
1. Introduction
Intraplate volcanism occurs throughout the globe, yet it remains a poorly understood phenomenon. Most 
intraplate volcanism in oceanic settings forms linear, age-progressive chains, which have been attributed 
to lithospheric plates moving over narrow, fixed plumes rising from the base of the lower mantle (Mor-
gan, 1972). In addition to such “classic”, primary plumes, several studies recognize the existence of second-
ary plumes originating from the bottom of the mantle transition zone (MTZ) (e.g., Cao et al., 2011; Courtil-
lot et al., 2003; Davaille & Vatteville, 2005) and shallower asthenospheric upwellings forming in response to 
tensile stresses in the lithosphere (Anderson, 2000; Foulger & Natland, 2003) or density inversions between 
the lithosphere and the asthenosphere (Ballmer et al., 2015; Belay et al., 2019; Conrad et al., 2011; Man-
jón-Cabeza Córdoba & Ballmer, 2020; Raddick et al., 2002).

Since the Late Cretaceous, the Central Atlantic Ocean has been the locus of widespread volcanism (Merle 
et al., 2019). On its eastern side, the adjacent Canary and Madeira provinces consist of two roughly 700-km-long 

Abstract The Canary and Madeira provinces in the Central-East Atlantic Ocean are characterized 
by an irregular spatio-temporal distribution of volcanism along the hotspot tracks, and several alternative 
scenarios have been suggested to explain it. Here, we combine results from seismic tomography, shear-
wave splitting and gravity along with plate reconstruction constraints to investigate the mantle structure 
and dynamics beneath those provinces. We find that the Central-East Atlantic Anomaly (CEAA), which 
rises from the core-mantle boundary and stalls in the topmost lower mantle, is the deep source of distinct 
upper-mantle upwellings beneath the region. The upwellings detach intermittently from the top of 
the CEAA and appear to be at different evolutionary stages. We argue that the accumulation of plume 
material in the topmost lower mantle can play a key role in governing the first-order spatio-temporal 
irregularities in the distribution of hotspot volcanism.

Plain Language Summary The Canary and Madeira provinces, located in the Central-East 
Atlantic Ocean, show lineaments of volcanic islands and seamounts, known as hotspot tracks, which 
differ from most other tracks for their irregular distribution. These lineaments cannot be easily explained 
by the African plate movement over a fixed, narrow plume of hot mantle material rising from the deep 
Earth and alternative mechanisms may be required. Here, we integrate observations from seismology and 
gravity to demonstrate that some first-order spatio-temporal irregularities of volcanism in both provinces 
are due to small-scale upper-mantle plumes (“plumelets”), which sporadically rise from the top of a wide 
lower-mantle low-velocity structure, here named “Central-East Atlantic Anomaly” (CEAA). The CEAA 
extends vertically from the base of the African large low-shear-velocity province (LLSVP), a structure 
in the lowermost mantle situated under Africa and adjacent oceans and characterized by low-shear 
seismic velocities. According to the interpretation of global and regional tomography models, the CEAA 
material stalls in the topmost lower mantle, between ∼700 and 1,200 km depth, intermittently generating 
plumelets under the Central-East Atlantic. Plate reconstructions from Cenozoic to present confirm that 
the CEAA is underlying these and other volcanic provinces (e.g., Western Iberia and NW Morocco) since 
at least 90 Ma.
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chains of intraplate volcanoes (Mjelde et al., 2010) (Figure 1). Madeira is considered the current location of the 
>70 Ma old Madeira hotspot, which built the Porto Santo island, the Seine, Ampère, and Ormond seamounts 
and, likely, the onshore Monchique massif in Southern Portugal (Geldmacher & Hoernle, 2000). El Hierro is be-
lieved to mark the present location of the Canary hotspot, which started at Lars seamount ∼65 Ma and formed 
the Anika, Dacia, and Conception seamounts, as well as the Selvagens, Lanzarote, Fuerteventura, Gran Canar-
ia, Tenerife, Gomera, and La Palma islands (Geldmacher et al., 2005). Geochronology of magmatic rocks from 
both provinces confirms a general progression of increasing volcanism age to the northeast consistent with the 
direction of the African plate with respect to a fixed (hotspot) mantle (Geldmacher et al., 2005). However, the 
“classic” plume model cannot easily explain the varying distances and irregular age relations between some 
individual volcanic complexes along the hotspot tracks.

