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Abstract

Abandoned mining and quarry areas are sourcestehtially toxic elements (PTESs), through lixiviates
or transfer processes of bioavailable fractionsfraining wastes and tailings. In this study, eadims
(Eisenia fetidaSavigny, 1826) were exposed for 28 days to two mgirgoils from a lead/zinc mine and
two quarry soils from an old serpentine quarry. [ikestheir pseudo total metal contents, a previous
characterization of these soils pointed out foroav Ichemical availability of PTEs. Therefore, a
multibiomarker approach was used and the respdrSefetidato soils was assessed through the analysis
of neurotoxic, oxidative stress, energy metabolaamd DNA damage biomarkers (acetylcholinesterase,
catalase, glutathione-s-transferase, lactate debgdase, lipid peroxidation and DNA strand breaks).
Metal bioaccumulation was also assessed to evahiaseailability and organism’s exposure. Results
showed that high contents of PTEs were recorddlerwhole body of earthworms exposed to lead/zinc
mine. However, the bioaccumulation factors for werexposed to soils from both sampling sites were <
1 due to the high PTEs contents in soils. Earthvgoerposed to both types of soils displayed neuiotox
and energy metabolism effects. However, signifidaméls of oxidative stress and DNA damage were
recorded only for earthworms exposed to lead/zintensoils. This study demonstrated that despite the
low availability of PTEs showed by previous seqisnthemical extractions, the results obtained from
the direct toxicity assessment performed in thiglgt highlight the importance of a multibiomarker

approach using soil organisms to provide a bettaluation of soils pollution.

Keywords: mild extractions; comet assay; metals; neurotoxicixidative stress; risk assessment

Abbreviations: AChE, AcetylcholinesteraseBAF, Bioaccumulation factor,CAT, catalase;GST,

glutathione-S-transferaseDH , Lactate dehydrogenadeRO, Lipid peroxidation NW, Northwest,OM,

organic matterPTEs, Potentially Toxic Element§;BARS, thiobarbituric acid reactive substances.
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1. Introduction

Mining and quarrying activities are the third saumaf Potentially Toxic Elements (PTESs) in European
soils. High amounts of waste materials are depidbsaéier mine processing, often without any
environmental mitigation actions (Panagos et al320Arenas-Lago et al. , 2018). These tailings are
usually exposed to weathering conditions, which aecelerate meteorization processes, and become a
source of PTEs to the surrounding ecosystems. &hesoils, which are a consequence of the alteration
of original soils by mining activities, are classt as spolic technosols according to WRB classifio
(IUSS Working Group WRB 2015) and have adverse adtaristics to microorganisms, animals and
plants development, such as low content of orgaratter, extreme pH values or unfavourable structure
and texture (Arenas-Lago et al. 2018).

The bioavailability of PTEs to ecosystems and sojjanisms can be determined by indirect (e.g.,
single or sequential extractions) or direct measyeeg., bioaccumulation of PTEs in plant and soil
organisms) (Lanno et al. 2004). In addition, theeasment of biological effects through organisitnéss
responses to PTEs improves our knowledge on totgchinavailability and mode of action (Lourenco et
al. 2011; Arenas-Lago et al. 2018; Mkhinini et2019).

In previous studies, different measurements of BHwailability and of bioavailability were done for
soils from an abandoned lead/zinc mine (contamihate Cd, Pb and Zn) (Arenas-Lago et al. 2014;
Lago-Vila 2017) and from an abandoned serpentirergucontaminated by Cr, Co and Ni) (Arenas-
Lago et al. 2016; Lago-Vila et al. 2015; 2017). sThias made through selective and sequential
extractions, and through the assessment of acctedutaetals by plants species growing spontaneously
in the study areaCi/tisus scopariuandFestuca rubrafor lead/zinc mine and quarry area, respectively).
A low availability of studied PTEs (up to 20% ofepsglo total concentrations) was recorded, with some
exceptions, for all the soils. In both cases, FefMides and Mg silicates had a strong influencehen
retention of studied elements (Arenas-Lago et @lL42 2016), and this was likely responsible by the
lower uptake by native plants (Lago-Vila et al. 202017). However, the bioavailability and toxicftyr
soil invertebrates were not evaluated for thesks.sBarthworms are excellent model organisms tesass
the bioavailability and toxicity of PTEs as theyeadirectly exposed through both ingestion of soil
particles and absorption by dermal contact (Becgtiel. 2005; Sizmur et al. 2009). Thus, in thigdgt
earthworms Eisenia fetidaSavigny, 1826) were exposed for 28 days to saisnfan abandoned

