
Journal Pre-proof

Machine learning models for the prediction of diffusivities in
supercritical CO2 systems

José P.S. Aniceto, Bruno Zêzere, Carlos M. Silva

PII: S0167-7322(21)00007-6

DOI: https://doi.org/10.1016/j.molliq.2021.115281

Reference: MOLLIQ 115281

To appear in: Journal of Molecular Liquids

Received date: 30 November 2020

Revised date: 30 December 2020

Accepted date: 3 January 2021

Please cite this article as: J.P.S. Aniceto, B. Zêzere and C.M. Silva, Machine learning
models for the prediction of diffusivities in supercritical CO2 systems, Journal of
Molecular Liquids (2021), https://doi.org/10.1016/j.molliq.2021.115281

This is a PDF file of an article that has undergone enhancements after acceptance, such
as the addition of a cover page and metadata, and formatting for readability, but it is
not yet the definitive version of record. This version will undergo additional copyediting,
typesetting and review before it is published in its final form, but we are providing this
version to give early visibility of the article. Please note that, during the production
process, errors may be discovered which could affect the content, and all legal disclaimers
that apply to the journal pertain.

© 2021 Published by Elsevier.

https://doi.org/10.1016/j.molliq.2021.115281
https://doi.org/10.1016/j.molliq.2021.115281


Machine learning models for the prediction of diffusivities in supercritical 

CO2 systems 

José P.S. Aniceto, Bruno Zêzere, and Carlos M. Silva 

CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, 

Portugal 

 

Abstract 

The molecular diffusion coefficient is fundamental to estimate dispersion 

coefficients, convective mass transfer coefficients, etc. Since experimental diffusion data 

is scarce, there is significant demand for accurate models capable of providing reliable 

diffusion coefficient estimations. 

In this work we applied machine learning algorithms to develop predictive models 

to estimate diffusivities of solutes in supercritical carbon dioxide. A database of 

experimental data containing 13 properties for 174 binary systems totaling 4917 data 

points was used in the training of the models. Five machine learning algorithms were 

evaluated and the results were compared with three commonly used classic models. 

The best results were found using the Gradient Boosted algorithm which showed an 

average absolute relative deviation (AARD) of 2.58 % (pure prediction). This model has 

five parameters: temperature, density, solute molar mass, solute critical pressure and solute 

acentric factor. For the same dataset, the classic Wilke-Chang equation showed AARD of 

12.41 %. 

 

1 Introduction 

The knowledge of transport properties is required for the design, simulation and scale-up of rate 

controlled separations and chemical reactions. The binary diffusivities at infinite dilution, 12D , are 

fundamental to estimate important quantities like dispersion coefficients, convective mass transfer 

coefficients, and catalysts efficiency factors [1–3]. Over the past few years the so-called "green 

solvents" have been gaining more attention in both academia and industry, and from them we may 

detach supercritical carbon dioxide (SC-CO2) [4, 5]. This solvent has been extensively used in 
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supercritical extraction (SFE), namely for extraction of compounds from vegetable matrices [5]. In 

this context, diffusivity coefficients data become extremely important. However, the knowledge of 

12D  in SC-CO2 is still limited in terms of solutes and operating conditions, requiring accurate 

models capable of interpolating 12D  and also predicting this property when no data is available 

[6]. 

Among the most well known models one can cite the hydrodynamic equation of 

Wilke-Chang [7], published in 1955, which is still widely used due to its simplicity since it only 

requires information on solvent viscosity, solute molecular mass, solute volume at normal boiling 

point and operating conditions. This equation has also been modified in several occasions giving 

rise, for instance, to the Lai-Tan equation [8], an empirical modification of the first one, 

specifically devised for SC-CO2 systems. Furthermore, some other hydrodynamic based equations 

have been proposed and published for 12D  estimation in SC-CO2, which will not be addressed in 

this work but can be found elsewhere [9, 10]. Regarding correlative models, one can cite the 

2-parameter correlation of Dymond-Hildebrand-Batschinski (DHB) [11–13], based on 

free-volume theory, which is specially useful when some data of a given system is available 

allowing to both interpolate and extrapolate data for the desired condition. 

Recently Artificial Intelligence has been applied in several fields of chemical engineering, 

for instance, for the estimation of physical properties of various compounds. Artificial neural 

network (ANN) models have been used to calculate the diffusion coefficients of pure compounds 

in water [14, 15]. Vaz et al. [16] proposed an ANN based correlation for the estimation of 

self-diffusion coefficients as function of residual entropy and a molecular chain length parameter, 

which provided an average absolute relative deviation of 9.13 % for a large database with 

molecular dynamic and experimental values for hard-sphere, Lennard-Jones, hard-sphere chain, 

and real fluids composed of polar, nonpolar, symmetrical and asymmetrical molecules. Feed 

forward neural networks have also been developed to estimate the Fick diffusion coefficient in 

binary liquid systems [17]. Likewise, Eslamloueyan and Khademi [18] proposed a method based 

on a feed forward three-layer neural network to predict binary diffusion coefficient of gases at 

atmospheric pressure based on the critical temperature, critical volume and molecular weight of 

each component in the mixture. A genetic function approximation (GPA) derived model 

containing five parameters has been proposed to predict diffusion coefficient of non-electrolyte 
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organic compounds in air at 25 C [19]. The estimation of the binary diffusion coefficients of 

liquid hydrocarbons at infinite dilution and in concentrated solutions has also been accomplished 

with Multi-layer perceptron (MLP) neural networks and an adaptive neuro-fuzzy inference system 

(ANFIS) [20]. 

In this work we applied machine learning algorithms, such as decision tree, nearest 

neighbors and ensemble methods to develop models for the prediction of binary diffusion 

coefficients of supercritical CO2 systems. A large database of experimental data, covering small 

and large, polar and nonpolar solute molecules, was collected and used in the training of the 

models. The results were compared with the Wilke-Chang, Lai-Tan and DHB equations, 

extensively used for this purpose. 

 

2 Theory, Database and Methods 

The methodology used in this work to develop machine learning (ML) models for the prediction of 

diffusivities can be summarized in the following steps: (i) variable (feature) selection; (ii) learning 

algorithms selection; (iii) data splitting into training and testing sets; (iv) data scaling; (v) 

hyper-parameters optimization; and (vi) final model evaluation. These steps are detailed below. 

The ML models were compared with the classic models of Wilke-Chang [7], Lai-Tan [8] and 

Dymond-Hildebrand-Batschinski [11–13] shown in Section 2.4. 

