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Abstract 30 

Background: Nowadays, electron spin resonance (ESR) is widely used as a powerful, non-31 

destructive and very sensitive technique for the detection of free radicals in food systems. It 32 

can be applied for the direct identification of highly reactive oxygen species, organic and 33 

inorganic paramagnetic species and screening of food for potential toxicity. Its applications 34 

cover investigating food oxidative stability and properties of irradiated foods including fruits 35 

and vegetables, meats and fishes, spices, cereal grains, and oil seeds. 36 

Scope and approach: This review aims at providing specialists in food science and industry 37 

with the fundamentals of ESR spectroscopy, typical radicals present in foods and their 38 

sources, ESR modalities, and detailed account for the use of the technology for evaluation of 39 

the physicochemical and nutritional properties of foods. Examples illustrating ESR 40 

applications for the evaluation of the effects of innovative and emerging technologies 41 

(ionizing radiation, high pressures, pulsed electric fields, cold plasma and ultrasonication) are 42 

discussed. 43 

Key findings and conclusions: ESR can be used for the identification/quantification of free 44 

radicals in foods, for spin-label oximetry, estimation of free radical scavenging, food stability, 45 

and chelating activity, with particular interest for food processed using innovative 46 

technologies, with the main advantages of its high sensitivity, specificity, and low amounts of 47 

sample needed and nowadays many types of ESR instruments are commercially available. 48 

However, due to the different nature of foods, the development of novel ESR techniques and 49 

methods of analysis specially designed to study foods is of great interest in the future. 50 
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1. Introduction 55 

 Free radicals are molecular species that contain an unpaired electron in the atomic 56 

orbital area paramagnetic group of molecular species. Due to their independent existence, 57 

free radicals are mostly unstable, highly reactive, and can either donate or accept an electron 58 

from other molecules. The free radical reactions are very typical for biological systems 59 

(Yoshikawa, Naito, & Kondo, 1997). For example, the transformation of O2 into H2O 60 

includes the formation of superoxide O2•- and hydroxyl HO• short-lived radicals with a 61 

lifetime in the nanosecond to millisecond range (Yoshikawa, Naito, & Kondo, 1997). 62 

 Table 1 summarises the half-life and rate constants of biological reactive species 63 

(both free radical and oxidant species) (Bekhit, Hopkins, Fahri, & Ponnampalam, 2013). Free 64 

radicals are unstable and are highly reactive oxygen species (ROS) promoting changes in 65 

DNA and cell damage, lipid and protein oxidation as well as cancer development and other 66 

oxidative stress-related diseases. The free radicals are known to attack important constituents 67 

of foods such as nucleic acids, proteins, carbohydrates, lipids, pigments and vitamins. The 68 

presence of these radicals accelerates oxidation processes, leading to decomposition of food 69 

constituents, the formation of oxidized products, development of off-flavor/odor, 70 

deterioration of pigments and useful nutrients that lead to reduction in the shelf-life and 71 

eating quality of foods (Bekhit, Hopkins, Fahri, & Ponnampalam, 2013). Hydroxyl free 72 

radical has the shortest half-life among the various free radicals and oxidants (Table 1), but 73 

from a biologically point of view the hydroxyl radical is regarded as the most damaging free 74 

radical species due to it high reaction constant rates (Table S1) and indiscriminate reaction 75 

with neighbouring biomolecules (Bekhit, Hopkins, Fahri, & Ponnampalam, 2013). It is worth 76 

noting that the reaction rate constants of the hydroxyl radical with proteins (collagen and 77 

albumin) are generally higher than individual amino acids (Table S1), which highlight its 78 

damaging role in biological systems. Furthermore, the ability of the hydroxyl radical to 79 



oxidise antioxidants, fatty acids, protein, and aminoacids indiscriminately, which lead to 80 

extensive damage to neighbouring biomolecules. The half-life of superoxide and alkoxyl 81 

radicals are higher than the hydroxyl radical (Table 1) and they are important contributors to 82 

oxidative processes. Molecular oxygen has the highest half-life and reaction rate constant 83 

among the various oxidants listed in Table 1. 84 

 Food processing, which usually involves a series of mechanical, physical and 85 

chemical transformations of raw ingredients, may enhance the formation of free radicals in 86 

the food products and cause drastic changes in their quality. Therefore, over the recent years, 87 

there has been a growing awareness about free radical formation during food processing due 88 

to consumers’ increasing demand for healthy food products, free from artificial chemicals 89 

and preservation of their natural and bioactive nutrients. This has, to some extent, favoured 90 

technological developments in non-thermal food processing, i.e. food processes carried out at 91 

ambient or near ambient temperatures, unlike thermal processing or cooking that require high 92 

temperature and cause major quality changes in foods (Rawson et al., 2011). 93 

To date, very little work has been undertaken to identify the nature and unravelthe 94 

chemistry of the free radicals produced in foods subjected to novel non-thermal food 95 

processes(Ahn, Akram, Kim, & Kwon, 2013; Bolumar et al., 2014; Zhang, Yang, Zhao, 96 

Liang, & Zhang, 2011). A vast body of literature has highlighted the chemistry aspects of free 97 

radicals, their roles in human health and disease, as well as the possibility of annihilating 98 

radicals with adverse effects (Favier, Cadet, Kalyanaraman, Fontecave, & Pierre, 1995; 99 

Hiramatsu, Yoshikawa, & Inoue, 1997; Morello, Shahidi, & Ho, 2002; Rani & Yadav, 2015; 100 

Uppu, Murthy, Pryor, & Parinandi, 2010). 101 

Earlier reviews have discussed the potential of ESR for estimating free radical 102 

scavenging capacity, food oxidative stability, determination of Cu2+ chelating capacity (Yu & 103 

Cheng, 2008), and properties of irradiated foods including meat, fruits, vegetables, spices, 104 



cereal grains, and oilseeds (Shukla, 2016). However, literature pertinent to the application of 105 

ESR for evaluating radical formation during alternative processing approaches, such as 106 

ionizing radiation, high pressure, pulsed electric fields, ultrasound, and microwave, is scarce. 107 

