UNIVERSIDADE DE LISBOA
FACULDADE DE CIENCIAS
DEPARTAMENTO DE BIOLOGIA ANIMAL

FC Ciéncias
ULisboa

Prostate MRI Radiomics for Prediction of Gleason Score

Ana Carolina Vitorino Rodrigues
Mestrado em Bioinformatica e Biologia Computacional

Dissertagao orientada por:
Professor Doutor Nickolas Papanikolaou

Professor Doutor Francisco José Moreira Couto

2021






Acknowledgements

Firstly, I would like to thank the co-supervisor of this project Doctor Nickolas Papanikolaou for accepting
me into this team, but especially for his invaluable input of knowledge, patience and confidence in my
work throughout the entire duration of this project. Co-supervisor Professor Francisco Couto must also
be thanked for his unwavering attention and continuous follow-up on the project.

Secondly, I would like to thank all the members of CCIG that, despite having no obligation to help,
still managed to do so in any way they could. A special thanks to Jodo Santinha and Bernardo Galvao
for always being available to answer any burning questions.

I would also like to thank my family for the emotional and financial support they provided.

Finally, a special thanks to my dance family for keeping me sane.






Resumo

O cancro da préstata € um dos cancros mais prevalentes em Portugal, estando entre as 4 principais causas
de morte por neoplasias em 2018, com uma taxa bruta de mortalidade de 38.23 mortes por 100 000
homens.

O atual diagnéstico e classificagdo do cancro da prostata ndo ¢ ideal, baseando-se em medidas pouco
especificas como os niveis de PSA e DRE, seguidos de bidpsia, onde ¢é atribuido um nivel de agressivi-
dade sob a forma da classifica¢do de Gleason. Foi demonstrado no passado que o exame de ressonancia
magnética multiparamétrica € itil na detecéo de lesdes de cancro da prostata. No entanto, a interpretagao
deste exame, sendo um processo subjetivo, esta inevitavelmente afetada por uma elevada taxa de variabil-
idade entre observadores. Foi demonstrado também que a classificagdo de Gleason atribuida a uma lesao
aquando da bidpsia, irda provavelmente ser corrigida apos prostatectomia radical. Portanto, um método
confiavel e de preferéncia ndo invasivo para classificagdo do cancro da prostata é necessario. Com este
objetivo, esfor¢os tém sido feitos no passado para usar radidmica e aprendizagem automatica para prever
a classificagdo de Gleason a partir de imagens clinicas, apresentando resultados promissores. Radiémica
¢ a transformacgdo de imagens médicas em dados quantitativos de alta dimensdo. Assim, com base na
hipdtese de que as caracteristicas do tumor que sdo causa ou consequéncia da classificagdo de Gleason
estdo refletidas nas variaveis radidmicas extraidas da imagem de ressonancia magnética, estas podem ser
usadas para construir modelos de aprendizagem automatica capazes de avaliar este pardmetro. Dito isso,
0 objetivo principal deste trabalho foi desenvolver modelos de aprendizagem automatica explorando var-
iaveis radidmicas extraidas de exames de ressondancia magnética para prever a agressividade biologica na
forma de classificagdo de Gleason.

Neste trabalho, 288 modelos foram desenvolvidos, correspondendo a diferentes combinagdes de
aspetos de uma pipeline tipica, mais especificamente, origem dos dados de treino, estratégia de pre-
processamento dos dados, método de selegdo de variaveis e algoritmo de aprendizagem automatica. Num
conjunto de 281 lesdes (210 para treino, 71 para validagdo) e 183 pacientes (137 para treino, 46 para vali-
dac¢do), verificou-se que as variaveis radiomicas extraidas do VOI da glandula inteira produziram modelos
extremamente mais confiaveis do que as variaveis radiémicas extraidas dos VOIs das lesdes. Sugerindo
que as areas em volta das lesdes tumorais oferecem informacdes relevantes sobre a classificagao de Glea-
son que ¢ atribuida a essa lesdo. Além de sugerir que o trabalho mono6tono de segmentacao das lesdes
realizado pelo radiologista pode ndo ser necessario ou mesmo prejudicar a assinatura radidmica.

Palavras Chave: Radiomica, Aprendizagem automadtica, Cancro da Prostata.
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Abstract

Prostate cancer is one of the most prevalent cancers in Portugal, being among the top 4 malignant neo-
plasm causes of death in 2018, with a crude mortality rate of 38.23 deaths per 100 000 males.

Prostate cancer diagnosis and classification is not ideal, relying on unspecific measures such as PSA
levels and DRE, followed by biopsy, where an aggressiveness level is attributed in the form of Gleason
score. Multiparametric MRI has proven to be useful in the detection of prostate cancer. However, it is
unavoidably affected by a high rate of inter-reader variability. It has also been shown that the Gleason
score attributed to a lesion after biopsy is likely to change after radical prostatectomy.

Therefore, a reliable, and preferably non-invasive, method for classification of PCa is in urgent de-
mand. With this goal in mind, efforts have been made in the past to use computer-aided diagnosis (CAD)
coupled with radiomics and machine learning to predict Gleason score from clinical images, showing
promising results.

Radiomics is the transformation of medical images into high dimension mineable data. Hence, based
on the hypothesis that tumour characteristics that are cause or consequence of Gleason score are reflected
in the radiomic features extracted from the MRI image, these can be used to build supervised machine
learning models capable of assessing this parameter. That being said, the main goal of this work was to
develop supervised machine learning models exploiting radiomic features extracted from mpMRI exam-
inations, to predict biological aggressiveness in the form of Gleason Score.

In this work, 288 classifiers were developed, corresponding to different combinations of pipeline
aspects, namely, type of input data (i.e. lesion features vs whole gland features), sampling strategy,
feature selection method and machine learning algorithm.

On a cohort of 281 lesions (210 for training, 71 for validation) and 183 patients (137 for training,
46 for validation), it was found that radiomic features extracted from the whole gland VOI produced
extremely more reliable classifiers than radiomic features extracted from the lesions’ VOIs. Suggesting
that the areas surrounding the tumour lesions offer relevant information regarding the Gleason Score that
is ultimately attributed to that lesion. In addition to suggesting that the monotonous lesion segmentation
work performed by radiologists may not be necessary or even be harming to the radiomics signature.

Keywords: Radiomics, Machine Learning, Prostate Cancer.






Resumo Alargado

O cancro da prostata ¢ um dos cancros mais prevalentes em Portugal, estando entre as 4 principais causas
de morte por neoplasias em 2018, com uma taxa bruta de mortalidade de 38.23 mortes por 100 000
homens.

O atual diagndstico e classificagdo do cancro da prostata ndo ¢ ideal, baseando-se em medidas pouco
especificas como os niveis de PSA (antigénio especifico da prostata) e DRE (examinagao retal), seguidos
de bidpsia guiada por ultrasom trans-rectal (TRUS), onde ¢ atribuido um nivel de agressividade sob a
forma da classificagdo de Gleason.

Ao contrario de TRUS, imagens de ressonancia magnética permitem uma visualizagdo clara da anato-
mia da prostata. mpMRI (ressonancia magnética multiparamétrica) corresponde a um conjunto de difer-
entes métodos de captacdo de imagem que fornecem informagao de perspetivas diferentes sobre o tecido,
constituindo uma ferramenta promissora para a identificagdo de lesdes tumorais e respetiva classificacdo.
No entanto, a interpretacdo deste exame, sendo um processo subjetivo, esta inevitavelmente afetada por
uma elevada taxa de variabilidade entre observadores. Foi demonstrado também que a classificagdo de
Gleason atribuida a uma lesdo aquando da bidpsia, ira provavelmente ser corrigida apos prostatectomia
radical.

Portanto, um método confiavel e de preferéncia ndo invasivo para classificagdo do cancro da prostata
¢ necessario. Com este objetivo em mente, esforcos tém sido feitos no passado para usar radidomica e
aprendizagem automatica para prever a classificagdo de Gleason a partir de imagens clinicas, apresen-
tando resultados promissores.

Radiomica ¢ a transformagdo de imagens médicas em dados quantitativos de alta dimensdo. Assim,
com base na hipotese de que as caracteristicas do tumor que sdo causa ou consequéncia da classificagdo
de Gleason estdo refletidas nas varidveis radidmicas extraidas das imagens de ressonancia magnética
multiparamétrica, estas podem ser usadas para construir modelos de aprendizagem automaética capazes
de avaliar este parametro. Dito isso, o objetivo principal deste trabalho foi desenvolver modelos de
aprendizagem automatica explorando variaveis radidmicas extraidas de exames de ressonancia magnética
multiparamétrica para prever a agressividade biologica na forma de classificagdo de Gleason.

Neste trabalho, 321 variaveis radiomicas foram extraidas por paciente ou lesdo. Estas foram uti-
lizadas no desenvolvimento de 288 modelos, correspondendo a diferentes combinagdes de aspetos de
uma pipeline tipica, mais especificamente, origem dos dados de treino (por exemplo, varidveis radiomi-
cas da lesdo vs variaveis radidmicas da glandula inteira), estratégia de pre-processamento dos dados,

VII



método de selecdo de variaveis e algoritmo de aprendizagem automatica. O desempenho dos varios
modelos foi avaliado através das métricas F2 e Cohen’s Kappa e os modelos foram comparados entre si
no sentido de perceber que aspetos da pipeline melhor se adequavam ao contexto deste trabalho.

Num conjunto de 281 lesdes (210 para treino, 71 para validagdo) e 183 pacientes (137 para treino, 46
para valida¢do), verificou-se que os modelos treinados com dados equilibrados, seja por subamostragem
da classe maioritaria ou por geracdo de instancias sintéticas para a classe minoritaria através da técnica
de SMOTE, obtiveram uma proeza superior aos modelos treinados com os dados originais desequilibra-
dos. Verificou-se ainda que as variaveis radidomicas extraidas do VOI (volume de interesse) da glandula
inteira produziram modelos extremamente mais confiaveis do que as varidveis radiomicas extraidas dos
VOIs das lesdes. Sugerindo que as areas em volta das lesdes tumorais oferecem informagdes relevantes
sobre a classificagdo de Gleason que ¢ atribuida a essa lesdo. Além de sugerir que o trabalho monétono
de segmentacdo das lesdes realizado pelo radiologista pode ndo ser necessario ou mesmo prejudicar a
assinatura radiomica.

Selecionaram-se 26 dos 288 modelos para validacdo interna e semi-externa. A primeira realizou-se
através de cross-validation e a segunda realizou-se através de uma analise da volatilidade das métricas.
Aqui foi possivel avaliar quais os modelos que estavam mais overfitted, tendo-se observado que os mod-
elos treinados com dados gerados pela técnica de SMOTE estavam significativamente mais overfitted
do que os modelos treinados com dados resultantes da subamostragem da classe maioritaria. Do mesmo
modo, concluiu-se ainda que os modelos treinados com variaveis radiomicas extraidas dos VOIs das
lesdes estavam significativamente mais overfitted do que os modelos treinados com variaveis radiomicas
extraidas do VOI da glandula inteira.

Estes resultados sugerem que areas polarizantes do ramo de inteligéncia artificial na saude como a
realizacdo de segmentagdo das lesdes tumorais pode ndo ser necessario ou mesmo prejudicial para o mod-
elo, bem como gerar varidveis radiomicas pouco reproduziveis devido a variabilidade de segmentagdo
entre radiologistas diferentes (aspeto também avaliado nesta dissertagdo).
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Here, we present the abbreviations used in this dissertation:

* AFS (or AS) - Anterior fibromuscular stroma
* TZ - Tranzitional zone

* PZ - Peripheral zone

* CZ - Central zone

* ED - Ejaculatory ducts

* U - Urethra

* PCa - Prostate cancer

* DRE - Digital rectal examination

» PSA - Prostate specific antigen

* BPH - Benign prostatic hyoertrophy

» TRUS - Trans-rectal ultrasound

* NPV - Negative predictive value

* PPV - Positive predictive value

* csPCa - clinically significant prostate cancer

* ciPCa - clinically insignificant prostate cancer
* mpMRI - multiparametric magnetic ressonance imaging
* T1W - T1-weighted imaging

* T2W - T2-weighted imaging
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DWI - Diffusion weighted imaging

MRSI - magnetic ressonance spectroscopy
DCE-MRI - dynamic contrast enhanced MRI

ADC - Apparent diffusion coefficient

PI-RADS - Prostate imaging reporting and data system
CAD - computer aided diagnosis

GS - Gleason score

Al - Artificial intelegence

ML - Machine learning

VOI - Volume of Interest

RFE - Recursive feature elimination

mRMR - minimum redundancy maximum relevance
ICC - Intraclass correlation coefficient

LOF - Local outlier factor

SVM - Support vector machine

PCA - Principal component analysis

NB - Naive Bayes

LR - Logistic Regression

LR-EN - Logistic Regression with Elastic Net Regularization
DT - Adaboosted Decision Tree

RF - Random Forest

XGB - Exteme Gradient Boost

TP - True positives

TN - True negatives

FP - False positives

FN - False negatives
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ROC - Receiver Operating Characteristic curve
AUC - Area under the ROC curve

TPR - True positive rate

FPR - False positive rate

PRC - Precision recall curve

AUPRC - Area under the precision recall curve
CV - Cross-validation performance

TS - Test set performance

G - Model trained with the Gland dataset

L - Model trained with the Lesion dataset

Lp - Model trained with the Lesion Features with Anatomical Zone dataset
D - Model trained with downsampled data

S - Model trained with SMOTE data

nS - Model trained with data that was not sampled

FWHM - Full width at half maximum
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Chapter 1

Introduction

This chapter presents the background, motivation, objectives and contributions of this dissertation, as
well as the overall document structure.

1.1 Background

1.1.1 Prostate Anatomy

The prostate is a gland of the male reproductive system. It is situated between the bladder and the penis,
just in front of the rectum. The main purpose of the prostate is to secrete fluid with proteolytic enzymes
into the semen, which will nourish and protect sperm.

The gland is commonly divided into three main glandular zones: central zone (CZ), peripheral zone
(PZ) and transitional zone (TZ); and one stromal zone: anterior fibromuscular stroma [28]. See Figure
1.1. The peripheral zone constitutes over 70% of the gland volume and it is known that approximately
70% of prostate tumours originate from here. From the transitional zone arise approximately 25% of
prostate tumours. The central zone constitutes 25% of the gland volume and it is known that 8% of
prostate tumours originate from here [29].

1.1.2 Prostate Cancer Diagnosis

Prostate cancer in its early stages does not cause any specific symptoms. A suspicion of PCa can arise
from: an abnormality on digital rectal examination, DRE [5; 7; 18], or an elevated level of prostate-
specific antigen (PSA) in the serum [8; 7].