 

2.1 Database 

The database used in this work has been updated and extended from the one previously published 

by Vaz et al. [10]. It is composed by 174 binary SC-CO2 systems (solvent/solute) totaling 4917 

data points and contains information on 13 properties, as shown in Table 1. It covers a wide range 

of temperatures and pressures: 283.15–398.15 K and 67–3500 bar, respectively. 

Supercritical CO2 densities were computed by the correlation of Pitzer and Schreiber [21] 

when they were not provided by the authors. The viscosities of SC-CO2 were estimated by the 

correlation of Altunin and Sakhabetdinov [22] whenever necessary. The solute molar volumes at 

normal boiling point were estimated by Tyn–Calus equation [23] (Equation 4). The missing 

critical constants were estimated by Joback [23–25], Somayajulu [26], Klincewicz [27, 28], 

Ambrose [27, 29], and Constantinou-Gani [30] methods. The acentric factors, when not available, 

were estimated by the Lee-Kesler [31] and Pitzer [32] equations. The Lennard-Jones diameter and 
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energy were taken from Silva and Liu [13] and when not available were estimated by Equations 8 

and 9 from Liu et al. [33]. 

Detailed information on the database used, including pure compound properties and 

reduced temperature and pressure ranges, is presented in the Supplementary Material Table SM1. 

 

Table 1: Properties and variables available in the database of diffusivities of several solutes in 

SC-CO2. 

Property Units Description 

12D  cm
2
 s

-1
 Diffusion coefficient 

T  K Temperature 

P  bar Pressure 

1  g cm
-3

 Solvent density 

1  cP Solvent viscosity 

2M  1g mol  Molar mass of solute 

c,2T  K Critical temperature of solute 

bp,2T  K Boiling point temperature of solute 

c,2P  bar Critical pressure of solute 

c,2V  mol cm
-3

 Critical volume of solute 

2w  - Acentric factor of solute 

LJ,2  Å Lennard-Jones diameter of solute 

LJ,2/ Bk  K Lennard-Jones energy of solute 

 

2.2 Machine learning model development and optimization 

Model features selection: Model features were selected from the properties and variables available 

in the database presented in Table 1. Features were excluded from the model until no collinearity 

above a defined threshold of 0.65 was present. To select the variable to exclude from a pair of 

collinear variables, the correlation with 12D  and the ease of obtaining that variable were taken 

into account. Variables with low correlation with diffusivity were also removed. 
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Training and testing sets: In Machine Learning, data is usually divided into a training set, 

used for learning and fitting of the model, and a testing set, used to evaluate the fitted model after 

learning. Information from the testing set is never utilized during learning. Training and testing 

data sets were created by randomly splitting data base points 70 % into a training set and 30 % into 

testing sets. These data sets were kept unaltered for the evaluation of all models, guaranteeing the 

same input data for all. 

Scaling: Feature scaling is usually beneficial to most learning algorithms as it often 

improves model robustness and training speed [34]. Scaling is accomplished through 

normalization or standardization of the features. Normalization consists in transforming the real 

range of values into a standard range (e.g. [0,1]  or [ 1,1] ). Standardization consists in scaling 

variables so that they follow a standard normal distribution (mean of zero and standard deviation 

of one). In this work, properties were normalized to the [0,1]  range using scikit-learn 

MinMaxScaler. 

Hyper-parameter optimization: Unlike model parameters, which are fitted to the data when 

a model is trained, hyper-parameters are not learned from data and must be defined before training. 

They are configuration options of a given learning algorithm, usually with a numerical value, that 

influence how the model behaves. In this work, hyper-parameters were optimized by grid search 

with 4-fold cross-validation (using scikit-learn GridSearchCV). This method performs an 

exhaustive test of all hyper-parameters in a previously defined grid and evaluates the resulting 

model performance via k -fold cross-validation. The cross-validation technique avoids further 

reduction of the training set to create a validation set. Instead, the training set is split into k  

subsets and the model is trained using data from 1k   of the folds and tested on the remaining 

data. This is repeated using each 1k   combination of folds for training and the best 

hyper-parameters are those of the model with the best average performance. The tested 

hyper-parameters for each learning algorithm used, as well as the best hyper-parameters, are 

shown in Table 2. 

 

Table 2: Tested and best hyper-parameter values for each machine learning algorithm. All 

remaining hyper-parameters were left at their default values. 

ML Algorithm Hyper-parameter Values Tested Best 
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k -Nearest Neighbors 

Number of neighbors 3; 4; 5; 6; 7; 10; 12; 15 3 

Algorithm 
auto; ball_tree; kd_tree; 

brute 
kd_tree 

Leaf size (BallTree or 

KDTree algorithm) 
1; 2; 3; 5; 10; 15; 30 1 

Weight function uniform; distance distance 

Decision Tree 

Quality of a split metric mse; mae mae 

Split strategy best; random best 

Minimum number of 

samples per leaf 
0.1; 1; 2; 5 1 

Minimum number of 

samples to split a node 
0.1; 2; 4 2 

Minimum weighted 

fraction required for leaf 

node 

0; 0.1; 0.5 0 

Maximum number of 

features for split 
auto; sqrt; log2; None auto 

Minimum impurity 

decrease 
0; 0.5; 2 0 

Random Forest 

Quality of a split metric mse; mae mae 

Number of estimators 
5; 10; 15; 20; 30; 50; 

100; 150 
15 

Minimum number of 

samples per leaf 
0.1; 1; 2; 5 1 

Minimum number of 

samples to split a node 
0.1; 2; 4 4 

Minimum weighted 

fraction required for leaf 

node 

0; 0.1; 0.5 0 

Maximum number of 

features for best split 
auto; sqrt; log2; None None 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Minimum impurity 

decrease 
0; 0.5; 2 0 

Gradient Boosted 

Loss function ls; lad; huber lad 

Number of trees used in 

the boosting process 

100; 500; 900; 1100; 

1500 
500 

Maximum depth of each 

tree 
2; 3; 5; 10; 15 10 

Minimum number of 

samples per leaf 
1; 2; 4; 6; 8 10 

Minimum number of 

samples to split a node 
2; 4; 6; 10 1 

Maximum number of 

features for split 
auto; sqrt; log2; None sqrt 

mse: mean squared error; mae: mean absolute error; ls: least square regression; lad: least absolute 

deviation; huber: a combination of ls and lad. 

 

2.3 Machine Learning algorithms 

Five ML algorithms were evaluated for the prediction of binary diffusivities: a Multilinear 

Regression, a k -Nearest Neighbors model, a Decision Tree algorithm, and two Ensemble 

Methods (Random Forest and Gradient Boosted). All models were implemented using the Python 

machine learning library scikit-learn version 0.22.1 [35]. In the following a brief description of 

each one is presented. 