ESR measurement can be a useful strategy to understand the chemical reactions at cellular 108 

level and to establish a relationship between free radical formation and healthy functional 109 

products. For example, a correlation of radical formation measured by ESR with 110 

inflammation, atherosclerosis, cancer, damage of biomolecules (e.g. lipids, nucleic acids, 111 

enzymes, protein, etc.) could be established by using in vivo models. 112 

This review provides an overview of the current status of the use of ESR spectroscopy 113 

in topical nutraceutical and food research activities. The main focus is paid to recent 114 

advantages of ESR technique for free radical analysis in foods processed using innovative 115 

processing technologies, including ionizing radiation, high pressure, pulsed electric fields, 116 

ultrasound, cold plasma treatment, and microwaves. 117 

 118 

2. Typical radicals present in foods and their sources 119 

There are extensive reviews (Andersen & Skibsted, 2008; Kristensen, Kröger- Ohlsen, 120 

& Skibsted, 2002; Kumar, 2011; Shukla, 2016) and books (Favier et al., 1995; Gutteridge & 121 

Halliwell, 2015; Hiramatsu et al., 1997; Laher, 2014; Minisci, 1997; Pryor, 1984; Rani & 122 

Yadav, 2015; Roberfroid & Calderon, 1995; Uppu et al., 2010) discussing the mechanisms 123 

involved in free radical formation, their types and sources in biological and food systems. 124 

 125 

2.1. Types of radicals 126 

A wide variety of free radicals and other reactive oxygen and nitrogen species 127 

(ROS/RNS) can be found in food systems. Oxygen can produce different toxic species and 128 

activate reactions involved in the degradation of biomolecules such as lipids, nucleic acids, 129 



and proteins. The chemistry of ROS has been reviewed in detail (Pierre, 1995). Radical ROS 130 

includes hydroxyl (HO•), superoxide (O2•-), peroxy (RO2•), and alkoxy (RO•) radicals. Non-131 

radical hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and singlet oxygen (1O2) can 132 

also evolve in radical or radical-mediated reactions (Morello et al., 2002). RNS such as nitric 133 

oxide radicals, have been implicated in various physiological processes and they are very 134 

reactive towards molecular oxygen, superoxide radical, organic radicals, and transition metals 135 

(Garrel & Fontecave, 1995). 136 

 137 

2.2. Formation of radicals 138 

There are different internal and external sources of radicals in food systems (Kumar, 139 

2011). The internal sources include mitochondrial activity as a major source of enzymes that 140 

generate free radicals as by-products of their activity (Table 2) (Bekhit et al., 2013). Several 141 

dehydrogenases, such as dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase, 142 

succinate dehydrogenase, α-ketoglutarate dehydrogenase and pyruvate dehydrogenase as well 143 

as reductases (NADH:ubiquinone reductase, succinate-cytochrome c reductase and 144 

cytochrome b5 reductase) that are located in mitochondria, remain active postharvest and are 145 

able to produce several radicals and oxidants (Table 2). The interactions between these 146 

enzymes and their substrates become easier during postharvest storage as the integrity of 147 

mitochondria is lost over time. The generation of free radicals in biological materials through 148 

this pathway is important and can cause significant quality defects in fresh produce, e.g. fresh 149 

meat (for more information please see Bekhit et al., 2013). Furthermore, reactions involving 150 

Fe2+, Cu2+, and other transition metals; ischaemia/reperfusion; and inflammation (among 151 

others in plants and/or animal systems). The external sources include: non-enzymatic 152 

reactions of the oxygen with organic compounds, reactions initiated by ionizing radiations, 153 



action of cigarette smoke, and exposure to environmental pollutants, radiations, ultraviolet 154 

light, and ozone, treatment with certain drugs, pesticides, and industrial solvents. 155 

 156 

3. ESR modalities 157 

3.1. Principle mechanism of ESR 158 

The ESR was first discovered in 1944 in Kazan University by Zavoisky, (1944). This 159 

technique is based on the absorption of the microwave radiation by a paramagnetic sample 160 

(materials with unpaired electrons) placed in an external magnetic field. ESR is a useful 161 

technique for the detection of free radicals and other paramagnetic species such as transition 162 

metals. Position and shape of ESR lines are strongly dependent on the nature of the radicals. 163 

The electron-Zeeman interaction between unpaired electron(s) and an applied magnetic field 164 

is expressed via g-values. The g-value is analogous to the chemical shift in Nuclear Magnetic 165 

Resonance (NMR). The g-value extracted from ESR spectrum is an important characteristic 166 

that depends on the nature of the radical under consideration (for example, for a free electron, 167 

g= 2.0023). However, the ESR spectrum is often complicated by the hyperfine structure 168 

formed in the presence of neighbouring magnetic nuclei, such as 1H, 13C, 14N, 19F, etc. Thus, 169 

calibration of the ESR spectroscopy instrument is a necessary step. 170 

For calibration of an ESR instrument, a suitable reference material has to be employed, 171 

e.g., a powder containing Mn2+ ions in lime (CaO) (Negut & Cutrubinis, 2017). The Mn2+ ion 172 

has effective spin S = 5/2, nuclear spin I = 5/2 and its ESR spectrum consists of a hyperfine 173 

sextet (Figure S1) (De Biasi & Grillo, 2014). The lines are spaced by ≈9mT and the third and 174 

fourth lines with g-value of 2.0292 and 1.9760, respectively, are commonly used for the 175 

calibration (De Biasi & Grillo, 2014). 176 

The main advantages of ESR include its high sensitivity and specificity. This 177 

technique also requires relatively small amounts of sample. For example, using conventional 178 



X-band (with the frequency of about 9.1–9.7 GHz) concentration of radicals≈2-3 µM can be 179 

detected for a 25 µL sample (Abbas, Babić, & Peyrot, 2016). Another advantage of the ESR 180 

method is the simplicity of sample preparation (Schaich, 2002). 181 

 182 

3.2. ESR measurement 183 

For detection and identification of free radical metabolites, ESR can be applied asa 184 

direct or indirect method. Biological semiquinone radical with a g-value of around 2.004 and 185 

a line width of approximately 5G on fungal spores of Penicillium digitatum can be kinetically 186 

analyzed in situ during atomic oxygen generated plasma electric discharge at real time and 187 

the decay of the ESR signal is possibly linked to the inactivation of the fungal spore 188 

