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Abstract

Background:Nowadays, electron spin resonance (ESR) is widsbdwas a powerful, non-
destructive and very sensitive technique for thiea®n of free radicals in food systems. It
can be applied for the direct identification of g reactive oxygen species, organic and
inorganic paramagnetic species and screening af foopotential toxicity. Its applications
cover investigating food oxidative stability andperties of irradiated foods including fruits

and vegetables, meats and fishes, spices, cesasgand oil seeds.

Scope and approacfThis review aims at providing specialists in foe@ence and industry
with the fundamentals of ESR spectroscopy, typrealicals present in foods and their
sources, ESR modalities, and detailed accounh®use of the technology for evaluation of
the physicochemical and nutritional properties abds. Examples illustrating ESR
applications for the evaluation of the effects ohavative and emerging technologies
(ionizing radiation, high pressures, pulsed eledtglds, cold plasma and ultrasonication) are

discussed.

Key findings and conclusionESR can be used for the identification/quantifmatof free
radicals in foods, for spin-label oximetry, estiroatof free radical scavenging, food stability,
and chelating activity, with particular interestr fdood processed using innovative
technologies, with the main advantages of its lsigisitivity, specificity, and low amounts of
sample needed and nowadays many types of ESRnmstte are commercially available.
However, due to the different nature of foods, degelopment of novel ESR techniques and

methods of analysis specially designed to studgdas of great interest in the future.

Keywords. Electron spin resonance; ESR; free radicals; npr@tessing technologies; high

pressure processing; pulsed electric fields
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1. Introduction

Free radicals are molecular species that containrgaired electron in the atomic
orbital area paramagnetic group of molecular sgedie to their independent existence,
free radicals are mostly unstable, highly reactarej can either donate or accept an electron
from other molecules. The free radical reactions aery typical for biological systems
(Yoshikawa, Naito, & Kondo, 1997). For example, ttnansformation of @ into HO
includes the formation of superoxide©Oand hydroxyl HOe short-lived radicals with a
lifetime in the nanosecond to millisecond rangegqhikawa, Naito, & Kondo, 1997).

Table 1 summarises the half-life and rate constants ofogioal reactive species
(both free radical and oxidant species) (Bekhitpklos, Fahri, & Ponnampalam, 2013). Free
radicals are unstable and are highly reactive axygmecies (ROS) promoting changes in
DNA and cell damage, lipid and protein oxidationvasl as cancer development and other
oxidative stress-related diseases. The free radaral known to attack important constituents
of foods such as nucleic acids, proteins, carbatedr lipids, pigments and vitamins. The
presence of these radicals accelerates oxidatimregses, leading to decomposition of food
constituents, the formation of oxidized productsevelopment of off-flavor/odor,
deterioration of pigments and useful nutrients tleaid to reduction in the shelf-life and
eating quality of foods (Bekhit, Hopkins, Fahri, Ronnampalam, 2013). Hydroxyl free
radical has the shortest half-life among the varitvae radicals and oxidant§able 1), but
from a biologically point of view the hydroxyl radl is regarded as the most damaging free
radical species due to it high reaction constatgsrfl able S1) and indiscriminate reaction
with neighbouring biomolecules (Bekhit, HopkinshAa& Ponnampalam, 2013). It is worth
noting that the reaction rate constants of the dwyrradical with proteins (collagen and
albumin) are generally higher than individual amemds (Table S1), which highlight its

damaging role in biological systems. Furthermohes &bility of the hydroxyl radical to
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oxidise antioxidants, fatty acids, protein, and r@wacids indiscriminately, which lead to
extensive damage to neighbouring biomolecules. Adlélife of superoxide and alkoxyl
radicals are higher than the hydroxyl radical (€abl and they are important contributors to
oxidative processes. Molecular oxygen has the Bighalf-life and reaction rate constant
among the various oxidants listed in Table 1.

Food processing, which usually involves a seriésmechanical, physical and
chemical transformations of raw ingredients, malagice the formation of free radicals in
the food products and cause drastic changes indbality. Therefore, over the recent years,
there has been a growing awareness about freaafrddimation during food processing due
to consumers’ increasing demand for healthy foasblpets, free from artificial chemicals
and preservation of their natural and bioactivaiants. This has, to some extent, favoured
technological developments in non-thermal food essing, i.e. food processes carried out at
ambient or near ambient temperatures, unlike thigonogessing or cooking that require high
temperature and cause major quality changes irsf@@dwson et al., 2011).

To date, very little work has been undertaken tnidy the nature and unravelthe
chemistry of the free radicals produced in foodbjexted to novel non-thermal food
processes(Ahn, Akram, Kim, & Kwon, 2013; Bolumaratt, 2014; Zhang, Yang, Zhao,
Liang, & Zhang, 2011). A vast body of literaturestraghlighted the chemistry aspects of free
radicals, their roles in human health and diseasewell as the possibility of annihilating
radicals with adverse effects (Favier, Cadet, Kadyaman, Fontecave, & Pierre, 1995;
Hiramatsu, Yoshikawa, & Inoue, 1997; Morello, Sltekh& Ho, 2002; Rani & Yadav, 2015;
Uppu, Murthy, Pryor, & Parinandi, 2010).

Earlier reviews have discussed the potential of HSRestimating free radical
scavenging capacity, food oxidative stability, deti@ation of C3* chelating capacity (Yu &

Cheng, 2008), and properties of irradiated foodtuoing meat, fruits, vegetables, spices,
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cereal grains, and oilseeds (Shukla, 2016). Howdwerature pertinent to the application of
ESR for evaluating radical formation during altdive processing approaches, such as
ionizing radiation, high pressure, pulsed eledigtds, ultrasound, and microwave, is scarce.
ESR measurement can be a useful strategy to uaddréfte chemical reactions at cellular
level and to establish a relationship between feskcal formation and healthy functional
products. For example, a correlation of radicalmfation measured by ESR with
inflammation, atherosclerosis, cancer, damage omblecules (e.g. lipids, nucleic acids,
enzymes, protein, etc.) could be established hygusivivo models.