So far, the lack of consensus on the origin of the Canary and Madeira volcanic provinces arises mainly from 
an inconclusive knowledge of the structure at depth. Global tomography images detect distinct low-velocity 
anomalies in the upper mantle beneath the Azores, Cape Verde, and the Canaries, which merge in the lower 
mantle (Montelli et al., 2006; Zhao, 2007). However, due to the insufficient resolution of global tomography, 
the structure of these upwellings, in particular, their upper to the lower mantle connection, is still unclear. 
Consequently, there is no comprehensive geodynamic model that explains the occurrence of intraplate vol-
canism in the Central-East Atlantic Ocean.
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Figure 1. (a) Topography of Western Iberia, Northwestern Africa and bathymetry of Central-East Atlantic. Triangles of different sizes and colors show the 
locations and ages (from Cretaceous to present) of basaltic volcanism. The empty triangles mark the Madeira-Tore Rise volcanism, which is not discussed in this 
work. For more information see Table ST1. AA: Anti Atlas; HA: High Atlas; MA: Middle Atlas. AGFZ: Azores–Gibraltar Fracture Zone (Bird, 2003). (b) Satellite-
derived long-wavelength (300-km filtered) free-air gravity anomaly (Sandwell et al., 2014). The dashed curve areas indicate the Canary and Madeira provinces.
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Here, we combine seismological and gravity observations with constraints from plate reconstructions to 
explore the whole-mantle structure below the Central-East Atlantic region and, ultimately, advance a 
mechanism driving this intraplate volcanism. By integrating these multi-disciplinary data, we suggest that 
secondary, intermittent pulses of hot mantle material detached from a broad lower-mantle plume stalling 
below the MTZ. This plume has been proposed to be one of the internal instabilities of the African large 
low-shear-velocity province (LLSVP; e.g., Cottaar & Lekic, 2016; Davaille & Romanowicz, 2020; French & 
Romanowicz, 2015), but its morphology and role in governing surface volcanism have been poorly inves-
tigated. Our study introduces the specific term “Central-East Atlantic Anomaly” (CEAA) to define this 
lower-mantle instability and, more importantly, a new conceptual model that improves our understanding 
of the geodynamic evolution of the region.

2. Upper-Mantle Seismic Structure With Constraints From Gravity
The IBEM-P18 and IBEM-S19 regional velocity models (Civiero et al., 2018, 2019), obtained by inversion 
of P- and S-wave teleseismic delay-times respectively (see Supporting Text T1 for details), show differently 
shaped low-velocity anomalies in the upper mantle below the Madeira and Canary Islands as well as the 
Atlas Mountains (Figure 2). The anomalies below the western Canary Islands and the Atlas Mountains 
continue downwards through the MTZ. The low-velocity body below Madeira (better imaged with P-waves) 
shows a blob-like morphology and extends only down to ∼300 km depth. Another weaker, less resolved, 
low-velocity anomaly is observed below the eastern Canary Islands. The upper-mantle structure beneath 
the study area is partially identified in the previous body-wave tomography of Bodin et al. (2012) and shows 
much more complexity than the large-scale low-velocity anomaly detected by global models (e.g., Hoernle 
et al., 1995; Montelli et al., 2006; Simmons et al., 2012).

Extensive resolution tests (Civiero et al., 2018, 2019, Figures S1 and S2) show that both models can resolve the 
upper-mantle structure at a relatively short wavelength (∼100–200 km) despite some along-raypath smearing. 
However, the data coverage, and consequently the resolution, decreases gradually moving northwards from Ma-
deira; therefore, we do not exclude that the Madeira blob-like anomaly can extend deeper, especially if its struc-
ture is thinner than the maximum wavelength that can be recovered (see Supporting Text T1 for further details).

Taken together, these observations allow us to identify three main mantle features: (1) the Canary upwelling 
(∼150–200 km diameter), centered beneath El Hierro and La Palma islands, with a long tail throughout 
the upper mantle, (2) the blob-type Madeira upwelling (∼100 km wide), apparently disconnected from the 
MTZ, and (3) the sub-vertical low-velocity “wall” below the Atlas Mountains, down to the base of the MTZ.

