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Highlights 

 Low cost in-line color sensor for turbid liquids developed. 

 Color and turbidity successful discriminated using three analytical approaches. 

 Regression models is best suited for standard or occasional measurements. 

 Expectation Maximization Gaussian mixture performs better for well-known controlled range 

of colors and turbidities. 

 Artificial neural networks have easy implementation and is suited for real-time Internet of 

Things platforms. 

 

 

Abstract 

This work reports the development of a low cost in-line color sensor for turbid liquids based on the 

transmission and scattering phenomena of light from RGB and IR LED sources, gathering 

multidimensional data. Three different methodologies to discriminate color from the turbidity influence 

are presented as a proof of concept approach. They are based in regression models, expectation 

maximization Gaussian mixtures and artificial neural networks applied to labeled measurements. Each 

methodology presents advantages and disadvantages which will depend on the intended implementation. 

Regression models revealed to be best suited for standard or occasional measurements, the EM Gaussian 

mixture will perform better for well-known controlled range of colors and turbidities and the neural 

networks have easy implementation and potential suited for real-time IoT platforms. 
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1. Introduction 

Fluids found in nature and the ones used or produced in industry generally present, at some degree, 

suspended particles of solid matter with different sizes. If the liquid is in regular agitation, the particles 

will never settle down, making the liquid appear turbid. When color determination is necessary for 

quality control, laboratory analysis consisting of centrifugation and spectroscopy measurements are 

usually performed [1–4]. This type of analysis requires the extraction of a sample, its transportation to 

a laboratory where costly equipped such as a centrifuge and the spectrometer are located and, ultimately, 

the waste of the sample. This is, overall, a very time-consuming process. 

Low cost methods to measure turbidity in water samples were developed by Omar and MatJafri [5] 

using plastic optic fibers (POF) to guide light from 470 and 633 nm LED to a measurement cell where 

a water sample is placed. Light from both 0º and 90º is detected with photodetectors using other fibers 

as waveguides. The light intensity varies with the turbidity level. Bilro et al. uses the same concept and 

takes the advantage of POF miniaturization and transportability to develop an in-line solution, but using 

a 660 nm LED [6]. These solutions are color sensitive, but do not perform color measurements and thus 

unfitted for colored liquids. Another in-line solutions were developed and tested by Garcia et al. [7] and 

Crespo et al. [8] having the same principle as Omar and Bilro proposals, but in this case an infra-red 

(IR) LED was used with the propose to be color insensitive. Although turbidity in colored liquids, that 

do not absorb in IR, is calculated with this approach using an IR LED, the determination of color or 

spectral bands of interest is not possible. A more recent proposal using multimode fibers was presented 

in 2019 by Yeoh et al [9]. It attached side by side two fibers with their beveled tips mounted vertically 

and due to evanescent light transference between the two fibers in the turbid medium, light intensity 

variations were observed. However low accuracy values were obtained. Other low cost approach using 

smartphone as a detection device was proposed by Hussain et al. [10] where a system with a sample 

holder and IR LED is coupled with the smartphone. This system uses the smartphone battery for 

powering the IR LED that illuminates the sample holder for a nephelometric 90° measurement that is 

done with the smartphone IR sensor (ambient light and proximity sensor). 

For clear colored liquids, Jiménez-Márquez et al. [11,12] proposed a low-cost solution for a color 

sensor using transmitted light of LEDs with wavelengths of interest. The light is targeted to a 

measurement cell and the transmittance measured through a photodiode. Novo et al. [13] used the same 

approach but using POF as light guidance to the measurement cell. A smartphone based color 

determination sensor was also developed by Sumriddetchkajorn et al. [14] for chlorine concentration 

assessment where a self-referencing analysis is done for converting the color level of water to its 

corresponding chlorine concentration. A portable closed chamber is used as the support structure for the 

water sample and smartphone, with the concentration calculated from the ratio between the color 

intensity of the water sample and the empty sample holder. This process requires prior reagent mixing 

for chlorine activation. All the solutions here presented were not in-line prepared neither turbidity 

insensitive. 