This review provides an overview of the currentustaf the use of ESR spectroscopy
in topical nutraceutical and food research acwsitiThe main focus is paid to recent
advantages of ESR technique for free radical arsalysfoods processed using innovative
processing technologies, including ionizing radiati high pressure, pulsed electric fields,

ultrasound, cold plasma treatment, and microwaves.

2. Typical radicals present in foods and their sour ces

There are extensive reviews (Andersen & Skibste@82Kristensen, Krdoger- Ohlsen,
& Skibsted, 2002; Kumar, 2011; Shukla, 2016) andiksaFavier et al., 1995; Gutteridge &
Halliwell, 2015; Hiramatsu et al., 1997; Laher, 20Minisci, 1997; Pryor, 1984; Rani &
Yadav, 2015; Roberfroid & Calderon, 1995; Uppu let 2010) discussing the mechanisms

involved in free radical formation, their types awlrces in biological and food systems.

2.1. Typesof radicals
A wide variety of free radicals and other reactimeygen and nitrogen species
(ROS/RNS) can be found in food systems. Oxygenpraduce different toxic species and

activate reactions involved in the degradation iofrinlecules such as lipids, nucleic acids,
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and proteins. The chemistry of ROS has been redeweéetail (Pierre, 1995). Radical ROS
includes hydroxyl (HOe), superoxide £6©), peroxy (RQ@e), and alkoxy (ROe) radicals. Non-
radical hydrogen peroxide ¢B-), hypochlorous acid (HOCI), and singlet oxygé®.} can
also evolve in radical or radical-mediated readi@orello et al., 2002). RNS such as nitric
oxide radicals, have been implicated in variousspilggical processes and they are very
reactive towards molecular oxygen, superoxide eddarganic radicals, and transition metals

(Garrel & Fontecave, 1995).

2.2. Formation of radicals

There are different internal and external sourdemdicals in food systems (Kumar,
2011). The internal sources include mitochondraivety as a major source of enzymes that
generate free radicals as by-products of theivigagt{Table 2) (Bekhit et al., 2013). Several
dehydrogenases, such as dihydroorotate dehydragjegigiserol-3-phosphate dehydrogenase,
succinate dehydrogenaseketoglutarate dehydrogenase and pyruvate dehydasgeas well
as reductases (NADH:ubiquinone reductase, suceoytehrome c¢ reductase and
cytochrome b5 reductase) that are located in mitodha, remain active postharvest and are
able to produce several radicals and oxidafiable 2). The interactions between these
enzymes and their substrates become easier duasithgrvest storage as the integrity of
mitochondria is lost over time. The generationregfradicals in biological materials through
this pathway is important and can cause significaaity defects in fresh produce, e.g. fresh
meat (for more information please see Bekhit ¢t28l13). Furthermore, reactions involving
Fe*, CU*, and other transition metals; ischaemia/reperfysand inflammation (among
others in plants and/or animal systems). The eatesources include: non-enzymatic

reactions of the oxygen with organic compoundsgtreas initiated by ionizing radiations,
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action of cigarette smoke, and exposure to envieal pollutants, radiations, ultraviolet

light, and ozone, treatment with certain drugstipeies, and industrial solvents.

3. ESR modalities
3.1. Principle mechanism of ESR

The ESR was first discovered in 1944 in Kazan Ursivg by Zavoisky, (1944). This
technique is based on the absorption of the micvewadiation by a paramagnetic sample
(materials with unpaired electrons) placed in atemral magnetic field. ESR is a useful
technique for the detection of free radicals arfteoparamagnetic species such as transition
metals. Position and shape of ESR lines are styatgppendent on the nature of the radicals.
The electron-Zeeman interaction between unpairectrein(s) and an applied magnetic field
is expressed vig-values. The g-value is analogous to the chemluétlis Nuclear Magnetic
Resonance (NMR). The g-value extracted from ESRtap® is an important characteristic
that depends on the nature of the radical undesideration (for example, for a free electron,
g= 2.0023). However, the ESR spectrum is often caragd by the hyperfine structure
formed in the presence of neighbouring magnetideiusuch asH, *C, N, *F, etc. Thus,
calibration of the ESR spectroscopy instrumentneeessary step.

For calibration of an ESR instrument, a suitabference material has to be employed,
e.g., a powder containing Nthions in lime (CaO) (Negut & Cutrubinis, 2017). Tk&>" ion
has effective spis = 5/2, nuclear spih = 5/2 and its ESR spectrum consists of a hyperfine
sextet Figure S1) (De Biasi & Grillo, 2014). The lines are spacgd®mT and the third and
fourth lines withg-value of 2.0292 and 1.9760, respectively, are comynused for the
calibration (De Biasi & Grillo, 2014).

The main advantages of ESR include its high semtgitiand specificity. This

technique also requires relatively small amountsashple. For example, using conventional
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X-band (with the frequency of about 9.1-9.7 GHz)aantration of radicad-3 UM can be
detected for a 25 pL sample (Abbas, Balsi Peyrot, 2016). Another advantage of the ESR

method is the simplicity of sample preparation ch, 2002).