Multilinear Regression: A simple Ordinary Least Squares Multilinear Regression was used 

as a baseline model for the prediction of binary diffusivities. In a linear regression model, the real 

value, y , is a linear combination of features iX  weighted by coefficients ib : 

 0

=1

=
p

i i

i

Y b X b  (1) 

where Y  is the predicted output, 0b  is the intercept or bias term, iX  are the input 

variables, ib  are the model coefficients, and p  represents the number of parameters. The 

coefficients are optimized to minimize the residual sum of squares between the observed and the 
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calculated targets by the linear approximation [36]. This model was implemented using the 

LinearRegression class in scikit-learn. 

Nearest Neighbors Regression: k -Nearest Neighbors (kNN) is a non-parametric method 

and one of the simplest machine learning algorithms. It operates by finding the k  closest training 

examples ( ix ) to each new input ( x ) and returns the average of their responses iy . 

 
( )

1
( ) = i

x N x
i k

Y x y
k 

  (2) 

where ( )kN x  is the neighborhood of x  defined by the k  closest points, where the Euclidean 

distance is usually used as a distance metric between samples [36]. Implementation was done 

using the KNeighborsRegressor in scikit-learn. 

Decision Tree Regression: Decision Tree are models that use the training data to build a 

graph (tree) of simple decision rules that is used to analyse features. The prediction of the target 

variable is performed by following this tree, choosing the branches that return true values until an 

output (leaf) node is reached. This model was implemented using DecisionTreeRegressor in 

scikit-learn. 

Ensemble methods: Occasionally, the algorithms presented above, due to their simplicity, 

cannot produce an accurate model for the problem at hand. In these cases other methodologies are 

required such as ensemble learning or neural networks. In ensemble methods a large number of 

simple models are trained and their predictions are combined to obtain a high accuracy model, 

providing improved generalizability and robustness over a single model [36]. There are two main 

types of ensemble methods. Averaging ensemble methods, like the Random Forest algorithm, 

average the predictions of several independently trained weak models. Boosting ensemble 

methods, such as the Gradient Boosted model, iteratively build multiple models in which each new 

learner mitigates the bias of the previous model. Random Forests and Gradient Boosted models are 

based on Decision Trees and have proven to be effective for regression on numerous cases [37]. 

Both ensamble methods were applied in scikit-learn using the RandomForestRegressor and 

GradientBoostingRegressor classes. 

 

2.4 Classic D12  models 

In this article the obtained ML models were compared with three widely known equations from the 
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literature, the predictive equations of Wilke-Chang [7] and Lai-Tan [8], and the correlation of 

Dymond-Hildebrand-Batschinski (DHB) [11–13]. The models are briefly described in the 

following. 

Wilke-Chang equation: It is an empirical modification of the Stokes-Einstein relation and 

is given by: 

 
0.5

8 1
12 0.6

1 Tc,bp,2

( )
= 7.4 10

( )

M T
D

V





  (3) 

where subscripts 1 and 2 represent solvent (CO2) and solute, respectively, 1M  ( g  1mol ) is the 

molar mass of solvent, 1  (cP) is the viscosity of the solvent, T  (K) is the temperature,   

(nondimensional) is the association factor of the solvent (1.0 for the case of CO2), and TC,bp,2V  (

3cm  1mol ) is the solute molar volume at normal boiling temperature. The last can be estimated 

by the Tyn-Calus relation [7, 38] when no experimental data is available: 

 1.048

TC,bp,2 ,2= 0.285 cV V  (4) 

being ,2cV  the critical volume of the solute. 

Lai-Tan equation: It is a modification of the Wilke-Chang equation and was specifically 

devised for tracer diffusion coefficients in SC-CO2. It is described as: 

 
0.5

7 1
12 0.688 0.284

1 ,2

= 2.50 10
(10 ) c

M T
D

V




 (5) 

Dymond-Hildebrand-Batschinski model (DHB): It is a free-volume based model 

frequently adopted to describe transport properties in nonpolar systems. The equation is [11–13]: 

 
12 DHB 1 D= ( )D B T V V  (6) 

where 1V  ( 3cm  1mol ) is the molar volume of the solvent, DHBB  ( 3cm  1mol  1/2K ) is a 

parameter characteristic of the solute-solvent pair, and DV  ( 3cm  1mol ) is the minimum solvent 

molar volume required for diffusion. The last two are the adjustable parameters of the equation. 

 

2.5 Model evaluation 

The performance of the proposed models was evaluated using the average absolute relative 

deviation (AARD), which was always calculated in order to assess the goodness of fittings and 

predictions. It is given by: 
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calc expNDP
12 12

exp
=1 12

100
AARD(%) =

NDP i i

D D

D


  (7) 

where superscripts calc  and exp  denote calculated and experimental values, and NDP  is the 

number of data points. In addition to this weighted average, the simple arithmetic average of the 

AARD values of all systems (AARDarithmetic) was also calculated. The minimum and maximum 

system AARD are reported as an indication of the performance of the best and worst systems. 

Likewise, the AARD metric was also applied to the classic models used for comparison. 

 

3 Results and discussion 

Model development started with the selection of the relevant properties and variables from Table 1 

(feature selection), followed by the selection of the machine learning algorithm and finally the 

comparison of the best machine learning models with the Wilke-Chang, Lai-Tan and DHB 

equations. 

 

3.1 Properties and variables selection 

A feature selection process was conducted to identify appropriate variables and properties for the 

model. Figure 1 shows the correlation matrix (in the form of heat map) for the SC-CO2 data set, 

where values represent absolute Pearson correlation. Collinear quantities were excluded from the 

model by analyzing the Pearson correlations and setting a correlation coefficient threshold of 0.65. 

For each pair of quantities with a correlation above this value, usually the one with lower 

correlation with 12D  was removed from the model. The simplicity of the model was also taken 

into account when selecting/excluding variables. For instance, when analyzing bp,2T  and 2M  

pair, which presents a correlation of 0.88, bp,2T  has slightly higher correlation with 12D ; however, 

bp,2T  was excluded in favor of 2M  as information on 2M  is immediate and rigorously 

calculated, thus endowing the model with greater simplicity. 

 

Figure 1: Pearson correlation heat map for all properties and variables available for the 

supercritical CO2 model. 
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Following this procedure, the selected properties/variables for the model were temperature, 

pressure, density, solute molar mass, solute critical pressure and solute acentric factor. Upon 

further testing, pressure was also excluded as its effect upon the model performance was 

negligible. This is consistent with the fact that pressure and temperature effects are both included 

in the density effect, thus at least one of these variables should be theoretically unnecessary. Table 

3 shows the final properties/variables chosen for the supercritical CO2 machine learning model 

(ML SC-CO2), as well as those embodied in the Wilke-Chang and Lai-Tan equations used for 

comparison. The DHB correlation relies on 1V  and two fitted parameters ( DHBB  and DV ), 

presented in Section 2.4. 

