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Abstract 20 

Single phase barium titanate–bismuth ferrite ((1-x)BaTiO3-(x)BiFeO3, BTO-BFO) solid solutions 21 

were prepared using citric acid and ethylene glycol assisted sol-gel synthesis method. Depending 22 

on the dopant content the samples are characterized by tetragonal, tetragonal-pseudocubic, 23 

pseudocubic and rhombohedral structure as confirmed by Raman spectroscopy and XRD 24 

measurements. An increase of the BFO content leads to a reduction in the cell parameters 25 

accompanied by a decrease in polar distortion of the unit cell wherein an average particle size 26 

increases from 60 up to 350 nm. Non zero piezoresponse was observed in the compounds with 27 

pseudocubic structure while no polar distortion was detected in their crystal structure using X-28 

ray diffraction method. The origin of the observed non-negligible piezoresponse was discussed 29 

assuming a coexistence of nanoscale polar and non-polar phases attributed to the solid solutions 30 

with high BFO content. A coexistence of the nanoscale regions having polar and non-polar 31 
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character is considered as a key factor to increase macroscopic piezoresponse in the related 1 

compounds due to increased mobility of the domain walls and phase boundaries. 2 

Keywords: BTO-BFO; solid solutions; sol-gel processing; phase diagram; PFM; SEM. 3 

1. Introduction 4 

     At room temperature bismuth ferrite is a multiferroic having a rhombohedral perovskite 5 

structure described by R3c space group [1]. While having both its ferroelectric Curie temperature 6 

Tc ~ 1100 K and antiferromagnetic Néel temperature TN ~ 640 K it has attracted a lot of 7 

attention [2,3]. As a multiferroic, it can be used in magnetic sensors [4], energy harvesting 8 

devices [5] or memory devices [6]. As a piezoelectric material, it is a potential substitute for 9 

currently most used PbZrxTi1-xO3 due to enormously high polarization being measured in the 10 

form of thin films [7]. While being a more ecological material since it contains no lead, it is 11 

additionally good candidate for high temperature piezoelectric applications due to its high Curie 12 

temperature [8,9]. 13 

     The most critical problem of BiFeO3 is large leakage current significantly reduce applications 14 

and partially determined by poor phase stability [3]. Synthesis of single-phase bismuth ferrite is a 15 

difficult procedure because none-perovskite secondary phases of Bi25FeO40 and Bi2Fe4O9 are 16 

formed during the fabrication process [10,11]. To avoid the problem of secondary phase 17 

formation many approaches were undertaken like using different synthesis methods such as 18 

hydrothermal [12], sol-gel [13], mechanochemical method [14] and more. It is also reported that 19 

pure bismuth ferrite can be obtained by using extremely pure oxides as precursors with purity 20 

over 99.999 % [15]. The third way of stabilization for BiFeO3 structure was to make solid 21 

solutions with other perovskite material. While the latter method of stabilization is useful it also 22 

affects properties of the original bismuth ferrite phase [16]. On the other hand, BaTiO3 is one of 23 
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the most well-known ferroelectric materials with low leakage and is easy to be sintered by a 1 

liquid chemistry route [17]. These two materials seem to be very promising for formation of 2 

solid solution due to the enhancement of polarization, stabilization of the structure and 3 

improving overall piezoelectric performance of the ceramics. 4 

     In this work, we report on citric acid and ethylene glycol assisted sol-gel synthesis method for 5 

the preparation of single phase (1-x)BaTiO3-(x)BiFeO3 (BTO-BFO) solid solutions. X-ray 6 

diffraction analysis and Raman spectroscopy were used for the determination of phase purity. 7 