In this manuscript is presented an in-line solution that uses not only the IR LED, but also colored 

red, blue green (RGB) LEDs. The light will be guided using POF as the waveguide to a measurement 

cell with the detection occurring at both 0º and 90º for each LED. These multivariate data will be used 

for the determination of color from turbid liquids. Because both turbidity and color interact with the 

sensor’s optic system in similar way, a model and statistical correlation analysis must be done to 

discriminate each parameters effect. Machine learning algorithms will be used, as a proof of concept 

approach, and a comparison stating the advantages and disadvantages of each algorithm is performed.  

Simple calibration regression models, expectation maximization Gaussian mixture (EMGM) [15–17] 

and artificial neural networks (ANN) [18,19] are used to correlate prior labeled data, this is, using 

supervised learning. The comparison will be performed considering features like easy of application, 

time of processing and error estimation by using random sampling cross validation. 

2. Sensor Structure 
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The sensor here presented is based on the 0º transmission and the 90º scattering light measurement. 

Previous work on this concept can be consulted in [6,20,21]. The sensor has four LEDs sources from 

Industrial Fiber Optics, Inc. with central wavelength of 430 nm (IF E92), 522 nm (IF E93), 660 nm (IF 

E97) and 870 nm (IF E91D) with bandwidth of 65, 40, 40 and 50 nm respectively. These RGB 

wavelengths were used based on the Glories method color system [22]. The LEDs are controlled by a 

main board with microcontroller for analog to digital converter and a wireless connection module. Each 

LED is connected to the same side input of a 4x4 POF coupler. Only two output fibers of the coupler 

are used, one as a reference/compensation for the LEDs electrical drift and the other will be the 

waveguide of light to the measurement partition. This partition is part of the measurement head sensor 

that can be submersed for in-line measurements. Two other fibers are connected to the partition in the 

same plane of the emission fiber but at 0º and 90º. These are the ones responsible to receive the scattered 

and transmitted light respectively. The 0º fiber is at a distance of 5 mm from the emission fiber and the 

90º is right next to it. These fibers are then connected individually to a photodiode (IF D91 from I. 

Fiberoptics) in the main board. In total, counting with the reference fiber, three photodiodes are used 

(Figure 1). To obtain a measurement, the main board turns on and off individually each LED in sequence 

and registers the output signal as voltage (V) obtained by the photodiodes which is proportional to the 

intensity of light. In total 4 scattering values and 4 transmitted values (8-dimensional data) will be 

obtained. 

 

 
Fig.  1. Developed in-line color sensor schematic with turbidity insensitivity. All the measured data is transmitted by the 

wireless module. Full image of the assembled sensor in the right. 

3. Measurement samples 

Samples of 500 ml with different colors and turbidities were prepared using red, yellow and green 

food dyes and corn starch at different concentrations. The volume of each dye added to water was 0.5, 

1, 1.5 and 2 ml. Spectral absorbance analysis for each dye concentration was performed in the most 

relevant window and is presented in Figure 2. 

Jo
ur

na
l P

re
-p

ro
of



 

Fig.  2. Absorbance spectral analysis for each colored solution using food dyes at different concentrations. The yellow, 

green and red lines are related to the yellow, green and red dyes used respectively. 

For each color, mass combinations of 0, 0.2, 0.45, 1, 2, and 2.8 g of corn starch was added and 

mixed. The dyes do not absorb in the IR region of the related LED. The turbidity value of each sample 

was measured by the commercial turbidimeter from Libelium S.L. [23] (calibrated with formazine 

standards and has a 5% accuracy) and a range up to near 4000 NTU was chosen to test the sensor for 

turbidities that could be of interest in same industrial applications such as the beverage manufacturing. 

A total of 78 different samples were obtained. Table 1 resumes the prepared samples. 

 

 

 

 

Table 1 

Resume table of the prepared samples used to train and classify. 

