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Highlights    

 CCA has toxic effects on the cell cycle dynamics of mouse 

kidneys, distinct from its compounds.  

 CCA and As compounds showed clastogenic effects, particularly 

in the S phase  

 Cell cycle dynamics is a valuable endpoint to assess the putative 

toxicity of remaining CCA-treated infrastructures 

 Genotoxicity of CCA and its constituents in renal cells claims for 

their ecofriendly removal prior leakage.    

 

 

Abstract 

CCA (Chromium Copper Arsenate) treated wood, widely used in outdoor 

residential structures and playgrounds, poses considerable dangers of leaching 

of its components to the environment.  

In this study, mouse kidney samples were used to evaluate the effects of CCA, 

chromium trioxide (CrO3) and arsenic pentoxide (As2O5) on cell pathophysiology 

by flow cytometry. Samples were collected after 14, 24, 48 and 96 hours of 

animal exposure. While Cr had no statistically significant cytostatic effects, 

As2O5 induced a S-phase delay in animals exposed for 24h, and over time a 

G0/G1 phase blockage. The effects of CCA in S-phase were similar, but more 

severe than those of As2O5. Since environmental and public health hazards due 

to the long durability of CCA-treated wood products, these data confirm that 

CCA has profoundly toxic effects on cell cycle, distinct from the compounds 

themselves. These cytostatic effects support cell cycle dynamics as a valuable 

endpoint to assess the toxicity of remaining CCA-treated infrastructures, and 

the expected increased waste stream over the coming decades. 

 

Keywords: CCA, arsenite, chromium, clastogenicity, cytostaticity, kidney 
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1. Introduction  

Timber additives are chemicals used worldwide in the manufacture of wood. 

Chromated copper arsenate (CCA), a mixture of chromium trioxide (CrO3), 

copper oxide (CuO) and arsenic pentoxide (As2O5) is a lumber preservative 

used to protect wood against deterioration caused by insects and microbial 

agents (Barraj et al., 2009). CCA treated wood has been widely used in outdoor 

residential structures and public playgrounds, but US legislation (USEPA, 2002) 

and the European Union (Annex XVII to Regulation (EC) No 1907/2006 on the 

Registration, Evaluation and Authorization of Chemicals, REACH), has severely 

restricted its use. In China, such limitation has not yet been established and 

wood treated with CCA is still widely applied in public parks (Tang et al., 2015). 

Recently, the levels of As in the soils adjacent to CCA-wood were reported to 

be as high as 110 mg/kg (Gress et al., 2016), with As above USEPA ecological 

soil screening levels (USEPA, 2003, 2005). As has been described as more 

mobile than chromium being detected at deeper distances in soil under 

preserved wood (Zagury et al., 2008). Climatic factors and amount of applied 

CCA, among others, influence the leaching rate of its components. As revised 

by Hingston et al (2001), the leaching of the individual components is not 

proportional to the concentrations of the individual components in the original 

CCA formulation. Studies show that in more modern formulations, Cu and As 

are lost in highest degree, despite being present in smallest proportions in the 

formulation. For instance, the leaching rates for Cu and As in seawater after 21 

days were described to be approximately 1 mg cm-2 day-1 and 0.1 mg cm-2 day-1 

for Cr (Merkle et al., 1993). Leaching rate is strongly dependent of several 

factors, namely the wood block size, the leaching media pH and salinity, and 

the temperature. Low pH increases the leaching rates, while lower temperatures 

decrease the leaching rate. For instance, leaching of Cr was reported to be 

0.119 µg m-2 s-1 and 0.079 µg m-2 s-1 at 20ºC and 8ºC, respectively (Van 

Eetvelde et al., 1995) Regarding the effect of the salinity, solutions of higher 

ionic strength show higher leaching rates of CCA (Irvine and Dahlgren, 1976). 