PSA is an androgen-regulated glycoprotein serine protease that is encoded in the KLK3 gene. Its
purpose is to cleave semenogelin, aiding the liquification of the ejaculate [34] and it is produced almost
exclusively by the prostate. However, elevated PSA blood levels are not specific to PCa, making an
appearance in conditions like BPH (benign prostatic hypertrophy or enlargement of the prostate) and
prostatitis (inflammation of the prostate) [19]. Additionally, there is no definite threshold value for PSA



Chapter 1 Introduction

AFS
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& } U
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Figure 1.1: Representation of the zonal anatomy of the prostate, as described by [28]. Adapted from [25]. AFS —
anterior fibromuscular stroma; TZ — transitional zone; PZ — peripheral zone; U — urethra; CZ — central zone; ED —
ejaculatory ducts.

above which a man is guaranteed to have PCa or below which we can safely assume he doesn’t [20; 37].
Similarly, an abnormality detected during DRE might be due to BPH or prostatitis in addition to lumps
and nodules of PCa [31]. As mentioned before, while approximately 70% of PCas originate from the PZ,
the large percentage that is left, does not, and, so, will not be palpable through DRE, due to its anatomical
location. Nevertheless, it has been shown that the sensitivity, specificity, and positive predictive value for
the detection of PCa by means of PSA is 72.1%, 93.2% and 25.1%, respectively; and by DRE is 53.2%,
83.6% and 17.8%, respectively [30].

The most widely used technique to confirm a suspicion of PCa is biopsy of the prostate gland guided
by trans-rectal ultrasound (TRUS). In spite of this, TRUS presents several shortcomings. For a lesion to
be detected by TRUS it needs to be hypo or hyperechoic. Although a large majority of PCas are ill-defined
hypoechoic lesions [26], a study detected that close to 30% of patients had isoechoic lesions, decreasing
TRUS’s negative predictive value (NPV) [11]. Further shortcomings include the low specificity and
positive predictive value (PPV) of TRUS [27]. In short, there is an elevated risk that a tumour is either
missed or that the most aggressive part of the tumour is not targeted, leading to an over-diagnosis of
clinically insignificant PCa (ciPCa) or under-diagnosis of clinically significant PCa (csPCa). This could
lead to a necessity for repeated biopsies, with the risks that accompany it, an increased number of biopsy
cores, an incorrect Gleason score or staging [3].

The current diagnostic approach, comprising PSA levels, DRE and TRUS guided biopsy, lacks both
in sensitivity and specificity in PCa detection, in addition to offering limited information regarding ag-
gressiveness and / or stage of the cancer [3].

Magnetic resonance imaging, on the other hand, allows for clear visualization of the zonal anatomy

of the prostate, when compared to TRUS [15] and is, therefore, a promising tool for identification, char-
acterization and staging of PCa.
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1.1.3 Multiparametric MRI (mpMRI)

Multiparametric MRI (mpMRI) is a combination of functional and anatomical imaging methods: T1-
weighted imaging (T1W), T2-weighted imaging (T2W), diffusion weighted imaging (DWI), MR spec-
troscopy (MRSI) and dynamic contrast enhanced MRI (DCE-MRI) [15]. mpMRI is able to provide mor-
phologic and metabolic data as well as characterize tissue vascularity, showing promise in the detection
of PCa.

It has been shown that for biopsy-naive patients, the sensitivity and specificity of mpMRI in detecting
csPCa is approximately 85% and 72%, respectively [17; 22]. Additionally, mpMRI followed by targeted
biopsy performed better in the detection of csPCa than TRUS-guided biopsy [9; 17].

For patients with a previous negative TRUS-guided biopsy and persistent elevated risk of PCa (el-
evated PSA and/or abnormal DRE), mpMRI followed by targeted biopsy identified more csPCa than
repeated TRUS-guided biopsy. In this context, mpMRI demonstrated an overall sensitivity and speci-
ficity in detecting csPCa ranging from 68 to 100% and 41 to 91%, respectively [1; 17; 21; 33]. In addition,
the high resolution obtained with mpMRI allows for a less invasive biopsy procedure, since fewer cores
are obtained per patient than in repeated TRUS-guided biopsy [17].

1.1.3.1 TI1-weighted imaging (T1W)

T1W imaging does not allow for accurate differentiation of zonal anatomy, showing a uniform signal
within the prostate. This type of imaging technique is useful for depicting the outline of the prostate
gland and for identification of haemorrhage, seen as hyperintense regions. Haemorrhage can appear to
be PCa in T2W imaging since both cancerous lesions and haemorrhage appear as hypointense regions
in T2W. Thus, a hypointense region in T2W paired with no hyperintense region in TIW can be used for
PCa detection [3]. See Figure 1.2.

Figure 1.2: a) hypointense areas in T2W imaging. b) hyperintense areas in a fat-saturated T1W image. Extracted
from [3]. The TIW image discards the suspicious hypointense areas in the T2W image as haemorrhages and not
PCa.
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1.1.3.2 T2-weighted imaging (T2W)

T2W imaging is considered to have high spatial resolution, allowing to clearly distinguish between
anatomic zones (Figure 1.2a). On T2W imaging of a normal prostate, the peripheral zone (PZ) ap-
pears with high signal intensity because of the high content of water in the glandular tissue, whereas the
transitional and central zones have often a lower signal intensity, while still being distinguishable from
each other [3].

PCa in the PZ appears as a hypointense region in an otherwise hyperintense PZ. PCa in the TZ is
not as distinguishable due to the overall lower signal intensity of the healthy TZ, as well as the possible
presence of BPH nodules that might mimic PCa or be mixed with the cancerous tissue [3].

1.1.3.3 Diffusion-weighted imaging (DWI)

Diffusion-weighted imaging (DWI) assesses the diffusion of water molecules in the tissue. It is made
sensitive to molecule diffusion by using a pair of opposite gradients and measuring the loss of signal.
The first gradient introduces a phase-shift in spins and the second gradient, after a time interval A, re-
phases the spins. If the molecules have not moved during that time interval, the re-phasing will be exact
and there will be no loss of signal. However, if diffusion occurred, then the re-phasing will not be exact
and there will be a loss of signal. The greater the amount of displacement of water molecules, the greater
the signal loss will be. Thus, regions with restricted diffusion will appear bright on a DWI image. [25]

In a normal prostate, especially in the PZ, water molecules move relatively freely, without restriction.
PCa contains more tightly packed cells causing restricted diffusion, which is represented in the DWI
image by an area of high signal intensity.

The degree of sensitivity to diffusion depends on one parameter, the b-value. The higher the b-
value, the greater will be the sensitivity to diffusion. As we can see in Figure 1.3, a low b-value allows
to distinguish blood vessels, where diffusion is extremely elevated, but does not differentiate between
normal cells and tightly packed cancerous cells. If we choose a higher b-value, the differentiation between
blood vessels and healthy cells will not be as clear, however, we can more easily distinguish the tumour.
A higher b-value will also diminish the T2 shine-through effect.

Therefore, if a lesion is found on a T2W image, haemorrhage can be discarded by looking at the
corresponding T1W image, and a high signal intensity region is found on the corresponding high b-value
DWI image, then there is a high probability of PCa.

1.1.3.4 Apparent Diffusion Coefficient (ADC)

The apparent diffusion coefficient (ADC) can be calculated for each voxel, given that DWI images have
been taken for at least two b-values (b-value = 0 and high b-value).

The monoexponential model is commonly used in the literature, and it states that if, for each voxel,
we plot the signal intensity on DWI on a logarithmic y-axis against the b-value on a linear x-axis, then
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Figure 1.3: Representation of the degree of sensitivity to diffusion regulated by the b-value parameter. The shaded
sections represent the dark regions in the DWI image.

the ADC for that voxel corresponds to the slope. The monoexponential model can be described as

S(b) = S0 x e bxAPCm (1.1)

Where S is the signal intensity of the DWI image at a particular b-value, b is the b-value, SO is the
signal intensity at b-value = 0 s/mm2 and ADCm is the apparent diffusion coefficient of the monoexpo-
nential model.

A low ADC, or low slope, corresponds to a slow loss of signal and will be plotted dark on an ADC
map. While normal cells’ signal intensities on DWI decrease relatively rapidly as b-value increases,
appearing bright on the ADC map, PCa’s signal intensity should decrease fairly slower, resulting in a
lower slope and, thus, lower ADC, appearing hypointense in the ADC map.

While the monoexponential model is commonly used in the literature, it describes the diffusion of pure
water without any barriers, which is not accurate for complex biological tissues with cell membranes that
create compartments and barriers to diffusion. The kurtosis model, a non-Gaussian model, addresses this
issue and has been shown to have higher information content, higher fitting quality, similar repeatability
and similar robustness to noise when compared to the monoexponential model [39]. The kurtosis model
can be described as:

S(b) = SO x o VX ADCk+§ x0* x ADCK* x K (12)
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Where S(b) is the signal intensity of the DWI image at a particular b-value, b is the b-value, SO is the
signal intensity at b-value = 0 s/mm2, ADCKk is the diffusion coefficient of the kurtosis model and K is
the kurtosis. As before, PCa appears hypointense in the ADC map.

1.1.3.5 Dynamic Contrast Enhanced MRI (DCE-MRI)

DCE-MRI consists of a series of TIW images taken before, during and after the intravenous injection
of a contrast agent, commonly gadolinium. DCE-MRI evaluates the differences in the velocities and
intensities of contrast agent uptake and washout by the tissue, allowing it to assess the status of tumour
angiogenesis, the process of formation of new blood vessels [36].

For each voxel, a signal-vs-time curve is registered, which can be used to calculate parameters such
as initial slope, time-to-peak, maximum signal enhancement, washout slope and area under the curve
after a specified time. Pharmacokinetic properties can also be estimated. These include Ktrans (transfer
constant), Ve (extravascular extracellular volume) and Kep (rate constant) [25].

The development of PCa includes the stimulation of angiogenesis and an increase in vascular perme-
ability, resulting in a signal-vs-time curve with a high and early contrast enhancement peak followed by
a rapid washout [3] and higher Ktrans, Ve, Kep when compared to healthy tissue [25].

1.1.3.6 PI-RADS score

One of the biggest challenges in the clinical use of mpMRI is that its interpretation is dependent on the
radiologist’s subjective opinion and, thus, is inevitably affected by a high rate of inter-reader variability
in interpretation and lack of reliability. In order to reduce these effects, a standardized reporting system
was developed, the Prostate Imaging Reporting and Data System (PI-RADS). The PI-RADS applies a set
of rigid criteria to assign to each MRI sequence a specific score of suspicion out of a five-point suspicion
scale (PI- RADS =1, very low suspicion; PI-RADS =5, very high suspicion), with the final total score
being dependent on the number of sequences used. [36]

Despite the improvements after the introduction of PI-RADS, there is still room for improvement in
mpMRI reporting. Hence, efforts have been made to implement computer-aided diagnosis (CAD), with
the aim to bypass interobserver variability.

1.1.4 Prostate Cancer Aggressiveness

The most widely used measure for PCa aggressiveness is the Gleason Score (GS) [16]. This grading
system is assigned to a lesion after biopsy. The larger the GS the more likely it is that the cancer will
grow and spread quickly. It ranges from 1 to 5, 1 meaning that the biopsy exposed near healthy tissue,
and 5 that the biopsy revealed abnormal tissue (Figure 1.4).

Usually, two grades are given per patient. The primary grade represents the GS of the largest area
of the tumour and the secondary grade describes the GS of the next largest area. The sum of the two
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scores is taken to be the final GS. A recent modification to this system groups the GSs into five different
categories [12]: group 1, GS = 6; group 2, GS = 3+4 = 7; group 3, GS = 4+ 3 = 7, group 4,
GS = 8; group 5, GS = 9. A lesion is considered clinically significant for PCa when its GS is higher or
equal to 7.

Figure 1.4: Prostate cancer histologic patterns for the grading system. Adapted from [16]

1.1.5 Radiomics

Radiomics is the analysis of medical images through the extraction of quantitative features. The hy-
pothesis behind radiomics is that tissue characteristics might be reflected in the image and, thus, can be
quantified by the extracted features. These are extremely valuable for their objectivity and reproducibil-
ity.

Radiomic features are of high importance since they are often used to train machine learning models,
which can then be used to predict, for instance, the diagnosis, best treatment option or even survival of
the patient.

1.1.6 Supervised Machine Learning

Machine learning is a branch of Al where algorithms use statistics to find patterns in data and latter apply
said patterns to make predictions about new instances.

Machine learning algorithms can be divided into two main groups: supervised and unsupervised.
Supervised machine learning takes labelled training data, or input-output pairs, and attempts to create a
function that maps each input (or a vector of predictor variables) to an output (or target variable). On the
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other hand, in unsupervised machine learning, the training data is not labelled, so the algorithm just looks
for whatever patterns it can find and sorts the training samples into groups accordingly.

Variables can be classified as quantitative or qualitative (or categorical). Quantitative variables are
continuous numeric values (for example: the weight of a cookie jar or the size of a house), while qual-
itative variables are discrete categories (for example: the colour of a cookie jar or the neighbourhood a
house belongs to).

In this work, we will address a supervised binary classification machine learning problem, where the
input is a vector of radiomic features and the output is the clinical significance of the tumour, described
as True for clinically significant PCa or False for clinically insignificant PCa.

1.2 Motivation

Prostate cancer is one of the most prevalent cancers in Portugal, being among the top 4 malignant neo-
plasm causes of death in 2018, with a crude mortality rate of 38.23 deaths per 100 000 males. [DGS]

Prostate cancer diagnosis and classification is not ideal, relying on unspecific measures such as PSA
levels and DRE, followed by biopsy, where an aggressiveness level is attributed in the form of Gleason
score.

It has been shown that the Gleason score attributed to a lesion after biopsy is likely to change after
radical prostatectomy [13], which confirms the shortcomings of TRUS-guided biopsy mentioned above.
Therefore, a reliable, and preferably non-invasive, method for classification of PCa is in urgent demand.
With this goal in mind, efforts have been made in the past to use CAD coupled with radiomics and machine
learning to predict GS from clinical images, showing promising results.

In fact, texture features have shown potential as biomarkers for PCa aggressiveness [43]. Addition-
ally, previous studies have reported a strong negative correlation between the GS and the ADC values
calculated in the tumour region. Furthermore, an even stronger correlation has been found between the
GS and the ADC ratio, or normalized ADC, which corresponds to the ADC value calculated for the tu-
mour region divided by the ADC value calculated for the benign region [4; 42]. It is hypothesised that the
ADC ratio shows a stronger correlation, because it levels out some of the individual variability, taking
into account not only the tumour ADC but also the individual’s prostate specific signal characteristics.
In addition, the ADC ratio proves to be a more robust feature than the absolute ADC, when comparing
different b-values [38].

