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SUMMARY 26	

 27	

We present a new high-resolution three-dimensional (3D) shear wave velocity (Vs) model of 28	

the crust and uppermost mantle beneath Portugal, inferred from ambient seismic noise 29	

tomography. We use broadband seismic data from a dense temporary deployment covering 30	

the entire Portuguese mainland between 2010 and 2012 in the scope of the WILAS project. 31	

Vertical component data are processed using phase correlation and phase weighted stack to 32	

obtain Empirical Green functions (EGF) for 3900 station pairs. Further, we use a random 33	

sampling and subset stacking strategy to measure robust Rayleigh wave group velocities in 34	

the period range 7-30 s and associated uncertainties. The tomographic inversion is performed 35	

in 2 steps: First, we determine group velocity lateral variations for each period. Next, we invert 36	

them at each grid point using a new trans-dimensional inversion scheme to obtain the 3D 37	

shear wave velocity model. The final 3D model extends from the upper crust (5 km) down to 38	

the uppermost mantle (60 km) and has a lateral resolution of ~50 km. In the upper and middle 39	

crust, the Vs anomaly pattern matches the tectonic units of the variscan massif and alpine 40	

basins. The transition between the Lusitanian Basin and the Ossa Morena Zone is marked by 41	

a contrast between moderate and high velocity anomalies, in addition to two arched 42	

earthquake lineations. Some faults, namely the Manteigas-Vilariça-Bragança fault and the 43	

Porto-Tomar-Ferreira do Alentejo fault, have a clear signature from the upper crust down to 44	

the uppermost mantle (60 km). Our 3D shear wave velocity model offers new insights into the 45	

continuation of the main tectonic units at depth and contributes to better understanding the 46	

seismicity of Portugal. 47	

 48	

Key words: Seismic interferometry, Surface waves and free oscillations, Seismic tomography, 49	
Crustal imaging, Crustal structure  50	
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 51	

1. INTRODUCTION 52	

The crustal structure of the Iberian Peninsula (cf. Fig.1) is the result of several major geological 53	

events of amalgamation and breakup, the most relevant of which are the Variscan Orogeny in 54	

the Late Paleozoic, when the collision of Gondwana and Laurussia formed Pangea (e.g. Arenas 55	

et al., 2016a; Matte, 2001, 1991, 1986; Ribeiro et al., 2007), and the Mesozoic extensional 56	

tectonic activity that led to the opening of the North Atlantic Ocean (e.g. De Vicente et al., 57	

2011; Jeanniot et al., 2016; Pereira and Alves, 2013; Pereira et al., 2016; Pinheiro et al. 1996; 58	

Ribeiro et al., 1990). 59	

Portugal, in Western Iberia, comprises several blocks of the Variscan orogen in SW Europe (cf. 60	

Fig. 1a). Most of Portugal is part the Iberian Massif (cf. Fig. 1b), composed of variscan rocks 61	

with ages ranging 380-280 My (Arenas et al., 2016a, Simancas et al., 2013) and a few outcrops 62	

dating back to the Neoproterozoic Cadomian Orogeny (660-540 My) (Linnemann et al., 2008; 63	

Ribeiro et al., 2009). The subsidence of the western and southern margins of Iberia, in 64	

response to the opening of the North Atlantic Ocean, created several basins of deep crustal 65	

signature, with rocks dating back to 125-37 My, which were later uplifted during the Alpine 66	

orogeny (Jeanniot et al., 2016; Pereira et al., 2016; Pereira and Alves, 2013).  67	

As a result of this complex geological past, several important tectonic contacts or faults can 68	

be observed inland, even though some are partially covered by recent Cenozoic basins. Based 69	

on tectonostratigraphic criteria, the Iberian Massif that outcrops in Portugal is usually divided 70	

into four main tectonic units. From the internal to the external domains of the Ibero-71	

Armorican Arc and from north to south (cf. Fig. 1), we have: (1) the Galicia-Trás-os-Montes 72	

Zone (GTMZ), which consists of a pile of allochthonous thrust sheets, overlying (2) the 73	

autochthonous Central Iberian Zone (CIZ), (3) the para-autochthonous Ossa-Morena Zone 74	

(OMZ) and (4) the allochthonous South Portuguese Zone (SPZ).  75	
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The western and southern coasts of Iberia are dominated by the Lusitanian (LB) and Algarve 76	

(AB) basins, with a deep crustal signature, composed of uplifted Mesozoic rocks and Cenozoic 77	

sedimentary sequences (Arenas et ala., 2016; Ribeiro et al., 2007; Veludo et al., 2017), and by 78	

the Cenozoic Lower-Tagus and Sado Sedimentary Basin (LTSB). 79	

 80	

 

Figure 1 - (a) Simplified structural map showing the main tectonic units of the Iberian 

Peninsula. Iberian Massif: Cantabrian Zone (CZ), West-Asturian-Leonese Zone (WALZ), 

Galicia-Trás-os-Montes Zone (GTMZ); Central Iberian Zone (CIZ), Ossa Morena Zone (OMZ), 

South Portuguese Zone (SPZ). The western and southern limits of the Massif are defined by 
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several basins: Lusitanian Basin (LB), Lower-Tagus and Sado Rivers Basin (LTSB), Algarve 

Basin (AB). (b) Simplified geological map of Portugal, showing the inner structure of the 

Portuguese Iberian Massif and main fault systems (adapted from Veludo et al., 2017): 

Porto-Tomar-Ferreira do Alentejo shear zone (PTFA); Tomar-Badajoz-Córdoba shear zone 

(TBC); Penacova-Régua-Verin Fault system (PRV); Manteigas-Vilariça-Bragança fault system 

(MVB); Seia-Lousã fault (SL); Ponsul fault (Po); Nazaré-Condeixa-Alvaiázere fault (NCA); 

Candeeiros-Porto de Mós fault (CPM); Lower-Tagus Valley fault system (LTV); Arraiolos-

Ciborro fault (Arl); Odemira-Ávila fault (OA); Albornoa-Aljustrel-Messejana Alignment 

(AAM); Monchique sienitic intrusion (M). 

