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Abstract 12 

Photodynamic inactivation (PDI) is a therapeutic approach in study due to the ability to reduce or 13 

completely eliminate the bacterial strains without the development of resistance mechanisms. In this 14 

therapeutic methodology the cationic chlorins (Chls) with pyridinium or inverted pyridinium moieties 15 

are one of the photosensitizers exploited in our biological approaches. In this context, we synthesized 16 

and characterized new free-base and zinc(II) complexes of pyridinium or inverted pyridinium Chl 17 

derivatives (1b, 2, 2a and 2b, respectively) for the inactivation of Escherichia coli (E. coli). The PDI 18 

assay was performed with white light irradiation delivered at a fluence rate of 25 mW.cm-2. The 19 

obtained results of this study demonstrate high PDI efficiency of the zinc(II) metallated Chl 1b, 20 

reaching the detection limit of the bioluminescent method (5.2 log reduction) in 45 min of irradiation. 21 

 22 

Introduction 23 

As human population increases, the demand for basic goods and the removal of harmful 24 

microorganisms, such as bacteria, viruses and protozoa, assumes greater worldwide significance and 25 
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becomes more difficult. Although the transmission of microbial diseases has been reduced by the 26 

development of water supplies and hygienic procedures for a whole range of human activities [1–3], 27 

the antimicrobial resistance has become a global threat to human health as a consequence of the 28 

excessive and inappropriate use of antibiotics. The ability of the bacteria to develop mutations that 29 

help their survival in the presence of antibiotics is responsible for the increasing number of resistant 30 

bacteria strains that will quickly become predominant in the microbial population [4–8]. The 31 

resistance development by the bacteria facing the conventional antibiotics have led the scientific 32 

community to increase efforts to find alternatives against to this emergent resistance [9–12]. 33 

In this context, the antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI) 34 

has been considered an efficient and non-toxic therapeutic approach for the photoinactivation of 35 

microorganisms to treat microbial infections and has been recognized as an alternative to the 36 

conventional treatments (e.g. antibiotics) [13–16]. This therapeutic approach has evidenced the 37 

ability to reduce or completely eliminate the bacterial strains without the development of resistance 38 

mechanisms due to the numerous biochemical targets [6,17–21]. The action mode is based in 39 

photodynamic action that has also been used in cancer photodynamic therapy (PDT) [22–24], 40 

wastewater treatment [25–27], among others [28,29]. In the photodynamic approach it is used three 41 

non-toxic elements: a photosensitizer molecule (PS), appropriate light (visible) and molecular oxygen 42 

(3O2), that when combined generate highly reactive oxygen species (ROS), such as singlet oxygen 43 

(1O2) and free radicals, which can induce lethal oxidative damage in the pathogenic microbial agents 44 

(e.g. bacteria, viruses, fungi and protozoa) [9,15,30–32]. 45 

The identification of new promising PSs that can kill the microorganisms rapidly and efficiently has 46 

been under investigation in order to identify more efficient PSs and to establish structure-activity 47 

relationship. Several photosensitizer molecules, such as porphyrins (Pors) [33–41], chlorins (Chls) 48 

[18,42–46] and phthalocyanines (Pcs) [47–53] are promising PS candidates for the photoinactivation 49 

of microorganisms upon light activation at micromolar concentrations. 50 

In particular, the Chl derivatives have been exploited as one of the most interesting photoactive 51 

compounds, due to their high absorption in the visible region of the electromagnetic spectrum (350 - 52 
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800 nm). They present a Soret band maximum ~ 400 nm (blue region) and an intense Q-band 53 

between 650 - 670 nm (red region) [43,54–57]. Since Chl derivatives have two predominant 54 

absorption areas, they can be used to photoinactivate microorganisms in the clinic, industrial or 55 

environment scenarios, under different lights [58–61].  56 

Since the chemical structure is a key factor in the PS physicochemical and biological properties, 57 

different approaches have been used to introduce specific functionalities on the Chl core [28]. The 58 

tetrapyrrolic core of the Chl template can be post-modified by incorporation of peripheral 59 

substituents [43,62], or by core metalation with different metal ions (e.g. Zn(II), Al(II), Pd(II), Pt(II)) 60 

[63,64], that can result in an enhancement of the triplet excited state parameters (triplet quantum 61 

yield and lifetime) and 1O2 quantum yield [64,65]. These adjustments can unequivocally modulate 62 

the photophysical and photochemical features of Chl derivatives and affect their interaction with 63 

microbial cells, triggering different photobiological effects. 64 

A well stablished structure-activity relationship between the PS features and the type of bacteria is 65 

that Gram-positive bacteria are efficiently photoinactivated by a variety of PSs, whereas Gram-66 

negative bacteria are usually (photo)resistant to the action of neutral and anionic PSs [66–68]. 67 