1.3 Objectives

The hypothesis of this dissertation is that tumour characteristics that are the cause or consequence of
Gleason score are reflected in the radiomic features extracted from the MRI image and, thus, can be used
to build a classifier model capable of assessing this parameter. Hence, the main goals of this work are to:
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1.4

. Extract radiomic features from a set of prostate MRI sequences taking into account the respective

segmentation mask.

Evaluate the stability of radiomic features with regards to segmentation margins.

. Build supervised machine learning models that take as input stable radiomic features and predict

disease aggressiveness in the form of Gleason score.

. Validate the machine learning models constructed internally (by means of cross-validation and

hold-out test set performances) and semi-externally (by means of a metric volatility analysis).

Document Structure

Additionally to the present introductory chapter, this document is structured in four chapters as follows:

1.5

» Chapter 2 (Dataset Construction) describes the feature extraction process and subsequent con-

struction of the datasets utilized in this dissertation.

Chapter 3 (Feature Reduction) describes the feature reduction steps taken, namely, stability to
segmentation, near-zero variance, correlation and feature selection through RFE, mRMR, Boruta
and Lasso.

Chapter 4 (Classifier Development) presents the work undertaken in the development of 288 clas-
sifiers, corresponding to different combinations of pipeline aspects, namely, type of input data
(i.e. lesion features vs gland features), sampling strategy, feature selection method and machine
learning algorithm.

Chapter 5 (Classifier Post-Development Analysis) presents the validation of the highest perform-
ing pipelines found in the previous chapter, by means of a metric volatility analysis.

Chapter 6 (Conclusion) discusses the main conclusions of this work, as well as some limitations

and future work.

Methodology

The work of this dissertation was performed with both python and the software RapidMiner Studio (ver-

sion 9.9; https://rapidminer.com/):

» The feature extraction and dataset engineering done in Chapter 2 (Dataset Construction) was per-

formed in python with the packages pyRadiomics[40] and scikit-learn (version 0.23.2; https://scikit-
learn.org/).
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* In Chapter 3 (Feature Reduction) the stability to segmentation analysis was performed in Python,
the near-zero variance analysis in R with the caret package (version 6.0-86; https://topepo.github.io/caret/)
and the correlation and feature selection steps were performed with the software RapidMiner Studio
(version 9.9; https://rapidminer.com/).

* The work of Chapter 4 (Classifier Development) was performed with the software RapidMiner
Studio (version 9.9; https://rapidminer.com/).

* In Chapter 5 (Classifier Post-Development Analysis) retrieval of performances in the metric volatil-
ity analysis was done with the software RapidMiner Studio (version 9.9; https://rapidminer.com/),
however the full statistical analysis that followed was performed in Python.

1.6 Contributions
The main contributions of this work are the following:

* Construction of a Rapidminer Studio extension with an operator capable of calculating the F3-score

performance.
» Construction of a Rapidminer Studio operator capable of performing Boruta feature selection.
* Overview of which pipeline aspects might be more suited in this particular context.

* Further proof of the value of radiomic features extracted from prostate MRI in the prediction of

prostate cancer aggressiveness in the form of Gleason score.

* Value of radiomic features extracted from the whole gland VOI over the ones extracted from the
lesion VOL

10
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Dataset Construction

This chapter describes the feature extraction process and subsequent construction of the datasets utilized
in this dissertation.

2.1 Background

2.1.1 Types of Radiomic Features

As briefly described in the previous chapter, radiomics is the analysis of medical images by means of an
advanced mathematical analysis that results in the extraction of a large number of quantitative features.
These quantitative features are hypothesised to be able to reflect information about disease-specific
processes that are imperceptible to the human eye [41]. Through mathematical quantification of the
spacial distribution of signal intensities and pixel interrelationships [41], radiomics can evaluate different
dimensions of an image. These dimensions are reflected in the different perspectives provided by the

various types of radiomic features, to name a few:[40]

* First-order or histogram based features describe the statistical distribution of voxel intensities
within the segmented region. Some first-order features include: mean, median, maximum, mini-

mum, variance, skewness, kurtosis, several percentiles, etc.

» Shape features describe the size and shape of the segmented region. Some shape features include:
voxel volume, surface area, sphericity, flatness, maximum diameter, etc.

» Texture features describe interrelationships between pixels. The calculation of texture features
begins by the construction of a matrix from which the features are later calculated. This matrix is
built according to the type of texture features one wishes to calculate:

— Grey Level Co-ocurrence Matrix describes the second-order joint probability function of the

segmented region.

11
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— Grey Level Size Zone Matrix quantifies grey level zones in the segmented region. Where a
grey level zone corresponds to the number of connected voxels that share the same grey level
intensity.

— Gray Level Run Length Matrix quantifies grey level runs in the segmented region. Where a
grey level run corresponds to the length in number of consecutive voxels that share the same

grey level intensity.

— Neighbouring Grey Tone Difference Matrix quantifies the difference between a grey value
and the average grey value of its neighbourhood.

— Grey Level Dependence Matrix quantifies grey level dependencies in the segmented region.
Where a grey level dependency corresponds to the number of connected voxels within a cer-
tain distance that are dependent on the centre voxel, or, in other words, that have a grey level
close enough to the centre voxel.

2.2 Methods

2.2.1 Data Gathering

Our dataset consisted of T2W, DW and ADC data from the SPIE-AAPM-NCI PROSTATEXx challenge
(the data can be downloaded from https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=23691656).
The following description of the dataset was provided by the Challenge’s organizers: “This collection
is a retrospective set of prostate MR studies. All studies included T2-weighted (T2W), proton density-
weighted (PD-W), dynamic contrast enhanced (DCE), and diffusion-weighted (DW) imaging. The im-
ages were acquired on two different types of Siemens 3T MR scanners, the MAGNETOM Trio, and
Skyra. T2-weighted images were acquired using a turbo spin echo sequence and had a resolution of
around 0.5 mm in plane and a slice thickness of 3.6 mm. The DWI series were acquired with a single-
shot echo planar imaging sequence with a resolution of 2-mm in-plane and 3.6-mm slice thickness and
with diffusion-encoding gradients in three directions. Three b-values were acquired (50, 400, and 800),
and subsequently, the apparent diffusion coefficient (ADC) map was calculated by the scanner software.
All images were acquired without an endorectal coil.”

The dataset consisted of 281 lesions from 183 patients. The approximate location of the centroid of
each lesion was provided in DICOM coordinates. Cancer was considered significant when the biopsy
Gleason score was 7 or higher. The lesions were labelled with “TRUE” and “FALSE” for presence of
clinically significant cancer, with a distribution of 67 True lesions and 214 False lesions. The lesions
were labelled as belonging to peripheral zone (PZ), transitional zone (TZ), anterior stroma (AS) and
seminal vesicles (SV). The distribution of lesions according to anatomic zone and clinical significance is
described in Table 2.1.

As the number of lesions is higher than the number of patients, some patients had more than one
cancerous lesion. Figure 2.1 shows the distribution of patients according to their number of lesions.

12
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True False | Total
PZ 31 128 159
TZ 9 62 71
AS 27 23 50
SV 0 1 1
Total | 67 214 | 281

Table 2.1: Distribution of lesions according to anatomical area and presence of clinically significant
cancer. PZ — peripheral zone; TZ — transition zone; AS — anterior stroma; SV — seminal vesicles.
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Figure 2.1: Distribution of patients according to their number of lesions.

2.2.2 Feature Extraction

As mentioned in the previous chapter, MRI interpretation is burdened by its subjectivity. Being a hu-
man dependent task, segmentation of tumorous lesions suffers from the same problem. In an attempt
to overcome this, manual segmentations of the whole prostate gland and of each lesion were performed
independently by two radiologists on T2W and DW maps separately. For each sample, one radiologist’s
volume of interest (VOI) was randomly chosen to be included in the final dataset.

Radiomic features were extracted using the package Pyradiomics (version 3.0) [40] in Python (v.
3.7.9; https://www.python.org/). 14 shape features, 18 first-order features and 75 texture features were ex-
tracted from the VOI of three MRI modalities, T2W, DWI and ADC, resulting in a total of 321 features ex-
tracted. In the feature extraction of the ADC map, the mask drawn on the DWI was used. The mathemati-
cal expressions and semantic meanings of the features extracted can be found at https://pyradiomics.readthedocs.io/en/lates

13
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2.2.3 Datasets Construction

The features extracted from a lesion mask VOI constituted the Lesion Dataset. The features extracted
from a whole gland mask VOI constituted the Gland Dataset. A Gland was considered to have clinically
significant PCa if at least one of its lesions is clinically significant.

From the previous datasets, two additional datasets were constructed:

* Lesion Features with Anatomical Zone dataset — A dataset composed of lesion features plus features
describing the anatomical location of the lesion. The possible values for anatomical location were
peripheral zone (PZ), transitional zone (TZ), anterior stroma (AS) and seminal vesicles (SV). This
categorical variable was encoded with the oneHotEncoder() function of the Python scikit-learn
package (version 0.23.2; https://scikit-learn.org/).

+ Single-Lesion Whole Gland Features dataset — A truncated dataset composed of patients from the
Gland dataset that had one only lesion.

2.2.4 Train/Test Split

The train/test split was performed with the train_test split() function of the Python scikit-learn package
(version 0.23.2; https://scikit-learn.org/). The hold out test sets consisted of 25% randomly selected
samples from the original datasets and the split was stratified so that both train and test sets have the
same proportion of True labels.

2.3 Results

2.3.1 Datasets Description

The Lesion Dataset is composed of 321 features and 281 lesions, out of which, 67 lesions have a Gleason
Score of 7 or higher and are considered clinically significant (True label) and 214 lesions have a Gleason
Score lower than 7 and are considered clinically insignificant (False label).

The Gland Dataset is composed of 321 features and 183 patients. A gland was considered to have clin-
ically significant cancer if at least one of its lesions was clinically significant. This resulted in 63 patients
being considered as having clinically significant cancer (True label) and 120 patients being considered
as having clinically insignificant cancer (False label).

The Lesion Features and Anatomical Zone Dataset is composed of 325 features and 281 lesions, out
of which, 67 lesions have a Gleason Score of 7 or higher and are considered clinically significant (True
label) and 214 lesions have a Gleason Score lower than 7 and are considered clinically insignificant (False
label).

The Single-Lesion Whole Gland Features Dataset is composed of 321 features and 107 patients, out
of which, 33 patients have a Gleason Score of 7 or higher and are considered clinically significant (True

14
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Train Test
True 48 15
False 89 31
Total | 137 46

Table 2.2: Size and label distribution of the train and test Gland Datasets.

Train Test
True 51 16
False | 159 55
Total | 210 71

Table 2.3: Size and label distribution of the train and test Lesion and Lesion with Anatomical Zone
Datasets.

label) and 74 patients have a Gleason Score lower than 7 and are considered clinically insignificant (False
label).

2.3.2  Train/Test Split

The sizes and label distribution of the train and test sets for the Gland dataset is described in Table 2.2.
For both the lesion dataset and the lesion features with anatomical zone dataset refer to table 2.3 for the
size and label distribution of the train and test sets, since they are identical. The single-lesion whole gland
features dataset was not split into train and test set, due to its already reduced number of samples.
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Chapter 3

Feature Reduction

Feature reduction is the process used to select the subset of features that will be used to train the predictive
model. Relatively insignificant features may contribute little to the model or even add noise and decrease
performance. The several phases of feature reduction done in this work are described in this chapter. See

Figure 3.1
| ! !
Histogram Metrics ) W y
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Filtered Features (@) 1) |

Figure 3.1: Phases of feature reduction performed in this work. Image extracted from [32]

3.1 Background

3.1.1 The Curse of Dimensionality

The curse of dimensionality occurs when a dataset has a lot more features, or predictor variables, than
instances, or observations. Two popular aspects that explain why this is problem in the Al world are data
sparsity and distance concentration.

As the number of dimensions, or predictor variables, increases, the number of possible combinations
that can be found in the data will also increase, but in a geometric way. This means that the higher
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the dimension of our dataset, the more observations we will need to gather so as to cover all possible
combinations of features. When the training samples available do not capture all possible combinations
we have a data sparsity problem. This will lead to the overfitting condition, since the model will not
accurately predict the target of feature combinations that it has not come into contact with in the training
data.

The distance concentration problem refers to the fact that the distances between observations converge
to the same value as dimensionality increases [2]. Since observations appear equidistant, no meaningful
relations can be extracted from the data.

To overcome the issues associated with high dimensional data, feature reduction techniques are used.

Some of these will be described in the following sections.

3.1.2 Feature Reduction Phases

Lesion or Gland segmentation, like any other human dependent activity, is subject to human error and high
inter-reader variability. Hence, features that are highly dependent on segmentation margins, will not be
stable predictors, since they easily change depending on the radiologist that performed the segmentation.
The first step in the feature reduction performed in this work was to find and remove these unstable
features from the dataset.

Similarly, features with zero or near-zero variance across the dataset offer slight information regarding
label distinction and, so, should be found and excluded from the data. This was performed as a second
step of feature reduction.

Outliers are data points that differ significantly from the remaining observations in the dataset. The
presence of outliers in the data can badly affect the mean and standard deviation of features and lead to
the development of less precise models. Therefore, they should be identified and excluded. Although
this is not a feature reduction step, it is described in this section since the presence of outliers can affect
the feature correlation analysis and, so, should be done prior to it.

Two features are correlated when one can be used to predict the other with high accuracy. The pres-
ence of correlated features in the dataset can mask useful interactions between features and lead to the
development of unstable models, in addition to heightening the curse of dimensionality. The removal of
correlated features was the third step of feature reduction.

Feature selection algorithms are classified into three different categories: wrapper methods, filter
methods and embedded methods. Wrapper methods are feature selection algorithms that compute differ-
ent subsets of features until they find the optimal set. This optimal subset is determined through a feature
weighing algorithm that is “wrapped” within the main algorithm. Some wrapper-type feature selection
algorithms include forward selection (starts with zero features and successively adds features with the
greatest improvement to the model), backward elimination (starts with all features and successively re-
moves the least useful features) and stepwise selection (hybrid approach that starts with zero features and
successively adds relevant features or removes previously relevant features that are no longer useful).
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Filter methods select a subset of features by ranking them according to some useful descriptive measure.
Filter-type feature selection algorithms include Spearman’s correlation coefficient and ANOVA. Embed-
ded methods are feature selection algorithms that are an integrant part of the machine learning algorithm.
These include LASSO and Ridge regressions, as well as Decision Trees.

