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Resumo

O cancro da próstata é um dos cancros mais prevalentes em Portugal, estando entre as 4 principais causas
de morte por neoplasias em 2018, com uma taxa bruta de mortalidade de 38.23 mortes por 100 000
homens.

O atual diagnóstico e classificação do cancro da próstata não é ideal, baseandose em medidas pouco
específicas como os níveis de PSA e DRE, seguidos de biópsia, onde é atribuído um nível de agressivi
dade sob a forma da classificação de Gleason. Foi demonstrado no passado que o exame de ressonância
magnética multiparamétrica é útil na deteção de lesões de cancro da próstata. No entanto, a interpretação
deste exame, sendo um processo subjetivo, está inevitavelmente afetada por uma elevada taxa de variabil
idade entre observadores. Foi demonstrado também que a classificação de Gleason atribuída a uma lesão
aquando da biópsia, irá provavelmente ser corrigida após prostatectomia radical. Portanto, um método
confiável e de preferência não invasivo para classificação do cancro da próstata é necessário. Com este
objetivo, esforços têm sido feitos no passado para usar radiómica e aprendizagem automática para prever
a classificação de Gleason a partir de imagens clínicas, apresentando resultados promissores. Radiómica
é a transformação de imagens médicas em dados quantitativos   de alta dimensão. Assim, com base na
hipótese de que as características do tumor que são causa ou consequência da classificação de Gleason
estão refletidas nas variáveis radiómicas extraídas da imagem de ressonância magnética, estas podem ser
usadas para construir modelos de aprendizagem automática capazes de avaliar este parâmetro. Dito isso,
o objetivo principal deste trabalho foi desenvolver modelos de aprendizagem automática explorando var
iáveis radiómicas extraídas de exames de ressonância magnética para prever a agressividade biológica na
forma de classificação de Gleason.

Neste trabalho, 288 modelos foram desenvolvidos, correspondendo a diferentes combinações de
aspetos de uma pipeline típica, mais especificamente, origem dos dados de treino, estratégia de pre
processamento dos dados, método de seleção de variáveis e algoritmo de aprendizagem automática. Num
conjunto de 281 lesões (210 para treino, 71 para validação) e 183 pacientes (137 para treino, 46   para vali
dação), verificouse que as variáveis radiómicas extraídas doVOI da glândula inteira produzirammodelos
extremamente mais confiáveis   do que as variáveis radiómicas extraídas dos VOIs das lesões. Sugerindo
que as áreas em volta das lesões tumorais oferecem informações relevantes sobre a classificação de Glea
son que é atribuída a essa lesão. Além de sugerir que o trabalho monótono de segmentação das lesões
realizado pelo radiologista pode não ser necessário ou mesmo prejudicar a assinatura radiómica.

Palavras Chave: Radiómica, Aprendizagem automática, Cancro da Próstata.
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Abstract

Prostate cancer is one of the most prevalent cancers in Portugal, being among the top 4 malignant neo
plasm causes of death in 2018, with a crude mortality rate of 38.23 deaths per 100 000 males.

Prostate cancer diagnosis and classification is not ideal, relying on unspecific measures such as PSA
levels and DRE, followed by biopsy, where an aggressiveness level is attributed in the form of Gleason
score. Multiparametric MRI has proven to be useful in the detection of prostate cancer. However, it is
unavoidably affected by a high rate of interreader variability. It has also been shown that the Gleason
score attributed to a lesion after biopsy is likely to change after radical prostatectomy.

Therefore, a reliable, and preferably noninvasive, method for classification of PCa is in urgent de
mand. With this goal in mind, efforts have been made in the past to use computeraided diagnosis (CAD)
coupled with radiomics and machine learning to predict Gleason score from clinical images, showing
promising results.

Radiomics is the transformation of medical images into high dimension mineable data. Hence, based
on the hypothesis that tumour characteristics that are cause or consequence of Gleason score are reflected
in the radiomic features extracted from the MRI image, these can be used to build supervised machine
learning models capable of assessing this parameter. That being said, the main goal of this work was to
develop supervised machine learning models exploiting radiomic features extracted from mpMRI exam
inations, to predict biological aggressiveness in the form of Gleason Score.

In this work, 288 classifiers were developed, corresponding to different combinations of pipeline
aspects, namely, type of input data (i.e. lesion features vs whole gland features), sampling strategy,
feature selection method and machine learning algorithm.

On a cohort of 281 lesions (210 for training, 71 for validation) and 183 patients (137 for training,
46 for validation), it was found that radiomic features extracted from the whole gland VOI produced
extremely more reliable classifiers than radiomic features extracted from the lesions’ VOIs. Suggesting
that the areas surrounding the tumour lesions offer relevant information regarding the Gleason Score that
is ultimately attributed to that lesion. In addition to suggesting that the monotonous lesion segmentation
work performed by radiologists may not be necessary or even be harming to the radiomics signature.

Keywords: Radiomics, Machine Learning, Prostate Cancer.
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Resumo Alargado

O cancro da próstata é um dos cancros mais prevalentes em Portugal, estando entre as 4 principais causas
de morte por neoplasias em 2018, com uma taxa bruta de mortalidade de 38.23 mortes por 100 000
homens.

O atual diagnóstico e classificação do cancro da próstata não é ideal, baseandose em medidas pouco
específicas como os níveis de PSA (antigénio específico da próstata) e DRE (examinação retal), seguidos
de biópsia guiada por ultrasom transrectal (TRUS), onde é atribuído um nível de agressividade sob a
forma da classificação de Gleason.

Ao contrário de TRUS, imagens de ressonância magnética permitem uma visualização clara da anato
mia da próstata. mpMRI (ressonância magnética multiparamétrica) corresponde a um conjunto de difer
entes métodos de captação de imagem que fornecem informação de perspetivas diferentes sobre o tecido,
constituindo uma ferramenta promissora para a identificação de lesões tumorais e respetiva classificação.
No entanto, a interpretação deste exame, sendo um processo subjetivo, está inevitavelmente afetada por
uma elevada taxa de variabilidade entre observadores. Foi demonstrado também que a classificação de
Gleason atribuída a uma lesão aquando da biópsia, irá provavelmente ser corrigida após prostatectomia
radical.

Portanto, um método confiável e de preferência não invasivo para classificação do cancro da próstata
é necessário. Com este objetivo em mente, esforços têm sido feitos no passado para usar radiómica e
aprendizagem automática para prever a classificação de Gleason a partir de imagens clínicas, apresen
tando resultados promissores.

Radiómica é a transformação de imagens médicas em dados quantitativos   de alta dimensão. Assim,
com base na hipótese de que as características do tumor que são causa ou consequência da classificação
de Gleason estão refletidas nas variáveis radiómicas extraídas das imagens de ressonância magnética
multiparamétrica, estas podem ser usadas para construir modelos de aprendizagem automática capazes
de avaliar este parâmetro. Dito isso, o objetivo principal deste trabalho foi desenvolver modelos de
aprendizagem automática explorando variáveis radiómicas extraídas de exames de ressonância magnética
multiparamétrica para prever a agressividade biológica na forma de classificação de Gleason.

Neste trabalho, 321 variáveis radiómicas foram extraídas por paciente ou lesão. Estas foram uti
lizadas no desenvolvimento de 288 modelos, correspondendo a diferentes combinações de aspetos de
uma pipeline típica, mais especificamente, origem dos dados de treino (por exemplo, variáveis radiómi
cas da lesão vs variáveis radiómicas da glandula inteira), estratégia de preprocessamento dos dados,
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método de seleção de variáveis e algoritmo de aprendizagem automática. O desempenho dos vários
modelos foi avaliado através das métricas F2 e Cohen’s Kappa e os modelos foram comparados entre si
no sentido de perceber que aspetos da pipeline melhor se adequavam ao contexto deste trabalho.

Num conjunto de 281 lesões (210 para treino, 71 para validação) e 183 pacientes (137 para treino, 46
  para validação), verificouse que os modelos treinados com dados equilibrados, seja por subamostragem
da classe maioritária ou por geração de instâncias sintéticas para a classe minoritária através da técnica
de SMOTE, obtiveram uma proeza superior aos modelos treinados com os dados originais desequilibra
dos. Verificouse ainda que as variáveis radiómicas extraídas do VOI (volume de interesse) da glândula
inteira produziram modelos extremamente mais confiáveis   do que as variáveis radiómicas extraídas dos
VOIs das lesões. Sugerindo que as áreas em volta das lesões tumorais oferecem informações relevantes
sobre a classificação de Gleason que é atribuída a essa lesão. Além de sugerir que o trabalho monótono
de segmentação das lesões realizado pelo radiologista pode não ser necessário ou mesmo prejudicar a
assinatura radiómica.

Selecionaramse 26 dos 288 modelos para validação interna e semiexterna. A primeira realizouse
através de crossvalidation e a segunda realizouse através de uma análise da volatilidade das métricas.
Aqui foi possível avaliar quais os modelos que estavam mais overfitted, tendose observado que os mod
elos treinados com dados gerados pela técnica de SMOTE estavam significativamente mais overfitted
do que os modelos treinados com dados resultantes da subamostragem da classe maioritária. Do mesmo
modo, concluiuse ainda que os modelos treinados com variáveis radiómicas extraídas dos VOIs das
lesões estavam significativamente mais overfitted do que os modelos treinados com variáveis radiómicas
extraídas do VOI da glândula inteira.

Estes resultados sugerem que áreas polarizantes do ramo de inteligência artificial na saúde como a
realização de segmentação das lesões tumorais pode não ser necessário ou mesmo prejudicial para o mod
elo, bem como gerar variáveis radiómicas pouco reproduzíveis devido à variabilidade de segmentação
entre radiologistas diferentes (aspeto também avaliado nesta dissertação).
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XIII



• DWI  Diffusion weighted imaging

• MRSI  magnetic ressonance spectroscopy

• DCEMRI  dynamic contrast enhanced MRI

• ADC  Apparent diffusion coefficient

• PIRADS  Prostate imaging reporting and data system

• CAD  computer aided diagnosis
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• ML  Machine learning
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• RFE  Recursive feature elimination
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• DT  Adaboosted Decision Tree
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• ROC  Receiver Operating Characteristic curve

• AUC  Area under the ROC curve

• TPR  True positive rate

• FPR  False positive rate

• PRC  Precision recall curve

• AUPRC  Area under the precision recall curve

• CV  Crossvalidation performance

• TS  Test set performance

• G  Model trained with the Gland dataset

• L  Model trained with the Lesion dataset

• Lp  Model trained with the Lesion Features with Anatomical Zone dataset

• D  Model trained with downsampled data

• S  Model trained with SMOTE data

• nS  Model trained with data that was not sampled

• FWHM  Full width at half maximum
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Chapter 1

Introduction
This chapter presents the background, motivation, objectives and contributions of this dissertation, as
well as the overall document structure.

1.1 Background

1.1.1 Prostate Anatomy

The prostate is a gland of the male reproductive system. It is situated between the bladder and the penis,
just in front of the rectum. The main purpose of the prostate is to secrete fluid with proteolytic enzymes
into the semen, which will nourish and protect sperm.