However, cationic PSs, namely porphyrins and their Chl analogues have been shown to efficiently 68 

photoinactivate Gram-negative bacteria [18,68,69]. In fact, molecules positively charged can promote 69 

electrostatic interactions with the negative charge of the outer membrane of Gram-negative bacteria. 70 

This binding interaction PS-bacterium is essential to promote the PS contact with the target 71 

microorganism and enhance the bacteria damage efficiency [9,70,71]. Another established 72 

relationship is the number and the position of the charges in the PS, that have a clear effect on the 73 

overall efficiency of the PDI process namely in the Gram-negative bacterium Escherichia coli (E. 74 

coli) [72–74]. 75 

Considering PDI as a particular therapeutic approach for the treatment of microbial infections [43] or 76 

contaminated media [58,75], this work aims to study the inactivation efficiency of new PSs, and 77 

establish the relationships between the Chl core of a free-base thiopyridinium 1a [18], the new 78 

inverted methoxypyridinium 1b and their corresponding zinc(II) derivatives 2a and 2b (Scheme 1). 79 
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These cationic Chls were prepared from the fluorinated Chl, obtained from 5,10,15,20-80 

tetrakis(pentafluorophenyl)porphyrin TPPF20 [18]. The photophysical properties and the ability of 81 

the new water soluble Chl derivatives 1b, 2a and 2b to photoinactivate microorganisms under white 82 

light irradiation (400 - 800 nm) was evaluated against a bioluminescent E. coli recombinant strain, 83 

used as a model of Gram-negative pathogenic bacteria and compared with Chl 1a. 84 

 85 

 86 

Scheme 1 87 

 88 

Experimental 89 

Photosensitizers synthesis and characterization  90 

 91 

The synthetic methodology for the preparation of the water soluble Chl quaternary salts with 92 

different substituent groups (Chls 1a and 2a) and their metallated derivatives (Chls 1b and 93 

2b) is depicted in Scheme 1. Chlorins identified as H2TPChlF20, 1 and 1a were synthetized 94 

according to previously described procedures[18,33] and Chl derivatives 1b, 2, 2a and 2b 95 

were prepared using adequate reagents purchased from Sigma-Aldrich. Analytical TLC was 96 

carried out on pre-coated silica gel sheets (Merck, 60, 0.2 mm). Solvents were used as 97 

received or distilled and dried by using standard procedures according to the literature [76]. 98 

1H and 19F NMR spectra were recorded on a Bruker Avance-300 spectrometer at 300.13 and 99 

282.38 MHz, respectively. Tetramethylsilane was used as internal reference. The chemical 100 
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shifts were expressed in δ (ppm) and the coupling constants (J) in Hertz (Hz). Absorption and 101 

steady-state fluorescence spectra were recorded using a Shimadzu UV-2501PC and Horiba 102 

Jobin-Yvon FluoroMax-3 spectrofluorometer, respectively. The absorbance and fluorescence 103 

emission spectra of Chl derivatives 1a,b and 2a,b were measured in DMF in 1 × 1 cm quartz 104 

optical cells at 298.15 K and under normal air conditions. The fluorescence quantum yield 105 

(ФF) of 1a,b and 2a,b were calculated in DMF by comparison of the area below the corrected 106 

emission spectra using TPP as standard (ФF = 0.11 in DMF) [51]. The ESI mass spectra of 107 

the compounds were obtained using Micromass Q-TOF2 equipment and the analysis were 108 

recorded on Micromass MassLynx 4 data system. 109 

 110 

N,N-Dimethylpyrrolidinyl-5,10,15,20-tetrakis[2,3,5,6-tetrafluoro-4-(1-methylpyridinium-4-111 

ylsulfanyl)phenyl]chlorinato zinc(II) , ZnTPChlF16SPy4(CH3)4 (1b): H2TPChlF16SPy4(CH3)4 1a 112 

[18] (60.0 mg, 0.040 mmol) and zinc(II) acetate (14.8 mg, 0.082 mmol) were left stirring overnight in 113 

10 mL MeOH at 60 ºC (Scheme 1). The green solution was concentrated and the product precipitated 114 

in a mixture of MeOH:CH2Cl2:Acetone (5:2:1). The compound was obtained as a dark green powder 115 

and was identified as 1b (44.3 mg, 0.028 mmol), 71% of yield. 1H NMR (300.13 MHz, DMSO-d6): δ 116 

2.28 (dt, J = 3.6, 1.7 Hz, 2H, pyrrolidine-H), 2.73 (dt, J = 3.6, 1.7 Hz, 2H, pyrrolidine-H), 3.27 (s, 117 

6H, -N(CH3)2), 4.32 (s, 12H, Py-NCH3), 5.76-5.85 (m, 2H, β-H reduced pyrrole), 8.29-8.34 (m, 2H, 118 

β-H pyrrole), 8.35-8.50 (m, 8H, Py-o-H), 8.77-8.83 (m, 2H, β-H pyrrole), 8.89-8.96 (m, 8H, Py-m-H), 119 