The widespread use of the classic models such as the Wilke-Chang equation owes to their 

ease of applicability. Wilke-Chang and Lai-Tan equations require variables and parameters which 

are simple to obtain as temperature, viscosity, critical volume and molecular mass. The ML model 

here proposed relies on similarly simple quantities (temperature, density, molecular mass, and 

critical pressure) but also on the acentric factor whose information is less easily available. 

However, this property can be estimated using either the Pitzer [32] or Lee-Kesler [31] equations. 

The former requires knowledge of c,2T , c,2P  and vapor pressure while the later requires 

information on c,2T , c,2P  and bp,2T . 

 

Table 3: System properties/variables used in each model. 

Parameters Proposed model Classic models 

ML SC-CO2 Wilke-Chang Lai-Tan DHB 

T      

P      

1      

1      

2M      

c,2T      

bp,2T      

c,2P      
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c,2V      

2w      

LJ,2      

LJ,2/ Bk      

CO
2

M      

1V      

DHBB     
a
 

DV     
a
 

Count 5 4 4 3 

a
 Requires fitting to experimental data. 

 

3.2 Machine Learning model selection 

Five machine learning algorithms were applied in this study covering several types of supervised 

learning models: Multilinear regression (linear model), k -Nearest Neighbors, Decision Tree, 

Random Forest (averaging ensemble method) and Gradient Boosted (boosting ensemble method). 

In Figure 2 the predicted diffusivities are plotted versus the experimental values for the test 

set for the five machine learning algorithms. The best results are achieved using the Gradient 

Boosted algorithm (Figure 2e) with AARD = 2.58 %. Note this is the pure prediction deviation 

calculated for the test set, not used in model training. Remaining algorithms ranked, from lower to 

higher AARD, as: Random Forest (4.14 %), k -Nearest Neighbors (4.77 %), Decision Tree (4.89 

%), and Multilinear Regression (15.81 %). Similar behavior is observed for the k -Nearest 

Neighbors, Decision Tree, Random Forest and Gradient Boosted models (Figures 2b, 2c, 2d, and 

2e) which present random distribution along diagonal, while the Multilinear Regression shows 

heavy underfitting for low and high 12D  values. 

Each ML algorithm hyper-parameters were optimized as described in Section 2.2. A grid 

search with 4-fold cross-validation was applied, using at least 3 levels for numeric 

hyper-parameters and all available options for non-numeric hyper-parameters. A detailed 

description of the tested and best hyper-parameter values for each machine learning algorithm is 

provided in Table 2. In the case of the best model (Gradient Boosted), it uses the least absolute 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



deviation as the loss function; 500 boosting stages; a minimum number of samples required to split 

of 10; maximum depth of 10; leafs with a minimum of 1 sample; and a maximum number of 

features considered when splitting equal to the square root of the total number of features; all 

remaining hyper-parameters were left at their default values. The best model will be henceforth 

denoted by ML-GB SC-CO2 (Machine Learning Gradient Boosted model applied to 12D  in 

SC-CO2). 

 

Figure 2: Predicted versus experimental diffusivities for the test set using different machine 

learning algorithms: a) Multilinear Regression; b) k -Nearest Neighbors; c) Decision Tree; d) 

Random Forest; and e) Gradient Boosted. 

 

3.3 Comparison with classic models 

The final proposed model (ML-GB SC-CO2) contains five parameters: temperature, solvent 

density, solute molar mass, solute critical pressure and solute acentric factor. It provided an AARD 

of 2.58 % for the test set, which contains 168 systems and 1476 data points. 

Table 4 compares this model performance with the classic models of Wilke-Chang, 

Lai-Tan, and DHB, in terms of global AARD, arithmetic average of systems (AARDarithmetic), as 

well as minimum and maximum system AARD (AARDmin and AARDmax). The DHB equation 

takes one less system since not enough points were available in the training set to fit its two 

parameters. Overall the new ML-GB SC-CO2 model outperforms the classic models, with only the 

DHB equation attaining comparable results, which my be attributed to the two embodied 

parameters. With regard to the maximum system AARD, ML-GB SC-CO2 shows a maximum 

deviation of 17.27 %, slightly below the one provided by DHB (19.54 %) and significantly below 

those of the remaining classic models. Additionally, one should keep in mind that the ML model is 

universal while the DHB equation is system-specific, i.e. requires two parameters previously fitted 

to available data of each system. 

The performance of the classic models is presented in Figure 3 in terms of predicted versus 

experimental diffusivities. It is interesting to note that the Lai-Tan equation, a modification of the 

Wilke-Chang equation specifically developed for supercritical CO2 systems, presents the worst 

results with an AARD of 26.01 %. This inferior performance is because the Lai-Tan equation was 
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obtained by re-optimizing the Wilke-Chang frontal coefficient and 1  and c,2V  exponents using 

only 141 experimental points from 8 systems [8]. Consequently, such weaker support gives rise to 

higher errors when Lai-Tan equation deviates from its original pressure and temperature 

conditions and type of molecules. 

 

Table 4: Comparison of the performance of the ML-GB SC-CO2 model for the prediction (test set) 

of diffusivities in SC-CO2 with the classic models: number of test systems, number of test points 

(NDP), global AARD, arithmetic average of systems AARD (AARDarithmetic), minimum and 

maximum AARD (AARDmin and AARDmax). 

Model Systems NDP AARD (%) AARDarithmeti

c (%) 

AARDmin 

(%) 

AARDmax 

(%) 

ML-GB 

SC-CO2 

168 1476 2.58 2.77 0.31 17.27 

Wilke-Chan

g 

168 1476 12.41 14.00 2.40 54.04 

Lai-Tan 168 1476 26.01 22.97 1.56 84.25 

DHB 167 1473 4.27 4.03 0.26 19.54 

 

 

Figure 3: Predicted versus experimental diffusivities for the test set using the (a) Wilke-Chang, (b) 

Lai-Tan, and (c) DHB equations. 

 

Detailed results for each system in the test and train sets are presented in Table 5, 

specifying the solute, number of data points and global AARD, for the ML-GB SC-CO2 model and 

the three classic models adopted for comparison. The best results were obtained for the 

n-butylbenzene (0.31 %), n-decane (0.34 %) and 1-naphthol (0.44 %) systems, while the worst 

ones correspond to the m-xylene system (17.27 %) followed by the 1-methylnaphthalene (10.53 

%) and 1-hexadecene (9.02 %) systems. 