New teleseismic shear-wave splitting analyses (Schlaphorst et al., 2021) show a complex, radial orientation 
of the fast polarization directions in the Canaries and Madeira, which differs remarkably from the regional 
anisotropic pattern observed in Iberia and NW Morocco (Buontempo et al., 2008; Díaz et al., 2010, 2015; 
Miller et al., 2013) (Figure 2b). As shown by Walker et al. (2005), this pattern would indicate that the mantle 
flow is perturbed by the presence of rising upwellings beneath the islands. Also, previous studies (e.g., De-
uss, 2007; Saki et al., 2015; Spieker et al., 2014) suggest an overall thinned MTZ beneath the Canaries indi-
cating that it is likely crossed by material hotter than the ambient mantle (Figure S6, Table ST2). A slightly 
thinned or close-to-average MTZ thickness is also found below Madeira by global studies (e.g., Deuss, 2009; 
Houser et al., 2008; Lawrence & Shearer, 2008).

The signature of hotspots can often be seen in the Earth's gravity field (Tapley et al., 2005). The Canary and 
Madeira archipelagos as well as the Atlas region coincide with remarkable topographic and gravity anoma-
lies (Figure 1S3–S5). The Canary and Madeira's topographic highs have >30 mGal positive long-wavelength 
free-air anomalies, which are stronger in amplitude where remarkable upper-mantle low-velocity seismic 
velocities are imaged, that is, around western Canaries (∼80–90 mGal) and Madeira (∼70 mGal) (Figure 1b). 
Moreover, both oceanic provinces are associated with high geoid anomalies that follow the orientation of 
the tracks and reach a maximum of 8–10 m below the inferred hotspots, and local positive (>240 mGal) 
Bouguer anomalies (Figures S4 and S5, Text T2). In the Atlas, the locus of a broad topographic swell, we 
observe stronger positive free-air (∼90 mGal; Figure 1) and geoid anomalies (∼8–14 m, Figure S4) in line 
with the very low velocities imaged in the upper mantle and the volcanism at the surface. The Bouguer 
anomaly here is negative (∼−100–200 mGal, Figure S5c); however, as suggested by Fullea et al. (2007, 2008) 
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one would expect it to be even more negative to compensate the elevated topography (see Supporting Text 
T2 for more details).

The correspondence of strong gravity anomalies with areas of low seismic velocities imaged by the region-
al tomography supports the existence of deep-seated processes centered under the Canary and Madeira 
islands as well as the Atlas Mountains. These can be explained as hot, low-density plume-like upwellings, 
which feed the volcanism in the region and shape the surface topography.

3. “Vote” Analysis of the Lower Mantle
The resolving power of the regional tomography drastically decreases below ∼800-km depth. Published 
whole-mantle tomography models provide complementary evidence on the deep mantle structure. We in-
vestigate the continuity of the low-velocity anomalies in the lower mantle with the “SubMachine” tool 
(Hosseini et al., 2018), which stacks together different P- and S-wave velocity models illustrating the preva-
lent velocity variations in the mantle (Figure 3). However, due to the different characteristics of each tomog-
raphy model (resolution, regularization, etc.), small-scale structure in the region is likely to be filtered out, 
either because the features are too fine or because they are not consistently resolved in the same locations 
(Cottaar & Lekic, 2016; Davaille & Romanowicz, 2020). Also, we need to keep in mind that the uniformity 
of the “vote” images should not be interpreted as a homogenous structure within the cluster domain, but 
only as an agreement in classification across models (see Supporting Text T3).

The vote maps in Figure 3 (and Figures S7 and S8, where we use different thresholds and data types) show 
the most robust long-wavelength low-velocity anomalies in the lower mantle. The overall pattern of the 
seismically slow region highlights the agreement across models on the extent of the African LLSVP in the 
lowermost mantle (Figure 3c), which has been proposed to have been stable during the past 300 Ma (Tors-
vik et al., 2008, 2014) due to its thermochemical nature (Garnero & McNamara, 2008). Its morphology, as 
constrained in this study, is relatively consistent with that obtained by other analyses of global tomographic 
models (Cottaar & Lekic, 2016), studies of shear-wave waveforms (Lynner & Long, 2014; Wen et al., 2001), 
and mantle-flow predictions (Flament et al., 2017).

At shallower lower-mantle depths (∼1,200–1,800 km; Figures 3a–3b), a persistent low-velocity region with a di-
ameter >1,500 km is observed below southern Africa and the Eastern Atlantic. Beneath our study area, a large 
dome-like low-velocity anomaly, the CEAA, extends upward from the base of the LLSVP. Cross-sections AB 
and CD (Figure 3) show that after a lateral thinning at ∼1,800 km depth, this anomaly broadens again between 
∼1,200 and 700 km depth, suggesting that a thick “layer” of hot material is stalled below the MTZ (Figure S9).

