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Abstract

People spend one third of their life sleeping, bk bedroom, as a specific micro-
environment, is often neglected when assessing huexposure to air pollutants. However,
exposure during sleep may be significant in thegitarm to the integrated individual
exposure. This study aimed to assess the expostrgaleep, focusing on a multi-pollutant
approach (comfort parameters, carbon dioxide -, €&bon monoxide — CO, formaldehyde
(CH20), total volatile organic compounds (VOCSs), paitate matter — PhMsand PMo — and
ultrafine particles, particle number concentratienBNC - and lung deposited surface area -
LDSA). For that, the air quality during sleep (eal conditions) was monitored using real-
time devices in 12 bedrooms of urban (Lisbon anld ¥ranca de Xira) and rural (Ponte de
Sor) areas of Portugal for one night. Volunteersewsmokers and non-smokers. Considering
the Portuguese legislation for indoor air quali#@), 67% of the bedrooms registered £0
levels above the limit value, while G&, VOC, PMoand PM s thresholds were exceeded in
30, 100, 36, and 45% of cases, respectively. Regardtrafine parameters, LDSA and PNC
ranged from 7.3 to 95.2 fam® and from 0.6 to 4.8 x @m?, respectively. Even with no
smoking indoors, smokers’ bedrooms were found teehgignificant higher levels of CO,
CH,O, PMy 5, PMyp and LDSA than non-smokers’ bedrooms, showing ffeceof thirdhand
smoke, exhalation of pollutants after smoking amfiitiation on the degradation of the air
quality in the bedroom. A recent new model of r&ale monitor was also used for a wide set
of IAQ parameters. Its performance to measure, Podd CQ was assessed, showing its
applicability in real conditions. Although oftengiected, these micro-environments should
be considered in the integrated individual exposoiiar pollutants and further studied.

Main findings of the work: Several pollutants (CQOPM, VOCs and ChD) exceeded the
guidelines during sleep; smokers are exposed teehilgvels of CO, CkD, PM, and LDSA

than non-smokers while sleeping.
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1. Introduction

Sleep plays a key-role in human welfare sinceatmtes body recovery from daily physical
and psychological fatigue (Krueger et al., 2016ghkdes productivity of people (Catarino et
al., 2014; Reis et al., 2016) and their athletidgrenance (Thun et al., 2015). Multiple factors
can affect sleep, such as health and emotionasstaedding conditions or environmental
factors (Thun et al., 2015), especially tempera{@eamoto-Mizuno and Mizuno, 2012) and
noise levels (Halperin, 2014).

Despite sleep has a vital role in daily welfargpebple, the impact of the quality of the rest
environment has been scarcely studied (Lan and Ri@b6). Both research issues (sleep and
indoor air quality - IAQ) have been addressed mworidwide scientific literature separately
but never fully exploited together. Thus, the intpa€ indoor air on sleep and all its
implications is a task yet to be achieved.

The rest environment should be considered a mievir@anment of particular interest due to
the following reasons:

1) importance of essential body functions duringleep period of quality to the human
being’'s welfare, health and daily productivity;

2) exposure to pollutants during sleep may haveeatgcontribution to the daily personal
exposure and, moreover, have a greater contributiolong-term exposure, since humans
spend about one third of their lives sleeping;

3) low ventilation conditions usually found (Bekd &., 2010; Canha et al.,, 2017) may
potentiate the accumulation of pollutants, incregq&xposure levels.

The environmental characterisation during sleep &nlable understanding the factors that
may contribute to the degradation of sleep quadind will allow to devise mitigation
measures to improve conditions during sleep. Fedias regarding this topic are found in the
literature and the few available are focused omlysome specific pollutant/parameter. For
instance, lower levels of carbon dioxide (Q@uring sleep were found to significantly
improve sleep quality and perceived freshness @fbidroom air by the occupants, together
with the performance on the next day (Stram-Tegteal., 2016). Reduction of 74% on PM
concentrations in households with indoor fuel padln were found to improve significantly
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children’s sleep and respiratory related symptaush as difficulty falling asleep, sore throat
and morning headache (Accinelli et al., 2014).

One of the challenges of assessing IAQ in a mualipant approach during sleep is the use
of standard methodologies since their volume anengpumps for air sampling) may
interfere with the occupant’s sleep (Canha et28l14). This issue is especially important for
particulate matter (PM).