 81	

Some of the faults inherited from the complex tectonic history of  western Iberia have been 82	

reactivated since the Miocene (c 20 My) (Pinheiro et al., 1996), in response to the NW-SE 83	

Africa-Eurasia convergence (4.5–5.6 mm/yr) (Fernandes et al., 2003). Currently, mainland 84	

Portugal displays a medium seismicity rate, with several destructive earthquakes documented 85	

in the historical period (Custódio et al., 2015). 86	

The first studies that characterized the seismic properties of the crust and upper mantle 87	

beneath Portugal, in the 1970-1980’s, used controlled sources  and provided mainly 1D or 2D 88	

P-wave velocity (Vp) profiles (Afilhado et al., 2008, Carbonell et al., 2004, Díaz and Gallart, 89	

2009, Flecha et al., 2009, Matias 1996, Palomeras et al., 2009, Sousa Moreira et al., 1983, 90	

Tellez et al., 1998, Victor et al., 1980). Over the last decade, several new studies took 91	

advantage of the increasing coverage provided by seismic networks to infer more detailed 92	

information. The first work to uniformly cover mainland Portugal was carried out by Silveira 93	

et al. (2013), who obtained Rayleigh-wave dispersion maps using ambient-noise techniques. 94	

Although not inverting for Vs structure, the group velocity maps showed a clear correlation 95	

with the major structural units of western Iberia. Using Ps receiver-functions, Dündar et al. 96	

(2016) obtained a first image of the average crustal Vp/Vs ratio, together with a Moho 97	
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topography that also showed some correlation with tectonic units. Veludo et al. (2017), using 98	

local earthquake tomography, obtained the first 3D maps of Vp and Vp/Vs beneath Portugal. 99	

They achieved a high-resolution imaging for most of the tectonic contacts, but were limited 100	

to the upper 20 km of the crust. Attanayake et al., (2017), based on Rayleigh wave ellipticity, 101	

built a Vs model of the crust using 33 permanent and temporary stations in Portugal. Their 102	

model showed low shear wave speeds in the sedimentary basins and in some sectors of the 103	

Central Iberian Zone. Higher seismic velocities were imaged in the Galicia-Trás-os-Montes 104	

Zone. Corela et al. (2017) computed a regional ambient noise tomographic model integrating 105	

seafloor- and land-based data, focusing in the southwest Portuguese margin. Using teleseism 106	

body-wave tomography, Civiero et al. (2018, 2019) extended the imaging of the region, 107	

obtaining P- and S-wave 3D models from 70 km down to 800 km depth. However, the regional 108	

scale analysis of the entire Ibero-Western Maghreb Region resulted in models with only crude 109	

details of the structure of the lithosphere beneath Portugal, starting at 70 km depth and 110	

extending downward into the mantle.  111	

Despite these different studies at different scales, several questions remain unanswered, 112	

namely:  What is the relation between the current surface topography and the deep 113	

crustal/lithospheric structure? How was it influenced by the past tectonic events, namely the 114	

several units composing the W Iberian Terrane, CIZ, OMZ and SPZ? Is the anomalous 115	

concentration of seismicity in the interior of the Iberian micro-plate, namely in northern 116	

Alentejo (Arraiolos-Portel), western edge (Estremadura), northern Portugal (Vilariça, Chaves), 117	

in some measure due to an inherited structure from past orogenies? If so, how far has past 118	

subduction history influences the subduction dynamics observed on the southern margin of 119	

Iberia? 120	

In this work, we provide the missing link between previous crustal- and mantle-scale studies, 121	

presenting a new upper lithospheric-scale high-resolution 3D seismic model of Portugal. To 122	

this end, we use a state-of-the-art methodology of ambient noise tomography. Empirical 123	
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Green functions are computed using phase correlation and phase weighted stack (Schimmel 124	

et al., 2011). Robust group velocities and their uncertainties are measured using the S-125	

transform, combined with a random sampling and subset stacking method. Regionalized 126	

group velocities are then inverted on a 2D grid using a novel trans-dimensional inversion 127	

scheme, resulting in a new high-resolution S-wave velocity model of the Portuguese crust and 128	

upper mantle down to 60 km. The model has a lateral resolution of 50 km, allowing to 129	

investigate the signature at depth of the geological structures observed at the surface.  130	

 131	

 132	

2. DATA PROCESSING  133	

The data used in this study was recorded continuously during 24 months, from June 2010 to 134	

June 2012, by a network of 54 broadband stations. This network had an average interstation 135	

distance of ~50 km and was designed in the framework of project WILAS (Dias et al., 2010). 136	

Data from the DOCTAR experiment (2011 to 2012) were also included, resulting in a 137	

densification of the seismic network in the Alentejo region (Matos et al., 2018) and increasing 138	

the total number of stations to 64 (Fig. 2). Overall, we used data from networks PM (Instituto 139	

Português do Mar e da Atmosfera, I.P. 2006), LX (Instituto Dom Luiz (IDL)-Faculdade De 140	

Ciências Da Universidade De Lisboa 2003) , WM (San Fernando Royal Naval Observatory(ROA) 141	

1996) , IP, GE (GEOFON Data Centre 1993), SS, 8A (Dias et al., 2010), Y7. 142	

 143	
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Figure 2 - Location of the broadband seismic stations used in this study. The colours mark 

the different seismic networks. Temporary networks operated between 2010-2012 (WILAS 

8A) and 2011-2012 (DOCTAR Y7). 

