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Abstract:  A series of new lanthanide azelates [Ln(aze)(Haze)(H2O)]·H2O {Ln = La (1a), Ce (1b), 

Pr (1c); H2aze = azelaic acid}, [Ln2(aze)3(phen)2]·H2O [Ln = Nd (2a), Er (2b); phen = 

1,10-phenanthroline], [Sm(aze)(Haze)(phen)]·2H2O (3), [Gd(aze)(phen)2]·ClO4 (4) and 

(Hphen)[Tb2(aze)2(phen)4]·3ClO4 (5) were hydrothermal prepared and structurally 

characterized.1a-c are isostructural and show 3-D framework based on 1-D infinite [Ln-O-Ln]n 

chain. 2a-b exhibit sql layer, while 3 displays 1-D chain, where phen ligands locate at both sides 

of the chain. The Ln3+ ions of 4 and 5 are connected by aze2- into two different types of rare 

cationic 1-D chains. The luminescent investigations show that both 2a and 2b exhibit interesting 

NIR luminescence and 5 displays a good potentiality as a luminescent sensor targeted for Fe3+ ion. 

Of particular interest, lanthanide azelates have not been to date documented, while this work 

presents the only examples of lanthanide azelates exhibiting luminescent properties. The magnetic 

properties of some lanthanide azelates were also investigated.  

 

Keywords: Hydrothermal syntheses; Lanthanide azelates; Structure; Luminescent properties.  

                                                                                

 

 

1 Introduction 

Metal coordination polymers (MCPs) have attracted considerable interest, because of 

their intriguing structural topologies and potential applications in the fields of catalysis, 

magnetism, sensors, luminescence, ion exchange and the others [1-5]. Among MCPs, 

lanthanide coordination polymers (Ln-CPs) are regarded as an important class of 

functional MCPs, due to their unique luminescence properties, such as high color purity, 

visible color naked eye, and large Stokes shifts [6-9]. Multiple colors including white light 

emitting materials can be accomplished by adjusting the relative amounts of these Ln3+ 

ions in a material [6-10]. Due to Laporte forbidden f–f transitions of Ln3+ ions, Ln-CPs 

have weak emission intensities and low quantum yields, but suitable π–conjugated 

aromatic chromophore coordinates to Ln3+ ion [11-12], where an energy transfer process 

occurs from the chromophore excited state to the Ln3+ excited state and enhances 

subsequently emission intensities of the Ln3+ ions. Significantly, the brilliant luminescent 

properties of Ln-CPs make them attractive for promising applications as luminescent 
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bioassays and optical sensors [13-22]. 

   Fe3+ is a ubiquitous ion in human or other animals, because a variety of vital cell 

functions (such as the formation of haemoglobin and muscle, the transport of oxygen, and 

the improvement of brain function) are closely related to the specific amount of Fe3+ 

[23-25]. The deficiency or excess of Fe3+ can largely affect human health, resulting in 

hazardous diseases, as exemplified by pathological disorders, anaemia and skin ailments 

[24-26]. Hence, it is important to rapid and selective detection of the amounts of Fe3+. So far, a 

few Ln-CPs exhibit the good luminescent sensor for Fe3+ [26-33], but the progress in this specific 

area has not yet reached what is expected, because of the detection sensitivity limited by the 

luminescent quenching caused via cation exchange. 

 In order to obtain sensitive and selective luminescent sensors, the effective and facile 

approach for the syntheses of the luminescent Ln-CPs is still the judicious choice of 

well-designed organic linker with Ln3+ ion, which affords varied frameworks. The 

carboxylate based ligand with the hard O-donor is preferable to link with hard Ln3+ ion, 

resulting in different new extended frameworks based on the versatile binding modes of 

the carboxylate groups [6-10], while 1,10-phenanthroline (phen) is one of the most widely 

used chromophores in the design of luminescent lanthanide complexes because it can 

absorb and efficiently transfer energy to the Ln3+ excited states [34-36], It is expected that 

the combination of the phen and carboxylate based ligands in the same Ln-CPs may 

generate a new class of materials with novel structures and useful properties. Guided by 

this idea, we have recently used by combining Ln3+ with a mixed phen and organic 

carboxylic acids to successfully construct a series of lanthanide oxo clusters 

{[Ln 8(phen)2Ge12(μ3-O)24T12(H2O)16]·2H2O (Ln = Dy, Er; T = -CH2CH2COO− group], 

[Ln8(phen)2Ge12(μ3-O)24T12(H2O)16]·2phen·16H2O (Ln = Sm, Eu, Gd) and 

[Ho8(phen)2Ge12(μ3-O)24T12(H2O)14]·2phen·13H2O}[37] and lanthanide coordination 

polymers {[Ln(phen)(glu)Cl]n (Ln = Y, Tm; glu = glutarate), [Ln2(phen)2(glu)3]n (Ln = Ce, 

Dy, Tb, Ho), [Sm(phen)(Hpim)(pim)]n·1.5nH2O (H2pim = pimelic acid) and 

[Ln(phen)(pim)]n·nClO4·nH2O (Ln = Gd, Tb, Er)}[38-40], which exhibit stronger 

characteristic Ln3+ emissions, because they are closely related to the incorporation of 

phen chromophores into lanthanide oxo cluster or lanthanide coordination polymeric 
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frameworks. As part of the continuing work in this system, herein we reported the 

hydrothermal syntheses, structures and properties of a series of new lanthanide azelates 

[Ln(aze)(Haze)(H2O)]·H2O [Ln = La (1a), Ce (1b), Pr (1c)], [Ln2(aze)3(phen)2]·H2O [Ln = Nd 

(2a), Er (2b)], [Sm(aze)(Haze)(phen)]·2H2O (3), [Gd(aze)(phen)2]·ClO4 (4) and 

(Hphen)[Tb2(aze)2(phen)4]·3ClO4 (5), whose terbium azelate shows a good potentiality as a 

luminescent sensor targeted for Fe3+. The azelaic acid (H2aze), as a typical flexible linker with 

a –(CH2–)7 spacer, has a flexible bridging capability for the construction of a diversity of 

MCPs. As a result, a large number of new varied MCPs based on the combination of the 

aze2- or Haze- as organic linkers and d- or ds-block metal ions have been reported [41-53], 

but no lanthanide azelates have been reported until now to the best of our knowledge, due 

to synthetic difficulties. Therefore, the present compounds offer the only example of 

lanthanide azelates containing the longer flexible aze2- or Haze- ligands. 