9.00-9.07 (m, 2H, β-H pyrrole). 19F NMR (282.38 MHz, DMSO-d6): δ -163.40 to -162.42 (m, 2F, Ar-120 

F), -160.31 to -160.09 (m, 4F, Ar-F), -158.09 to -157.38 (m, 2F, Ar-F), -155.88 to -155.66 (m, 4F, Ar-121 

F), -153.98 to -152.68 (m, 4F, Ar-F). UV-Vis (DMF), λmax (log ε): 416 (5.26), 515 (3.92), 585 (3.98), 122 

618 (4.56) nm. ESI-MS (m/z): 510.8 [M5++2e-]3+, 479.8 [M5++e--C6H7N]3+, 469.1 [M5++e--123 

C6H7NS]3+, 438.2 [M5+-C6H7NS-C6H6N]3+, 673.1 [M5+-C6H7N-C6H6N]2+, 657.6 [M5+-C6H7NS-124 

C6H6N]2+, 649.6 [M5+-C6H7NS-C6H6N-CH3]
2+, 612.1 [M5+-C6H6NS-2C6H6N]2+, 596.1 [M5+-125 

2C6H6NS-C6H6N]2+. 126 

 127 
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 128 

N-Methylpyrrolidinyl-5,10,15,20-tetrakis[2,3,5,6-tetrafluoro-4-(1,4-dihydro-4-129 

oxopyridin-1-yl)phenyl]-21,23H-chlorin, H2TPChlF16(NPyO)4 (2): A solution A of 130 

H2TPChlF20 (205.0 mg, 0.199 mmol) was prepared in 2.0 mL of DMF in a round-bottom 131 

flask. At the same time, a solution B of 4-hydroxypyridine (77.0 mg, 0.796 mmol) and 132 

diethylamine (DEA, 82.0 µL, 0.793 mmol) was prepared in 1.0 mL of DMF. Both solutions 133 

were maintained stirring under N2 atmosphere during 20 min at room temperature. Then, both 134 

solutions were cooled (0 ºC) in an ice bath, and the solution B was dropwise added to solution 135 

A. After 24 h of reaction at room temperature, the temperature was raised until 40 ºC and the 136 

reaction carried out during another 24 h period. The reactional progression was controlled by 137 

TLC. The crude was evaporated until complete dryness and the obtained green dark solid 138 

crystalized from a mixture of MeOH:CH2Cl2:Hexane (2:3:1). A green dark powder was 139 

obtained and identified as compound 2 (150.0 mg, 0.075 mmol), isolated in 57% of yield. 1H 140 

NMR (300.13 MHz, DMSO-d6): δ -1.94 (s, 2H, -NH), 2.26-2.29 (m, 2H, pyrrolidine -NH), 141 

2.43-2.45 (m, 3H, -NCH3), 2.72-2.74 (m, 2H, pyrrolidine -NH), 5.44 – 5.63 (m, 2H, β-H 142 

reduced pyrrole), 6.51-6.54 (m, 8H, NPyO-o-H), 7.95 (d, J = 6.8 Hz, 2H, β-H pyrrole), 8.14-143 

8.19 (m, 8H, NPyO-m-H), 8.98 (d, J = 5.1 Hz, 2H, β-H pyrrole), 9.30 (d, J = 5.1 Hz, 2H, β-H 144 

pyrrole). 19F NMR (282.38 MHz, DMSO-d6): δ -172.27 (m, 4F, Ar-F), -170.39 to -171.22 (m, 145 

4F, Ar-F), -162.29 (dt, J = 27.1, 10.7 Hz, 4F, Ar-F), -160.02 (d, 2F, Ar-F), -157.49 (s, 2F, Ar-146 

F). UV-Vis (DMF), λmax (log ε): 406 (5.14), 503 (4.16), 527 (3.70), 595 (3.66), 648 (4.52) 147 

nm. ESI-MS (m/z): 444.8 [M+3H]3+, 666.7 [M+2H]2+, 1332.54 [M+H]+. 148 

 149 

 150 

N,N-Dimethylpyrrolidinyl-5,10,15,20-tetrakis[2,3,5,6-tetrafluoro-4-(4-151 

methoxypyridinium-1-yl)phenyl]-21,23H-chlorin, H2TPChlF16(NPyOCH3)4 (2a): 152 

H2TPChlF16(NPyO)4 2 (100.0 mg, 0.075 mmol) and dimethyl sulfate (71.0 µL, 0.751 mmol) 153 

were dissolved  in 5.0 mL of DMF and left to react overnight at 80 ºC in a sealed tube. The 154 
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reaction mixture was cooled and the compound was precipitated in diethyl ether. The 155 

obtained precipitate was filtered, washed with diethyl ether and dried under vacuum. The 156 

solid was dissolved in MeOH and reprecipitated in a mixture of MeOH:CH2Cl2 (1:2). The 157 

obtained green suspension was filtered, washed with CH2Cl2 and dried under vacuum. The 158 

obtained compound was identified as 2a (33.0 mg, 0.021 mmol) isolated in 29% of yield. 1H 159 