lead/zinc mine and a serpentine quarry, with défiféphysicochemical characteristics and PTEs ctsiten
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After exposure, the bioaccumulation of PTEs waemined through the quantification of earthworm'’s
body burdens. PTE’s toxicity was determined throdbl evaluation of changes in the activity of
severalbiomarkers of neurotoxicifyacetylcholinesterase (AChE)], oxidative strdsatalase (CAT)],
biotransformation and oxidative strepglutathione-S-transferases (GST)], energy metatfiistate
dehydrogenase (LDH)], and lipid peroxidatifthiobarbituric acid reactive substances-TBARS (LPO)
The analysis of DNA damages also was measured dlftaline comet assay. These biomarkers are
sensitive, time- and cost-effective and have besd in a wide range of scenarios, species anditipxic
assessment approaches (e.g. Cataldo et al. 20lce®ih et al. 2011; Lourenco et al. 2011; Bessd. e
2016; Boughattas et al. 2016; Correia et al. 2Rofriguez-Seijo et al. 2018).

Thus, the main objectives of this study were: iassess the bioavailability of PTEs on both soils,
through the assessment of their bioaccumulatio@asthworms and also their potential to induce fbkic
i) to compare the results recorded for direct b@kbility measurements (with earthworms as
bioindicators) with those obtained for the chemaailability by a mild extraction and by a seqtien

chemical extractions (Arenas-Lago et al. 2014, 2016

2. Materials and methods

2.1. Study sites and soil properties

This study was carried out with four contaminated samples from Galicia (NW Spain): i) two soils
from an old serpentine quarry (Penas Albas, Moeldhé Spain) (Soils S1 and S2), and ii) two soilsiiro
an abandoned lead/zinc mine (Rubiais mine, NW Jp@&nils S3 and S4) (Fig. 1). The selected soils
from each area have different physicochemical dtaristics, pseudo total contents of studied PTEs (
Cr, Ni, Cd, Pb and zn), and degrees of plant coVke physical and chemical properties (soil pHaltot
Kjeldahl-N, organic matter content and effectivéiaa exchange capacity) of these lead/zinc minés soi
and quarry areas, were already described in prestudies (Rodriguez-Seijo et al. 2014) (Lago-¥ila
al. 2015) (Table 1). An OECD artificial soil witi% of organic matter (pH 6.25 + 0.18), adjusted with

CaCQ, was used as a control soil for the ecotoxicolalgssays.

2.2. Determination of pseudo total and available PHEs content in soil samples
Pseudo total PTEs contents were extracted frong®2 soil by acid digestionafua regiaprocedure)

with a mixture of HNQ and HCI (1:3 v/v) in a microwave oven (Ethos 1;lédtone) (experimental
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conditions: 9 bar, 190°C and 45 min) (Lago-Vilaakt2017). A single Cagkxtraction was performed to
determine the available content of PTEs in theistlidoils (0.01 M CaGhcidified with HCI 0.1M, 1:10
w/v soil to extractant ratio, 2 h shaking) (Houlale 2000) (Table 1). In both cases, the concéotraf
PTEs in the extracts was determined by ICP-OESKk{PeElmer Optima 4300 DV) at CACTI-

Universidade de Vigo (Vigo, Spain).

Penas Albas quarry

e Rubiaisi;ik

Spain

Penas Albas quarry Rubiais Pb/Zn mine

Fig. 1.Location of study areas. Penas Albas quarry aréa(8 S2) and Rubiais Pb/Zn mine (S3 and S4)
(Source: SIGPAC 2015).

2.3. Earthworms analysis

2.3.1. Experimental procedure

Earthworms E. fetidg were selected for this study and obtained frotabmratory culture kept under
environmentally controlled conditions (photoperib@H:8h°; temperature 20 + 2 °C). The organisms
from the culture are fed with defaunated horse mamund oatmeal once a week and grown in plastic
boxes in a medium composed of sphagnum peat, hmarere, and deionised water.