2 Experimental Sections 

2.1 General Remarks 

All analytical grade chemicals were obtained commercially and used without further 

purification. Elemental analyses (C and H) were performed using a PE2400 II elemental analyzer. 

IR spectra were obtained from a powdered sample pelletized with KBr on an ABB Bomen MB 

102 series IR spectrophotometer in the range of 400–4000 cm–1. Room-temperature optical diffuse 

reflectance spectra of the powdered samples were obtained with a Shimadzu UV-3150 

spectrometer. Photoluminescence spectrum and lifetime were performed on an Edinburgh FLS 

980 analytical instrument equipped with 450 W xenon lamp and UF900H high-energy 

microsecond flashlamp as the excitation source. Variable-temperature magnetic susceptibility 

measurements were carried out in the temperature range of 2–300 K with a Quantum Design 

MPMS-5 magnetometer. PXRD patterns were obtained using a Bruker D8 Advance XRD 

diffractometer with Cu Kα radiation (λ = 1.54056 Å).  

2.2 Synthesis of [La(aze)(Haze)(H2O)]·H2O (1a). A mixture of H2aze (0.0328 g, 0.13 mmol), 

LaCl3 (0.1035 g, 0.4 mmol) and water (3 mL) was stirred for 20 min, and then the pH value of the 

mixed solution was adjusted to 6 by ethylenediamine (en) dilute solution (en : H2O = 1 : 100, 

V/V). The final mixture was sealed in a 25 mL Teflonlined autoclave and heated at 130 °C for 10 

days. After cooling to room temperature slowly, light colorless block crystals were isolated. The 
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yield of 1a is 65 % based on LaCl3. Anal. calcd. for 1a, C18H33LaO10, C 39.43 %, H 6.07 %, found: 

C 38.72 %, H 5.81 %. IR (cm-1): 3477(m), 2929(vs), 2845(s), 1635(s), 1539(vs), 1436(vs), 1341(s), 

1271(s), 1194(m), 1093(s), 933(w), 825(s), 774(s). 

2.3 Synthesis of [Ce(aze)(Haze)(H2O)]·H2O (1b). The colorless crystals of 1b were prepared 

similarly from CeCl3 (yield 63% based on CeCl3). Anal. calcd. for 1b, C18H33CeO10, C 39.34 %, H 

6.05 %, found: C 39.96 %, H 5.93 %. IR (cm-1): 3349(m), 2935(s), 2858(s), 1657(w), 1513(vs), 

1443(vs), 1405(s), 1341(s), 1271(m), 1194(m), 1105(w), 940(w), 844(w), 723(s). 

2.4 Synthesis of [Pr(aze)(Haze)(H2O)]·H2O (1c). The green crystals of 1c were prepared 

similarly from PrCl3 (yield 68% based on PrCl3). Anal. calcd. for 1c, C18H33O10Pr, C 39.28 %, H 

6.04 %, found: C 39.74 %, H 5.45 %. IR (cm-1): 3368(s), 2929(vs), 2845(s), 1654(w), 1520(vs), 

1450(s), 1411(s), 1341(m), 1265(m), 1227(m), 1093(w), 946(w), 723(s). 

2.5 Synthesis of [Nd2(aze)3(phen)2]·H2O (2a). A mixture of H2aze (0.0457 g, 0.24 mmol), phen 

(0.0817 g, 0.4 mmol), Nd2O3 (0.1080 g, 0.32 mmol) and water (3 mL) was stirred for 10 min, and 

then the pH value of the mixed solution was adjusted to 2 by HCl (12 mol/L). The final mixture 

was sealed in a 25 mL Teflonlined autoclave and heated at 120 °C for 10 days. After cooling to 

room temperature slowly, pink block crystals were isolated. The yield of 2a is 45 % based on 

Nd2O3. Anal. calcd. for 2a, C51H60N4Nd2O13, C 49.98 %, H 4.93 %, N 4.57 %, found: C 49.82 %, 

H 4.89 %, N 4.64 %. IR (cm-1): 3362(m), 3078(vw), 2935(s), 2858(s), 1644(w), 1584(s), 1520(vs), 

1550(vs), 1405(s), 1347(w), 1309(w), 1265(w), 1194(w), 1099(w), 844(s), 723(s), 627(w). 

2.6 Synthesis of [Er2(aze)3(phen)2]·H2O (2b). The pink prism-like crystals of 2b were prepared 

by a similar method used in the synthesis of the crystals of 2a except that Nd2O3 was replaced by 

Er2O3 (yield 47 %, based on Er2O3). Anal. calcd. for 2b, C51H60Er2N4O13, C 48.17 %, H 4.76 %, N 

4.41 %, found: C 48.27 %, H 4.81 %, N 4.48 %. IR (cm-1): 3356(s), 3058(vw), 2929(vs), 2845(s), 

1551(vs), 1469(m), 1450(m), 1417(s), 1316(w), 1213(w), 1093(s), 946(s), 844(s), 729(s), 691(m), 

589(w). 

2.7 Synthesis of [Sm(aze)(Haze)(phen)]·2H2O (3). A mixture of H2aze (0.0576 g, 0.3 mmol), 

phen (0.0750 g, 0.38 mmol), Sm2O3 (0.0897 g, 0.25 mmol) and water (3 mL) was stirred for 10 

min, and then the pH value of the mixed solution was adjusted to 2 by HCl (12 mol/L). The final 

mixture was sealed in a 25 mL Teflonlined autoclave and heated at 120 °C for 10 days. After 

cooling to room temperature slowly, light yellow block crystals were isolated. The yield of 3 is 
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44 % based on Sm2O3. Anal. calcd. for 3, C30H41N2O10Sm, C 48.69 %, H 5.58 %, N 3.79 %, found: 

C 48.38 %, H 4.98 %, N 4.22 %. IR (cm-1): 3445(m), 3078(vw), 2935(m), 2845(m), 1584(vs), 

1545(vs), 1524(vs), 1341(w), 1309(m), 1093(m), 844(s), 736(s), 633(w). 

2.8 Synthesis of [Gd(aze)(phen)2]·ClO4 (4). A mixture of H2aze (0.0406 g, 0.21 mmol), phen 

(0.0779 g, 0.39 mmol), Gd2O3 (0.1140 g, 0.32 mmol) and water (3 mL) was stirred for 10 min, 

and then the pH value of the mixed solution was adjusted to 2 by HClO4 (12 mol/L). The final 

mixture was sealed in a 25 mL Teflonlined autoclave and heated at 120 °C for 10 days. After 

cooling to room temperature slowly, light yellow block crystals were isolated. The yield of 4 is 

43 % based on Gd2O3. Anal. calcd. for 2, C33H30ClGdN4O8, C 49.34 %, H 3.76 %, N 6.97 %, 

found: C 49.03 %, H 3.64 %, N 6.18 %. IR (cm-1): 3413(m), 3068(w), 2929(s), 2852(s), 1589(vs), 

1520(m), 1424(s), 1335(m), 1150(w), 1086(vs), 850(s), 767(m), 736(s), 627(s). 

