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ABSTRACT 

Hypogonadism is more frequent among men with common metabolic diseases, 

notably obesity and type 2 diabetes. Indeed, endocrine disruption caused by 

metabolic diseases can trigger the onset of hypogonadism, although the 

underlying molecular mechanisms are not entirely understood. Metabolic 

diseases are closely related to unhealthy lifestyle choices, such as dietary 

habits and sedentarism. Therefore, hypogonadism is part of a pathological triad 

gathering unhealthy lifestyle, metabolic disease and genetic background. 

Additionally, hypogonadism harbors the potential to aggravate underlying 

metabolic disorders, further sustaining the mechanisms leading to disease. To 

what extent does lifestyle intervention in men suffering from these metabolic 

disorders can prevent, improve or reverse hypogonadism, is still controversial. 

Moreover, recent evidence suggests that the metabolic status of the father is 

related to the risk of inter and transgenerational inheritance of hypogonadism. 

In this review, we will address the proposed mechanisms of disease, as well as 

currently available interventions for hypogonadism.  
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1. Introduction 

Hypogonadism in adult men is a condition characterized by diminished levels of 

testosterone (T) (Basaria, 2014, Lunenfeld et al., 2015). According to this broad 

definition, hypogonadism can result is several effects in other organs and 

systems, as well as in general wellbeing. Therefore, according to the guidelines 

recommended by the Endocrine Society, hypogonadism should only be 

diagnosed “in men with symptoms and signs consistent with T deficiency and 

unequivocally and consistently low serum T concentrations” (Bhasin et al., 

2018). Hypogonadism is classically classified according to its origin, as primary 

or secondary hypogonadism (Table 1). Primary hypogonadism (or 

hypergonadotropic hypogonadism) results from testicular failure to produce T 

(Ahern et al., 2016, Ventimiglia et al., 2017). Secondary hypogonadism (or 

hypogonadotropic hypogonadism) results from hypothalamic-pituitary endocrine 

dysfunction (Fraietta et al., 2013).  

Hypogonadism can be further divided into organic or functional, according to its 

etiology (Table 1) (Bhasin et al., 2018). Organic etiologies are usually 

irreversible and on-site, such as inborn defects of metabolism or anatomical and 

morphological damage to the hypothalamus-pituitary-gonadal (HPG) axis (e.g. 

cancer, radiation, trauma) (De Roux et al., 2003, Khera et al., 2016). Functional 

etiologies are virtually reversible and related to other systemic diseases such as 

metabolic disease (obesity and type 2 diabetes (T2D)), lifestyle and 

environmental contaminants (Bhasin et al., 2018, Fraietta et al., 2013). 

The worldwide prevalence of hypogonadism associated with organic etiologies 

has not suffered major fluctuations over time. However, the prevalence of 

functional hypogonadism has been increasing in parallel with the prevalence of 



common metabolic disorders related to lifestyle, namely eating habits and 

sedentarism. Therefore, hypogonadism has also been linked to metabolic 

disorders, as both conditions are intimately correlated to hormonal alterations, 

including the disruption of the HPG axis, with consequent impairments of T 

secretion, spermatogenesis and sperm parameters (Alves et al., 2013, Oliveira 

et al., 2017, Samavat et al., 2018, Strain et al., 1982, Tajar et al., 2010). This 

evidence led to the recognition of another type of hypogonadism, which 

combined characteristics of both primary and secondary hypogonadism (Table 

1). This disorder, characterized by both lower T and gonadotropin secretion, 

associated with chronic metabolic diseases and adult-onset, was coined as 

Late-onset Hypogonadism (LOH) (Morales and Lunenfeld, 2002, Wang et al., 

2009) or Adult-onset Hypogonadism (AOH) (Khera et al., 2016). 

Environmental and lifestyle variables can also influence the incidence of 

hypogonadism related to inborn errors (Khera et al., 2016, Stuppia, 2019), and 

have also been involved in the early-onset of metabolic and male reproductive 

dysfunction later in life (Crisóstomo et al., 2019, Manikkam et al., 2013). 

Emerging data elicits the inter and transgenerational epigenetic inheritance of 

signatures induced by lifestyle factors, on the onset of hypogonadism (Butler, 

2011, Manikkam et al., 2013, Skinner, 2008). Summarily, hypogonadism may 

result from a pathological triad that includes an unhealthy lifestyle, the onset of 

metabolic disorder and an unfavorable genetic background (Figure 1). 

In this review, we discuss the current knowledge concerning the impact of 

lifestyle in the progression of metabolic disorders and the onset of 

hypogonadism, with a focus on the genetic and epigenetic basis underlying this 

association. Our goal is to trace lifestyle recommendations towards prevention, 



improvement and reversal of hypogonadism. Additionally, we discuss the 

efficacy and relevance of lifestyle interventions for the individual, and the 

potential inter and transgenerational effects. A literature search was performed 

in March and April 2020 giving preference to papers published since 2010. 

MeSH terms were used as input in Google Scholar and Pubmed search 

engines whenever possible. Search terms included, but were not limited to, 

“hypogonadism genetics”, “metabolic disorder hypogonadism”. 