3.2 Methods

The several phases of feature reduction done in this work were applied only on the train sets and will be
described in the following sections.

3.2.1 Feature Stability to Segmentation

Features extracted from the VOIs created by both radiologists were compared with Intraclass correlation
coefficient (ICC). The ICC used was a two-way, single rater, absolute agreement ICC model (ICC - 2,1)
[23]. Features with ICC 95% confidence interval lower limit over 0.8 were considered to be robust to
segmentation and were kept for further analysis.

The assessment of feature stability to segmentation was performed in Python, outside of cross-validation.

3.2.2 Zero and Near-zero Variance Features

Zero and near-zero variance analysis was performed outside of cross validation with the nearZeroVar()
function of the R caret package (version 6.0-86; https://topepo.github.io/caret/). This function makes use
of the frequency of the most prevalent value over the second most frequent value (which would be near
one for well-behaved predictors and very large for highly-unbalanced data) and the percentage of unique
values, so as not to exclude predictors that, in spite of having low granularity, are evenly distributed [24].

3.2.3 Outlier Detection and Removal

In order to identify outliers, the local outlier factor (LOF) was used. This algorithm calculates the density
of a given subject. Where the density is given by the distance of that subject to its k nearest neighbours.
The further away the neighbours are, the smaller the density will be and there will be a higher probability
that this subject is an outlier. Since scale affects the distance function, the data was normalized before
applying the LOF algorithm.

Samples with LOF over 2 were removed from the original not normalized dataset. Outlier detection
and removal was performed inside cross validation with the software RapidMiner Studio (version 9.9;
https://rapidminer.com/).
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3.2.4 Feature Correlation Analysis

The feature correlation analysis was performed inside cross validation on RapidMiner Studio (version
9.9; https://rapidminer.com/) with the operator “Remove Correlated Attributes”. This operator uses the
Pearson correlation coefficient to compute the correlation between each pair of features. If a pair of
features is found to have a correlation higher than the threshold, one of the features is randomly eliminated.
The correlation threshold was a hyperparameter optimized during model training.

3.2.5 Feature Selection

In this work, in order to find the optimal feature set (fourth step of feature reduction), four feature selec-
tion algorithms were applied separately, and their performance compared. These algorithms were recur-
sive feature elimination (RFE), Boruta algorithm, minimum redundancy maximum relevance algorithm
(mRMR) and LASSO regularization.

3.2.5.1 Recursive Feature Elimination

Recursive feature elimination (RFE) is a wrapper-type feature selection algorithm, more specifically, it
is a form of backward selection. The weighing method that is “wrapped” within RFE can be chosen
according to each situation. In this work, three feature weighing methods were combined with RFE and
their performance was evaluated. These feature weighing methods were Support Vector Machine (SVM),
Tree importance and Principal Component Analysis (PCA).

The Support Vector Machine’s weights are given by the coefficients of the hyperplane calculated.
Here we used a SVM with a linear kernel, where the C parameter was a hyperparameter optimized during
model training. The C parameter regulates how much misclassification the hyperplane should allow and,
consequently, moves along the bias-variance curve. This analysis was performed on RapidMiner Studio
(version 9.9; https://rapidminer.com/) with the operator “Weight by SVM”.

Tree Importance was extracted from the criterion information gain ratio of a Random Forest. This
analysis was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the operator
“Weight by Tree Importance”. As described by the operator creators: “each node of each tree is visited
and the benefit created by the respective split is retrieved. This benefit is summed per attribute, that had
been used for the split. The mean benefit over all trees is used as importance”.

Principal Component Analysis weights are given by the coefficients of the first principal compo-
nent. This analysis was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the
operator “Weight by PCA”.

The three feature weighing methods wrapped in RFE were evaluated on the Lesion and Gland Datasets
in a cross validation setting as illustrated in Figure 3.2. Six machine learning algorithms were chosen
for this analysis: Naive Bayes, Logistic Regression, Logistic Regression with Elastic Net regularization,
Adaboosted Decision Tree, Random Forest and Extreme Gradient Boost. These will be further described
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in the next chapter.

Training Stability | | Near-Zero

Set analysis Variance
Pipeline
PCA-RFE
' ) |/ Tree '\ . Cross-
Outlier }» Feature |/ Importanc |— Model Validation
Detection Correlation eRFE ‘ Training Performance
| sVM-RFE |

Figure 3.2: Process through which PCA, Tree Importance and SVM were evaluated as weighing methods wrapped
in RFE.

The number of features selected by the algorithm was a hyperparameter optimized during model
training.

As will be described in the next chapter, Kappa is a powerful metric in imbalanced data settings as
we have here. Thus, this metric was chosen to evaluate the performance of the different pipelines.

3.2.5.2 Boruta

In short, the Boruta algorithm selects features that are better predictors than a randomized shuffled version
of themselves. Initially, a “shadow” dataset is constructed by randomly shuffling each feature. This
shadow dataset is then added to the original dataset. Next, a random forest model is fitted on the new
dataset and the importance of each feature is retrieved. Finally, the importance of each original feature is
compared to the highest feature importance recorded among the shadow features. If a feature has higher
importance then the best shadow feature, then it is selected.

Boruta feature selection was not previously available in RapidMiner Studio, so an operator capable
of performing Boruta feature selection was created using the “Python Transformer” operator. This takes
a python script where Boruta feature selection was performed with the python package BorutaPy (version
0.3; https://github.com/scikit-learn-contrib/boruta py).
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T2W  DWI ADC Total
Shape 6.49% 3.25% 3.25% | 12.99%
First-order | 5.19%  3.25%  5.84% 14.29%
Texture 18.18% 38.96% 15.58% | 72.73%

Total 29.87% 45.45% 24.68% | 100%

Table 3.1: Distribution of the unstable Lesion features across MRI modalities and feature types.

3.2.5.3 Minimum Redundancy Maximum Relevance

Minimum redundancy maximum relevance (mRMR) is a wrapper-type feature selection algorithm, more
specifically, it is a form of forward selection. The weighing method that is “wrapped” within mRMR
selects features that are the most relevant to the prediction of the target variable and are the least redundant
with respect to the features that have been selected in previous iterations.

mRMR feature selection was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/)
with the operator “Select by MRMR / CFS” of the extension “Feature-Selection-Extension”. The number
of features selected by the algorithm was a hyperparameter optimized during model training.

3.2.5.4 LASSO Regularization

Regularization is a technique that reduces overfitting by making the model less sensitive to the training
data or, in other words, by introducing a small amount of bias so, in return, we get a significant drop in
variance. Lasso regularization (L1) reduces the coefficients of each feature in the linear equation so as to
reduce the impact a change in that feature could have in the final prediction. The advantage of Lasso is
that it can reduce these coefficients all the way to zero, excluding useless features from the equation.

LASSO feature selection was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/)
with the operator “Logistic Regression”. The parameter “use regularization” was selected and alpha was
set to 0, indicating Lasso regularization (L1). The feature weights were retrieved and used to select
features from the dataset.

3.3 Results

3.3.1 Feature Stability to Segmentation

In the Lesion Dataset, 154 features were found to be unstable, out of the total 321 features. The distribu-
tion, in terms of percentage, of these 154 features across MRI modality and feature type is described in
Table 3.1.

The feature groups that were found to be most unstable to segmentation were texture features extracted
from DWI images (38.96% of unstable features were texture features extracted from DWI). The feature
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T2W  DWI ADC Total
Shape 1.56% 0% 0% 1.56%
First-order | 0% 3.13%  10.94% | 14.06%
Texture 1.56% 10.94% 71.88% | 84.38%
Total 3.13% 14.06% 82.81% | 100%

Table 3.2: Distribution of the unstable Gland features across MRI modalities and feature types.

type that seemed to be the least robust to segmentation was texture, with 72.73% of unstable features being
texture features. The features extracted from DWI images showed a lower stability than the remaining
MRI modalities (45.45% of unstable features came from DWI).

Additionally, 23 features were found to be unstable across all three MRI modalities. Of these 23, 17
were texture features, 2 were first order features and 4 were shape features.

In the Gland Dataset, 64 features were found to be unstable, out of the total 321 features. The distri-

bution, in terms of percentage, of these 64 features across MRI modality and feature type is described in
Table 3.2.

The feature groups that were found to be most unstable to segmentation were first-order and texture
features extracted from ADC maps (10.94% and 71.88% of the unstable features, respectively) and texture
features extracted from DWI images (10.94% of the unstable features). Among the feature types, texture
features seem to be the most unstable to segmentation (84.38% of the unstable features). Regarding
MRI modalities, the features extracted from ADC maps showed a lower stability (82.81% of the unstable
features) than the remaining modalities.

On both datasets the texture features seem to be the least stable to segmentation.

3.3.2 Zero and Near-zero Variance Features

In the Lesion Dataset, out of the total 169 stable features, 2 features were found to have near-zero variance:
DWI original glszm GrayLevelNonUniformity and ADC original glszm GrayLe-velNonUniformity.
While, in the Gland Dataset, no features were found to have near-zero variance.

3.3.3 Feature Selection - Recursive Feature Elimination

The cross-validation performance in terms of Kappa is described in Figure 3.3 with the respective mean
values and standard deviation presented in Table 6. The average Kappa score across the six machine
learning algorithms for each feature selection method were very close to each other with the highest
average performance belonging to SVM-RFE.
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Gland Dataset CV-performance Lesion Dataset CV-performance
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Figure 3.3: Cross-validation performance results clustered by feature selection method. The graph on the left
describes Kappa performance on models trained with the Gland Dataset. The graph on the right describes Kappa
performance on models trained with the Lesion Dataset.

Gland Dataset Lesion Dataset
mean std mean std
PCA-RFE 0.3988 | 0.1306 | 0.2423 | 0.1047
Tree Importance - RFE | 0.3945 | 0.1513 | 0.2393 | 0.1137
SVM-RFE 0.4065 | 0.1578 | 0.251 | 0.131

Table 3.3: Mean values and standard deviation of the Kappa cross-validation performance of the models
described in Figure 3.3

3.4 Discussion

The whole-gland features seem to be considerably more robust to segmentation than lesion features (ap-
proximately 50% of lesion features were found to be unstable, compared to approximately 20% of gland
features being unstable). This is expected since it is much more challenging for a radiologist to determine
lesion borders when compared to determining whole gland borders. Hence, there is a lot more inter-reader
variability in lesion segmentation and, consequently, a higher number of unstable features.

Regarding the choice of weighing method wrapped within RFE, a slightly higher performance was
observed in the pipelines that performed SVM-RFE. This result coupled with its wide use in the literature
confirmed the decision to select SVM-RFE for the remaining analysis.
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Chapter 4

Classifier Development and Performance
Evaluation

This chapter presents the work undertaken in the development of 288 classifiers, corresponding to differ-
ent combinations of pipeline aspects, namely, type of input data (i.e. lesion features vs gland features),
sampling strategy, feature selection method and machine learning algorithm.

4.1 Background

4.1.1 Bias/Variance Trade off

The bias can be defined as the difference between a model’s prediction for a certain instance and its
ground truth. A model with high bias makes assumptions about the data, in order to make the target
function easier to learn. This can lead to underfitting, since the model is unable to capture the underlying
pattern of the data. Some examples of high-bias machine learning algorithms are linear and logistic

regressions.

The variance describes how much the target function changes when different training data is used. If
the data comes from the same distribution, then the algorithm should have low variance. A model with
high variance will be overfitted, since it captures noise along with the underlying pattern of the data. An
example of a high-variance machine learning algorithm is the Decision Tree.

Achieving a low-bias and low-variance classifier should ensure that our machine learning model is
successful at making predictions for new instances. However, there is no escaping that a decrease in bias
will lead to an increase in variance and vice-versa. This trade-off in model complexity is the bias/variance
trade off.
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4.1.2 Machine Learning Algorithms

In this work we attempt to solve a supervised classification problem. The "no free lunch” theorem states
that there is no ”best” learning strategy [44]. With that in mind, some machine learning algorithms were
chosen so as to cover a wide range of machine learning algorithm types:

* Linear classifiers — Logistic Regression with or without regularization of type Elastic Net. As
described in the previous chapter, regularization is a technique that reduces overfitting by making
the model less sensitive to the training data or, in other words, by introducing a small amount of
bias so, in return, we get a significant drop in variance. Ridge regularization (L2) reduces the
coefficients of each feature in the linear equation so as to reduce the impact a change in that feature
could have in the final prediction. Lasso regularization (L1) is similar to Ridge however, while
Ridge regularization can only reduce the coefficients asymptotically close to zero, Lasso can reduce
them all the way to zero, excluding useless features from the equation. Elastic Net regularization
combines lasso (L1) and ridge (L2) regularizations in a way that allows us to control the weight of
each type of regularization.

* Bayesian classifiers — Gaussian Naive Bayes classifier. The Bayes classifier calculates the most
probable classification for a new instance. It is considered optimal since, theoretically, no other
algorithm working on the same data can outperform it on average. Hence, its misclassification
error is considered the minimal possible error that can be achieved. The Naive Bayes algorithm is
a simplification of the Bayes optimal classifier, where features are considered to be conditionally
independent from each other.

» Tree-based classifiers — Adaboosted decision tree, random forest and extreme gradient boost. Tree-
based models make use of ‘if-then’ rules to make predictions, for instance if weight is higher than
120 Kg, then patient is obese. Decision trees are the base of all tree-based models and are built in
the following manner: first, the features on which to split the data are selected in order to maximize
information gain; the data is split multiple times until, finally, a decision is made on when to stop
splitting the tree. A very large tree will likely be overfitted, in the sense that it is very specific to
the dataset that it was trained on and doesn’t generalize well for new data. This can be avoided by
pruning the tree — a technique where the lower sections of the tree are removed. In this work, this
was done by setting a maximum tree depth. Adaboost is an ensemble method that builds multiple
trees where each tree is focused on correcting the error of the previous tree. Random forest models
also build multiple trees however, each tree is trained on a sampled dataset and each node is only
allowed to split from a subset of the total feature set. This ensures variety and reduces overfitting.
The Gradient boost algorithm follows the same concept as adaboost but utilizes gradient descent
for optimization.
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Actual
True False
. True TP FP or Type I error
Predicted
False | FN or Type II error TN

Table 4.1: Confusion matrix

4.1.3 Performance Metrics

When a model attempts to predict the clinical significance of a given patient’s lesion or gland, one of four
outcomes occurs:

» The model predicts TRUE when the label is in fact TRUE, these correspond to the true positive
results (TP);

* The model predicts TRUE when the label is actually FALSE, these correspond to the false positive
results (FP);

» The model predicts FALSE when the label is in fact FALSE, these correspond to the true negative
results (TN);

* The model predicts FALSE when the label is actually TRUE, these correspond to the false negative
results (FN).