 144	
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The 64 seismic stations were equipped with a variety of broadband seismometers, with corner 145	

frequencies ranging from 30 to 120 s (Guralp CMG-40T, Guralp CMG-3T, Guralp CMG-3ESP, 146	

Streckeisen STS-2), and several types of data loggers (Earth Data PR6-24, Reftek, Quanterra). 147	

Data was recorded continuously at 40, 50, 80 and 100 samples per second. More detailed 148	

information on the permanent networks and on the WILAS temporary network (Dias et al., 149	

2010) can be found in Carrilho et al. (2021) and Custódio et al. (2014). The DOCTAR 150	

deployment is described in Matos et al. (2018). 151	

The estimation of Rayleigh-wave empirical Green's functions (EGF) from ambient noise cross-152	

correlations was made in three main steps: (1) pre-processing; (2) cross-correlation for each 153	

inter-station pair and (3) stack of correlograms to improve the signal-to-noise ratio. The first 154	

step (pre-processing) comprises decimation to one sample per second, instrumental response 155	

removal and data conversion to true ground velocity, mean removal and detrending.  156	

We are interested in the period range that includes the primary and secondary microseisms, 157	

where ambient-noise energy is highest and consists mainly of surface waves. Also, due to the 158	

inter-station spacing (Fig. S3) and network aperture (Fig. 2), the optimal period band ranges 159	

from 5 to 30 s. Therefore, we apply a fourth-order zero-phase band-pass Butterworth filter in 160	

the period range between 2 and 50 s that eliminates energy outside our range of interest. 161	

Finally, we divide the entire dataset into 24-hour-length time-series.  162	

As shown in previous studies (see for e.g. Bensen et al., 2007; Bensen et al., 2008; Silveira et 163	

al., 2013), the use of the classical cross-correlation and linear stack methods requires 164	

preliminary time-domain normalization and spectral whitening to reduce the influence of 165	

other large-amplitude events such as earthquakes. In this study, we apply the Phase Cross-166	

Correlation method (PCC), followed by a time-frequency Phase-Weighted Stack (tf-PWS), built 167	

by Schimmel and Gallart (2007) upon the PWS developed by Schimmel and Paulssen (1997) 168	

(Schimmel et al., 2011). As shown by Schimmel et al. (2011, 2018), PCC is amplitude unbiased 169	

and needs no further pre-processing (e.g., time and frequency domain normalizations). 170	
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Another advantage of using PCC and tf-PWS is their higher ability to attenuate incoherent 171	

noise, thus facilitating the extraction of EGFs from cross-correlograms. A detailed description 172	

of the method can be found in Schimmel et al. (2011).  173	

  

 

Figure 3 - Plot of the Empirical Green Functions for the entire data set as a function of inter-

station distance and time. The red lines mark a Rayleigh wave arrival with a velocity of  

3 km/s. (a) Both causal and acausal lags are displayed. (b) Empirical Green Functions 

obtained by phase weighted stack of both causal and acausal phase correlograms.  

 174	

a) b)



11	
	

Fig. 3 shows a plot of the resulting EGFs, obtained from the two years of data, displaying 175	

interstation distance versus time lag. In the period band investigated (5 – 30 s), we see that 176	

the EGFs are dominated by the Rayleigh-wave fundamental mode. In Fig. 3a, dispersive 177	

Rayleigh wave trains are visible in both causal and acausal branches. We clearly identify the 178	

move-out of the wave trains as a function of distance, with an average apparent velocity of 179	

~3.0 km/s. To obtain the final EGFs (Fig. 3b), we phase-weighted stacked the causal and 180	

acausal cross-correlograms using tf-PWS.  181	

Finally, we measured the Rayleigh-wave fundamental-mode group velocities on the EGFs 182	

following the approach developed by Schimmel et al. (2017). This technique uses the S-183	

transform (Stockwell et al., 1996) and is equivalent to filtering the EGFs using narrow-band 184	

frequency-centered Gaussian filters, as originally proposed by Dziewonski at al. (1969).  Group 185	

velocity dispersion curves are then obtained by picking the maximum energy in the time-186	

frequency diagrams (see Supplementary material Fig. S1). The frequency higher limit is 187	

dictated by energy scattering at high frequencies, whereas the interstation distance controls 188	

the lowest analyzed frequencies. Empirical practice recommends that interstation distances 189	

longer than two/three wavelengths be used to obtain reliable dispersion curves for far-field 190	

propagating surface waves. However, Luo et al. (2015) showed that cross-correlations with 191	

shorter interstation distances, up to only one wavelength, can also be reliable and consistent 192	

with those computed for interstation distances longer than three wavelengths. Accordingly, 193	

in this study we limited the dispersion curve analysis to the period range between 5.0 and  194	

30.0 s.  195	

Group velocity uncertainties are estimated using a random sampling and subset tf-PWS 196	

approach (Schimmel et al., 2017).  For each interstation path, several stacks with 50% of all 197	

available daily cross-correlations are randomly selected and the group velocity estimated. 198	

These sub-sampled group-velocity dispersion curves are then compared with the reference 199	

group-velocity obtained from the stack of the entire dataset.  This technique provides robust 200	
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measurements of Rayleigh wave fundamental mode group velocities and associated 201	

uncertainties. Fig. S1 shows an example of an energy diagram and group velocity selection. All 202	

energy diagrams were visually inspected and inconsistent measurements discarded (see 203	

example in Fig. S2). The outliers removed corresponded to ~20% of all dispersion curves. The 204	

final dataset consists of 1034 dispersion curves, whose distribution by period and inter-station 205	

distance is shown in Fig. S3. Figure 4 shows all final group velocities as a function of period, 206	

together with the average group velocity. Data uncertainties are in the range 0.01 – 0.2 km/s. 207	

 

Figure 4 -– The 1034 group-velocity measurements (grey) corresponding to all selected 

station pairs as a function of frequency. The average group velocity is plotted in red for 

comparison. 