2.9 Synthesis of (Hphen)[Tb2(aze)2(phen)4]·3ClO4 (5). A mixture of H2aze (0.0465 g, 0.24 

mmol), phen (0.0817 g, 0.41 mmol), Tb4O7 (0.0770 g, 0.10 mmol) and water (3 mL) was stirred 

for 10 min, and then the pH value of the mixed solution was adjusted to 2 by HClO4 (12 mol/L). 

The final mixture was sealed in a 25 mL Teflonlined autoclave and heated at 120 °C for 10 days. 

After cooling to room temperature slowly, brown block crystals were isolated. The yield of 5 is 

45 % based on Tb4O7. Anal. calcd. for 5, C78H71Cl3N10O21Tb2, C 49.08 %, H 3.75 %, N 7.34 %, 

found: C 49.15 %, H 3.65 %, N 7.25 %. IR (cm-1): 3445(m), 3075(w), 2929(m), 2852(m), 

1589(m), 1551(s), 1462(m), 1417(s), 1335(w), 1099(vs), 850(m), 723(s), 621(m). 

2.10 Crystal Structure Determinations 

Single-crystal X-ray diffraction data for all compounds were collected on a Bruker 

diffractometer-SMART-APEX II using a ω-scan method with graphite monochromated Mo Kα 

radiation (λ = 0.71073 Å). Data reduction and absorption corrections were performed using the 

SAINT and SADABS software packages, respectively [54]. The structures of all compounds were 

solved by direct methods and refined by full-matrix least-squares methods on F2 using the 

SHELXL-2018 program package [55]. The C24-C28 atoms in 2a-b are disordered over site 

occupation factors of 0.5/0.5, while O1w atoms have occupancy of 0.5. For 5, the ClO4
- ions and 

aze2- ligands are disordered. Positions of H atoms attached to the C atoms were geometrically 

placed and H atoms were refined isotropically as a riding mode using the default SHELXTL 

parameters. A summary of crystallographic data is listed in Table 1. The CCDC reference numbers 
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are 1963279-1963286. 

3 Results and Discussion 

3.1 Crystal structure  

Description of [Ln(aze)(Haze)(H2O)]·H2O [Ln = La (1a), Ce (1b), Pr (1c)]. 1a-c are 

isostructural. Hence only 1a is discussed here in detail. 1a crystallizes in the monoclinic space 

group P21/n and its asymmetric unit has one La3+ ion, one Haze-, one aze2-, one coordinated H2O 

molecule and one free H2O molecule (Fig. 1a). The central (-CH2-)7 chain of aze2- and 

Haze-adopts a nearly extended conformation. The central La3+ ion is ten-coordinated environment 

(Fig. 1b) with three O atoms of three Haze-, six O atoms of four aze2- ligands and one coordinated 

water molecule. The La-O bond distances vary from 2.4655(16) to 2.7578(16) Å lying within the 

range of the distances in other La2+ complexes [56]. Haze- and aze2- show different link modes. 

aze2- has two chelating-anti –COO ends (Fig. S1a), while Haze- has one syn and one anti–anti 

–COO ends (Fig. S1b). The adjacent La3+ ions are bridged by chelating-anti –COO group of aze2- 

and anti–anti –COO group of Haze-, resulting in a 1-D infinite chain with La···La distances of 

4.314-4.499 Å. These 1-D infinite chains (Fig. 1c) are further interlinked by syn–COO group of 

Haze- and chelating-anti –COO group of aze2-, forming a 3-D network structure with 1-D channels 

that are occupied by lattice water molecules (Figs. 1d-e). 

---- Insert Fig. 1 here --- 

  Description of [Ln2(aze)3(phen)2]·H2O [Ln = Nd (2a), Er (2b)]. 2a-b have the general 

formula [Ln2(aze)3(phen)2]·H2O and are isostructural. So only 2a is discussed here in detail. The 

crystal structure of 2a consists of 2-D [Nd2(aze)3(phen)2]n layers and free H2O molecules. Each 

Nd3+ ion adopts a distorted tricapped trigonal prism (Fig. 2a) with seven O atoms of five aze2- 

ligands and two N atoms from a chelating phen ligand. The Nd–O/N bond distances vary from 

2.392(4) to 2.679(5) Å lying within the range of the distances in other Nd2+ compounds [57-58]. 

One central (-CH2-)7 chain of aze2- shows a S-like conformation, the other displays a nearly 

extended conformation. aze2- exhibits different link modes with distinct crystal engineering 

functions. One type has two chelating-anti –COO ends (Fig. S1c), and another has one chelating 

and one anti–anti –COO ends (Fig. S1d). Two [Nd(phen)]3+ groups are bridged by two 

chelating-anti –COO and two anti–anti –COO groups, forming centrosymmetric Nd2 dimer with a 

Nd···Nd distance of 3.997 Å. These Nd2 dimers are interconnected via aze2- ligands to give a 2-D 
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layer parallel to the ac plane (Fig. 2b). The topology of the 2-D layer in 2a can be simplified by 

considering the Nd2 dimers and aze2- ligands as nodes and linkers, respectively. As a result, a 2-D 

layer structure of sql topological net with single and double edges is formed (Fig.2c). The Schläfli 

symbol of this net is 44·62. There are π–π stacking interactions of phen ligands within the 

[Nd2(aze)3(phen)2]n layer, and centroid-to-centroid distance of adjacent phen ligands is 3.828 Å 

(Fig.2d), which plays an important role in stabilizing 2a in the solid state. These layers are stacked 

in -AAA- fashion (Fig.2e) and no π–π stacking interactions are observed between the 

[Nd2(aze)3(phen)2]n layers. 

---- Insert Fig. 2 here --- 

  Description of [Sm(aze)(Haze)(phen)]·2H2O (3). The crystal structure of 3 contains 1-D 

neutral [Sm(aze)(Haze)(phen)]n chain and free H2O molecules. The coordination geometry of 

Sm3+ ion can be described as a distorted topcapped square antiprism comprised of five O atoms of 

three Haze- ligands, two O atoms from two aze2- ligands and two N atoms of one phen ligand (Fig. 

