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Abstract

We investigated the critical exponents for the compounds La1-xxMnO3 (x = 0.1; 0.2 and 

0.3) prepared by the sol-gel method. Our samples show a second- order transition 

inferred from the positive slope, in accordance with the Banerjee Criterion. Using the 

slope of different models on the TC, the relative slope (RS) was traced. From this 

perspective, the best models for the three samples prove to be the mean field and 

the tricritical mean field models. This model is characterized by critical exponents ,  and 

δ which are determined by many methods such as MAP, KF method and critical isotherm 

analysis.

The theoritical methods and experimental results  were in good agreement  for the three 

compounds. The universality class has been shown. After detremining the spontaneous 

magnetization for x = 0.2 from (-∆SM) vs. M2, we detected a good agreement with those 

obtained from the classical extrapolation of Arrott curves (µ0H/M vs. M2). Furthermore, 

based on the magnetocaloric effect (MCE), Landau’s theory is valid for the compound x = 

0.2. 

Keywords: Landau, Spontaneous magnetization, Magnetic refrigeration, Mean field 

model, Tricritical mean field, Heisenberg model, Ising model.

I. Introduction

In the past few years, perovskite-type A1-xBxMnO3 has attracted the attention and aroused 

the interest of multiple scientist for its metallic nature, large bandwidth, and magnetic 

phase transition around the room temperature [1]. The magnetocaloric effect which 
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discovered by the German physicist Warburg Win 1881 in the iron [2], was found in many 

perovskites and observed around the Curie temperature. Nowadays, the magnetic 

refrigeration is presented as the competing technique for conventional systems. 

Several studies have been performed in the field of perovskite type ABO3 and very 

significant finding have revealed the great potential of materials for spin-polarized or 

spintronic electronics [3-5]. Among the most studied materials, we mention  manganese-

based perovskite oxides, whose chemical formula is LnMnO3, where Ln is a trivalent rare-

earth. The substitution of lanthanum by divalent earth cations triggers the variation of 

their crystallographic, magnetic and electrical properties [6]. Furthermore, the 

preparation method plays a crucial role in the variation of the physical property of 

manganite. For instance, the decrease of Curie temperature is related not only to the 

change of the Mn-O-Mn bond-angle but also to the Mn-O distance and induces a transition 

from the paramagnetic to the ferromagnetic phase transition [7]. Other phenomena such 

as frustration can be stated. Indeed, frustration is present in both magnetism and other 

areas, namely non-magnetic ceramics [8], water ice [9, 10], liquid crystals [11] and even 

superconductors [12]. However, magnetism seems to be an interesting field of 

investigation based on a large number of techniques. In the field of magnetism, frustration 

can yield several applications as highlighted by Ballou and Lacroix [9]. In fact, some 

frustrated systems, such as the Gd2Ti2O7 compound [13], can have a tremendous 

magnetocaloric effect. Various models including that of Hamed, Landau and Monte carlo 

have been set foward to simulate the experimental and theoretical results [14-16]. 

Within this framework, it is worthnoting that the discovery of a magnetocaloric effect is 

defined by the heating or cooling of certain magnetic materials under the application or 

removal of an external magnetic field [17]. Recently, the discovery of colossal 

magnetoresistance (CMR) in manganese-based oxides, such as Ln1-xAxMnO3 (Ln = rare 

earth, A = Ba, Ca, Sr …) has gained considerable interest. Actually, it has been thoroughly 

explored in a totally new field, namely spin electronics, for both theory (magnetic and 

electrical structural transitions) and its interpretation, such as the double exchange 

(DE)[18], super exchange (SE) [19], electron-phonon coupling [20], Griffiths phase [21] 

(GP). A basic question, which arises related to the FM/PM transition, centers around the  

class of universality depending on the dimensionality of the space and the parameter of 

order. The study of critical behavior with the DE model has been characterized for the 

first time in the mean field theory [22]. However, recent theoretical studies based on the 
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DE model have predicted that the FM-PM transition in manganites should belong to the 

Heisenberg universality class at a 3D dimension [23-26]. On the other side, the 

experimental estimates for critical exponents are still controversial, including those of the 

Heisenberg model with short-range interactions, values of mean field theory, and those 

which cannot be classified in any other universality class.