The gland is commonly divided into three main glandular zones: central zone (CZ), peripheral zone
(PZ) and transitional zone (TZ); and one stromal zone: anterior fibromuscular stroma [28]. See Figure
1.1. The peripheral zone constitutes over 70% of the gland volume and it is known that approximately
70% of prostate tumours originate from here. From the transitional zone arise approximately 25% of
prostate tumours. The central zone constitutes 25% of the gland volume and it is known that 8% of
prostate tumours originate from here [29].

1.1.2 Prostate Cancer Diagnosis

Prostate cancer in its early stages does not cause any specific symptoms. A suspicion of PCa can arise
from: an abnormality on digital rectal examination, DRE [5; 7; 18], or an elevated level of prostate
specific antigen (PSA) in the serum [8; 7].

PSA is an androgenregulated glycoprotein serine protease that is encoded in the KLK3 gene. Its
purpose is to cleave semenogelin, aiding the liquification of the ejaculate [34] and it is produced almost
exclusively by the prostate. However, elevated PSA blood levels are not specific to PCa, making an
appearance in conditions like BPH (benign prostatic hypertrophy or enlargement of the prostate) and
prostatitis (inflammation of the prostate) [19]. Additionally, there is no definite threshold value for PSA
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Figure 1.1: Representation of the zonal anatomy of the prostate, as described by [28]. Adapted from [25]. AFS –
anterior fibromuscular stroma; TZ – transitional zone; PZ – peripheral zone; U – urethra; CZ – central zone; ED –
ejaculatory ducts.

above which a man is guaranteed to have PCa or below which we can safely assume he doesn’t [20; 37].
Similarly, an abnormality detected during DRE might be due to BPH or prostatitis in addition to lumps
and nodules of PCa [31]. As mentioned before, while approximately 70% of PCas originate from the PZ,
the large percentage that is left, does not, and, so, will not be palpable through DRE, due to its anatomical
location. Nevertheless, it has been shown that the sensitivity, specificity, and positive predictive value for
the detection of PCa by means of PSA is 72.1%, 93.2% and 25.1%, respectively; and by DRE is 53.2%,
83.6% and 17.8%, respectively [30].

The most widely used technique to confirm a suspicion of PCa is biopsy of the prostate gland guided
by transrectal ultrasound (TRUS). In spite of this, TRUS presents several shortcomings. For a lesion to
be detected by TRUS it needs to be hypo or hyperechoic. Although a largemajority of PCas are illdefined
hypoechoic lesions [26], a study detected that close to 30% of patients had isoechoic lesions, decreasing
TRUS’s negative predictive value (NPV) [11]. Further shortcomings include the low specificity and
positive predictive value (PPV) of TRUS [27]. In short, there is an elevated risk that a tumour is either
missed or that the most aggressive part of the tumour is not targeted, leading to an overdiagnosis of
clinically insignificant PCa (ciPCa) or underdiagnosis of clinically significant PCa (csPCa). This could
lead to a necessity for repeated biopsies, with the risks that accompany it, an increased number of biopsy
cores, an incorrect Gleason score or staging [3].

The current diagnostic approach, comprising PSA levels, DRE and TRUS guided biopsy, lacks both
in sensitivity and specificity in PCa detection, in addition to offering limited information regarding ag
gressiveness and / or stage of the cancer [3].

Magnetic resonance imaging, on the other hand, allows for clear visualization of the zonal anatomy
of the prostate, when compared to TRUS [15] and is, therefore, a promising tool for identification, char
acterization and staging of PCa.
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1.1.3 Multiparametric MRI (mpMRI)

Multiparametric MRI (mpMRI) is a combination of functional and anatomical imaging methods: T1
weighted imaging (T1W), T2weighted imaging (T2W), diffusion weighted imaging (DWI), MR spec
troscopy (MRSI) and dynamic contrast enhanced MRI (DCEMRI) [15]. mpMRI is able to provide mor
phologic and metabolic data as well as characterize tissue vascularity, showing promise in the detection
of PCa.

It has been shown that for biopsynaive patients, the sensitivity and specificity of mpMRI in detecting
csPCa is approximately 85% and 72%, respectively [17; 22]. Additionally, mpMRI followed by targeted
biopsy performed better in the detection of csPCa than TRUSguided biopsy [9; 17].

For patients with a previous negative TRUSguided biopsy and persistent elevated risk of PCa (el
evated PSA and/or abnormal DRE), mpMRI followed by targeted biopsy identified more csPCa than
repeated TRUSguided biopsy. In this context, mpMRI demonstrated an overall sensitivity and speci
ficity in detecting csPCa ranging from 68 to 100% and 41 to 91%, respectively [1; 17; 21; 33]. In addition,
the high resolution obtained with mpMRI allows for a less invasive biopsy procedure, since fewer cores
are obtained per patient than in repeated TRUSguided biopsy [17].

1.1.3.1 T1weighted imaging (T1W)

T1W imaging does not allow for accurate differentiation of zonal anatomy, showing a uniform signal
within the prostate. This type of imaging technique is useful for depicting the outline of the prostate
gland and for identification of haemorrhage, seen as hyperintense regions. Haemorrhage can appear to
be PCa in T2W imaging since both cancerous lesions and haemorrhage appear as hypointense regions
in T2W. Thus, a hypointense region in T2W paired with no hyperintense region in T1W can be used for
PCa detection [3]. See Figure 1.2.

Figure 1.2: a) hypointense areas in T2W imaging. b) hyperintense areas in a fatsaturated T1W image. Extracted
from [3]. The T1W image discards the suspicious hypointense areas in the T2W image as haemorrhages and not
PCa.
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1.1.3.2 T2weighted imaging (T2W)

T2W imaging is considered to have high spatial resolution, allowing to clearly distinguish between
anatomic zones (Figure 1.2a). On T2W imaging of a normal prostate, the peripheral zone (PZ) ap
pears with high signal intensity because of the high content of water in the glandular tissue, whereas the
transitional and central zones have often a lower signal intensity, while still being distinguishable from
each other [3].

PCa in the PZ appears as a hypointense region in an otherwise hyperintense PZ. PCa in the TZ is
not as distinguishable due to the overall lower signal intensity of the healthy TZ, as well as the possible
presence of BPH nodules that might mimic PCa or be mixed with the cancerous tissue [3].

1.1.3.3 Diffusionweighted imaging (DWI)

Diffusionweighted imaging (DWI) assesses the diffusion of water molecules in the tissue. It is made
sensitive to molecule diffusion by using a pair of opposite gradients and measuring the loss of signal.
The first gradient introduces a phaseshift in spins and the second gradient, after a time interval ∆, re
phases the spins. If the molecules have not moved during that time interval, the rephasing will be exact
and there will be no loss of signal. However, if diffusion occurred, then the rephasing will not be exact
and there will be a loss of signal. The greater the amount of displacement of water molecules, the greater
the signal loss will be. Thus, regions with restricted diffusion will appear bright on a DWI image. [25]

In a normal prostate, especially in the PZ, water molecules move relatively freely, without restriction.
PCa contains more tightly packed cells causing restricted diffusion, which is represented in the DWI
image by an area of high signal intensity.

The degree of sensitivity to diffusion depends on one parameter, the bvalue. The higher the b
value, the greater will be the sensitivity to diffusion. As we can see in Figure 1.3, a low bvalue allows
to distinguish blood vessels, where diffusion is extremely elevated, but does not differentiate between
normal cells and tightly packed cancerous cells. If we choose a higher bvalue, the differentiation between
blood vessels and healthy cells will not be as clear, however, we can more easily distinguish the tumour.
A higher bvalue will also diminish the T2 shinethrough effect.

Therefore, if a lesion is found on a T2W image, haemorrhage can be discarded by looking at the
corresponding T1W image, and a high signal intensity region is found on the corresponding high bvalue
DWI image, then there is a high probability of PCa.

1.1.3.4 Apparent Diffusion Coefficient (ADC)

The apparent diffusion coefficient (ADC) can be calculated for each voxel, given that DWI images have
been taken for at least two bvalues (bvalue = 0 and high bvalue).

The monoexponential model is commonly used in the literature, and it states that if, for each voxel,
we plot the signal intensity on DWI on a logarithmic yaxis against the bvalue on a linear xaxis, then
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Figure 1.3: Representation of the degree of sensitivity to diffusion regulated by the bvalue parameter. The shaded
sections represent the dark regions in the DWI image.

the ADC for that voxel corresponds to the slope. The monoexponential model can be described as

S(b) = S0× e−b×ADCm (1.1)

Where S is the signal intensity of the DWI image at a particular bvalue, b is the bvalue, S0 is the
signal intensity at bvalue = 0 s/mm2 and ADCm is the apparent diffusion coefficient of the monoexpo
nential model.

A low ADC, or low slope, corresponds to a slow loss of signal and will be plotted dark on an ADC
map. While normal cells’ signal intensities on DWI decrease relatively rapidly as bvalue increases,
appearing bright on the ADC map, PCa’s signal intensity should decrease fairly slower, resulting in a
lower slope and, thus, lower ADC, appearing hypointense in the ADC map.

While themonoexponential model is commonly used in the literature, it describes the diffusion of pure
water without any barriers, which is not accurate for complex biological tissues with cell membranes that
create compartments and barriers to diffusion. The kurtosis model, a nonGaussian model, addresses this
issue and has been shown to have higher information content, higher fitting quality, similar repeatability
and similar robustness to noise when compared to the monoexponential model [39]. The kurtosis model
can be described as:

S(b) = S0× e−b×ADCk+ 1
6
×b2×ADCk2×K (1.2)
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Where S(b) is the signal intensity of the DWI image at a particular bvalue, b is the bvalue, S0 is the
signal intensity at bvalue = 0 s/mm2, ADCk is the diffusion coefficient of the kurtosis model and K is
the kurtosis. As before, PCa appears hypointense in the ADC map.

1.1.3.5 Dynamic Contrast Enhanced MRI (DCEMRI)

DCEMRI consists of a series of T1W images taken before, during and after the intravenous injection
of a contrast agent, commonly gadolinium. DCEMRI evaluates the differences in the velocities and
intensities of contrast agent uptake and washout by the tissue, allowing it to assess the status of tumour
angiogenesis, the process of formation of new blood vessels [36].

For each voxel, a signalvstime curve is registered, which can be used to calculate parameters such
as initial slope, timetopeak, maximum signal enhancement, washout slope and area under the curve
after a specified time. Pharmacokinetic properties can also be estimated. These include Ktrans (transfer
constant), Ve (extravascular extracellular volume) and Kep (rate constant) [25].

The development of PCa includes the stimulation of angiogenesis and an increase in vascular perme
ability, resulting in a signalvstime curve with a high and early contrast enhancement peak followed by
a rapid washout [3] and higher Ktrans, Ve, Kep when compared to healthy tissue [25].