The cell parameters were calculated using the results of Rietveld refinement based on the X-ray 8 

diffraction data. The surface morphology of sol-gel derived BTO-BFO solid solutions and 9 

piezoelectric properties are also investigated and discussed. 10 

2. Experimental 11 

     Analytical grade chemicals of Bi(NO3)3·5H2O, C12H28O4Ti, Fe(NO3)3·9H2O, Ba(CH3COO)2, 12 

ethylene glycol and citric acid were used as starting materials. For a typical synthesis of 1 g final 13 

product the following procedure has been carried out. Firstly, citric acid was dissolved in 20 ml 14 

of distilled water at a molar ratio of 3:1 to the final cation amount at 80 °C. Secondly, titanium 15 

isopropoxide was added to the above solution. Next, barium acetate, iron nitrate, bismuth nitrate 16 

were dissolved in the same solution. Finally, when all materials have been dissolved, the 4 ml of 17 

ethylene glycol was added to the present solution. Then the solution was stirred for 1.5 h and 18 

evaporated at 200 °C. Obtained gel was then dried at 220 °C overnight. Then xerogel was ground 19 

in an agate mortar and heated in a furnace at 650 °C for 5 h with a heating rate of 1 °C/min. 20 

    X-ray diffraction (XRD) analysis was performed using Rigaku MiniFlex diffractometer on a 21 

glass sample holder. Measurements were performed using Cu Kα λ = 1.541874 Å radiation 22 

measuring from 10° to 70° while moving 10°/min.  23 



4 

 

Raman spectra were recorded using inVia Raman (Renishaw, United Kingdom) spectrometer 1 

equipped with thermoelectrically cooled (−70 °C) CCD camera and microscope. Raman spectra 2 

were excited with 532 nm beam. Parameters of the bands were determined by fitting the 3 

experimental spectra with Gaussian-Lorentzian shape components using GRAMS/A1 8.0 4 

(Thermo Scientific, USA) software. 5 

Scanning electron microscopy (SEM) images were taken for the morphology characterization 6 

with Hitachi SU-70 SEM.  7 

Piezoresponse force microscopy measurements was used to characterize local piezoelectric 8 

properties. Experiments have been carried out using MFP-3D commercial scanning probe 9 

microscope (Oxford Instruments, UK). The measurements were performed with 17 N/m spring 10 

constant, 10 nm tip radius commercial HA_HR Scansens tips with W2C coating under ac voltage 11 

with the amplitude Vac = 5 V and frequency f = 20 kHz. Calibration of the probe tip 12 

displacements and cantilever displacements in PFM measurements were made by the following  13 

methods described in [18]. Amplitude of the out-of-plane PFM response obtained from quasi-14 

static calibrations was divided by shape factor and amplitude of AC voltage excitation in order to 15 

evaluate effective d33 coefficient. Corresponding correction of R·CosΘ piezoresponse signal was 16 

done before by phase shift maximizing in-phase R·CosΘ signal and minimize out-of-phase 17 

R·SinΘ signal [19]. Other signals for all images can be found separately in supplementary 18 

materials. 19 

3. Results and discussion 20 

     The BaTiO3 (BTO) and BiFeO3 (BFO) solid solutions were prepared using different molar 21 

ratio of components (BTO:BFO = 1:9, 1:4, 3:7, 2:3, 1:1, 3:2, 7:3, 4:1 and 9:1). The XRD patterns 22 

of nine different solid solutions are given in Fig. 1. as a contour map. The blue colour indicates 23 
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the lowest intensity (background) meanwhile the red colour represents the most intensive points 1 

(the peaks). The black columns designate the reference XRD data of BaTiO3 taken from the 2 

crystallography open database. According to the PDF (COD 96-150-7757) data the desired 3 

products were obtained no matter the ratio of solid solution has been chosen. Nevertheless, a 4 

slight shift of the peaks towards lager 2θ values is observed upon increase of BFO content which 5 

indicates a decrease in unit cell parameters. 6 

     For the deeper analysis of structure development, the Rietveld refinement was employed. The 7 

cell parameters calculated by Rietveld analysis are presented in Fig. 2. In general, barium titanate 8 

exists in three different structures – cubic (C-phase), tetragonal (T-phase) and trigonal 9 