 208	

 209	

 210	

3. SURFACE-WAVE TOMOGRAPHY 211	

 212	

3.1 Methodology 213	

The 3-D tomographic maps were obtained from the dispersion curves in two steps. In the first 214	

step, we performed a 2D inversion to obtain laterally varying group velocities for 22 periods 215	

between 7 and 30 s. We discarded dispersion measurements below 7s due to the low number 216	
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of interstation paths between 5 and 7s. In the second step, we inverted the Rayleigh wave 217	

local group velocities to obtain the S-wave velocities as a function of depth. 218	

To quickly evaluate the resolving power of our dataset, we conducted a checkerboard test, 219	

using the Fast Marching Surface Tomography (FMST) method (Rawlinson and Sambridge, 220	

2005). The network geometry provides a dense and azimuthally well-distributed ray path 221	

coverage, which results in tomographic images with good resolution (Fig. S4 in Supplementary 222	

material).  223	

We used the 2D inversion method proposed by Montagner (1986), which is based on the 224	

continuous formulation of the inverse problem proposed by Tarantola and Valette (1982), to 225	

invert inter-station dispersion measurements. Further details on the 2D inversion method can 226	

be found in the Supplementary Material. Fig. S5 shows examples of the resulting lateral 227	

distribution of group velocities at three chosen periods. In order to quantify the sensitivity of 228	

the group velocity of the different periods, we calculated the sensitivity kernels (see 229	

Supplementary Fig. S6). Different wave periods are sensitive to different depths, with the 230	

longer periods allowing to sample the structure until a depth of  231	

60 km. 232	

Finally, we inverted the group velocities on a grid of 0.25o x 0.25o in latitude and longitude, to 233	

obtain the 3D Vs model. Because there is a trade-off between crustal velocity and Moho 234	

depth, we fixed the Moho depth at each grid point. We used the Moho depths given by Díaz 235	

& Gallart (2009) and Dündar et al. (2016), smoothed to the lateral resolution of 50 km of our 236	

group velocity maps.  237	

The 3D inversion scheme that we used follows a novel approach proposed by Haned et al. 238	

(2016). For a given S-wave velocity model as a function of depth z, VS(z), synthetic group 239	

velocities, Usyn(Tn), for periods Tn are computed using the approach of Saito (1988). The S-240	

wave velocity model that explains the observed group velocities Uobs(Tn) is determined by 241	
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minimizing the misfit function between observations (Uobs(Tn)) and model predictions 242	

(Usyn(Tn)): 243	

𝜒#$ =
1
𝑁
( ⌊𝑈+,-(𝑇0) − 𝑈-30(𝑇0)⌋$ 𝜎#$⁄ (𝑇0)
7

089

, 
 

(3) 

 244	

where 𝜎#  is the measurement error. 245	

This inverse problem is non-unique and therefore a condition of smoothness is imposed on 246	

VS(z). On the other hand, the Moho discontinuity must be taken into account. In order to 247	

consider both the model smoothness and the Moho discontinuity, Vs(z) is represented as a 248	

sum of two terms, as proposed by Haned et al. (2016): 249	

𝑉<(𝑧) = 𝑉<>(𝑧) + ( 𝑉@𝑁@,$(𝑧)
AB9

@8>

, 
 

(4) 

where 𝑉<>(𝑧)	is the a priori model with discontinuities and the second term is a continuous 250	

and smooth curve expanded into a series of B-spline basis functions 𝑁@,$(𝑧)	with weight 251	

coefficients 𝑉@. These weight coefficients 𝑉@ are the model parameters. 252	

The a priori model in the mantle is PREM (Dziewonski & Anderson, 1981). For each grid point, 253	

the local Moho depth is fixed as explained previously. The local uniform a priori velocity 𝑉<>(𝑧) 254	

in the crust can vary. In order to determine it, for a given 𝑉<>(𝑧), we perform the inversion 255	

(described later) and the homogeneity of the obtained solution VS(z) is estimated by the 256	

equation: 257	

 258	

‖𝑉<E(𝑧)‖ = F[𝑉<E(𝑧)]$𝑑𝑧, 
 (5) 

where 𝑉<E(𝑧) = 𝑑𝑉< (𝑧) 𝑑𝑧⁄  is the depth derivative of the S-wave velocity. This integration is 259	

performed over the mantle part of the model down to 80 km depth, excluding the Moho 260	

discontinuity. The process is then repeated with different crustal  𝑉<>(𝑧) in the empirical 261	

interval from 2.8 to 4.3 km/s until a minimum of ‖𝑉<E(𝑧)‖ is achieved. Thus, the crustal a priori 262	
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model is determined by a condition of homogeneity of the inverted model. Note that because 263	

the inversion procedure varies VS(z) by adding splines according to equation (2), the 264	

optimization of the a priori velocity 𝑉<>(𝑧) in the crust means in fact changing only the value 265	

of the velocity discontinuity at the Moho depth. 266	

The inversion procedure is a composition of two nested loops (Haned et al., 2016): the inner 267	

loop computes for a given spline basis {𝑁@,$} the optimum model weight coefficients 𝑉@, and 268	

the outer loop determines the optimum spline basis which can be defined using a single 269	

parameter (M), as described below. The inner loop uses a simulated annealing optimization 270	

algorithm [Press (2007), chapter 10.9] to minimize the misfit function (3). The outer loop uses 271	

the golden section search in one dimension [Press (2007), chapter 10.1] to minimize a 272	

posteriori model variance 𝜒J$  jointly with the misfit function 𝜒#$. Thus, it provides an optimal 273	

level of regularization and enables to determine the single parameter M of the spline basis.  274	