 

2. Metabolic disorder and hypogonadism 

2.1. Metabolic diseases 

Obesity and T2D are amongst the most prevalent non-communicable diseases 

(NCDs) worldwide (World Health Organization, 2014). These metabolic 

diseases share etiologies, notably those related to lifestyle such as unhealthy 

food habits and low levels of physical activity (World Health Organization, 2000, 

World Health Organization, 2016), despite their different characteristics. Obesity 

is defined by a Body Mass Index (BMI) equal to or higher than 30  kg/m2 (World 

Health Organization, 2000). T2D is a metabolic disease characterized by the 

presence of chronic hyperglycemia that results from a combination of resistance 

to insulin action and an inadequate compensatory insulin secretory response 

(American Diabetes Association, 2009, World Health Organization, 2016), and 

requires several criteria to be met to be diagnosed. There are also relevant non-

pathological conditions related to obesity and T2D which have been implicated 

with the onset of metabolic disease and comorbidities. Overweight is defined as 

the BMI score equal or over 25 up to 30 kg/m2 (World Health Organization, 

2000), whilst metabolic syndrome (MetS) is defined as a cluster of risk factors 



towards T2D and cardiovascular disease (International Diabetes Federation, 

2006). Pre-diabetes is another T2D-related condition, in which individuals 

present just some of the criteria to be diagnosed with T2D (World Health 

Organization, 2016). 

Metabolic diseases have been widely associated with endocrine dysfunction 

(Alves et al., 2016, Crisóstomo et al., 2018, Jesus et al., 2017, Monteiro and 

Batterham, 2017, Rato et al., 2016), including secondary hypogonadism and 

LOH (Khera et al., 2016, Morales and Lunenfeld, 2002, Wang et al., 2009). 

Present figures indicate that hypogonadism is found in at least 20% of men 

suffering from T2D (Al Hayek et al., 2017, Dhindsa et al., 2016, Ho et al., 2015, 

Malipatil et al., 2019). Regardless of the underlying metabolic disease, the 

progression towards hypogonadism in adult males follow common pathways, 

related to endocrine regulation (Figure 2). The key events in this progression 

are the negative feedback over the HPG axis, impaired steroidogenesis, cell 

metabolic reprogramming and insulin resistance/insufficiency. 

Several animal studies suggest that insulin can mediate the secretion of 

pituitary hormones through the stimulation of GnRH hypothalamic neurons, 

triggering GnRH synthesis and secretion on the hypothalamus (Burcelin et al., 

2003, Kovacs et al., 2002, Navratil et al., 2009). Thus, insulin resistance or 

insufficiency caused by progressive stages of T2D affect GnRH release. 

Despite the lack of clinical evidence concerning hypothalamic insulin resistance, 

studies conducted in rodents have related the excessive intake of fatty acids 

with the onset of insulin resistance in the hypothalamus (Benoit et al., 2009, De 

Souza et al., 2005). In these works, the phosphorylation of a regulatory serine 

of the insulin receptor and the insulin receptor substrate-2, via c-Jun N-terminal 



kinase and Protein Kinase C-θ, was the proposed mechanism. Another mice 

study demonstrated that the knock-out of the insulin receptor in neurons leads 

to a decline in LH release by the pituitary gland, despite elevated serum insulin 

levels (Brüning et al., 2000). Consequently, FSH and LH levels decrease, and 

the steroidogenic function of LCs is not stimulated. In turn, in the presence of 

low T levels, adipogenesis from mesenchymal stem cells and fatty acid uptake 

by adipocytes increases. Ultimately, the enlarged adipocyte highly expressing 

P450 aromatase converts T into estradiol (E2), which exerts negative feedback 

over LH release (Cohen, 1999, Corona et al., 2011, Simpson and Mendelson, 

1987). High leptin levels secreted by the increased adipose tissue mass is also 

able to inhibit T production (Amjad et al., 2019, Isidori et al., 1999). Moreover, 

the dynamic remodeling of adipose tissue and excessive fatty acid storage, 

promotes local pro-inflammatory responses that elevate circulating TNFα and 

other adipokines levels that exert inhibitory effects on hypothalamic GnRH 

release and pituitary LH release (Corona et al., 2011, Dandona and Dhindsa, 

2011). Leptin stimulates the pancreas to secrete insulin, while both insulin and 

fat accumulation inhibit Sexual Hormone Binding Globulin (SHBG) synthesis by 

the liver, decreasing SHBG-bound T (Pasquali et al., 1995). Although this 

results in a transient increase in free T, the net yield of free T is negative, as it is 

responsible for activating feedback mechanisms that inhibit T production by LCs 

(Pitteloud et al., 2005). Finally, increased adipose tissue fat accumulation and 

elevated leptin levels will aggravate insulin resistance, and further stimulate the 

pancreas to secrete insulin, whereas potentiating the risk of endocrine pancreas 

secondary failure. 



Leptin decreases human SCs acetate production and was proposed to be a 

regulator of spermatogenesis nutritional support by (Martins et al., 2015). 