In 2017, a preliminary multi-pollutant monitoringugy in one bedroom evaluated the impact
of different ventilation conditions on IAQ whileedping (Canha et al., 2017). This study
revealed that the concentrations of some indodutawits, such as formaldehyde (&3,
total volatile organic compounds (VOCs) and RMcould exceed the established guidelines.
The improvement of natural ventilation in sleepiemmvments can be implemented by opening
windows or doors to promote the increase of aingekarates, which in turn can increase the
infiltration of pollutants to the bedroom, suchfesm outdoors or from other spaces of the
house (e.g., kitchen) (Canha et al., 2018).

Smoking is known as an important source of multipidutants, both in the gaseous and
particulate phases, in indoor environments, whiobmwtes the degradation of air quality
(Holcomb, 1993; Kaunelieénet al., 2018; Mueller et al., 2011). However, ihgact of
indirect smoking (smoking outside the home) onlh@ during sleep has not been assessed
previously. On the other hand, the human exhaledtby especially of smokers, has been
described as a long-neglected pollutant sourceegéral VOCs, nitrogen oxide, carbon
monoxide, among others, which may also affect IAQigiak et al., 2012; Sun and Yang,
2013; Zhang et al., 2013).Therefore, the aim of phesent study was to understand the
exposure of individuals while sleeping, using a timubllutant approach, and to evaluate the
difference in exposure between smokers and non-sraokor that, a strategy was developed
using a set of portable monitoring instrumentsjuding a new model, whose performance
was assessed. Among the several pollutants stualiegdecial focus was given to particulate

matter and ultrafine particles.

2. Materials/Methods
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2.1. Study site and individuals’ characterisation

The IAQ during the sleeping period of the occupam&s monitored in twelve bedrooms in
rural and urban areas of Portugal. The urban ameas in the municipalities of Lisbon and
Vila Franca de Xira, while the rural area was ledah the municipality of Ponte de Sor.

The occupants of the studied bedrooms were ageebrt24 and 53, with six males and six
females, 7 non-smokers and 5 smokers. None ofrtftukexs smoked inside the household,
but rather outside the building (e.g., balcony)e louseholds ranged from apartment-type (9
cases) in different floors (varying from groundifth floor) to detached house-type (3 cases).
All bedrooms had natural ventilation, no indoorrptaand only one door (to a corridor) and
one window. More details about the volunteers #&d tbedrooms are shown in Table S1 (in
Supplementary Information Section). No cleaningcpdures were performed during the day
prior the night of the monitoring in any studieddbmom. Each bedroom only had one
volunteer sleeping during the IAQ monitoring pragrae. No specific criterion was followed
to choose bedrooms, except the availability of mtders, since the aim was to provide an
overview of 1AQ during sleep. It was only requestedthe volunteers to sleep in similar

conditions as they usually sleep, in particulaardgg ventilation conditions.

2.2. Indoor air quality monitoring

IAQ assessment was conducted using four differeat-trme monitoring devices for the
selected parameters: i) Graywolf (IQ-610 probe, \®@hse Solutions, USA) for temperature
(T), relative humidity (RH), Cg carbon monoxide (CO) and total VOCs; ii) Formabe¢er
(htV-M, PPM Technology, UK) for formaldehyde (@®i); iii) DustTrak DRX monitor (8533
model, TSI, USA) for particulate matter of aerodyma diameter of 2.5 um and 10 pm -
PM, s and PMy, respectively; and iv) Pegasor AQTM Indoor Air Qiya(Coorstek Amazing
Solutions) for T, RH, PMs, particle number concentration (PNC) and lung dépsurface
area (LDSA). Monitoring devices i) to iii) are coronly used in IAQ studies (Canha et al.,
2017) and more details about their specificaticas loe found in the supplementary section
(7.1 Indoor air quality monitoring — additional asmation). Device iv) is a recently launched
model in the market that relies on the diffusiorargiing operating principle for assessing
PM, s (measuring range: 0.001 to 200 mg,mesolution of + 0.1% of reading of 0.001 mg.m
%), with a built-in suction pump operating at a floate of 3 L/min. Furthermore, this device
also allows PNC and LDSA monitoring, along with £@ and RH. The patrticle size range

measured is from 10 nm to 2.5 um.
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All devices were calibrated according to the maaiufigers’ specifications and the sampling
frequency was set to 60 seconds. The monitoringcdswvere placed at the centre of the
bedroom, at approximately one meter from the betlarabout 80 cm from the floor, since
this height corresponds reasonably to the breatlemgl of a person lying in bed. The
monitoring period in each bedroom occurred durinty @ne night, usually between 23:00
and 08:00. Depending on the individuals, the sfempod ranged from a minimum of 4h30m
to a maximum of 8h45m. The monitoring programmektptace from 29 October to 10
November of 2016. For the environmental charaagas of the sleep period, all parameters
were reported in relation to their mean values.