(Ishikawa et al., 2012). Characteristic ESR signalsarisen from Fe3+state and peroxy radical 189 

(RO2•) on haemoglobin or myoglobin (Libardi, Skibsted & Cardoso, 2014;Jongberget al., 190 

2014) were detected during atomic hydrogen, nitrogen, and oxygen exposure on raw horse 191 

meat during non-thermal processing (HPP, PEF, etc.). Therefore, these signals can be used as 192 

an indicator of a balance between inactivation of microorganisms and deterioration of food 193 

nutritional status (Kitada et al., 2017, Kitada et al. 2018).The direct application of ESR is 194 

possible for the relatively long-lived radical species while the indirect application of ESR 195 

uses spin trapping and spin labelling techniques. The spin trapping technique is based on the 196 

formation of long-lived and ESR-detectable spin adducts as a result of the reaction of a short-197 

lived reactive free radical R• with a diamagnetic molecule (Mason, 1997). 198 

R• + spin trap �spin adduct• 199 

The spin adduct (usually a nitroxide) should be a relatively long-lived radicalproduct. 200 

The signal intensity of the spin adducts, as observed in an ESR spectra, is directly 201 

proportional to the concentration of the formed free radicals R•. 202 



The chemical structures of the popular spin traps DMPO (5, 5-dimethyl-1-pyrroline 203 

N-oxide) and PBN (N-tert-butyl-α-phenylnitrone) are presented in Figure S2. The structure 204 

of other spin traps developed for biological studies can be found in the available literature 205 

(Hawkins & Davies, 2014). 206 

Information about the hyperfine splitting of the spin adducts for popular spin trapsis 207 

well known (Buettner, 1987). The splitting patterns in ESR spectra of spin adducts can 208 

provide useful information about the structure and identity of the trapped radicals. The spin 209 

trapping technique was initially developed to study biological compounds containing highly 210 

reactive and short-lived superoxide (O2•−) and hydroxyl (HO•) radicals and radical formation 211 

on proteins, lipids, and polysaccharides (Abbas et al., 2016; Davies, 2016; Hawkins & Davies, 212 

2014). The trapping efficiency and stability of the resulting adducts depend on the type of the 213 

radicals and the applied spin adducts. 214 

The spin labelling technique is based on using special spin labels (stable free radicals). 215 

This technique can be used for the determination of the concentration of dissolved oxygen in 216 

foods. The chemical structures of the most popular water-soluble N-containing nitroxide 217 

radicals, PDT (4-oxo-2, 2, 6, 6-tetramethylpiperidine-d16-1-oxyl) and CTPO (3-carbamoyl-2, 218 

2, 5, 5-tetramethyl-3-pyrroline-1-yloxyl) are presented in Figure S3. 219 

The non-volatile nitroso spin trap, 3, 5-dibromo-4-nitrosobenzenesulfonate (DBNBS) 220 

is useful for detecting pyrolysis radicals which are formed in high-temperature interfacial 221 

regions produced by ultrasonic cavitation (Kondo, Krishna, & Riesz, 1989). As reported in 222 

sonolysis of dimethyl sulfoxide (DMSO)-water mixtures, the spin adducts of DBNBS-SO3 223 

and –CH3 can be detectable (Kondo, Kirschenbaum, Kim, & Riesz, 1993). 224 

 225 

4. Evaluation of the physicochemical and nutritional properties of food 226 



There are different ESR techniques for the evaluation of the concentration ofdissolved 227 

oxygen, and determining free radical scavenging, stability, and chelating activity of food 228 

ingredients. Among the main advantages of ESR reported in the available literature, one of 229 

the most important benefits is the ease of detection and identification of free radicals 230 

generated by chemical or biological systems by observing the spectrum of a spin adduct. 231 

Moreover, it also allows the quantification of free radicals by comparing the peak area to 232 

those obtained from stable radicals and to carry out kinetic analyses as well as to determine 233 

the formation and elimination velocities of a free radical (Kohno, 2010). In addition, the 234 

characteristics (g-value, alignment, line width, ΔW, among others) of the free radicals can be 235 

also determined using ESR (Kohno, 2010). 236 

On the other hand, some main drawbacks are found with the technique, for example 237 

ESR does not allow the detection of a free radical when it reacts immediately with a molecule 238 

different from the spin-trapping agent. Moreover, spin adducts can be neutralized when a 239 

reducing agent is present and a new spin adduct can be generated if a spin adduct is 240 

decomposed, thus the difficulty of the identification of the free radicals. It is also difficult to 241 

determine the electron distribution and the molecular structure of the free radical when the 242 

hyperfine coupling constant, 2-(4-carboxyphenyl)-4, 4, 5, 5- tetramethylimidazoline-1-oxyl-243 

3-oxide (carboxy-PTIO) is the only ESR parameter determined for a spin adduct (Kohno, 244 

2010). Since carboxy-PTIO reacts selectively with NO• radical and this reaction yields 2-(4-245 

carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-l-oxyl (carboxy-PTI) and NO• radical, the 246 

carboxy-PTIO reaction system can be used for detection of NO• radical (Kurake et al., 2017; 247 

Uchiyama et al., 2015). It is worth mentioning that in some applications, the ESR techniques 248 

are only qualitative, and not quantitative (Zhou, Yin, & Yu, 2005). 249 

 250 

4.1. Spin label oximetry 251 



ESR spin label oximetry technique has wide applications for detection of dissolved 252 

oxygen in foods (Subczynski & Swartz, 2005). The technique is based on the collision 253 

between paramagnetic oxygen O2 and a spin label (stable free radicals). The extent of spin 254 

exchange influences the line width for the spin label and it depends on the concentration of 255 

dissolved oxygen. It allows real-time monitoring of generation or consumption of O2 in food 256 

systems. Water-soluble N-containing nitroxide radicals, namely PDT (Yin et al., 2009) and 257 

CTPO (Hyde & Subczynski, 1984) are common spin labels used for the ESR oximetry. 258 

Spectra for these spin labels are widely available and hence calibration procedures for these 259 

techniques are well established. The ESR oximetry has been applied to study oxygen uptakes 260 

and lipid oxidation in emulsions, in fatty acid model systems and liposome systems and to 261 

evaluate oxygen permeation through an oil-encapsulated glassy food matrix (for a review see 262 