3.2. ESR measurement

For detection and identification of free radicaltammlites, ESR can be applied asa
direct or indirect method. Biological semiquinomrelical with ag-value of around 2.004 and
a line width of approximately 5G on fungal sporé®enicillium digitatumcan be kinetically
analyzed in situ during atomic oxygen generatedrpéaelectric discharge at real time and
the decay of the ESR signal is possibly linked he tnactivation of the fungal spore
(Ishikawa et al., 2012). Characteristic ESR sigarégen from F&state and peroxy radical
(ROx) on haemoglobin or myoglobin (Libardi, Skibsted @ardoso, 2014;Jongberget al.,
2014) were detected during atomic hydrogen, ninpgead oxygen exposure on raw horse
meat during non-thermal processing (HPP, PEF,. &thgrefore, these signals can be used as
an indicator of a balance between inactivation afraorganisms and deterioration of food
nutritional status (Kitada et al., 2017, Kitadaakt 2018).Thedirect application of ESR is
possible for the relatively long-lived radical sgecwhile theindirect application of ESR
uses spin trapping and spin labelling techniquée. gpin trapping technique is based on the
formation of long-lived and ESR-detectable spinwds as a result of the reaction of a short-
lived reactive free radical Re with a diamagneticlecule (Mason, 1997).

Re + spin trap>spin adducte

The spin adduct (usually a nitroxide) should belatively long-lived radicalproduct.

The signal intensity of the spin adducts, as olegerin an ESR spectra, is directly

proportional to the concentration of the formeckfradicals Re.
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The chemical structures of the popular spin trapdPD (5, 5-dimethyl-1-pyrroline
N-oxide) and PBN N-tert-butyl-a-phenylnitrone) are presented fingure S2. The structure
of other spin traps developed for biological stadtan be found in the available literature
(Hawkins & Davies, 2014).

Information about the hyperfine splitting of tharspdducts for popular spin trapsis
well known (Buettner, 1987). The splitting patteinsESR spectra of spin adducts can
provide useful information about the structure ahehtity of the trapped radicals. The spin
trapping technigue was initially developed to stiylogical compounds containing highly
reactive and short-lived superoxidex{©) and hydroxyl (HOe) radicals and radical fornoati
on proteins, lipids, and polysaccharides (Abbad.eR016; Davies, 2016; Hawkins & Davies,
2014). The trapping efficiency and stability of ttesulting adducts depend on the type of the
radicals and the applied spin adducts.

The spin labelling technique is based on usingiapspin labels (stable free radicals).
This technique can be used for the determinaticiheftoncentration of dissolved oxygen in
foods. The chemical structures of the most populater-soluble N-containing nitroxide
radicals, PDT (4-ox0-2, 2, 6, 6-tetramethylpiperetid16-1-oxyl) and CTPO (3-carbamoyl-2,
2, 5, 5-tetramethyl-3-pyrroline-1-yloxyl) are presed inFigure S3.

The non-volatile nitroso spin trap, 3, 5-dibromaitrosobenzenesulfonate (DBNBS)
is useful for detecting pyrolysis radicals whicke dormed in high-temperature interfacial
regions produced by ultrasonic cavitation (Kondoiskna, & Riesz, 1989). As reported in
sonolysis of dimethyl sulfoxide (DMSO)-water mix¢gt the spin adducts of DBNBS-SO3

and —CH3 can be detectable (Kondo, Kirschenbaum, BiRiesz, 1993).

4. Evaluation of the physicochemical and nutritional properties of food
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There are different ESR techniques for the evatnadf the concentration ofdissolved
oxygen, and determining free radical scavengingbikty, and chelating activity of food
ingredients. Among the main advantages of ESR tegan the available literature, one of
the most important benefits is the ease of detectind identification of free radicals
generated by chemical or biological systems by mirsg the spectrum of a spin adduct.
Moreover, it also allows the quantification of fresdicals by comparing the peak area to
those obtained from stable radicals and to cartykmetic analyses as well as to determine
the formation and elimination velocities of a freslical (Kohno, 2010). In addition, the
characteristicsg-value, alignment, line widtly\W, among others) of the free radicals can be
also determined using ESR (Kohno, 2010).

On the other hand, some main drawbacks are foutidthe technique, for example
ESR does not allow the detection of a free radid¢an it reacts immediately with a molecule
different from the spin-trapping agent. Moreovepinsadducts can be neutralized when a
reducing agent is present and a new spin adductbeagenerated if a spin adduct is
decomposed, thus the difficulty of the identificatiof the free radicals. It is also difficult to
determine the electron distribution and the molacstructure of the free radical when the
hyperfine coupling constant, 2-(4-carboxyphenyl}45, 5- tetramethylimidazoline-1-oxyl-
3-oxide (carboxy-PTIO) is the only ESR parameteterined for a spin adduct (Kohno,
2010). Since carboxy-PTIO reacts selectively withesNadical and this reaction yields 2-(4-
carboxyphenyl)-4, 4, 5, 5-tetramethylimidazolinexyl (carboxy-PTIl) and NOe radical, the
carboxy-PTIO reaction system can be used for detecf NO- radical (Kurake et al., 2017;
Uchiyama et al., 2015). It is worth mentioning thrasome applications, the ESR techniques

are only qualitative, and not quantitative (Zhoin,¥& Yu, 2005).

4.1. Spin label oximetry
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ESR spin label oximetry technique has wide appboat for detection of dissolved
oxygen in foods (Subczynski & Swartz, 2005). Thehteque is based on the collision
between paramagnetic oxygen @&nd a spin label (stable free radicals). The éxbérspin
exchange influences the line width for the spireladind it depends on the concentration of
dissolved oxygen. It allows real-time monitoringgeneration or consumption ob @ food
systems. Water-soluble N-containing nitroxide raicnamely PDT (Yin et al., 2009) and
CTPO (Hyde & Subczynski, 1984) are common spin Ifalesed for the ESR oximetry.
Spectra for these spin labels are widely availablé hence calibration procedures for these
techniques are well established. The ESR oximedsylieen applied to study oxygen uptakes
and lipid oxidation in emulsions, in fatty acid nebadystems and liposome systems and to
evaluate oxygen permeation through an oil-encapediiglassy food matrix (for a review see
Zhou, Yin, & Lo, (2011)). Data on oxygen solubilignd diffusivity in food and different
oxygen quantification methods including ESR oximelrave been reviewed (Pénicaud,
Peyron, Gontard, &

Guillard, 2012).