Furthermore, leptin concentrations within normal physiological ranges increase 

glucose transporter 2 (GLUT2) protein expression and lactate dehydrogenase 

(LDH) activity in human SCs, suggesting increased lactate production (Martins 

et al., 2015). In another study, ghrelin was demonstrated to modulate human 

SCs metabolic phenotype, by decreasing glucose consumption and 

mitochondrial membrane potential. Interestingly, LDH activity and lactate 

production remained unaltered. These results suggested that ghrelin could act 

as an energy sensor in human SCs in a dose-dependent manner (Martins et al., 

2016). Moreover, GLP-1 was shown to increase SCs lactate production and 

decrease protein carbonylation, without affecting mitochondrial functionality 

(Martins et al., 2019). Energy status-related hormones are recognized to 

contribute to hypogonadism development, although the mechanisms are not 

entirely characterized. The obesity-related increase of T aromatization into E2, 

boosting the negative feedback loop between the testis and the hypothalamus 

was one of the first mechanisms to be proposed. E2-mediated GnRH pulses 

disruption (Polari et al., 2015) is further impaired by leptin resistance, a common 

obesity trait (Considine et al., 1996, Frederich et al., 1995), which contributes to 

decrease serum T (Moschos et al., 2002). Leptin indirectly regulates GnRH 

secreting neurons function through afferent neurons (Quennell et al., 2009). 

Altogether, the abovementioned effects downregulate pituitary hormones (LH 

and FSH) secretion, ultimately leading to HPG axis disruption. Concomitantly, 

as a result of obesity-associated chronic inflammatory status, high circulating 

levels of inflammatory cytokines, including tumor necrosis factor TNF-α are 



observed (Moon et al., 2004). Cytokines can induce a severe decrease in T 

production by LCs (Bornstein et al., 2004). Moreover, TNF-α was reported to 

inhibit steroidogenic acute regulatory (StAR) protein expression in mouse LCs 

(Budnik et al., 1999). StAR, responsible for cholesterol transport into 

mitochondria, is a rate-limiting enzyme of T steroidogenesis (Wang et al., 2017).  

Additionally, TNF-α administration (50 μg/m2 for 3 weeks) was reported to 

significantly reduce T production in humans, further supporting the influence of 

obesity-related inflammatory state on the steroidogenic machinery (van der Poll 

et al., 1993).Overall, these data highlight the intimate relationship between 

metabolic status and reproductive function, and the potential of metabolic 

abnormalities to induce reproductive disorders. Significant shifts in energy-

related pathways, antioxidant defenses and amino acid metabolism were also 

reported in mice with MetS induced by a high-fat diet (Crisóstomo et al., 2019). 

In the presence of MetS, several sperm parameters were observed to be 

affected, notably sperm motility, viability and morphology, illustrating the 

influence of metabolic disorders on testicular tissue. In rats fed with high-energy 

diets, pre-diabetes was also demonstrated to alter testicular mitochondrial 

bioenergetics and oxidative stress, by inhibiting the PGC-1α/Sirt3 axis (Rato et 

al., 2014). Notwithstanding, the association between hypogonadism and 

metabolic disease is bidirectional, i.e., the onset of hypogonadism is a risk 

factor towards metabolic disease (Dandona and Dhindsa, 2011). On a 

longitudinal study in adult men, low serum T levels were found to be predictors 

of MetS (Corona et al., 2009, Corona et al., 2011). Other studies have 

advocated that low T and SHBG levels are associated with increased risk of 



metabolic disorders in non-overweight middle-aged men (Kupelian et al., 2008, 

Kupelian et al., 2006).  

 

2.2. Inborn defects of metabolism 

Inborn defects of metabolism due to chromosomal and genetic defects can be a 

cause of hypogonadism. One such genetic cause is the kisspeptin receptor 

defects (Kiss1r, formerly known as GPR54) (De Roux et al., 2003, Oakley et al., 

2009). Kisspeptin is a neuropeptide produced by specialized neurons in the 

hypothalamus that stimulates GnRH production by GnRH-producing cells, and 

consequently LH and FSH release by the pituitary gland. The pulsatile secretion 

of GnRH in response to kisspeptin, is regarded as the hallmark of puberty in 

mammals. The roles of kisspeptin in brain and reproduction were extensively 

reviewed by (Oakley et al., 2009), and more recently by (Clarke et al., 2015) 

and (Comninos and Dhillo, 2018).  

