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Abstract 

Antibiotics are a key pharmaceutical to inhibit growth or kill microorganisms. They 

represent a profitable market and, in particular, tetracycline has been listed as an essential 

medicine by the WHO. Therefore it is important to improve their production processes. 

Recently novel and traditional aqueous two-phase systems for the extraction have been 

developed with positive results. The present work performs an economic analysis of the 

production and recovery of tetracycline through the use of several ATPS through 

bioprocess modeling using specialized software (BioSolve, Biopharm Services Ltd, UK) to 

determine production costs per gram (CoG/g). First, a virtual model was constructed using 

published data on the recovery of tetracycline and extended to incorporate uncertainties. To 

determine how the model behaved, a sensitivity analysis and Monte Carlo simulations were 

performed. Results showed that ATPS formed by cholinium chloride/K3PO4 was the best 

option to recover tetracycline, as it had the lowest CoG/g (US$ 672.83/g), offered the 

highest recovery yield (92.42%), second best sample input capacity (45% of the ATPS 

composition) and one of the lowest materials contribution to cost. The ionic liquid-based 

method of ATPS is a promising alternative for recovering tetracycline from fermentation 

broth. 
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1. Introduction 

 Antibiotics are widely used to inhibit growth or kill infecting microorganisms in 

humans and animals. They represent a globally profitable market; in 2009 sales generated 

US$ 42 billion (Hamad, 2010). There are multiple types of antibiotics, for example β-

lactams, cephalosporins, aminoglycosides, macrolides and tetracyclines (TC’s) (Coates et 

al. 2011). Tetracyclines are bacteriostatic antimicrobials produced mainly through 

fermentation by the Streptomyces genre (Darken et al. 1960; Asagbra et al. 2005) and are 

considered broad spectrum antibiotics. They act by binding to ribosome regions and inhibit 

protein synthesis, preventing the growth of bacteria and, ultimately, killing them (Nelson 

and Levy, 2011). Tetracycline is listed as an essential medicine by the World Health 

Organization (WHO, 2015), which makes identifying effective and economic routes for its 

production a priority. 

 Several methods for the recovery of Tetracycline (TC) from the fermentation broth 

of Streptomyces aureofaciens have been proposed. Most of them rely on recovery by 

crystallization of the antibiotic (Weidenheimer, 1958; Kardys, 1961), chromatographic 

techniques or liquid-liquid extraction with organic solvents (Fedeniuk, 1998). The latter 

may be harmful to humans. An alternative is the use of aqueous two-phase systems 

(ATPS), which have been used previously for the recovery of a wide variety of 

biomolecules (Yau et al. 2015; Grilo et al. 2016), for example antibiotics (Paquet et al, 

1994 Wang et al, 2010; Pereira et al. 2013a), metal ions (Rogers et al. 1996), antibodies 

(Azevedo et al. 2009), organic compounds (Willauer et al. 2002), proteins (Asenjo and 

Andrews, 2011; Ibarra-Herrera et al. 2014), cell debris (González-González et al. 2016) and 

stem cells (González-González et al 2014). 

Amongst ATPS, there are different classes depending on the phase-forming 

components required to form two liquid immiscible phases in aqueous media, each with 

different strengths and weaknesses (Soares et al. 2015). Traditional systems comprise of a 

polymer and a salt or two different polymers. More recent systems have been reported with 

ionic liquid (IL)/salt, IL/polymer or IL/carbohydrate combinations (Freire et al. 2012), or 
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with low molecular weight alcohol/salt mixtures (Dreyer and Kragl, 2008; Yau et al. 2015). 

