and Benoı̂t Valiron. “A Lambda Calculus for Quantum Computa-
tion with Classical Control”. In: Typed Lambda Calculi and Applications. Ed. by
Paweł Urzyczyn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 354–
368. ISBN: 978-3-540-32014-2.

[94] Wolfgang Mauerer. “Semantics and simulation of communication in quantum
programming”. In: arXiv preprint quant-ph/0511145 (2005).

[95] SoGoSurvey. SoGoSurvey Homepage. https://www.sogosurvey.com.
[Online; accessed 12-October-2021]. 2021.

[96] Google. Google Forms Homepage. https://www.google.com/forms/
about/. [Online; accessed 12-October-2021]. 2021.

[97] Survio. Survio Homepage. https://www.survio.com. [Online; accessed
12-October-2021]. 2021.

[98] MindMiners. MindMiners Homepage. https://mindminers.com/. [On-
line; accessed 12-October-2021]. 2021.

[99] TypeForm. TypeForm Homepage. https://www.typeform.com/. [Online;
accessed 12-October-2021]. 2021.

[100] SurveyMonkey. SurveyMonkey Homepage. https://https://www.surveymonkey.
com/. [Online; accessed 12-October-2021]. 2021.

[101] Ugur Kuter. “Survey Methods: Questionnaires and Interviews”. In: (Oct. 2021).

[102] Serene Dalati and Jorge Gómez. “Surveys and Questionnaires”. In: Mar. 2018,
pp. 175–186. ISBN: 978-3-319-74172-7. DOI: 10.1007/978-3-319-74173-
4_10.

https://doi.org/10.1140/epjd/e2003-00242-2
https://doi.org/10.1140/epjd/e2003-00242-2
http://dx.doi.org/10.1140/epjd/e2003-00242-2
http://dx.doi.org/10.1140/epjd/e2003-00242-2
https://doi.org/10.1145/871895.871900
https://doi.org/10.1145/871895.871900
http://tph.tuwien.ac.at/~oemer/qcl.html
http://tph.tuwien.ac.at/~oemer/qcl.html
https://github.com/aviggiano/qcl
https://github.com/aviggiano/qcl
https://arxiv.org/abs/quant-ph/9702057
https://www.sogosurvey.com
https://www.google.com/forms/about/
https://www.google.com/forms/about/
https://www.survio.com
https://mindminers.com/
https://www.typeform.com/
https://https://www.surveymonkey.com/
https://https://www.surveymonkey.com/
https://doi.org/10.1007/978-3-319-74173-4_10
https://doi.org/10.1007/978-3-319-74173-4_10

Bibliography 96

[103] Pramod Regmi, Elizabeth Waithaka, Anjana Paudyal, Padam Simkhada, and Ed-
win Van Teijlingen. “Guide to the design and application of online questionnaire
surveys”. In: Nepal Journal of Epidemiology 6 (May 2017), p. 640. DOI: 10.
3126/nje.v6i4.17258.

[104] Stack Overflow. Stack Overflow Annual Developer Survey. https://insights.
stackoverflow.com/survey. [Online; accessed November-2021]. 2021.

[105] JetBrains. The State of Developer Ecosystem 2021. https://www.jetbrains.
com/lp/devecosystem-2021/. [Online; accessed November-2021]. 2021.

[106] ComputerScience.org. ComputerScience.org website. https://www.computerscience.
org/. [Online; accessed November-2021]. 2021.

[107] Increment.com. Six questions on programming languages. https://increment.
com/programming-languages/six-questions-on-programming-
languages/. [Online; accessed November-2021]. 2018.

[108] PyGitHub. PyGitHub repository. https : / / github . com / PyGithub /
PyGithub. [Online; accessed June-2022].

[109] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012. ISBN: 3642290434.

[110] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria, 2022. URL: https://www.
R-project.org/.

[111] Manuel De Stefano. “An Empirical Study on the Current Adoption of Quantum
Programming”. In: 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 2022, pp. 310–312.
DOI: 10.1109/ICSE-Companion55297.2022.9793820.

https://doi.org/10.3126/nje.v6i4.17258
https://doi.org/10.3126/nje.v6i4.17258
https://insights.stackoverflow.com/survey
https://insights.stackoverflow.com/survey
https://www.jetbrains.com/lp/devecosystem-2021/
https://www.jetbrains.com/lp/devecosystem-2021/
https://www.computerscience.org/
https://www.computerscience.org/
https://increment.com/programming-languages/six-questions-on-programming-languages/
https://increment.com/programming-languages/six-questions-on-programming-languages/
https://increment.com/programming-languages/six-questions-on-programming-languages/
https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/ICSE-Companion55297.2022.9793820

	List of Figures
	List of Tables
	Introduction
	Context
	Problem
	Approach
	Contributions
	Structure of the document

	Background
	Quantum Computing
	Qubits
	Measurement
	Entanglement of States
	Programming Languages
	Summary

	Related Work
	Classical Programming Languages
	Towards a Quantum Programming Language by Selinger (2004)
	A Brief Survey of Quantum Programming Languages by Selinger (2004)
	Quantum Programming Language by Unruh (2006)
	Quantum Programming Language, Survey and Bibliography by Gay (2006)
	A Survey of Quantum Programming Languages: History, Methods, and Tools by Sofge (2008)
	The Modern State of Quantum Programming Language by Rojas (2019)
	Quantum Programming Languages: A Systematic Review of Research Topic and Top Cited Languages by Garhwal et al. (2019)
	Software Engineering for Quantum Programming: How Far Are We? by De Stefano et al. (2022)
	Summary

	Quantum Programming Languages
	Imperative Quantum Programming Languages
	QCL
	QASM
	Silq
	Q Language
	qGCL
	LanQ
	Q|SI
	OpenQASM
	Scaffold
	cQAMS
	Quil
	QSEL
	Ket
	NDQJava

	Declarative Quantum Programming Languages
	QPL and QFC
	QML
	Sabry's Language
	Lambda Calculi (q)
	Quipper
	NDQFP
	LIQUi|
	QHaskell

	Multi-paradigm and domain-specific languages
	QDK (Q#, Python and .NET Languages)
	cQPL
	QPAlg
	CQP
	QualFL
	QHAL
	QISKIT (Python)
	Cirq (Python)
	Braket SDK (Python)
	Strawberry Fields (Blackbird and Python)
	Forest (Python)
	DWave Ocean (Python)
	Orquestra (Python)
	Cove (C#)
	ProjectQ (Python)

	Summary

	Methodology
	Questionnaire Platforms
	Questionnaire Guidelines
	Programming Languages Survey Examples
	Our survey
	Structure
	How the survey was conducted
	Data Analysis

	Threats to Validity
	Threats to External Validity
	Threats to Internal Validity
	Threats to Construct Validity

	Summary

	Results
	RQ1: Who is using quantum programming languages?
	RQ2: How are quantum programming languages being used?
	RQ3: What are the most used quantum programming languages? Why?
	RQ4: What makes a person choose a quantum programming language? Why?
	RQ5: Which of them has the best chances of being imposed over the rest?
	RQ6: What makes someone propose a new language?
	RQ7: Are there too many quantum programming languages?
	Summary

	Implications for New/Existing Quantum Programming Languages
	Basic Characteristics
	Document, examples, and community support
	Run in real quantum computerss
	Build on top of classical programming language
	Features and tools
	Consult developer's needs
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Survey questions
	Social networks contacted for the survey

	Bibliography