3a). The Sm–O/N bond distances are in the range of 2.3654(17)-2.7225(18) Å, compared with 

corresponding values in other Sm3+ complexes [59-60]. Haze- ligand shows chelating coordination 

mode (Fig. S1e), and aze2- ligand has one chelating and one anti–anti –COO ends (Fig. S1d). The 

adjacent [Sm(Haze)(phen)] groups are bridged by aze2- ligands to generate a 1-D neutral 

[Sm(aze)(Haze)(phen)]n chain (Fig. 3b). Haze- and phen ligands with chelating mode coordinate to 

Sm3+ ions and are regularly located at both sides of the chain. These chains are further interacted 

by π-π aromatic stacking interactions between adjacent phen ligands with centroid-to-centroid 

distances of 3.817 Å (Fig. 3c), forming a 2-D layer (Fig. 3d). Then 2-D layers are arranged in a 

parallel manner, resulting in a 3-D supramolecular network structure with 1-D channels, which are 

filled by free H2O molecules. 

---- Insert Fig. 3 here --- 

  Description of [Gd(aze)(phen)2]·ClO4 (4) and (Hphen)-[Tb2(aze)2(phen)4]·3ClO4 (5). The 

asymmetric unit of 4 contains one Gd3+ ion, one aze2- ligand, two phen ligands and one ClO4
- 

anion (Fig. S4). The central (-CH2-)7 chain of aze2- in 4 shows a curved configuration, as 

evidenced by torsion angles deviating from 180 °. The aze2- ligand has two anti–anti –COO ends 

connecting neighboring [Gd(phen)2]
3+ cations to generate a 1-D cationic [Gd(aze)(phen)2

+]n chain 

(Fig. 4a). These chains are arranged in a parallel manner and interacted via π–π stacking 
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interactions of phen ligands with centroid-to-centroid distance of 3.656 Å, resulting in a 

pseudo-layered arrangement parallel to the (001) plane (Fig. 4c). These pseudo-layers are further 

stacked in -ABA- fashion along the c-axis, leading to a 3-D supramolecular network structure (Fig. 

4e). 

---- Insert Fig. 4 here --- 

  The crystal structure of 5 consists of protonated Hphen+ ion, 1-D cationic [Tb(aze)(phen)2
+]n 

chain and free ClO4
- anions. There are two kinds of coordination modes of aze2- ligands in 5. One 

has two anti–anti –COO ends (Fig. S1f), while the other has two chelating-anti –COO ends (Fig. 

S1c). The adjacent Tb3+ ions are bridged by two types of aze2- ligands to form 1-D infinite 

[Tb(aze)(phen)2
+]n chains with a shortest Tb···Tb distance of 3.896 Å (Fig. 4b). These chains are 

aligned in an antiparallel fashion and connected by π–π stacking interactions of phen ligands with 

centroid-to-centroid distances of 3.591-3.891 Å, forming a pseudo-layered arrangement (Fig. 4d). 

The adjacent layers are stacked in an -AAA- sequence along the c axis, and the interlayer distance 

is estimated to be 13.01 Å (Fig. 4f). The free protonated Hphen+ ions and ClO4
- anions are located 

at the interlayer spaces. 

  Although 4 and 5 contain same formula [Ln(aze)(phen)2
+]n, they display completely different 

structures. The first is that different coordination modes of aze2- ligands: 4 has only type of aze2- 

ligand, and 5 has two types of aze2- ligands. The second is different packing of 1-D 

[Ln(aze)(phen)2
+]n chains: the pseudo-layer based on the parallel arrangement of 1-D chains in 4 is 

stacked in an -ABA- sequence, but the pseudo-layer constructed by the antiparallel arrangement of 

1-D chains in 5 is stacked in an -AAA- sequence. Moreover, although some MCPs built up from 

the linkages of transition metal ions and aze2- or Haze- ligands have been reported, they 

usually show the neutral extended frameworks. Notably, cationic extended frameworks of 

MCPs have not been obtained until now to the best of our knowledge. Therefore, 4 and 5 

provide the only examples of cationic metal azelate frameworks. 

3.2 Synthetic aspects and Spectroscopic properties 

  A series of lanthanide azelates have been obtained under hydrothermal conditions in the 

presence of different acid or alkali reagents. Originally, the pH value of mixed solution was 

adjusted to 6 by ethylenediamine, resulting in the formation of 3-D neutral frameworks 

[Ln(aze)(Haze)(H2O)]·H2O [Ln = La (1a), Ce (1b), Pr (1c)] with two different types of ligand 
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binding modes, whose positive charge of Ln3+ ions is compensated by one aze2- and one Haze-. 

To consider the high-vibrational O-H oscillator of H2O molecule tending to quench 

photoluminescence of the Ln3+ ions, phen chromophore, which can prevent the Ln3+ ion from the 

H2O molecules, was introduced into the reaction system and the pH value was adjusted to 2 by 

HCl, leading to the 2-D neutral layers [Ln2(aze)3(phen)2]·H2O [Ln = Nd (2a), Er (2b)]. When the 

quantity of H2aze ligand was slightly increased, other parameters remained unchanged, new 1-D 

chain [Sm(aze)-(Haze)(phen)]·2H2O (3) with doubly and singly deprotonated ligands is formed. 

When HCl was replaced by HClO4 under similar condition to result in another type of 1-D 

chain [Gd(aze)(phen)2]·ClO4 (4), where ClO4
- anion was incorporated into the final structure 

and compensates the positive charge of [Gd(aze)(phen)2
+]n. Under similar conditions, phen 

was slightly increased, leading to another new 1-D chain (Hphen)[Tb2(aze)2(phen)4]·3ClO4 (5) 

containing protonated Hphen+ cation. Notably, phen was introduced into the lanthanide azelate 

framework, it acting as a terminating group prevents further connections, resulting in the low 

dimensional structures, for instance, 2a-b show 2-D layer, while 3-5 exhibit 1-D chain. 

--- Insert Fig. 5 here --- 

  Their IR spectra (Fig. S5) exhibit the characteristic vC=O/C–O asymmetric stretching (1513–1657 

cm-1) and vC=O/C–O symmetric stretching (1335–1469 cm-1) of carboxylate groups. The broad bands 

at 3345–3477 cm-1 can be assigned to vO-H stretching of coordinated H2O or free H2O molecules. 