The parameter M is a continuous variable  that enables to describe the spline basis. Each spline 275	

is defined by 4 knots along the depth axis and there is an overlap of three knots between two 276	

adjacent splines. For a given M we compute d, the distance along the depth axis between the 277	

knots of each spline, using equation d=D/(M+2), where D is the maximum depth of the model 278	

(here 85 km). The integer part of M gives the number of splines and the integer of (M+3) gives 279	

the total number of knots. The non-zero fractional part of M gives the compression of the 280	

knots toward the surface with the lowest knot being above D. 281	

For any value of M (integer or not), the spline basis thus defined has equidistant knots which 282	

are separated by the distance d. But the inversion program uses non-equidistant knots for 283	

better performance. The described equidistant knots are converted into the non-equidistant 284	

ones through the transformation y(x) = bx + (1 − b)x^a, where x is the normalized depth (when 285	

D=1), a and b are the parameters in the intervals of 3 < a < 4, 0.2 < b < 0.4 as described in 286	

Haned et al. (2016, see their figure B1). 287	
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When the optimal Vs model has been obtained, the a posteriori model variance 𝜒J$  is 288	

estimated as in Haned et al., (2016). To illustrate the effect of the a priori crustal model 289	

optimization, Fig. 5 shows examples of synthetic data inversion. Synthetic group velocity is 290	

calculated for a target model shown by a black line. The panel (a) represents a result of 291	

inversion VS(z) shown by the red line when the crustal optimization is used. We observe almost 292	

perfect recovery in the mantle and a smoothed version of two-layered crust since no inter-293	

crustal discontinuities are assumed. The optimal a priori model 𝑉<>(𝑧), shown by the blue line, 294	

coincides with the target model below the Moho.  295	

In the panels (b) and (c) the crustal optimization is not used. The inversion procedure alone 296	

requires specifying a crustal a priori velocity 𝑉<>(𝑧). Panels (b) and (c) demonstrate the result 297	

of the inversion when the a priori 𝑉<>(𝑧) is underestimated (b) or overestimated (c). In both 298	

cases the result of the inversion 𝑉<(𝑧)	is distorted, but in a complementary way, i.e. with  299	

𝑉<E(𝑧) < 0 and 𝑉<E(𝑧) > 0	in the mantle right below Moho for (b) and (c) respectively. In all 300	

cases shown, the Moho depth is fixed and known independently. 301	
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 302	

 

Figure 5 – Synthetic inversions of group velocities. The target model and the result of 

inversion are shown by black and red lines, respectively. The blue line shows the a priori 

model used. (a) Using an a priori crustal model that was optimized. (b) Using a non-

optimized underestimated a priori velocity VS
0(z). The result is distorted in the uppermost 

mantle and 𝑉<E(𝑧) < 0. (c) Using a non-optimized overestimated a priori velocity VS
0(z). The 

result is also distorted but with  𝑉<E(𝑧) > 0	in the uppermost mantle (24-40 km).  

 303	
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Figure 6 - (a) Synthetic tests with a mantle anomaly. The target model (black) with a low- 

velocity uppermost mantle is taken at latitude 40.25o and longitude −8.5o. The number of 

layers is reduced to 3 in crust and 2 in mantle. The result of inversion is shown in red. (b) 

The same as (a) but for a model at latitude 41.25o and longitude −8.25o with a high-velocity 

uppermost mantle. 

  305	

Fig. 6 shows more realistic synthetic tests that consider models with mantle anomalies. The 306	

models obtained by inversion are approximated by a small number of layers, which makes 307	

them less smooth and more difficult to retrieve. Nonetheless, the inverted Vs models 308	

approximate well the target models, both in the case of the low- and high-velocity anomalies 309	

in the uppermost mantle. 310	
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3.2 Results 312	

Figures 7, 8 and 9 present the 3D S-wave model, displayed on selected horizontal planes and 313	

vertical profiles. To facilitate the joint interpretation of lithospheric Vs structure, topography 314	

and seismicity we also show topographic profiles and the seismicity recorded between 1995 315	

and 2013 (Custódio et al., 2015, Veludo et al., 2017) on a selected volume around each 316	

plane/profile. 317	

Fig. 7 shows the Vs model at different depths, ranging from 5 to 60 km, together with a 318	

topographic map and the main tectonic features from Fig. 1a superimposed. In particular, the 319	

limits of the main tectonic units are plotted as grey dashed lines. Velocity perturbations are 320	

presented in percentage with respect to the average Vs at each depth. The laterally variable 321	

Vs increase at the Moho may therefore introduce contrasts in the velocities at a given depth. 322	

As such, at 25 and 30 km depths, we computed the Vs perturbations by taking into account 323	

whether each cell was still in the crust or already in the mantle, according to the predicted 324	

Moho depth. The crustal thickness ranges between 24 and 34 km, with an average of 30 km; 325	

therefore, the first 4 subplots (b-e) reflect the crustal structure whereas the last two (40 and 326	

60 km depth) (h-i) show the uppermost mantle.  327	
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Figure 7 - a) - Topographic map, limits of the main tectonic units (grey dashed lines), and seismicity 

recorded between 2000 and 2014 relocated by Veludo et al. 2017 (black dots). b) to i) S-wave 
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velocity maps at different depths. Velocity perturbations are displayed in percentage with respect 

to the average model. Depth and the Vs average are indicated at the bottom of each map. At 25 and 

30 km the average was computed separately for cells above and beneath the Moho (Díaz and 

Gallart, 2009, Dündar et al., 2015). Earthquakes are plotted in a volume of +/- 2 km around each 

depth.  