4. Plate Motion Reconstructions
Tomographic imaging provides a current snapshot of the 3D structure of the mantle. If coupled with plate 
reconstructions, it may shed new light on the evolution of the region through time. Assuming that the 
CEAA is stationary (Torsvik et al., 2014), we reconstruct its location back through time relative to the mov-
ing lithosphere, from the Late Cretaceous to present (Figures 3f–3i). Before 60 Ma, the CEAA underlay 
Iberia, Morocco, and the NE Atlantic (Figure S10). In SW Iberia, significant volcanism with ages ranging 
from 94 to 69 Ma occurred in the regions of Lisbon, Sines, and Monchique (Miranda et al., 2009). Such 
volcanism has been associated with the continuation of the Madeira hotspot track on the Eurasian plate 
(Geldmacher et al., 2000) or, alternatively, to another fixed mantle plume below the moving Iberian plate 
(Grange et al., 2010). From ∼60 to ∼20 Ma, the CEAA lay beneath all the Moroccan centers of volcanic ac-
tivity occurring in this period (e.g., Missenard & Cadoux, 2012a, 2012b) and also beneath the Madeira and 
Canary provinces where the volcanism had already started (Geldmacher et al., 2005) (Figures 3g–3i). At 
present, with the exception of Rif-Betics volcanism associated with mantle flow around the Gibraltar slab 
(Civiero et al., 2020; Levander et al., 2014; Palomeras et al., 2017), the areas encompassing the reconstructed 
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Figure 2. (a, c) Slices at 130-km and 310-km depth of the IBEM-P18 model. Predicted hotspot tracks (0–60 Ma) of the Madeira and Canary upwellings and 
volcanism are plotted on top. The tracks are calculated with the software GPlates (Boyden et al., 2011) using the rotation frame of Torsvik et al., (2019). (b, d) 
Slices at 130-km and 310-km depth of the IBEM-S19 model. All the available SKS-splitting measurements (bars) in Iberia and Morocco are shown in white 
(Buontempo et al., 2008; Díaz et al., 2010, 2015; Miller et al., 2013). The recent measurements in the Canaries and Madeira (Schlaphorst et al., 2021) are 
indicated in red. (e, f) 3D low-velocity structure shown as velocity anomaly isosurfaces (at −0.04 km/s for IBEM-P18 and -0.03 km/s for IBEM-P18).



Geophysical Research Letters

CIVIERO ET AL.

10.1029/2021GL092874

6 of 15

Figure 3. (a–e). Low-velocity vote maps and cross-sections based on 34 global tomographic models. For details on the models see Supporting Text T3 and 
Tables ST3–ST4. The dashed contour in panel a corresponds to a 26-vote count (76% agreement) and is used to approximately delimit the CEAA in panels f–i. 
The green triangles in panels d–e indicate the position of the Canary upwelling (CP), Madeira upwelling (MP), and Atlas upwelling (AP). (f–i) GPlates-based 
plate reconstruction of the Central-East Atlantic and adjacent regions from 60 Ma to present. The triangles show the volcanism generated approximately at 
each time frame of the reconstruction, colored according to the age code in Figure 1. The empty triangles indicate volcanism that is not originated from the 
CEAA (Rif-Betics) or not discussed in this study (Madeira-Tore Rise). The locations of the Canary and Madeira hotspots are indicated in panel f with two yellow 
diamonds.
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paleo-positions of volcanism either overlay or are very close to the border of the CEAA in the lower mantle 
(Figure 3f). The Madeira-Tore Rise also falls partly within the area of the CEAA, but its origin is highly 
debated (see Merle et al., 2019) and beyond the scope of this study.

Volcanism roughly reflects the predicted hotspot tracks caused by the NE motion of the African plate but 
their spatio-temporal distribution is non-linear (Figure  2a). These poorly-defined tracks are underlain 
by distinct upper-mantle plumes–or “plumelets” – rising from below the MTZ, which are smaller in size 
(≤200 km) compared to other plumes on Earth (e.g., Hawaii: ∼300–400 km; Wolfe et al., 2011). The low-
er-mantle source feeding these plumelets seems to be the CEAA. This instability develops from the base of 
the African LLSVP and stalls below the 660-km depth seismic discontinuity, and possibly deeper, at ∼1,000-
km depth, where another mantle discontinuity has been recently detected by seismic studies (French & 
Romanowicz, 2015; Jenkins et al., 2017) and viscosity inversions (Rudolph et al., 2015).