 Dye volume (ml) Turbidity (NTU) 

No color 0 0 164 449 999 2020 3571 

Yellow 

dye 

0.5 0 187 461 1042 2095 3542 

1 0 175 464 1016 2158 3556 

1.5 0 182 468 1033 1989 3456 

2 0 198 462 1052 2080 3575 

Green dye 

0.5 0 187 415 1021 2065 3721 

1 0 174 431 999 1973 3518 

1.5 0 183 424 1044 2053 3535 

2 0 196 438 1010 2089 3530 

Red dye 

0.5 0 204 474 996 2176 3688 

1 0 222 450 1023 2143 3529 

1.5 0 203 465 1023 2049 3530 

2 0 205 420 980 2006 3534 

 

With all the samples prepared, a cycle of 3 different measurements were taken for each sample 

lasting 3 minutes each. A measurement of 3 minutes has a total of 8 individual points that has a Gaussian 

distribution intrinsic to the sensor measurement error and the Brownian motion of the particles. Figure 3 

shows an example of transmittance and scattering mean values of the measurement of each red dye done 

using the 522 nm LED. All the values obtained are normalized with the measured voltage obtained from 

clean water (V0). 
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Fig.  3. Measurement for each red dye obtained for the a) 90º scattering and b) 0º transmission green LED. For higher 

concentrations of dye, it is possible to observe the influence of its light absorbance nature. 

With the increase of turbidity and/or color, the transmitted light will diminish with the growing 

number of scattering particles and/or absorption centers. This decreasing of light intensity (I) is ruled by 

the Beer-Lambert law: 

lc
II


 10

0
      (1) 

where I0 is the initial light intensity, α the molar attenuation coefficient, l the optic path and c the 

concentration of the attenuation substance. By using the RGB LEDs, it is possible to characterize the 

color from the transmittance values. Note that each attenuation agent will lower each other sensitivity. 

Therefore, if the color concentration is increased, the sensitivity for turbidity is lowered and in the same 

way, if the turbidity of the solution is increased, the sensitivity for color detection is also lowered. 

The scattered light that reaches the 90º fiber increases with the concentration of turbidity and it can 

be described by the Mie solution to Maxwell's equations [10,24] which complex formalism can be found 

in [25]. A 2nd order polynomial equation can be used as regression model. Color in the 90º scattered 

light will have the same behavior as transmission because of the same Beer-Lambert absorption 

phenomena. With all of this data classified, different approach of data analysis can be performed to 

create a good color classifier for turbid liquids. 

4. Data analysis 

Using the labeled data obtained with the sensor from the samples, here it will be presented three 

ways to analyze the data and to discriminate the contributions of color and turbidity. This study tries to 

present a different view as a proof of concept to how to analyze the multivariate data received from a 

sensor with the aim to obtain a better measurement. The first method will be based on simple regressions 

of mean values and will take advantage of the IR LED transmission insensitivity of color to calculate 

first the turbidity and then the color. The second method will take the advantage of the measurements’ 

Gaussian distribution to create clusters that will be the elements in cluster-continuum regression models 

with the variation of turbidity and color. The last method will use artificial neural networks (ANN) that 

will create a non-linear model that could discriminate the color of the liquid independently of the 

turbidity value. 

4.1 Regression models 

This method is the simpler and most direct one basing its prevision from the regressions performed 

to the non-color turbid data. Therefore, it doesn’t need the labeled data from the dye samples. The 
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regressions discussed in 3, this is, the 2nd order polynomial for the scattering data and the Beer-Lambert 

for the transmitted data, are applied to the non-color solutions to be trained (Figure 4). Having the trained 

regressions, it is possible to assess the color of a new measurement by finding the turbidity estimative 

of the sample through the IR LED information, which is color unresponsive (Figure 5). This can be done 

by using the scattered regression, the transmission regression or a combination of both. Because of the 

lower error presented for higher turbidities from the transmission regression, this is the one chosen to 

infer the turbidity obtained. By knowing the turbidity value, the color determination is performed by 

using the transmitted regression from the other LEDs. First, we find for each LED the output signal 

value that this turbidity value was supposed to have if color absorption were not existent (Vnc). This is 

the new initial light intensity signal output value that will be used as the base value to calculate color.  

Then we compare it to the measured value (Vm) from the unknown sample and calculate the 

transmittance through Tr=Vm/Vnc. It is obtained in this away three RGB values of transmittance that 

characterize the color of that unknown solution. 

 

Fig.  4. Transmission Beer-Lambert law based regression for normalized supervised data obtained from all the LEDs of the 

sensor. 

 

Fig.  5. Train and classification routines using regression models to the supervised data, taking advantage of the IR LED color 

insensitivity for RGB color determination. 