Kallman’s Syndrome characterized by hyposmia or anosmia and hypogonadism 

due to GnRH deficiency is another example of a genetic disease, which can 

result from several identified monogenic mutations, such as Kal1 (Kim, 2015, 

Stamou and Georgopoulos, 2018). Yet, neither anosmia nor hypogonadism are 

invariably found in Kallman’s Syndrome, as different mutations result in 

distinctive phenotypes that sometimes overlap (Kim, 2015, Quaynor et al., 

2016). Klinefelter Syndrome (KlS) is the most frequent sex chromosome 

disorder, occurring in individuals that most often present a 46, XXY karyotype, 

among several other related chromosomal abnormalities (Smyth and Bremner, 

1998). KIS has an estimated prevalence of 1.72 cases per 1,000 male live 



births worldwide (Morris et al., 2008). Men with this syndrome exhibit 

characteristic phenotypic features, gonadal dysgenesis with abnormal 

spermatogenesis, oligo or azoospermia, sexual dysfunction and elevated serum 

FSH and E2 levels (Bonomi et al., 2017, Smyth and Bremner, 1998). However, 

KIS prevalence is likely underestimated, as individuals with milder KlS features 

can be easily missed or misdiagnosed (Bonomi et al., 2017, Morris et al., 2008, 

Smyth and Bremner, 1998). (Bernardino et al., 2016) demonstrated that the 

GPR30 receptor was the most expressed E2 receptor in testes of KlS patients 

and presented a 12-fold increase in contrast to the ERβ receptor that is the 

most expressed E2 receptor in testes of men with normal karyotype. E2 exerts 

a negative feedback on the HPG axis and inhibits pituitary LH release, thus 

contributing for hypogonadism. Moreover, GPR30 activation by E2 inhibits 

steroidogenesis in LCs (Vaucher et al., 2014). Therefore, persistent high E2 

levels found in KlS patients further inhibit T production by LCs via GPR30-

related pathways overstimulation.  

In addition to chromosomal abnormalities and mutations directly responsible for 

causing hypogonadism, other genetic and epigenetic factors associated with a 

genetic predisposition for metabolic disorders can also affect the HPG axis and 

should not be overlooked. Prader-Willi (Butler, 2011) and Bardet-Biedl 

(Forsythe and Beales, 2013) are two examples of syndromic obesity associated 

with hypogonadism. These syndromes are also associated with mental 

retardation, dysmorphic features and organ-specific abnormalities (Huvenne 

and Dubern, 2014). In 1997, a prohormone convertase 1 gene frameshift 

mutation, responsible for the creation of a premature stop codon causing a 

defective prohormone processing, was described as the first human single 



genetic defect that leading to severe obesity without developmental delay in 

rodents and humans (Jackson et al., 1997). In the same year, the single 

guanine nucleotide deletion in the leptin gene was also reported to be 

associated with severe obesity, reinforcing the key role of leptin in regulating 

energy balance (Montague et al., 1997). This deficit in leptin causes pubertal 

delay associated with hypogonadism (Farooqi, 2002). Fortunately, in this case, 

the administration of exogenous leptin has proven to be effective to attenuate 

the manifestations of this inborn error (Farooqi, 2002). Notably, the most 

frequent cause of monogenic obesity are mutations in genes associated with 

the leptin/melanocortin axis that regulates food intake (Nóbrega and Rodriguez-

López, 2014). These mutations can either occur de novo in subjects with no 

previous family background or inherited, usually according to Mendelian Laws in 

a similar way as other monogenic disorders (World Health Organization, 2017). 

So far, more than 20 single-gene autosomal disorders were described as 

causing human obesity and these genes are classified as obesity-related genes 

(O’Rahilly, 2009).  

As previously stated, obesity and T2D can be associated with hypogonadism 

and vice-versa. As the obesity epidemic reaches alarming proportions, more 

children are born from overweight/obese parents. Thus, future generations are 

at greater risk of inheriting deleterious epigenetic traits that can trigger the 

development of metabolic disorders (Reynolds et al., 2013) and, consequently 

hypogonadism, later in life. 

 

3. Lifestyle factors  



3.1. Diet and body weight 

Excessive energy intake can lead to excessive adiposity, obesity and 

consequently hypogonadism. Obesity-related hypogonadism can be reverted by 

weight loss interventions, such as bariatric surgery (Pellitero et al., 2012). 

Obesity surgery results in significant and sustained weight loss and promotes 

several other positive effects including overall improvement of metabolic health. 

Indeed, weight loss was shown to improve total and free T in a meta-analysis by 

(Corona et al., 2013), regardless of being achieved via dietary intervention or 

bariatric surgery. Nevertheless, bariatric surgery was more effective than dietary 

interventions in increasing total T (8.73 nmol/l vs 2.87 nmol/l, respectively), 

which the authors attributed to the greater percentage of weight lost (bariatric 

surgery - 32%; lifestyle intervention - 9.8%). Moreover, data from the selected 

RCTs show that total T is positively correlated with the percentage of weight 

lost, and it is even more effective in men at younger ages, non-diabetic and 

more severe obesity degrees. Weight loss was shown to be the most relevant 

factor to attenuate or even revert the hypogonadal state, and has therefore 

been highlighted as the main target of treatment intervention in several 

longitudinal studies and even clinical guidelines (Camacho et al., 2013, Khera 

et al., 2016, Niskanen et al., 2004, Rastrelli et al., 2018). This assumption was 

further supported by The European Male Aging Study (EMAS), which identified 

a body mass index (BMI) reduction of over 15% to be required to normalize total 

T, free T and LH serum concentrations in men aged between 40-79 years old 

(Camacho et al., 2013, Rastrelli et al., 2018). Unfortunately, less than 1% of the 