For 2a-b and 3-5, the weak bands at 3058–3078 cm-1 belong to the vC–H stretching of phen ligand, 

but no similar bands have been observed in 1a-c. For 4 and 5, the strong band at about 1097 cm-1 

is characteristic of ClO4
- ion. UV/Vis absorption spectra of all compounds (Fig. 5 and Fig. S6) 

were calculated from the data of diffuse reflectance by using the Kubelka–Munk function [61]. 

The strong absorptions in the ultraviolet region can be assigned to the O/N→Ln charge transfers 

of all compounds. In addition, there are some absorption characteristics of the f–f transitions of 

Ln3+ ions {442 nm (3H4→
3P2), 467 nm (3H4→

3P1), 483 nm (3H4→
3P0) and 590 (3H4→

1D2) for Pr3+, 

and 522 nm (4I9/2→
4G7/2 +

2K13/2), 581 nm (4I9/2→
4G5/2 + 2G7/2), 742 nm (4I9/2→

4S3/2 + 4F7/2), 800 

nm (4I9/2→
4F5/2 + 2H9/2) and 871 nm (4I9/2→

4F3/2) for Nd3+, and 400 nm (6H5/2→
4F7/2) and 1096 nm 

(6H5/2→
6F9/2) for Sm3+, and 378 nm (4I15/2→

2H9/2), 406 nm (4I15/2→
4F3/2), 447 nm (4I15/2→

4F5/2), 

488 nm (4I15/2→
4F7/2), 521 nm (4I15/2→

2H11/2), 653 nm (4I15/2→
4F9/2) and 975 nm (4I15/2→

4F11/2) for 

Er3+}, which are in agreement with the UV-vis spectra of other lanthanide complexes [62-64]. 
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--- Insert Fig. 6 here --- 

  Ln-CPs usually show promising luminescent properties due to the effective 

intramolecular energy transfer from the organic ligand to lanthanide ions. For 2a-b, since 

the energy levels of Nd3+ and Er3+ ions are very close to one another, the emissions are often in the 

infrared region (Figs. 6a-b) [65]. Upon excitation at 345 nm in the UV region, 2a exhibits the 

typical f-f transition at 1061 and 1340 nm corresponding to 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions 

of Nd3+ ions, while 2b shows a broad band from 1450 to 1650 with the maximum emission 

wavelength at 1523 nm originating from the transition of 4I13/2→4I15/2 of Er3+ ions. This suggests 

that the ligands can sensitize the emission of Nd3+ and Er3+ions by UV radiation. The 

lifetime-decay curves of 2a and 2b on monitoring the emission at λ = 1061 nm (2a, Fig. S7) and 

1523 nm (2b, Fig. S8) obey a second-order exponential function. The resulting lifetime values are 

τ1 = 1.51 µs (2a, 56.77 %) and 4.13 µs (2b, 53.61 %), τ2 = 12.35 µs (2a, 43.23 %) and 18.33 µs 

(2b, 46.39 %). The average decay time (τ*) can be determined by using the formula τ* = (A1τ1
2 

+A2τ2
2)/(A1τ1 +A2τ2) [66], thus their average lifetimes are calculated to be 5.66 µs for 2a and 9.23 

µs for 2b. The quantum efficiencies for 2a and 2b are 17.18 % and 18.37 %, respectively.  

  Fig. 6c presents the emission spectrum of 3 with 378 nm excitation wavelength. 3 shows three 

emission transitions that are assigned to 4G5/2→6H5/2 (561 nm), 4G5/2→6H7/2 (596 nm), and 

4G5/2→6H9/2 (643 nm) optical transitions. Among them, the transition 4G5/2→6H7/2 has shown a 

strong orange emission. Generally, the greater the intensity of the electric dipole (ED) transition, 

the more the asymmetry nature [67]. The 4G5/2→6H9/2 (ED) transition of Sm3+ ion in 3 is more 

intense than 4G5/2→6H5/2 magnetic dipole transition, specifying the asymmetric nature of a 

distorted topcapped square antiprism (SmN2O7). The luminescence decay curve of 3 related to the 

4G5/2→6H7/2 emission is shown in Fig. S9. The decay curve can be well fitted with a second-order 

exponential function. The fitting lifetimes were τ1 = 2.32 µs (38.91 %) and τ2 = 9.76 µs (61.09 %) 

and the average lifetime was calculated to be τ* = 6.91 µs. Upon excitation at 275 nm, 4 shows a 

sharp line peak at about 312 nm and a broad emission from 350 to 540 nm with maximum 

emission wavelength of 396 nm (Fig. S10). The emission peak at 312 nm is assigned to the 

transition 6P7/2→
8S7/2 for Gd3+ [68], and the strong emission at 396 nm originates from the phen 

ligand, similar to the emission of pure phen ligand (Fig. S11) [37]. 

  For 5, upon excitation at the most intensive wavelength 271 nm, the emission spectrum (Fig. 
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6d) exhibits four strong emission bands at 489, 545, 584 and 621 nm corresponding to 5D4→7FJ 

(J=6, 5, 4, 3), and three weak bands located at 648, 667 and 679 nm arising from the 5D4→7FJ (J=2, 

1, 0), respectively, with the green emission of 5D4→7F5 as the dominant band. The phen ligand can 

give an emission in the UV and blue regions (Fig. S11). Nearly no emission from the phen ligand 

is detected, indicating an efficient energy transfer from the ligand to Tb3+ ions, which supports the 

idea that the quenching of the phen-related emission can be attributed to ligand-to-Tb3+ energy 

transfer. The luminescence decay curve of 5 related to the 5D4→7F5 emission is shown in Fig. S12. 

The decay curve is a bi-exponential function, so resulting in τ1 = 2.16 µs (8.72 %), τ2 = 496.85 µs 

(91.28 %), and τ* = 0.50 ms. No emissions of 1a-c are observed in the visible region, which could 

be related to the absence of phen chromophore. 

--- Insert Fig. 7 here --- 

3.3 Luminescent sensor 

  To consider the free Hphen+ ion with Lewis basic N-donor and the bright green luminescence of 

5, the luminescent detection for different metal ions was assessed. 1 mg of 5 was dispersed into 5 

mL of an aqueous solution (0.1 M) containing different MClx (M = Li+, Na+, K+, Zn2+, Fe3+), 

forming a suspension solution by an ultrasound method, the characteristic emissions of Tb3+ ions 

were measured. As clearly seen from Figs. 7a-b, Li+, Na+, K+ and Zn2+ decreased the luminescent 

intensity of the sample to a different extent, while the luminescent emission of 5 was severely 

quenched in the FeCl3 suspension. The possible reason is that binding of Fe3+ to the N atoms of 

free Hphen+ ion leads to luminescent quenching of 5, and the paramagnetic effect caused by the 

unpaired d-electrons in Fe3+ promotes dissipation of the excited state energy in a nonradiative 

process [27]. This luminescent quenching affected by Fe3+ implies the potentiality of 5 for a high 

selectivity and sensitivity to Fe3+ ions. 