4.2. Freeradical scavenging

The formation of free radicals and their scavendiggantioxidants in foods canbe
evaluated using different the assay procedures aféay, Ozcelik, & Saner, 2009;
Shivakumar & Yogendra Kumar, 2017). Nowadays, tee af ESR techniques for these
purposes is considered to be reliable and sensitivadical quenching (Cémert & Vural,
2017). For example, the antioxidant capacity ofasgé number of varieties of fruits
(strawberry, mulberry, lemon, banana, etc.) to snge 1, 1-diphenyl-2-picryl-hydrazyl
(DPPH) radical was evaluated using spectrophotocatd ESR measurements (Zanget al.,

2017). The results obtained from the two methodsevi@und to be highly correlated. It was
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demonstrated that in some cases (for the sampheanablour similar to that of DPPH or non-
transparent sample) ESR spectroscopy might be sumiable for determining the antioxidant
capacity of fruits. In fact, the use of ESR teclueiqo evaluate both radical scavenging
activity and antioxidant properties in foods havewn high correlation for various food

products, which include antioxidant drink (Hiramatst al. 2013), medicinal tea (Pejin &

Kien-Thai, 2013), betanin of red beet (Esatbeyoetual., 2014), polyphenols of wine

compounds (De Beer, Joubert, Gelderblom, & Man®&\,7; de Camargo, Regitano-d’Arce,
Biasoto, & Shahidi, 2016), coffee (Kameya, 201 &xbal materials (Wojtowicz, Krupska, &

Zawirska-Wojtasiak, 2017), peptides of soybean smé¢aami, 2017), and other liquid foods
and beverages (Smirnov, 2017). Therefore, ESR tggbrhas become an integral part for
food analysis that provide valuable informationareing the antioxidant properties of a food
material.

The ability of ESR spectroscopy to differentiatévieen the antioxidant activity of
soluble and insoluble/bound phenolic fractions aoted from winemaking by- products pre-
treated with cell-wall degrading enzymes was dennatex (Camargo et al., 2016). The
antioxidant activity with respect to DPPH and hydidaadical scavenging activity showed a
good correlation with specific phenolic compoundsrd in each extract fraction exposed to
two different enzyme-assisted extraction treatmeltgure 1 presents examples of ESR
signals used for the evaluation of the ability bé tphenolics extracted from the control
(devoid of enzyme) and the starting material peateed with Pronase to scavenge hydroxyl
radicals (the higher the ESR signal, the lowersitevenging activity) (Camargo et al., 2016).
The ratio observed between the fraction contairsolyible and insoluble-bound phenolics
increased upon enzyme treatment of the startingnmaatThe similar trends were observed

for pre-treatment of the starting materials witlsadtzyme.
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4.3. Food stability

The quality and nutritional properties of foods idgrprocessing and storage can be
directly related to free radical-mediated oxidatioh lipids. The process of oxidative
deterioration of lipids by direct attack of carbearbon double bonds, especially in PUFAs
(polyunsaturated fatty acids), with free radicals a process that is known as lipid
peroxidation (Ayala, Mufioz, & Arguelles, 2014). Tbtlieemical mechanisms and methods of
analytical determination of the extent of lipid @edation are widely discussed in the
literature (Catala, 2012; Repetto, Semprine, & Bisye2012). The products of an oxidative
breakdown in foods have high toxicity and for traggtermination, different assays have been
developed. However, these assays may be ratherleomapd require multistep sample
preparations. For example, aldehyde and ketonevaletes and the measurement of the
carbonyl groups is regarded as an important mddtegprotein or lipid oxidation caused by
reactive species. Several spectrophotometric, inmchemical and chromatography methods
(Rimbach et al.,, 1999; Estévez, Ollilainen, & Heirn, 2009) have been reported with
varying levels of sensitivity and ability to idefiytindividual carbonylated by-products of the
oxidation process. Other methods more relevaniptd bxidation rely on determination of
volatile compounds generated as end products aixitation reaction, such as 4-hydroxy-2-

nonenal (4-HNE)], are frequently investigated aodrgified using HPLC, GC and ELISA.

4.4. Chelating activity

lons are commonly found in foods and have significautritional value (e.g.,B&
and C&"), display a high catalytic activity and they caelerate the oxidative reactions and
result in the generation of free radicals. Natatedlates have an affinity for metal ions and
they can bind to these metals. Recently, the rdlehelates have attracted significant

attention in nutrition (Kratzer & Pran, 2018). Sormeamples of the application of ESR
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technique for the determination of chelating atyivof food components have also been
presented, since the formation of chelating congdeadters the ESR spectra.

The chelating properties of five phenolic acigscéumaric, ferulic, syringic, and
vanillic acids) that are commonly present in wiggain and fractions, were evaluated against
Fe&* and Cd* using spectrophotometric and ESR measurementsi(Zfin, & Yu, 2006). It
was demonstrated that these phenolic acids diffanetheir capacity to form chelating
complexes. The correlations between the radicalestging capacity, chelating capacity
against transition metals and structure of pheradids were discussed. ESR measurement
has been used for the evaluation of @helating activities and radical-scavenging prapsrt
of botanical extracts from black peppercorn, nutnrtegehip, cinnamon, and oregano leaf
(Su et al.,, 2007) and wheat bran extracts (Zhowalet2005). For wheat bran extracts
significant radical scavenging and chelating capecivere detected due to significant levels

of phenolic acids, tocopherols, and carotenoide(Zdt al., 2005).