1.1.3.6 PIRADS score

One of the biggest challenges in the clinical use of mpMRI is that its interpretation is dependent on the
radiologist’s subjective opinion and, thus, is inevitably affected by a high rate of interreader variability
in interpretation and lack of reliability. In order to reduce these effects, a standardized reporting system
was developed, the Prostate Imaging Reporting and Data System (PIRADS). The PIRADS applies a set
of rigid criteria to assign to each MRI sequence a specific score of suspicion out of a fivepoint suspicion
scale (PI RADS =1, very low suspicion; PIRADS = 5, very high suspicion), with the final total score
being dependent on the number of sequences used. [36]

Despite the improvements after the introduction of PIRADS, there is still room for improvement in
mpMRI reporting. Hence, efforts have been made to implement computeraided diagnosis (CAD), with
the aim to bypass interobserver variability.

1.1.4 Prostate Cancer Aggressiveness

The most widely used measure for PCa aggressiveness is the Gleason Score (GS) [16]. This grading
system is assigned to a lesion after biopsy. The larger the GS the more likely it is that the cancer will
grow and spread quickly. It ranges from 1 to 5, 1 meaning that the biopsy exposed near healthy tissue,
and 5 that the biopsy revealed abnormal tissue (Figure 1.4).

Usually, two grades are given per patient. The primary grade represents the GS of the largest area
of the tumour and the secondary grade describes the GS of the next largest area. The sum of the two
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scores is taken to be the final GS. A recent modification to this system groups the GSs into five different
categories [12]: group 1, GS = 6; group 2, GS = 3 + 4 = 7; group 3, GS = 4 + 3 = 7; group 4,
GS = 8; group 5, GS = 9. A lesion is considered clinically significant for PCa when its GS is higher or
equal to 7.

Figure 1.4: Prostate cancer histologic patterns for the grading system. Adapted from [16]

1.1.5 Radiomics

Radiomics is the analysis of medical images through the extraction of quantitative features. The hy
pothesis behind radiomics is that tissue characteristics might be reflected in the image and, thus, can be
quantified by the extracted features. These are extremely valuable for their objectivity and reproducibil
ity.

Radiomic features are of high importance since they are often used to train machine learning models,
which can then be used to predict, for instance, the diagnosis, best treatment option or even survival of
the patient.

1.1.6 Supervised Machine Learning

Machine learning is a branch of AI where algorithms use statistics to find patterns in data and latter apply
said patterns to make predictions about new instances.

Machine learning algorithms can be divided into two main groups: supervised and unsupervised.
Supervised machine learning takes labelled training data, or inputoutput pairs, and attempts to create a
function that maps each input (or a vector of predictor variables) to an output (or target variable). On the
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other hand, in unsupervised machine learning, the training data is not labelled, so the algorithm just looks
for whatever patterns it can find and sorts the training samples into groups accordingly.

Variables can be classified as quantitative or qualitative (or categorical). Quantitative variables are
continuous numeric values (for example: the weight of a cookie jar or the size of a house), while qual
itative variables are discrete categories (for example: the colour of a cookie jar or the neighbourhood a
house belongs to).

In this work, we will address a supervised binary classification machine learning problem, where the
input is a vector of radiomic features and the output is the clinical significance of the tumour, described
as True for clinically significant PCa or False for clinically insignificant PCa.

1.2 Motivation

Prostate cancer is one of the most prevalent cancers in Portugal, being among the top 4 malignant neo
plasm causes of death in 2018, with a crude mortality rate of 38.23 deaths per 100 000 males. [DGS]

Prostate cancer diagnosis and classification is not ideal, relying on unspecific measures such as PSA
levels and DRE, followed by biopsy, where an aggressiveness level is attributed in the form of Gleason
score.

It has been shown that the Gleason score attributed to a lesion after biopsy is likely to change after
radical prostatectomy [13], which confirms the shortcomings of TRUSguided biopsy mentioned above.
Therefore, a reliable, and preferably noninvasive, method for classification of PCa is in urgent demand.
With this goal inmind, efforts have beenmade in the past to use CAD coupledwith radiomics andmachine
learning to predict GS from clinical images, showing promising results.

In fact, texture features have shown potential as biomarkers for PCa aggressiveness [43]. Addition
ally, previous studies have reported a strong negative correlation between the GS and the ADC values
calculated in the tumour region. Furthermore, an even stronger correlation has been found between the
GS and the ADC ratio, or normalized ADC, which corresponds to the ADC value calculated for the tu
mour region divided by the ADC value calculated for the benign region [4; 42]. It is hypothesised that the
ADC ratio shows a stronger correlation, because it levels out some of the individual variability, taking
into account not only the tumour ADC but also the individual’s prostate specific signal characteristics.
In addition, the ADC ratio proves to be a more robust feature than the absolute ADC, when comparing
different bvalues [38].

1.3 Objectives

The hypothesis of this dissertation is that tumour characteristics that are the cause or consequence of
Gleason score are reflected in the radiomic features extracted from the MRI image and, thus, can be used
to build a classifier model capable of assessing this parameter. Hence, the main goals of this work are to:
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1. Extract radiomic features from a set of prostate MRI sequences taking into account the respective
segmentation mask.

2. Evaluate the stability of radiomic features with regards to segmentation margins.

3. Build supervised machine learning models that take as input stable radiomic features and predict
disease aggressiveness in the form of Gleason score.

4. Validate the machine learning models constructed internally (by means of crossvalidation and
holdout test set performances) and semiexternally (by means of a metric volatility analysis).

1.4 Document Structure

Additionally to the present introductory chapter, this document is structured in four chapters as follows:

• Chapter 2 (Dataset Construction) describes the feature extraction process and subsequent con
struction of the datasets utilized in this dissertation.

• Chapter 3 (Feature Reduction) describes the feature reduction steps taken, namely, stability to
segmentation, nearzero variance, correlation and feature selection through RFE, mRMR, Boruta
and Lasso.

• Chapter 4 (Classifier Development) presents the work undertaken in the development of 288 clas
sifiers, corresponding to different combinations of pipeline aspects, namely, type of input data
(i.e. lesion features vs gland features), sampling strategy, feature selection method and machine
learning algorithm.

• Chapter 5 (Classifier PostDevelopment Analysis) presents the validation of the highest perform
ing pipelines found in the previous chapter, by means of a metric volatility analysis.

• Chapter 6 (Conclusion) discusses the main conclusions of this work, as well as some limitations
and future work.

1.5 Methodology

The work of this dissertation was performed with both python and the software RapidMiner Studio (ver
sion 9.9; https://rapidminer.com/):

• The feature extraction and dataset engineering done in Chapter 2 (Dataset Construction) was per
formed in pythonwith the packages pyRadiomics[40] and scikitlearn (version 0.23.2; https://scikit
learn.org/).
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• In Chapter 3 (Feature Reduction) the stability to segmentation analysis was performed in Python,
the nearzero variance analysis in Rwith the caret package (version 6.086; https://topepo.github.io/caret/)
and the correlation and feature selection steps were performedwith the software RapidMiner Studio
(version 9.9; https://rapidminer.com/).

• The work of Chapter 4 (Classifier Development) was performed with the software RapidMiner
Studio (version 9.9; https://rapidminer.com/).

• InChapter 5 (Classifier PostDevelopmentAnalysis) retrieval of performances in themetric volatil
ity analysis was done with the software RapidMiner Studio (version 9.9; https://rapidminer.com/),
however the full statistical analysis that followed was performed in Python.

1.6 Contributions

The main contributions of this work are the following:

• Construction of a Rapidminer Studio extensionwith an operator capable of calculating the Fβscore
performance.

• Construction of a Rapidminer Studio operator capable of performing Boruta feature selection.

• Overview of which pipeline aspects might be more suited in this particular context.

• Further proof of the value of radiomic features extracted from prostate MRI in the prediction of
prostate cancer aggressiveness in the form of Gleason score.

• Value of radiomic features extracted from the whole gland VOI over the ones extracted from the
lesion VOI.
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Dataset Construction
This chapter describes the feature extraction process and subsequent construction of the datasets utilized
in this dissertation.

2.1 Background

2.1.1 Types of Radiomic Features

As briefly described in the previous chapter, radiomics is the analysis of medical images by means of an
advanced mathematical analysis that results in the extraction of a large number of quantitative features.

These quantitative features are hypothesised to be able to reflect information about diseasespecific
processes that are imperceptible to the human eye [41]. Through mathematical quantification of the
spacial distribution of signal intensities and pixel interrelationships [41], radiomics can evaluate different
dimensions of an image. These dimensions are reflected in the different perspectives provided by the
various types of radiomic features, to name a few:[40]

• Firstorder or histogram based features describe the statistical distribution of voxel intensities
within the segmented region. Some firstorder features include: mean, median, maximum, mini
mum, variance, skewness, kurtosis, several percentiles, etc.

• Shape features describe the size and shape of the segmented region. Some shape features include:
voxel volume, surface area, sphericity, flatness, maximum diameter, etc.

• Texture features describe interrelationships between pixels. The calculation of texture features
begins by the construction of a matrix from which the features are later calculated. This matrix is
built according to the type of texture features one wishes to calculate:

– Grey Level Coocurrence Matrix describes the secondorder joint probability function of the
segmented region.
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– Grey Level Size Zone Matrix quantifies grey level zones in the segmented region. Where a
grey level zone corresponds to the number of connected voxels that share the same grey level
intensity.

– Gray Level Run Length Matrix quantifies grey level runs in the segmented region. Where a
grey level run corresponds to the length in number of consecutive voxels that share the same
grey level intensity.

– Neighbouring Grey Tone Difference Matrix quantifies the difference between a grey value
and the average grey value of its neighbourhood.

– Grey Level Dependence Matrix quantifies grey level dependencies in the segmented region.
Where a grey level dependency corresponds to the number of connected voxels within a cer
tain distance that are dependent on the centre voxel, or, in other words, that have a grey level
close enough to the centre voxel.

2.2 Methods

2.2.1 Data Gathering

Our dataset consisted of T2W, DW and ADC data from the SPIEAAPMNCI PROSTATEx challenge
(the data can be downloaded from https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656).
The following description of the dataset was provided by the Challenge’s organizers: “This collection
is a retrospective set of prostate MR studies. All studies included T2weighted (T2W), proton density
weighted (PDW), dynamic contrast enhanced (DCE), and diffusionweighted (DW) imaging. The im
ages were acquired on two different types of Siemens 3T MR scanners, the MAGNETOM Trio, and
Skyra. T2weighted images were acquired using a turbo spin echo sequence and had a resolution of
around 0.5 mm in plane and a slice thickness of 3.6 mm. The DWI series were acquired with a single
shot echo planar imaging sequence with a resolution of 2mm inplane and 3.6mm slice thickness and
with diffusionencoding gradients in three directions. Three bvalues were acquired (50, 400, and 800),
and subsequently, the apparent diffusion coefficient (ADC) map was calculated by the scanner software.
All images were acquired without an endorectal coil.”