 

At most depths the velocity anomalies are relatively smooth, as would be expected from a 328	

surface-wave tomography, and vary in the interval between -10% to +10%. At 5 km, most 329	

anomalies follow the limits of the variscan contacts associated with the Ibero-Armorican Arc 330	

and their interception with the more recent alpine structures (LB and AB basins).  In the crust, 331	

most positive anomalies are located in the variscan domain, with some extending down to 60 332	

km, namely in the north of Portugal. The Alpine inverted basins correspond to negative 333	

anomalies with a shallower expression. 334	

Fig. 8 and Fig. 9 present several vertical profiles that extend from 5 km to 60 km depth, 335	

together with the corresponding topographic profile (with vertical exaggeration). For 336	

reference, the Moho depths from Díaz et al. (2015) and Dundar et al. (2016) are plotted on 337	

the vertical profiles as grey dashed lines.  338	

In supplementary material we further show the characteristic dispersion curves for the 339	

different tectonic units (Figure S7). The curves exhibit a clear regional variation, with those of 340	

the sedimentary basins and of the South Portuguese Zone (SPZ) presenting lower group 341	

velocities at short periods.   342	

 343	

 344	

4. DISCUSSION  345	

The comparison between surface features (Fig.1) and Vs at depth (Fig.7) shows that  the 346	

surface features seem to extend into the upper crust, roughly down to 15 km depth. However, 347	
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this good association changes significantly for the lower crust and uppermost mantle. In the 348	

upper-middle crust, down to ~20km depth, the Vs model is consistent with the results of the 349	

local earthquake tomography of Veludo et al. (2017).  350	

 351	

Galícia Trás-os-Montes Zone  352	

To the North, in the area corresponding to the Galícia Trás-os-Montes Zone (around 41.5ºN, 353	

GTMZ in Fig. 7a), we image a shallow strong positive anomaly that extends down to 15 km 354	

depth. This positive anomaly is roughly limited by the Penacova-Régua-Verín Fault system 355	

(PRV in Fig. 1b). The southeast of the GTMZ sector presents a negative anomaly down to 10 356	

km, followed by a positive anomaly below and then another negative anomaly in the lower 357	

crust. This positive anomaly with a thin overlying low-velocity layer, also shown in Profile E-E’ 358	

in Fig. 9, is consistent with the pile of allochthonous thrust sheets that compose the peculiar 359	

tectonic unit called Morais and Bragança massifs, overlying the autochthonous Central Iberian 360	

Zone (CIZ) (Arenas et al., 2016b, Dias and Ribeiro, 1995, Ribeiro et al., 2007, Simancas et al., 361	

2001). Further, profiles E-E’ and G-G’ (Fig. 9) are also consistent also with a crustal thickening 362	

to the NE sector of Portugal, as previously suggested by receiver function results (Dündar et 363	

al., 2016). 364	

In sum, most positive velocities anomalies in the GMTZ seem to be confined to the upper 365	

crust, consistent with previous results (e.g. Attanayake et al., 2017 or Veludo et al., 2017), and 366	

in agreement with the presence of a thin shell, composed of allochthonous thrust sheets 367	

overlying the CIZ. As an exception to this result, we image only a low-velocity anomaly roughly 368	

cantered around the PRV fault system. 369	

 370	

Central Iberian Zone 371	

The Central Iberian Zone (CIZ) presents a weak gradient between areas of low and high 372	

velocities, pointing to a relatively homogenous velocity structure. Its western sector has 373	
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higher Vs values than the eastern sector, and the limit between the two roughly coincides with 374	

the Manteigas-Vilariça-Bragança fault system (MVB in Fig. 1b). This observation is consistent 375	

with the Vp values of Veludo et al. (2017) for the upper and middle crust. Newly imaged in our 376	

tomography is the extension of that velocity contrast into the upper mantle, suggesting that 377	

the NNE-SSW MVB fault system is a lithospheric-scale feature. It should be noted that the MVB 378	

fault is marked by instrumental seismicity at crustal level. On the other hand, the NE-SW Seia-379	

Lousã and Ponsul faults (SL and Po in fig.1) correspond to only minor structural contrasts in 380	

our model.   381	

The vertical profiles of Fig. 8 and 9 also show that the upper mantle structure beneath the CIZ 382	

is relatively homogenous, as expected from the variscan core unit, with exception of the lower 383	

crust anomaly located in the CIZ-OMZ, south of the Po fault and discussed below. 384	

The contrast between the CIZ (fast Vs) and the adjacent tectonic units (low Vs) – OMZ  to the 385	

south and LB to the west – is very clear at a shallow level (5 km – Fig.7b). The OMZ-CIZ is 386	

roughly coincident with the Tomar-Badajoz-Córdoba shear zone (TBC in Fig. 1b). At depths of 387	

10-20 km, the pattern across the OMZ-CIZ is inverted highlighting a contact between a 388	

relatively slow CIZ to the north and a relatively fast OMZ to the south (Fig.7e).  389	

 390	

Ossa Morena Zone 391	

The Ossa Morena Zone (OMZ) is one of the most distinguished tectonic features in our 392	

tomographic model, marked by a strong fast Vs anomaly over most of the crust (5 to 25 km, 393	