NMR (300.13 MHz, DMSO-d6): δ -1.94 (s, 2H, -NH), 2.26-2.29 (m, 2H, pyrrolidine -NH), 160 

2.42-2.45 (m, 6H, -N(CH3)2), 2.72-2.75 (m, 2H, pyrrolidine -NH), 4.36 (s, 6H, -NPyOCH3), 161 

4.37 (s, 6H, -NPyOCH3), 5.95-6.06 (m, 2H, β-H reduced pyrrole), 8.18 (m, 8H, -NPyO-o-H), 162 

8.97 (s, 2H, β-H pyrrole), 9.04 (d, J = 5.1 Hz, 2H, β-H pyrrole), 9.37 (d, J = 5.1 Hz, 2H, β-H 163 

pyrrole), 9.41-9.49 (m, 8H, -NPyO-m-H). 19F NMR (282.38 MHz, DMSO-d6): δ -170.78 (dd, 164 

J = 62.9, 24.7 Hz, 4F, Ar-F), -168.57 to -168.22 (m, 4F, Ar-F), -161.17 (ddd, J = 37.0, 25.7, 165 

10.0 Hz, 4F, Ar-F), -159.83 (dd, J = 25.3, 9.1 Hz, 2F, Ar-F), -159.92 to -158.24 (m, 2F, Ar-F). 166 

UV-Vis (DMF), λmax (log ε): 409 (4.95), 503 (3.53), 529 (3.58), 595 (4.19), 648 (3.55) nm. 167 

ESI-MS (m/z): 736.2 [M5++SO4
2--OCH3]

2+, 704.2 [M5++5e-+2H]2+, 680.2 [M5++H-3CH3]
2+, 168 

673.7 [M5++H-4CH3]
2+, 1471.7 [M5++SO4

2--OCH3]
+, 1444.6 [M5++SO4

2--C3H8N]+, 1407.6 169 

[M5++5e-+H]+, 1346.5 [M5+-4CH3]
+. 170 

 171 

N,N-Dimethylpyrrolidinyl-5,10,15,20-tetrakis[2,3,5,6-tetrafluoro-4-(4-172 

methoxypyridinium-1-yl)phenyl]chlorinato zinc(II) , ZnTPChlF16(NPyOCH3)4 (2b): 173 

H2TPChlF16(NPyOCH3)4 2a (30.0 mg, 0.018 mmol) and zinc(II) acetate (3.5 mg, 0.036 174 

mmol) were left stirring overnight in 6.0 mL of MeOH:CH2Cl2 at 60 ºC in a sealed tube. The 175 

reaction solution was concentrated and the obtained solid washed with acetone:hexane (1:1). 176 

The compound was filtered and dried under vacuum. The compound 2b (22.2 mg, 0.014 177 

mmol) was obtained in 80% of yield. 1H NMR (300.13 MHz, DMSO-d6): δ 2.26-2.28 (m, 2H, 178 

pyrrolidine-H), 2.43-2.45 (m, 6H, pyrrolidine-N(CH3)2), 2.71-2.74 (m, 2H, pyrrolidine-H), 179 

4.35 (s, 12H, -NPyOCH3), 5.83-5.97 (m, 2H, β-H reduced pyrrole), 8.16 (d, J = 7.1 Hz, 8H, -180 

NPyO-o-H), 8.58 (d, J = 4.8 Hz, 2H, β-H pyrrole), 8.77 (s, 2H, β-H pyrrole), 8.94 (d, J = 4.8 181 
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Hz, 2H, β-H pyrrole), 9.44 (d, J = 6.2 Hz, 8H, -NPyO-m-H). 19F NMR (282.38 MHz, DMSO-182 

d6): δ -171.40 (d, J = 21.9 Hz, 4F, Ar-F), -169.22 (s, 4F, Ar-F), -161.56 to -161.06 (m, 4F, Ar-183 

F), -160.33 (s, 4F, Ar-F), -158.68 (s, 4F, Ar-F). UV-Vis (DMF), λmax (log ε): 420 (5.30), 512 184 

(4.18), 582 (3.82), 618 (4.58) nm. ESI-MS (m/z): 521.5 [M5++SO4
2-]3+, 489.5 [M5++2e-]3+, 185 

484.2 [M5++e--CH3]
3+, 479.5 [M5+-2CH3]

3+, 726.7 [M5++2e--CH3]
2+, 718.7 [M5+-OCH3]

2+, 186 

711.7 [M5+-3CH3]
2+, 687.2 [M5+-3OCH3]

2+. 187 

 188 

Photosensitizers stock solution 189 

Stock solutions of the photosensitizers (1a,b and 2a,b) used in the photophysical studies were 190 

prepared in DMF and for the biological studies in dimethyl sulfoxide (DMSO) at a concentration of 191 