5. Discussion
The origin of the Central-East Atlantic volcanism from the Upper Cretaceous onwards has often been as-
sociated with that of the Euro-Mediterranean region based on their geochemical affinities (e.g., Wilson & 
Downes, 2006; Lustrino & Wilson, 2007a, 2007b) and has been mainly attributed to: (i) a passive rise of 
the shallow mantle (Anguita & Hernán, 2000; Lustrino & Wilson, 2007a, 2007b); or (ii) a deep plume and/
or shallower upper-mantle plumes and blobs (Hoernle & Schmincke,  1993; Hoernle et  al.,  1995 ; Long 
et al., 2020; Mata et al., 1998; Merle et al., 2019; Piromallo et al., 2008; Saki et al., 2015). However, clear ev-
idence of such upwellings has been hampered by poor knowledge of the seismic mantle structure beneath 
this region.

The regional tomographic models IBEM-P18 and IBEM-S19 (Figure 2) image a low-velocity conduit below 
the western Canaries extending down to ∼700 km depth (and a weaker, less-defined low-velocity anomaly 
beneath the eastern archipelago, whose size is below the resolving power of our tomography). Beneath 
Madeira, a blob-like low-velocity anomaly is only observed down to asthenospheric depths. Together with 
notable positive long-wavelength gravity anomalies (Figures 1b and 1S3, S4) and large variations in the fast 
shear-wave polarization directions (Figure 2b), these low-velocity anomalies are consistent with the pres-
ence of focused, differently shaped upper-mantle upwellings.

The Canary plumelet appears rooted in the lower-mantle CEAA, whereas the Madeira plumelet seems de-
tached from it. Kumagai et al. (2008) and more recently Civiero et al. (2019) demonstrated that the dynamics 
of mantle plumes are strongly time-dependent. In line with this view, we propose that these two plumelets 
may be at different stages of evolution with the Madeira upwelling in a relatively later stage of development, 
already untailed from its source or, alternatively, with a thin tail (not resolved by our tomography). Both in-
terpretations would explain the very low buoyancy flux (King & Adam, 2014) and eruption rates in Madeira 
(∼20–150 km3/Ma) compared to those of the Canaries (∼2,000–10,000 km3/Ma) (Geldmacher et al., 2000).

In Morocco, the Atlas Mountains are underlain by an SW-NE-oriented wall-like low-velocity zone, which 
has been previously interpreted as hot mantle material channeled from the Canary plume through a 
sub-lithospheric corridor (Duggen et al., 2009; Mériaux et al., 2015). However, according to our model, the 
sub-Atlas low-velocity anomaly is connected to the Canary conduit only beneath the MTZ (Figure 2). This 
implies that both the Canary and Atlas low-velocity anomalies are distinct upper-mantle upwellings, both 
sourced from the CEAA (Civiero et al., 2018, 2019). The computed free-air, geoid, and Bouguer anomalies 
(Figure 1S4 and S5 respectively) support this interpretation. The deflection of the instabilities north-east-
wards beneath Morocco is likely due to the mantle flow induced by the sinking Alboran slab beneath the Gi-
braltar arc (Civiero et al., 2018; Mériaux et al., 2016; Miller et al., 2015). Also, the small-amplitude splitting 
measurements (<∼1 s) in the western Atlas and near the Atlantic coast (Figure 2b) do not corroborate the 
hypothesis of a continuous sub-lithospheric channel from the Canaries rather implying a deeper connec-
tion between the Canary and Atlas plumelets.

Whole-mantle seismic tomography (e.g., French & Romanowicz, 2014, 2015) shows that the African LLSVP 
contains a bundle of well-separated, low-velocity domes, which extend to different lower-mantle depths. For 
example, the East-African Anomaly rises up to MTZ depths tilting northeastwards; the toe of the African 
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Anomaly instead does not reach such shallow depths, but stalls in the lowermost mantle (Cottaar & Le-
kic, 2016). The development of distinct instabilities from the African LLSVP is in line with fluid-mechanics 
experiments (Davaille et al., 2005; Kumagai et al., 2007; Davaille & Limare, 2015) displaying morphologies 
congruent with those shown in our study. In particular, Davaille et al. (2005) suggested that the African 
LLSVP consists of nine thermochemical instabilities at different stages of development. The CEAA can then 
be considered as one of these plumes that extends vertically from the base of the LLSVP and pools between 
the base of the MTZ and mid-mantle depths. However, the coarse resolution (∼500–1,000 km length scale) 
of the global models and the apparent uniformity of the structure shown by the vote images do not allow 
us to distinguish its internal fine structure; therefore, we cannot rule out that such plume may instead rep-
resent clusters of smaller-scale upwellings that originate large regions of hot material beneath the MTZ by 
merging their heads (Boschi et al., 2007; Schubert et al., 2004).