Recently, a study was published in which the recovery capabilities of traditional 

(Polymer/Salt) and novel (IL/Salt) ATPS for TC were evaluated (Pereira et al. 2013a). The 

novel techniques (ATPS-based) have the potential to reduce costs in the recovery of the 

antibiotic, as demonstrated before with other biomolecules through the use of bioprocess 

modeling (Rosa et al. 2011; Torres-Acosta et al. 2015a). In addition, previous works which 

employed cholinium-based IL have demonstrated low toxicity and ecological impact, and 

also the ability to remove the largest contaminant (Chlortetracycline) from the fermentation 

broth (Shahriari et al. 2013; Ventura et al. 2012, 2013, 2014). 

Bioprocess modeling provides a powerful computational tool that allows the 

researcher to create virtual models, based on experimental or reported data to emulate real 

bioprocesses. The models can be integrated in order to determine production costs and to 

understand how these respond when critical parameters are modified, ultimately reducing 

production costs.. This strategy has been used successfully to determine the impact of the 

use of stainless steel versus single-use equipment (Farid et al. 2005), to determine the best 

strategy to harvest a perfusion reactor (Lim et al. 2005, 2006), and to evaluate the impact of 

optimizing certain production parameters (Torres-Acosta et al. 2015a), the use of different 

purification strategies (Torres-Acosta et al. 2015b) or to optimize the production of 

monoclonal antibodies (Liu et al. 2013, 2015). 

 There are several commercial software packages that perform this type of analyses, 

each with its own advantages and disadvantages (Shanklin et al, 2001). The present work 

utilizes BioSolve Process (BioPharm Services Ltd, Chesham, Buckinghamshire, UK), 

which is an Excel-based software package that is heavily focused on biotechnological 

applications and is able to perform economic analyses using data fed by the user, but it also 

includes updated costs for equipment and materials from different suppliers. The latter was 

selected for this study as it can perform bioprocess modeling and economic analyses 

oriented towards biotechnological products. 

This study uses the experimental data, obtained during the evaluation of traditional 

versus novel ionic-liquid-based ATPS for the recovery of TC (Pereira et al. 2013a), to 

perform an economic analysis designed to elucidate how the production costs per gram 
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(CoG/g) responds to key variables and parameters and to determine if the use of a novel 

form of ATPS based on an ionic liquid leads to a lower cost than traditional ATPS. For this 

purpose, a base model was created using BioSolve Process, to which variations in 

parameters were made through a sensitivity (local robustness) and Monte Carlo (global 

robustness) analysis in order to understand the behavior of the model. A series of 

comparisons were then made in order to determine how each ATPS variant behaves and 

which system offers the best option for tetracycline recovery. Moreover, as each ATPS had 

different capabilities, the impact of having small or large variations for a certain parameter 

was evaluated. 

 

2. Materials and Methods 

2.1 Model Set-Up and Deterministic Analysis 

 This study focused on contrasting the CoG/g incurred when using traditional and 

novel ATPS approaches for the primary recovery of TC, ATPS compositions and partition 

results were obtained from literature (Pereira et al. 2013a). Models were constructed using 

BioSolve Process (Biopharm Services Ltd, Chesham, Buckingham, UK). For the 

bioprocess models (Figure 1) only the fermentation and primary recovery were created and 

comprised of a seed reactor to grow an inoculum and a fermentation reactor where 

Streptomyces aureofaciens secreted the tetracycline product. For biomass removal a 

centrifuge (Biosolve default was selected as the objective was to evaluate ATPS 

capabilities) was used and the supernatant was loaded to one of four alternative ATPS 

(Figure 1), namely ATPS 1: Polyethylene glycol 600 (PEG600)/Cholinium Chloride 

([Ch]Cl); ATPS 2: PEG600/Cholinium Bicarbonate ([Ch]Bic); ATPS 3: PEG600/Na2SO4; 

ATPS 4: [CH]Cl/K3PO4. There were 4 bioprocess models in total (1 per ATPS), which 

each had the same initial production bioreactor, but a different target output of tetracycline 

(TC) after the ATPS (as each ATPS had a different recovery yield). Operation and process 

parameters were taken for the fermentation (Darken et al. 1960) and recovery (Pereira et al. 