  In order to further investigate the relationship between the quenching effect of 5 and Fe3+ ions 

concentration, the following experiments were carried out. 1 mg of 5 was dispersed into 5 mL of 

different concentrations (mmol/L) of FeCl3 aqueous solutions (pH = 5), and oscillated for 2 min 

by ultrasonic waves to form uniform dispersion, and then the emission of Tb3+ ion was performed 

(Fig. 7c). The luminescent intensity vs [Fe3+] plot can be curve-fitted into I0/I = KSV[Fe3+] + 0.93 

with a good linear correlation (R2 = 0.996, Fig. 7d), which is very close to the Stern−Volmer 

equation: I0/I = KSV[M] + 1, where I0 and I are the luminescent intensity before and after metal ion 
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incorporation, respectively, KSV is the Stern−Volmer constant, and [M] is the metal ion molar 

concentration. The value of KSV for Fe3+ is calculated to be 6.47×103 L/mol, which is compared 

with those of other well-designed Fe3+ luminescent sensors (typical KSV in the range of 

4.1×103~1.30×104) [26-32]. To investigate the stability of 5 after Fe3+ solution exposition, 5 was 

soaked in a FeCl3 aqueous solution (0.1 mol/L) for 12 h, followed by filtration and rinse with 

deionized water. PXRD (Fig. S13) indicated that its structure in Fe3+ solution remains intact. 

Meanwhile, the luminescence intensity of the recycled 5 is well consistent with the simulated one 

from 5, and two runs were made (Fig. S14). This result shows that 5 can be reused. 

--- Insert Fig. 8 here --- 

3.4 Magnetic properties 

  The magnetic susceptibilities of 1b-c and 2-5 were measured in the temperature range 2–300 

K under an applied magnetic field of 1 kOe (Fig. 8). For 1a-b, the χMT values at 300 K are 0.83 

cm3·mol-1·K for 1b, and 1.57 cm3·mol-1·K for 1c, which are close to the expected value of one 

non-interacting Ln3+ ion (0.80 cm3·mol-1·K for Ce3+, 2F5/2, S = 1/2, L = 3, g = 6/7, J = 5/2, and 

1.60 cm3·mol-1·K for Pr3+, 3H4, S = 1, L = 5, g = 4/5, J = 4) per formula unit. Upon cooling, the 

χMT product exhibits a gradual decrease and then falls to a minimum value of 0.41 cm3·mol-1·K 

for 1b and 0.07 cm3·mol-1·K for 1c, as a result of the depopulation of the ground J multiplet split 

by the crystal field and intermolecular antiferromagnetic interactions between Ln3+ ions [69-70]. 

The plot of χM
-1 versus T over the entire temperature range (Fig. S15) is well described by the 

Curie–Weiss law with Curie constant C = 0.85 cm3·mol-1·K for 1b and 1.89 cm3·mol-1·K for 1c, 

and Weiss constant θ = -17.73 K for 1b and -54.55 K for 1b, which also confirms the occurrence 

of antiferromagnetic exchange interactions between the Ln3+ centers. 

  For 2a-b, χMT values at 300 K are equal to 3.29 cm3·mol-1·K for 2a and 23.04 cm3·mol-1·K for 

2b, these values are as expected for two magnetically isolated Ln3+ ions (3.28 cm3·mol-1·K for 

Nd3+, 4I9/2, S = 3/2, L = 6, g = 8/11, J = 9/2, and 22.74 cm3·mol-1·K for Er3+, 4I15/2, S = 3/2, L = 6, J 

= 15/2, g = 6/5). For 2a, as the temperature decreases, the χMT shows a gradual decrease, reaching 

1.89 cm3·mol-1·K at 2.0 K. For 2b, upon cooling, the χMT remains practically constant until 100 K 

and it decreases further to reach a value of 10.52 cm3·mol-1·K at 2 K. The plots of 2a-b are 

indicative of the existence of a weak antiferromagnetic coupling between the Ln3+ ions. 

Antiferromagnetic interactions between Ln3+ ions of 2a-b can be also confirmed by the smaller 
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Ln–O–Ln angle value (104.93(7) ° for 2a and 105.75(8) ° for 2b), because the rule is that 

Ln–O–Ln angles below 113.50 ° are assumed to cause an antiferromagnetic exchange in the 

literature [71-74]. The χM
-1 versus T over the entire temperature range for 2a-b can be fitted to the 

Curie–Weiss law, χM = C/(T-θ) with the Curie constant C = 3.34 and 23.46 cm3·mol-1·K, and the 

Weiss constant θ = −22.24 and −6.08 K, respectively (Fig. S15). 

  For 3, the χMT value of 0.57 cm3·mol-1·K at 300 K is much higher than the expected value for 

two magnetically isolated Sm3+ ions (0.18 cm3·mol-1·K for Sm3+, 6H5/2, S = 5/2, L = 5, g = 2/7, J = 

5/2) per formula unit, because not only the ground state but also the first exited state (6H7/2) and 

above for the Sm3+ ion can be populated at room temperature [75-77]. Upon cooling, the χMT 

value decreases rapidly, which could result from thermal depopulation of the excited-state levels. 

The χM
-1 versus T for 3 does not obey the Curie–Weiss law that could result from spin–orbit 

coupling splits of the 6H5/2 ground state [78]. 

  For 4 and 5, the χMT at 300 K are 15.28 cm3·mol-1·K for 4 and 23.73 cm3·mol-1·K for 5, which 

are close to the theoretical value for two magnetically isolated Ln3+ ions (15.75 cm3·mol-1·K for 

Gd3+, 8S7/2, S = 7/2, L = 0, J = 7/2, g = 2, and 13.64 cm3·mol-1·K for Tb3+, 7F6, S = 3, L = 3, J = 6, 

g = 3/2). Upon cooling, the observed χMT product gradually decreases, and then drops to a 

minimum value of 11.05 cm3·mol-1·K for 4 and 12.04 cm3·mol-1·K for 5 at 2 K as a consequence 

of the depopulation of sublevels of the ground J multiplet split by the crystal field and 

intermolecular antiferromagnetic interactions. For 4, the anti-anti–COO bridge within the dimeric 

entity appears as the most likely pathways for the antiferromagnetic exchange [5]. For 5, the 

Tb–O–Tb angle value of 105.42 ° is significantly smaller than 113.50 ° [71-74], which is further 

confirmed the occurrence of antiferromagnetic exchange interactions between the Tb3+ ions. The 

χM
-1 versus T over the entire temperature range for 2a-b can be fitted to the Curie–Weiss law with 

C = 15.21 and 23.97 cm3·mol-1·K and θ = −1.66 and −5.03 K, respectively. The negative sign of θ 

also indicates a relatively weak local antiferromagnetic interaction between Ln3+ ions. 