With this information, a confusion matrix can be built (Figure 4.1). Most metrics used to evaluate a
model’s performance are calculated from the confusion matrix.
A commonly used metric is classifier accuracy. This is given by:

TP+TN
TP+TN+ FP+FN

Accuracy =

Even though, accuracy is wildly used as a metric of model performance, it is not appropriate in
imbalanced training problems, as is common in the clinical setting. Here, we often have a minority class,
which represents the harshest situation for the patient, and which we wish to accurately predict. A model
that predicts the majority class for all samples in the validation or test set will have a relatively high
accuracy, corresponding to the percentage of samples belonging to the majority class. Since accuracy is
not able to distinguish between the correctly classified examples in the different classes, it might lead to
an overestimation of model performance.[6; 14]

In the same lines, the commonly used metric AUC, or area under the receiver operating characteristic
curve (ROC), is also not appropriate for imbalanced data. The ROC curve plots TPR versus FPR,

TP

T Positive Rate /| Recall /| S itivity = ————
rue Positive Rate | Recall | Sensitivity TP+ PN
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FP
FP+TN
with the desired plot having high TPR and low FPR. In an imbalanced setting, the FPR is pulled down
due to a large number of true negatives (majority class). Hence, the AUC-ROC may overestimate per-

False Positive Rate =

formance. [35]
On the other hand, precision recall curves (PRC) have been shown to be more informative than ROC
when dealing with imbalanced data, since precision is influenced by both classes (TP and FP) [35].

TP

Precision = m

Another important aspect of the clinical setting is the cost of misclassifications. Classifying a patient
as positive for clinically significant cancer when it is not, will only lead to further examination. However,
classifying a patient as negative when in fact they have clinically significant cancer might prevent the
patient from getting the necessary treatment. Hence, a FN result, or type II error, has much more drastic
consequences than a FP result, or type I error. So, it is important for our classifier to focus on minimizing
the type Il error, instead of treating both errors with equal importance. The performance metric that takes
FN (type II error) into account is the recall and the one that accounts for FP (type I error) is precision. So,
our classifier should prioritize a higher recall rather than a higher precision, in order to minimize type II
error.

The performance metric that takes into account both precision and recall is the F-measure.

Precision X Recall
B2 x Precision + Recall

F5:(1+52) X

For a 8 = 1, the same weight is put on precision and recall. For a 5 between 0 and 1, more weight is
given to precision. For a 8 higher than 1, more weight is given to recall.

Cohen’s Kappa is also a metric that can handle imbalanced data problems. It ranges from 0 to 1 and
tells us how much better our classifier is at predicting the class label, when compared to a classifier that

makes a random prediction according to the frequency of each class.

4.1.4 Hyperparameter Optimization through Nested Cross Validation

Nested cross-validation is a hyperparameter optimization algorithm, that attempts to reduce overfitting
by finding the optimal hyperparameters for multiple subsections of the data space and later making a
decision regarding the final set of best hyperparameters.

Nested cross-validation begins by splitting the data into k different folds. One of these folds is held
out of the training process, while the remaining k-1 folds are used for hyperparameter tuning. These
k-1 folds are further divided into j different folds. One of these is again held out, while the remaining
data is trained on every possible hyperparameter combination. Each trained classifier is validated by
quantifying its performance on the held-out fold. The process is repeated so that each of the j folds is
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used exactly once for validation. For each hyperparameter combination, a mean performance is obtained.
The hyperparameter combination with the highest mean performance is applied to train the full k-1 folds
and this classifier is evaluated by the held-out fold. Again, this process is repeated until each of the k
folds has been used once for validation. The hyperparameter combination that performed highest on the
outer fold is chosen as optimal. The nested cross-validation algorithm described above is shown in Figure
4.1.

Outer k-fold cross-validation split
Inner j-fold cross-validation split

7

|~

Select hyperparameter set
with the highestinner cross-
validation performance

Train model on full outer train set

Repeat for each outer
cross-validation split

Test model on outer test set

Figure 4.1: Nested cross-validation algorithm.

4.2 Methods

In this work, different aspects of model development were assessed and compared. The different combi-
nations are described in Figure 4.2.

In total, 288 pipelines were produced. Each was trained and validated according to the diagram in
Figure 4.3.

4.2.1 Sampling Strategies

The undersampling of the majority class was done in a random fashion outside of cross validation. All
minority class samples were kept, and samples from the majority class randomly chosen so as to match
the number of samples in the minority class. This was performed on RapidMiner Studio (version 9.9;
https://rapidminer.com/) with the operator “Sample”.

In both lesion trainsets, the minority class constituted of 51 lesions. Therefore, 51 lesions were ran-
domly selected from the majority class pool, making the final sampled dataset 102 lesions long. While
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Figure 4.2: Different model dimensions explored in this study.

in the gland trainset, the minority class constituted of 48 patients. Therefore, 48 patients were randomly
selected from the majority class pool, making the final sampled dataset 96 patients long. Finally, in the
single-lesion whole gland dataset, the minority class constituted 33 patients. Therefore, 33 patients were
randomly selected from the majority class pool, making the final sampled dataset 66 patients long.

The SMOTE algorithm generates synthetic samples for the minority class. It works by choosing
a minority class sample at random, finding its k nearest neighbours, randomly choosing one of those
neighbours and, finally, generating a synthetic sample somewhere in the high-dimensional “’line” that
connects those two samples. In this work, the number of nearest neighbours considered was 5. SMOTE
upsampling was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the operator
“SMOTE Upsampling”.

In both lesion trainsets, the majority class constituted of 159 lesions and the minority class of 51
lesions. Therefore, 108 lesions were generated with SMOTE, making the final sampled dataset 318
lesions long. While in the gland trainset, the majority class constituted of 89 patients and the minority
class of 48 patients. Therefore, 41 patients were generated with SMOTE, making the final sampled
dataset 178 patients long. Finally, in the single-lesion whole gland dataset, the minority class constituted
33 patients. Therefore, 41 patients were randomly selected from the majority class pool, making the final
sampled dataset 148 patients long.

4.2.2 Machine Learning Algorithms

The RapidMiner Studio (version 9.9; https://rapidminer.com/) implementation of the chosen machine
learning algorithms was utilized.
A Naive Bayes classifier (NB) with laplace correction was trained with the operator “Naive Bayes”.
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Figure 4.3: Overall pipeline followed in this study to train and validate models.

A logistic regression classifier (LR) was trained with the operator “Logistic Regression”. The pa-
rameters “standardize”, “add intercept” and “remove collinear columns” were selected and the “solver”
parameter was set to “AUTO”. In the case of logistic regression with elastic net regularization (LR-EN),
the parameter “use regularization” was selected and alpha was a hyperparameter optimized during model
training. Alpha ranges from 0 to 1, 0 corresponding to Lasso regularization (L1) and 1 to Ridge regular-
ization (L2).

An Adaboosted Decision Tree classifier (DT) was trained with the operators “AdaBoost” and “De-
cision Tree”. The number of iterations in the AdaBoost operator was set to 10, the criterion according
to which features are selected in the Decision Tree was set to “gain_ratio”, corresponding to informa-
tion gain ratio, a criterion related to the entropy of a feature. The “maximal depth” parameter was a
hyperparameter optimized during model training.

A Random Forest classifier (RF) was trained with the operator “Random Forest”. The criterion ac-
cording to which features are selected was again set to “gain_ratio”. The “maximal depth” and “number of
trees” parameters were hyperparameters optimized during model training. The voting strategy by which
the forest makes a decision was set to “confidence vote”.

An extreme gradient boost classifier was trained with the operator “Gradient Boosted Trees”. The
“maximal depth” and “number of trees” parameters were hyperparameters optimized during model train-
ing. The remaining parameters were left with the default values set by RapidMiner.

4.2.3 Performance Metrics

In this work, we have chosen to optimize the F2-score and we report Cohen’s Kappa and the area under the
precision recall curve (AUPRC) as measures of model performance. Additionally, standard ROC-AUC
was calculated for literature comparison purposes.
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Hyperparameter Possible values
Correlation threshold [0.8,0.9,1.0]
SVM-RFE C [0.01, 0.1, 1, 10, 100]
SVM-RFE/mRMR number of features [10, 12, 14, 16, 18, 20, 22, 24]
LASSO lambda [0.2,0.4, 0.6, 0.8, 1.0]
LR-EN alpha [0,0.2,0.4,0.6,0.8, 1.0]
DT-AdB Tree depth [2,3,4,5,6,7,8,9,10]
Tree depth [9, 11, 12, 14]
RF / XGB -
Maximum number of trees [80, 90,100]

Table 4.2: List of hyperparameters explored in this study.

ROC-AUC and Cohen’s Kappa calculation was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/
with the operators “Performance Binomial Classification”. AUPRC was calculated on RapidMiner Stu-
dio (version 9.9; https://rapidminer.com/) with the operator “Performance (AUPRC)” from the extension
“Operator Toolbox”.
Fp-score performance was not previously available in RapidMiner Studio, so an operator capable of
calculating the metric was built in Java (version 8.0.2810.9), and the extension was installed in Rapid-
Miner.

4.2.4 Hyperparameter Optimization and Classifier Validation

Hyperparameter tuning was done in a nested cross-validation fashion with an exhaustive grid search. This
was performed on RapidMiner Studio (version 9.9; https://rapidminer.com/) with the operator “Optimize
Parameters (Grid)”. The list of hyperparameters can be found on Table 4.2.

4.2.5 Best Classifier Selection

The best classifiers were selected according to their cross-validation F2 and Kappa performance, follow-
ing the rule:

CVpy > 0.8N CVKappa > 0.5

These were applied to the hold-out test set for validation.

The purpose of the single-lesion whole gland dataset was to more accurately compare the performance
of models trained on lesion data with the ones trained on gland data. In addition, this dataset was not
sufficiently large to divide it by creating a hold out test set. Thus, these models were not considered for
the best classifiers.
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4.3 Results

4.3.1 Feature Selection Methods

In Figure 4.4, we can see the cross-validation F2-score and Cohen’s Kappa performance results grouped
by feature selection method for the pipelines trained on the gland (G), lesion (L) and lesion with anatom-
ical zone (Lp) datasets.

Overall, the Boruta algorithm did not perform as well as expected. Despite having a high cross-
validation F2, most kappa values were extremely low, especially for pipelines trained on whole gland
features. Pipelines trained with data that underwent SVM-RFE achieved an average cross-validation F2
0f 0.7226 and Kappa of 0.3781. While the feature sets that underwent mRMR achieved average perfor-
mances of 0.7071 on F2 and 0.4095 on Kappa. Overall, at this stage, SVM-RFE and mRMR pipelines
show a similar average performance. Pipelines trained with data that underwent Lasso feature selection
achieved an average cross-validation F2 of 0.643 and Kappa of 0.347, not performing, on average, as
high as SVM-RFE and mRMR.

4.3.2 Sampling

In Figure 4.5, we can see the cross-validation F2-score and Cohen’s Kappa performance results grouped
by sampling method for the pipelines trained on the gland (G), lesion (L) and lesion with anatomical zone
(Lp) datasets.

We can see that the average cross-validation performance results were higher on the models trained
with sampled data on both F2 and Kappa, with average F2 of 0.7541 and Kappa of 0.3659 on the models
trained with downsampled data and F2 of 0.8094 and Kappa of 0.3666 on the models trained with SMOTE
data. As expected, the pipelines trained with the original imbalanced dataset performed lower with F2 of
0.4779 and Kappa of 0.2626.

4.3.3 Machine Learning Algorithms

In Figure 4.6 we can see the cross-validation F2-score and Cohen’s Kappa performance results grouped
by machine learning algorithm for the pipelines trained on the gland (G), lesion (L) and lesion with
anatomical zone (Lp) datasets. On average the Naive Bayes classifier achieved an F2 of 0.6573 and a
Kappa of 0.3016, the Logistic regression classifier achieved an F2 of 0.6569 and a Kappa of 0.3058,
the Logistic regression classifier with Elastic Net regularization achieved an F2 of 0.6984 and a Kappa
of 0.3002, the Adaboosted Decision Tree classifier achieved an F2 of 0.6784 and a Kappa of 0.2931,
the Random Forest classifier achieved an F2 of 0.6725 and a Kappa of 0.3914 and, finally, the Extreme
Gradient Boost classifier achieved an F2 of 0.7226 and a Kappa of 0.3885. Overall, the Random Forest
and Extreme Gradient Boost classifiers performed, on average, significantly higher in terms of Kappa
than the remaining machine learning algorithms. In terms of F2, the average results were similar across
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Figure 4.5: Cross-validation F2 and Kappa performance results grouped by sampling method.
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machine learning algorithms with the exception of the Extreme Gradient Boost classifier, that performed

slightly higher.
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Figure 4.6: Cross-validation F2 and Kappa performance results grouped by machine learning algorithm.

4.3.4 Type of Input Data

In Figure 4.7, we can see the cross-validation F2-score and Cohen’s Kappa performance results grouped

by type of input data. On average, classifiers trained with whole Gland radiomic features achieved a

cross-validation performance of 0.7426 on F2 and of 0.351 on Kappa. While classifiers trained with the

Lesion Dataset achieved an average cross-validation F2 of 0.6344 and a Kappa of 0.2749. The classifiers

trained with the Lesion features with anatomical zone dataset achieved an average cross-validation F2
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Lesion Features

lines trained with whole gland features performed, on average, higher than the ones tra

10
08

features dataset achieved an average cross-validation F2 of 0.7508 and a Kappa of 0.3806. Overall, the
pipe

of 0.6682 and a Kappa of 0.3687. And, finally, the classifiers trained with the single-lesion whole gland

features, both in terms of Kappa and of F2.
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Chapter 4 Classifier Development and Performance Evaluation

4.3.5 Best Classifiers Selection and Validation

Figure 4.8 shows the 26 models that satisfied the condition: F2>0.8 AND Kappa>0.5. 65% of these are
models trained on whole gland features. All of the best models were trained on data that underwent some
kind of sampling: 42% downsampled data and 58% SMOTE data. Regarding feature selection, 31% of
the pipelines included SVM-RFE, 50% included mRMR, 15% included Lasso and 4% included Boruta.
As for the machine learning algorithm, the large majority of best models are tree-based algorithms (73%)
and the remaining models are logistic regressions with or without elastic net regularization and one Naive
Bayes pipeline.

i Best Models (F2>0.8 AND Kappa=0.5)

B cy F2 (average = 0.8478)
08 BN cv Kappa (average = 0.5853)
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Figure 4.8: Classifiers that performed highest in terms of Kappa and F2.
Figure 4.9 shows the performance of these 26 models on the hold out test set.
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Figure 4.9: Performance of the best models on the hold out test set in terms of F2 and Kappa.