(rhombohedral axes, labelled as R-phase), meanwhile bismuth ferrite belongs to trigonal crystal 10 

system with hexagonal or rhombohedral axes. Calculated a and c parameters for primitive lattice 11 

allow to classify the solid solutions by the crystal structure. Note that, during the structure 12 

refinement of R-phase a and c parameters were recalculated in order to obtain the reduced values 13 

which are closer to each other and easy to compare. 14 

 15 

      The following equations were used:  16 
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According to Rietveld analysis data three different blocks of different structures are identified. 19 

The phase transitions from tetragonal to cubic and finally to trigonal with rhombohedral axes are 20 

observed with increasing amount of BFO. 21 

     The phase transitions in the investigated system were also observed by Raman spectroscopy. 22 

The results give additional information and confirming the results of X-ray diffraction 23 
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measurements. Raman spectroscopy is able to provide detailed information on short range 1 

structure or local symmetry. Fig. 3 compares Raman spectra of bulk BaTiO3 and BiFeO3. The 2 

sharp band near 308 cm−1 associated with B1 and E symmetries of longitudinal optical (LO) and 3 

transverse optical (TO) phonon modes [B1, E(TO+LO)] and high frequency band near 715 cm−1 4 

[A1, E(LO)] are characteristic for BaTiO3 ferroelectric phase with tetragonal symmetry [20–22]. 5 

It should be noted that observed bands corresponds to several phonons because frequencies of 6 

the modes are very close [20]. The other dominant bands are relatively broad features located at 7 

257 cm−1 [A1(TO)] and 518 cm−1 [A1, E(TO)]. All observed bands are characteristic for BaTiO3 8 

[20–25]. The intensity of Raman bands of BiFeO3 decreases by a factor of 20 comparing with 9 

spectrum of BaTiO3 (Fig. 3). Four sharp characteristic Raman bands of BiFeO3 are visible at 77 10 

cm−1 (E), 141 cm−1 (A1), 174 cm−1 (A1), and 220 cm−1 (A1) [26]. Theoretical analysis has 11 

indicated that Bi atom participates mainly in vibrational modes lower than 167 cm−1, while 12 

oxygen atoms are involved in vibrational modes higher than 262 cm−1 [27]. The broad band near 13 

1256 cm−1 involves oxygen atom stretching vibrations. Similar high frequency band is clearly 14 

visible in the spectra of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) at 1300 and 1360 15 

cm−1, respectively [28,29]. It was suggested that relative intensity of these bands depends on the 16 

excitation wavelength (resonance enhancement) [28,29]. The intense band near 1310 cm−1 was 17 

also observed in the spectrum of haematite (α-Fe2O3) [28,29]. 18 

Fig. 4 demonstrates the dependence of Raman spectra on the composition of (1-19 

 x)BaTiO3-(x)BiFeO3 solid solution structures. Introduction of 10 % of BiFeO3 results in 20 

considerable spectral changes; first of all, the sharp peak near 308 cm−1 completely disappears, 21 

indicating phase transformation has started.  22 
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Anyway, the tetragonal BaTiO3 phase in this new structure is still the dominant phase according 1 

to the crystal lattice data obtained by Rietveld analysis. In addition, the peak at 518 cm−1 shifts to 2 

511 cm−1 and a new low-frequency band near 186 cm−1 appears. Such spectral changes are 3 

similar to previously observed Fe-doping induced formation of distorted tetragonal/cubic phase 4 

BaTiO3 structure [25]. The 186-cm−1 peak might be associated with the presence of small 5 

amount of TiO2 anatase phase undetectable by XRD measurements and which is usually visible 6 

in the low crystalline samples [25]. An increase in intensity and broadening of 724-cm−1 band 7 

points on the presence of Ba2+ defects in the BaTiO3 lattice [25]. Similar Raman bands with 8 

progressive decrease in intensity were observed with increasing x part up to 0.3 (Fig. 4). 9 