500 µM, protected from light, and were sonicated for 30 min previously each assay. 192 

 193 

Light source 194 

All the photodynamic inactivation assays were performed by exposing the samples and light controls 195 

to a white light (400 - 800 nm) delivered from a compatible fiber optic probe attached to a 250 W 196 

quartz/halogen lamp (LUMACARE model LC122, USA) with an irradiance of 25 mW.cm-2, 197 

measured with an energy meter Coherent FieldMaxII-Top combined with a Coherent 198 

PowerSensPS19Q energy sensor. 199 

 200 

Singlet oxygen generation 201 

The ability of the cationic Chls 1a,b and 2a,b to generate 1O2 was evaluated by an indirect method 202 

trough the monitorization of the photooxidation of 9,10-dimethylanthracene (9,10-DMA), a singlet 203 

oxygen quencher [77,78]. The kinetics of 9,10-DMA photooxidation was studied by following the 204 

decrease in the absorbance at 378 nm and the result registered in a first-order plot for the 205 

photooxidation of 9,10-DMA in absence of a PS and photosensitized by 1a,b and 2a,b and TPP in 206 

DMF. Solutions of cationic Chls derivatives and TPP in DMF with the same optical density were 207 
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irradiated in quartz cuvettes with monochromatic light in the presence of 9,10-DMA (30 µM). TPP 208 

(in DMF) were used as reference (Φ∆ = 0.65) [79]. The results are expressed as mean and standard 209 

deviation obtained from three independent experiments. The singlet oxygen quantum yields (Φ∆) 210 

were determined by the equation indicated below where Φ�
��� is the singlet oxygen quantum yield of 211 

TPP, Ksample and Kstd are the photodecay constant of 9,10-DMA in the presence of the sample and the 212 

reference respectively, Abssample and Absstd are the absorbance of the sample and the reference 213 

solution at the irradiation wavelength. 214 

Φ� =	Φ�
���

��	
��

����

1 − 10�������

1 − 10����������
 

 215 

Photostability 216 

A solution of Chl derivatives 1a,b and 2a,b were freshly prepared in DMF and adjusted to an 217 

absorbance ~ 1. The irradiation experiments were performed in magnetically stirred cuvette solutions 218 

over a period of 120 min under the same light conditions used to perform the biological assays (400 - 219 

800 nm, 25 mW.cm−2). The absorbance of each solution was determined before (t = 0 min) and after 220 

5, 15, 30, 60, 90, and 120 min of irradiation. The results were expressed as follows: 221 

�ℎ��� �!"#$#�%	&%( = 	
)" 	�			*+,-	�+
	./	+00	�+	�+.-

)" �12

	× 100 

 222 

Bacterial culture 223 

Bioluminescent E. coli Top10 were grown on Tryptic Soy Broth (Liofilchem, Italy) medium at 25 ºC 224 

for 18 h at 120 rpm in order to reach the stationary phase. 225 

This bioluminescent E. coli strain was selected since the bacterial bioluminescence is a sensitive and 226 

cost-effective method that allows a real-time monitoring, which gives a strong correlation between 227 

bioluminescence signal and viable counts of the forming units, where the light output reflects the 228 

actual cells´ metabolic rate [6,42,80]. 229 
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 230 

Photodynamic inactivation assay 231 

Bacterial suspensions were prepared from cultures (≈108-109 counting forming units (CFU.mL-1) and 232 

several dilutions in PBS to a final concentration of ≈107 CFU.mL-1, and then distributed in sterilized 233 

glass beakers. The appropriate volume of each PS (1a,b and 2a,b) was added to the suspensions to 234 

reach a final concentration of 5.0 µM. Light and dark controls were performed during the assay 235 

where, light control no PS was added and this was exposed to the white light and in the dark control 236 

PS was added in the same concentration (5.0 µM) and this was protected from light with aluminum 237 

foil. Samples were incubated under stirring for 15 min and protect from light. Following this period, 238 

the samples were irradiated under stirring during 120 min at a controlled temperature of 20 ºC. 239 

Aliquots of the treated and control samples were collected at time 0 min and after predefined 240 

irradiation times, and the bioluminescence was measured in triplicated in the luminometer (GloMax® 241 

20/20 Luminometer, Promega, Madison, WI, USA). Three independent experiments were performed 242 

in duplicate. 243 

 244 

Statistical analysis 245 

Statistical analysis was performed in GraphPad Prism 6. The significance of the bacterial inactivation 246 

was assessed by two-way univariate analysis of variance (two-way ANOVA) model with the 247 

Turkey’s multiple comparisons post hoc test. A value of p < 0.05 was considered significant. 248 

 249 

Results and Discussion 250 

Synthesis and photophysical characterization of the chlorin derivatives 251 

The context of microbial resistance led to the search of new treatment modalities and consequently 252 

the research of new active principles in the PDI field and new efficient PSs. For that it is crucial to 253 

identify the structural features able to affect the PS efficiency. It is well-known that the presence of 254 

positive charges in the PS is an important feature but knowledge of how the accessibility of this 255 
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positives charge affects the photodynamic efficiency of the PS is still scarce [47,81]. Motivated by 256 

this approach, this work is focused on synthesis of  cationic Chls 1a,b and 2a,b to photoinactivate the 257 