Table 4.3 shows the performance of the best models on the cross-validation setting and on the hold
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Chapter 4 Classifier Development and Performance Evaluation

out test set in terms of F2, Kappa, ROC-AUC and AUPRC. In addition, it shows the difference between
cross-validation and test set performance. The models where this difference is closest to zero are the least
overfitted models.

Model cv_F2 ts_F2 |cv_Kappa|ts Kappa | ov_AUC | ts_AUC |ov AUPRC|ts_auPRC| aFfz AKappa | AAUC | AAUPRC
C_D_SVM-RFE_LR 0.825 0.745 03553 0.415 0.755 0.772 0.58 0.518 0.081 0139 -0.007 0.152
G_D_SVM-RFE_RF 0.858 0.518 0857 0333 0.857 0843 0.787 0734 0.241 0324 0.014 0.053
T _D_SVM-RFE_XGE 0,858 0.729 0.853 0.334 0.858 0.753 0792 0.543 0.139 0.301 0.106 0.247
E_5_SVM-RFE_LR 0.831 0552 0.528 03z 0.7%8 0755 0742 0555 0.179 0.208 o032 0.087
E_5_SVM-RFE_DT 0.858 0.611 0.524 0.301 0.806 0.745 0545 0.449 0.257 0.283 0.06 0.026
E_5_SWM-RFE_RF 0.852 0.737 0.529 0385 0.873 0.788 0541 0.575 0125 0244 0.085 0.353
E_5_SVM-RFE_XSE 0.842 0.584 0.551 0.308 0.847 0.728 0.805 0.504 0.165 0.243 0.119 0.301
T _D_mRMR_LR_EN 0.812 0.538 0.557 038 0.782 0.758 0724 0.53 0.174 o297 0,034 0.124

E_D_mRMR_DT 0,838 0,532 0,558 0.231 0.757 0.534 0538 0.404 0.204 0325 0,133 0.232
G_D mRMFA_RF 0.827 0488 0.538 0.385 0.782 0.757 0583 0.737 0.339 0351 o.032 -0.054
G_D_mRMR_XGB 0.84 0.575 0.578 0314 0.808 0.718 0718 0.483 0.285 0252 0.089 0.233
G_5_mAMR_DT 0,884 0.722 0.554 0,325 0.778 0.601 0405 0.271 0.162 0222 0.087 0.134
C_5_mRMA_RF 0.853 0.798 0518 0434 0841 0.847 08 0542 0.055 0124 -0.006 0.158
C_5_mRMFA_XGE 0.844 0.729 0.607 0.354 0.814 0.783 075 0.578 0.115 0253 0.031 0.19
&_D_Lasso_DT 0.815 0.558 0.574 0282 0.808 071 0595 0.345 0.247 0292 0.0%8 0.3s
E_D_Lasso_RF 0,855 0.722 0.538 0.456 0.828 0.524 0.754 0652 0.133 0172 0.002 0.025
E_D Lasso XSE 0.84 0.852 0.578 03z 0,858 0.7 0.728 0.447 0.18E 0358 0158 0.351
L_5 L3sso_XGE 0,828 0.852 0.58 0.383 0,855 0.758 0544 0.54 0.174 0197 0.1 0.304
Lp_D_SVM-RFE_LR_EN| 0.808 0.358 0.53 0.001 0.786 0.581 0.706 0.812 0.43E 0,542 0.205 -0.105
Lp_5 Boruta XEE 0.833 054 0591 0.091 0874 0.548 0851 0.874 0.193 0s 0.238 -0.013
Lp S _mRMA_NE 0.873 0.382 0.554 0.075 0.838 0.5 0.793 0.713 0.484 0472 0.286 0.08
Lp_5_mRMA_LR 0.872 0404 0.528 0.005 0.853 0.53 0804 0.783 0,458 0522 0323 0.021
Lp_5 MRMFA_LR_EN 0.882 0.42 0.588 0.078 0.842 0.557 0.783 0.852 0.332 0.4EE 0.182 -0.073
Lp_5_mRMA_RF 0.872 0.44 0.617 0.124 0.881 0.58 0.ESE 0.805 0.439 0493 0.301 0.053
Lp_5 mRMA_XEE 085 0.427 0534 0227 0.854 0687 0845 0.871 0423 0307 0.157 -0.025
Lp S Llasso XEE 0.852 0.308 0.667 0.073 0.904 0.534 0907 0.845 0.547 0.524 027 0.061

Table 4.3: Best classifiers’ cross-validation and test set performances, as well as the difference between
cross-validation and test set performance, A. The performance columns are color coded from highest
value in green, to lowest value in white. The A columns are color coded from lowest value in green to

highest value in red.

4.4 Discussion

Regarding feature selection, a low performance was unexpectedly observed from the pipelines that ap-
plied Boruta feature selection. These showed a high F2, because the model would classify the large
majority of samples as the minority class, leading to a high recall. However, the low Kappa score makes
it clear that these were not useful models. It was observed that the Boruta algorithm found very few
features that were better predictors than the random versions of themselves. Hence, it is hypothesised
that the number of features selected by the Boruta algorithm (around 3 features) was not enough to build
a meaningful radiomics signature, which led to the poor results.

The pipelines where sampling was applied performed higher than the pipelines where no sampling
was done, whether it was downsampling of the majority class or upsampling of the minority class with
SMOTE. This was expected since training a model with balanced data gives it equal opportunities to
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Chapter 4 Classifier Development and Performance Evaluation

learn from both classes.

In terms of input data, it was observed that the performance results obtained with the Gland Dataset
were higher than the ones obtained with the lesion Datasets. This might suggest that the areas surrounding
the tumour lesions offer relevant information regarding the Gleason Score that is ultimately attributed
to that lesion. In addition to suggesting that the monotonous lesion segmentation work performed by
radiologists may not be necessary or even be harming to the radiomics signature. However, it is of note
that a few patients had more than one lesion. If these multiple lesions have the same clinical significance
(same target label), then it seems reasonable that the model performs higher with gland features since
it has more information pointing to the correct label. In order to make a fair comparison between the
performance of both types of input data, the single-lesion whole gland dataset was created, including
only patients with a single lesion. The performance results obtained with this smaller dataset confirm the
suspicions above, that whole gland features produce more reliable machine learning models than lesion
features.

As a final note, it is important to point out that given so many pipeline combinations we have to
assume that it is possible to find one that performs well by chance. Statistically speaking, we could
remedy this by doing something similar to a multiple comparisons p-value correction. However, at this
point, we are not aware of such a correction for machine learning performance metrics.
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Classifier Post-Development Analysis

This chapter presents the validation of the highest performing pipelines found in the previous chapter, by

means of a metric volatility analysis.

5.1 Background

Comparably to other technologies used in the medical field, the importance of clinical validation of ma-
chine learning models cannot be overstated. This can be assessed in terms of classifier performance,
patient outcome, cost-benefit analysis, etc.

The reliability of a classifier’s real-world clinical performance is often estimated during cross-validation,
which calculates the test set performance by repeatedly holding out a subset of the training samples from
the fitting process and then applying the classifier to those held out observations. Another way of esti-
mating this real-world performance is by applying our trained classifier to a hold-out test set, a random
subsample of the original dataset.

The issue with both of these approaches is selection bias, which is the idea that we may get an ex-
tremely high or low test set performance due to chance or that our collection of samples is not represen-
tative of the real-world distribution and, consequently, leads to erroneous performance results that are
not reflective of the classifier’s performance in the “wild”. This is especially concerning when doing a
retrospective study, due to the data drift phenomenon.

To assess this concern, and in the absence of an external validation dataset, a volatility analysis was
performed on the highest-ranking classifiers found in the previous chapter. This analysis will be described

in the following sections.
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5.2 Methods

5.2.1 Volatility Analysis

The Gland, Lesion and Lesion with anatomical location Datasets were each randomly split in training
and testing sets in 50 different ways, according to 50 different random seeds. Each of the highest-ranking
classifiers was then trained on each of the 50 training sets and validated through both cross-validation and
each of the 50 hold-out testing sets. The distribution of cross-validation and test set performance results
was recorded for further analysis.

Mean and standard deviation values were calculated for each performance metric and each classifier.
The difference between cross-validation and test set performance of each random split was calculated
and is presented as A. This value represents how overfitted the model is.

The collection of performance results was performed in RapidMiner Studio and the statistical metrics
were calculated in Python. This analysis was based on the metric volatility analysis performed by the
Probatus package (https://ing-bank.github.io/probatus/).

Lines were fit to the plotted histograms of cross-validation and test set performance distributions,
respectively, and, for each, the full width at half maximum metric was calculated. The former was per-
formed with the Seaborn package (version 0.11.1; https://seaborn.pydata.org) and the latter was calculated
as bellow,

FWHM =2v2In20 (5.1)

Where o is the standard deviation of the distribution of performances.

5.2.2 Normality Tests

All performance distributions were tested for normality using the Shapiro-Wilk test and the D’ Agostino
K? test. The Shapiro-Wilk test evaluates the likelihood that a sample was drawn from a Gaussian distribu-
tion and was performed with the shapiro() function of the SciPy package (version 1.5.2; https://docs.scipy.org).
The D’Agostino K2 test calculates the kurtosis (how much of the distribution belongs to the tails) and
skewness (a measure of distribution asymmetry) of the data, in order to determine if it differs significantly
from the normal distribution. D’Agostino K? test was performed with the normaltest() function of the
SciPy package (version 1.5.2; https://docs.scipy.org).

Both tests behave like common hypothesis tests in the sense that there is a null and alternative hy-
pothesis and as a result we get a test statistic and a p-value that will tell us if we have significant statistical
evidence to reject the null hypothesis. In both tests, the hypotheses were as follow:

Hy: the distribution of performances is Gaussian
Hi: the distribution of performances is not Gaussian

The significance level, o, was chosen to be 0.05. Therefore, a p-value lower than 0.05 will lead to a
decision to reject the null hypothesis since there is sufficient statistical evidence that the sample does not
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Chapter 5 Classifier Post-Development Analysis

belong to a Gaussian distribution. On the other hand, a p-value higher than 0.05, will lead to a decision
to fail to reject the null hypothesis, since there is not sufficient statistical evidence that the sample does
not belong to a Gaussian distribution.

5.2.3 Distribution Comparison Tests

For each classifier, the distribution of cross-validation performances was compared to the distribution of
test set performances, to assess whether they belonged to the same distribution. Two statistical tests were
used: the paired t-test and the Kolmogorov-Smirnov test.

The paired t-test compares the mean and standard deviation of two paired groups to determine whether
there is a significant difference between the two. In our specific situation, such a statistical test is appro-
priate due to the paired nature of our samples, since from each train test split resulted one cross-validation
performance and one test set performance. The paired t-test was performed with the ttest rel() function
of the SciPy package (version 1.5.2; https://docs.scipy.org).

The Kolmogorov-Smirnov test is a non-parametric test that evaluates the empirical cumulative dis-
tribution functions of each sample to measure whether they are similar enough to belong to the same
distribution. The Kolmogorov-Smirnov test was performed with the kstest() function of the SciPy pack-
age (version 1.5.2; https://docs.scipy.org).

Both tests behave like common hypothesis tests in the sense that there is a null and alternative hy-
pothesis and as a result we get a test statistic and a p-value that will tell us if we have significant statistical
evidence to reject the null hypothesis. In both tests, the hypotheses were as follow:

Hy: the distributions of cross-validation and test set performances are identical

H: the distributions of cross-validation and test set performances are different

The significance level, «, was chosen to be 0.05. Therefore, a p-value lower than 0.05 will lead to a
decision to reject the null hypothesis since there is sufficient statistical evidence that the samples do not
belong to identical distributions. On the other hand, a p-value higher than 0.05, will lead to a decision to
fail to reject the null hypothesis, since there is not sufficient statistical evidence that the samples do not
belong to the same distribution. A decision to reject the null hypothesis will then lead to the conclusion
that the model is overfitted.

5.2.4 Comparison with Dummy Classifier

The models where no significant difference was found between the cross-validation and test set perfor-
mance distributions were compared with a dummy classifier. This was created with the DummyClassi-
fier() function of the Python scikit-learn package (version 0.23.2; https://scikit-learn.org/) and the strategy
used to generate predictions was set to “’stratified”, which means that the classifier will make predictions
according to the train set’s label distribution.
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5.3 Results

5.3.1 Volatility Analysis

The mean and standard deviation values calculated for each performance metric and each classifier are
presented in Table 5.1, as well as the A values, which represent how overfitted the model is.

In Table 5.2, only the A values are shown. Each column is individually color-coded from lowest
value, in green, to highest value, in red. As previously, there seems to be a cluster of overfitted models
on the bottom of the table (in darker red). These correspond to the pipelines trained with Lesion data.
Three clusters of lower A can be found in green, these correspond to the pipelines where downsampling
of the majority class was performed.

In Table 5.3, only the mean values are presented for each performance metric and each column is
individually color-coded from highest value, in green, to lowest value, in red. At first glance, we can see
that a few of the highest cross-validation performances are in the bottom of the table, while the highest
test set performances are higher in the table. This was expected since Table 5.2 showed that these models
were the most overfitted. Additionally, from Table 5.3, two pipelines stand out as performing well across
all performance metrics: G_ S SVM-RFE LR and G S mRMR_RF.

In Figures 5.1 and 5.2, you can see the plotted distribution of F2 and Kappa performances respec-
tively and the full width at half maximum value.

The last nine graphs show the volatility analysis of the models trained on lesion data. Here, we can
clearly distinguish two different peaks, which confirms the previous results that these were the most
overfitted models.

As expected, the test set performance distribution is overall shorter and wider than the cross-validation
performance distribution, which is taller and thinner. This is clear by the difference in FWHM values.

5.3.2 Normality Tests

In Tables 5.4 and 5.5, the results of the F2 and Kappa performance distribution normality tests are
displayed.

Out of 54 F2 distributions (26 test set plus 26 cross-validation performance distributions), 46 were
considered, by both tests, not to be significantly different from the Guassian distribution. Out of the
remaining 6 F2 distributions, 2 were found to be significantly different from Guassian on both tests, 2
were found to be significantly different from Gaussian only on the Shapiro-Wilk test, 1 was found to be
significantly different from Gaussian only on the D’ Agostino’s K2 test and 1 was inconclusive.