Air changes per hour (ACHs, h were calculated for the monitored period using a
computerised tool that relies on the build-up phafstae CQ curve. This method has already
been fully described elsewhere (Hanninen, 2013)nalwith several examples of its
application (Canha et al., 2017, 2016; Hanninealgt2017). Table S2 (in Supplementary
Information Section) provides the ACHs for eachdstd bedroom, which ranged from 0.39 +
0.03 K' (bedroom 2) to 3.24 + 0.70h(bedroom 5). These values agree with the ones
previously described for different ventilation g&gs in bedrooms (Canha et al., 2017).

2.3. Statistical analysis

Analysis of data was performed by applying statssivith a significance level of 0.050. To
assess the normality of data, the Shapiro-Wilkwest used since all datasets had a number of
cases below 30. The results of normality tests dfir datasets are available in the
supplementary information section (see Table SSupplementary Information). When data
was parametric, statistical difference between itveependent samples (e.g. smoker vs non-
smoker) was evaluated using thiest, while if data was non-parametric the Mann-Whitney
test was applied (see Table S4 in Supplementaprrivdtion). All statistical analyses were
performed by the XLSTAT 2014.1.09 software program.

3. Results and Discussion

3.1. Comparison between devices: Pegasor vs. Grayiw& DustTrak

The performance and comparability of the new moEebasor was assessed for two
parameters, COand PMs, against two devices commonly used in IAQ studieanely
Graywolf and DustTrak, respectively. Figure 1 shais relationships between ¢@nd
PM, s concentrations obtained with Pegasor and the twnitoring devices (Graywolf and
DustTrak). For CQ all 12 studied cases were used and a very goodlation (R = 0.99)
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was found between both instruments. Regarding, Nt was not possible to assess
concentrations for two (bedrooms 5 and 7) due teratpnal problems. Additionally, for
comparison purposes between monitoring devices pedeoom (bedroom 11) was excluded
from the analysis, since the Pegasor monitor seg@g@iconcentration 11 times higher than the
one monitored by the DustTrak, which was takenrasudlier. A good correlation was found
for PMys levels, with a R value of 0.89, despite the fact that Pegasor pemkiPM s
concentrations slightly higher than DustTrak in 6@#the cases.

3.2. Comfort parameters

The mean relative humidity in the 12 bedrooms dytire sleep period varied from 43.7 + 1.2
% to 61.6 £ 1.1%, with a median value of 57.8%. aNMéemperatures ranged from 18.4 + 0.1
°C to 25.5 £ 0.18 °C, with a median value of 2Z&#fong the 12 bedrooms. Considering the
international guideline ISO 7730:2005 (ISO 773020B005) that establishes, for the colder
period, ranges of temperature (20°C — 24°C) arativel humidity (30% - 70%) in indoor
environments for the occupants’ comfort, all bednsoshowed RH mean values within the
comfort range. However, only 58% of the bedroom=yt of 12) presented temperatures
within the comfort range (with one bedroom below thinimum of 20°C and four bedrooms
with temperatures above the maximum of 24°C).

3.3. Carbon dioxide

Only 33% of the bedrooms (4 out of 12) showed mE&&n concentrations below the limit
value of 1250 ppm stipulated by the Portuguesesliigpn for indoor environments (Figure
2). Overall, CQ mean concentrations ranged from 553 + 24 ppm (wedr7) to 2671 + 633
ppm (bedroom 8).

Figure S1 (Supplementary Information — section depicts the temporal variability of GO
concentrations during the sleep period in bedroomsnd 8. A rather constant GO
concentration in bedroom 7 can be observed, whaleel$ in bedroom 8 increased
successively during the sleep period, reaching @man of 3589 ppm (c&.5 times higher
than the initial concentration of 1417 ppm). Thigttern is due to the different ways of
promoting natural ventilation by both occupants. described in the “Materials/Methods”
section, the volunteers were requested to sleegrutict usual conditions. Individual of
bedroom 7 slept with the door of the bedroom operatwindow closed, promoting natural
ventilation, while individual of bedroom 8 slept tivi both door and window closed,
contributing to the accumulation of pollutants. &ihat the occupants’ breathing is the only
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significant source of Cg these levels reflect different ventilation ratdhe impact of
opening a door and/or window, during the sleepgakron the pollutant concentrations has
already been described in the literature (Canlah €2017). Moreover, mean G(@vels were
significantly different between smokers and non-kens: 2029 + 429 ppm and 1123 + 479
ppm, respectively (Graywolf data). The mean,Q€vels for smokers were above the limit
value (1250 ppm) established by the Portuguesaslédigin, while values for non-smokers’
bedrooms were below the threshold.