Zhou, Yin, & Lo, (2011)). Data on oxygen solubility and diffusivity in food and different 263 

oxygen quantification methods including ESR oximetry have been reviewed (Pénicaud, 264 

Peyron, Gontard, & 265 

Guillard, 2012). 266 

 267 

4.2. Free radical scavenging 268 

The formation of free radicals and their scavenging by antioxidants in foods canbe 269 

evaluated using different the assay procedures (Karadag, Ozcelik, & Saner, 2009; 270 

Shivakumar & Yogendra Kumar, 2017). Nowadays, the use of ESR techniques for these 271 

purposes is considered to be reliable and sensitive in radical quenching (Cömert & Vural, 272 

2017). For example, the antioxidant capacity of a large number of varieties of fruits 273 

(strawberry, mulberry, lemon, banana, etc.) to scavenge 1, 1-diphenyl-2-picryl-hydrazyl 274 

(DPPH) radical was evaluated using spectrophotometric and ESR measurements (Zanget al., 275 

2017). The results obtained from the two methods were found to be highly correlated. It was 276 



demonstrated that in some cases (for the sample with a colour similar to that of DPPH or non-277 

transparent sample) ESR spectroscopy might be more suitable for determining the antioxidant 278 

capacity of fruits. In fact, the use of ESR technique to evaluate both radical scavenging 279 

activity and antioxidant properties in foods have shown high correlation for various food 280 

products, which include antioxidant drink (Hiramatsu et al. 2013), medicinal tea (Pejin & 281 

Kien-Thai, 2013), betanin of red beet (Esatbeyoglu et al., 2014), polyphenols of wine 282 

compounds (De Beer, Joubert, Gelderblom, & Manley, 2017; de Camargo, Regitano-d’Arce, 283 

Biasoto, & Shahidi, 2016), coffee (Kameya, 2017), herbal materials (Wojtowicz, Krupska, & 284 

Zawirska-Wojtasiak, 2017), peptides of soybean meats (Sami, 2017), and other liquid foods 285 

and beverages (Smirnov, 2017). Therefore, ESR technique has become an integral part for 286 

food analysis that provide valuable information regarding the antioxidant properties of a food 287 

material. 288 

The ability of ESR spectroscopy to differentiate between the antioxidant activity of 289 

soluble and insoluble/bound phenolic fractions extracted from winemaking by- products pre-290 

treated with cell-wall degrading enzymes was demonstrated (Camargo et al., 2016). The 291 

antioxidant activity with respect to DPPH and hydroxyl radical scavenging activity showed a 292 

good correlation with specific phenolic compounds found in each extract fraction exposed to 293 

two different enzyme-assisted extraction treatments. Figure 1 presents examples of ESR 294 

signals used for the evaluation of the ability of the phenolics extracted from the control 295 

(devoid of enzyme) and the starting material pre-treated with Pronase to scavenge hydroxyl 296 

radicals (the higher the ESR signal, the lower the scavenging activity) (Camargo et al., 2016). 297 

The ratio observed between the fraction containing soluble and insoluble-bound phenolics 298 

increased upon enzyme treatment of the starting material. The similar trends were observed 299 

for pre-treatment of the starting materials with Viscozyme.  300 

 301 



4.3. Food stability 302 

The quality and nutritional properties of foods during processing and storage can be 303 

directly related to free radical-mediated oxidation of lipids. The process of oxidative 304 

deterioration of lipids by direct attack of carbon-carbon double bonds, especially in PUFAs 305 

(polyunsaturated fatty acids), with free radicals in a process that is known as lipid 306 

peroxidation (Ayala, Muñoz, & Argüelles, 2014). The chemical mechanisms and methods of 307 

analytical determination of the extent of lipid peroxidation are widely discussed in the 308 

literature (Catala, 2012; Repetto, Semprine, & Boveris, 2012). The products of an oxidative 309 

breakdown in foods have high toxicity and for their determination, different assays have been 310 

developed. However, these assays may be rather complex and require multistep sample 311 

preparations. For example, aldehyde and ketone derivatives and the measurement of the 312 

carbonyl groups is regarded as an important marker for protein or lipid oxidation caused by 313 

reactive species. Several spectrophotometric, immunochemical and chromatography methods 314 

(Rimbach et al., 1999; Estévez, Ollilainen, & Heinonen, 2009) have been reported with 315 

varying levels of sensitivity and ability to identify individual carbonylated by-products of the 316 

oxidation process. Other methods more relevant to lipid oxidation rely on determination of 317 

volatile compounds generated as end products of the oxidation reaction, such as 4-hydroxy-2-318 

nonenal (4-HNE)], are frequently investigated and quantified using HPLC, GC and ELISA. 319 

 320 

4.4. Chelating activity 321 

Ions are commonly found in foods and have significant nutritional value (e.g.,Fe2+ 322 

and Cu2+), display a high catalytic activity and they can accelerate the oxidative reactions and 323 

result in the generation of free radicals. Natural chelates have an affinity for metal ions and 324 

they can bind to these metals. Recently, the role of chelates have attracted significant 325 

attention in nutrition (Kratzer & Pran, 2018). Some examples of the application of ESR 326 



technique for the determination of chelating activity of food components have also been 327 

presented, since the formation of chelating complexes alters the ESR spectra. 328 

The chelating properties of five phenolic acids (p-coumaric, ferulic, syringic, and 329 

vanillic acids) that are commonly present in wheat grain and fractions, were evaluated against 330 

Fe2+ and Cu2+ using spectrophotometric and ESR measurements (Zhou, Yin, & Yu, 2006). It 331 

was demonstrated that these phenolic acids differed in their capacity to form chelating 332 

complexes. The correlations between the radical-scavenging capacity, chelating capacity 333 

against transition metals and structure of phenolic acids were discussed. ESR measurement 334 

has been used for the evaluation of Cu2+ chelating activities and radical-scavenging properties 335 

of botanical extracts from black peppercorn, nutmeg, rosehip, cinnamon, and oregano leaf 336 