EMAS study subjects achieved that degree of weight loss (Camacho et al., 

2013, Khera et al., 2016). More recently, the effect of lifestyle intervention 



aimed to achieve 10% weight loss was assessed in a clinical trial conducted in 

14 men in obesity-related hypogonadism (De Lorenzo et al., 2018). After 

intervention, total T levels significantly increased (300.2 ng/dL vs. 408.3 ng/dL) 

and E2 levels significantly decreased (48.3 pg/mL vs. 39.2 pg/mL) compared to 

baseline (De Lorenzo et al., 2018). To overcome the limitation related to the 

difficulty of achieving the weight loss threshold required to improve 

hypogonadism, the use of Testosterone Replacement Therapy (TRT) in 

combination with diet and exercise was proposed (Heufelder et al., 2009). The 

rationale was that T promotes adipose tissue mass reduction whereas 

increasing muscle mass, therefore TRT was likely to potentiate weight loss 

driven by lifestyle intervention. After 52-weeks of lifestyle intervention combined 

with TRT, there was a significant decrease in waist circumference, glycaemic 

control and MetS improvement when compared to placebo (Heufelder et al., 

2009). Although, whether T levels were regularized after ceasing the treatment 

is unknown. TRT alone has been recommended to hypogonadal obese men. 

Several long-term follow-up studies (5-11 years) report that hypogonadal obese 

men taking testosterone undecanoate injections every 3 months have shown a 

significant reduction in body weight, waist circumference and BMI (Francomano 

et al., 2014, Saad et al., 2020, Saad et al., 2016). Yet, although (Francomano et 

al., 2014) report improvements in the metabolic profile of these men, none of 

those studies report an hormonal normalization after ceasing TRT. 

 

3.2. Physical activity 



Even mild physical activity, when combined with diet and antidiabetic drugs, 

notably metformin, can result in significant hypogonadism improvement 

(Casulari et al., 2010). (Grossmann, 2011) further advocates the adoption of 

mild physical exercise in men with T2D and hypogonadism before considering 

prescribing TRT. (Grossmann and Matsumoto, 2017) also defend that even mild 

exercise provides sufficient improvement of overall health to prevent the onset 

of hypogonadism in middle-aged and older men. This recommendation is 

supported by studies where mild exercise was demonstrated to alleviate MetS 

manifestations (Pattyn et al., 2013) and promote significant weight loss (Khoo et 

al., 2013). The exercise volume and intensity also influence the outcomes of an 

exercise program. (Khoo et al., 2013) assigned 75 sedentary men with obesity 

and hypogonadism either to a low-volume (<150 minutes/week) or a high-

volume (200–300 minutes/week) moderate-intensity exercise program (24 

weeks long). The exercise was prescribed along a dietary intervention to reduce 

daily caloric intake by circa 400 kcal. T levels increased 2.6 times more 

(2.06 ± 0.46 nmol/L) in the high-volume group than in the low-volume group 

(0.79 ± 0.46 nmol/L), who also lost almost twice the weight (−5.9 ± 0.7 kg vs. 

−2.9 ± 0.7 kg). Thus, leading to conclude that regardless of the type of 

intervention used to achieve it, weight loss is pivotal for hypogonadism 

improvement. 

Despite the previously mentioned preponderance of weight loss in conveying 

beneficial effects in HH condition, the therapeutic potential of physical exercise 

in HH has also been demonstrated, though only in animal models. A study 

using rabbits as a model reported improvements in GnRH expression, increase 

LH levels and T production and even overcome erectile dysfunction, after a 



progressive physical exercise program (Morelli et al., 2019). In this study, 

animals were fed either by a regular diet or a high-fat diet (regular diet enriched 

with 0.5% cholesterol and 4% peanut oil) during 12 weeks and, simultaneously, 

a subset of animals in each group underwent a physical exercise program. The 

animals fed with a high-fat diet and which have not undergone physical activity 

developed MetS, hypogonadism, erectile dysfunction and elevated pro-

inflammatory markers in testis and hypothalamus, whereas their exercising 

counterparts had similar parameters as controls. No significant changes in body 

weight were reported. Accordingly, physical exercise revealed as a potentially 

effective lifestyle intervention to attenuate hypogonadism symptoms and 

prevent its onset, independently from weight loss, in animal models. In addition 

to the physiological differences of these animal models and humans, the former 

do not account for subjective variables as the resilience needed to keep an 

exercise and diet plan. 

 

3.3. Environmental contaminants 

Environmental contaminants comprehend a broad range of substances that 

may have a significant impact on the HPG axis and reproductive function either 

by acting as steroid analogs (e.g. obesogens, endocrine disruptors) either by 

cell-specific toxicity in endocrine organs (e.g. hydrocarbons, heavy metals) 

(Cardoso et al., 2017, Diamanti-Kandarakis et al., 2009, Gabrielsen and 

Tanrikut, 2016, Stuppia, 2019). Endocrine disruptors are exogenous 

compounds, natural or human-made, with the ability to interact with endocrine 

receptors, altering signaling pathways and culminating in the disruption of the 

endocrine system. These compounds can be classified as non-steroid or steroid 



analogs, accordingly to its chemical structure (Diamanti-Kandarakis et al., 

2009). 