2013a) from the literature. Technical characteristics of the equipment used are included in 

Supplementary Material 2 (sheet “Equipment”). 
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Figure 1. Process diagram for the primary recovery of Tetracycline based on ATPS. 

Critical parameters for model construction for each unit operation are shown. KTC: 

Partition coefficient for tetracycline. 

 

 Labor was set in the range of 10-15% of the total CoG/g (Heinzle et al. 2006) and 

the standard set of quality control tests from BioSolve Process were assumed (pH 

determination, purity by SDS-PAGE and size-exclusion chromatography, residual nucleic 

acids by ELISA and turbidity). The equipment used by the modeled bioprocess was 

selected from Biosolve Process database, while the materials (medium E for fermentation 

and ATPS components) were added and are presented in Table 1. For ATPS operation, 

stainless-steel tanks from Biosolve were considered. After the completion of the models a 

deterministic analysis was performed by obtaining the initial CoG/g and its breakdown for 

each of the four bioprocesses considered directly from Biosolve. 

Table 1. Materials used in the construction of the Tetracycline production model (fermentation 

medium and aqueous two-phase systems). Concentration for ATPS construction is presented in 

Figure 1. 

  Medium E 

Material Concentration (g/L) Commercial 
Presentation (kg) 

Cost (US$ 
dollars) 

Sucrose 40 5 81.10 

C6H5O7∙H2O 12.8 5 112.00 

(NH4)2SO4 6 1 44.00 

MgSO4∙7H2O 0.25 5 116.00 

KH2PO4 0.15 2.5 108.10 
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CaCO3 11 2.5 191.50 

MnSO4∙4H2O 0.01 50 1,138.27 

ZnSO4∙7H2O 0.04 2.5 84.50 

K2Cr2O7 0.016 (mg/L) 2 72.60 

ATPS 

Material Concentration (%w/w) Commercial 
Presentation (kg) 

Cost (US$ 
dollars) 

Polyethylene glycol 600 

Concentration depends 
on the ATPS being 

prepared 

20 385.00 

Cholinium chloride 1000 1,000.00 

Cholinium bicarbonate 15 441.59 

Na2SO4 12 142.04 

K3PO4 10 248.50 

 

2.2 Sensitivity Analysis 

 Several bioprocess parameters can impact the CoG/g and it is critical to identify the 

most sensitive in order to develop strategies to maintain control and to achieve a stable 

CoG/g. The most often studied parameters are the titer, downstream processing yield (DSP 

yield), material costs, operator wages, sale price and target output (Lim et al. 2005, 2006; 

Yan et al. 2014). Titer, DSP yield and materials cost variations were considered in this 

study. 

To determine the robustness of the bioprocess models to variations in individual 

parameters, three scenarios (Table 2) were created; one for each of the parameters 

analyzed: titer (g/L), DSP yield (%) and materials costs variations (±%). The ranges for 

titer and DSP yield were created by taking the mean (base scenario) plus and minus one 

standard deviation (worst or base scenario, depending on the parameter being analyzed) for 

each parameter using the values reported in their respective publications (Darken et al. 

1960; Pereira et al. 2013a). For materials costs it has been reported that a variation of ±25% 

can occur (Lim et al. 2006). Each parameter was varied individually, in their respective 

Biosolve Process space, and the calculated CoG/g was registered for later analysis. 

Table 2. Scenarios used for the sensitivity analysis 

 Scenarios 
Variable Best Base Worst 

Titer (g/L) 1.1 1.2 1.3 
    

DSP Yield (%) Depends on the ATPS analyzed: 
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ATPS 1 86.89 81.63 76.37 
ATPS 2 93.57 82.54 71.51 
ATPS 3 61.22 54.67 48.12 
ATPS 4 95.26 92.42 89.58 

    
Material Cost 
variation (± %) 

-25 0 +25 

    
    
    
    
    
    

 