In this paper, the critical exponent and the Curie temperature for the compounds are 

determined resting on a modified Arrot plot [27], Kouvel–Fisher methods [28] and 

critical isotherm. Subsquently, spontaneous magnetization (Mspont) was estimated and 

then compared to that estimated from the classical extrapolation of the Arrott curves 

(µ0H/M vs. M2 ) and from the magnetic entropy change ((-∆SM) vs. M2 ) for x = 0.2. Landau 

mean-field analysis was carried out to specify the magnetic entropy change        (-ΔSM) 

near the Curie temperature.

II. Experimental details

The series of La1-xxMnO3 (x = 0.1; 0.2 and 0.3) were prepared by sol-gel method using the 

lanthanum nitrate, manganese nitrate, citric acid and glycol ethylene. The steps of this 

method were reported in reference [29]. The samples cristallize in the rhombohedral 

space group with  with the existance of the secondary phase Mn3O4 for x = 0.3. A R3c

Vibrating Sample Magnetometer (VSM) in Physics Department-I3N, University of Aveiro 

(Portugal) was invested for the magnetic measurements (magnetization versus applied 

magnetic field in a temperature range near TC). To extract the critical exponent of the 

samples accurately, isothermal magnetization data as a function of magnetic field were 

analyzed in the range of 0–2 T, in the vicinity of the PM to FM phase transition. These 

isothermals are adjusted by a demagnetization factor D that has been estimated by a 

standard procedure from low-field DC magnetization measurement at low temperatures 

(0H = 0Happ - DM). 

III. Results and discussion

Fig.1 presents the variation of M vs 0H for different temperatures, in steps of 3 K for x = 

0.1 and 4 K for x = 0.2 and 0.3. These curves depict that the state is FM for T < TC, and is 

PM for T > TC. A positive slope (fig.2) portrays that the second- order PM-FM transition 

can be  estimated for these compounds according to the Banerjee criterion [30]. 

Based on  4 models (mean filed model  = 0.5 and  = 1 , tricritcal mean field model  

= 0.25 and  = 1, Heisenberg model  = 0.365 and  = 1.336  and Ising model  = 0.325 

and  = 1.24 ) [31-33], the varition of M1/ vs (µ0H/M)1/ was traced in Fig.2.  Changer 
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fig.2a. en fig2 et fig.2.b. en fig.3 et ainsi de suite

In order to determine the best model, the variation of the relative slope (RS) was traced 

versus temperature in Fig.3. (RS) was calculated by dividing the slope of the curve in each 

temperature by  its slope in TC ,  (S(T)/S(TC)). The curve closet to the horizontal line (RS 

= 1)  corresponds to the most applicable model. We noticed that the mean field is the best 

model for x = 0.1 and the tricritical model for x = 0.2 and 0.3. Afterwards, we traced MS (T) 

and 1/ (T) (MAP)  (Fig.4) and the variation of ((MS)/ (dMS/dT)) and  ((1/)/ d(1//dT)) 

(KF) Fig.5, in order to detremine the value of ,  and TC. The values of these three 

unknown parameters were determined by the fitting of MS (T) and 1/ as indicated in  the 

following relation:

MS(T)=M0(-(T-TC)/TC),T<TC (1)

,T>TC (2)𝛘 -𝟏
𝟎 (𝐓) =  (𝐡𝟎

𝐌𝟎)((𝐓 - 𝐓𝐂)/𝐓𝐂)𝛄

And ((MS)/ (dMS/dT)) and ((1/)/ d(1//dT)) by the following relation:

MS/dMS/dT)=((T-TC)/),T<TC (3)

,T>TC (4)𝛘 -𝟏
𝟎 /𝐝𝛘 -𝟏

𝟎 /dT) =   ((𝐓 - 𝐓𝐂)/𝛄)

Based on the variation of MS (T) and 1/ (T) illustrated on Fig.3.a, we report that the 

values of  ,  and TC for the two samples are: 

For x = 0.  {β = 0.44 ± 0.03 with TC = 214 ± 1.10
γ = 1.01 ± 0.18 with TC = 215 ± 2.30}

For x = 0.2  {β = 0.23 ± 0.005 with TC = 298.36 ± 0.12
γ = 0.89 ± 0.46 with TC = 298.07 ± 4.19 }