Obesogens are a group of endocrine disruptors that can promote adipogenesis 

and lipid accumulation (Grün and Blumberg, 2009). Obesogens usually are 

structurally similar to sex steroids with the ability to interact with the HPG axis 

leading to reproductive dysfunction. Furthermore, a large portion of these 

compounds is lipophilic, creating a vicious cycle, where fat accumulation 

becomes a way to further accumulate endocrine disruptors, which aggravates 

the endocrine imbalance already established by obesity (Grün and Blumberg, 

2009). Men are often exposed to different classes of environmental 

contaminants or occupational hazards that may contribute to hypogonadism 

(Gabrielsen and Tanrikut, 2016). Besides that, endocrine disruptors and 

obesogens can steadily accumulate in the human body (Cardoso et al., 2017). 

Processed foods, food packaging, herbicides/pesticides and animal hormones 

are well-described sources of both endocrine disruptors and obesogens 

(Cardoso et al., 2017). Due to its large variety, it is difficult to identify the 

specific mechanism by which each of these compounds promote hormonal 

imbalances. A study in fish revealed that organotin compounds, used as plastic 

stabilizers and in paint, inhibit the activities of CYP450, CYP1A1 and aromatase 

(Fent and Stegeman, 1991). These enzymes are present in several tissues and 

participate in the synthesis of several hormones, including sex hormones (E2 

and T), thyroid and retinoid hormones (Fent, 2003). Organotin compounds are 

also obesogens, able to activate nuclear receptors and stimulate adipocyte 

differentiation (Grün and Blumberg, 2007). Organotin compounds appear to 

have a direct impact on the HPG axis, by affecting the synthesis of sex 



hormones. Other obesogens may indirectly affect the HPG axis by promoting 

obesity which, in turn, will promote hormonal dysregulation. In this category are 

included persistent organic pollutants, such as dichloro diphenyl trichloroethane 

(DDT), and heavy metals, such as lead, among several others (González-

Casanova et al., 2020). DTT is reported to increase adipocyte differentiation, 

while promoting the expression of peroxisome proliferator-activated receptor-

gamma and other markers of proadipogenic activity (Howell and Mangum, 

2011, Strong et al., 2015). Similarly, lead was reported to have a proadipogenic 

action in 3T3-L1 cells, an adipocyte like cell line, by a mechanism that involves 

the activation of peroxisome proliferator-activated receptor-gamma (Martini et 

al., 2018). Lead exposure in rats also stimulates the differentiation of 

mesenchymal cells into mature adipocytes (Beier et al., 2013). In sum, the 

action of several environmental contaminant compounds can directly, or 

indirectly, promote HPG dysregulation. 

 

3.4. Substance abuse 

Opioids abuse can directly induce hypogonadism. Endogenous opiates 

(endorphins) inhibit T synthesis by direct action on testicular LC to inhibit steroid 

hormone production and hypothalamic neurons to inhibit GnRH release 

(Daniell, 2002). Methadone and orally-consumed synthetic endorphins are also 

reported to decrease total LH levels and consequently total T levels (Daniell, 

2002). As an opiate, methadone can exert the same inhibitory effect over GnRH 

release as endorphins, thus both methadone and synthetic endorphins 

exacerbate the effect of endogenous endorphins and impair the HPG axis. 



Accordingly, men consuming 100 mg of methadone a day, for pain relief or 

treatment of heroin addiction, were found to present subnormal total T or E2 

levels (Daniell, 2002). Additionally, sexual dysfunction arises in 87% of men 

after starting opioid therapy. 

Alcohol and tobacco, although widely legalized and consumed, are also linked 

to hypogonadism (Gabrielsen and Tanrikut, 2016). Alcohol was demonstrated 

to suppress the HPG axis in mice and humans (Emanuele and Emanuele, 

1998), besides having direct toxic effects on testicular LCs and SCs (Jang et al., 

2002). In frequent drinkers, SHBG availability is improved when alcohol intake 

is reduced (Camacho et al., 2013), which consequently improves T 

bioavailability. Conversely, anticonvulsants can induce hypogonadism through 

overexpression of SHBG, thus reducing free T availability (Corona et al., 2011, 

Mazdeh et al., 2020). The deleterious effects of anticonvulsants in endocrine 

functions and most particularly on the HPG axis, are reported since the 1970s, 

although the underlying mechanisms are still not fully understood (Isojärvi et al., 

2005). Several anticonvulsants can promote SHBG synthesis by the liver, 

reducing T bioavailability (Isojärvi et al., 2005). Valproic acid can affect GnRH 

release (and consequently LH and FSH) as it modifies GABAergetic 

transmission (Isojärvi et al., 2005).   

Nonetheless, anabolic steroids are among the most common threats to normal 

HPG. Anabolic steroid drugs are molecule analogs synthetically produced to 

mimic the chemical structure and physiological effects of steroid hormones. 