The dataset consisted of 281 lesions from 183 patients. The approximate location of the centroid of
each lesion was provided in DICOM coordinates. Cancer was considered significant when the biopsy
Gleason score was 7 or higher. The lesions were labelled with “TRUE” and “FALSE” for presence of
clinically significant cancer, with a distribution of 67 True lesions and 214 False lesions. The lesions
were labelled as belonging to peripheral zone (PZ), transitional zone (TZ), anterior stroma (AS) and
seminal vesicles (SV). The distribution of lesions according to anatomic zone and clinical significance is
described in Table 2.1.

As the number of lesions is higher than the number of patients, some patients had more than one
cancerous lesion. Figure 2.1 shows the distribution of patients according to their number of lesions.
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True False Total
PZ 31 128 159
TZ 9 62 71
AS 27 23 50
SV 0 1 1
Total 67 214 281

Table 2.1: Distribution of lesions according to anatomical area and presence of clinically significant
cancer. PZ – peripheral zone; TZ – transition zone; AS – anterior stroma; SV – seminal vesicles.

Figure 2.1: Distribution of patients according to their number of lesions.

2.2.2 Feature Extraction

As mentioned in the previous chapter, MRI interpretation is burdened by its subjectivity. Being a hu
man dependent task, segmentation of tumorous lesions suffers from the same problem. In an attempt
to overcome this, manual segmentations of the whole prostate gland and of each lesion were performed
independently by two radiologists on T2W and DW maps separately. For each sample, one radiologist’s
volume of interest (VOI) was randomly chosen to be included in the final dataset.

Radiomic features were extracted using the package Pyradiomics (version 3.0) [40] in Python (v.
3.7.9; https://www.python.org/). 14 shape features, 18 firstorder features and 75 texture features were ex
tracted from the VOI of threeMRImodalities, T2W, DWI andADC, resulting in a total of 321 features ex
tracted. In the feature extraction of the ADCmap, the mask drawn on the DWI was used. The mathemati
cal expressions and semanticmeanings of the features extracted can be found at https://pyradiomics.readthedocs.io/en/latest/features.html
.
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2.2.3 Datasets Construction

The features extracted from a lesion mask VOI constituted the Lesion Dataset. The features extracted
from a whole gland mask VOI constituted the Gland Dataset. A Gland was considered to have clinically
significant PCa if at least one of its lesions is clinically significant.

From the previous datasets, two additional datasets were constructed:

• Lesion Features with Anatomical Zone dataset – A dataset composed of lesion features plus features
describing the anatomical location of the lesion. The possible values for anatomical location were
peripheral zone (PZ), transitional zone (TZ), anterior stroma (AS) and seminal vesicles (SV). This
categorical variable was encoded with the oneHotEncoder() function of the Python scikitlearn
package (version 0.23.2; https://scikitlearn.org/).

• SingleLesion Whole Gland Features dataset – A truncated dataset composed of patients from the
Gland dataset that had one only lesion.

2.2.4 Train/Test Split

The train/test split was performed with the train_test_split() function of the Python scikitlearn package
(version 0.23.2; https://scikitlearn.org/). The hold out test sets consisted of 25% randomly selected
samples from the original datasets and the split was stratified so that both train and test sets have the
same proportion of True labels.

2.3 Results

2.3.1 Datasets Description

The Lesion Dataset is composed of 321 features and 281 lesions, out of which, 67 lesions have a Gleason
Score of 7 or higher and are considered clinically significant (True label) and 214 lesions have a Gleason
Score lower than 7 and are considered clinically insignificant (False label).

The GlandDataset is composed of 321 features and 183 patients. A glandwas considered to have clin
ically significant cancer if at least one of its lesions was clinically significant. This resulted in 63 patients
being considered as having clinically significant cancer (True label) and 120 patients being considered
as having clinically insignificant cancer (False label).

The Lesion Features and Anatomical Zone Dataset is composed of 325 features and 281 lesions, out
of which, 67 lesions have a Gleason Score of 7 or higher and are considered clinically significant (True
label) and 214 lesions have a Gleason Score lower than 7 and are considered clinically insignificant (False
label).

The SingleLesion Whole Gland Features Dataset is composed of 321 features and 107 patients, out
of which, 33 patients have a Gleason Score of 7 or higher and are considered clinically significant (True
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Train Test
True 48 15
False 89 31
Total 137 46

Table 2.2: Size and label distribution of the train and test Gland Datasets.

Train Test
True 51 16
False 159 55
Total 210 71

Table 2.3: Size and label distribution of the train and test Lesion and Lesion with Anatomical Zone
Datasets.

label) and 74 patients have a Gleason Score lower than 7 and are considered clinically insignificant (False
label).

2.3.2 Train/Test Split

The sizes and label distribution of the train and test sets for the Gland dataset is described in Table 2.2.
For both the lesion dataset and the lesion features with anatomical zone dataset refer to table 2.3 for the
size and label distribution of the train and test sets, since they are identical. The singlelesion whole gland
features dataset was not split into train and test set, due to its already reduced number of samples.
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Chapter 3

Feature Reduction
Feature reduction is the process used to select the subset of features that will be used to train the predictive
model. Relatively insignificant features may contribute little to the model or even add noise and decrease
performance. The several phases of feature reduction done in this work are described in this chapter. See
Figure 3.1

Figure 3.1: Phases of feature reduction performed in this work. Image extracted from [32]

3.1 Background

3.1.1 The Curse of Dimensionality

The curse of dimensionality occurs when a dataset has a lot more features, or predictor variables, than
instances, or observations. Two popular aspects that explain why this is problem in the AI world are data
sparsity and distance concentration.

As the number of dimensions, or predictor variables, increases, the number of possible combinations
that can be found in the data will also increase, but in a geometric way. This means that the higher
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the dimension of our dataset, the more observations we will need to gather so as to cover all possible
combinations of features. When the training samples available do not capture all possible combinations
we have a data sparsity problem. This will lead to the overfitting condition, since the model will not
accurately predict the target of feature combinations that it has not come into contact with in the training
data.

The distance concentration problem refers to the fact that the distances between observations converge
to the same value as dimensionality increases [2]. Since observations appear equidistant, no meaningful
relations can be extracted from the data.

To overcome the issues associated with high dimensional data, feature reduction techniques are used.
Some of these will be described in the following sections.

3.1.2 Feature Reduction Phases

Lesion or Gland segmentation, like any other human dependent activity, is subject to human error and high
interreader variability. Hence, features that are highly dependent on segmentation margins, will not be
stable predictors, since they easily change depending on the radiologist that performed the segmentation.
The first step in the feature reduction performed in this work was to find and remove these unstable
features from the dataset.

Similarly, features with zero or nearzero variance across the dataset offer slight information regarding
label distinction and, so, should be found and excluded from the data. This was performed as a second
step of feature reduction.

Outliers are data points that differ significantly from the remaining observations in the dataset. The
presence of outliers in the data can badly affect the mean and standard deviation of features and lead to
the development of less precise models. Therefore, they should be identified and excluded. Although
this is not a feature reduction step, it is described in this section since the presence of outliers can affect
the feature correlation analysis and, so, should be done prior to it.

Two features are correlated when one can be used to predict the other with high accuracy. The pres
ence of correlated features in the dataset can mask useful interactions between features and lead to the
development of unstable models, in addition to heightening the curse of dimensionality. The removal of
correlated features was the third step of feature reduction.

Feature selection algorithms are classified into three different categories: wrapper methods, filter
methods and embedded methods. Wrapper methods are feature selection algorithms that compute differ
ent subsets of features until they find the optimal set. This optimal subset is determined through a feature
weighing algorithm that is “wrapped” within the main algorithm. Some wrappertype feature selection
algorithms include forward selection (starts with zero features and successively adds features with the
greatest improvement to the model), backward elimination (starts with all features and successively re
moves the least useful features) and stepwise selection (hybrid approach that starts with zero features and
successively adds relevant features or removes previously relevant features that are no longer useful).

18



Chapter 3 Feature Reduction

Filter methods select a subset of features by ranking them according to some useful descriptive measure.
Filtertype feature selection algorithms include Spearman’s correlation coefficient and ANOVA. Embed
ded methods are feature selection algorithms that are an integrant part of the machine learning algorithm.
These include LASSO and Ridge regressions, as well as Decision Trees.

3.2 Methods

The several phases of feature reduction done in this work were applied only on the train sets and will be
described in the following sections.

3.2.1 Feature Stability to Segmentation

Features extracted from the VOIs created by both radiologists were compared with Intraclass correlation
coefficient (ICC). The ICC used was a twoway, single rater, absolute agreement ICC model (ICC  2,1)
[23]. Features with ICC 95% confidence interval lower limit over 0.8 were considered to be robust to
segmentation and were kept for further analysis.

The assessment of feature stability to segmentationwas performed in Python, outside of crossvalidation.

3.2.2 Zero and Nearzero Variance Features

Zero and nearzero variance analysis was performed outside of cross validation with the nearZeroVar()
function of the R caret package (version 6.086; https://topepo.github.io/caret/). This function makes use
of the frequency of the most prevalent value over the second most frequent value (which would be near
one for wellbehaved predictors and very large for highlyunbalanced data) and the percentage of unique
values, so as not to exclude predictors that, in spite of having low granularity, are evenly distributed [24].

3.2.3 Outlier Detection and Removal

In order to identify outliers, the local outlier factor (LOF) was used. This algorithm calculates the density
of a given subject. Where the density is given by the distance of that subject to its k nearest neighbours.
The further away the neighbours are, the smaller the density will be and there will be a higher probability
that this subject is an outlier. Since scale affects the distance function, the data was normalized before
applying the LOF algorithm.

Samples with LOF over 2 were removed from the original not normalized dataset. Outlier detection
and removal was performed inside cross validation with the software RapidMiner Studio (version 9.9;
https://rapidminer.com/).
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3.2.4 Feature Correlation Analysis

The feature correlation analysis was performed inside cross validation on RapidMiner Studio (version
9.9; https://rapidminer.com/) with the operator “Remove Correlated Attributes”. This operator uses the
Pearson correlation coefficient to compute the correlation between each pair of features. If a pair of
features is found to have a correlation higher than the threshold, one of the features is randomly eliminated.
The correlation threshold was a hyperparameter optimized during model training.

3.2.5 Feature Selection

In this work, in order to find the optimal feature set (fourth step of feature reduction), four feature selec
tion algorithms were applied separately, and their performance compared. These algorithms were recur
sive feature elimination (RFE), Boruta algorithm, minimum redundancy maximum relevance algorithm
(mRMR) and LASSO regularization.

3.2.5.1 Recursive Feature Elimination

Recursive feature elimination (RFE) is a wrappertype feature selection algorithm, more specifically, it
is a form of backward selection. The weighing method that is “wrapped” within RFE can be chosen
according to each situation. In this work, three feature weighing methods were combined with RFE and
their performance was evaluated. These feature weighing methods were Support Vector Machine (SVM),
Tree importance and Principal Component Analysis (PCA).

The Support Vector Machine’s weights are given by the coefficients of the hyperplane calculated.
Here we used a SVMwith a linear kernel, where the C parameter was a hyperparameter optimized during
model training. The C parameter regulates how much misclassification the hyperplane should allow and,
consequently, moves along the biasvariance curve. This analysis was performed on RapidMiner Studio
(version 9.9; https://rapidminer.com/) with the operator “Weight by SVM”.