(Su et al., 2007) and wheat bran extracts (Zhou et al., 2005). For wheat bran extracts 337 

significant radical scavenging and chelating capacities were detected due to significant levels 338 

of phenolic acids, tocopherols, and carotenoids (Zhou et al., 2005). 339 

 340 

5. Evaluation of the effects of food processing operations 341 

It is important to note that the concentration of radicals in native food systems canbe 342 

rather low and their level increases with processing. For example, the number of radicals per 343 

gram amounted to about 1014-1015 for unroasted coffee beans, 1016 for roasted coffee, and 344 

1017 for spent coffee grounds (the waste product from brewing coffee) (Rosenthal, 1998). 345 

These results demonstrated that free radicals can effectively be produced by different food 346 

processing operations. The formation of the radicals in the processed food material should be 347 

carefully monitored to ensure nutrients retention in the food after processing. 348 

 349 

5.1. Ionizing radiation 350 



Irradiation with moderate ionizing energy (≤10 kGy) is frequently used to produce 351 

biocide effects and to prevent the bacterial growth in foods (ISO14470, 2011; Stefanova, 352 

Vasilev, & Spassov, 2010). Irradiation can be performed with 60Co gamma rays, and X-ray or 353 

accelerated electrons. A comprehensive book that covers different aspects of food irradiation, 354 

processing, and sterilization, as well as legislation and market aspects was recently published 355 

(Ferreira, Antonio, & Cabo Verde, 2018). Nowadays, the ESR is the principal method of 356 

detection of free radicals in irradiated foods to ensure safety and treatment efficacy.  357 

A typical examples of the ESR spectra of un-irradiated (0 kGy) and irradiated (10 358 

kGy) food materials (complex seasoning) containing Mn2+ are presented in Figure 2 (Ahn, 359 

Akram, Kim, & Kwon, 2013). Note that the manganese ions are important for biochemical 360 

processes of green plants as cofactors of proteins and enzymes. The typical sextet Mn2+ 361 

signals were observed. Upon irradiation, complex ESR spectra were observed and the signals 362 

due to Mn2+ showed overlapping with the radiation-induced ESR signals.  363 

Different examples for the application of ESR to study irradiated fruits, vegetables, 364 

tea leaves, seeds, spices and herbs, food containing bones, crystalline sugar, sauces, and 365 

beverages have been already reported (Shukla, 2016). Therefore, for more details on the 366 

analysis and technical information, we refer the reader to this recently published book 367 

(Shukla, 2016). 368 

 369 

5.2. High pressure processing 370 

High pressure (HP) processing involves the application of hydrostatic pressures > 100 371 

MPa at ambient temperature to inactivate microorganisms and inhibit oxidative enzymes, 372 

while retaining the inherent quality attributes of the food material (Oey et al. 2008). Food 373 

products (in the form of liquids or semi-solids) are pre-packed and loaded into a chamber 374 

vessel and the vessel is then closed and filled with a pressure-transmitting medium such as 375 



water or food-grade solutions (e.g. castor oil, silicone oil, sodium benzoate, ethanol, and 376 

glycol). The food products are held inside the vessel under pressure for a predefined duration, 377 

followed by system depressurisation before opening the vessel and unloading the food 378 

products (Tao et al. 2014). 379 

High pressure (HP) processing has been shown to initiate lipid oxidation in 380 

freshmeats (Bolumar, Andersen, & Orlien, 2014), and a greater amount of volatiles linked to 381 

fatty acid oxidation has been detected in HP-treated fruit juices and vegetable purees (Kebede 382 

et al., 2013; Vervoort et al., 2013). Therefore, a reliable assessment of process- induced 383 

changes in HP processed food is of a major importance in the context of legislative aspects of 384 

this innovative non-thermal processing technology. In this respect, the potential involvement 385 

of any specific radical intermediates during HP that might be involved in lipid oxidation can 386 

be thoroughly examined with the aid of ESR spectroscopy.  387 

Figure 3 presents examples of the EPS spectra (first derivatives) of the DMPO (a) 388 

and PBN (b) spin-adducts formed in beef loin and chicken breast processed by HP treatment 389 

(Bolumar et al., 2014). The spin traps DMPO and PBN were added to minced beef and 390 

chicken meats and then hp treatment was applied. For DMPO spin trap, the spectra had a 391 

shape of an isotropic spectrum with a high degree of line broadening due to slow rotational 392 

mobility (Figure 3a). For PBN spin trap an ESR spectra with the typical shape of a nitroxyl 393 

radical powder spectrum were observed (Figure 3b). The powder spectrum evidenced that the 394 

formed spin adducts are immobilized in random orientations in a solid matrix. The level of 395 

spin adducts was higher in the beef loin compared to the chicken breast, which might be 396 

related to the higher iron content in beef compared to chicken, reflecting a higher level of 397 

radicals formed in the beef loin during pressurization. The formation of new free radical 398 

species in chicken meat during HP processing (400-800 MPa, 5-40 °C for 10 min) has been 399 

reported in various studies (Bolumar, Andersen, & Orlien, 2011; Bolumar et al., 2014; 400 



Bolumar, Skibsted, & Orlien, 2012; Mariutti, Orlien, Bragagnolo, & Skibsted, 2008). Based 401 

on ESR spin trap spectroscopy investigation, it can be deduced that radicals formation in HP 402 

meat, as initiators of lipid oxidation under HPP exposure is a time-dependent process 403 

(following a first-order reaction) (Bolumar et al., 2011) and interestingly, it has been clearly 404 

revealed that both protein- and iron-derived radicals were formed and accumulated at the 405 

sarcoplasmic and myofibrillar muscle fractions during HP processing (Bolumar et al., 2014). 406 

Furthermore, increasing the processing temperature and time at atmospheric pressure and 407 

during HP processing of chicken meat has been shown to promote greater formation of 408 

radicals (Bolumar et al., 2012). Therefore, ESR could be employed as a reliable technique to 409 

assist optimization of HP processing for various foods, targeting to minimize the occurrence 410 

of lipid oxidation. 411 

 412 

5.3. Pulsed electric fields 413 

Recent studies on the use of pulsed electric fields (PEF) processing in foodresearch 414 

demonstrate the food industry is interested in this technology that can assist different food 415 

operations such as extraction, drying, freezing, osmotic treatment, improve safety, and cause 416 

texture modifications. PEF treatment at a high electric field strength in order of 20-100 417 

kV/cm with very short duration pulses (between µs and ms), can be used for inactivation of 418 

bacteria and sterilization of liquid foods. PEF processing at high electric field can induce 419 

polarisation of water molecules with dissociation of them into the ions (Boussetta, Soichi, 420 