2.3 Monte Carlo Analysis 

 After the identification of the critical parameters in the previous analysis, and in 

order to analyze the behavior of the models under the influence of uncertainty, the two most 

important parameters from the previous step were selected for a Monte Carlo analysis. This 

is a widely accepted strategy used to incorporate uncertainties into a bioprocess and to 

analyze their impact on economics (Farid, 2007). To perform this analysis a program was 

written in Visual Basic (Microsoft Office 365 Pro Plus, Microsoft Corporation), included as 

supplementary material 1, that generated random values for each parameter under a 

triangular distribution (George et al. 2007; Pollock et al. 2012; Yang et al. 2014), while 

using as its limits the scenarios presented for the sensitivity analysis (Table 2). 300 

simulation runs were used to generate a stable moving average, this limit has been tested 

before for models created in Biosolve Process and have resulted in not significant 

variations for outputs calculated (data not shown). ANOVA tests and t-tests for mean 

differences were performed after the completion of the simulation runs to determine if the 

distributions for the CoG/g showed a statistically significant difference between all the 

ATPS. Linear models were constructed using R (where the independent variables were the 

values for each of the parameter analyzed and the response variable was de CoG/g 

registered after each simulation) in order to summarize the complete set of data (one per 

ATPS) and to create a simpler form to understand the general behavior of the results 

obtained after the simulation runs. 
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3. Results and Discussion 

3.1 Deterministic Analysis 

 The model constructed in Biosolve Process is presented as supplementary 

material 2. From this model, four base CoG/g and their breakdowns per cost category and 

unit operation were obtained (Figure 2), one for each ATPS analyzed. ATPS 4 had the 

lowest CoG/g and the 2
nd

 smallest materials contribution, making it the most attractive 

system to use. Moreover, it also had the second largest sample input (ratio between sample 

and system weight) (Figure 1). ATPS 2 had the 2
nd

 highest cost (CoG/g) and the largest 

materials contribution, as it had one of the smallest sample input values (small sample per 

unit of material required). ATPS 3 provided an interesting result, as it had the highest cost, 

the largest sample input and the lowest materials contribution. Its high CoG/g is explained 

by the low DSP yield which means that the cost is distributed across a small inventory of 

tetracycline, causing the CoG/g to increase.  

 Fermentation is the unit operation that contributes the most to the cost (Figure 2b), 

as it is expected as the equipment required is the most complex in the bioprocess. The 

second unit operation in contribution to the CoG/g is dependent on the ATPS being 

analyzed. ATPS 3 provided an expensive system providing a larger contribution that 

centrifugation, for ATPS 1, 2 and 4, this is the opposite. This reinforce the results that 

ATPS 3 has the lowest recovery of Tetracycline 
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Figure 2. Contribution to the CoG/g by cost categories (a) and by unit operation (b) 

calculated by Biosolve Process. CoG/g for each system: ATPS 1 – US$ 799.71, ATPS 2 – 

US$ 847.09, ATPS 3 – US$ 1,053.38, ATPS 4 – US$ 627.83. CoG/g: Cost of Goods per 

gram. 

 

3.2 Sensitivity Analysis 

 The results for each of the ATPS analyzed were obtained and are presented in 

Tornado plots in Figure 3. The top two parameters were titer and DSP yield in all cases, 

but it can be seen that for ATPS 1 and 4 the most critical parameter was titer, while for 

ATPS 2 and 3 it was the DSP yield.  

a)                                                                    b) 
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c)                                                                      d) 

 

Figure 3. Tornado plots. Results for the sensitivity analysis are summarized here. a) 

ATPS 1, b) ATPS 2, c) ATPS 3 and d) ATPS 4. DSP: Downstream processing; 

CoG/g: Cost of Goods per gram. 