Tree Importance was extracted from the criterion information gain ratio of a Random Forest. This
analysis was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the operator
“Weight by Tree Importance”. As described by the operator creators: “each node of each tree is visited
and the benefit created by the respective split is retrieved. This benefit is summed per attribute, that had
been used for the split. The mean benefit over all trees is used as importance”.

Principal Component Analysis weights are given by the coefficients of the first principal compo
nent. This analysis was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the
operator “Weight by PCA”.

The three featureweighingmethodswrapped in RFEwere evaluated on the Lesion andGlandDatasets
in a cross validation setting as illustrated in Figure 3.2. Six machine learning algorithms were chosen
for this analysis: Naïve Bayes, Logistic Regression, Logistic Regression with Elastic Net regularization,
Adaboosted Decision Tree, Random Forest and Extreme Gradient Boost. These will be further described
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in the next chapter.

Figure 3.2: Process through which PCA, Tree Importance and SVM were evaluated as weighing methods wrapped
in RFE.

The number of features selected by the algorithm was a hyperparameter optimized during model
training.

As will be described in the next chapter, Kappa is a powerful metric in imbalanced data settings as
we have here. Thus, this metric was chosen to evaluate the performance of the different pipelines.

3.2.5.2 Boruta

In short, the Boruta algorithm selects features that are better predictors than a randomized shuffled version
of themselves. Initially, a “shadow” dataset is constructed by randomly shuffling each feature. This
shadow dataset is then added to the original dataset. Next, a random forest model is fitted on the new
dataset and the importance of each feature is retrieved. Finally, the importance of each original feature is
compared to the highest feature importance recorded among the shadow features. If a feature has higher
importance then the best shadow feature, then it is selected.

Boruta feature selection was not previously available in RapidMiner Studio, so an operator capable
of performing Boruta feature selection was created using the “Python Transformer” operator. This takes
a python script where Boruta feature selection was performed with the python package BorutaPy (version
0.3; https://github.com/scikitlearncontrib/boruta_py).
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T2W DWI ADC Total
Shape 6.49% 3.25% 3.25% 12.99%

Firstorder 5.19% 3.25% 5.84% 14.29%
Texture 18.18% 38.96% 15.58% 72.73%
Total 29.87% 45.45% 24.68% 100%

Table 3.1: Distribution of the unstable Lesion features across MRI modalities and feature types.

3.2.5.3 Minimum Redundancy Maximum Relevance

Minimum redundancy maximum relevance (mRMR) is a wrappertype feature selection algorithm, more
specifically, it is a form of forward selection. The weighing method that is “wrapped” within mRMR
selects features that are the most relevant to the prediction of the target variable and are the least redundant
with respect to the features that have been selected in previous iterations.

mRMR feature selection was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/)
with the operator “Select byMRMR / CFS” of the extension “FeatureSelectionExtension”. The number
of features selected by the algorithm was a hyperparameter optimized during model training.

3.2.5.4 LASSO Regularization

Regularization is a technique that reduces overfitting by making the model less sensitive to the training
data or, in other words, by introducing a small amount of bias so, in return, we get a significant drop in
variance. Lasso regularization (L1) reduces the coefficients of each feature in the linear equation so as to
reduce the impact a change in that feature could have in the final prediction. The advantage of Lasso is
that it can reduce these coefficients all the way to zero, excluding useless features from the equation.

LASSO feature selection was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/)
with the operator “Logistic Regression”. The parameter “use regularization” was selected and alpha was
set to 0, indicating Lasso regularization (L1). The feature weights were retrieved and used to select
features from the dataset.

3.3 Results

3.3.1 Feature Stability to Segmentation

In the Lesion Dataset, 154 features were found to be unstable, out of the total 321 features. The distribu
tion, in terms of percentage, of these 154 features across MRI modality and feature type is described in
Table 3.1.

The feature groups that were found to bemost unstable to segmentationwere texture features extracted
from DWI images (38.96% of unstable features were texture features extracted from DWI). The feature
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T2W DWI ADC Total
Shape 1.56% 0% 0% 1.56%

Firstorder 0% 3.13% 10.94% 14.06%
Texture 1.56% 10.94% 71.88% 84.38%
Total 3.13% 14.06% 82.81% 100%

Table 3.2: Distribution of the unstable Gland features across MRI modalities and feature types.

type that seemed to be the least robust to segmentationwas texture, with 72.73% of unstable features being
texture features. The features extracted from DWI images showed a lower stability than the remaining
MRI modalities (45.45% of unstable features came from DWI).

Additionally, 23 features were found to be unstable across all three MRI modalities. Of these 23, 17
were texture features, 2 were first order features and 4 were shape features.

In the Gland Dataset, 64 features were found to be unstable, out of the total 321 features. The distri
bution, in terms of percentage, of these 64 features across MRI modality and feature type is described in
Table 3.2.

The feature groups that were found to be most unstable to segmentation were firstorder and texture
features extracted fromADCmaps (10.94% and 71.88% of the unstable features, respectively) and texture
features extracted from DWI images (10.94% of the unstable features). Among the feature types, texture
features seem to be the most unstable to segmentation (84.38% of the unstable features). Regarding
MRI modalities, the features extracted from ADCmaps showed a lower stability (82.81% of the unstable
features) than the remaining modalities.

On both datasets the texture features seem to be the least stable to segmentation.

3.3.2 Zero and Nearzero Variance Features

In the LesionDataset, out of the total 169 stable features, 2 features were found to have nearzero variance:
DWI_original_glszm_GrayLevelNonUniformity and ADC_original_glszm_GrayLevelNonUniformity.
While, in the Gland Dataset, no features were found to have nearzero variance.

3.3.3 Feature Selection  Recursive Feature Elimination

The crossvalidation performance in terms of Kappa is described in Figure 3.3 with the respective mean
values and standard deviation presented in Table 6. The average Kappa score across the six machine
learning algorithms for each feature selection method were very close to each other with the highest
average performance belonging to SVMRFE.
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Figure 3.3: Crossvalidation performance results clustered by feature selection method. The graph on the left
describes Kappa performance on models trained with the Gland Dataset. The graph on the right describes Kappa
performance on models trained with the Lesion Dataset.

Gland Dataset Lesion Dataset
mean std mean std

PCARFE 0.3988 0.1306 0.2423 0.1047
Tree Importance  RFE 0.3945 0.1513 0.2393 0.1137

SVMRFE 0.4065 0.1578 0.251 0.131

Table 3.3: Mean values and standard deviation of the Kappa crossvalidation performance of the models
described in Figure 3.3

3.4 Discussion

The wholegland features seem to be considerably more robust to segmentation than lesion features (ap
proximately 50% of lesion features were found to be unstable, compared to approximately 20% of gland
features being unstable). This is expected since it is much more challenging for a radiologist to determine
lesion borders when compared to determining whole gland borders. Hence, there is a lot more interreader
variability in lesion segmentation and, consequently, a higher number of unstable features.

Regarding the choice of weighing method wrapped within RFE, a slightly higher performance was
observed in the pipelines that performed SVMRFE. This result coupled with its wide use in the literature
confirmed the decision to select SVMRFE for the remaining analysis.
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Classifier Development and Performance
Evaluation

This chapter presents the work undertaken in the development of 288 classifiers, corresponding to differ
ent combinations of pipeline aspects, namely, type of input data (i.e. lesion features vs gland features),
sampling strategy, feature selection method and machine learning algorithm.

4.1 Background

4.1.1 Bias/Variance Trade off

The bias can be defined as the difference between a model’s prediction for a certain instance and its
ground truth. A model with high bias makes assumptions about the data, in order to make the target
function easier to learn. This can lead to underfitting, since the model is unable to capture the underlying
pattern of the data. Some examples of highbias machine learning algorithms are linear and logistic
regressions.

The variance describes how much the target function changes when different training data is used. If
the data comes from the same distribution, then the algorithm should have low variance. A model with
high variance will be overfitted, since it captures noise along with the underlying pattern of the data. An
example of a highvariance machine learning algorithm is the Decision Tree.

Achieving a lowbias and lowvariance classifier should ensure that our machine learning model is
successful at making predictions for new instances. However, there is no escaping that a decrease in bias
will lead to an increase in variance and viceversa. This tradeoff in model complexity is the bias/variance
trade off.
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4.1.2 Machine Learning Algorithms

In this work we attempt to solve a supervised classification problem. The ”no free lunch” theorem states
that there is no ”best” learning strategy [44]. With that in mind, some machine learning algorithms were
chosen so as to cover a wide range of machine learning algorithm types:

• Linear classifiers – Logistic Regression with or without regularization of type Elastic Net. As
described in the previous chapter, regularization is a technique that reduces overfitting by making
the model less sensitive to the training data or, in other words, by introducing a small amount of
bias so, in return, we get a significant drop in variance. Ridge regularization (L2) reduces the
coefficients of each feature in the linear equation so as to reduce the impact a change in that feature
could have in the final prediction. Lasso regularization (L1) is similar to Ridge however, while
Ridge regularization can only reduce the coefficients asymptotically close to zero, Lasso can reduce
them all the way to zero, excluding useless features from the equation. Elastic Net regularization
combines lasso (L1) and ridge (L2) regularizations in a way that allows us to control the weight of
each type of regularization.

• Bayesian classifiers – Gaussian Naïve Bayes classifier. The Bayes classifier calculates the most
probable classification for a new instance. It is considered optimal since, theoretically, no other
algorithm working on the same data can outperform it on average. Hence, its misclassification
error is considered the minimal possible error that can be achieved. The Naïve Bayes algorithm is
a simplification of the Bayes optimal classifier, where features are considered to be conditionally
independent from each other.

• Treebased classifiers – Adaboosted decision tree, random forest and extreme gradient boost. Tree
based models make use of ‘ifthen’ rules to make predictions, for instance if weight is higher than
120 Kg, then patient is obese. Decision trees are the base of all treebased models and are built in
the following manner: first, the features on which to split the data are selected in order to maximize
information gain; the data is split multiple times until, finally, a decision is made on when to stop
splitting the tree. A very large tree will likely be overfitted, in the sense that it is very specific to
the dataset that it was trained on and doesn’t generalize well for new data. This can be avoided by
pruning the tree – a technique where the lower sections of the tree are removed. In this work, this
was done by setting a maximum tree depth. Adaboost is an ensemble method that builds multiple
trees where each tree is focused on correcting the error of the previous tree. Random forest models
also build multiple trees however, each tree is trained on a sampled dataset and each node is only
allowed to split from a subset of the total feature set. This ensures variety and reduces overfitting.
The Gradient boost algorithm follows the same concept as adaboost but utilizes gradient descent
for optimization.
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Actual
True False

Predicted
True TP FP or Type I error
False FN or Type II error TN

Table 4.1: Confusion matrix

4.1.3 Performance Metrics

When a model attempts to predict the clinical significance of a given patient’s lesion or gland, one of four
outcomes occurs:

• The model predicts TRUE when the label is in fact TRUE, these correspond to the true positive
results (TP);

• The model predicts TRUE when the label is actually FALSE, these correspond to the false positive
results (FP);

• The model predicts FALSE when the label is in fact FALSE, these correspond to the true negative
results (TN);

• The model predicts FALSE when the label is actually TRUE, these correspond to the false negative
results (FN).