Figures 4 and 5 illustrate the 
0.5

12 /D T  dependence on solvent molar volume (free-volume 

theory) and Stokes-Einstein plots, respectively, using experimental and predicted (ML-GB 

SC-CO2 model) diffusivities for two systems: acetone and 1-methylnaphthalene. The main idea 
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behind such representations is to demonstrate that the ML-GB SC-CO2 model conserves the 

classical trends verified in the Stokes-Einstein and free-volume representations. As can be 

observed in both figures, the expected trends are kept, conserving the linear dependency of 

0.5

12 /D T  versus 1V  and 12D  versus 1

1T  . In fact this dependency can be quantified by the 

coefficient of determination ( 2R ) obtained scoring a value of 0.9509 (acetone) and 0.9681 

(1-methylnaphthalene) for the Stokes-Einstein relation, and 0.9772 (acetone) and 0.9443 

(1-methylnaphthalene) for the free-volume plot. In the case of 1-methylnaphthalene one sees that 

the model still follows the expected linear trends in the Stokes-Einstein and free-volume plots, 

notwithstanding the larger deviations of some data, mainly the last point. This causes the higher 

AARD found for this system. 

 

Table 5: Calculated results (AARD) for the diffusivities of solutes in supercritical CO2 for every 

system in the test and train sets achieved by the ML-GB SC-CO2 model and the classic models 

used for comparison. Systems sources and ranges of temperature, pressure and densities are 

reported in Table SM2 in Supplementary Material. 

 NDP AARD (%) 

 ML-GB 

SC-CO2 

Wilke-Chan

g 

Lai-Tan DHB 

Solute Tota

l 

Tes

t 

Trai

n 

Test Trai

n 

Test Train Test Trai

n 

Test Trai

n 

 -linolenic acid 56 13 43 1.39 0.69 13.19 14.56 30.9

4 

32.7

0 

2.62 2.83 

 -pinene 30 13 17 3.17 1.54 6.51 5.91 13.7

7 

13.4

0 

3.10 2.91 

 -tocopherol 82 28 54 1.47 0.77 25.86 26.75 30.8

5 

31.6

3 

1.96 2.23 

 -carotene 90 25 65 1.35 0.79 15.79 14.53 66.9

7 

65.8

9 

2.36 2.30 

 -pinene 15 2 13 4.87 1.35 5.03 12.75 4.65 5.14 10.3

1 

3.62 
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 -linolenic acid 142 37 105 1.23 0.81 7.63 7.84 36.3

5 

36.3

6 

2.40 2.08 

 -linolenic acid ethyl ester 41 13 28 2.70 1.43 8.57 6.16 25.5

0 

23.3

0 

5.45 4.98 

 -linolenic acid methyl ester 52 16 36 2.41 1.05 11.91 14.07 13.2

9 

22.8

9 

7.04 7.71 

1,1,1,5,5,5-hexafluoroacetylacetone 15 5 10 3.67 1.35 20.18 18.34 35.0

6 

30.8

4 

4.87 4.24 

1,1’-dimethylferrocene 68 25 43 1.71 0.77 11.89 12.32 18.7

2 

18.6

9 

3.91 3.73 

1,2-dichlorobenzene 15 4 11 2.60 0.80 7.27 6.75 19.8

2 

16.7

2 

3.05 1.91 

1,2-diethylbenzene 15 4 11 3.09 0.61 8.49 5.36 17.8

0 

17.0

9 

3.71 2.30 

1,3,5-trimethylbenzene 34 8 26 3.05 1.38 6.31 6.26 14.1

4 

15.9

5 

6.04 3.49 

1,3-dichlorobenzene 4 1 3 2.11 1.08 11.78 11.43 25.8

3 

23.2

2 

0.95 1.17 

1,3-divinylbenzene 15 6 9 2.10 0.74 5.14 2.80 18.5

1 

15.3

0 

1.60 1.52 

1,4-diethylbenzene 15 4 11 1.92 0.55 7.23 5.08 17.1

4 

18.3

9 

6.30 1.96 

15-crown-5 29 13 16 2.26 0.93 6.91 8.62 13.5

1 

16.3

7 

6.44 5.95 

1-hexadecene 11 6 5 9.02 0.75 16.52 15.75 16.9

1 

26.1

9 

10.3

7 

14.8

1 

1-methylnaphthalene 11 2 9 10.5

3 

0.79 30.84 18.02 39.6

5 

27.3

2 

19.5

3 

3.21 

1-naphthol 11 3 8 0.44 0.45 5.43 5.90 3.57 4.99 1.29 0.97 

1-phenyldodecane 15 5 10 1.16 0.90 6.15 7.37 51.2

4 

45.1

4 

2.31 3.98 
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1-phenylethanol 15 2 13 3.45 0.46 16.31 9.39 25.4

4 

25.3

1 

7.94 1.99 

1-phenylhexane 15 6 9 1.21 0.64 8.23 7.05 23.1

6 

24.1

9 

2.79 2.88 

1-phenyloctane 15 1 14 1.13 0.78 11.44 8.45 20.1

7 

27.8

6 

6.10 3.37 

1-propanol 17 4 13 3.70 0.40 8.70 17.50 7.04 3.70 4.19 2.45 

2,2,4,4-tetramethyl-3-pentanone 9 2 7 6.29 0.94 29.08 26.41 26.4

6 

19.1

8 

1.38 0.64 

2,3-dimethylaniline 15 5 10 2.43 0.70 11.17 18.47 33.1

0 

33.5

8 

3.12 2.37 

2,4-dimethyl-3-pentanone 8 2 6 6.37 1.13 12.32 10.90 15.6

3 

20.9

8 

2.31 2.51 

2,4-dimethylphenol 15 6 9 1.83 0.53 5.66 11.92 22.4

3 

25.9

6 

4.85 2.91 

2,6-dimethylaniline 15 3 12 0.81 0.65 12.43 11.23 28.2

1 

28.0

2 

1.42 3.87 

2,6-dimethylnaphthalene 6 0 6 n.d. 3.36 n.d. 7.15 n.d. 18.6

8 

n.d. 4.24 

2,7-dimethylnaphthalene 6 1 5 6.64 4.02 8.09 6.67 8.66 17.5

1 

7.99 3.74 

2-bromoanisole 15 2 13 0.93 0.48 17.40 16.39 30.0

7 

30.7

9 

3.58 3.68 

2-butanone 40 13 27 1.70 0.47 3.60 5.87 5.24 4.46 2.34 3.08 

2-ethyltoluene 15 3 12 3.68 0.64 8.69 9.01 10.2

6 

10.6

0 

4.53 3.71 

2-fluoroanisole 15 6 9 2.47 0.48 21.21 16.65 25.3

7 

27.5

1 

3.59 1.81 

2-heptanone 11 1 10 6.24 0.52 34.47 29.67 32.8

4 

22.1

0 

1.05 1.93 

2-methylanisole 15 5 10 5.03 3.22 9.09 9.97 22.5 23.0 4.30 2.56 
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0 8 