Ten clitelated adult earthworms (weight rangingaeetn 300 and 600 mg) were added to each soil
sample and control-CTL replicates (four replicabgssoil sample), after being acclimatized to OECD
artificial soil for 24h. Soils water holding capgciWHC) was previously adjusted to 40% of their
WHCmax (OECD 1984, ISO 2008). Plastic containers werd k&R0 + 2°C with a light cycle of 16/8 h
light/dark for 28 days. Dry and defaunated horseuma (£ 5 g) was added every week during the test
period, as well as deionised water, whenever nacgs® maintain a constant soil water content.

After 28 days of exposure, the earthworms from @¢ashvessel were removed, rinsed with deionised
water and, to allow total clearance of the gut eoftleft to depurate for 24 h in a plastic corgaiwith
Milli-Q water moistened filter paper. Survival amekight change were assessed at the end of the test

period.
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2.3.2. Potentially Toxic Elements exposure and axdation by earthworms
Earthworms were thawed at room temperature and @tiéé0°C until constant weight. Hence, a pool of
two worms from each replicate (4 replicates pel wated) was digested with a mixture of 1 miO4
(30%) and 3 ml (HN@) (70%) (Ultra-pure reagents) (Rodriguez-Seijo let28@17). The solution was
filtered and diluted to 50 ml with Milli-Q water.agple blanks were obtained following the same
procedure but without the biological sample. Alirgdes were analysed using an ICP-OES. The Cd, Co,
Cr, Ni, Pb and Zn concentrations were expressedgakg” dry weight.

The bioaccumulation factor (BAF) of studied PTEsswalculated according to BAFGb/Cs where
Cbis the concentration of a given element in eartinug whileCsis the concentration of the element in

the soil sample (OECD, 2010).

2.3.3.Neurotoxicity and oxidative stress biomarkers

The neurotoxicity and oxidative stress responsea® wesessed through the determination of the gctivi
of specific enzymes (Sanchez-Hernandez 2006; Lionet al. 2012). Briefly, the activity of
acetylcholinesterase (AChE), catalase (CAT), ghitaie -S-transferases (GST), lactate dehydrogenase
(LDH) were determined according to the methodolsgieoposed by Ellman et al. (1961), Aebi (1984),
Habig (1974) and Vassault (1983), respectively.id_iperoxidation (LPO) was assessed through the
quantification of thiobarbituric acid reactive stdorxces (TBARS) according to Buege and Aust (1978).
Details about the methodology used for the enzyamasisays was well described by previous papers
published by our research group (e.g. Correia. &CHl7; Rodriguez-Seijo et al. 2018).

Three earthworms from each replicate, randomlycsede and previously depurated (24 h), were
pooled and homogenised in an ice-cold phosphateh(B0 mM, pH = 7.0 with 0.1% Triton X-100)
using a tissue homogeniser (T 10 basic ULTRA-TURRAXThe homogenates were then centrifuged
(3000rpm for 15 min, at 4 °C). Finally, the obtalngupernatant was separated and used for biochlemica
analyses. The same procedure was followed forhall experimental replicates. All biomarkers were
measured in triplicate for each replicate usingpectophotometer equipped with a microplate reader
(Thermo Scientific™ Multiskan™ GO UV/Vis microplagpectrophotometer). For all assays, the protein
concentration of the samples was determined by fBrdd method (Bradford, 1976), adapted to the
microplate reader and measured spectrophotoméyriadl595 nm in triplicate (Thermo Scientifit

Multiskan™ Go UV/Vis microplate spectrophotometer). Resultsravexpressed as nmol mimg®
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protein (AChE, CAT and GST), pmol mirmg* protein (LDH) and nmol MDA equivalents by thgf

protein (LPO).

2.3.4. Coelomocytes extrusion and DNA damage dicaiibn

DNA damage quantification was performed in earthwocoelomocytes (five worms from each
replicate), obtained following the methodology désed by Lourenco et al. (2012) and Correia et al.
(2017). Finally, DNA damage was visually scoredqutpht the observation of one-hundred nucleoids,
randomly selected, and graded into five classescf@and Mandina 2005; Correia et al. 2017): froto O
4, being 0 a nucleoid without damage and 4 a nictleih almost all the DNA in the tail (most damalge
cells). The results were reported as arbitrarysyrgalculated by multiplying the number of observed

comets (0-100) by the comet classification (0-4).