 

From an economic perspective, the ATPS 4 was the most viable option (lowest 

CoG/g) for several reasons; it is a small system compared to the rest due to the proportion 

of sample input, it has the highest DSP yield with the lowest standard deviation, also ATPS 

4 has the second lowest materials contribution to the CoG/g. The opposite for ATPS 3, it 

has the highest sample input but the lowest DSP yield, which was the most important 

parameter, as it dominates the contributions to the CoG/g. ATPS 1 and 2 were located 

between the outcomes of the other two systems, with a medium DSP yield. ATPS 2 had the 

highest standard deviation, which made it more sensitive to variations in the DSP yield. By 

contrast, ATPS 1 displayed a smaller variation range and was more sensitive to variations 

in titer. 

 

3.3 Monte Carlo Analysis 

 The distributions of the simulation runs results generated after performing 

simultaneous variations in the titer and DSP yield are presented in Figures 4 (a-c). Figure 

4a shows the complete tri-dimensional distribution, while Figure 4b and 4c depict two-

dimensional projections constructed in order to understand the individual contributions of 

the titer and DSP yield on the CoG/g. Four different distributions can be observed, each one 

corresponding to the individual ATPS analyzed. To understand fully the behavior of each 
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distribution, linear models were constructed for each individual system analyzed and are 

summarized in Table 3.  

a)                                                                       b) 

 
 

c) 

 
 

Figure 4. Monte Carlo analysis results for ATPS 1 ( ), ATPS 2 ( ), ATPS 3 ( ) 

and ATPS 4 ( ), CoG/g is expressed in x10
2
 USD/g. a) Cost of Goods per gram 

(CoG/g) distribution as a function of titer and downstream processing (DSP) yield, 

b) CoG distribution as a function of titer and c) CoG distribution as a function of 

DSP yield.  
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Table 3. Linear models for Monte Carlo analysis results. Linear regression were calculated for 

individual ATPS and for all the results simultaneously. 

 ATPS 1* ATPS 2* ATPS 3* ATPS 4* Complete+ 

Parameter Coefficient Coefficient Coefficient Coefficient Coefficient 

Intercept 2,406.70 2,451.33 3,164.59 1,888.51 2,489.36 

Titer -669.98 -678.82 -876.71 -526.13 -695.02 

Downstream 

processing Yield 

-9.81 -9.89 -19.31 -6.80 -10.65 

*ATPS 1: PEG600/[Ch]Cl; ATPS 2: PEG600/[Ch]Bic; ATPS 3: PEG600/Na2SO4; ATPS 4: [Ch]Cl/K3PO4; 
+Complete: linear regression of all the data simultaneously.  

All coefficients are statistically significant for α < 0.01. 

 

The ANOVA and t-tests results revealed that all distributions of CoG/g were 

statistically different to a critical value of α=0.01, although linear models showed that 

ATPS 1 and 2 (Table 3) were very similar since their coefficients changed by less than a 

unit. This was confirmed by analyzing Figure 4 where both distributions are seen to 

overlap. 

 After analysis of the linear models, it was clear that for every ATPS, the most 

significant parameter was the titer, followed by the DSP yield. This is logical as the four 

ATPS shared the same titer with a variation of 10% (±0.1 g/L) providing a small range of 

variation with a large variation in production cost, therefore a larger coefficient for the 

linear models in Table 2. Contrary, DSP yield (for all the systems) had a variation of less 

than the 12% (each system with a different variation corresponding to their unique standard 

deviation), as it can be seen in Table 2, but also a small variation in CoG/g, providing a 

smaller coefficient in the linear models. For all the linear models, DSP yield coefficients 

behaved as expected, with ATPS 3 being the most affected, while it had the least impact on 

ATPS 4. From Figure 4, it can be concluded that titer is more important than DSP yield as 

it can affect production cost while having a small absolute variation (± 0.1 g/L). For a 
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potential bioprocess set-up and with incorporation of ATPS, optimization of titer can 

represent an alternative to decrease production costs The evidence collected in this paper, it 

was confirmed that ATPS 4 is the most attractive of the four systems analyzed. In this 

particular model, the high DSP yield of ATPS 4 was achieved by solely using ionic liquids 

as phase-forming components. ATPS 1, 2 and 4 were constructed using cholinium-based 

ionic liquids ([Ch]Cl and [Ch]Bic). ATPS 4 achieved the lowest CoG/g, while the highest 

CoG/g was obtained with a traditional ATPS composed of PEG600/Na2SO4.  