For x = 0.3 {{β = 0.22 ± 0.06 with TC = 295 ± 0.54
γ = 1.13 ± 0.53 with TC = 294 ± 3.43}}

By examining the variation of ((MS)/ (dMS/dT)) and ((1/)/ d(1//dT)) on Fig.3-b, the 

values of ,  and TC for our compound are: 

For x = 0.1 {β = 0.42 ± 0.03 with TC = 214 ± 1.86
γ = 0.95 ± 0.13 with TC = 215 ± 1.97}

For x = 0.2 { β = 0.22 ± 0.02 with TC = 298 ± 3.22
γ = 0.83 ± 0.017 with TC = 298 ± 1.66}

For x = 0.3 {β = 0.21 ± 0.02 with TC = 297 ± 6.99
γ = 1.21 ± 0.13 with TC = 294 ± 0.95}

,  and TC were given from the intercept of T axes with  Ms and 1/χ curves. The values of 

 and  obtained by both methods MAP and KF for x = 0.1; x = 0.2 and  x = 0.3 prove to be 
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very close (see Table 1). 

Another parameter   related to  and   can be detremined by the experimental or 

theoretical results. This parameter is   is given by the following relations:

 (5)𝛅 = 𝟏 +  
𝛄
𝛃

And to M (T) by:

M=D*H1/ when T=TC (6)

Applying the logarithm, the equ (6) becomes:

Ln(M)=Ln(D)+(1/)Ln(H) (7)

As a result, Fig.6 exhibits the variation of Ln(M) vs Ln (µ0H) for T = TC for the 3 

compounds. . The slope of linarly fitted curve is the value of  and equal to 3.75; 6.95 and 

5.27 for x  = 0.1; 0.2 and 0.3 respectively. Based on equ (7) and referring to the values of 

 and  determined by the modified arrot plot method, the value of  is 3.29; 5.33 and 6.23 

for x =0.1; 0.2 and 0.3 respectively. Relying on KF method, the values are equal to 3.26; 

5.52 and 6 for x = 0.1; 0.2 and 0.3 respectively. The difference between the experimental 

and theoretical can be accounted for in terms of  experiments errors [34].

Therfore, we deduce that the obtained values go in good accordance with those given by 

the theoretical models: mean field and Tricritcal mean field models. 

Eventually, we traced the variation of  vs  using the critical exponent  and  in 
M

|ε|β

μ0H

|ε|(β + γ)

order to check to scaling behaviour. The choice of  and  whether by MAP or KF yielded 

values close to the values of two models. 

Fig.7 presents  versus  for our compounds. The  curves were plotted for 
M

|ε|β

μ0H

|ε|(β + γ)

temperatures below and above TC. The inside graph stands for the same data but on a log-

log scale for the three samples. 

It can be clearly detected in Fig.7 that the scale behaviour is well verified for all samples, 

i.e., all points were regrouped on two curves, one for T < TC and the other for T > TC. 

Therefore, the values of the critical exponent and the Curie temperature are in good 

agreement.

Moreover, Fisher et al. [35] carried out an analysis of the renormalization group of 

systems with an exchange interaction of the form J (r) = 1 / rd + σ (d is the dimension of the 

system and σ is the scope of the system interaction). If σ is less than 3/2, the mean-field 

exponents hold, while the Heisenberg exponents hold for σ greater than 2. For the 
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intermediate range, i.e., for J (r) ~ r-3-σ with 3/2 ≤ σ ≤ 2, the exponents belong to a different 

universality class depending on σ [36].

Numerous researchers elaborated the effect of the universality class like Gharsallah et .al 

[37] who argued that the average grain size plays an important role. Others illustrated 

the existence of boundary between the first (x < 0.4)  and the second-order (x > 0.4). For 

instance for the compound La1-xCaxMnO3 when x = 0.4, the dominant model is tricritical 

mean field (β  = 0.25, γ = 1.03, and δ = 5) [38]. A first-order transition in La2/3Ca1/3MnO3 

and across over continuous phase transition on either side of phase diagram indicate that 

Ca-doped manganites are distinct from other manganites [39]. In the case of electron-

doped manganite La0.9Te0.1MnO3 [40], the nature of the magnetic transition is completely 

different from that of hole-doped manganites. However,the composition of La0.9Te0.1MnO3 

might be close to a tri-critical point in the La 1-xTexMnO3 phase diagram [40]. Baaziz et .al 

[41] emphasized on the effect of the annealing temperature for the compound 

La0.67Sr0.33MnO3 when T = 600 °C, 800 °C and 1000 °C. The mean field is the best model. 