Considering the reported threshold of 835 ppm asviue below which the sleep quality is
significantly improved, along with perceived airaljty, next-day reported sleepiness and
ability to concentrate (Stram-Tejsen et al., 201®)the present study, only three bedrooms

registered levels below this limit (bedrooms 6nd 40).

3.4. Carbon monoxide

The measurement of exhaled CO level may providarenediate, non-invasive method of
assessing smoking status. In a study carried outD®yeci et al. (2004), the exhaled CO
levels were measured in 322 subjects (243 healtngkers, 55 healthy non-smokers, 24
passive smokers). The mean level was 17.13 + §80fpr healthy smokers and 3.61 £ 2.15
ppm for healthy non-smokers, and 5.20 + 3.38 ppmplassive smokers. There was a
significant positive correlation between CO levaigl daily cigarette consumption, and CO
levels and duration of smoking in healthy smokers 0.550, p-value < 0.001, r = 0.265, p-
value < 0.001, respectively). Other studies alstfiomed that the level of CO in exhaled air
is higher in healthy smokers than in non-smokersinf@hgton and Hormbrey, 2002;
Middleton and Morice, 2000; Zhang et al., 2013).

In the present study, CO levels were always belwavlimit value of 9 ppm@rdinance no.
353-A/2013, 2013) in all bedrooms (Table 1). This was expkamce CO is a toxic by-
product of incomplete combustion and indoor souinoethe bedroom are not supposed to
exist. Nevertheless, CO can be generated indoorsohybustion processes (e.g., cooking
appliances, water heating systems or fireplacesl{€&t al., 2018; Mullen et al., 2016)), by
other human activities, such as smoking (Konstamitzu et al., 2014), but can also originate
from outdoor air due to exhaust emissions fromfirgRamos et al., 2016). Moreover, as
described above, low levels of CO are releasedi@umermal human metabolism and due to
previous exposure to CO sources, such as smokig, I(., Wang, 2005; Zhang et al., 2013).
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Therefore, the detection of CO in the bedroomkslyi due to infiltration from other rooms
with active sources (e.g. kitchen), penetratiopalfuted outdoor air and exhaled breath.
Carbon monoxide mean values ranged from undeteotdd?21 ppm, averaging 0.79 + 0.43
ppm(median of 0.49 ppm). Of the 12 studied bedroomg; two presented CO levels above
1 ppm. Both bedrooms belonged to smokers. COriatiittn from outdoors will depend on the
outdoor levels where the household is located. Wewean the present study, no statistical
difference between rural and urban dwellings waméb(see Table S4, in Supplementary
Information).

In a preliminary study on the influence of venidatin a bedroom during the sleep period on
air pollutant levels (Canha et al., 2017) at Sdt{Bartugal), the lowest mean value of CO
(2.40 £ 0.26 ppm) was found for the ventilation diblon ODCW (open door and closed
window), while the highest mean value (3.32 £ Qo) was measured with CDCW (closed
door and closed window). The mean values of thegmestudy are below those documented
in the previous work (Canha et al., 2017) and dstow the ones found in a naturally
ventilated and unoccupied dormitory room evaluatieding weekdays and weekends in
Shanghai (Zhong et al., 2013), with mean CO legé97 + 0.43 ppm and 2.00 + 0.19 ppm,
respectively.

Figure S2 (Supplementary Information — section 8Qws the CO levels in bedrooms of
smokers (n = 5) and non-smokers (n = 7). CO lewetsnokers’ bedrooms were found to be
significantly higher than the ones in non-smoké&edrooms (p-value of 0.006). A mean CO
value of 1.60 + 1.52 ppm (ranging from 0.59 to 4gpim) was registered in bedrooms of
smokers during the sleep period, while CO levefs@axamately 8 times lower (mean value of
0.21 £ 0.22 ppm, ranging from undetectable to @»®) were obtained for non-smokers.
Despite none of the volunteers smoked inside thesétwold, some of them had smoked a
cigarette one hour prior to their sleep period ioetshe household (on the balcony or outside
the front door). Thus, smoke infiltration from oatds or the presence of CO in exhaled air
may be the reasons justifying the higher levelhexsmokers' rooms. As already mentioned,
previous studies focused on exhaled carbon mondxite smokers and non-smokers, using
specific devices, showed that smokers exhaled higvels of carbon monoxide than non-
smokers. A study in Poland documented that smokems small city (less than 100,000
inhabitants) had mean CO concentrations in théiakd breath around five times higher than
non-smokers (10.77 + 8.02 ppm and 2.22 + 1.43 ppmsmokers and non-smokers,
respectively), while in a big city (more than 10@)dnhabitants) CO mean concentrations for