Gram-negative bioluminescent E. coli strain.  258 

 259 

So, in order to obtain different positive charge accessibility, the new inverted pyridinone Chl 2 260 

present in Scheme 1 was prepared. Their synthesis was based on the nucleophilic substitution of the 261 

para-fluorine atoms of H2TPChlF20 with 4-hidroxypyridine, using DEA in DMF at room 262 

temperature during 24 h and raised to 40 ºC during another period of 24 h. After the reaction work-263 

up, it was isolated in 57% of yield. The corresponding cationic Chl was obtained by methylation of 2 264 

with dimethyl sulfoxide in DMF at 80 ºC, being isolated in 29% of yield, mostly due to the difficult 265 

removal of the dimethyl sulfate, used in excess. Both Chls 1b and 2b were obtained by direct 266 

metalation with zinc(II) acetate in MeOH in 71% and 80% of yield, respectively. The structures of 267 

1b, 2, 2a, and 2b were confirmed by NMR (Figs. SI 2-9) and by mass spectrometry (Figs. SI 12-15), 268 

as well as intermediate compounds 1 and 1a (data not shown)[18]. Relative to the series of Chls 2, 269 

the substitution took place at the nitrogen and not at the oxygen as previously reported in the 270 

substitution of Por [82]. When the cationization occurs, the carbonyl groups were converted into 271 

methoxyls that generate a charge at the nitrogen atoms. The zinc(II) complexes were confirmed by 272 

UV-Vis and the disappearance of the internal protons of the Chl core. 273 

The 1H NMR spectra of Chls 1b and 2a,b show the resonance of the characteristic signals of the 274 

complete methylation of the pyridine moieties, specifically for the 12 protons of the pyridinium (Py-275 

NCH3) and methoxypyridinium (-NPyOCH3) groups around δ 4.32-4.37 ppm (Figures SI 2, SI 6 and 276 

SI 8), respectively. Moreover, the complete Zn(II) metalation of Chls 1b and 2b was also confirmed 277 

by the disappearance of the resonance signal corresponding to the internal NH protons of the free-278 

based Chls 1a and 2a at high fields (~ -2 ppm), respectively. The 19F NMR spectra of all Chls (1b 279 

and 2a,b) show the resonance of five multiples corresponding to the fluorine atoms due to their 280 

asymmetric distribution on the chlorin structure (Figures SI 3, SI 7 and SI 9). 281 
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In the ESI-MS spectra of the Chl derivatives 1b, 2a and 2b, the main observed species result from 282 

reduction processes with formation of ions with low overall m/z ratios, such as [M5++2e-]3+, [M5++5e-283 

+2H]2+ and [M 5++5e-+H]+. These type of reduction processes were previously observed by us for 284 

porphyrins [83,84]. Along with these ions, adduct formation with sulfate counter-ion [M5++SO4
2-]3+ 285 

were also observed, as well as ions resulting from losses of methyl, methylpyridinium or elements of 286 

the methoxypyridinium substituents. 287 

The absorption and emission spectra of Chls 1a,b and 2a,b were recorded in DMF solutions (~10-5 288 

M) at 298 K. All the main photophysical features such as Soret and Q band wavelengths, molar 289 

extinction coefficients (ε), fluorescence emission wavelengths (λemiss), Stokes shift and fluorescence 290 

quantum yields (ΦF) are summarised in Table 1, and the absorption and emission spectra in DMF are 291 

shown in Figure 1. 292 

  

Figure 1 – Normalized absorption (solid line) and emission (dashed line) spectra of compounds 1a,b 293 

and 2a,b in DMF at 298 K. 294 

The absorption spectra of Chls 1a and 2a (in DMF) exhibit a typical free-base Chl features with a 295 

strong Soret band ca. 400 nm and three Q bands between 450 and 680 nm (Figure 1) being one of 296 

them well defined ca. 650 nm. As expected, it was possible to observe changes in the absorbance 297 

spectra of zinc(II)-complexed Chls 1b and 2b when compared with the corresponding free-bases (1a 298 

and 2a), having the Soret band suffered a red-shift with the disappearance of one Q band due to the 299 

increase in structural symmetry, characteristic of metallochlorins. 300 

The steady-state fluorescence spectra of Chls derivatives 1a,b and 2a,b were also achieved in DMF 301 

(Figure 1) and exhibit a strong emission between 600 and 750 nm (Figure 1). The fluorescence 302 
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quantum yields (ΦF) of the free-bases Chls 1a and 2a are lower than the standard porphyrin TPP in 303 