Addition of higher BiFeO3 amount results in changes in the Raman spectrum indicating 10 

alterations in the local lattice structure. No clear bands characteristic to BiFeO3 is visible in the 11 

low-frequency spectral range; however, the broad feature due to oxygen atom stretching 12 

vibrations appears near 1355 cm−1 at x = 0.6. This band clearly shifts to lower wavenumbers with 13 

increasing content of BiFeO3. Such frequency shift indicates changes in the geometry of oxygen 14 

octahedra around the Fe cations. In addition, the new band appears near 681−683 cm−1 reaching 15 

the highest relative intensity at x = 0.7 of BiFeO3 content. The results again confirm the 16 

constructed phase diagram. 17 

     SEM micrographs of all samples are given in Fig. 5. The size of the particles was measured 18 

using open-source Fiji software by accidentally choosing appropriate particles [30]. It is clearly 19 

seen that with increasing the amount of BFO the particle size also increases. The particle size 20 

varies from 60 to 120 nm for the samples which SEM images are presented in Fig. 5A, B, C and 21 

D. Additionally, the boundaries between the particles vanished. The particles start to gain a more 22 

distinct shape with a larger size which in some cases exceeds over 350 nm for the sample with 23 
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the equal ratio of BTO and BFO (1:1) (Fig. 5E) and for the samples with higher amount of BFO 1 

in the solid solutions (Fig. 5F, G H and I). This could be related with the changes of the crystal 2 

structure. The change from tetragonal to cubic and finally to trigonal structure causes the 3 

formation of particles with bigger size. Note that, independently on the ratio of BTO and BFO in 4 

the solid solution the large size distribution of the particles was observed. The semispherically 5 

shaped particles have formed when barium titanate is dominating in the solid solution and 6 

rectangular particles are predominating in the samples with increasing amount of bismuth ferrite.  7 

Finally, the sol-gel method leads to the formation of slightly agglomerated irregular spherical-8 

rectangular shape particles with rather broad size distribution [31]. The particle size is dependent 9 

on the molar ratio of constituents in the BTO-BFO solid solutions. The increase of the particle 10 

size is caused by the different melting points of BFO and BTO. It has been previously reported 11 

that mixing the higher melting point component, in this case BaTiO3, with another component 12 

having a lower melting point, in this case BiFeO3, leads to better crystallinity and improved 13 

particle growth [32].  14 

     Analysis of the piezoelectric properties of (0.4)BaTiO3-(0.6)BiFeO3, (0.3)BaTiO3-15 

(0.7)BiFeO3 and (0.2)BaTiO3-(0.8)BiFeO3 composition at Bi-rich side was done locally by 16 

piezoresponse force microscopy [18]. Piezoresponse was analysed before and after local poling 17 

by ±35 V DC voltage. Local switching of the polarization has been done by scanning of 18 

rectangular areas with positively and negatively biased tip. Fig 6 demonstrates out-of-plane PFM 19 

images before and after local poling for three discussed compositions. In the PFM RCosΘ 20 

images, the contrast corresponds to value and sign of the effective d33 coefficient. Thereby, 21 

“bright” areas represent domains with approximately upward polarization orientation, meanwhile 22 

dark contrast areas represent the opposite case (approximately downward polarization). It is 23 
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clearly seen from these series of images that increase of the BaTiO3 content in solid solution 1 

tends to degrade piezoelectric properties of the material. Before poling both (0.2)BaTiO3 –2 

(0.8)BiFeO3 and (0.3)BaTiO3-(0.7)BiFeO3 compositions revealed clusters of polar phase with 3 

high effective d33 and clusters with piezoresponse close to zero, while (0.4)BaTiO3 –(0.6)BiFeO3 4 

composition didn’t show any distinguishable response. Surprisingly, after poling bi-polar 5 

contrast can be observed in all three compositions. This is indicative of partial polarization 6 

switching across the rectangular area. 7 

It must be noted that small size of the grains can significantly act onto results of PFM 8 

measurements due to limitation of PFM spatial resolution. Close to zero piezoresponse inspected 9 

before poling can be sourced by effect of averaging the piezoresponse from amount of nanosized 10 

domains with different polarization orientation. After poling all disordered polarization states 11 

become aligned and thereby can be probed by PFM. However, due to meta-stable structural state 12 

of BFO-BTO solid solution we cannot exclude as well that electric field can induce phase 13 

transition from non-polar state to polar as such transformation is likely in rare earth doped BFO 14 