smokers were about two times higher than for nookars (13.54 £ 8.36 ppm and 6.57 +
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8.36 ppm for smokers and non-smokers, respectiy®lgpa et al., 2017). Similar results can
also be found in studies conducted in China (1 @and 3.7 ppm for male smokers and
non-smokers, respectively) (Zhang et al., 2013)ianturkey (17.13 + 8.50 ppm and 3.61 +
2.15 ppm for smokers and non-smokers, respecti@gveci et al., 2004). Therefore, a

plausible source of CO during the sleep period beathe air exhaled by smokers.

3.5. VOCs and formaldehyde

Levels of VOCs and formaldehyde monitored in thelstd bedrooms are presented in Figure
S3 (Supplementary Information — section 7.6). Duegerational problems of the monitoring
devices, it was only possible to assess VOC laweld bedrooms (except bedroom 1) and to
assess CHO levels in 10 bedrooms (except bedrooms 10 and 12)

All monitored bedrooms presented VOC levels abbeelinit value of 262 ppbv established
by the Portuguese legislation, with a mean VOC eatration of 1040 + 130 ppbv (ranging
from 830 to 1230 ppbv), which is around four tinmegher than the threshold. No statistical
differences between VOC levels in bedrooms of sm®land non-smokers were found
(smokers: 1070 + 140 ppbv; non-smokers: 1010 +ddfy). These levels were all above the
maximum VOC concentration of 641 ppbv registeredipreliminary study in a bedroom
with only one occupant and restricted ventilationditions, namely, closed window and door
(Canha et al., 2017).

Regarding CHO, the limit value of 0.081 ppm established byriagonal guidelines was only
exceeded in three bedrooms (out of 10) with a medme of 0.060 + 0.027 ppm (ranging
from 0.037 to 0.116 ppm). GB levels in bedrooms of smokers and non-smokers was
statistically different, with bedrooms of smokenegenting CHO levels two times higher
than bedrooms of non-smokers (smoker: 0.087 + Opp22; non-smoker: 0.042 + 0.010 ppm;
p-value of 0.014). The mean @Bl concentration of the present study was below the
concentration of 0.073 ppm, which was the minimwuoorded in a preliminary study in a
bedroom with closed window and door (Canha e®éll7).

3.6. Particles
3.6.1. Particulate matter (PM)

Figure 3 and Table S5 (Supplementary Informati@eetion 7.7) show the concentrations of
PM. s and PMo monitored during the sleep period in 10 differleatirooms (except bedrooms

5 and 7), using the DustTrak device.
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The overall mean P& concentration was 35.1 + 32.4 pgnwhich is above the threshold
value stipulated by the Portuguese legislati®rdinance no. 353-A/2013, 2013) of 25 pg.m

in indoor environments. However, it should be nateat the only bedrooms surpassing this
limit value belongs to smokers (Figure 3) , witmaan value of 61.2 + 24.4 pgmwhile for
non-smokers the value is around 7 times lower8i®+ 7.0 pug.ni (Table S 4).

For PMy, the overall mean value was 39.2 + 33.8 |ifj.not exceeding the national threshold
of 50 pg.n? (Ordinance no. 353-A/2013, 2013). Once more, the concentrations found in
smokers’ bedrooms (67.5 + 22.8 pg)nwere approximately 6 times higher than those of
non-smokers (11.0 + 6.9 pugi A higher fine mass fraction was observed in sansk
bedrooms compared to non-smokers, with,R&tcounting for 89 + 6% of PMversus 79 *
19 %, respectively (Table S5).

A preliminary single-room study with a non-smokiogcupant in an urban area was designed
to evaluate different natural ventilation patteffieusing on opening of windows and door)
and their impact on IAQ. With this purpose Pdvand PMo were continuously monitored
(Canha et al., 2017). The ventilation conditiont tleal to higher PMconcentrations was the
one with open door and open window (RM= 27.9 + 4.6 pg.m and PMs =
26.3 + 4.3 pg.nii), while open door and closed window gave riseh® lbowest mean PM
concentration§PMyo =18.5 + 4.7 pg.n and PMs= 17.9 + 4.5 ug.m). Therefore, outdoor
infiltration may contribute to enhanced PM leveliside bedrooms, which may depend on the
type of area where the house is located (urbarusetsal, for instance). Although ventilation
was not under consideration in the present work, rtiean concentrations found in this
preliminary study are higher than those reportec lier non-smokers, but lower than for
smokers. In addition, for non-smokers, the valuese similar to the ones reported in a study
performed in 4 bedrooms, with 2 occupants eacRpimuguese elderly care centres (Almeida-
Silva et al., 2014b), with mean RMoncentrations of 11 pg:tn