DMF (ΦF = 0.11) [85] and Chls 1b and 2b are superior. It is worth to refer that the emission and the 304 

fluorescence quantum yield were affected by metalation as expected [86]. The Stokes shift obtained 305 

for the compounds in study were small as expected (results presented in Table 1).  306 

 307 

Table 1 – Photophysical properties of Chls 1a,b and 2a,b in DMF.  308 

Compound 
Soret 

(nm) 
log ε 

Q bands 

(nm) 
log ε 

λemiss 

(nm) 

Stokes 

shift 

(nm) 

ФF
a 

Φ∆ ± 0.05a 

1a 401 5.21 

502 4.19 

652 2 <0.01 0.34 
527 3.78 

596 3.74 

648 4.49 

1b 416 5.26 

515 3.92 

623 6 0.01 0.55 585 3.98 

618 4.56 

2a 409 4.95 

503 3.53 

652 4 0.07 0.39 
529 3.58 

595 4.19 

648 3.55 

2b 420 5.30 

512 4.18 

625 6 0.11 0.63 582 3.82 

618 4.58 

a Using TPP as reference in DMF. 

 309 
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The determination of 1O2 was assessed considering that it is in general the major ROS produced upon 310 

irradiation by this kind of macrocycles and the main responsible for cell damage and further cell 311 

death [9,15,31]. Thus, the production of 1O2 by each Chl derivative was assessed by the indirect 312 

method based on the absorption decay of a solution of 9,10-DMA irradiated in the presence of each 313 

Chl derivatives (1a,b and 2a,b) and compared with the decay in the presence of a reference (TPP; ΦΔ 314 

= 0.65 in DMF) (Figure SI 10). According to the results summarized in Table 1, all derivatives are 315 

able to generate singlet oxygen upon light irradiation and the metallated Chls 1b and 2b generate 316 

more singlet oxygen than the corresponding free-bases Chls 1a and 2a. It is worth to refer that the 317 

positive charge accessibility does not affect substantially the 1O2 generation. 318 

Considering the potential use of these compounds as PS for PDI of E. Coli, the photostability of the 319 

cationic Chls derivatives 1a,b and 2a,b was evaluated by monitoring the decrease of the absorbance 320 

of their Soret, after white light irradiation at an irradiance of 25 mW.cm−2, the same irradiance used 321 

in the biological assays. The results are summarized in Table 2. 322 

 323 

Table 2 – Photostability of derivatives 1a,b and 2a,b in DMF after 120 min of white light irradiation 324 

at an irradiance of 25 mW.cm-2. 325 

 Irradiation time (min) 

Chl 0 5 15 30 60 90 120 

1a 100 99 98 97 96 95 94 

1b 100 100 100 100 100 100 100 

2a 100 97 94 92 90 87 86 

2b 100 100 100 100 100 100 100 

 326 

Metallochlorin derivatives 1b and 2b show to be very photostable when irradiated with white light at 327 

an irradiance of 25 mW.cm-2 for 120 min, meanwhile the corresponding free-bases 1a and 2a under 328 

the same irradiation conditions show a slight decrease of the Soret band being the less stable the 329 
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chlorin 2a with a decreased of ~15% in the Soret absorbance after 120 min of irradiation. The 330 

photophysical properties exhibited by all Chls, make them suitable to be used as potential PSs and 331 

allow us to assess their photodynamic efficiency against the Gram-negative bacterium E. coli. 332 

Photodynamic inactivation of Escherichia coli 333 

The PDI efficiency of cationic free-base (1a and 2a) and zinc(II) (1b and 2b) Chl derivatives were 334 

tested against bioluminescent E. coli. In fact, bioluminescence has been extensively used as a real-335 

time reporter for bacterial survival/inactivation in PDI assays since the inhibition of cellular activity 336 

results in a decrease in the bioluminescence rate [42,87]. In this assay a concentration of 5.0 µM was 337 

used for each PS under white light irradiation at 25 mW.cm-2 and the results are represented in Figure 338 

3. 339 

 340 

 341 

Figure 3 – Bioluminescence monitoring of E. coli in the bacterial suspensions during the PDI 342 

experiment in the presence of PSs 1a,b and 2a,b at 5.0 µM, using white light (25 mW.cm−2) during 343 

120 min. All values are the mean of three independent assays performed in triplicate. The error bars 344 

represent the standard deviation.  345 

 346 

None of the tested PSs showed dark toxicity (ANOVA, p > 0.05) since a significant decrease in 347 

bioluminescence of E. coli was not observed during all period of irradiation. Bioluminescence of the 348 

bacteria, after irradiation, in the absence of the PS also kept stable, meaning that light alone did not 349 

cause any toxic effect. In the presence of each PS it was observed a significant decrease in 350 
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bioluminescence (ANOVA, p < 0.05) after 30 min of irradiation. The photoinactivation results 351 

obtained for the tested PSs revealed a clear difference in their photoinactivation efficiency.  352 