However, for T = 1200 °C the best model is the 3D Heisenberg. This can be explained by 

the fact that the mean field is long-range while 3D Heisenberg is short-range. This implies 

that the size reduction tends to create in the system a transition phase from a long-range 

to a short-range order.

Otherwise, several methods allow us to determine spontaneous magnetization, the mean-

field theory is one of these methods. This theory is expressed by the following relation 

[42-45]:

 (8)S (σ) = NKB[Ln (2J + 1) - Ln[sin⁡(
2J + 1

2J B -1
J (σ))

sin⁡(
1
2JB -1

J (σ)) ] + B -1
J (σ)σ]

where , , M is the magnetization, N is the number of spins, J is the spin value and σ =
M

gmμBJN

kB  is the Boltzmann constant respectively and BJ is the Brillouin function given by the 

following expression [46]:

 (9)BJ(σ) =  
2J + 1

2J coth (2J + 1
2J σ) -

1
2Jcoth ( σ

2J)
When M is very small, the equ (9) becomes:

-S (σ) =  
3
2

J
J + 1NKBσ2 + 0(σ2)

Or when T < TC, we realize that the state is FM. Then, the spontaneous magnetization is 

different from zero. The equ (8) becomes in first order: 
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 (10) -∆𝑆 (𝜎) =  
3
2

J
J + 1NKB(σ2 + σ4

spon)

As  , , the equ (10) becomes in first order:𝜎 =
M

gmμBJN

 (11)-∆𝑆 (𝑀) =  
3
2

KB

Nμ2
Bg2J(J + 1)

(M2 + M4
spont)

Fig.8 displays the variation of (-∆SM) versus T for different µ0H, determined from the 

Maxwell relation [30]:

 (12)∆SM(T1 +  T2

2 ) = (
1

T2 -  T1)(∫μ0H
0 M (T2,μ0H)μ0dH - (∫μ0H

0 M (T1,μ0H)μ0dH

Fig.9 illustrates (-∆SM) vs. M2 curves when (T < TC) for the compound La0.80.2MnO3. The 

slope of a linear fit for this curve corresponds to the spontaneous magnetization. The inset 

figure depict the variation of the spontaneous magnetization Mspont as a function of 

temperature obtained from the curves µ0H/M vs M2 and from-ΔSM vs M2. So,  we note that 

the Mspont decreases when the temperature increases. These two curves are aligned, which 

confirms the validity of this method. 

Amaral et al. [47] set forward a theoretical model taking into consideration the magneto-

elastic contribution and the interaction between electrons to simulate magnetic entropy 

in the case of manganites. This model rests on the Landau theory applied to phase 

transitions. The basic idea of this model is based on the hypothesis that the free energy 

(G) can be developed as a function of the power of the parameter of order. The free energy 

in a ferromagnetic system around the transition temperature TC is provided as follows: 

 (13)G (M,T) =  C0 + 
1
2A (T)M2 + 

1
4B (T)M4 + 

1
6C (T)M6 -  μ0HM

Where the coefficients A, B and C are temperature-dependent parameters usually known 

as Landau coefficients. According to the equilibrium condition  , we obtain the ∂G

∂M = 0

equation (15), which provides the total magnetization in the vicinity of the Curie 

temperature:

H = A (T) M + B (T) M3 + C (T) M5 (14)

Fig.10 exhibits the variation of A (T), B (T) and C (T) values for La0.80.2MnO3, determined 

from µ0H /Mversus the magnetization M2.

Therfore, the corresponding magnetic entropy displayed in Fig.11 obtained by the 

differentiation of the free energy with respect to temperature, can be expressed by the 

following relation:

 (15)- S(T,H) =  (∂G

∂T)
μ0H

=  
1
2A'(T)M2 + 

1
4B'(T)M4 + 

1
6C'(T)M6
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Where ,  and  are the derivatives of the Landau coefficients with respect to A'(T) B'(T) C'(T)

the temperature. 