Conclusions 

  Although some transition metal azelates were obtained by the reaction of different 

transition metal ions and H2aze ligands, no lanthanide azelates have been documented to date. 

Therefore, this work offers the only example of lanthanide azelates. Moreover, the reported 

transition metal azelates usually show the neutral extended frameworks, but their cationic 
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extended frameworks have been observed in 4 and 5. 2a-b exhibit interesting NIR 

luminescence, while 5 exhibits excellent luminescent sensor targeted for Fe3+ ion, due to the 

presence of the free Hphen+ ion. 2a-b and 3-5 exhibit stronger characteristic Ln3+ emissions, 

due to the incorporation of phen chromophores into lanthanide azelate frameworks. The 

successful syntheses of these lanthanide azelates enrich metal azelate family, and it is also 

expected that more novel lanthanide azelates with useful luminescent and magnetic 

properties might be synthesized by the combination of H2aze liand and different 

π–conjugated aromatic chromophore. 

Supplementary Information (SI) available: 

 Crystal data in CIF format can be obtained from the Web. The CIF table can be obtained free of 

charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 

1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this 

article can be found, in the online version. 
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Table 1 Crystallographic data for all compounds. 

 1a 1b 1c 2a 
formula 
Fw 
crystal system 
space group 
a, Å 
b, Å 
c, Å 
α,° 
β,° 
γ,° 
V, Å3 
Z 
T, K 
Calcd density,Mg.m-3 
F(000) 
2θ(max), deg 
Total reflns collected 
Unique reflns 
No. of param 
R1[I>2σ(I)] 
wR2(all data) 
GOOF on F2 

C18H33LaO10 
548.35 
Monoclinic 
P21/n 
9.1449(6) 
8.7178(5) 
27.3909(18) 
90 
94.810(2) 
90 
2176.0(2) 
4 
296(2) 
1.675 
1112 
50.19 
25129 
3859 
277 
0.0207 
0.0416 
1.134 

C18H33CeO10 
549.56 
Monoclinic 
P21/n 
9.1037(4) 
8.6770(3) 
27.2174(12) 
90 
94.747(2) 
90 
2142.60(15) 
4 
293(2) 
1.704 
1115 
55.87 
66642 
5137 
270 
0.0325 
0.0525 
1.116 

C18H33O10Pr 
550.35 
Monoclinic 
P21/n 
9.1305(4) 
8.6828(4) 
27.2915(13) 
90 
94.6230(16) 
90 
2156.58(17) 
4 
293(2) 
1.695 
1120 
50.19 
12881 
3804 
270 
0.0415 
0.0782 
1.127 

C51H60N4Nd2O13 
1225.51 
Triclinic 
P-1 
9.6080(19) 
12.252(3) 
12.866(3) 
105.81(3) 
101.51(3) 
111.26(3) 
1280.8(6) 
1 
293(2) 
1.589 
618 
55.93 
29542 
6106 
346 
0.0255 
0.0592 
1.081 

 2b 3 4 5 
formula 
Fw 
crystal system 
space group 
a, Å 
b, Å 
c, Å 
α,° 
β,° 
γ,° 
V, Å3 
Z 
T, K 
Calcd density,Mg.m-3 
F(000) 
2θ(max), deg 
Total reflns collected 
Unique reflns 
No. of param 
R1[I>2σ(I)] 
wR2(all data) 
GOOF on F2 

C51H60Er2N4O13 
1271.55 
Triclinic 
P-1 
9.537(5) 
12.170(6) 
12.713(6) 
106.378(15) 
100.936(17) 
111.208(19) 
1247.6(11) 
1 
293(2) 
1.692 
634 
55.82 
28778 
5939 
346 
0.0245 
0.0481 
1.135 

C30H41N2O10Sm 
740.02 
Triclinic 
P-1 
10.963(2) 
12.816(3) 
13.495(3) 
109.10(3) 
106.41(3) 
105.87(3) 
1572.3(7) 
2 
293(2) 
1.562 
752 
50.20 
35997 
5588 
398 
0.0209 
0.0488 
1.102 

C33H30ClGdN4O8 
803.31 
Monoclinic 
P21/c 
12.026(2) 
13.717(3) 
20.116(4) 
90 
106.417(6) 
90 
3183.0(11) 
4 
293(2) 
1.676 
1604 
50.20 
69039 
5651 
425 
0.0303 
0.0796 
1.122 

C78H71Cl3N10O21Tb2 
1908.66 
Monoclinic 
P21/c 
14.1296(6) 
21.0888(10) 
26.0287(12) 
90 
90.3504(15) 
90 
7755.8(6) 
4 
296(2) 
1.635 
3832 
50.20 
220315 
13786 
1239 
0.0445 
0.0957 
1.322 
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Figure captions 

Fig. 1 (a) The asymmetric unit of 1a with the labeling scheme. (b) Coordination 

environment of the La3+ ion. (c) 1-D chain built up from La3+ ions and aze2- ligands. View 

of a 3-D structure of 1a along the [100] (d) and [010] (e) directions. 

Fig. 2 (a) Coordination environment of the Nd3+ ion. (b) 2-D [Nd2(aze)3(phen)2]n layer in 

2a. (c) The sql topology of 2a. (d) π–π stacking interactions. (e) View of the stacking mode 

for the layers in 2a. All H atoms and free water molecules have been omitted for clarity. 

Fig. 3 (a) Coordination environment of the Sm3+ ion. (b) 1-D neutral 

[Sm(aze)(Haze)(phen)]n chain. (c) The π–π stacking interactions between the 1-D chains. (d) 

The crystal packing diagram of 3. All H atoms are omitted for clarity. 

Fig. 4 (a) 1-D [Gd(aze)(phen)2
+]n chain in 4. (b) 1-D [Tb(aze)(phen)2

+]n chain in 5. The π–π 

stacking interactions between the 1-D [Gd(aze)(phen)2
+]n (c) and [Tb(aze)(phen)2

+]n (d) 

chains. The crystal packing diagrams of 4 (e) and 5 (f). All H atoms are omitted for 

clarity. 