Lanoiselle, & Vorobiev, 2014). This would possibly lead to the subsequent formation of free 421 

radicals during PEF treatment, but there is a lack of studies evaluating this phenomenon in 422 

available literature. For detection of free radicals induced by a pulse discharge, ESR 423 

technique can be successfully applied (Tahara & Okubo, 2014). It is worth noting that at 424 

present time, pulse discharge technologies are recognized as a cost-effective and 425 



environmentally friendly for the destruction of microorganisms in contaminated potable 426 

water and wastewater (Yang & Cho, 2012). 427 

ESR technique with DMPO spin trap was used to detect the generation of free radicals 428 

in phosphate buffer and in an oleic acid emulsion after PEF processing (Zhang, Yang, Zhao, 429 

Liang, & Zhang, 2011). The concentration of hydrogen peroxide in phosphate buffer after 430 

PEF treatment were 0.177 × 10−6 at 30 kV/cm, and 1.858 × 10−6 at 35 kV/cm. This work 431 

evidenced that PEF had a potential role as initiator of free-radical reaction. The effects of 432 

PEF on oxidation of oleic acid were also studied (Zhao et al., 2011). Hydrogen radicals were 433 

detected by ESR technique using the DMPO spin trap. Note that the DMSO can trap carbon-434 

centered and oxygen-centered radicals generated in chemical and biochemical systems. 435 

Figure 4 shows examples of ESR spectra of DMPO adducts of oleic acid without PEF 436 

treatment and after PEF treatment 30 kV/cm for 400 μs. The ESR signal was practically 437 

absent for the control sample (Figure 4a) but was very intense for the sample under PEF 438 

treatment (Figure 4b). For PEF treated sample the spectra contain a triplet and each triplet 439 

line is further split into another triplet with intensities of 1:2:1. The study confirmed the 440 

oxidation of oleic acid under PEF treatment and generation of hydrogen radicals. Following 441 

PEF, a gradual quality deterioration of an oleic acid emulsion occurred, as indicated by the 442 

increase in the peroxide and carbonyl values of the PEF- treated oleic acid (Zhang et al., 2011; 443 

Zhao et al., 2011). 444 

The oxidative effects of nanosecond PEF treatment (1–13 kV/cm, 300 ns) in cells and 445 

cell-free media were demonstrated (Pakhomova et al., 2012). It was shown that nanosecond  446 

PEF  triggers  oxidation  both  extracellularly  (electrochemically)  and intracellularly 447 

mediated by biochemical reactions. 448 

In an advancement of the PEF technology, electrical-insulation breakdown was shown 449 

to take place by application of high electric fields and generation of electrical discharges. 450 



Under ambient atmosphere, electrons in the high electricity discharge effectively collide with 451 

background-molecules such as nitrogen, oxygen, and water, leading to dissociation of these 452 

molecules. A rich variety of gaseous and aqueous reactive oxygen and nitrogen species 453 

(RONS) are produced by the electrical discharge (Takeda, Ishikawa, Tanaka, Sekine, & Hori, 454 

2017). Evidence for the generation of hydrogen peroxide H2O2 and short-living active species 455 

(HO, H, O, 1O2, HO2, O2–) resulting from the dissociation of water activated by an 456 

underwater electrical discharge has been reported (Hong, Huh, Ma, & Kim, 2018). Basically, 457 

when oxygen atoms are generated by the electrical discharge of atmospheric air remotely 458 

from liquids such as water, saline, biological liquids, water molecules dissolved in organic 459 

constituents such as lipids, peptides, and proteins, reaction of these biological compounds 460 

with oxygen atoms occurs at the gas-liquid interface (Hong et al., 2018; Kobayashi et al., 461 

2017). In contrast, when the discharge is in direct contact with the liquids, more effective 462 

dissociations of the dissolved organics occur by irradiations simultaneously of high-energetic 463 

photons, large- amount of RONS, electrically charged species, as well as high-electric fields 464 

(Kurake et al., 2017; Uchiyama et al., 2018). 465 

The generation of free radicals and ROS/RNS after a PEF application can be viewed 466 

in a positive or negative way, depending on the intended application of this non-thermal 467 

technology. For instance, PEF can effectively inactivate microorganisms in food systems 468 

possibly due to the PEF-induced cell electroporation effect that has led to the extensive 469 

formation of highly reactive free radicals from chemical species in the microbial cell 470 

(Sitzmann, 1995), which is regarded as positive outcome of the process. On the other hand, 471 

PEF has been reported to modify the chemical conformation of the antioxidant compounds 472 

and their antioxidant properties due to free radicals formation. For instance, the formation of 473 

free radicals (HO•) after PEF (5-35 kV/cm, unipolar square 40 µs pulses, continuous 474 

operating mode at a flow rate of 60 mL/min, 0.8-7.2 ms treatment time) has been associated 475 



with the conversion of vitamin C isomer from enol- to keto-form (Zhang et al., 2015), thus 476 

modifying the vitamin C structure without significantly decrease its total content. 477 

Furthermore, changes in the structural conformation induced by PEF have enhanced the 478 

antioxidant properties of vitamin C. However, PEF-induced reactive species (H2O2 or 479 

hydroxyl radicals) have different effects on polyphenols such as anthocyanin. For example, 480 

cyanidin-3-glucoside purified from red raspberry has been reported to lose its stability after 481 

PEF treatment (1.2-3.0 kV/cm, 300 exponentially decaying 300 µs pulses for 1 Hz), as 482 

indicated by the increased formation of chalcone due to the opening of the pyrylium ring 483 

(Zhang et al., 2008). Moreover, it has been observed that weak chemical bonds present in the 484 

structure of amino acids, proteins, and polysaccharides, such as hydrogen, disulphide, and 485 

hydrophobic bonds, are susceptible to break down after PEF exposure (Han et al., 2012; Liu, 486 