5. Evaluation of the effects of food processing oper ations

It is important to note that the concentration adicals in native food systems canbe
rather low and their level increases with procegssior example, the number of radicals per
gram amounted to about 1014-1015 for unroastectedieans, 1016 for roasted coffee, and
1017 for spent coffee grounds (the waste produrhfbrewing coffee) (Rosenthal, 1998).
These results demonstrated that free radicals ffaatieely be produced by different food
processing operations. The formation of the radicgathe processed food material should be

carefully monitored to ensure nutrients retentiothie food after processing.

5.1. lonizing radiation
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Irradiation with moderate ionizing energylQ kGy) is frequently used to produce
biocide effects and to prevent the bacterial growthoods (1ISO14470, 2011; Stefanova,
Vasilev, & Spassov, 2010). Irradiation can be penfed with®°*Co gamma rays, and X-ray or
accelerated electrons. A comprehensive book thadrsalifferent aspects of food irradiation,
processing, and sterilization, as well as legistaand market aspects was recently published
(Ferreira, Antonio, & Cabo Verde, 2018). Nowaday® ESR is the principal method of
detection of free radicals in irradiated foodstse safety and treatment efficacy.

A typical examples of the ESR spectra of un-irrela(0 kGy) and irradiated (10
kGy) food materials (complex seasoning) contairlfif* are presented iRigure 2 (Ahn,
Akram, Kim, & Kwon, 2013). Note that the manganéses are important for biochemical
processes of green plants as cofactors of progigsenzymes. The typical sextet ¥n
signals were observed. Upon irradiation, compleR EBectra were observed and the signals
due to MrA* showed overlapping with the radiation-induced E&fRals.

Different examples for the application of ESR tadst irradiated fruits, vegetables,
tea leaves, seeds, spices and herbs, food comdmunes, crystalline sugar, sauces, and
beverages have been already reported (Shukla, 20héyefore, for more details on the
analysis and technical information, we refer thader to this recently published book

(Shukla, 2016).

5.2. High pressure processing

High pressure (HP) processing involves the apptinadf hydrostatic pressures > 100
MPa at ambient temperature to inactivate microasgas and inhibit oxidative enzymes,
while retaining the inherent quality attributestbé food material (Oey et al. 2008). Food
products (in the form of liquids or semi-solidsg are-packed and loaded into a chamber

vessel and the vessel is then closed and filled wipressure-transmitting medium such as
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water or food-grade solutions (e.g. castor oiliceile oil, sodium benzoate, ethanol, and
glycol). The food products are held inside the gesader pressure for a predefined duration,
followed by system depressurisation before operimgy vessel and unloading the food
products (Tao et al. 2014).

High pressure (HP) processing has been shown tiatenilipid oxidation in
freshmeats (Bolumar, Andersen, & Orlien, 2014), argteater amount of volatiles linked to
fatty acid oxidation has been detected in HP-tok&tgt juices and vegetable purees (Kebede
et al., 2013; Vervoort et al., 2013). Thereforetehable assessment of process- induced
changes in HP processed food is of a major impogtamthe context of legislative aspects of
this innovative non-thermal processing technoldgyhis respect, the potential involvement
of any specific radical intermediates during HPt tiiéght be involved in lipid oxidation can
be thoroughly examined with the aid of ESR spectpy.

Figure 3 presents examples of the EPS spectra (first deneg) of the DMPO (a)
and PBN (b) spin-adducts formed in beef loin anidkadn breast processed by HP treatment
(Bolumar et al., 2014). The spin traps DMPO and PB&e added to minced beef and
chicken meats and then hp treatment was applied DMPO spin trap, the spectra had a
shape of an isotropic spectrum with a high degfdeée broadening due to slow rotational
mobility (Figure 3a). For PBN spin trap an ESR spectra with the tymbape of a nitroxyl
radical powder spectrum were observed (Figlne The powder spectrum evidenced that the
formed spin adducts are immobilized in random dagons in a solid matrix. The level of
spin adducts was higher in the beef loin compacethé chicken breast, which might be
related to the higher iron content in beef compacedhicken, reflecting a higher level of
radicals formed in the beef loin during pressur@at The formation of new free radical
species in chicken meat during HP processing (4@DMNPa, 5-40 °C for 10 min) has been

reported in various studies (Bolumar, Andersen, &ie@, 2011; Bolumar et al., 2014,
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Bolumar, Skibsted, & Orlien, 2012; Mariutti, OrlieBragagnolo, & Skibsted, 2008). Based
on ESR spin trap spectroscopy investigation, itlmameduced that radicals formation in HP
meat, as initiators of lipid oxidation under HPPpesure is a time-dependent process
(following a first-order reaction) (Bolumar et a2Q11) and interestingly, it has been clearly
revealed that both protein- and iron-derived rddiegere formed and accumulated at the
sarcoplasmic and myofibrillar muscle fractions dgrHP processing (Bolumar et al., 2014).
Furthermore, increasing the processing temperauacetime at atmospheric pressure and
during HP processing of chicken meat has been showpromote greater formation of

radicals (Bolumar et al., 2012). Therefore, ESRI¢dne employed as a reliable technique to
assist optimization of HP processing for variousd® targeting to minimize the occurrence

of lipid oxidation.