4.2 Expectation maximization supervised Gaussian mixture 

The second method will take advantage of the intrinsic Gaussian distribution that a measurement 

taken over time with several points will have around a mean value. For this, an expectation maximization 

supervised Gaussian mixture (EMGM) algorithm is used [15,16]. The EMGM algorithm will pick all 

the supervised data to be trained and will find the maximum likelihood solution to create a prechosen 

number of clusters, considering its Gaussian distribution (Figure 6). 
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For each cluster, a multidimensional mean value, covariance matrix and a mixture coefficient will 

be calculated. In this method, a cluster will be calculated for each unique set of turbidity and color 

present in the randomly selected training set, which ensures that a single cluster representation is 

performed, this is, the number of clusters is optimized with dependence with the training set. This also 

prevents that an outlier will be considered to its original cluster measurement since it will be integrated 

to a closer cluster, diminishing the overall error. Having each measurement associated to a cluster, the 

same regression models used in the first method are applied to the mean values of the clusters but, in 

this case, it is applied to all of the colored solutions as well. This process can be seen as a creation of a 

cluster-continuum for each colored solution that varies with turbidity and that has not a single mean 

value but instead a “continuous” mean value taken from the regression models applied. In this cluster-

continuum, a global variance will be considered as the mean variance values of the prior clusters that 

constitute the cluster-continuum and the mixture coefficient will be the sum of their individual mixture 

coefficients. With this approach, independently if it was already trained or not, any turbidity value can 

be associated to a sub-cluster from the cluster-continuum. Finalized the training routine with the 

determination of each cluster-continuum for each color. The classification routine initializes by 

estimating the turbidity value of a measurement using the IR regressions like in the 1st method presented 

in 4.1. In alternative, an approximate value of turbidity, using only the transmission and scattering 

dimensional information of the RGB LEDs, can be calculated based in a recursive cycle that minimizes 

and compares the error of the expected turbidity for each individual dimension, which makes this 

approach IR independent but increases the overall error. This turbidity estimation will be very important 

because it will be the value that will be used to calculate, for each color cluster-continuum, the 

comparison multidimensional point that will be used later. In other words, the estimated turbidity value 

will be used to calculate the expected value for each dimension using the regressions obtained by the 

training routine. Doing this for each color, in the end we will have the measurement point that we want 

to determinate and, for that expected turbidity, the expected sub-clusters for each color that encompasses 

the multidimensional mean point, the covariance matrix and the mixture coefficient. It is now possible 

to determinate the weight or how close is the measurement point to the sub clusters of each color. The 

more weigh that a sub-cluster has with the measurement point, the higher probability of that point to be 

of that sub-cluster color. If the calculated weight is mostly distributed between two sub-clusters, then 

the probable color will be between those two sub-cluster colors. The color is therefore calculated based 

on a percentage of each sub-cluster color proportional to their weight. 
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Fig.  6. Expectation maximization supervised Gaussian mixture algorithm scheme. Here an example using only the 

representation of 2 dimensions and 2 colors are presented. In the classification routine final step, the measurement point to be 

classified have the weight of the 2 sub clusters which makes its color a combination of the other 2. 

4.3 Artificial neural networks 

The last method is based on the application of the machine learning technique of artificial neural 

networks (ANN) [26]. ANN are computational models based on the biological operation and 

connections of the neurons of living beings. In the same way a neuron processes and transmits 

information to other neurons by synapses, the ANN will also have processing units that are connected 

between each other. Each processing unit is nonlinear and will have inputs that will be processed with 

simple activation functions producing this way a response as outputs. Linear, sigmoid and hyperbolic 

tangent are example of functions usually used. When an output is produced, it will be transmitted to the 

other neurons by “synapses”. All the “synapses” will have a weight associated to them that is multiplied 

by the output and deliver to the next neuron. The general structure of an ANN is made of three parts or 

layers as can be seen in Figure 7. The input layer is responsible for receiving the information to be 

determined. In the case of our sensor data, this layer will receive the 8-dimensional measurements. The 
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hidden layers are composed of the neurons responsible to extract the patterns associated with the 

processed being analyzed. If it is a complex problem to be solve, more hidden layers will be needed. On 

the other hand, using a large number of hidden layers to solve simple problems could lead to overfitting. 