2-naphthol 16 3 13 0.94 0.24 7.32 7.96 10.8

1 

10.6

9 

2.45 1.68 

2-nitroanisole 15 3 12 2.54 0.74 12.55 11.20 33.2

7 

29.9

0 

4.15 2.25 

2-nonanone 10 3 7 1.96 1.55 36.44 35.47 26.4

7 

24.6

6 

3.23 2.13 

2-pentanone 23 4 19 4.09 0.48 7.92 3.71 3.76 1.96 5.31 1.71 

2-phenyl-1-propanol 15 6 9 2.13 0.78 10.53 9.19 28.7

3 

30.9

3 

3.96 2.20 

2-phenylethanol 15 4 11 1.02 0.22 14.16 11.34 24.0

9 

27.7

7 

3.89 2.68 

2-phenylethyl acetate 15 10 5 3.61 0.42 8.19 9.52 36.1

8 

36.7

5 

4.34 1.80 

2-propanol 18 7 11 1.31 0.52 10.50 8.98 6.15 8.59 3.71 1.65 

3-ethyltoluene 15 9 6 2.08 0.53 10.60 13.31 8.85 9.46 7.21 3.12 

3-fluorophenol 4 0 4 n.d. 0.61 n.d. 13.15 n.d. 24.2

6 

n.d. 1.00 

3-methylbutylbenzene 15 4 11 0.70 0.73 4.16 6.85 18.0

8 

21.4

6 

4.06 2.69 

3-nitrotoluene 15 3 12 1.97 0.97 2.40 4.40 13.1

0 

19.7

4 

6.40 3.91 

3-pentanone 46 12 34 1.59 0.57 7.76 8.47 4.95 3.97 2.78 2.59 

3-phenyl-1-propanol 15 7 8 2.16 0.61 4.78 7.45 28.8

0 

25.7

9 

4.26 1.92 

3-phenylpropyl acetate 15 5 10 1.75 0.72 3.92 8.72 39.5

0 

37.3

3 

5.21 3.37 

4-ethyltoluene 15 2 13 2.71 0.41 10.97 6.92 10.4

0 

13.0

8 

4.90 2.78 

4-heptanone 9 1 8 0.74 0.41 36.46 36.54 28.5

8 

29.8

2 

0.39 0.48 
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4-methylanisole 15 3 12 3.82 2.96 17.29 17.58 29.0

3 

32.5

1 

2.11 3.64 

5-nonanone 12 1 11 0.48 0.76 31.24 34.59 11.6

3 

21.6

4 

0.73 1.17 

5-tert-butyl-m-xylene 31 13 18 1.34 0.49 8.85 8.23 19.7

3 

19.1

5 

3.69 3.97 

6-undecanone 13 5 8 6.02 1.27 36.61 36.47 20.9

2 

18.7

4 

3.40 2.00 

AA ethyl ester 48 13 35 0.72 0.40 15.20 15.15 31.9

0 

29.8

8 

1.60 0.98 

acetone 213 74 139 2.91 1.18 4.89 5.99 10.2

0 

10.5

4 

5.44 5.38 

acridine 6 2 4 4.36 0.77 6.93 3.93 29.1

4 

26.2

7 

3.85 2.93 

adamantanone 8 2 6 3.02 0.45 12.37 20.10 13.5

3 

15.4

3 

11.0

0 

0.89 

allylbenzene 15 8 7 3.32 0.44 6.62 3.93 17.8

0 

14.6

4 

5.53 1.76 

aniline 15 6 9 6.59 0.42 37.92 30.28 34.2

5 

33.2

4 

3.83 2.21 

anisole 15 3 12 1.48 0.59 6.25 7.60 16.4

7 

16.2

7 

1.90 3.28 

anthracene 22 8 14 3.48 0.67 10.61 10.25 12.9

4 

15.6

6 

1.87 1.31 

arachidonic acid 75 23 52 1.58 0.92 9.51 9.78 41.3

5 

41.0

0 

2.88 2.18 

behenic acid ethyl ester 17 5 12 0.64 0.60 21.03 21.47 33.1

0 

30.5

6 

0.93 0.84 

benzene 249 84 165 5.64 1.68 9.40 8.44 8.93 9.54 7.12 8.13 

benzoic acid 35 7 28 4.78 0.50 11.02 9.97 15.0

5 

15.7

0 

5.37 6.83 
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benzyl acetate 15 6 9 1.29 0.81 7.49 7.99 29.4

0 

27.2

1 

2.70 3.35 

benzylacetone 15 5 10 1.69 0.93 5.93 6.32 30.6

3 

30.3

8 

3.47 4.27 

biphenyl 24 7 17 2.43 0.55 10.44 10.00 10.2

1 

9.97 2.81 3.35 

bromobenzene 21 11 10 3.48 1.09 5.39 7.34 12.6

3 

11.2

1 

4.36 4.63 

butyric acid ethyl ester 16 5 11 1.65 0.99 3.60 4.64 5.24 7.19 1.99 1.85 

caffeine 25 5 20 1.41 0.78 24.73 18.00 31.5

7 

27.7

0 

5.65 7.08 

capric acid ethyl ester 16 4 12 3.57 0.56 13.02 13.61 17.0

9 

16.6

4 

0.83 1.65 

caprylic acid ethyl ester 16 4 12 2.02 0.92 9.87 10.35 16.2

0 

13.7

1 

2.18 1.44 

chlorobenzene 21 5 16 2.71 0.80 4.57 6.18 8.99 11.0

8 

1.46 4.06 

chromium(III) acetylacetonate 104 35 69 3.31 1.41 15.95 15.36 45.6

9 

44.8

6 

7.17 6.69 

chrysene 4 3 1 4.79 0.87 15.63 17.76 17.6

5 

19.7

3 

n.d. n.d. 

citral 15 5 10 2.43 0.67 10.00 7.95 7.57 12.9

9 

5.14 3.99 

cobalt(III) acetylacetonate 38 13 25 1.68 0.90 12.06 11.25 47.0

2 

47.3

2 

1.57 2.49 

copper(II) trifluoroacetylacetonate 12 5 7 6.92 0.60 31.29 41.24 46.0

8 

57.7

8 

10.5

3 

1.90 

cycloheptanone 8 3 5 3.91 0.76 25.74 22.98 14.5

6 

21.3

9 

7.41 1.45 

cyclononanone 8 3 5 3.69 0.82 17.91 17.45 22.7

0 

22.6

8 

2.36 2.78 
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cyclopentanone 8 2 6 4.88 0.24 19.03 20.73 9.43 9.67 1.61 0.81 