5.3. Pulsed électric fields

Recent studies on the use of pulsed electric fi@REs-) processing in foodresearch
demonstrate the food industry is interested in teechnology that can assist different food
operations such as extraction, drying, freezingya treatment, improve safety, and cause
texture modifications. PEF treatment at a high takedield strength in order of 20-100
kV/cm with very short duration pulses (between pd ms), can be used for inactivation of
bacteria and sterilization of liquid foods. PEF qassing at high electric field can induce
polarisation of water molecules with dissociatidntltem into the ions (Boussetta, Soichi,
Lanoiselle, & Vorobiev, 2014). This would possilbiad to the subsequent formation of free
radicals during PEF treatment, but there is a laicktudies evaluating this phenomenon in
available literature. For detection of free radicahduced by a pulse discharge, ESR
technique can be successfully applied (Tahara &bOk2014). It is worth noting that at

present time, pulse discharge technologies aregmneped as a cost-effective and
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environmentally friendly for the destruction of moorganisms in contaminated potable
water and wastewater (Yang & Cho, 2012).

ESR technique with DMPO spin trap was used to détecgeneration of free radicals
in phosphate buffer and in an oleic acid emulsiiber #EF processing (Zhang, Yang, Zhao,
Liang, & Zhang, 2011). The concentration of hydmogeeroxide in phosphate buffer after
PEF treatment were 0.177 x 2@t 30 kV/cm, and 1.858 x 10at 35 kV/cm. This work
evidenced that PEF had a potential role as inttiafofree-radical reaction. The effects of
PEF on oxidation of oleic acid were also studieda@ et al., 2011). Hydrogen radicals were
detected by ESR technique using the DMPO spin Mape that the DMSO can trap carbon-
centered and oxygen-centered radicals generatecheémical and biochemical systems.
Figure 4 shows examples of ESR spectra of DMPO adductsleat acid without PEF
treatment and after PEF treatment 30 kV/cm for 460 The ESR signal was practically
absent for the control samplBigure 4a) but was very intense for the sample under PEF
treatment Figure 4b). For PEF treated sample the spectra contairpkettrand each triplet
line is further split into another triplet with emsities of 1:2:1. The study confirmed the
oxidation of oleic acid under PEF treatment andegation of hydrogen radicals. Following
PEF, a gradual quality deterioration of an oleixl amulsion occurred, as indicated by the
increase in the peroxide and carbonyl values oPtBE- treated oleic acid (Zhang et al., 2011,
Zhao et al., 2011).

The oxidative effects of nanosecond PEF treatniert3 kV/cm, 300 ns) in cells and
cell-free media were demonstrated (Pakhomova e@12). It was shown that nanosecond
PEF triggers oxidation both extracellularly le@rochemically) and intracellularly
mediated by biochemical reactions.

In an advancement of the PEF technology, electmsallation breakdown was shown

to take place by application of high electric feeldnd generation of electrical discharges.
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Under ambient atmosphere, electrons in the higttretd¢y discharge effectively collide with
background-molecules such as nitrogen, oxygen vaatdr, leading to dissociation of these
molecules. A rich variety of gaseous and aqueoastike oxygen and nitrogen species
(RONS) are produced by the electrical discharg&dda, Ishikawa, Tanaka, Sekine, & Hori,
2017). Evidence for the generation of hydrogen xideoH,O, and short-living active species
(HO, H, O, '0,, HO,, O~) resulting from the dissociation of water actaditby an
underwater electrical discharge has been repoHedd, Huh, Ma, & Kim, 2018). Basically,
when oxygen atoms are generated by the electrisaharge of atmospheric air remotely
from liquids such as water, saline, biological lag) water molecules dissolved in organic
constituents such as lipids, peptides, and prateeection of these biological compounds
with oxygen atoms occurs at the gas-liquid intexféldong et al., 2018; Kobayashi et al.,
2017). In contrast, when the discharge is in digmsitact with the liquids, more effective
dissociations of the dissolved organics occur gdiations simultaneously of high-energetic
photons, large- amount of RONS, electrically chdrgpecies, as well as high-electric fields
(Kurake et al., 2017; Uchiyama et al., 2018).

The generation of free radicals and ROS/RNS afteER application can be viewed
in a positive or negative way, depending on thended application of this non-thermal
technology. For instance, PEF can effectively imat¢é microorganisms in food systems
possibly due to the PEF-induced cell electroponagdfect that has led to the extensive
formation of highly reactive free radicals from ofieal species in the microbial cell
(Sitzmann, 1995), which is regarded as positiveaue of the process. On the other hand,
PEF has been reported to modify the chemical cardton of the antioxidant compounds
and their antioxidant properties due to free raddiéarmation. For instance, the formation of
free radicals (HOe) after PEF (5-35 kV/cm, unipokguare 40 ps pulses, continuous

operating mode at a flow rate of 60 mL/min, 0.8-ih& treatment time) has been associated
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with the conversion of vitamin C isomer from entd-keto-form (Zhang et al., 2015), thus
modifying the vitamin C structure without signifitdy decrease its total content.
Furthermore, changes in the structural conformatimuced by PEF have enhanced the
antioxidant properties of vitamin C. However, PHEBuced reactive species ABp or
hydroxyl radicals) have different effects on polgpbls such as anthocyanin. For example,
cyanidin-3-glucoside purified from red raspberry bagn reported to lose its stability after
PEF treatment (1.2-3.0 kV/cm, 300 exponentiallyayeny 300 ps pulses for 1 Hz), as
indicated by the increased formation of chalcone thuthe opening of the pyrylium ring
(Zhang et al., 2008). Moreover, it has been obsktlvat weak chemical bonds present in the
structure of amino acids, proteins, and polysaedhay such as hydrogen, disulphide, and
hydrophobic bonds, are susceptible to break dower BIEEF exposure (Han et al., 2012; Liu,
Zeng, Deng, Yu, & Yamasaki, 2011; Perez & Pilosff04). This observation can also be
partially explained by kD, or free radical formation due to PEF treatment.