Fig. 5 UV/Vis absorption spectra of 1c, 2a-b and 3 at room temperature. 

Fig. 6 The emission spectra of 2a (a), 2b (b), 3 (c), and 5 (d) at room temperature. 

Fig. 7 a) Luminescent spectra of 5 dispersed into various 0.1 M MClx aqueous solution, b) 

luminescent intensities at 545 nm of 5 treated with various 0.1 M MClx aqueous solution, c) 

luminescent spectra of 5 suspensions with different concentration of FeCl3, d) Stern−Volmer plot 

of 5 quenched by FeCl3 aqueous solution. 

Fig. 8 The plot of χMT versus T for 1b-c, 2a-b and 3-5. 
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Fig. 1 (a) The asymmetric unit of 1a with the labeling scheme. (b) Coordination 

environment of the La3+ ion. (c) 1-D chain built up from La3+ ions and aze2- ligands. 

View of a 3-D structure of 1a along the [100] (d) and [010] (e) directions. 

 

Fig. 2 (a) Coordination environment of the Nd3+ ion. (b) 2-D [Nd2(aze)3(phen)2]n layer in 

2a. (c) The sql topology of 2a. (d) π–π stacking interactions. (e) View of the stacking 

mode for the layers in 2a. All H atoms and free water molecules have been omitted for 

clarity. 
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Fig. 3 (a) Coordination environment of the Sm3+ ion. (b) 1-D neutral 

[Sm(aze)(Haze)(phen)]n chain. (c) The π–π stacking interactions between the 1-D chains. 

(d) The crystal packing diagram of 3. All H atoms are omitted for clarity. 

 

Fig. 4 (a) 1-D [Gd(aze)(phen)2
+]n chain in 4. (b) 1-D [Tb(aze)-(phen)2

+]n chain in 5. The π–π 

stacking interactions between the 1-D [Gd(aze)(phen)2
+]n (c) and [Tb(aze)(phen)2

+]n (d) chains. 

The crystal packing diagrams of 4 (e) and 5 (f). All H atoms are omitted for clarity. 
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Fig. 5 UV/Vis absorption spectra of 1c, 2a-b and 3 at room temperature. 

 

 

Fig. 6 The emission spectra of 2a (a), 2b (b), 3 (c), and 5 (d) at room temperature. 
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Fig. 7 a) Luminescent spectra of 5 dispersed into various 0.1 M MClx aqueous solution, b) 

luminescent intensities at 545 nm of 5 treated with various 0.1 M MClx aqueous solution, c) 

luminescent spectra of 5 suspensions with different concentration of FeCl3, d) Stern−Volmer plot 

of 5 quenched by FeCl3 aqueous solution. 

 

Fig. 8 The plot of χMT versus T for 1b-c, 2a-b and 3-5. 



Highlights: a) this work presents the only examples of lanthanide azelates exhibiting luminescent 

properties; 

          b) 2a-b exhibit interesting NIR luminescence; 

          c) 5 shows excellent luminescent sensor targeted for Fe3+ ion; 

          d) 4-5 provide the only examples of cationic metal azelate frameworks.  
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Table S1. Ranges of Some Important Bond Distances(Å) and Bond Angles(°) for All Compounds 

Bond Dist(Å) Angle (°) 

1a 

La-O 2.4659(17)-2.7574(18) O-La-O 48.58(6)-174.94(6) 

1b 

Ce-O 2.441(2)-2.755(2) O-Ce-O 48.70(7)-144.87(8) 

1c 

Pr-O 2.429(4)-2.763(5) O-Pr-O 48.56(14)-175.55(13) 

2a 

Nd-O 

Nd-N 

2.392(4)-2.635(4) 

2.662(5)-2.679(5) 

O-Nd-O 

O-Nd-N 

N-Nd-N 

49.96(12)-146.06(14) 

72.17(16)-147.71(15) 

61.69(15) 

2b 

Er-O 

Er-N 

2.295(4)-2.429(5) 

2.552(5)-2.593(5) 

O-Er-O 

O-Er-N 

N-Er-N 

53.80(15)-143.12(16) 

68.70(16)-145.51(16) 

63.38(16) 

3 

Sm-O 

Sm-N 

2.366(3)-2.486(3) 

2.618(3)-2.687(4) 

O-Sm-O 

O-Sm-N 

N-Sm-N 

49.32(9)-148.59(10) 

70.16(10)-146.17(10) 

70.16(10) 

4 

Gd-O 

Gd-N 

2.218(4)-2.273(3) 

2.533(4)-2.551(4) 

O-Gd-O 

O-Gd-N 

N-Gd-N 

75.73(14)-125.91(13) 

70.84(13)-146.96(14) 

64.47(13)-112.61(14) 

5 

Tb-O 

Tb-N 

2.306(6)-2.530(6) 

2.578(7)-2.619(7) 

O-Tb-O 

O-Tb-N 

N-Tb-N 

72.1(2)-138.3(2) 

64.2(2)-144.9(2) 

63.0(2)-123.7(2) 

 

 



 

Fig. S1 The link modes of aze2- or Haze- ligands. 

 

 
Fig. S2 The asymmetric unit of 2a (H atoms bonded to C atoms have been omitted for 
clarity). 

 



 

Fig. S3 The asymmetric unit of 3 (H atoms bonded to C atoms have been omitted for 

clarity). 

 

Fig. S4 The asymmetric unit of 4 (H atoms bonded to C atoms have been omitted for 

clarity). 
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Fig. S5 The FTIR spectra of all compounds. 
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Fig. S6 UV/Vis absorption spectra of 1a-b, 4 and 5 at room temperature. 

 

Fig. S7 The luminescence decay curve of 2a. 

 

Fig. S8 The luminescence decay curve of 2b. 



 

Fig. S9 The luminescence decay curve of 3. 
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Fig. S10 the emission spectrum of 4. 
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Fig. S11. Excitation (λem=380 nm) and emission (λex=245 nm) spectra of phen. 



 

Fig. S12 The luminescence decay curve of 5. 
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Fig. S13 Simulated, experimental and after immersed XRD patterns of 5. 
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Fig. S14. The luminescence intensity (545 nm) of two recycles (a) after the first 

recycle, and (b) after the second recycle.  
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Fig. S15 The plot of χM
-1 versus T for 1b-c, 2a-b and 3-5. 
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Fig. S16 Simulated and experimental powder XRD patterns of some compounds. 
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