Moreover, studies by Breslin and Adler-Ivanbrook (1998) also show that the 

leaching rates of all components tend to decrease with time.  
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Due to the extensive and long-lasting use (20/50 years) of CCA-treated wood, a 

large increase in the residues is expected in the next decades (Choi et al., 

2012; Mercer and Frostick 2012). Efforts have been made to study the impact of 

CCA-leachate from treated wood waste, addressing both the toxicity of CCA 

and its constituents (Mercer and Frostick 2012). These authors showed that As, 

Cr and Cu leached from CCA-wood waste occasionally appeared in the 

environment in concentrations that exceed regulatory limits in two to three 

orders of magnitude, underlining the toxicological risks of this wood waste as a 

pollutant, both in the environment and in human health. After compiling different 

toxicity studies on the effects of CCA treated wood, Katz and Salem (2005) 

concluded the need to clarify their chemistry and toxicological effects.  

Chromium and arsenic are known to be potent carcinogens (Roy and Saha 

2002; World Health Organization 2010; Ohgami et al., 2015). Their release from 

CCA treated residential, including staircases at apartment complexes in Florida 

(Gress et al., 2014) and outdoor structures, including playground structures 

used by children prompt many studies (Shalat et al., 2006, Zatarian et al., 2006, 

Barraj et al., 2009, Tang et al., 2015). Very recently Deramos and colleagues 

(2019) reported on the persistence of arsenic in soils surrounding old 

playground structures as a source of exposure for small children through dermal 

contact and ingestion of contaminated soil (owed to children hand-to-mouth 

activity).  

In a study with mice as models, Mason and Edwards (1989) evaluating the 

nephrotoxicity of Na2Cr2O7, CuSO4 and Na3AsO4, showed that the mixture of 

these three compounds had higher risk of toxicity than their individual 

components. Chromium and arsenic are also known as nephrotoxic agents 

(Madden and Fowler 2000, Fatima et al., 2005). Pentavalent and hexavalent 

chromium induce the formation of cylinders and damage to renal brush border 

in rodents (Fowler 1993, Fatima et al., 2005, Oliveira et al., 2006a). Matos et al. 

(2009a) reported for ICR-CD1 mice that CCA, CrO3 and As2O5 differed in their 

accumulation profiles in kidney. They observed histopathological differences in 

the kidneys of animals treated with CCA and CrO3, including the appearance of 

casts and epithelium desquamations (Matos et al., 2009a). Mice treated with 

commercial solutions of CCA showed higher nephrotoxicity than those treated 
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with equivalent solutions of the individual compounds, i.e., CrO3 and As2O5 

(Matos et al., 2009b). More recently, Takahashi and colleagues (2018) reported 

deleterious effects on multiple organs of rats exposed to CCA for one month. 

However, little attention has been paid to the effects of CCA and its components 

on the genotoxicity and cell cycle dynamics of exposed organisms. In the 

present study, Cr, As and CCA induced cytotostaticity in mice kidney was 

studied to evaluate the impact of CCA on cellular pathophysiology. 

 

2. Materials and Methods  

2.1 Chemicals and Reagents 

A commercial Type C CCA solution (purchased from a local wood industry 

containing 47.5% CrO3, 18.5% CuO and 34.0% As2O5 (w/w) was used to 

prepare a two-hundred-fold dilution, having adjusted to pH 7.0. This first 

solution was analyzed by inductively coupled plasma mass spectroscopy (ICP-

MS; X Series, Thermo Scientific, USA) and flame atomic absorption 

spectrometry (AAS; Analytik Jena ContrAA 700 HR-CS-AAS), and contained 

1034 µg/L of total chromium, 3 µg/L of total copper and 721 µg/L of total 

arsenic. Two other solutions of CrO3 and As2O5 (analytical reagent grade; 

Merck, Darmstadt, Germany) were also prepared containing respectively 1034 

µg/L of chromium and 721 µg/L of arsenic, with the final pH adjusted to 7.0 

(Matos et al., 2009a).   

2.2 Animal treatment   

Two months old ICR-CD1 male mice (26-40 g) were purchased from Harlan 

Interfauna Iberica S. A. (Barcelone, Spain). Before experimental use, animals 

housed in stainless steel cages were allowed to acclimatize for one week under 

controlled conditions (temperature 22 ± 2 ºC, relative humidity 40-60%, light-

dark cycle 12h). Food and water were supplied ad libitum.    

Mice were separated until sacrifice into 16 different groups (each with five 

animals), corresponding to different treatments and times of exposure. Control 

animals were subcutaneously administrated with the vehicle (0.3 mL of 0.9% 

NaCl). Exposed groups received a single subcutaneous injection (0.3 mL) of, 
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respectively As2O5 (As 7.2 mg/kg body weight), CrO3 (Cr 10.2 mg/kg body 

weight) or CCA (As 7.2 mg/kg body weight and Cr 10.2 mg/kg body weight). 