With this information, a confusion matrix can be built (Figure 4.1). Most metrics used to evaluate a
model’s performance are calculated from the confusion matrix.

A commonly used metric is classifier accuracy. This is given by:

Accuracy =
TP + TN

TP + TN + FP + FN

Even though, accuracy is wildly used as a metric of model performance, it is not appropriate in
imbalanced training problems, as is common in the clinical setting. Here, we often have a minority class,
which represents the harshest situation for the patient, and which we wish to accurately predict. A model
that predicts the majority class for all samples in the validation or test set will have a relatively high
accuracy, corresponding to the percentage of samples belonging to the majority class. Since accuracy is
not able to distinguish between the correctly classified examples in the different classes, it might lead to
an overestimation of model performance.[6; 14]

In the same lines, the commonly used metric AUC, or area under the receiver operating characteristic
curve (ROC), is also not appropriate for imbalanced data. The ROC curve plots TPR versus FPR,

True Positive Rate / Recall / Sensitivity =
TP

TP + FN
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False Positive Rate =
FP

FP + TN

with the desired plot having high TPR and low FPR. In an imbalanced setting, the FPR is pulled down
due to a large number of true negatives (majority class). Hence, the AUCROC may overestimate per
formance. [35]

On the other hand, precision recall curves (PRC) have been shown to be more informative than ROC
when dealing with imbalanced data, since precision is influenced by both classes (TP and FP) [35].

Precision =
TP

TP + FP

Another important aspect of the clinical setting is the cost of misclassifications. Classifying a patient
as positive for clinically significant cancer when it is not, will only lead to further examination. However,
classifying a patient as negative when in fact they have clinically significant cancer might prevent the
patient from getting the necessary treatment. Hence, a FN result, or type II error, has much more drastic
consequences than a FP result, or type I error. So, it is important for our classifier to focus on minimizing
the type II error, instead of treating both errors with equal importance. The performance metric that takes
FN (type II error) into account is the recall and the one that accounts for FP (type I error) is precision. So,
our classifier should prioritize a higher recall rather than a higher precision, in order to minimize type II
error.

The performance metric that takes into account both precision and recall is the Fβmeasure.

Fβ =
(
1 + β2

)
× Precision×Recall

β2 × Precision+Recall

For a β = 1, the same weight is put on precision and recall. For a β between 0 and 1, more weight is
given to precision. For a β higher than 1, more weight is given to recall.

Cohen’s Kappa is also a metric that can handle imbalanced data problems. It ranges from 0 to 1 and
tells us how much better our classifier is at predicting the class label, when compared to a classifier that
makes a random prediction according to the frequency of each class.

4.1.4 Hyperparameter Optimization through Nested Cross Validation

Nested crossvalidation is a hyperparameter optimization algorithm, that attempts to reduce overfitting
by finding the optimal hyperparameters for multiple subsections of the data space and later making a
decision regarding the final set of best hyperparameters.

Nested crossvalidation begins by splitting the data into k different folds. One of these folds is held
out of the training process, while the remaining k1 folds are used for hyperparameter tuning. These
k1 folds are further divided into j different folds. One of these is again held out, while the remaining
data is trained on every possible hyperparameter combination. Each trained classifier is validated by
quantifying its performance on the heldout fold. The process is repeated so that each of the j folds is
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used exactly once for validation. For each hyperparameter combination, a mean performance is obtained.
The hyperparameter combination with the highest mean performance is applied to train the full k1 folds
and this classifier is evaluated by the heldout fold. Again, this process is repeated until each of the k
folds has been used once for validation. The hyperparameter combination that performed highest on the
outer fold is chosen as optimal. The nested crossvalidation algorithm described above is shown in Figure
4.1.

Figure 4.1: Nested crossvalidation algorithm.

4.2 Methods

In this work, different aspects of model development were assessed and compared. The different combi
nations are described in Figure 4.2.

In total, 288 pipelines were produced. Each was trained and validated according to the diagram in
Figure 4.3.

4.2.1 Sampling Strategies

The undersampling of the majority class was done in a random fashion outside of cross validation. All
minority class samples were kept, and samples from the majority class randomly chosen so as to match
the number of samples in the minority class. This was performed on RapidMiner Studio (version 9.9;
https://rapidminer.com/) with the operator “Sample”.

In both lesion trainsets, the minority class constituted of 51 lesions. Therefore, 51 lesions were ran
domly selected from the majority class pool, making the final sampled dataset 102 lesions long. While
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Figure 4.2: Different model dimensions explored in this study.

in the gland trainset, the minority class constituted of 48 patients. Therefore, 48 patients were randomly
selected from the majority class pool, making the final sampled dataset 96 patients long. Finally, in the
singlelesion whole gland dataset, the minority class constituted 33 patients. Therefore, 33 patients were
randomly selected from the majority class pool, making the final sampled dataset 66 patients long.

The SMOTE algorithm generates synthetic samples for the minority class. It works by choosing
a minority class sample at random, finding its k nearest neighbours, randomly choosing one of those
neighbours and, finally, generating a synthetic sample somewhere in the highdimensional ”line” that
connects those two samples. In this work, the number of nearest neighbours considered was 5. SMOTE
upsamplingwas performed onRapidMiner Studio (version 9.9; https://rapidminer.com/) with the operator
“SMOTE Upsampling”.

In both lesion trainsets, the majority class constituted of 159 lesions and the minority class of 51
lesions. Therefore, 108 lesions were generated with SMOTE, making the final sampled dataset 318
lesions long. While in the gland trainset, the majority class constituted of 89 patients and the minority
class of 48 patients. Therefore, 41 patients were generated with SMOTE, making the final sampled
dataset 178 patients long. Finally, in the singlelesion whole gland dataset, the minority class constituted
33 patients. Therefore, 41 patients were randomly selected from the majority class pool, making the final
sampled dataset 148 patients long.

4.2.2 Machine Learning Algorithms

The RapidMiner Studio (version 9.9; https://rapidminer.com/) implementation of the chosen machine
learning algorithms was utilized.

A Naïve Bayes classifier (NB) with laplace correction was trained with the operator “Naive Bayes”.
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Figure 4.3: Overall pipeline followed in this study to train and validate models.

A logistic regression classifier (LR) was trained with the operator “Logistic Regression”. The pa
rameters “standardize”, “add intercept” and “remove collinear columns” were selected and the “solver”
parameter was set to “AUTO”. In the case of logistic regression with elastic net regularization (LREN),
the parameter “use regularization” was selected and alpha was a hyperparameter optimized during model
training. Alpha ranges from 0 to 1, 0 corresponding to Lasso regularization (L1) and 1 to Ridge regular
ization (L2).

An Adaboosted Decision Tree classifier (DT) was trained with the operators “AdaBoost” and “De
cision Tree”. The number of iterations in the AdaBoost operator was set to 10, the criterion according
to which features are selected in the Decision Tree was set to “gain_ratio”, corresponding to informa
tion gain ratio, a criterion related to the entropy of a feature. The “maximal depth” parameter was a
hyperparameter optimized during model training.

A Random Forest classifier (RF) was trained with the operator “Random Forest”. The criterion ac
cording to which features are selected was again set to “gain_ratio”. The “maximal depth” and “number of
trees” parameters were hyperparameters optimized during model training. The voting strategy by which
the forest makes a decision was set to “confidence vote”.

An extreme gradient boost classifier was trained with the operator “Gradient Boosted Trees”. The
“maximal depth” and “number of trees” parameters were hyperparameters optimized during model train
ing. The remaining parameters were left with the default values set by RapidMiner.

4.2.3 Performance Metrics

In this work, we have chosen to optimize the F2score and we report Cohen’s Kappa and the area under the
precision recall curve (AUPRC) as measures of model performance. Additionally, standard ROCAUC
was calculated for literature comparison purposes.
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Hyperparameter Possible values
Correlation threshold [0.8, 0.9, 1.0]

SVMRFE C [0.01, 0.1, 1, 10, 100]
SVMRFE/mRMR number of features [10, 12, 14, 16, 18, 20, 22, 24]

LASSO lambda [0.2, 0.4, 0.6, 0.8, 1.0]
LREN alpha [0, 0.2, 0.4, 0.6, 0.8, 1.0]
DTAdB Tree depth [2, 3, 4, 5, 6, 7, 8, 9, 10]

RF / XGB
Tree depth [9, 11, 12, 14]

Maximum number of trees [80, 90,100]

Table 4.2: List of hyperparameters explored in this study.

ROCAUCandCohen’sKappa calculationwas performed onRapidMiner Studio (version 9.9; https://rapidminer.com/)
with the operators “Performance Binomial Classification”. AUPRC was calculated on RapidMiner Stu
dio (version 9.9; https://rapidminer.com/) with the operator “Performance (AUPRC)” from the extension
“Operator Toolbox”.

Fβscore performance was not previously available in RapidMiner Studio, so an operator capable of
calculating the metric was built in Java (version 8.0.2810.9), and the extension was installed in Rapid
Miner.

4.2.4 Hyperparameter Optimization and Classifier Validation

Hyperparameter tuning was done in a nested crossvalidation fashion with an exhaustive grid search. This
was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the operator “Optimize
Parameters (Grid)”. The list of hyperparameters can be found on Table 4.2.

4.2.5 Best Classifier Selection

The best classifiers were selected according to their crossvalidation F2 and Kappa performance, follow
ing the rule:

CVF2 > 0.8 ∩ CVKappa > 0.5

These were applied to the holdout test set for validation.
The purpose of the singlelesionwhole gland dataset was tomore accurately compare the performance

of models trained on lesion data with the ones trained on gland data. In addition, this dataset was not
sufficiently large to divide it by creating a hold out test set. Thus, these models were not considered for
the best classifiers.
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4.3 Results

4.3.1 Feature Selection Methods

In Figure 4.4, we can see the crossvalidation F2score and Cohen’s Kappa performance results grouped
by feature selection method for the pipelines trained on the gland (G), lesion (L) and lesion with anatom
ical zone (Lp) datasets.

Overall, the Boruta algorithm did not perform as well as expected. Despite having a high cross
validation F2, most kappa values were extremely low, especially for pipelines trained on whole gland
features. Pipelines trained with data that underwent SVMRFE achieved an average crossvalidation F2
of 0.7226 and Kappa of 0.3781. While the feature sets that underwent mRMR achieved average perfor
mances of 0.7071 on F2 and 0.4095 on Kappa. Overall, at this stage, SVMRFE and mRMR pipelines
show a similar average performance. Pipelines trained with data that underwent Lasso feature selection
achieved an average crossvalidation F2 of 0.643 and Kappa of 0.347, not performing, on average, as
high as SVMRFE and mRMR.