[33]. 15 

Further we analysed in-plane piezoresponse at the smaller scale. In-plane piezoresponse is 16 

indicative of piezoelectric activity and excludes most of the known PFM parasitic contributions 17 

[34]. The behaviour of in-plane response was similar to out-of-plane (Fig. 7). Comparison of the 18 

piezoresponse with topography in (0.2)BaTiO3–(0.8)BiFeO3 composition with largest grains 19 

revealed that individual grains before poling consisted of small scale domains, while after poling 20 

the polarization become aligned (fig 7a, d). At the same time, we didn’t reveal any 21 

transformation of the phase without piezoelectric response to piezoelectrically active phase in 22 

this composition. Following the decrease of the grain size with increase of the BaTiO3 23 
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concentration domains as well became smaller and finally indistinguishable by PFM in 1 

(0.4)BaTiO3-(0.6)BiFeO3 composition. After local poling all composition revealed clear bi-polar 2 

domain pattern as well as an out-of-plane response. 3 

Fraction of polar phase can be roughly estimated from PFM histograms according approach from 4 

[35]. It was found to be around 95 % for (0.2)BaTiO3-(0.8)BiFeO3 composition and decreases 5 

down to 18 % for (0.4)BaTiO3-(0.6)BiFeO3 composition. This trend of piezoelectrically active 6 

area decrease is followed by median effective d33 value reduce (fig 7g-i). This is qualitatively fit 7 

to macroscopically observed trend of rhombohedral-pseudocubic structural transformations 8 

revealed by XRD measurements. Thus, we postulate that phase macroscopically identified as 9 

pseudo-cubic is actually in coexistence of the local nanoscale phases similar to known phase 10 

coexistence at morphotropic phase boundary and polymorphic phase boundary in different 11 

piezoelectric materials [36]. Further insight into the details of this unusual phase coexistence can 12 

be obtained by using methods with enhanced spatial resolution and sensitivity. The XRD method 13 

used to describe the phase transformation is not well suitable to characterize nanoscale domains 14 

observed by PFM method. While one can observe notable widening of the X-ray diffraction 15 

reflections in the region ascribed to the pseudo cubic phase (Fig. 2) which points at a decrease in 16 

the average size of the crystallites and support the results obtained by local scale measurements. 17 

To conclude, an increasing amount of BaTiO3 leads to degradation of piezoresponse, probably 18 

caused by decrease of piezoelectrically active phase amount and a gradual change into a more 19 

symmetric pseudo cubic structure induced by BTO. Transformation of the cell to 20 

centrosymmetric state extracted from XRD must be followed by cell dipole moment reduction 21 

and, consequently, degradation of macroscopic polarization and effective piezoelectric 22 

coefficient. We confirmed here this trend by effective d33 measurements. Nevertheless, for all 23 
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measured samples the polarization was switchable, meaning that each solid solution retains 1 

ferroelectric properties. 2 

4. Conclusions 3 

In conclusion, a systematic study on the structure, morphology and piezoelectric properties of 4 

BTO-BFO solid solutions was performed. The Rietveld analysis data has demonstrated that 5 

introducing bismuth ferrite into the barium titanate matrix leads to the structural evolution from 6 

tetragonal to (pseudo)cubic and finally to trigonal (with rhombohedral axes). All phase structure 7 

modifications are concluded in the structure phase diagram. Moreover, increasing amount of 8 

BFO in the solid solutions causes not only the structure modifications but it also induces a 9 

formation of larger sized, distinctly shape particle which exceed in some cases over 350 nm. 10 