Zeng, Deng, Yu, & Yamasaki, 2011; Perez & Pilosof, 2004). This observation can also be 487 

partially explained by H2O2 or free radical formation due to PEF treatment.  488 

The antioxidant activity of a peptide with sequence Gln-Asp-His-Cys-His (QDHCH) 489 

of pine nut (Pinus koraiensis) was improved by PEF treatment (at E=5-20 kV/cm) (Liang, 490 

Zhang, & Lin, 2017). It was demonstrated that hydroxyl radicals scavenging activity of 491 

QDHCH was increased after PEF processing as detected using ESR technique. PEF has no 492 

effect on the basic structure of QDHCH, but it influenced the secondary structure of QDHCH. 493 

 494 

5.4. Ultrasound 495 

Ultrasound is a nonthermal processing technology that involved continuous agitation 496 

of food material at ultrasonic frequencies (>20 kHz) using an ultrasonic bath or probe. One of 497 

the earliest works by Vercet, Lopez, & Burgos, (1998) in examining enzyme inactivation 498 

effect of manothermo-sonication (MTS), a combined treatment of heat and ultrasound (20 499 

kHz frequency) under moderate pressure, was able to deduce that one of the MTS enzyme 500 



inactivation mechanisms involved the interaction between the free radicals produced by water 501 

sonolysis with amino acid residues. The work showed further that free radical production rate 502 

increases linearly with increasing ultrasound amplitude (from 20 and 145 μm) and decreased 503 

when increased temperature and pressure combination (70 °C/200 kPa vs. 130 °C/500 kPa) 504 

was applied.  505 

The work of Makino, Mossoba, & Riesz, (1983) was among the first in the literature 506 

to demonstrate the feasibility of using ESR spin trapping spectroscopy technique to study the 507 

radicals’ formation in an aqueous medium (sonicated water saturated with argon) following 508 

ultrasound sonication. It was clear that hydroxyl (HO•) and hydrogen atom radicals (H•) were 509 

the two most abundant ultrasound-induced free radicals formed in the aqueous medium 510 

investigated (Kondo et al., 1989).  511 

The recent work of Zhang et al. (2015) performed with ESR spin trapping 512 

spectroscopy with DMPO was able to reveal increasing formation of 1-hydroxyethyl radicals 513 

during sonication of red wine, while only HO• radicals were detected in DMPO (control) 514 

solution during sonication. Comparing the types of spin adducts detected in both ultrasound-515 

processed DMPO (control) solution and red wine, it is possible to postulate that 1-516 

hydroxylethyl radicals were formed due to ethanol oxidation via the ultrasound-generated 517 

HO• in water. Thus, this work provided the first direct evidence to uncover the formation of 518 

1-hydroxyethyl free radical in red wine exposed to ultrasound.  519 

Influence of ultrasound-assisted thermal processing (thermo-sonication) on the 520 

physicochemical and sensorial properties of beer was investigated (Deng et al., 2018). ESR 521 

was employed to monitor changes in the generation of free radicals and it was demonstrated 522 

that thermo-sonication clearly improves the oxidative stability of beer determined by ESR 523 

spectroscopy. 524 

 525 



5.5. Cold plasma treatment 526 

Cold plasma treatment is a novel technology that uses partially ionized gases that 527 

contain a mixture of neutral and charged species with temperature close to room temperature. 528 

The technology has attracted a lot of attention due to its efficacy in reducing/eliminating 529 

microorganisms and viruses (Takamatsu et al., 2015). The technology basic mode of action is 530 

mainly related to the generation of reactive species and their effects on bacteria. Depending 531 

on the intensity of treatment and the gas used, a wide range of reactive species (e.g., UV 532 

photons, charged particles, free radicals, and oxidants)are generated that contribute to the 533 

antimicrobial activity and its successful use on fresh and dry food products (Barba, Koubaa, 534 

do Prado-Silva, Orlien, & Sant’Ana, 2017; Gavahian, Chu, Mousavi Khaneghah, Barba, & 535 

Misra, 2018; Hertwig, Meneses, & Mathys, 2018). The use of nitrogen as the source gas of 536 

reactive species appear to be the most effective to inactivate microorganisms due to the high 537 

hydroxyl radical generated using nitrogen (Takamatsu et al., 2015). ESR has been used to 538 

measure several short lived radical species such hydroxyl radical (< 100 ms), peroxynitrous 539 

(~1 ms and superoxide and hydroperoxyl radicals (< 10 s) in liquid solutions (Attri et al., 540 

2015; Ikawa, Tani, Nakashima, & Kitano, 2016). ESR has been used to measure free radicals 541 

generated in plasma treated liquids (Jablonowski et al., 2015), but no use of the technology 542 

has been reported in real foods. There is a large potential to utilize ESR to determine the 543 

depth of cold plasma penetration by investigating free radical formation at sub-surface layers 544 

to ensure proper decontamination process. Another potential use of the technology is to 545 

determine the concentration and nature of free radicals generated by cold plasma treatment in 546 

relation to undesirable changes in treated foods. This is an important aspect, particularly in 547 

milk and dairy products (Coutinho et al., 2018). 548 

 549 

6. Conclusion 550 



The goal of this review was to classify and describe applications of various ESR 551 

spectroscopic techniques for free radical analysis in foods processed using emerging 552 

technologies. The typical radicals present in foods, their types and sources (both internal and 553 

external) were discussed. The ESR techniques have become very popular for the 554 

identification of free radicals in different types of foods, including fruits and vegetables, 555 

meats and fishes, spices, cereal grains, and oilseeds. These techniques can be applied for 556 

spin-label oximetry, estimation of free radical scavenging, food stability, and chelating 557 

activity. Moreover, they can be employed to detect and quantify free radical species in food 558 

processed using innovative operations assisted by ionizing radiation, high pressures, pulsed 559 

electric fields, ultrasonication, and microwaves. The main advantages of ESR for applications 560 

in food systems include its high sensitivity and specificity. Nowadays, many types of ESR 561 

instruments are commercially available, this technique requires relatively small amounts of 562 

sample and analyses can be easily and rapidly done in scientific and industrial laboratories. 563 

However, the ESR data for foods are typically affected by the nature of the material, type of 564 

applied treatment and especially the water content in foods, complicating the detection and 565 

quantification of radicals. Therefore, the development of novel ESR techniques and methods 566 

of analysis specially designed to study foods is greatly desirable in future. 567 
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Figure captions 1 