4.3.2 Sampling

In Figure 4.5, we can see the crossvalidation F2score and Cohen’s Kappa performance results grouped
by sampling method for the pipelines trained on the gland (G), lesion (L) and lesion with anatomical zone
(Lp) datasets.

We can see that the average crossvalidation performance results were higher on the models trained
with sampled data on both F2 and Kappa, with average F2 of 0.7541 and Kappa of 0.3659 on the models
trainedwith downsampled data and F2 of 0.8094 andKappa of 0.3666 on themodels trainedwith SMOTE
data. As expected, the pipelines trained with the original imbalanced dataset performed lower with F2 of
0.4779 and Kappa of 0.2626.

4.3.3 Machine Learning Algorithms

In Figure 4.6 we can see the crossvalidation F2score and Cohen’s Kappa performance results grouped
by machine learning algorithm for the pipelines trained on the gland (G), lesion (L) and lesion with
anatomical zone (Lp) datasets. On average the Naïve Bayes classifier achieved an F2 of 0.6573 and a
Kappa of 0.3016, the Logistic regression classifier achieved an F2 of 0.6569 and a Kappa of 0.3058,
the Logistic regression classifier with Elastic Net regularization achieved an F2 of 0.6984 and a Kappa
of 0.3002, the Adaboosted Decision Tree classifier achieved an F2 of 0.6784 and a Kappa of 0.2931,
the Random Forest classifier achieved an F2 of 0.6725 and a Kappa of 0.3914 and, finally, the Extreme
Gradient Boost classifier achieved an F2 of 0.7226 and a Kappa of 0.3885. Overall, the Random Forest
and Extreme Gradient Boost classifiers performed, on average, significantly higher in terms of Kappa
than the remaining machine learning algorithms. In terms of F2, the average results were similar across
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Figure 4.4: Crossvalidation F2 and Kappa performance results grouped by feature selection method.
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Figure 4.5: Crossvalidation F2 and Kappa performance results grouped by sampling method.
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machine learning algorithms with the exception of the Extreme Gradient Boost classifier, that performed
slightly higher.

Figure 4.6: Crossvalidation F2 and Kappa performance results grouped by machine learning algorithm.

4.3.4 Type of Input Data

In Figure 4.7, we can see the crossvalidation F2score and Cohen’s Kappa performance results grouped
by type of input data. On average, classifiers trained with whole Gland radiomic features achieved a
crossvalidation performance of 0.7426 on F2 and of 0.351 on Kappa. While classifiers trained with the
Lesion Dataset achieved an average crossvalidation F2 of 0.6344 and a Kappa of 0.2749. The classifiers
trained with the Lesion features with anatomical zone dataset achieved an average crossvalidation F2
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of 0.6682 and a Kappa of 0.3687. And, finally, the classifiers trained with the singlelesion whole gland
features dataset achieved an average crossvalidation F2 of 0.7508 and a Kappa of 0.3806. Overall, the
pipelines trained with whole gland features performed, on average, higher than the ones trained on lesion
features, both in terms of Kappa and of F2.

Figure 4.7: Crossvalidation F2 and Kappa performance results grouped by type of input data.
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4.3.5 Best Classifiers Selection and Validation

Figure 4.8 shows the 26 models that satisfied the condition: F2>0.8 AND Kappa>0.5. 65% of these are
models trained on whole gland features. All of the best models were trained on data that underwent some
kind of sampling: 42% downsampled data and 58% SMOTE data. Regarding feature selection, 31% of
the pipelines included SVMRFE, 50% included mRMR, 15% included Lasso and 4% included Boruta.
As for the machine learning algorithm, the large majority of best models are treebased algorithms (73%)
and the remaining models are logistic regressions with or without elastic net regularization and one Naïve
Bayes pipeline.

Figure 4.8: Classifiers that performed highest in terms of Kappa and F2.

Figure 4.9 shows the performance of these 26 models on the hold out test set.

Figure 4.9: Performance of the best models on the hold out test set in terms of F2 and Kappa.

Table 4.3 shows the performance of the best models on the crossvalidation setting and on the hold
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out test set in terms of F2, Kappa, ROCAUC and AUPRC. In addition, it shows the difference between
crossvalidation and test set performance. The models where this difference is closest to zero are the least
overfitted models.

Table 4.3: Best classifiers’ crossvalidation and test set performances, as well as the difference between
crossvalidation and test set performance, ∆. The performance columns are color coded from highest
value in green, to lowest value in white. The ∆ columns are color coded from lowest value in green to
highest value in red.

4.4 Discussion

Regarding feature selection, a low performance was unexpectedly observed from the pipelines that ap
plied Boruta feature selection. These showed a high F2, because the model would classify the large
majority of samples as the minority class, leading to a high recall. However, the low Kappa score makes
it clear that these were not useful models. It was observed that the Boruta algorithm found very few
features that were better predictors than the random versions of themselves. Hence, it is hypothesised
that the number of features selected by the Boruta algorithm (around 3 features) was not enough to build
a meaningful radiomics signature, which led to the poor results.

The pipelines where sampling was applied performed higher than the pipelines where no sampling
was done, whether it was downsampling of the majority class or upsampling of the minority class with
SMOTE. This was expected since training a model with balanced data gives it equal opportunities to
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learn from both classes.
In terms of input data, it was observed that the performance results obtained with the Gland Dataset

were higher than the ones obtained with the lesion Datasets. This might suggest that the areas surrounding
the tumour lesions offer relevant information regarding the Gleason Score that is ultimately attributed
to that lesion. In addition to suggesting that the monotonous lesion segmentation work performed by
radiologists may not be necessary or even be harming to the radiomics signature. However, it is of note
that a few patients had more than one lesion. If these multiple lesions have the same clinical significance
(same target label), then it seems reasonable that the model performs higher with gland features since
it has more information pointing to the correct label. In order to make a fair comparison between the
performance of both types of input data, the singlelesion whole gland dataset was created, including
only patients with a single lesion. The performance results obtained with this smaller dataset confirm the
suspicions above, that whole gland features produce more reliable machine learning models than lesion
features.

As a final note, it is important to point out that given so many pipeline combinations we have to
assume that it is possible to find one that performs well by chance. Statistically speaking, we could
remedy this by doing something similar to a multiple comparisons pvalue correction. However, at this
point, we are not aware of such a correction for machine learning performance metrics.
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Classifier PostDevelopment Analysis

This chapter presents the validation of the highest performing pipelines found in the previous chapter, by
means of a metric volatility analysis.

5.1 Background

Comparably to other technologies used in the medical field, the importance of clinical validation of ma
chine learning models cannot be overstated. This can be assessed in terms of classifier performance,
patient outcome, costbenefit analysis, etc.

The reliability of a classifier’s realworld clinical performance is often estimated during crossvalidation,
which calculates the test set performance by repeatedly holding out a subset of the training samples from
the fitting process and then applying the classifier to those held out observations. Another way of esti
mating this realworld performance is by applying our trained classifier to a holdout test set, a random
subsample of the original dataset.

The issue with both of these approaches is selection bias, which is the idea that we may get an ex
tremely high or low test set performance due to chance or that our collection of samples is not represen
tative of the realworld distribution and, consequently, leads to erroneous performance results that are
not reflective of the classifier’s performance in the “wild”. This is especially concerning when doing a
retrospective study, due to the data drift phenomenon.

To assess this concern, and in the absence of an external validation dataset, a volatility analysis was
performed on the highestranking classifiers found in the previous chapter. This analysis will be described
in the following sections.
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5.2 Methods

5.2.1 Volatility Analysis

The Gland, Lesion and Lesion with anatomical location Datasets were each randomly split in training
and testing sets in 50 different ways, according to 50 different random seeds. Each of the highestranking
classifiers was then trained on each of the 50 training sets and validated through both crossvalidation and
each of the 50 holdout testing sets. The distribution of crossvalidation and test set performance results
was recorded for further analysis.

Mean and standard deviation values were calculated for each performance metric and each classifier.
The difference between crossvalidation and test set performance of each random split was calculated
and is presented as∆. This value represents how overfitted the model is.

The collection of performance results was performed in RapidMiner Studio and the statistical metrics
were calculated in Python. This analysis was based on the metric volatility analysis performed by the
Probatus package (https://ingbank.github.io/probatus/).

Lines were fit to the plotted histograms of crossvalidation and test set performance distributions,
respectively, and, for each, the full width at half maximum metric was calculated. The former was per
formedwith the Seaborn package (version 0.11.1; https://seaborn.pydata.org) and the latter was calculated
as bellow,

FWHM = 2
√
2 ln 2σ (5.1)

Where σ is the standard deviation of the distribution of performances.

5.2.2 Normality Tests

All performance distributions were tested for normality using the ShapiroWilk test and the D’Agostino
K2 test. The ShapiroWilk test evaluates the likelihood that a sample was drawn from aGaussian distribu
tion andwas performedwith the shapiro() function of the SciPy package (version 1.5.2; https://docs.scipy.org).
The D’Agostino K2 test calculates the kurtosis (how much of the distribution belongs to the tails) and
skewness (a measure of distribution asymmetry) of the data, in order to determine if it differs significantly
from the normal distribution. D’Agostino K2 test was performed with the normaltest() function of the
SciPy package (version 1.5.2; https://docs.scipy.org).

Both tests behave like common hypothesis tests in the sense that there is a null and alternative hy
pothesis and as a result we get a test statistic and a pvalue that will tell us if we have significant statistical
evidence to reject the null hypothesis. In both tests, the hypotheses were as follow:

H0: the distribution of performances is Gaussian
H1: the distribution of performances is not Gaussian

The significance level, α, was chosen to be 0.05. Therefore, a pvalue lower than 0.05 will lead to a
decision to reject the null hypothesis since there is sufficient statistical evidence that the sample does not
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belong to a Gaussian distribution. On the other hand, a pvalue higher than 0.05, will lead to a decision
to fail to reject the null hypothesis, since there is not sufficient statistical evidence that the sample does
not belong to a Gaussian distribution.

5.2.3 Distribution Comparison Tests

For each classifier, the distribution of crossvalidation performances was compared to the distribution of
test set performances, to assess whether they belonged to the same distribution. Two statistical tests were
used: the paired ttest and the KolmogorovSmirnov test.

The paired ttest compares themean and standard deviation of two paired groups to determinewhether
there is a significant difference between the two. In our specific situation, such a statistical test is appro
priate due to the paired nature of our samples, since from each train test split resulted one crossvalidation
performance and one test set performance. The paired ttest was performed with the ttest_rel() function
of the SciPy package (version 1.5.2; https://docs.scipy.org).

The KolmogorovSmirnov test is a nonparametric test that evaluates the empirical cumulative dis
tribution functions of each sample to measure whether they are similar enough to belong to the same
distribution. The KolmogorovSmirnov test was performed with the kstest() function of the SciPy pack
age (version 1.5.2; https://docs.scipy.org).