Synthetic T or androgen analogs are often consumed by bodybuilders, 

sportsmen, or simple gym enthusiasts as a mechanism to improve physical 

performance, promote muscle hypertrophy and hyperplasia and reduce fat 



mass (El Osta et al., 2016, Jarow and Lipshultz, 1990). However, anabolic 

steroids also exert a negative feedback over the GnRH pulsatile secretion, thus 

inhibiting LH and FSH release and disrupting normal HPG axis (El Osta et al., 

2016, Jarow and Lipshultz, 1990). (Rahnema et al., 2014) in a meta-analysis 

that comprised data from men who had taken and ceased taking anabolic 

steroids for non-pathological purposes, follow-up studies published between 

1965 and 2013,  concluded that even after anabolic steroid drugs withdrawal, 

total serum T levels were on pair with agonadal men. Younger men were found 

to be more capable to recover normal HPG axis after drug cessation, therefore 

illustrating that the HPG axis of younger men is more dynamic and adaptable. 

Other factors linked to a quicker recovery of normal HPG axis were the use of 

lower anabolic steroid doses over shorter durations, and higher T levels at 

baseline (Rahnema et al., 2014). 

 

4. Temporary, permanent and transgenerational effects of lifestyle in 

hypogonadism  

The lifespan of environmental factors that potentially lead to hypogonadism can 

be very broad (Figure 3). The effect of some factors (toxicants, diet) can be 

readily reversible after discontinuing the exposure or modifying lifestyle habits. 

In contrast, the effects of other environmental factors can be more silent, 

imprinted and irreversible. To what extent these effects can be reversed is also 

influenced by the duration and intensity of exposure. The effects of lifestyle 

interventions were demonstrated to be self-limited effects in mitigating 

hypogonadism, notably in men over 50 years old with obesity (Grossmann and 



Matsumoto, 2017). Moreover, the available data also support that lifestyle 

interventions are difficult to manage and to maintain, limiting the long-term 

success. Thus, diet and exercise promote weight loss and can potentially revert 

hypogonadism (Grossmann and Matsumoto, 2017), although depending on the 

commitment and the observed effects are usually limited to the duration of the 

intervention. More recently the role of environmental factors in modulating 

epigenetic traits transmitted to the offspring has also been highlighted. This so-

called intergenerational (father-son) and transgenerational (grandfather-

grandson) inheritance has been implicated in the etiology of several non-

communicable diseases, notably obesity and T2D (Skinner, 2008). A classic 

example of intergenerational epigenetic inheritance is uniparental disomy (UPD) 

of imprinted genes (Stuppia, 2019). This epigenetic mechanism consists of the 

inheritance of both copies of the same allele from the same progenitor. Prader-

Willi Syndrome (PWS) is a genetic disease that results from the loss of function 

of paternally imprinted genes in chromosome 15 (15q11-q13), and patients 

typically present both obesity and hypogonadism (Cassidy et al., 2012, Stuppia, 

2019). In 1-3% of PWS cases, the defect originates in spermatogenesis which 

impair the methylation pattern of the imprinted genes in the 15q11-q13 region of 

the offspring (Cassidy et al., 2012, Glenn et al., 1997). Interestingly, reports 

from the late ’80s found PWS to be more frequent in the offspring of men 

exposed to hydrocarbons (Cassidy et al., 1989, Strakowski and Butler, 1987), 

suggesting a role for these environmental toxicants in the intergenerational 

inheritance of disease. More recently, another group also reported the role of 

hydrocarbons in the intergenerational inheritance of sperm defects and the 

transgenerational inheritance of obesity in rats (Tracey et al., 2013). In this 



study, gestating females (F0 generation) were exposed to jet fuel JP-8 via 

intraperitoneal injection during the period of fetal gonadal development 

(embryonic day 8 to 14). The male lineage of those females (F1 generation) 

presented azoospermia, seminiferous atresia, apoptotic spermatogenic cells, 

atrophic prostatic ductular epithelium and delayed pubertal onset. In turn, male 

rats of the first transgenerational generation (F3 generation), presented obesity 

and 33 sperm epimutations, thus demonstrating the paternal transmission of 

molecular fingerprints caused by environment toxicants. 

Paternal obesity and T2D have been linked to the onset of metabolic disorder in 

the direct male progeny (sons) but also in subsequent generations (grandsons 

and subsequent descendants). This data has been mostly supported by animal 

models, but also by large-scale longitudinal studies in human populations (Kaati 

et al., 2002, Painter et al., 2008). One of the mechanisms proposed to be 

involved in the inter and transgenerational inheritance of metabolic disorder is 

the modulation of the neural reward pathways (Bays and Scinta, 2015). Neural 

reward pathways are related to satiation and play an important role in appetite 

regulation. Ancestral inheritance of obesity via this mechanism has been 

previously reported in rodent models (Bays and Scinta, 2015, Youngson and 

Morris, 2013). Notably, (Donkin et al., 2016) reported significant differences in 

the miRNA content in the sperm of obese men after bariatric surgery. Besides, 

the miRNAs differentially expressed before and after surgery were implicated in 

the embryonic neural development, thus the nutritional status of the father, at 

conception, can be pivotal in the neural development of the embryo. More 

recently, (Nätt et al., 2019) reported that the tsRNA content in human sperm 

shows rapid responses to diet. Therefore, even short-lasting lifestyle changes 



can modulate the health outcomes of the progeny. Another study has shown 

that high-fat diet-induced obesity in rodents can modulate metabolic health via 

parental lineage for up to two generations (Fullston et al., 2013). 