The antioxidant activity of a peptide with seque@la-Asp-His-Cys-His (QDHCH)
of pine nut Pinus koraienslswas improved by PEF treatment (at E=5-20 kV/char{g,
Zhang, & Lin, 2017). It was demonstrated that hygtoradicals scavenging activity of
QDHCH was increased after PEF processing as ddtesieg ESR technique. PEF has no

effect on the basic structure of QDHCH, but it urihced the secondary structure of QDHCH.

5.4. Ultrasound

Ultrasound is a nonthermal processing technology ithwvolved continuous agitation
of food material at ultrasonic frequencies (>20 kHging an ultrasonic bath or probe. One of
the earliest works by Vercet, Lopez, & Burgos, @Rt examining enzyme inactivation
effect of manothermo-sonication (MTS), a combinexhtiment of heat and ultrasound (20

kHz frequency) under moderate pressure, was abtiedoce that one of the MTS enzyme
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inactivation mechanisms involved the interactiotwleen the free radicals produced by water
sonolysis with amino acid residues. The work shofuether that free radical production rate
increases linearly with increasing ultrasound atagé (from 20 and 14pm) and decreased
when increased temperature and pressure combin@@hC/200 kPa vs. 130 °C/500 kPa)
was applied.

The work of Makino, Mossoba, & Riesz, (1983) wasoamthe first in the literature
to demonstrate the feasibility of using ESR spapping spectroscopy technique to study the
radicals’ formation in an agqueous medium (sonicavater saturated with argon) following
ultrasound sonication. It was clear that hydroxyO¢) and hydrogen atom radicals (He) were
the two most abundant ultrasound-induced free adglitormed in the aqueous medium
investigated (Kondo et al., 1989).

The recent work of Zhang et al. (2015) performedhwESR spin trapping
spectroscopy with DMPO was able to reveal incrgafinmation of 1-hydroxyethyl radicals
during sonication of red wine, while only HO- raalE were detected in DMPO (control)
solution during sonication. Comparing the typesmh adducts detected in both ultrasound-
processed DMPO (control) solution and red wine,sitpossible to postulate that 1-
hydroxylethyl radicals were formed due to ethanwidation via the ultrasound-generated
HOe in water. Thus, this work provided the firstetit evidence to uncover the formation of
1-hydroxyethyl free radical in red wine exposediltoasound.

Influence of ultrasound-assisted thermal procesdtiggrmo-sonication) on the
physicochemical and sensorial properties of beer mweestigated (Deng et al., 2018). ESR
was employed to monitor changes in the generatidree radicals and it was demonstrated
that thermo-sonication clearly improves the oximmatstability of beer determined by ESR

spectroscopy.
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5.5. Cold plasma treatment

Cold plasma treatment is a novel technology thats yzartially ionized gases that
contain a mixture of neutral and charged speciéls t#mperature close to room temperature.
The technology has attracted a lot of attention tué@s efficacy in reducing/eliminating
microorganisms and viruses (Takamatsu et al., 208 technology basic mode of action is
mainly related to the generation of reactive speaied their effects on bacteria. Depending
on the intensity of treatment and the gas usedijda wange of reactive species (e.g., UV
photons, charged patrticles, free radicals, andamtgjare generated that contribute to the
antimicrobial activity and its successful use ogsfr and dry food products (Barba, Koubaa,
do Prado-Silva, Orlien, & Sant’Ana, 2017; Gavahi@mu, Mousavi Khaneghah, Barba, &
Misra, 2018; Hertwig, Meneses, & Mathys, 2018). Tise of nitrogen as the source gas of
reactive species appear to be the most effectiveattiivate microorganisms due to the high
hydroxyl radical generated using nitrogen (Takamasal., 2015). ESR has been used to
measure several short lived radical species sudiokyl radical (< 100 ms), peroxynitrous
(~1 ms and superoxide and hydroperoxyl radicald@<s) in liquid solutions (Attri et al.,
2015; Ikawa, Tani, Nakashima, & Kitano, 2016). El&#® been used to measure free radicals
generated in plasma treated liquids (Jablonowskil.e2015), but no use of the technology
has been reported in real foods. There is a lagjengal to utilize ESR to determine the
depth of cold plasma penetration by investigatieg fradical formation at sub-surface layers
to ensure proper decontamination process. Anotb&npal use of the technology is to
determine the concentration and nature of freecadslgenerated by cold plasma treatment in
relation to undesirable changes in treated footiss I an important aspect, particularly in

milk and dairy products (Coutinho et al., 2018).

6. Conclusion
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The goal of this review was to classify and descrdpplications of various ESR
spectroscopic techniques for free radical analysisfoods processed using emerging
technologies. The typical radicals present in fodhksir types and sources (both internal and
external) were discussed. The ESR techniques haeonite very popular for the
identification of free radicals in different typed foods, including fruits and vegetables,
meats and fishes, spices, cereal grains, and dds@éese techniques can be applied for
spin-label oximetry, estimation of free radical \s®maging, food stability, and chelating
activity. Moreover, they can be employed to detaad quantify free radical species in food
processed using innovative operations assisteanuying radiation, high pressures, pulsed
electric fields, ultrasonication, and microwaveBe Tnain advantages of ESR for applications
in food systems include its high sensitivity an@&aficity. Nowadays, many types of ESR
instruments are commercially available, this teghairequires relatively small amounts of
sample and analyses can be easily and rapidly shoseientific and industrial laboratories.
However, the ESR data for foods are typically @a#ddoy the nature of the material, type of
applied treatment and especially the water contefdods, complicating the detection and
guantification of radicals. Therefore, the devel@pinof novel ESR techniques and methods

of analysis specially designed to study foods éatly desirable in future.
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Figure captions

Fig 1. Examples of ESR signals of soluble and insoluble-bound phenols affected by
Pronase enzymatic pre-treatment on winemaking by-products. The higher the ESR signal, the
lower the scavenging activity as demonstrated by the content of DMPO-OH adducts (with
permission from (De Camargo et a., 2016)).