DHA ethyl ester 65 23 42 0.86 0.41 17.03 17.47 30.9

8 

30.9

7 

1.35 1.44 

DHA methyl ester 17 2 15 0.90 0.57 17.80 17.31 25.1

4 

32.5

5 

0.85 0.94 

dibenzo-24-crown-8 28 9 19 0.92 0.51 12.30 12.93 52.9

2 

50.6

9 

2.05 1.96 

dibenzyl ether 15 5 10 0.88 0.53 3.70 6.13 35.8

0 

39.3

4 

5.35 2.51 

diethyl ether 17 2 15 4.76 0.83 12.13 10.33 4.36 8.64 2.39 6.06 

diisopropyl ether 15 3 12 7.14 0.58 9.94 6.44 7.66 12.4

7 

4.73 8.47 

diolein 9 5 4 2.56 0.74 23.56 23.85 49.0

2 

48.0

3 

1.74 1.82 

Disperse blue 14 47 14 33 3.52 1.29 20.18 20.84 20.1

8 

20.1

0 

3.98 2.17 

Disperse orange 11 65 18 47 3.08 1.80 20.01 20.46 14.0

9 

14.9

8 

3.57 3.70 

D-limonene 15 4 11 2.38 0.75 10.72 8.80 7.75 7.03 4.80 3.77 

docosahexaenoic acid (DHA) 63 22 41 1.18 0.60 9.10 7.42 49.0

4 

47.0

6 

2.12 1.53 

eicosapentaenoic acid (EPA) 55 15 40 1.30 0.54 7.23 8.00 41.1

9 

41.8

6 

2.07 1.65 

EPA ethyl ester 48 20 28 0.52 0.44 14.74 15.14 30.6

6 

29.4

0 

0.99 1.12 

EPA methyl ester 17 6 11 1.40 0.43 17.37 17.36 30.0

0 

30.7

4 

0.51 0.46 

ethanol 24 7 17 2.09 0.92 15.75 9.46 8.94 9.98 3.76 2.59 

ethyl acetate 16 5 11 3.77 0.47 23.95 14.70 5.22 7.88 6.00 7.99 

ethyl benzoate 15 7 8 4.04 0.73 4.43 3.39 21.2

2 

28.0

5 

3.97 1.95 
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ethylbenzene 15 4 11 0.68 0.69 7.65 7.36 4.89 4.81 2.67 2.31 

eugenol 15 3 12 3.05 1.03 18.44 17.00 33.7

8 

41.1

7 

7.21 1.63 

ferrocene 107 30 77 1.90 0.79 16.64 17.74 17.5

6 

17.2

1 

6.48 6.88 

fluorobenzene 15 3 12 6.71 0.68 11.27 10.98 8.50 11.4

1 

4.38 4.24 

geraniol 4 0 4 n.d. 0.76 n.d. 3.34 n.d. 35.8

0 

n.d. 0.38 

hexachlorobenzene 14 4 10 4.16 0.60 6.75 12.69 14.0

9 

14.2

2 

4.17 4.49 

Ibuprofen 99 27 72 1.65 0.73 9.35 10.05 18.9

1 

17.9

0 

4.14 4.13 

iodobenzene 20 4 16 2.76 0.61 3.06 10.50 17.3

1 

21.7

5 

3.51 2.72 

i-propylbenzene 36 6 30 1.01 0.91 7.19 9.06 7.82 7.49 3.05 2.23 

isobutylbenzene 15 8 7 1.99 0.59 3.94 5.63 15.2

7 

19.7

1 

3.20 1.98 

L-carvone 27 10 17 1.83 0.88 2.85 4.13 24.2

5 

24.5

0 

2.58 2.69 

linalool 15 4 11 2.52 0.77 10.19 6.16 9.72 10.7

7 

3.02 4.42 

linoleic acid 71 27 44 1.09 0.83 9.54 9.68 37.3

3 

38.4

1 

3.54 3.98 

linoleic acid methyl ester 20 3 17 2.03 0.77 13.41 15.80 37.3

0 

37.4

4 

1.91 1.53 

L-menthone 23 5 18 1.74 1.13 5.67 5.04 21.6

0 

19.2

8 

2.65 2.85 

methanol 10 7 3 2.55 0.20 14.11 23.06 18.3

1 

17.8

5 

3.96 0.18 

monoolein 11 4 7 0.65 0.69 6.78 9.81 41.6 44.5 1.53 1.26 
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8 7 

m-xylene 12 5 7 17.2

7 

0.78 27.01 11.10 18.5

0 

15.0

0 

10.5

4 

9.75 

myristic acid ethyl ester 16 8 8 1.86 0.95 15.35 16.60 25.1

4 

22.1

6 

2.86 1.58 

myristoleic acid 42 11 31 1.50 0.68 5.20 5.86 30.8

5 

31.6

3 

1.55 3.10 

myristoleic acid methyl ester 81 19 62 4.45 1.18 8.84 10.92 13.5

7 

15.2

4 

9.66 10.4

7 

N-(4-methoxybenzylidene)-4-n-butylani

line 

5 0 5 n.d. 0.33 n.d. 17.85 n.d. 3.72 n.d. 0.33 

naphthalene 114 35 79 3.16 0.82 11.24 10.66 8.20 9.75 7.24 10.3

6 

n-butylbenzene 15 4 11 0.31 0.59 8.28 5.57 19.2

6 

15.5

9 

6.62 2.32 

n-decane 5 1 4 0.34 0.16 36.55 38.99 17.8

2 

21.9

3 

2.93 1.08 

n-dodecane 5 0 5 n.d. 0.31 n.d. 40.87 n.d. 19.5

9 

n.d. 2.99 

n-heptane 5 2 3 1.50 0.11 27.24 30.02 15.1

0 

21.1

2 

2.25 0.02 

n-hexane 5 3 2 0.85 0.28 21.48 25.05 13.6

1 

20.6

8 

7.30 0.00 

nitrobenzene 23 4 19 2.18 0.74 7.10 8.42 19.2

6 

18.9

6 

3.27 3.01 

n-nonane 5 0 5 n.d. 0.20 n.d. 36.45 n.d. 21.1

1 

n.d. 1.43 

n-octane 5 1 4 1.59 0.36 32.10 33.74 16.2

5 

21.3

8 

6.82 0.41 

n-pentane 5 1 4 0.84 0.32 10.82 13.83 9.27 12.8

1 

2.67 1.56 
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n-pentylbenzene 31 10 21 3.48 0.51 8.25 8.43 16.4