Fig.7b-f). However, Fig. 7 also shows that the OMZ is segmented into two sectors, the limit of 394	

which is roughly parallel to the CIZ-OMZ contact, along the Ciborro-Serra da Ossa alignments, 395	

and marked by a relatively intense seismic alignment, previously noted by Veludo et al. (2017) 396	

and Matos et al. (2018), who called it the Arraiolos Seismic Zone (Arl in Fig. 1b). At upper-397	

middle crustal levels (5 km to 25 km depth), Vs changes from slow to the north of this 398	
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alignment to fast to its south, consistent with results from local earthquake tomography 399	

(Veludo et al., 2017) and magnetoteluric 2D profiles (Almeida et al., 2005).           400	

Deeper, in the middle-lower crust and extending into the upper mantle (25-60 km depth, Fig. 401	

7 f-i), our tomographic model shows a previously unknown low-velocity anomaly, located at 402	

~39.3ºN, roughly where the CIZ-OMZ-LTSB contacts intersect. This strong low-velocity 403	

anomaly, seems to start at the base of the crust and to increasing in amplitude into the 404	

uppermost mantle, where it becomes a dominant signal. The vertical profiles C-C’ (Fig. 8) and 405	

H-G’ (Fig. 9) display the lateral variation across this well-marked transition (~38.8-39 ºN), 406	

extending into the mantle, where the velocity contrast increases.  407	

The analysis of profiles B-B’, C-C’ and D-D’ in Fig. 8 and H-G’ in Fig. 9, suggests the presence of 408	

a low-velocity body, maybe of lenticular shape, located at the base of the crust roughly at the 409	

contact between the CIZ and the OMZ, and limited to the south by something akin to a low-410	

velocity wedge that extends into the mantle. This negative velocity anomaly may correspond 411	

to an anomaly identified in S-wave models obtained from teleseismic tomography, located 412	

roughly beneath the OMZ (Monna et al., 2013; Civiero et al., 2019) and which extends down 413	

to 190 km depth. Attanayake et al. (2017) also obtained low velocities in this region at 25 km 414	

depth, the deepest level in their study. The model proposed by Palomeras et al. (2017) for the 415	

entire Iberian Peninsula does not exhibit a clear low-velocity anomaly in this region. However, 416	

their dataset had a much sparser coverage in Portugal compared to the rest of the peninsula.  417	

Simancas et al. (2013) already reported the presence of anomalous bodies in the deep crust 418	

in this region, albeit associated with high Vp velocities, which they associated with structurally 419	

layered mafic/ultramafic bodies that intruded along a midcrustal decollement.  420	

The nature of the OMZ as a variscan accretionary wedge between the CIZ and the SPZ may 421	

explain the observed Vs structure, with lower velocities to its north associated with subducted 422	

material with stronger sedimentary content, and a southern part composed of harder, more 423	

brittle and faster material, also explaining the concentration of ongoing seismic activity. The 424	
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strong low-velocity anomaly in the lower crust beneath the OMZ-CIZ limit suggest a complex 425	

structure associated with the past tectonic procresses. For depths larger than 10 km and down 426	

to 30 km, the OMZ high velocity anomaly seems to extend further to the west coast, while 427	

receding from the east.  428	

We note that the regions with low Vs anomalies in the southern CIZ and northern OMZ are 429	

devoid of earthquakes. This suggests that seismic deformation concentrates in the regions of 430	

faster seismic velocities, eventually corresponding to more brittle rocks.  431	

 432	

 433	

South Portuguese Zone 434	

The South Portuguese Zone (SPZ) is mostly characterized by a persistent low-velocity anomaly 435	

that extends into the mantle. The OMZ-SPZ contact is very sharp from 5 km down to 20 km 436	

depth, remaining visible around 30 km depth, and shows fast velocities to the north (OMZ) 437	

and slow velocities to the south (SPZ) (Fig. 7). However, at upper levels (5-10 km), this velocity 438	

contrast seems to match better the Albornoa-Aljustrel-Messejana Alignment (AAM in Fig.1b), 439	

i.e, the southern limit of the Iberian Pyrite Belt, than the OMZ-SPZ contact itself, 440	

corresponding to the  Beja ophiolitic complex. These results are consistent with those 441	

obtained in the Vp model of Veludo et al. (2017). Inside the SPZ there is a hint of a W-E increase 442	

in Vs velocities also present in their Vp model. The Southwestern tip of the Algarve, roughly 443	

starting at the Monchique Massif (M in Fig.1b) appears as a distinct feature from the rest of 444	

the SPZ, either marked by strong low velocities at shallow levels or by high velocity anomalies 445	

at depth. This sector has been recognised as a piece of anomalous crust in several studies (see 446	

Arenas et al., 2016b; Dias and Ribeiro, 1995; Ribeiro et al., 2007; Simancas et al., 2001, Veludo 447	

et al, 2017). Being at the edge of our model, we cannot discriminate its exact nature.    448	
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 449	

 

Figure 8 - Vertical profiles through the 3D S-wave velocity model. a)  Topographic map with 

the position of four vertical profiles. Earthquakes recorded between 1995 and 2013 are 

plotted as grey dots or as black dots if they are close do the selected profiles. b) Two W-E 
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profiles crossing the LB and c) two N-S profiles crossing the Arroiolos seismic zone. All 

profiles are coincident with vertical node-planes. S-wave velocities are plotted as absolute 

values. Earthquakes, relocated by Veludo et al. 2017, are plotted around the latitude (b) 

and longitude (c) of the profiles within an interval of +/- 0.05o. 
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Figure	9	-	Vertical	profiles	through the 3D S-wave	velocity	model.	a)	Topographic	

map	 with	 the	 position	 of	 the	 four	 vertical	 profiles.	 Earthquakes	 recorded	

between	1995	and	2013	are	plotted	in	grey	or	black	dots	if	they	are	close	to	the	

selected	profiles.	b)	Profiles	crossing	the	GMTZ	(E-E’)	and	the	SPZ	(F-F’)	zones.	