In our case only one hidden layer composed by 8 neurons will be used as it showed to have lower 

estimation error. The neurons of this layer will have sigmoids as processing functions. The output layer 

is also composed by neurons and are responsible to present the final output of the network. The neurons 

of the output layer used in this work are three and have linear functions since the output will be the three 

color RGB transmittance values. This method is also IR LED independent since it is not mandatory to 

have its information as an input, providing that the training routine does not use its information also. 

 

Fig.  7. General structure of the artificial neural network used in this work when IR LED information is also used. For the case 

of not using IR LED, the input layer will only have 6 entrees.  Between each layer, a group of “synapses” denoted by a subscript 

number to W is presented. The final output will be the RGB color values to be determined. 

The ANN needs to be trained with the labeled data to have the best final possible results. The most 

common training process and the one here applied consists in two distinct phases, the forward 

propagation and the back propagation. In the forward propagation we simply apply the set of weights of 

our network to the input data and calculate the final output. For the first forward propagation, the set of 

weights are selected randomly. This output values will then be used in the back propagation, were a 

measurement of the margin of error is made in respect to the expected labeled values and the weights 

will then be adjusted accordingly to decrease the final error. This is calculated generally by 𝑤𝑒𝑖𝑔ℎ𝑡 =

𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑 + 𝑟𝑎𝑡𝑒 × 𝑒𝑟𝑟𝑜𝑟 × 𝑜𝑢𝑡𝑝𝑢𝑡 The velocity of adjustment of the weights are controlled by a rate 

constant that was chosen to be 0.5 in this work. To validate the algorithm and prevent overfitting, 50% 

of the random selected training data was used for validation. An example of the evolution of the error 

rate with the number of epoch can be observed in Figure 8. With the increase of epochs, the training and 

validation error reach a point of stability with a minimal error rate value between them, indicating a 

good fit of the model. 
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Fig. 8. ANN validation curves. 

5. Color determination results 

For each method discussed in 4, an analysis of the classification error of the color will be made 

with different percentages of trained samples. A random sampling cross validation method will be 

used [27] in which the samples that will be chosen for training are randomly selected. The samples that 

were left of training will be the ones that will have its color assessed. The process of train and 

classification will be performed over 100 cycles. For each cycle, the error ratio, the time of training and 

the time of classification will be calculated. The total error ratio and time related to each trained 

percentage will be calculated by the mean values. Two approaches will be made taking advantages of 

the proposed algorithms dependency of the IR LED information. The first approach will use the IR LED 

information to all the classifying methods and then an approach, without using this information, will be 

done to the algorithms that do not have a mandatory need of IR information, this is, EMGM and ANN. 

These processes were done in two programming languages, Matlab® R2014b and PythonTM 2.7 with 

Numpy library, to assure that there is a proper comparison between the measured times within the 

different algorithms and independency with the programming language. A computer with an Intel® 

CoreTM i5-2430M double core processor at 2.40 GHz and 6 GB of RAM was used having the 64-bit 

Windows® 10 as the operative system. The scripts were written for serial processing only and though 

only a single core was used. 

5.1 Using the Infrared LED information 

Although the use of IR LED information is not mandatory for the EMGM and ANN calculation 

algorithms, it is essential to the more direct approach of the regression models. The lines with dots in 

Figure 9 show the evolution of the error ratio with the increase of the trained data used for the 

regressions. As it can be seen, the error ratio stays practically in the same value (around 0.03) for 20% 

of the trained data and above. This was expected because of the error propagation associated with turbid 

media. Its natural Brownian behavior will create values with high scattering distribution independently 

of the optic system. Adding to this, the own sensor error (electric and optical fluctuations) and the error 

due to the fitted regression model will, together, define a lower limit error value for turbidity. Since the 

calculation of color has dependence on the value of turbidity, it will also achieve an error limit that 

seems to be reached with lower training data. Once this minimal error is achieved, it is impossible to go 

lower with this approach. To have a general idea of the performance of each method independently of 

the trained percentage, a calculation value was conducted based on the determination of the lower area 

of the error curves, just like an integration. The lower this value is, the higher the overall performance 

will be considered. For the regression models the value was 2.68 for Matlab and 3.08 for Python. A 
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lower value was obtained for the EMGM algorithm which were 1.25 for Matlab and 1.52 for Python. 