The PM sconcentrations provided by the present study atkerrange of values reported for
UK households of smokers and non-smokers (Semph.,e2015). The smokers’ homes
presented a median concentration of 31 [fg(ranging from 10 to 111 pgifn = 93),
whereas this value decreased to 3 [itjmsmoke-free homes (ranging from 2 to 6.5 |igy.m

= 17). These values were monitored in the livingnnoof the households for 24h, instead of in
a bedroom during the sleep period, as it was doné¢hé present study. However, the
magnitude of values is similar in both studiesestthg the contribution of smoking to the
degradation of IAQ.
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3.6.2. Lung deposited surface area (LDSA)

Ultrafine particles are characterised by havingigh tsurface area per mass (Reche et al.,
2015). It has been reported that particle surfdagspa significant role in determining the
toxicological activity of these particles (Reche at, 2015; Weichenthal, 2012). Lung
Deposited Surface Area (LDSA) has been consideseal more relevant potential biological
metric in terms of exposure and risk assessmemir{let al., 2016) since it provides insights
into the association between aerosol particle ptseand health outcomes (Hama et al.,
2017).

Figure 4 presents LDSA concentrations during tleeslperiod in 11 different bedrooms.
Bedroom 11 was not assessed due to operationaleprsbof the monitoring device. The
mean LDSA concentration monitored in all studiediroems was 30.5 + 28.3 [from®
(ranging from 7.3 to 95.2 pmem®). In smokers’ bedrooms, a mean LDSA concentratibn
49.6 + 31.7 prhcm?® (ranging from 21.4 to 95.2 fremi®) was found, while for non-smokers
lower values were obtained, in the range from 8.33.7 pmi.cm®, averaging 19.5 + 11.2
pnt.cm®. Mean concentrations of LDSA in the bedrooms oblsens and non-smokers were
found to be significantly different (p-value of @.0).

Table S6 (Supplementary Information — section 7ryvides an overview of LDSA
concentrations in different types of outdoor andoimr environments documented in the
literature. Mean outdoor LDSA concentrations ranffech 12 uni.cm® (Helsinki, Finland
(Kuuluvainen et al., 2016)) to 153 fem* (Los Angeles, USA (Ntziachristos et al., 2007)),
while mean indoor LDSA levels varied from 10 fiom® (in a bedroom with two occupants
at an elderly care centre in Lisbon, Portugal (AtfaeSilva et al., 2014a)) to 150 gmm® (at
schools in Cassino, Italy (Buonanno et al., 2012he LDSA concentrations of the present
study are fairly within this interval, ranging from minimum value of 7.3 + 1.0 fom®
(bedroom 9) to a maximum of 95.2 + 30.4 2@m® (bedroom 12). However, the results of
the present study are lower than those (42 to bami®) reported for the children’s sleep
period in Cassino, Italy (Buonanno et al., 2012)e Tmain distinguishable factor between
these studies is the fact that the research iy Wals focused on personal exposure, which
means that the monitoring device was closer tocthilelren’s breathing area while sleeping,
whereas this study aimed to assess the LDSA camadems in the bedroom ambient air,
positioning the monitoring device 1 m away from thexl. It has been reported that LDSA
concentrations in the personal cloud of the indisidare higher than in the surrounding
environment (Cattaneo et al., 2010; Licina et2017).
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Cooking is a major source of ultrafine particleddars, as reported by several studies (Geiss
et al., 2016). Cooking different types of mealsvgbd LDSA values ranging from 73 + 7.4
punf.m? (baseline) to 890 + 38.3 (frm™ (boiling fish) at an unventilated kitchen (Lisbon,
Portugal) (Bordado et al., 2012). In a study comellidn a private house in Ispra (Italy),
LDSA concentrations ranging from 19 to 134 mi°, averaging 61 pfim?, were obtained

in the living room when the woodstove was worki@giss et al., 2016). Specific activities
may also produce high concentrations of LDSA witlals several orders of magnitude above
the usual levels in indoor or outdoor environmestg;h as incense burning (peak of 872
pn’.m3), candle burning (226 pm™), 3D-printer (72 urhm™) and tobacco cigarette (1040
unt.m?) (Geiss et al., 2016). As shown before, the imfilon of pollutants from other rooms
of the house, such as the kitchen, or from theamrtdo the bedroom, can take place and may
promote accumulation of contaminants in this dpecenicro-environment (Canha et al.,
2017). This can explain the significantly high LD$8&ncentrations found in the present study

in the smoker’s bedrooms when compared to the norksr’ bedrooms.