c)	 Profiles	 along	 the	 contact	 between	 the	 LB	 and	 LTSB	 basins	 (G-G’)	 and	

crossing	all	of	Portugal	from	Southwest	to	Northeast	(H-G’).	S-wave	velocities	

are	plotted	as	absolute	values.	Earthquakes,	 relocated by Veludo et al. 2017,	are	

plotted	around	the	plotted	profiles	within	an	interval	of	+/-	0.05o.	
 

 450	

The Mesocenozoic Basins 451	

In the Mesocenozoic basins (Fig. 1a), at shallow depths, the Lusitanian Basin (LB), the Lower-452	

Tagus and Sado Basins (LTSB) and the Algarve Basin (AB) all display low S-wave velocities, as 453	

expected, corresponding to sedimentary rocks.   454	

The Lusitanian Basin (LB) is clearly marked in the upper crust by a low-velocity anomaly in the 455	

upper 5 km (Fig.7b). Its eastern border is marked by a low-high velocity contact that coincides 456	

with the Porto-Tomar-Ferreira do Alentejo shear zone (PTFA in fig.1b). Unlike in previous 457	

results (e.g. Veludo et al., 2017), it is not possible to access the dip of the PTFA fault or the 458	

exact depth extension of the basin. However, the imaged higher velocities in the mantle 459	

(profile A-A’, ~8.7ºW, Fig. 8) suggest a lithospheric-scale nature of this contact. This contact, 460	

well imaged near the surface and at deeper mantle levels, fades at mid-crustal levels, 461	

eventually due to the inclination of the contact and/or to the increase in velocities of the 462	

Estremadura Limestone Massif, limited by the Nazaré-Condeixa-Alvaiázere fault system (NCA 463	

in Fig.1b).  464	

The Lower-Tagus and Sado Basin (LTSB) corresponds to a strong low Vs anomaly, which 465	

appears to vanish at mid-crustal levels ~15-20 km in Fig. 7.  466	
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The Algarve Basin (AB) is located on the southernmost part of the model, with few rays 467	

crossing it, therefore poorly imaged in our model.  However, its low-velocity anomaly is visible 468	

in the entire crust, until 25 km depth. Still, it could be a smearing effect from the structure 469	

beneath Monchique.  470	

 471	

5. CONCLUSIONS 472	

Phase cross-correlation and phase weighted stack of 24 months of continuous seismic data, 473	

recorded at 64 stations, enabled us to retrieve high quality empirical Green functions. We 474	

were thus able to infer a high-resolution S-wave tomographic model of Portugal, particularly 475	

in the area of the WILAS project. We adapted the trans-dimensional inversion method 476	

presented in Haned et al. (2016) to optimize the a priori crustal model within the inversion 477	

scheme to obtain the shear wave velocity.  The 3D inversion enabled to obtain the crustal and 478	

uppermost mantle structure across Portugal.  479	

We found a good correlation with surface geology, in particular at upper and middle crust 480	

levels. The different tectonic units of the variscan massif and mesocenozoic basins, as well as 481	

their contacts, in general match the observed Vs anomaly pattern. Some important fault 482	

systems, like the MVB or the PTFA, have expression down to the mantle whereas others seem 483	

to be limited to the upper crust. In general, our results support a smoothly varying crust-484	

mantle transition, as observed in Dundar et al. (2016), in particular beneath the CIZ and SPZ.  485	

In the NE Portugal, the Vs model revealed the presence of a middle crust high velocity anomaly 486	

associated with a pile of allochthonous thrust sheets that compose the peculiar tectonic unit 487	

of the Morais and Bragança massifs overlying the autochthonous Central Iberian Zone (CIZ).  488	

In the OMZ, the accretionary wedge nature associated with the Variscan suture is clear at 489	

upper crustal levels and is characterized by a strong lateral velocity variation across the CIZ-490	

OMZ contact and with a low Vs anomaly extending into the uppermost mantle.  491	
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The strongest signal in our 3D tomographic model is a previously unknown low-velocity 492	

anomaly, roughly cylindrical in shape and located below the CIZ-OMZ transition. This anomaly 493	

is very strong in the upper mantle and lower crust but fades into the middle crust. This 494	

anomaly may be due to low-velocity material, probably of sedimentary origin, subducted 495	

along the OMZ-CIZ contact, concentrating in the lower crust. This low-velocity anomaly 496	

coincides with a region of seismic quiescence and may act as an aseismic wedge between two 497	

different deformation sectors, one to the south and the other to the north.   498	

Our shear wave velocity model for the crust and uppermost mantle contributes to 499	

constraining the main tectonic units at depth, filling the gap between the crustal-scale local 500	

earthquake tomography and the mantle scale body-wave tomographic models. In the future, 501	

we intend to include both crustal azimuthal and radial anisotropy in our 3D model, which will 502	

provide a better insight into the crustal stress in the various tectonic units. Future 503	

deployments of regularly spaced seismic stations will allow to invert for azimuthal anisotropy. 504	

Cross-correlation of the horizontal components will also allow to compute Love waves, which 505	

jointly with Rayleigh waves can provide the radial anisotropy. 506	

 507	

 508	
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