Environmental toxicants can also induce persistent effects over several 

generations. In a rat model, DDT exposure was found to induce obesity in the 

great-grand-children (F3) generation, in both males and females (Skinner et al., 

2013). The experimental model consisted of (Tracey et al., 2013): F0 gestating 

females were intraperitoneally injected with DDT 50 (high-dose) or 25 (low-

dose) mg per kg body weight per day, or DMSO vehicle (control), during 

embryonic days 8 to 14. The incidence of obesity in F3 males (great-grand-

children of F0 females, and first transgenerational generation) was significantly 

higher in the descendants of the DDT-exposed F0 females (High-dose: 75%; 

Low-dose: 50%; Control: 22.5%). Besides, in the same generation, the 

descendants of F0 females exposed to the highest DDT concentration had the 

highest incidence of testis disease (50%), the highest proportion of apoptotic 

germ cells per tissue section (60% of apoptotic germ cells per section) and the 

lowest sperm counts (85% of the Control) (Skinner et al., 2013). Similarly to 

ancestral hydrocarbon exposure, several epimutations were identified in the 

sperm of F3 generation, caused by differential DNA methylation regions 

(DMRs). The same research group, using a similar approach, found similar 

effects caused by Bisphenol A (BPA) and other plastic derivatives (Manikkam et 

al., 2013). In this study, the researchers injected the gestating rats with a mix of 

plastic derivates (BPA 50 mg/kg BW/day, DEHP 750 mg/kg BW/day and DBP 

66 mg/kg/BW/day), a lower dose of plastic derivates (half the concentration of 

the previous group) or DMSO (the control). Interestingly, the males of F3 



generation originated from the lower plastic dose lineage presented the higher 

percentage of transgenerational testis disease (40%). Although plastic derivates 

did not cause as much reproductive and metabolic transgenerational damage to 

male rats as hydrocarbons or DDT, they have induced the highest number of 

epimutations at DMRs (197). 

 

5. Conclusions 

Male hypogonadism can result from a complex interaction between lifestyle, 

metabolic health and genetic background. The physiological mechanisms 

involved in the onset of obesity-related male hypogonadism create an intricate 

vicious cycle that is difficult to break. Lifestyle interventions can improve 

hypogonadism, but are limited in terms of effectiveness and temporal 

persistence, while the sole intervention that proved to have significant and long-

lasting success was bariatric surgery. Additionally, the gonadal effects of 

metabolic disorders and other environmental factors, are not only deleterious for 

the individual, but can also harm the progeny of future generations. Therefore, it 

is crucial to prevent and treat men affected with these conditions to avoid the 

perpetuation of the disease in the offspring, and before it becomes a one-way 

ticket for human health. 
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Figure legends 

Figure 1: The triad of Hypogonadism. The genetic background may be 

crucial for the onset of any disease. Nevertheless, the onset of a chronic 

metabolic disorder, such as T2D, and the perpetuation of unhealthy lifestyle 

choices, greatly increase the risk for developing hypogonadism as a 

comorbidity. 

 

Figure 2: Simplified schematic representation of the links between 

metabolic disease and hypogonadism. The progression of male 

hypogonadism associated with metabolic disease lies in a complex network of 

metabolic and endocrine pathways. However, HPG axis dysfunction, impaired 

steroidogenesis, cell metabolic reprogramming, and insulin 

resistance/insufficiency are key variables in this equation. Thus, those are 

potential therapeutic targets to halt the progression of the disease. 

 

Figure 3: Lifespan of environmental factors that interfere in gonadal 

function. The effect of diet and exercise tends to be limited to the duration of 

the intervention. Still, the nutritional status of a man at the time of conception 

can modulate the predisposition for metabolic disorders and hypogonadism in 

subsequent generations. Environmental toxicants can also modulate the 

predisposition for metabolic disorders and hypogonadism in several 

generations, through epigenetic changes carried by sperm.  



Table 1: Male hypogonadism etiologies grouped by type and 

hypogonadism classification.  

  Classification  

Origin Primary Secondary 

Organic 

Klinefelter Syndrome 

Cryptorchidism 

Cancer (e.g. testicular/scrotal) 

Chemotherapy 

Testicular irradiation/damage 

Orchidectomy 

Orchitis 

Testicular trauma, torsion 

Advanced ageª 

Cancer (e.g. hypothalamic/pituitary) 

Iron overload syndromes 

Infiltrative/destructive disease of 

hypothalamus/pituitary 

Functional Prescription drugs (e.g. 

anticonvulsants)ª 

Hyperprolactinemia 

Alcohol, tobacco, cannabinoidsª 

Opioids, anabolic steroids 

MetS, T2Dª 

Overweight/Obesityª 

Excessive exercise 

Unbalanced diet 

Environmental contaminantsª 

ª Mixed effects of primary and secondary hypogonadism. In these cases, the etiology was 

allocated according to its most representative classification. Adapted from Bhasin et al. (2010) 

and Bhasin et al. (2018). 

 

 