IV. Conclusion

At this stage of analysis, we assert that we studied the critical exponents for the 

compounds La1-xxMnO3 (x = 0.1; 0.2 and 0.3). Our samples present a second-order 

transition by the positive slop, which confirms the Banerjee Criterion. The curves of 

relative slope show that the best models for the samples are the mean field as well as the 

tricritical mean field models. These models are caracterized by critical exponents which 

are determined by several methods such as modified MAP, KF method and critical 

isotherm analysis. A good agreement between these methods for the three compounds is 

recorded. Furthermore, the tracing of (-∆SM) vs. M2 for x = 0.2 provides a spontaneous 

magnetization Mspont, which is similar to that determined by the Arrott curves.

Based on the Landau’s theory for x = 0.2, we developed a correlation that was used to 

calculate magnetic entropy at different temperatures and under 2 T magnetic field. These 

simulated values were found to be in good agreement with the experimental results. The 

study also demonstrated that this La0.80.2MnO3 system exhibits a universal behaviour.
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Figure captions: 

Figure.1: the variation of M vs 0H for different temperatures, in steps of 3 K for x = 0.1 
and 4 K for x 0.1; 0.2 and 0.3.

Figure.2: Modified Arrott plots (MAP) with mean field model, tri-critical mean field 
model, 3D Heisenberg model and 3D Ising model. 

Figure.3: Relative slope (RS) vs. Temperature.

Figure.4: Variation of MS (T) and 1/ (T). Solid lines are symbol’s fit curves. 

Figure.5: Variation of ((MS)/ (dMS/dT)) and ((1/)/ d(1//dT)) (KF). Solid lines are 
symbol’s fit curves.

Figure.6: M vs. µ0H; the inset curves M vs. µ0H on log-log scale at T = TC 

Figure.7:  Scaling plots  versus   , the inset exhibits the same curve on log–log 
M

|ε|β

μ0H

|ε|(β + γ)

scale.

Figure.8: Experimental magnetic entropy changes for x = 0.2 and isothermal ((-∆SM) vs. 
M2) curves. 

Figure.9: Variation of the spontaneous magnetization deduced from the extrapolation of 
the isothermal ((-∆SM) vs. M2) curves and from the Arrott plots (M2 vs. µ0H/M). 

Fig.10: Variation of A, B, C as a function of temperature for the compound La0.80.2MnO3 
at 2 T.

Figure.11: Variation of magnetic entropy changes versus temperature for the 
compound La0.80.2MnO3 at 2 T.
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Table Captions: 

Table.1: Comparison of critical exponents of La1-xxMnO3 (x = 0.1; 0.2 and 0.3) with other 

reports and various theoretical models.

Methods 

 TC 



TC

 Ref

Mean- field 

model

Theory 0.5 1 3 [31]

Tricritical 

mean field

Theory 0.25 1 5 [31]

3D-Ising 

model

Theory 0.325 1.24 4.82 [32]

3D-

Heisenberg 

model

Theory 0.365 1.336 4.8 [33]

MAP 0.44 ± 0.033

214 ± 1.10

1.01 ± 0.18

215 2.30±

x = 0.1

KF 0.42 ± 0.33

214 ± 0.13

 

0.95  0.13±

215 1.97 ±

M (TC) 

 = 3.75

Ln(M(TC))

 = 3.29

MAP 0.23 ± 0.005

298 ± 0.12

0.89 ± 0.46

298 4.19.07 ±

x = 0.2

KF 0.22 ± 0.02
 298 ± 3.22

0.83 ± 0.017

298 ± 1.66

M (TC) 

 = 6.95

Ln(M(TC))

 = 5.33

This work
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x = 0.3 MAP

KF                             

0.22 ± 0.06

295 ± 0.54

0.21 ± 0.02

297 ± 6.88

1.13 ± 0.53

294 ± 3.43

1.21 ± 0.13

294 ± 0.95

M (TC) 

 = 5.27

Ln(M(TC)

 = 6.23
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Highlights
 The La1-xxMnO3 (x = 0.1, 0.2 and 0.3) compounds was successfully prepared by 

sol-gel method.

 The variation of (M) vs. (T) reveals a ferromagnetic to paramagnetic phase 

transition around TC.

 we investigated the critical exponents for the compounds La1-xxMnO3 (x = 0.1; 0.2 

and 0.3)