The evolution of the error with the trained data percentage can be seen by circles marks in Figure 9. 

This can be attributed by the substantially lower value errors obtained (roughly an order of magnitude 

lower) for higher training percentages (40% and above) in comparison with the regression models 

approach. In contrast, for lower training percentages the error is higher. This proves that this method is 

excellent for measurements of liquids that have the same cyclic color variation in which good training 

data set can be obtainable and where the traditional method of color determination is outperformed. In 

relation to the ANN approach (with crosses in Figure 9), a nearly constant error value (around 0.05) was 

obtained from the 20% trained data to above, which shows that this could be the lowest error possible 

to achieve by this approach without overfitting. As expected, this higher error values will have influence 

on the overall performance values that will be the highest from all the methods, 4.15 and 4.54 for Matlab 

and Python respectively. 

 

Fig.  9. Error ratio evolution with the trained data percentage (using IR information) for each classifier methods and for both 

Matlab and Python languages. 

The overall time that the regression model approach needs to train the data is around 0.4 seconds 

for Matlab and 1 second for Pyhon, independently of the percentage of trained data used. In Figure 10a 

we see a representation of the training time of EMGM and ANN normalized to the time values obtained 

for the regression model training routine for each language for a better visual quality comparison. It is 

possible to conclude that the EMGM approach is more computational demanding than the ANN 

approach. The training process of EMGM is, at 20% training data, 65 times slower than the regression 

model method at the same percentage. When using 99% of the data for training it becomes 500 times 

slower at the same percentage. This is a linear increase and its easily predicted that the higher the 

quantity of data to be trained, the higher the time to train will be necessary. This is clearly a disadvantage 

compared to the other approaches. The ANN method, in turn, does not increase substantially its time to 

train when more data is available. It has a stable time that is around 30 times slower for Matlab and 100 

times slower for Python. This differences between the two languages can be explained by the lack of 

optimization done to the Python code. The code was first written and optimized in Matlab and then 

directly adapted to Python without taking into account its particular differences as the examples of data 

structure that in Matlab is column-major while in the Numpy library of Python it is row-major. 

While the training routine can be easily performed offline, the classification routine has higher 

importance due to the demand of high speeds for in-line real-time sensor monitoring and when using 

multiple sensors that retrieve data to the same platform for calculation. If the calculation algorithm is 

not fast enough, bottle neck processing effects will exist, and loss of data is a possibility. There are also 

applications in which high delay times are unacceptable, mainly if process automation is present. The 

same analysis performed to the training times was also done to the classifying times and can be seen in 

Figure 10b. The regression model approach time needed to classify a single measurement for Matlab 

was 0.006 seconds while for python was 0.0003 seconds. The EMGM method took about 10 times over 
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the regression time to classify in Matlab, while in Python it was 60 times over, so it can be concluded 

that the EMGM method is in general a slow process. In contrast, the ANN method is very fast to classify 

which is expected because of the simple operation process needed. In Matlab it only took 0.03% of the 

time obtained from the regression models. In Python the time was 3 times slower, which again can be 

explained by the lack of optimization. Nevertheless, it is still in the same magnitude of the traditional 

regression models which is fast enough. 

 
Fig.  10. a) Normalized training time (logarithmic scale) in relation to the regression model approach and its equivalent b) for 

the classify times, both with the variation of the training data percentage.  

5.2 Without the Infrared LED information 

As mentioned before, the infrared LED information is not mandatory for the implementation of the 

EMGM and ANN algorithms. While for the ANN approach the non-linear model is automatically 

determined by direct implementation to the labeled data, the same does not apply for the EMGM. This 

is important because the infrared LED information was directly used for a first estimate of the turbidity 

which, in turn, is used to calculate the color in EMGM. Without this information a recursive cycle that 

minimizes and compares the error of the expected turbidity for each individual dimension is done which 

will take more time to classify a measurement and is expected to increase the overall error because of 

its higher uncertainty, due to the reduction of information. In Figure 11 is represented the error ratio for 

both EMGM and ANN approaches with the different training data percentages and for the both 

programing languages. 