Domain structure corresponds to grain size and domains become large towards to Bi rich 11 

boundary in the solid solution. Surprisingly, compositions nominally being centrosymmetric 12 

exhibit ferroelectricity that was shown to be sourced by nanosized structural states clearly visible 13 

after local poling. The explored piezoresponse force measurements have demonstrated that an 14 

increasing amount of BaTiO3 leads to degradation of piezoresponse of the solid solution.  15 
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Fig. 1. XRD data of (10-x)BaTiO3 – (x)BiFeO3 solid solutions, where 0 < x < 10. 30 



16 

 

Fig. 2. Phase diagram of (1-x)BaTiO3 – (x)BiFeO3 solid solutions. 1 

Fig 3. Raman spectra of bulk BaTiO3 and BiFeO3 compounds. The excitation wavelength is 2 

532 nm (0.3 mW). 3 

Fig. 4. Composition dependent Raman spectra of BTO-BFO solid solutions: (a) (0.9)BaTiO3- 4 

(0.1)BiFeO3; (b) (0.8)BaTiO3-(0.2)BiFeO3; (c) (0.7)BaTiO3-(0.3)BiFeO3; (d) (0.4)BaTiO3-5 

(0.6)BiFeO3; (e) (0.3)BaTiO3-(0.7)BiFeO3; (f) (0.2)BaTiO3-(0.8)BiFeO3. The excitation 6 

wavelength is 532 nm (0.3 mW). 7 

Fig. 5. SEM images of BTO-BFO solid solutions: A - (0.9)BaTiO3–(0.1)BiFeO3, B -8 

  (0.8)BaTiO3–(0.2)BiFeO3, C - (0.7)BaTiO3–(0.3)BiFeO3, D - (0.6)BaTiO3–(0.4)BiFeO3, E - 9 

(0.5)BaTiO3–(0.5)BiFeO3, F - (0.4)BaTiO3–(0.6)BiFeO3, G - (0.3)BaTiO3–(0.7)BiFeO3, H - 10 

(0.2)BaTiO3–(0.8)BiFeO3 and J -  (0.1)BaTiO3–(0.9)BiFeO3.  11 

Fig. 6. Quantified out-of-plane PFM images. RCosθ piezoresponse signal with meaning of the 12 

effective d33 coefficient: (a)-(c) before and (d)-(f) after local poling of bi-square area by ±35 V 13 

DC voltage (left part is poled negatively, while right part - positively). (g)-(i) Corresponding 14 

histograms of effective d33 distribution across scan area and inside poled region.  (a), (d), (g) 15 

0.8BiFeO3 - 0.2BaTiO3; (b), (e), (h)  0.7BiFeO3 - 0.3BaTiO3; (c), (f), (i) (0.6)BiFeO3-16 

(0.4)BaTiO3-solid solutions. Calculated median effective d33 is displayed at (g)-(i). 17 

Fig. 7. In-plane PFM images. (a)-(c) Topography, RCosθ piezoresponse signal: (d)-(f) before 18 

and (g)-(h) after local poling of bi-square area by ±35 V DC voltage (left part is poled 19 

negatively, while right part - positively). (a), (d), (g) 0.8BiFeO3 - 0.2BaTiO3; (b), (e), (h) 20 

0.7BiFeO3 - 0.3BaTiO3; (c), (f), (i) (0.6)BiFeO3-(0.4)BaTiO3-solid solutions. Displayed 21 
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topography is measured simultaneously with PFM before poling and thereby shifted slightly after 1 

poling due to thermal drift. 2 

 3 

















Highlights: 

•         BaTiO3 undergoes transitions from trigonal to (pseudo)cubic and finally to trigonal 

•         Addition of BiFeO3 leads to larger grain size and more distinct size 

•         Domains correspond to grain size and domains become large in the solid solution 

•         Compositions nominally being centrosymmetric exhibit ferroelectricity 
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