This dose was established based on preliminary assays of Matos et al. (2009 a, 

b) and on LD50 values for Cr and As. Two-hundred-fold dilution of the 

commercial Type C CCA solution was the lowest concentration that promoted 

nephrotoxicity with 100% of mice survival. After periods of 14 h, 24 h, 48 and 96 

h, animals were sacrificed, and kidneys were removed and fixed in neutral 10% 

buffered formalin. Samples were then dehydrated and embedded in paraffin 

wax according to Oliveira et al., (2006b).   

Animal trials were conducted in accordance with the guidelines of European 

Directive for ethics in animal experimentation (2010/63/EU).  

 

2.3 Flow cytometric analyses  

Samples were treated as described by Oliveira et al., (2006b) for flow cytometry 

analyses. Briefly, five block sections of 40 µm thickness of each animal were 

used per treatment. Sections were initially dewaxed in xylol and rehydrated, 

then digested for 1h with pepsin pH 1.5 at 37 ºC, and washed in PBS (Oliveira 

et al., 2006b). Samples were then centrifuged (500 x g) for 10 min and the 

supernatant was removed. The pellet was washed twice with 1 ml PBS buffer. 

After filtration (50 µm mesh), 50 µL of RNase (Sigma, St. Louis, MO, USA) was 

added to 500 µL of sample and the mixture was incubated for 10 min at 37ºC. 

Finally, 50 µg mL-1 of propidium iodide (PI) was added and the samples were 

incubated at 4ºC, for 10 min.    

The relative properties of the light scattering, SS (side scatter) and FS (forward 

scatter), and the relative fluorescence intensity of the PI-stained nuclei were 

measured with a Coulter EPICS XL flow cytometer (Coulter Electronics, 

Hialeah, Florida, USA). The instrument was equipped with an air-cooled argon-

ion laser tuned at 15 mW and operating at 488 nm. The integral fluorescence 

together with the height and width of the fluorescence pulse from nuclei was 

collected through a 645 dichroic long-pass filter and a 620 band-pass filter and 

converted on 1024 ADC channels.  
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Prior to the analysis, the instrument was checked for linearity with fluorescent 

check beads (Coulter Electronics, Hialeah, FL) and the amplification was 

adjusted so that the peak corresponding to the diploid peak was positioned at 

channel 200. The results were expressed as percentage of nuclei of peak 

variation, of G0/G1, S and G2/M phase and of HPCV. Sample analysis was 

done in duplicate.  

 

2.4 Statistical analyses  

Statistical analyses were performed using a one-way (ANOVA) (SigmaStat for 

Windows Version 3.1, SPSS Inc., USA) to compare the different groups. A 

multiple comparison Tukey test was applied to assay the differences between 

control and metal treated groups. Correlations between the results obtained 

with the different treatments were performed by Pearson´s correlation test. In all 

cases, the level of statistical significance was set at p≤0.05.   

 

3. Results 

 

To determine the effect of CCA, chromium trioxide and arsenic pentoxide on the 

cycle of kidney cells was analyzed by the percentage of nuclei in each phase of 

the cell cycle (G0/G1, S and G2/M). The typical diploid profile of control cells is 

displayed in Figure 1 while Figures 2 to 4 further illustrate the results for all 

treatments and periods tested. While CrO3 had no significant influence on cell 

cycle dynamics, during the 96 h of exposure (Fig 2a-d), As2O5 showed an 

increase in the percentage of cells in S phase and a decrease in the percentage 

of cells in G2/M phase after 24h (Figure 3B). After 48h of exposure to As2O5, 

the percentage of cells in G2/M tended to increase (Figure 3C), and after 96h 

there was a significant increase in the percentage of cells in G0/G1 phase.  

Regarding CCA, despite a sudden decrease of cells in S-phase, it was evident 

that, for longer periods, the cells were delayed in the S (and G2/M) phase, most 

at expenses of cells in G0/G1 phase. Data presented in Figures 2A and 3A 

show some similar profiles of response to CCA and As2O5, namely regarding 
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the initial decrease of cells at S phase, followed by an increase of cells in this 

stage. However, for the G0/G1 phase, the As and CCA effects differed 

substantially, with only As leading to a blockage of cells at this stage.  