 
Fig.  11. Error ratio evolution with the trained data percentage (without IR information) for EMGM and ANN classifier methods 

and for both Matlab and Python languages. 
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As expected, the overall error obtained for both approaches without the IR information were higher 

than the ones obtained with the IR information. Nevertheless, the increase of error is not that higher that 

invalidates this approach, which can be very advantageous because it simplifies the necessary hardware 

of the sensor. Also, again, the EMGM performance was higher with the increase of trained data as 

observed before with the IR information. The overall performance value obtained for Matlab and Python 

were 1.48 and 3.14 respectively. The ANN approach has the same constant error behavior as observed 

before, having the overall performance of 6.21 and 6.37 for Matlab and Python. The normalized training 

times in relation to the previously regression models for the EMGM and ANN approach are represented 

in Figure 12a. As observed the EMGM had approximately the same increase time behavior with the 

increase of trained data while the ANN has a more constant value of 30 and 50 times slower for Matlab 

and Python respectively in relation to the regression models with IR. Because of the alternative away to 

estimate turbidity for the EMGM process, as mentioned before, the classification time was higher 

without the IR information than with it (3x slower). This not happened to the ANN process were the 

values stayed the same as with IR information. Figure 12b shows the normalized values of classification 

time. 

 

Fig.  2. a) Normalized training times (logarithmic scale) and the b) classify times for the ANN and EMGM methods without 

IR information, in relation to the regression model and with the variation of the training data percentage. 

5.3 Resume table and final considerations 

As seen above, all the approaches here presented, including the ones based in machine learning as 

a proof of concept, are feasible and each one has its advantages and disadvantages. The traditional 

approach of regression models presented advantages in the faster training times while maintaining a low 

error. Unfortunately, it needs the presence of the IR information which requires the more complex 

hardware. The ANN revealed to be as fast, if not fastest, to classify as the regression models. It as the 

great advantage of not needing to know the physical models and can therefore be directly applied to the 

labeled data without prior behavior knowledge. It also does not need the IR information like the EMGM 

approach. The EMGM has the disadvantage to be the slowest method of all and needs to know the 

physical models, but it will be highly precise if the objective color liquid to measure have a cyclic pattern 

where good data for training is obtainable. In Table 2 a resume of all the advantages and disadvantages 

observed can be seen. 
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Table 2 

Resume table of the advantages and disadvantages of Regression model, EMGM and ANN color determination methods. 

 Regression Models EMGM ANN 

 Matlab Python Matlab Python Matlab Python 

Physical model    
Overall error ratio 

performance 
2.68 3.08 1.25 1.52 4.15 4.54 

Train speed Fast Very slow Slow 

Classify speed Fast Very slow Very Fast Fast 

Mandatory IR 

Information    
Overall error ratio 

performance 

(No IR) 
------ 1.48 3.14 6.21 6.37 

Observations ------ 
Particularly good for cyclic 

color variation patterns 

Potentially good for real-

time measurements 

 

6. Conclusion 

In this paper a low-cost optic color sensor for turbid liquids was presented. Three different methods 

of data analysis were developed with each one having its advantages and disadvantages. The traditional 

regression model showed to be fast and with small error for standard or occasional measurements, but 

it needs IR LED to be able to measure color. Simpler and low-cost sensors, without the IR component, 

can be developed if EMGM or ANN is the methodology used. If the intended liquid to be measured has 

a very well-known range of colors and turbidities, where easily trained data can be obtained, then the 

EMGM proves to be very effective than the other methods with its low error ratio. The drink industry is 

an example of this category where quality control is essential for high precise measurements and where 

is expected a well-defined range of color values. If the intended propose is fast real-time measurement 

for a sensor network or using an internet of things (IoT) platform, the ANN has the potential to be very 

fast without compromising highly its error ratio value. ANN is also easily to implement since it does 

not need any previously known physical models. 

For a more complete and comprehensive study to validate these preliminary conclusions, application of 

these algorithms to real day-to-day scenarios, like the ones mentioned before, will need to be performed. 

In these scenarios, multiple labeled samples and a large dataset can be obtained. Nevertheless, results 

here obtained, as a proof of concept, demonstrate the potentiality of the application of machine learning 

to multivariate data. 
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