3.6.3. Particle number concentration

Figure 5 presents the particle number concentrat({®NC) during the sleep period in 11
different bedrooms. As described in section 3.@&droom 11 was not assessed. Mean PNC
were found to be (1.7 + 1.2) x 36m?in all studied bedrooms, ranging from 0.6 to 4.8 x
10°.cm®. Mean PNC were higher in smokers’ bedrooms (meduevof (2.4 + 1.7) x Tocm®,
ranging from 1.0 to 4.8 x 2@m®) than in non-smokers’ bedrooms (mean value of £1027)

x 10°.cm?®, ranging from 0.6 to 2.0 x $@m*). However, mean PNC in smokers and non-
smokers’ bedrooms were not significantly differgmvalue of 0.156).

In a study in 56 residences of non-smokers in Copgen (Denmark), a geometric mean of
5.1 x 10.cm®was found when the occupants were asleep (Bekis, €043). However, those
PNC values were monitored in the living rooms, east of the bedrooms. Several studies
have shown that PNC in households are mainly aatgoh from candle burning and cooking
activities (Beko et al., 2013; Isaxon et al., 20189 PNC values monitored during the sleep

period can be found in the literature, to the loéstur knowledge.

3.6.4. Association between Ppyand LDSA/PNC
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Figure 6 shows the correlations of PMwith LDSA and PNC. The LDSA concentrations
presented an excellent correlation with 2NIR?=0.95). This linear regression can be used to
roughly estimate the LDSA concentration in sleepiremments based on the BM
measurements. In a study carried out in outdooir@mwients in Helsinki (Finland), the
slopes of the PMs vs. LDSA regression ranged from 1.8 (residentiaha- suburban) to 7.2
(traffic site — city centre), increasing with th@luence of traffic (Kuuluvainen et al., 2016).
PNC presented a good correlation with 2¥R’=0.87) during the sleep period, which can be
also used to roughly estimate PNC values in sleapiraaments from the P4

measurements.

3.7. Considerations

An increase number of scientific evidences in tst Hecades confirmed the negative health
impacts of smoking and exposure to secondhand sif8iH&) (Oberg et al., 2011; United
States Department of Health and Human Services4)20d order to protect non-smoking
population of SHS, several countries worldwide hiawplemented restrictions on smoking in
public areas, establishing minimum distances framordays where smokers could smoke,
non-smoking buildings and smoking bans in spedftes, such in some university campi
(DeCarlo et al.,, 2018). In recent years, a differeaman exposure route to smoking’s
products has been studied, namely thirdhand smbBK&), which is the persistent residue
generated from aged SHS that adheres to clothmgor dust and surfaces and reemits into
the air (Northrup et al., 2016). In a simpler wayyS is the fraction of cigarette smoke that
persists in indoor environments after smoking (Hanhgl., 2017). It was already showed that
early exposure to THS may have a negative healgfaanon mice, namely regarding their
body mass and the development of immunity. Moreemtlg, it was also found that skin
exposure to an important component of THS can ekate pathological features of asthma in
mouse (Yu et al., 2018).

The present study showed that the fact of a passarsmoker will somehow constrain the air
quality during the sleep period, with some influeraf THS, probably due to reemission of
SHS previously adsorved to surfaces, such as dpttar and skin, as described in previous
researches (Bahl et al., 2014).

It is noteworthy to highlight the need to critigakkvaluate LDSA concentrations since the
different available techniques may not be fully gamable (Levin et al., 2016). Furthermore,
the impossibility of measuring particle size distitions renders difficult the evaluation of air

quality and its effects (Todea et al., 2015). LD&#centrations of the present study agree
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with those described in the literature, which iradés that the instrument is not completely off
the scale. However, to obtain firm conclusions t: dpplicability/reliability it would be
necessary to take some "gold standard" referemsteiment and run it in parallel.

A limitation of this study is the monitoring of gnbne night per individual and the small
study group of only 12 individuals. Since this @®h can be classified as a preliminary
evaluation, further studies should consider momgprover several nights to assess the
possible variation of pollutant concentrations,wadl as a higher number of individuals to
increase the population representativeness. Morgovéuture studies, specific VOCs, such
as acetone, may have a particular interest to betaned during sleep since it is a by-product
of the human metabolism and is exhaled by breatm(f300 ppbv in healthy individuals to
more than 1800 ppbv in diabetics (Righettoni et2£12).