Numerical simulations of thermochemical plumes (e.g., Cserepes & Yuen, 2000; Farnetani & Samuel, 2005; 
Tosi & Yuen, 2011) show that if the head of a plume contains a deep-mantle dense component (e.g., old 
subducted basaltic crust) the rising head material can accumulate below the 660- and 1,000-km depth dis-
continuities, acting as initial barriers for vertical flow. This has been confirmed by several seismic studies, 
which demonstrate that compositional heterogeneity could pond and divert around these discontinuities 
likely due to a density (and viscosity) contrast (French & Romanowicz, 2015; Jenkins et al., 2017; Rickers 
et al., 2013; Rudolph et al., 2015; Vinnik et al., 2010). The ascending light components give rise to differently 
shaped plumelets that originate from the unstable hot material accumulated below (Davaille, 1999; Liu & 
Leng, 2020; Ogawa, 2007; Rudolph et al., 2015). Our results suggest that the CEAA is the main source of 
the upper-mantle upwellings that generate the Madeira and Canary (and Atlas) volcanic provinces. Each 
of these volcanic provinces results from secondary, distinct plume pulses, which detach sporadically from 
a single, considerably wider plume anchored at the bottom of the mantle, after being hampered by mantle 
interfaces (Figure 4S9). Some of the locally spawned structures, if sufficiently small in size, may be trans-
ported relatively far away by horizontal upper-mantle flow (van Keken & Gable, 1995) giving origin to the 
numerous, dispersed occurrences of volcanism observed in the Central-East Atlantic. This is in line with 
a recent geochemical study proposing that plume material feeds also isolated, off-track seamounts in the 
Canary Basin (Long et al., 2020). This scenario may also explain some first-order irregularities in the distri-
bution of the volcanism along the hotspot tracks, such as large and varying age differences and distances 
between volcanic complexes. However, complementary mechanisms as variations of the lithospheric struc-
ture (Arana & Ortiz, 1991; Blanco-Montenegro et al., 2018; D'Oriano et al., 2010), edge-driven convection 
(King, 2007; Manjón-Cabeza Córdoba & Ballmer, 2020; Schmincke, 1982) and/or others may also play a 
role in the location, magma genesis, and evolution for some islands and seamounts that our model cannot 
account for.

The CEAA may further source other Atlantic hotspots within the Macaronesia region, such as the Azores 
and Cape Verde (Figure 4), as suggested by PP and SS precursors analysis (Saki et al., 2015), laboratory 
experiments (Davaille et al., 2005), and mantle-flow modeling (Forte et al., 2010). Moreover, the irregu-
lar nature of the South Atlantic hotspot tracks (e.g., Tristan-Gough, Meteor, Shona, and Bouvet) (Hoernle 
et al., 2016; Homrighausen et al., 2020) may be explained by a similar model, where secondary plumes 
locally emitted from a lower-mantle upwelling rooted in the southwestern domain of the African LLSVP 
would sustain irregular hotspot volcanism.

This model offers a challenge for seismologists to improve the resolution of the mantle structure in the Cen-
tral Atlantic, namely by collecting new seismic data from ocean-bottom seismometers around the islands. 
Also, future geodynamic studies should explore whether alternative plume models can naturally explain 
varied behaviors and morphologies of upper-mantle upwellings using different buoyancy and viscosity 
contrasts.

6. Conclusions
The multi-disciplinary approach used in this study finds that a broad plume, the CEAA, deeply rooted in 
the African LLSVP, extends vertically upwards to the uppermost lower mantle below the Central-East At-
lantic and originates upper-mantle plumelets at various times and locations since at least 90 Ma. At present, 
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differently evolved upwellings may exist below the volcanic Canary and Madeira islands, with the Madeira 
hotspot possibly fed by a later-stage plumelet.

Data Availability Statement
The IBEM-P18 and IBEM-S19 models are available online from the IRIS Earth Model Collaboration (https://
ds.iris.edu/ds/products/emc-earthmodels/). The models for the vote analysis were downloaded from www.
earth.ox.ac.uk/∼smachine. The original free-air data were downloaded from https://topex.ucsd.edu.
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