Fig. 2. Typical examples of the first derivative ESR spectra of un-irradiated (0 kGy)
and irradiated (10 kGy) food materials (complex seasoning) containing Mn2+. Irradiation
was performed with ®°CO gammarray source (with permission from (Ahn, Akram, Kim, &
Kwon, 2013)).

Fig. 3. Examples of ESR spectra of the DMPO (a) and PBN (b) spin-adducts formed
in beef loin and chicken breast during HP-treatment (with permission from (Bolumar,
Andersen, & Orlien, 2014)).

Fig. 4. Examples of ESR spectra of DMPO adducts of oleic acid without PEF
treatment (@, control) and after PEF treatment 30 kV/cm for 400 ps (b). For PEF treated the
spectrum contains two triplet patterns. The first triplet peaks are caused to one nitrogen atom
of the DMPO adduct with a hyperfine coupling constant of ay=1.65 mT and the second triplet
peaks are caused by the two identical B-protons (ays =2.23 mT) of the DMPO adduct (with
permission from (Zhao et a., 2011)).



Table 1. The half-life and rate constants of biologicalatve species.

Species Symbol Half-life (s) at 37°C Rate constant* (Ms™)
Radicals
Semiquinone radical Q >10 -
Peroxyl radical ROO >1x10 .
Superoxide radical 0 >1 x 10° <0.3
Alkoxyl radical RO >1 x 16 -
Hydroxyl radical HO' >1 x 18
Perhydroxyl HOO  1-30 -
Nitric oxide radical NO’ 1-30 9.1x 10
Carbonate radical anionCGO;’ 1.2 x 168
Azide N 10°—10° <10
Oxidants
Molecular oxygen @ >10 1.9 x 16°
Lipid peroxide ROOH >10 4
Singlet oxygen 0, >1 x 10° 2 %10
Hydrogen peroxide ¥, 10 1x1G
Ozone Q 9x 106 5x 10
Peroxynitrite ONOO 10-20 x 10 .
Hypochlorous acid HOCI 3.8 x 10

*= rate constant with methionine. Source: Bekhiale{2013)



Radical

Enzyme Enzyme Function L ocation
generated
NADH oxidase O, Unknown function Muscle
NAD(P)H oxidase (EC 1.6.3.1) H,0, Sarcoplasmic
Reticulum
Dihydroorotate dehydrogenase H,0,, O, Catalyzes conversion ofMitochondria
(EC1.3.3.1 0r EC 1.3.99.11) dihydroorotate to orotate, a step in the

Table 2. Enzymatic systems involved in free radical genenat



Glycerol-3-phosphate H,0,
dehydrogenase (EC 1.1.99.5)
Succinate dehydrogenase (EROS
1.3.5.1)

Aconitase (EC 4.2.1.3) HO

a-Ketoglutarate
complex
[multiple
enzymes:
a-ketoglutarate  dehydrogenase
(EC 1.2.4.2), dihydrolipoamide
succinyltransferase (EC 2.3.1.12),
and lipoamide dehydrogenase (EC
1.6.4.3].

dehydrogenaséi,0,, O,

copies of three

Pyruvate dehydrogenase (ECH,0,, O

1.2.4.1)

Cytochrome b5 reductase (ECO, at a

1.6.2.2) rate of
~300
nmol/min
/mg
protein.

Monoamine oxidases H,0,

(EC1.4.3.4)

Succinate-cytochrome reductase O,

system (may be EC 1.6.2.1)

NADH:ubiquinone reductase (ECO,

1.6.5.3)

Nitric oxide synthase (EC NO

1.14.13.39)

synthesis of pyrimidine nucleotides

FAD-containing enzyme catalyses

oxidation of glycerol-3-phosphate to

dihydroxyacetone phosphate, utilizing

mitochondrial coenzyme Q as an

electron acceptor

Oxidizes succinate to fumarate usingitochondria

coenzyme Q as an electron acceptor Complex I
Catalyzes conversion oitfate to Mitochondria

isocitrate as part of the tricarboxylic

acid cycle

Catalyzes oxidation ad-ketoglutarate Mitochondria

to succinyl-CoA using NAD+ as an

electron acceptor

Multiple functions. See BrendaMitochondria
website

It oxidizes cytoplasmic NAD(P)H andMitochondria
reduces cytochromé5 in the outer

membrane

Catalyzes oxidation of biogenicOuter
amines and the oxidative deaminatiomitochondrial
of primary aromatic amines along withmembrane
long-chain diamines and tertiary
cyclic amines

Mitochondria

Oxidizes NADH, produced Mitochondria
predominantly by the tricarboxylic
acid cycle in the mitochondrial matrix,
and reduces ubiquinone in the inner
mitochondrial membrane.

Multiple see Brenda website

Source: Bekhit et al. (2013)

Mitochondria
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Highlights

Electron spin resonance (ESR) as atool to identify/quantify free radicalsin foods
ESR asanovel anaytical possibility to evaluate potential food toxicity
Physicochemical and nutritional properties of food can be accessed by ESR

ESR can be used to evaluate the effect of novel food processing technol ogies

ESR isarobust and non-invasive technology for food analysis