Since the use of a portable device, based on asBi3or, can withdraw selectivity to the
measured VOCs as compared to the reference metuive( sampling on Tenax TA®
sorbent, thermal desorption and analysis by gasontitography using Mass
Spectrometer/Flame lonisation Detectddydinance no. 353-A/2013, 2013), the high values
obtained in this study should be taken as indieatimd as a warning for a more exhaustive

monitoring in the future.

4. Conclusions

This study provided some insights into the IAQ tpabple are exposed to while sleeping,
considering a multi-pollutant approach. IAQ monigr during sleep is a challenge due to
eventual interferences of instruments under opmratiith the sleep of individuals. However,
the strategy adopted showed to be successful, ialipiw characterise 1AQ during sleep. The
Pegasor AQ™ Indoor provided reliable results regardoarticulate matter and carbon
dioxide, with the advantage of gathering in oneydasuse device several parameters for a
wider characterisation of IAQ. Overall, this instrent allowed to assess temperature, relative
humidity, CQ, PM, s and ultrafine particles (focusing on LDSA and PNC)

Taking into account the limit values for some IA@rameters established by the national
legislation, it was found that some non-smokingjettls are exposed to higher VOCs levels,
while smokers are exposed to higher values of, D, VOCs, CHO, PMys and PMg
during sleep. Taking into account the good cori@hat between Pl concentrations and
measurements of either LDSA or PNC, it seems thatetis a possibility of constructing
predictive models to estimate the latter parametéfswever, given the poor sample
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representativeness, to confirm this hypothesisitiaddl measurements involving a thorough
analysis of time-series comparisons with more sifglaited instruments would be required.
Despite no smoking was done indoors, the resulijgest that smokers exhibit a significant
higher exposure to CO, P CH,O, PM;g and LDSA during sleep than non-smokers.
Further studies regarding exposure to air pollstattiring sleep should be conducted
involving a wider target group. The preliminary ctusions that people are usually exposed
to higher levels of pollutants during sleep, whichn greatly contribute to their daily
exposure, should be corroborated by additional stigations. Moreover, considering these
results, future studies should also focus on thpach of IAQ on the sleep quality of the
occupants in order to assess which environmentabrfanay interfere with a good night of

sleep.
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Figure 1. Comparison between devices: (left),@Oncentrations by Pegasor and Graywolf;
and (right) PM sconcentrations by Pegasor and DustTrak.
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Figure 2. Carbon dioxide concentrations monitoraednd) the sleep period in 12 different
bedrooms, using two different monitoring devicesg&sor and Graywolf. Red line represents
the CQ limit value of 1250 ppm defined by the Portugutsggslation Qrdinance no. 353-
A/2013, 2013).
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Figure 3. PMsand PMo concentrations monitored during the sleep periodQ different
bedrooms.
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Figure 4. Lung deposited surface area (LDSA) ofiglas monitored during the sleep period
in 11 different bedrooms. Red line is the meanealfithe 11 bedrooms (30.5 fuem’).
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705 Figure 5. Particle number concentration duringsieep period in 11 different bedrooms. Red
706 line is the mean value of the 11 bedrooms (1.73ch®?).
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709 Figure 6. Correlation of Ppswith and lung deposited surface area (blue) anticcganumber

710 concentration (orange) during the sleep period.

711
712
713
714
715



716 Tables of manuscript
717

718 Table 1. Levels of carbon monoxide monitored durthg sleep period in 12 different
719 bedrooms, using Graywolf monitoring devices. LVnsis for the CO limit value of 9 ppm
720 defined by the Portuguese legislati@rdinance no. 353-A/2013, 2013).

CO concentration (ppm)
Individuals Mean+SD Min Max

1 421+041 34 53
2 0.12+0.11 0.0 0.3
3 0.34+0.10 0.2 0.6
4 059+0.16 03 0.8
5 047+039 0.1 1.0
6 0.00+0.00 0.0 0.0
7 0.00+0.01 00 0.1
8 0.80+0.09 06 0.9
9 050+0.16 0.2 0.8
10 0.04+0.05 0.0 0.2
11 1.71+021 1.2 2.0
12 0.71+0.07 03 0.9
LV 9

721
722



Impact of smoking on indoor air quality during sleep by Canha et al.
Highlights

e Multi-pollutant assessment of indoor air qualitylid bedrooms during sleep.

« CO, PM,, VOCsand CHO levels during sleep were found to be above
guidelines.

e Comparative study of smokers and non-smokers’ axpds bedrooms while
sleeping.

« Smokers are exposed to higher levels of CO,@HPMx, and LDSA than non-
smokers.