Fig 1. Examples of ESR signals of soluble and insoluble-bound phenols affected by 2 

Pronase enzymatic pre-treatment on winemaking by-products. The higher the ESR signal, the 3 

lower the scavenging activity as demonstrated by the content of DMPO-OH adducts  (with 4 

permission from (De Camargo et al., 2016)). 5 

Fig. 2. Typical examples of the first derivative ESR spectra of un-irradiated (0 kGy) 6 

and irradiated (10 kGy) food materials (complex seasoning) containing Mn2+. Irradiation 7 

was performed with 60CO gamma-ray source (with permission from (Ahn, Akram, Kim, & 8 

Kwon, 2013)). 9 

Fig. 3. Examples of ESR spectra of the DMPO (a) and PBN (b) spin-adducts formed 10 

in beef loin and chicken breast during HP-treatment (with permission from (Bolumar, 11 

Andersen, & Orlien, 2014)).  12 

Fig. 4. Examples of ESR spectra of DMPO adducts of oleic acid without PEF 13 

treatment (a, control) and after PEF treatment 30 kV/cm for 400 μs (b). For PEF treated the 14 

spectrum contains two triplet patterns. The first triplet peaks are caused to one nitrogen atom 15 

of the DMPO adduct with a hyperfine coupling constant of aN=1.65 mT and the second triplet 16 

peaks are caused by the two identical β-protons (aHβ =2.23 mT) of the DMPO adduct (with 17 

permission from (Zhao et al., 2011)). 18 



Table 1. The half-life and rate constants of biological reactive species.  

Species  Symbol Half-life (s) at 37°C Rate constant* (M-1s-1) 
Radicals     
 Semiquinone radical Q˙ >102 - 
 Peroxyl radical ROO˙ >1 × 10-2 - 
 Superoxide radical O2˙ >1 × 10-6 < 0.3 
 Alkoxyl radical RO˙ >1 × 10-6 - 
 Hydroxyl radical HO˙ >1 × 10-9  
 Perhydroxyl  HOO˙ 1-30 - 
 Nitric oxide radical NO˙ 1–30 9.1× 109 
 Carbonate radical anion CO3˙  1.2 × 108 
 Azide N3˙ 10-5—10-6 <107 
Oxidants      
 Molecular oxygen O2 >102 1.9 × 1010 
 Lipid peroxide ROOH >102 - 
 Singlet oxygen 1O2 >1 × 10-6 2 × 107 
 Hydrogen peroxide H2O2 10 1 × 10-2 
 Ozone O3 9 × 103 5 × 106 
 Peroxynitrite ONOO- 10-20 × 10-3 - 
 Hypochlorous acid HOCl  3.8 × 107 

*= rate constant with methionine. Source: Bekhit et al. (2013) 
 



Table 2. Enzymatic systems involved in free radical generation. 

Enzyme 
Radical 

generated 
Enzyme Function Location 

NADH oxidase  
NAD(P)H oxidase (EC 1.6.3.1) 

O2˙  
H2O2 

Unknown function Muscle 
Sarcoplasmic 
Reticulum  

Dihydroorotate dehydrogenase  
(EC 1.3.3.1 or EC 1.3.99.11) 

H2O2, O2˙ Catalyzes conversion of 
dihydroorotate to orotate, a step in the 

Mitochondria 



Source: Bekhit et al. (2013) 

synthesis of pyrimidine nucleotides 
Glycerol-3-phosphate 
dehydrogenase (EC 1.1.99.5) 

H2O2  FAD-containing enzyme catalyses 
oxidation of glycerol-3-phosphate to 
dihydroxyacetone phosphate, utilizing 
mitochondrial coenzyme Q as an 
electron acceptor 

 

Succinate dehydrogenase (EC 
1.3.5.1) 

ROS Oxidizes succinate to fumarate using 
coenzyme Q as an electron acceptor 

Mitochondria  
Complex II 

Aconitase (EC 4.2.1.3)  HO˙ Catalyzes conversion of citrate to 
isocitrate as part of the tricarboxylic 
acid cycle 

Mitochondria 

α-Ketoglutarate dehydrogenase 
complex  
[multiple copies of three 
enzymes:  
α-ketoglutarate dehydrogenase 
(EC 1.2.4.2), dihydrolipoamide 
succinyltransferase (EC 2.3.1.12),  
and lipoamide dehydrogenase (EC 
1.6.4.3]. 

H2O2, O2˙ Catalyzes oxidation of α-ketoglutarate 
to succinyl-CoA using NAD+ as an 
electron acceptor 

Mitochondria 

Pyruvate dehydrogenase (EC 
1.2.4.1) 

H2O2, O2˙ Multiple functions. See Brenda 
website 

Mitochondria 

Cytochrome b5 reductase (EC 
1.6.2.2) 

O2˙ at a 
rate of 
~300 
nmol/min 
/mg 
protein. 

It oxidizes cytoplasmic NAD(P)H and 
reduces cytochrome b5 in the outer 
membrane 

Mitochondria 

Monoamine oxidases  
(EC 1.4.3.4) 

H2O2 Catalyzes oxidation of biogenic 
amines and the oxidative deamination 
of primary aromatic amines along with 
long-chain diamines and tertiary 
cyclic amines 

Outer 
mitochondrial 
membrane 

Succinate-cytochrome c reductase 
system (may be EC 1.6.2.1) 

O2˙  Mitochondria 

NADH:ubiquinone reductase (EC 
1.6.5.3) 

O2˙ Oxidizes NADH, produced 
predominantly by the tricarboxylic 
acid cycle in the mitochondrial matrix, 
and reduces ubiquinone in the inner 
mitochondrial membrane. 

Mitochondria 

Nitric oxide synthase (EC 
1.14.13.39) 

NO Multiple see Brenda website Mitochondria 
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Highlights 

 

• Electron spin resonance (ESR) as a tool to identify/quantify free radicals in foods 

• ESR as a novel analytical possibility to evaluate potential food toxicity 

• Physicochemical and nutritional properties of food can be accessed by ESR 

• ESR can be used to evaluate the effect of novel food processing technologies  

• ESR is a robust and non-invasive technology for food analysis 