Out of 54 Kappa distributions, 52 were considered, by both tests, not to be significantly different
from the Guassian distribution. One of the remaining distributions was found to be significantly different
from Guassian on both tests and the other was found to be significantly different from Gaussian only on
the D’Agostino’s K test, accompanied by a rather low p-value on the Shapiro-Wilk test.
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Models Alev-T5)

F2 | Kappa | AUC | AUPRC
G_D_SVM-RFE_LR | 0.0388 | 0.0345 |-0.0085 | 0.0027
G_D_SVM-RFE_RF | 0.0527 | 0.0601 | 0.0115 | 0.0215
G_D_SVNM-RFE_¥GE | 0.0230 | 0.0135 | 0.0002 | 0.0212
_S_SVNMERFE_LR | 0.1067 | 0.1614 | 0.0615 | 0.0811
_S_SVM-RFE_DT | 0.1454 | 0.1887 | 0.1021 | 0.0712
G_S_SVNMERFE_RF | 0.1645 | 0.2110 | 0.1284 | 0.1703
G_S_SVM-RFE_GB | 0.1881 | 0.2235 | 0.1268 | 0.1683
G _D_mRMR_LR_EN | 0.0336 | 0.0434 | 0.0035 | 0.0141
G_D_mRMR_DT | -0.0125] 0.0100 | 0.0016 | 0.0080
G_D_mRMR_RF__ | 0.0380 | 0.0436 | -0.0030 0.0007
G_D_mRMR_XGE | 0.0183 | 0.0184 | 0.0082 | 0.0169
G_S_mRMR_DT | 0.1513 | 0.180% | 0.0780 | 0.0567

G 5_mRMR_RF 0.1535 | 0.2083 | 0.1035 | 0.1165
G_S_mRMR_XGE | 0.1741 | 0.2088 | 0.1276 | 0.1741
G_D_Lasso_ DT |-0,0030|-0.0021]-0.0028| 0.0362
G_D_Lasso_RF 0.0245 | 0.0304 | -0.0163 | -0.0041
G_D_Lasso WeB | 0.0273 | 0.0298 | 0.0058 [ 0.0168
LS lasso_wsB | 0.3846 | 0.3805 | 0.2324 | 0.3831

Lp_D_SVM-RFE_LR_EN | 0.0668 | 0.0493 [-0.0115] 0.1336
Lp_S_Boruta %GB | 0.5401 | 0.5434 | 0.3736 [lD5648
Lp 5 mRMR_NE | 0.2534 | 0.1510 | 0.0805 | 0.3035
Lp_S_mRMR_LR | 0.2913 | 0.1532 | 0.108% | 0.2735
Lp_S_mRMR_LR_EN | 0.3008 | 0.1453 | 0.0973 | 0.2631
Lp_S_mRMR_RF | 0.2749 | 0.2477 | 0.1631 | 0.3441
Lp 5 mRMR_¥GE | 0.2848 | 0.3663 | 0.1852 | 03635
Lp_S_Lasso_¥GB | 0.2888 | 0.3974 | 0.2137 | 0.3851

Table 5.2: Delta values calculated for each performance metric and each classifier during the volatility analysis.
Each column is individually color-coded from lowest value, in green, to highest value, in red.

5.3.3 Distribution Comparison Tests

In Table 5.6, we can see the results of the comparison between cross-validation F2 performance dis-
tribution and test set F2 performance distribution. Out of 26 classifiers, 19 classifiers displayed a sig-
nificant difference between the test set performance distribution and the cross-validation performance
distribution, 5 classifiers displayed no significant difference between the test set performance distribu-
tion and the cross-validation performance distribution, 1 classifier displayed a significant difference on
the Kolmogorov-Smirnov test but no difference on the paired t-test and 1 classifier displayed a significant
difference on the Kolmogorov-Smirnov test but inconclusive results on the paired t-test.

In Table 5.7, we can see the results of the comparison between cross-validation Kappa performance
distribution and test set Kappa performance distribution. Out of 26 classifiers, 15 classifiers displayed a
significant difference between the test set performance distribution and the cross-validation performance
distribution, 8 classifiers displayed no significant difference between the test set performance distribution
and the cross-validation performance distribution, 1 classifier displayed a significant difference on the
Kolmogorov-Smirnov test but no difference on the paired t-test, 1 classifier displayed a significant dif-
ference on the paired t-test test but no difference on the Kolmogorov-Smirnov and 1 classifier displayed
a significant difference on the Kolmogorov-Smirnov test but inconclusive results on the paired t-test.

5 classifiers displayed no significant difference between the cross-validation performance and the test
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mean F2 mean Kappa mean AUC mean AUPRC

v TS o TS o TS cv TS
G_D_SVM-RFE_LR  [0.64473| 0.60595| 0.31029| 0.27535| 0.70412| 0.71304| 0.63085| 0.62812
G_D_SVM-RFE_RF 0.6734| 0.5207)0.32782| 0.26775| 0.715951| 0.70757( 0.65015| 0.62862
G_D SVM-RFE_XGB |0.65382| 0.63087| 0.31676| 0.30325| 0.70742( 0.70717| 0.63706| 0.6159
G_S_SVM-RFE_LR | 0.80108|0.68442| 0.4376| 0.27623| 0.77209| 0.71023| 0.71558| 0.62452
G_S_SVM-RFE_DT [ 0.79387| 0.64844| 0.38932| 0.1906) 0.73567| 0.6336| 0.50551| 0.43468
G_S_SVM-RFE_RF | 0.79673| 0.63181| 0.44216| 0.23111| 0.8122| 0.68378| 0.76622| 0.59593
G_5_SVM-RFE_XGB |[0.75087]0.56273| 0.45986| 0.23636) 0.79862| 0.67183| 0.74652| 0.57859
G_D mRMR_LR_EN |0.64451|0.61088|0.31738| 0.27399( 0.71352( 0.70965| 0.64155| 0.62744
G_D mRMR_DT 0.60428| 0.561678| 0.23072| 0.22071| 0.6583| 0.65665| 0.57206| 0.56409
G_D_mRMR_RF 0.65847| 0.65942| 0.37147| 0.32788| 0.73303| 0.73601| 0.65777| 0.65705
G_D_mRMR_XGB 0.63805| 0.61879| 0.30911| 0.29068| 0.70573| 0.65763| 0.63435| 0.61748
G_5 mRMR_DT 0.82574| 0.6744| 0.40656| 0.22604| 0.71507| 0.64106|  0.448| 0.35126
G_S_mRMR_RF 0.82041| 0.66691| 0.48496| 0.27566| 0.8318| 0.72826| 0.78096| 0.66447
G_S_mRMR_XGB 0.74502| 0.57491| 0.47058) 0.26065| 0.80407| 0.67643| 0.75436| 0.58023
G_D_Lasso_DT 0.67547| 0.67849| 0.27881| 0.28095| 0.67559| 0.67843| 0.52553| 0.48529
G_D_Lasso_RF 0.70273| 0.67787| 0.357|0.32662| 0.7213|0.73759| 0.64851| 0.65258
G_D_Lasso_XGB 0.65899| 0.63168| 0.31733| 0.28748| 0.71175| 0.70599| 0.63859| 0.62182
L § Lasso_XGB 0.7987| 0.41407| 0.52949| 0.14502| 0.84597| 0.61757| 0.82082| 0.42773
Lp_D_SVM-RFE_LR_EN | 0.60645| 0.53964| 0.29102| 0.24173| 0.69131| 0.70282| 0.62803| 0.49442
Lp_S_Boruta_XGB | 0.79073|0.25063| 0.54801| 0.00459| 0.86166| 0.4881| 0.8365| 0.27165
Lp_S_mRMR_NB 0.77035| 0.51693| 0.43364| 0.28268| 0.78504| 0.70452| 0.73995| 0.43642
Lp_S mRMR_LR 0.84266| 0.55141| 0.39304| 0.2398| 0.7892| 0.68034| 0.74462| 0.47112
Lp_S_mRMR_LR_EN [0.83969|0.53881| 0.3781| 0.2328|0.78136|0.68403|0.73596| 0.47288
Lp_S_mRMR_RF 0.8454| 0.57052| 0.494| 0.24625| 0.85555| 0.65247| 0.82736| 0.48323
Lp_S mRMR_XGB | 0.80004|0.51524|0.55298| 0.18609| 0.85604| 0.66083| 0.82599| 0.46209
Lp_S_Lasso_XGB 0.80116| 0.51236| 0.55877| 0.16138| 0.86418| 0.65045| 0.83639| 0.45127

Models

Table 5.3: Mean values calculated for each performance metric and each classifier during the volatility analysis.
Each column is individually color-coded from highest value, in green, to lowest value, in red.

set performance on both performance metrics, these were: G D SVM-RFE_XGB, G D mRMR XGB,
G D Lasso DT, G_ D Lasso RF and G D Lasso XGB. These were also among the classifiers found
to be least overfitted in the previous section, supporting those results.

5.3.4 Comparison with Dummy Classifier

For further validation of the results, the 4-fold cross-validation performance of the 5 classifiers found in
the previous section was compared with the 4-fold cross-validation performance of a ’dummy” classifier.
These results across all four performance metrics can be found in Figure 5.3.

We can confirm that our 5 classifiers perform higher than the dummy classifier across all four per-
formance metrics.

5.4 Discussion

In this context, the Lesion-based models seem to be the most susceptible to selection bias, as they are the
most overfitted. This result supports the findings of the previous chapter, in that the features extracted
from the lesion VOI do not produce as reliable classifiers as the ones extracted from the whole gland
VOL
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Figure 5.1: Distribution of F2 performances obtained during the volatility analysis for each classifier.
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Figure 5.2: Distribution of Kappa performances obtained during the volatility analysis for each classifier.
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F2 Distribution N ormality te sts

Maodels - - - Deckion
Shapiro-wilk | DAgostino’s KA2
G D SYM-RFE LR cv 0.39 0.909 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0542 0.503 Failto reject the null hypothesis that the distribution is Gaussian
G D SYM-RFE RF cv 0702 0.545 Failto reject the null hypothesis that the digtribution is Gaussian
- - 5 0231 0.145 Failto reject the null hypothesis that the distribution is Gaussian
G_D_SVM-RFE_XGB Ccv 0.135 0.308 Failto_ reject the null hvpotf?esis that th{e dis:rit_:luti:‘m is Gal:.lssian
TS 0017 0.018 Reject the null hypothesisthat the distribution is Gaussian
& S SVMLRFE LR cv 0291 0.159 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0.839 0.629 Failto reject the null hypothesis that the distribution is Gaussian
G_5_SUMFREE_DT cv 0.465 0.484 Failto reject the null hypothesis that the digtribution is Gaussian
T5 0.048 0.09
G_S_SVM-RFE_RF cv 0135 0191 Failto reject the null hypothesis that the digtribution is Gaussian
TS 0.894 0.862 Failto reject the null hypothesis that the distribution is Gaussian
G_5_SVM-RFE_XGB cv 0234 0.335 Failto reject the null hypothesis that the distribution is Gaussian
T5 0034 0153
G D mRMR LR EN cv 0441 0.569 Failto reject the null hypothesis that the distribution is Gaussian
- -7 5 0729 0.457 Failto reject the null hypothesis that the digtribution is Gaussian
G D mRMR DT Ccv 0593 0.464 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 1] 0.081 Reject the null hypothesisthat the distribution is Gaussian
G D mRMR RF Ccv 0.079 0.152 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0.31 0.363 Failto reject the null hypothesis that the distribution is Gaussian
G D mRMR XGB cv 0725 0.372 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0795 0.767 Failto reject the null hypothesis that the distribution is Gaussian
G S mRVR DT cv 0127 0411 Failto reject the null hypothesis that the digtribution is Gaussian
- - TS 0.691 0.6 Failto reject the null hypothesis that the distribution is Gaussian
& S mRMR RF cv 0742 0.892 Failto reject the null hypothesis that the digtribution is Gaussian
T B TS 0.348 0.486 Failto reject the null hypothesis that the distribution is Gaussian
G 5 mRMR XGB cv 0.054 0.132 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0749 0944 Failto reject the null hypothesis that the distribution is Gaussian
G D Lasso DT cv 0.435 0.527 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0137 0.196 Failto reject the null hypothesis that the digtribution is Gaussian
G D Lasso RF Ccv 0547 0.694 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0427 0.376 Failto reject the null hypothesis that the digtribution is Gaussian
G D la=o XGB Ccv 0.167 0.171 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0392 0.527 Failto reject the null hypothesis that the digt ribution is Gaussian
L S Lasso XGB cv 0811 0.971 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0.28 0424 Failto reject the null hypothesis that the distribution is Gaussian
Lp._D_SVM-RFE_LR_EN Ccv 0.706 0.806 Failto I'E?El:t the null hvpothesis that the dis:n:but:nn isGaussian
5 0218 0.156 Failto reject the null hypothesis that the digtribution is Gaussian
Lp_S Boruta XGB Ccv 0529 0.842 Failto reject the null hypothesis that the distribution is Gaussian
T5 1 nan
Lp_5_mRMR_NB cv 0.067 0.093 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0.055 0.064 Failto reject the null hypothesis that the distribution is Gaussian
Lp_5_mRMR_LR cv 0244 0.588 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0784 0.785 Failto reject the null hypothesis that the distribution is Gaussian
Lp_5_mRME_LR_EN cv 0688 0.857 Fa?ltcr I'E?Ett the null hvpothes?s that the d?ir?hut:l:rn ?sGauss?an
TS 0322 0.501 Failto reject the null hypothesis that the distribution is Gaussian
Lp_S_mRMR_RF cv 0729 0.518 Failto reject the null hypothesis that the digtribution is Gaussian
- - 5 0732 0.533 Failto reject the null hypothesis that the distribution is Gaussian
Lp_S_mRMR_XGB cv 0763 0.547 Failto reject the null hypothesis that the distribution is Gaussian
T5 0115 0.043
Lp.S_Lasso_XGB Ccv 0.695 0.937 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 091 0.743 Failto reject the null hypothesis that the digtribution is Gaussian

Table 5.4: Results of the F2 performance distribution normality tests for each classifier.
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Classifier Post-Development Analysis