Both tests behave like common hypothesis tests in the sense that there is a null and alternative hy
pothesis and as a result we get a test statistic and a pvalue that will tell us if we have significant statistical
evidence to reject the null hypothesis. In both tests, the hypotheses were as follow:

H0: the distributions of crossvalidation and test set performances are identical
H1: the distributions of crossvalidation and test set performances are different

The significance level, α, was chosen to be 0.05. Therefore, a pvalue lower than 0.05 will lead to a
decision to reject the null hypothesis since there is sufficient statistical evidence that the samples do not
belong to identical distributions. On the other hand, a pvalue higher than 0.05, will lead to a decision to
fail to reject the null hypothesis, since there is not sufficient statistical evidence that the samples do not
belong to the same distribution. A decision to reject the null hypothesis will then lead to the conclusion
that the model is overfitted.

5.2.4 Comparison with Dummy Classifier

The models where no significant difference was found between the crossvalidation and test set perfor
mance distributions were compared with a dummy classifier. This was created with the DummyClassi
fier() function of the Python scikitlearn package (version 0.23.2; https://scikitlearn.org/) and the strategy
used to generate predictions was set to ”stratified”, which means that the classifier will make predictions
according to the train set’s label distribution.
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5.3 Results

5.3.1 Volatility Analysis

The mean and standard deviation values calculated for each performance metric and each classifier are
presented in Table 5.1, as well as the∆ values, which represent how overfitted the model is.

In Table 5.2, only the ∆ values are shown. Each column is individually colorcoded from lowest
value, in green, to highest value, in red. As previously, there seems to be a cluster of overfitted models
on the bottom of the table (in darker red). These correspond to the pipelines trained with Lesion data.
Three clusters of lower∆ can be found in green, these correspond to the pipelines where downsampling
of the majority class was performed.

In Table 5.3, only the mean values are presented for each performance metric and each column is
individually colorcoded from highest value, in green, to lowest value, in red. At first glance, we can see
that a few of the highest crossvalidation performances are in the bottom of the table, while the highest
test set performances are higher in the table. This was expected since Table 5.2 showed that these models
were the most overfitted. Additionally, from Table 5.3, two pipelines stand out as performing well across
all performance metrics: G_S_SVMRFE_LR and G_S_mRMR_RF.

In Figures 5.1 and 5.2, you can see the plotted distribution of F2 and Kappa performances respec
tively and the full width at half maximum value.

The last nine graphs show the volatility analysis of the models trained on lesion data. Here, we can
clearly distinguish two different peaks, which confirms the previous results that these were the most
overfitted models.

As expected, the test set performance distribution is overall shorter andwider than the crossvalidation
performance distribution, which is taller and thinner. This is clear by the difference in FWHM values.

5.3.2 Normality Tests

In Tables 5.4 and 5.5, the results of the F2 and Kappa performance distribution normality tests are
displayed.

Out of 54 F2 distributions (26 test set plus 26 crossvalidation performance distributions), 46 were
considered, by both tests, not to be significantly different from the Guassian distribution. Out of the
remaining 6 F2 distributions, 2 were found to be significantly different from Guassian on both tests, 2
were found to be significantly different from Gaussian only on the ShapiroWilk test, 1 was found to be
significantly different from Gaussian only on the D’Agostino’sK2 test and 1 was inconclusive.

Out of 54 Kappa distributions, 52 were considered, by both tests, not to be significantly different
from the Guassian distribution. One of the remaining distributions was found to be significantly different
from Guassian on both tests and the other was found to be significantly different from Gaussian only on
the D’Agostino’sK2 test, accompanied by a rather low pvalue on the ShapiroWilk test.
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Table 5.1: Mean and standard deviation values calculated for each performance metric and each classifier during
the volatility analysis. 45
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Table 5.2: Delta values calculated for each performance metric and each classifier during the volatility analysis.
Each column is individually colorcoded from lowest value, in green, to highest value, in red.

5.3.3 Distribution Comparison Tests

In Table 5.6, we can see the results of the comparison between crossvalidation F2 performance dis
tribution and test set F2 performance distribution. Out of 26 classifiers, 19 classifiers displayed a sig
nificant difference between the test set performance distribution and the crossvalidation performance
distribution, 5 classifiers displayed no significant difference between the test set performance distribu
tion and the crossvalidation performance distribution, 1 classifier displayed a significant difference on
the KolmogorovSmirnov test but no difference on the paired ttest and 1 classifier displayed a significant
difference on the KolmogorovSmirnov test but inconclusive results on the paired ttest.

In Table 5.7, we can see the results of the comparison between crossvalidation Kappa performance
distribution and test set Kappa performance distribution. Out of 26 classifiers, 15 classifiers displayed a
significant difference between the test set performance distribution and the crossvalidation performance
distribution, 8 classifiers displayed no significant difference between the test set performance distribution
and the crossvalidation performance distribution, 1 classifier displayed a significant difference on the
KolmogorovSmirnov test but no difference on the paired ttest, 1 classifier displayed a significant dif
ference on the paired ttest test but no difference on the KolmogorovSmirnov and 1 classifier displayed
a significant difference on the KolmogorovSmirnov test but inconclusive results on the paired ttest.

5 classifiers displayed no significant difference between the crossvalidation performance and the test
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Table 5.3: Mean values calculated for each performance metric and each classifier during the volatility analysis.
Each column is individually colorcoded from highest value, in green, to lowest value, in red.

set performance on both performance metrics, these were: G_D_SVMRFE_XGB, G_D_mRMR_XGB,
G_D_Lasso_DT, G_D_Lasso_RF and G_D_Lasso_XGB. These were also among the classifiers found
to be least overfitted in the previous section, supporting those results.

5.3.4 Comparison with Dummy Classifier

For further validation of the results, the 4fold crossvalidation performance of the 5 classifiers found in
the previous section was compared with the 4fold crossvalidation performance of a ”dummy” classifier.
These results across all four performance metrics can be found in Figure 5.3.

We can confirm that our 5 classifiers perform higher than the dummy classifier across all four per
formance metrics.

5.4 Discussion

In this context, the Lesionbased models seem to be the most susceptible to selection bias, as they are the
most overfitted. This result supports the findings of the previous chapter, in that the features extracted
from the lesion VOI do not produce as reliable classifiers as the ones extracted from the whole gland
VOI.
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Figure 5.1: Distribution of F2 performances obtained during the volatility analysis for each classifier.
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Figure 5.2: Distribution of Kappa performances obtained during the volatility analysis for each classifier.
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Table 5.4: Results of the F2 performance distribution normality tests for each classifier.
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Table 5.5: Results of the Kappa performance distribution normality tests for each classifier.
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Table 5.6: Results of statistical tests comparing the distributions of F2 performance between the crossvalidation
and test set setting.

With regards to sampling strategy, while the pipelines where SMOTE upsampling was performed
seem to outperform downsampling of the majority class, the latter are consistently less overfitted and
more reliable. Regarding feature selection, there don’t seem to be significant differences in the metrics’
volatility.

It is known that the difference between two means will follow a normal distribution if the samples
are drawn from populations that also follow a normal distribution. However, the central limit theorem
states that, even if the parent populations are not Gaussian, the differences will tend towards normality
as sample size increases. Since we have a relatively high sample size of 50 and most of our problematic
distributions were found to be significantly different from Gaussian on only one of the normality tests,
we felt confident assuming normality in the remaining analysis.

As expected, the five models where no significant difference was found between the crossvalidation
and test set performance distributions (Tables 5.6 and 5.7) were also among the least overfitted models
found in Table 5.2. These were all models trained with data that underwent downsampling of the majority
class, in addition to all being treebased machine learning algorithms. The validity of the 5 models with
no significant overfitting was further confirmed with their comparison with a dummy classifier.
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Table 5.7: Results of statistical tests comparing the distributions of Kappa performance between the crossvalidation
and test set setting.

Figure 5.3: Comparison of 4fold cross validation performance of 5 classifiers with no significant overfitting with
the 4fold cross validation performance of a dummy classifier.
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Conclusion

In this work, an extensive analysis of different dimensions of a machine learning pipeline were assessed
and their performance compared. Since there is little consensus on what is the “right way” to perform AI
in the context of medical imaging, it is interesting to test which aspects lead to a highermodel performance
and reliability, especially with such a widely used dataset.

Polarizing areas of AI in medical imaging such as whether or not to perform lesion segmentation
or whether to sample the data in contrast to allowing the model to learn from the real label distribution
were assessed in this study. And while we should proceed with caution when extrapolating to different
settings, these results are still worth analysing.

Among the most interesting findings is the higher performance of models trained with radiomic fea
tures extracted from the whole gland VOI, as well as their higher reliability and lower overfitting. This
suggests that the areas surrounding tumorous lesions might offer relevant information regarding their
overall aggressiveness in the form of Gleason score. It is of note though that a much higher number of
features was excluded from the Lesion Dataset during the stability to segmentation analysis than from the
Gland Dataset. Despite being of low robustness to segmentation margins, these excluded features might
have brought forth useful information and be partly at fault for the lower performance of the models
trained with the Lesion Dataset.

The metric volatility analysis performed in this study is not commonly found in the literature. Despite
this, we felt it added valuable insight into how the model would perform in the “wild”, since multiple
holdout test sets were not available. An interesting result found here was that the widely used SMOTE
technique results in models that are more overfitted than models trained with data that went through a
simple downsampling of the majority class. This can be explained by the fact that SMOTE generates
synthetic samples from the existing samples in the dataset. Thus, we are forcing the model to learn more
from the same data, increasing the model’s confidence in random variability, or noise, present in the data.
Which results in the overfitted behaviour.

Despite these efforts, proper assessment of realworld clinical performance is only possible through
external validation. An appropriately built external dataset is one that represents all relevant variations
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of patient spectrum (for example: patient demographics, MRI scanner brand, patient age, disease aggres
siveness, etc.). Hence the importance of validating with data from multiple external institutions. This
important validation step will be addressed in future work.

This study has several limitations. First, this was a retrospective study and, so, a multicentre prospec
tive analysis should be carried out to validate these results and investigate the impact these predictive
models have on patient outcome. Second, only T2W, DWI and ADC sequences were used. Other se
quences, such asMR spectroscopy and dynamic contrast enhancedMRI, could be worth exploring. Third,
only one set of MRI sequences was evaluated per patient, so we were unable to evaluate the temporal sta
bility of the radiomic features. Fourth, although the overall class imbalancement was addressed through
downsampling of the majority class or SMOTE upsampling of the minority class, we did not address the
imbalanced nature of the anatomical location of lesions, with the large majority of lesions belonging to
the PZ. It would be interesting to investigate the model’s performance on the different anatomical zones
independently. Fifth, the use of a publicly available dataset increased transparency but limited our access
to clinical data, such as PSA levels, patient age or PIRADS score, which are a fundamental component of
a clinician’s assessment, but could not be included in our model. Finally, inherent to the Gleason system
is the subjectivity of cancer grading, so we must keep in mind that the gold standard used in this study is
subject to human error and inter or intraobserver variability.

In conclusion, our preliminary results further confirm the validity of MRIbased radiomic features
in the identification of clinically significant prostate cancer lesions. The proposed noninvasive models,
based on T2W, DWI and ADC maps, showed potencial for aiding clinical decisionmakings for patients
with a suspicion of prostate cancer.
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