Table 1 shows the HPCV values of G0/G1 peaks for As2O5, CrO3 and CCA 

observed during 14, 24, 48 and 96h.  

 

Table 1. G0/G1 half peak coefficient of variation (HPCV) values observed for 

control, CCA, CrO3 and As2O5 treated animals. 

 Control CCA CrO3 As2O5 

14h 4.7 ± 1.1 3.9 ± 0.3 4.3 ± 0.8 4.5 ± 1.2 

24h 7.8 ± 7.1 4.5 ± 0.4 4.9 ± 0.7 5.1 ± 1.1 

48h 6.1 ± 2.7 4.9 ± 1.0 4.4 ± 1.2 3.9 ± 0.5 

96h 3.6 ± 0.6 4.1 ± 1.2 4.5 ± 0.5* 4.8 ± 0.7 

* means statistically differences (p<0.05)  

 

These results showed that treatment with CrO3 for 96 h induced an increase in 

the HPCV of cells in G0/G1 phase (p<0.05).  

 

4. Discussion 

The spread of environmental and occupational pollutants, such as arsenic and 

chromium contained in wood products treated with CCA, emphasizes the 

concern of their impact on public and animal health (Barraj et al., 2009, Gress et 

al., 2014, 2016, Tang et al., 2015). This concern is increased due to the 

expected increase of CCA-treated wood waste over the next four decades, with 

demonstrated rise of CCA metals to values above legal limits at EU and USEPA 

ecological soil screening levels (USEPA, 2003, 2005). In addition, air emissions 

of combustion of CCA-treated wood in open fires, simulating waste wood 
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domestic burning, have been reported to exhibit the more toxic trivalent form of 

As in respirable particle matter fractions (Wasson et al., 2005).  

Cr and As may have genotoxic effects, both leading to DNA mutation and/or 

degradation. Moreover, the effects of Cr and As on cell proliferation have been 

reported in small intestinal epithelia of mice (Megyesi et al., 1995) and in human 

keratinocytes (Tse et al., 2009). However, subsequent to induced damage, 

quiescent cells often can proceed throughout the cell cycle (Matos et al., 2010), 

a major cause of abnormal cell subpopulations and, eventually, a major source 

of tumorigenesis. In the kidney, subsequent to acute tubular necrosis, these 

quiescent cells consist essentially in epithelial cells of the renal tubules 

(proximal and distal tubules) (Megyesi et al., 1995). In previous experiments, 

animals treated with CCA and CrO3 showed remarkable damage in renal 

tubules (e.g. hyaline and granular casts), demonstrating the high nephrotoxicity 

of CCA and CrO3 compounds after 96 h (Matos et al., 2009a). Our previous 

studies also quantified the levels of arsenic, chromium and copper levels in 

kidneys of mice exposed to As2O5, CrO3 and CCA (Matos et al., 2009a, Matos 

et al., 2009b; Matos et al., 2010). For example, in mice exposed to CCA, the 

levels of Cr observed in the kidney ranged from 424 µg/g at 14 h to 173 µg/g at 

96 h. The levels of As were between 32.6 µg/g and 6.54 µg/g for the same 

periods (Matos et al., 2009a, Matos et al., 2009b, Matos et al., 2010). The levels 

of Cu were constant (approximately 16 µg/g in all exposure times) (Matos et al., 

2010).   

A protocol previously developed to release nuclei from paraffin embedded 

testicles was used (Oliveira et al., 2006b). Embedded material is not widely 

used in FCM as fresh or fixed material. The protocol showed high reproducibility 

for renal analysis and showed histograms of FCM with small coefficients of 

variation and narrow peaks, supporting that this preserved material is suitable 

for FCM analyses (Oliveira et al., 2006b). In the current work, CrO3 treated 

samples showed increases in HPCV of the G0/G1 peak, a parameter correlated 

with clastogenicity (Rayburn and Wetzel 2002), after 96 h. The different nuclei 

arresting observed for distinct phases (G0/G1, S and G2/M) of cell cycle 

promoted particularly by As2O5 and CCA treatments, suggests a cytostatic 

profile gradient of CCA > As > Cr, with CCA and As leading to an accumulation 
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of S-cells phases, but only As leading to a blockage in G0/G1 phase.  Our data 

support that As and Cr interfere differently with the cell cycle checkpoints, with 