Kappa Distribution Normalty tests

Maodels - - - Deckion
Shapiro-wilk | DAgostino’s KA2

G D SYM-RFE LR cv 0861 0.965 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0.736 0.701 Failto reject the null hypothesis that the distribution is Gaussian
G D SYM-RFE RF cv 0259 0.167 Failto reject the null hypothesis that the digtribution is Gaussian
- - 5 0.498 0.284 Failto reject the null hypothesis that the distribution is Gaussian
G_D_SVM-RFE_XGB Ccv 0512 0.933 Failto I'E?El:t the null hvpothesis that the dis:n:but:nn isGaussian
TS 0693 0.982 Failto reject the null hypothesis that the distribution is Gaussian
6.5 SVNFRFE_IR cv 0.36 0.428 Fa?ltcr I'E?Ett the null hvpothes?s that the d?ir?hut:l:rn ?sGauss?an
TS 0.556 0.445 Failto reject the null hypothesis that the distribution is Gaussian
G_5_SUMFREE_DT cv 0142 0.161 Fa?ltcr I'E?Ett the null hvpothes?s that the d?ir?hut:l:rn ?sGauss?an
TS 0.954 097 Failto reject the null hypothesis that the distribution is Gaussian
G_S_SVM-RFE_RF cv 04 0.539 Failto reject the null hypothesis that the digtribution is Gaussian
TS 0.136 0.067 Failto reject the null hypothesis that the distribution is Gaussian
G_5_SVM-RFE_XGB cv 0.097 0.101 Failto I'E?El:t the null hvpothesis that the dis:n:but:nn isGaussian
5 0.846 0.B85 Failto reject the null hypothesis that the distribution is Gaussian
G D mRMR LR EN cv 0.68 0.568 Failto reject the null hypothesis that the distribution is Gaussian
- -7 5 0.57 0.379 Failto reject the null hypothesis that the digtribution is Gaussian
G D mRMR DT Ccv 0577 0.621 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0168 0.273 Failto reject the null hypothesis that the digtribution is Gaussian
G D mRMR RF Ccv 0.349 0.786 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0919 095 Failto reject the null hypothesis that the distribution is Gaussian
G D mRMR XGB cv 0663 0.957 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0581 0.486 Failto reject the null hypothesis that the distribution is Gaussian
G S mRVR DT cv 0.62 0.368 Failto reject the null hypothesis that the digtribution is Gaussian
- - TS 0114 0.234 Failto reject the null hypothesis that the distribution is Gaussian
& S mRMR RF cv 0.563 0.581 Failto reject the null hypothesis that the digtribution is Gaussian
T B TS 0.188 0.479 Failto reject the null hypothesis that the distribution is Gaussian
G 5 mRMR XGB cv 0.43 0.241 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 071 077 Failto reject the null hypothesis that the distribution is Gaussian
G D Lasso DT cv 0.855 0.736 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0.347 0.879 Failto reject the null hypothesis that the digtribution is Gaussian
G D Lasso RF Ccv 0.22 0.321 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0.842 0.924 Failto reject the null hypothesis that the digtribution is Gaussian
G D la=o XGB Ccv 0.846 0.683 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0464 048 Failto reject the null hypothesis that the distribution is Gaussian
L S Lasso XGB cv 0.419 0.612 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0317 0.362 Failto reject the null hypothesis that the distribution is Gaussian
Lp._D_SVM-RFE_LR_EN Ccv 0.13 0.09 Failto I'E?El:t the null hvpothesis that the dis:n:but:nn isGaussian
5 0331 0.308 Failto reject the null hypothesis that the digtribution is Gaussian
Lp_S Boruta XGB Ccv 0.295 0.855 Failto reject the null hypothesis that the distribution is Gaussian
5 1 nan Failto reject the null hypothesis that the digtribution is Gaussian
Lp_5_mRMR_NB cv 0483 0.438 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0.051 0.172 Failto reject the null hypothesis that the distribution is Gaussian
Lp_5_mRMR_LR cv 0.245 0.372 Failto reject the null hypothesis that the distribution is Gaussian
- - TS 0.304 0.317 Failto reject the null hypothesis that the distribution is Gaussian

Lp 5 mRMR_LR_EN v 0077 0.022 - - - — -
TS 0.051 0.168 Failto reject the null hypothesis that the distribution is Gaussian

Lp_S_mRMR_RF cv 0.004 1] Reject the null hypothesisthat the distribution is Gaussian
- - 5 0289 01 Failto reject the null hypothesis that the distribution is Gaussian
Lp_S_mRMR_XGB cv 0.6 0.4 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0675 0.729 Failto reject the null hypothesis that the distribution is Gaussian
Lp.S_Lasso_XGB Ccv 0554 0.425 Failto reject the null hypothesis that the distribution is Gaussian
- - 5 0891 0.688 Failto reject the null hypothesis that the digtribution is Gaussian

Table 5.5: Results of the Kappa performance distribution normality tests for each classifier.
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Chapter 5 Classifier Post-Development Analysis

Models F2 Distribution Comparison tesf:s Decision
paired t-test Kolmogorov-Smirnov
G_D SVM-RFE_LR 0.021 0.006 Reject the null hypothe si that the distributions are identical
G_D_SVM-RFE_RF 0.003 0.022 Reject the null hypothesi that the distributions are identical
G_D SVN-RFE_XGB 0.248 0.396 Failto reject the null hypothesisthat the dstributions are identical
G_5_SVM-RFE_LR [1] 0 Reject the null hypothe si that the distributions are identical
G_5_SVM-RFE_DT ] ] Reject the null hypothesi that the distributions are identical
G_5_SVM-RFE_RF [v] 1] Reject the null hypothe sis that the distributions are identical
G_5_SVM-RFE_XNGB [1] 0 Reject the null hypothe si that the distributions are identical
G_D_mRMR_LR_EN 0.014 0.012 Reject the null hypothesi that the distributions are identical
G_D_mRMR_DT 0.633 0.022
G_D_mRMR_RF 0.007 0.039 Reject the null hypothe sis that the distributions are identical
G_D_mRMR_XGB 0.252 0112 Failto reject the null hypothesisthat the dstributions are identical
G_S5_mRMR_DT [1] 0 Reject the null hypothe si that the distributions are identical
G_5 mRMR_RF [v] 1] Reject the null hypothe sis that the distributions are identical
G_5_mRMR_XGB [v] 1] Reject the null hypothe sis that the distributions are identical
G_D_Lasso_DT 0.846 0.549 Failto reject the null hypothesis that the dstributions are identical
G_D_Lasso RF 0.141 0.396 Failto reject the null hypothesisthat the dstributions are identical
G_D_Lamo_XGEB 0.085 0112 Failto reject the null hypothesisthat the dstributions are identical
L_5 Lamo_XGB [1] 0 Reject the null hypothe si that the distributions are identical
Lp_D_SWWM-RFE_LR_EN [v] 0.006 Reject the null hypothe sis that the distributions are identical
Lp_5 Boruta_XGB nan 0
Lp 5_mRMR_NB [1] 0 Reject the null hypothe si that the distributions are identical
Lp_S mRMPR_LR ] ] Reject the null hypothesi that the distributions are identical
Lp_5_mRMR_LR_EN [v] 1] Reject the null hypothe sis that the distributions are identical
Lp_S mRMR_RF [1] 0 Reject the null hypothe si that the distributions are identical
Lp S5 mRMR_XGB ] ] Reject the null hypothesi that the distributions are identical
Lp 5_Lasso_XGB [v] 1] Reject the null hypothe sis that the distributions are identical

Table 5.6: Results of statistical tests comparing the distributions of F2 performance between the cross-validation
and test set setting.

With regards to sampling strategy, while the pipelines where SMOTE upsampling was performed
seem to outperform downsampling of the majority class, the latter are consistently less overfitted and
more reliable. Regarding feature selection, there don’t seem to be significant differences in the metrics’
volatility.

It is known that the difference between two means will follow a normal distribution if the samples
are drawn from populations that also follow a normal distribution. However, the central limit theorem
states that, even if the parent populations are not Gaussian, the differences will tend towards normality
as sample size increases. Since we have a relatively high sample size of 50 and most of our problematic
distributions were found to be significantly different from Gaussian on only one of the normality tests,
we felt confident assuming normality in the remaining analysis.

As expected, the five models where no significant difference was found between the cross-validation
and test set performance distributions (Tables 5.6 and 5.7) were also among the least overfitted models
found in Table 5.2. These were all models trained with data that underwent downsampling of the majority
class, in addition to all being tree-based machine learning algorithms. The validity of the 5 models with
no significant overfitting was further confirmed with their comparison with a dummy classifier.
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Models Kafppa Ditribution Comparison ti_:srs Decision
paired t-test Kolmogorov-Smirnov
G_D SVM-RFE_LR 0.163 0.272 Failto reject the null hypothesis that the dstributions are identical
G_D_SVM-RFE_RF 0.025 0.022 Reject the null hypothesis that the distributions are identical
G_D SVN-RFE_XGB 0.574 0.717 Failto reject the null hypothesis that the dstributions are identical
G_5_SVM-RFE_LR [v] 1] Reject the null hypothe sis that the distributions are identical
G_5 SVM-RFE_DT v] 1] Reject the null hypothe sis that the distributions are identical
G_5_SVM-RFE_RF [1] 0 Reject the null hypothe si that the distributions are identical
G_5_SVM-RFE_XGB [v] 1] Reject the null hypothe sis that the distributions are identical
G_D_mRMR_LR_EN 0.063 0.039
G_D_mRMR_DT 0.641 0.396 Failto reject the null hypothesis that the dstributions are identical
G_D_mRMR_RF 0.077 0.179 Failto reject the null hypothesisthat the dstributions are identical
G_D_mRMR_XGB 0.483 0.396 Failto reject the null hypothesisthat the dstributions are identical
G_S5_mRMR_DT [1] 0 Reject the null hypothe si that the distributions are identical
G_5 mRMR_RF [v] 1] Reject the null hypothe sis that the distributions are identical
G_5_mRMR_XGB [v] 1] Reject the null hypothe sis that the distributions are identical
G_D_Lasso_DT 0.924 0.717 Failto reject the null hypothesis that the dstributions are identical
G_D_Lasso RF 0.225 0717 Failto reject the null hypothesisthat the dstributions are identical
G_D_Lamo_XGEB 0.164 0.396 Failto reject the null hypothesisthat the dstributions are identical
L_5 Lamo_XGB [1] 0 Reject the null hypothe si that the distributions are identical
lp D SVM-RFE_LR_EN 0.042 0.068
Lp_5 Boruta_XGB nan 0
Lp 5_mRMR_NB [1] 0 Reject the null hypothe si that the distributions are identical
Lp_S mRMPR_LR ] ] Reject the null hypothesi that the distributions are identical
Lp_5_mRMR_LR_EN [v] 1] Reject the null hypothe sis that the distributions are identical
Lp_S mRMR_RF [1] 0 Reject the null hypothe si that the distributions are identical
Lp S5 mRMR_XGB ] ] Reject the null hypothesi that the distributions are identical
Lp 5_Lasso_XGB [v] 1] Reject the null hypothe sis that the distributions are identical

Table 5.7: Results of statistical tests comparing the distributions of Kappa performance between the cross-validation
and test set setting.

Comparison with a Dummy Classifier

08 I L il I [
I mG_D_SVM-RFE_XGB
0.6
®G_D_mRMR_XGB
. G_D_Llasso_DT
G_D_Llasso_RF
0.2
B G_D_Llasso_XGB
0 T B Dummy
F2 J AUC

AUPRC

Performance value
o
=

Kappa

-0.2
Performance Metrics

Figure 5.3: Comparison of 4-fold cross validation performance of 5 classifiers with no significant overfitting with
the 4-fold cross validation performance of a dummy classifier.
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Chapter 6

Conclusion

In this work, an extensive analysis of different dimensions of a machine learning pipeline were assessed
and their performance compared. Since there is little consensus on what is the “right way” to perform Al
in the context of medical imaging, it is interesting to test which aspects lead to a higher model performance
and reliability, especially with such a widely used dataset.

Polarizing areas of Al in medical imaging such as whether or not to perform lesion segmentation
or whether to sample the data in contrast to allowing the model to learn from the real label distribution
were assessed in this study. And while we should proceed with caution when extrapolating to different
settings, these results are still worth analysing.

Among the most interesting findings is the higher performance of models trained with radiomic fea-
tures extracted from the whole gland VOI, as well as their higher reliability and lower overfitting. This
suggests that the areas surrounding tumorous lesions might offer relevant information regarding their
overall aggressiveness in the form of Gleason score. It is of note though that a much higher number of
features was excluded from the Lesion Dataset during the stability to segmentation analysis than from the
Gland Dataset. Despite being of low robustness to segmentation margins, these excluded features might
have brought forth useful information and be partly at fault for the lower performance of the models
trained with the Lesion Dataset.

The metric volatility analysis performed in this study is not commonly found in the literature. Despite
this, we felt it added valuable insight into how the model would perform in the “wild”, since multiple
hold-out test sets were not available. An interesting result found here was that the widely used SMOTE
technique results in models that are more overfitted than models trained with data that went through a
simple downsampling of the majority class. This can be explained by the fact that SMOTE generates
synthetic samples from the existing samples in the dataset. Thus, we are forcing the model to learn more
from the same data, increasing the model’s confidence in random variability, or noise, present in the data.
Which results in the overfitted behaviour.

Despite these efforts, proper assessment of real-world clinical performance is only possible through
external validation. An appropriately built external dataset is one that represents all relevant variations
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of patient spectrum (for example: patient demographics, MRI scanner brand, patient age, disease aggres-
siveness, etc.). Hence the importance of validating with data from multiple external institutions. This
important validation step will be addressed in future work.

This study has several limitations. First, this was a retrospective study and, so, a multicentre prospec-
tive analysis should be carried out to validate these results and investigate the impact these predictive
models have on patient outcome. Second, only T2W, DWI and ADC sequences were used. Other se-
quences, such as MR spectroscopy and dynamic contrast enhanced MRI, could be worth exploring. Third,
only one set of MRI sequences was evaluated per patient, so we were unable to evaluate the temporal sta-
bility of the radiomic features. Fourth, although the overall class imbalancement was addressed through
downsampling of the majority class or SMOTE upsampling of the minority class, we did not address the
imbalanced nature of the anatomical location of lesions, with the large majority of lesions belonging to
the PZ. It would be interesting to investigate the model’s performance on the different anatomical zones
independently. Fifth, the use of a publicly available dataset increased transparency but limited our access
to clinical data, such as PSA levels, patient age or PI-RADS score, which are a fundamental component of
a clinician’s assessment, but could not be included in our model. Finally, inherent to the Gleason system
is the subjectivity of cancer grading, so we must keep in mind that the gold standard used in this study is
subject to human error and inter or intra-observer variability.

In conclusion, our preliminary results further confirm the validity of MRI-based radiomic features
in the identification of clinically significant prostate cancer lesions. The proposed noninvasive models,
based on T2W, DWI and ADC maps, showed potencial for aiding clinical decision-makings for patients
with a suspicion of prostate cancer.
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