Clearly ionic-liquid-based ATPS provide an attractive alternative as they have a 

higher level of recovery than do traditional systems, while maintaining a low cost and 

system size. Ionic liquid-based ATPS have presented enhanced properties, namely the 

possibility to increase recovery yields and to improve selectivity (Pereira et al. 2013b). 

Some of them also have a low ecological impact and toxicity. To this end, the chemical 

structures of the ionic liquids investigated play the most significant role. Ionic liquids 

derived through sustainable and easy procedures from natural sources can be seen as a good 

alternative when envisaging their use as phase-forming components to recover/purify 

value-added biomolecules. In particular, [Ch]Cl has been categorized as “practically 

harmless” and [Ch]Bic as “harmless” (Shahriari et al. 2013). They can have tunable 

hydrophobicity and charge density (Song et al. 2015), making them a valuable tool for the 

future recovery of high value products. An additional advantage of an ATPS based on ionic 

liquids is the large sample loading capacity, which is above to that displayed by other 

reported systems (Chen et al. 2010; Ibarra-Herrera et al. 2014), and it is above to the 

traditional ATPS analyzed here.  

Furthermore, from an industrial point of view, the improvements achieved through 

the use of ionic liquids-based ATPS contrasted with traditional ATPS can have a significant 

impact on the design of a bioprocess. Having a large ATPS pose the challenge of phase 

components removal, as they become contaminants once the product of interest has been 

partitioned. A process based on a large ATPS will have the main component of its cost of 

goods on the unit operation utilized for the removal of the components, as it has been 

demonstrated previously (Torres-Acosta et al. 2015a, 2015b). On the other hand, having a 

small ATPS, as the ionic liquids-based ATPS (ATPS 4) in this study, implies that the cost 
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of phase components removal will decrease, therefore possibly obtaining an economically 

attractive industrial process. By decreasing unit operations through the use of ATPS, 

bioprocesses become less sensitive to changes on the downstream processing yield (Torres-

Acosta et al. 2015b) and can focus on the improvement of the titer in the fermentation 

stage. 

 

4. Conclusion 

This research has demonstrated the capabilities of bioprocess modeling and 

economic analysis to compare and contrast novel and traditional recovery ATPS-based 

techniques. This work studied the use of a range of aqueous two phase systems (ATPS), 

including a novel system based on the use of ionic liquids, to recover tetracycline from the 

fermentation broth of Streptomyces aureofaciens. The ionic liquid based method proved to 

be the best alternative in terms of DSP yield and CoG/g, and also provided a biocompatible 

alternative since ILs obtained using bio-precursors were used. PEG is a well-established 

GRAS biomolecule, but for Tetracycline recovery, [Ch]Cl provided a better economic 

alternative, moreover, subsequent purification for TC is still needed and the ionic liquid 

will be removed. 

This study focused on already established ATPS in batch mode and using published 

data for stainless steel containers, because of this, additional research is needed to evaluate 

the impact of single-use technology for this pharmaceutical product. It is a growing trend in 

the biotechnological sector as it decreases costs for cleaning and labor, while making more 

efficient the flow between unit operations.  

This study serves to provide an impetus for research on the wider use of IL-based 

ATPS to improve recovery, whilst lowering the ecological impact of the production of high 

value-added products. 
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Highlight 

- Ionic liquid-based ATPS had the lowest production costs. 

- Ionic liquid-based ATPS required the cheapest materials for construction 

- Critical parameters are dependent on the performance of each ATPS 

- To recover tetracycline, novel ATPS are a better alternative than traditional ATPS. 

 