As leading mainly to a delay in S phase, which may be then aggravated by the 

combination with Cr in the CCA. Similarly, Chen and Shin (2002) have 

disclosed that metals and metalloids might affect the expression and function of 

regulatory proteins at important cell cycle checkpoints. A trend for nuclei 

arresting at G1 phase, for 14, 24 and 96 h, in the groups of animals treated with 

As2O5 was observed in the present work. This result is in accordance with a 

previous study in which 10 mM NaAsO2 induced high toxicity to normal and 

transformed fibroblasts, with G0/G1 phase being the most affected (Waalkes et 

al., 2000). Waalkes and collaborators (2000) suggested that toxicity of arsenic 

was due to suppressor tumoral gene (p53), considered a key regulator of cell 

cycle. P53 is relevant for the modulation of another important protein, p21, a 

key regulator for the nuclei transition from G0/G1 to S phase (Megyesi et al., 

2002). On the other hand, Chen and Shin (2002) observed that trivalent arsenic 

was a phosphatase inhibitor. Phosphatase is required for the progression of 

nuclei from the G0/G1 phase to S and G2 phases. Therefore, their inhibition 

could affect the transition by arresting the nuclei at G0/G1 phase. On the other 

hand, for animals exposed to As2O5 during 24h, a delay in S phase was 

detected which induced a decrease in the percentage of cells in G2. Tse and 

co-workers (2008) also found an arrest at G1 in HaCat cells exposed to arsenic 

pentoxide. As reported above, exposure to CCA increased (48 and 96h) a S 

phase delay. For these same periods, previous studies by our group (Matos et 

al., 2009a) demonstrated the presence of acute tubular necrosis in animals 

exposed to CCA. Megyesi and co-workers (2002) proposed that after damage, 

the need for repair and/or regeneration of renal cells was based on the cell 

cycle, and their inhibition allows them to repair cell injuries prior to all 

replication. As shown for animals exposed to CrO3, As and CCA, the apparent 

tendency for a cell cycle arrest at G2 phase at 48 h (although not statistically 

significant, p>0.05) returned to the control values at 96 h. A transient delay in 

G2 phase was also observed by McCabe and co-workers (2000) in leukemia 

cells exposed to arsenite. These authors found that while G1 and G2 phases 

appear to be delayed by As, cells in G2 phase seem to be more sensitive to 

arsenite.   
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In conclusion, we report here that CCA and its individual components, 

chromium and arsenic have different effects on mouse kidney cell cycle 

dynamics. CCA and As compounds exhibited clastogenic effects, particularly in 

the S phase. The kidney, being a detoxifying organ, is a main target for CCA 

and its individual components. Although there are already some technologies to 

identify and remove CCA wood from wood recycling streams (Robey et al., 

2018; Jones et al., 2019; Kim et al., 2019), and considering the demonstrated 

toxicity of CCA and its constituents in renal cell genotoxicity, the authors 

emphasize the need for continuous and effective management of these 

hazardous products to protect public health. 
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Figure 1 Typical DNA frequency histogram of control deparaffinized mice renal cells (see text 

for details). (A) Cytogram of relative fluorescence light intensity from PI versus side angle light 

scatter (SS). Outside the close polygonal line are artifacts (i.e., 15.1 % of debris, doublets and 
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aggregates) electronically excluded form analysis. (B) Cell cycle histogram representing the 

linear fluorescence of the DNA stained with PI, showing calculated G0/G1, S and G2/M phases. 

 

 
Figure 2 - Cell cycle analysis for control and CCA treated animals for the periods of (A) 14h 

(B) 24h (C) 48h and (D) 96h. * means statistically differences (p<0.05)  
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Figure 3 Cell cycle analysis for control and CrO3  treated animals for the periods of (A) 14h (B) 

24h (C) 48h and (D) 96h.  
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Figure 4 Cell cycle analysis for control and As2O5 treated animals for the periods of (A) 14h (B) 

24h (C) 48h and (D) 96h. * means statistically differences (p<0.05).  
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