It was interesting to note that the position of the charges, N-methylpyridinium vs. 353 

methoxypyridinium, influence the photodynamic inactivation efficiency of E. coli. That is, for the 354 

free-bases Chls (1a and 2a) the most efficient compound was the one whose charge are “inverted”, 355 

closer to the core (Chl 2a). On the other hand, their zinc(II) complexed Chls (1b and 2b) show higher 356 

inactivation efficiency, however the pyridinium “non-inverted” derivative, being the most effective 357 

one. These results are also interconnected with the results obtained in the 1O2 production rates of each 358 

PSs, since 1b and 2b (metallated Chls) produce more 1O2 than the corresponding free-bases 1a and 359 

2a. However, a much higher PDI effect is observed between 1b vs. 1a when compared with 2b vs. 360 

2a. The charge position did not change much the photochemical 1O2 production, but at least for 1b 361 

vs. 2b this structural difference seems to be important for the photoinactivation efficacy. 362 

Chl 1a had already been tested against two different bacteria, Staphylococcus aureus (gram-(+)) and 363 

Pseudomonas aeruginosa (gram-(-)) [18] and at a concentration of 10.0 µM against P. aeruginosa 364 

showed a 7.0 log CFU.mL-1 reduction after 30 min of white light irradiation at an irradiance of 150 365 

mW.cm-2 [18]. In the present study, using a 6-fold lower light irradiance (25 mW.cm-2) and half of 366 

the PS concentration (5.0 µM), the Chl 1a was able to reduce 2.7 log of RLU bioluminescent E. coli 367 

after 120 min of irradiation. More remarkable is the inactivation reached by the new metallochlorin 368 

1b that differs by the presence of the zinc(II) in the core. That one, after 45 min of white light 369 

irradiation, reaches the bioluminescent method detection limit (5.2 log of RLU reduction), which 370 

make it, according the guidelines of the American Society for Microbiology, a potential antibacterial 371 

agent. 372 

A similar work assessing the antibacterial activity of a tetra- and octa-methoxypyridinium Pcs (four 373 

and eight positive charges, respectively) and the similar thiopyridinium Pcs (also four and eight 374 

charges) towards bioluminescent E. coli was already performed [47]. The biological results revealed 375 

that using the Pc core the inverted methoxypyridinium with eight positive charges was the most 376 

effective PS reaching 2.8 log of reduction in bioluminescence RLU after 20 min of irradiation (white 377 
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light, 150 mW.cm-2) and at a concentration of 20.0 µM. The inverted methoxypyridinium with four 378 

positive charges showed to be the less effective PS with only 0.8 log reduction in bioluminescence 379 

RLU. Among the thiopyridinium Pcs, the PS with eight positive charges proved to be more effective 380 

than the one with only four positive charges (2.7 and 2.3 log reductions, respectively). Once again, 381 

the metallochlorin 1b seems to be more efficient than the previous tested PS, with a bioluminescence 382 

reductions of 1.2 and 3.9 log after 15 and 30 min of white light irradiation, respectively. Moreover, it 383 

is important to highlight that these achievements were obtained using a four-fold lower concentration 384 

(5.0 µM) and a six-fold lower irradiance (25 mW.cm-2) [47], and able to generate the photochemical 385 

singlet oxygen. 386 

 387 

Conclusions 388 

New chlorin derivatives, 1b, 2, 2a and 2b, were prepared and structurally characterized by 389 

NMR spectroscopy and mass spectrometry. The photophysical characterization of the cationic 390 

derivatives showed that all these Chls are photostable and able to generate singlet oxygen 391 

under white light irradiation. Nevertheless, metallochlorins 1b and 2b are higher singlet 392 

oxygen generators than the corresponding free-bases Chls 1a and 2a. The obtained results 393 

highlight the importance of the charge position; N-methylpyridinium vs. methoxypyridinium. 394 

Comparing the cationic free-bases Chls (1a and 2a) the most effective PS is the Chl with 395 

“inverted” pyridinium (2a) however for the zinc(II) complexes (1b and 2b) the most effective 396 

PS is N-methylpyridinium (1b). 397 

The results of this study demonstrate the high PDI efficient of Chl 1b, which achieves the 398 

detection limit of the bioluminescent method (5.2 log reduction) after 45 min of white light 399 

irradiation. On the other hand, methoxypyridinium Chls 2a and 2b possess similar 400 

efficiencies (ANOVA, p < 0.05) and are able to reach the detection limit of the method after 401 

120 min (5.2 log). 402 

 403 
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• 

PDI with pyridinium or inverted pyridinium chlorin derivatives was effective to inactivate 

Escherichia coli. 

 

• 

Chlorins are photostable and able to generate singlet oxygen under white light irradiation. 

 

• 

The charge position N-methylpyridinium vs. methoxypyridinium influences the PDI effect. 

 

• 

High PDI efficiency of chlorin 1b, which achieves the detection limit of the bioluminescent 

method (5.2 log reduction) after 45 min of white light irradiation. 