2 

17.5

3 

4.51 2.58 

n-propylbenzene 60 13 47 3.44 0.87 7.41 13.12 9.47 7.64 4.77 4.56 

n-tetradecane 5 1 4 6.13 0.28 31.93 40.49 1.56 14.9

1 

11.5

7 

0.78 

n-undecane 5 3 2 6.66 0.50 40.84 41.08 22.1

6 

21.2

9 

2.94 0.00 

oleic acid 19 4 15 1.47 0.30 11.96 9.51 40.5

7 

39.8

7 

2.44 2.14 

oleic acid ethyl ester 5 2 3 3.16 0.40 9.75 3.04 28.8

5 

29.3

3 

2.74 0.23 

oleic acid methyl ester 21 5 16 2.85 0.42 8.94 6.78 29.8

2 

28.2

3 

5.15 3.31 

palladium(II) acetylacetonate 125 41 84 1.26 0.62 20.59 22.59 38.4

1 

37.8

8 

5.22 4.62 

palmitic acid ethyl ester 17 5 12 1.67 0.53 14.84 15.27 31.3

0 

27.9

0 

0.26 0.75 

p-dichlorobenzene 13 4 9 3.73 0.48 10.94 10.46 13.6

1 

18.5

3 

5.69 2.87 

phenanthrene 25 7 18 6.74 1.05 14.93 15.69 4.20 5.83 5.04 4.57 

phenol 109 27 82 2.31 0.48 21.40 21.14 9.58 10.6

2 

5.55 4.47 

phenylacetic acid 16 2 14 1.74 0.62 5.82 4.02 17.6

9 

15.5

8 

1.83 1.86 

phenylacetylene 15 5 10 1.49 0.72 6.18 8.61 16.4

5 

15.8

4 

1.69 1.58 

phenylbutazone 78 20 58 1.78 0.69 9.65 7.67 34.1

3 

32.1

8 

5.29 5.98 

phenylmethanol 15 4 11 1.51 0.53 14.14 13.83 22.2

3 

22.7

8 

3.28 2.26 

p-xylene 7 1 6 0.91 2.19 7.05 6.46 1.95 4.95 1.14 4.02 
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pyrene 21 9 12 2.99 1.08 8.64 10.58 24.5

7 

16.7

2 

3.74 3.32 

sec-butylbenzene 15 4 11 1.63 0.65 3.86 4.03 22.7

3 

18.9

5 

4.68 2.83 

squalene 5 1 4 2.35 1.30 33.70 29.88 18.6

7 

26.7

5 

3.93 1.15 

stearic acid 4 2 2 2.09 1.00 50.13 50.51 20.7

1 

21.4

3 

0.77 0.00 

stearic acid ethyl ester 17 5 12 0.62 0.59 24.10 24.53 29.6

4 

24.0

6 

1.27 0.99 

styrene 15 6 9 4.28 0.68 6.82 4.43 12.8

9 

15.9

4 

5.13 3.94 

tert-butylbenzene 15 5 10 1.58 0.75 8.26 7.74 15.6

6 

13.2

1 

3.33 3.95 

tetrahydrofuran 15 2 13 4.36 0.30 8.08 17.18 2.38 12.2

1 

12.2

9 

4.50 

thenoyltrifluoroacetone 15 2 13 1.88 1.13 35.57 29.37 44.6

6 

48.0

9 

2.75 3.43 

toluene 41 10 31 3.26 0.68 10.33 8.44 4.57 4.65 9.01 8.26 

triarachidonin 27 8 19 1.56 0.82 18.29 17.15 70.0

2 

70.3

6 

0.67 0.88 

trierucin 101 30 71 2.22 0.67 15.40 12.80 80.4

5 

83.1

0 

2.68 3.06 

trifluoroacetylacetone 15 6 9 3.62 0.36 2.88 4.30 12.2

8 

10.4

3 

3.14 1.46 

trinervonin 38 13 25 1.54 0.60 16.15 16.86 84.2

5 

82.6

6 

2.84 2.97 

triolein 14 6 8 2.11 0.44 30.59 28.66 54.8

0 

53.4

0 

3.95 2.57 

ubiquinone CoQ10 80 27 53 2.22 0.84 12.49 14.61 71.6

8 

71.4

8 

4.00 4.21 
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vanillin 15 5 10 2.36 1.40 11.45 13.23 23.7

9 

25.0

5 

2.18 2.08 

vitamin K1 17 8 9 2.37 1.93 25.75 28.57 31.3

0 

31.1

2 

2.45 2.56 

vitamin K3 22 4 18 3.05 1.27 8.83 9.75 12.6

4 

11.8

9 

4.75 2.56 

water 24 3 21 5.73 0.25 54.04 56.51 21.5

7 

12.0

7 

3.21 4.32 

n.d.: not determined. 

 

Figure 4: Experimental and calculated diffusivities (ML-GB SC-CO2 model) in terms of 

free-volume theory coordinates for (a) acetone and (b) 1-methylnaphthalene. 

 

Figure 5: Experimental and calculated diffusivities (ML-GB SC-CO2 model) in terms of 

Stokes-Einstein coordinates for (a) acetone and (b) 1-methylnaphthalene. 

 

4 Conclusions 

In this work a machine learning model for the prediction of binary diffusivities in SC-CO2 was 

developed. This model was trained and validated by splitting a database containg 13 properties of 

174 systems and 4917 points into training and test sets. Several learning algorithms were tested 

(Multilinear Regression, k -Nearest Neighbors, Decision Tree, Random Forest and Gradient 

Boosted). The best results were found using the Gradient Boosted algorithm, which presented an 

average deviation of 2.58 % for the test set. This model takes five input properties/variables which 

are readily available for multiple solutes: temperature, solvent density, solute molar mass, solute 

critical pressure and solute acentric factor. Results were compared with the classic diffusivity 

equations of Wilke-Chang, Lai-Tan, and Dymond-Hildebrand-Batschinski, which demonstrated 

worse performance for the same data with deviations of 12.41 %, 26.01 % and 4.27 %, 

respectively. Although the Dymond-Hildebrand-Batschinski model shows similar performance, it 

requires a priori experimental data to fit the system parameters, which is not always possible. 
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Highlights 
 

 New predictive model to estimate diffusivities in supercritical carbon dioxide. 

 The new machine learning model was trained with a database of 174 binary systems. 

 It was compared with several classical models, such as the Wilke-Chang equation. 

 The machine learning model provided the best performance with errors of 2.58 %. 
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