2.4. Statistical analyses

All the statistical analyses were performed witMIBPSS Statistics v23.0 software. To assess signifi
differences among earthworms exposed to the diffeseils for the measured parameters (AChE, CAT,
GST, LDH, LPO, DNA damage and PTEs content), ong-awaalysis of variance (ANOVA) was carried
out, after checking the homoscedasticity of varsnand the normality with Levene's and Shapiro-Wilk
tests, respectively. A significance level pf< 0.05 was chosen to reject the null hypothesis (no
differences between each group of exposed earthsjoMidhen significant differences were recorded,
Dunnett’s test was applied to determine which saihple induced significant responses in earthworms

when compared to the CTL (OECD soil).

3. Results and discussion

3.1. Soil properties and PTEs content in selectedissamples

The studied soils are classified as sand or saadm Isoils according to USDA classification, with

slightly alkaline or alkaline pH values (Table T)he organic matter (OM) and the Total Kjeldahl

Nitrogen contents were very low in the lead/zinmensoils (S3 and S4). Also, soil samples from the
qguarry area had low levels of nitrogen, howevee, @M contents were within the range described for
Galician regional soils and Spanish topsoils (CaleoAnta et al. 2015; Rodriguez-Martin et al. 2015)

All samples had low levels of ECEC (effective catiexchange capacity (< 7 cmg) kg?), except S2
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(19.59 cmol, kg?). The studied soils presented a base saturatioveba 99.8 and 100%, due to parent
rock material, and in the case of quarry soilsythad an imbalance of Ca/Mg (Rodriguez-Seijo et al.
2014; Lago-Vila et al. 2015).

The studied soils also had high levels of pseuthl ®TE concentrations above the generic reference
limits for ecosystem protection and industrial ysestablished for the Galician region (DOG 20089). |
each area, samples have differences between theandeethey originate from different grades of étgtiv
(Table 1). As expected, the levels of available ®Were lower than the pseudo total contents (< R%
mine soils and 12 to 17% for quarry soils). Theegtimn was recorded for Pb (up to 46% for S3) aad C

(23% for S1), respectively) (Table 1). The PTEswiigher levels were Ni, Pb and Zn (Table 1).

3.2. Exposure and accumulation of PTEs by earthworm

At the end of the 28 days of exposure, there wasmoatality and weight loss as not statistically
significant differences in exposed organisms weirded when compared to the control (OECD soil)
(ANOVA: F: 1.808;df: 4, 14;p = 0.1834). Significantly, higher levels of PTEs wéoeind in exposed
organisms when compared to the control (Table Bjs Was probably due to both direct dermal contact
with PTEs in interstitial water and the ingestiohsoil particles. Soil ingestion may increase PTEs
bioavailability, due to pH variability in the diffent compartments of the gastrointestinal tract of
earthworms, potentially increasing mobilization ijfenburg and Jager 2003; Becquer et al. 2005;
Hobbelen et al. 2006; Sizmur et al. 2009; Loureatal. 2011; Boughattas et al. 2016). According to
Song et al. (2002), the threshold concentratioreaithworm’s tissues that can lead to increasedatitgr

in E. fetidaare 300, 1300, 1700 and 300 mg'kdw for Cu, Zn, Pb, and Cd, respectively. The
concentrations found in this study were lower thawse required to induce death, except for Zn tevel

(average value of 1405 mg kglw for S4) (Table 2).



210 Table 1.Physical and chemical properties and PTEs condenmisafor each studiedoil (adapted from

211 Rodriguez-Seijo et al. 2014 and Lago-Vila et all20

Parameter Sampling sites

S1 S2 S3 S4
Soil use Control soil Quarry 'gailings. Mine tgilings_.

Serpentine quarry Lead/Zinc mine
pH Hac 6.25+0.3 7.94 +0.04 7.800.05 7.13+0.11 7.91+0.15
Organic matter (%) 453+£0.25 3.68+0.11 570830 0.43+0.03 0.14 £0.02
TKN (g kg?) 2.24+0.2 Bdl 0.42 +0.03 0.33+£0.02 0.30+£0.02

ECEC (cmol kg')  8.25+0.97 519+0.17 19.75+0.37 6.56 +0.194.91 + 0.31
Water holding 28.16+3.1 229+21 21.9+25 5433+54 22719

capacity (%)

Soil porosity (%) - 26.13+0.02 46.91+0.2 43130.03 29.68+0.1

Bulk density (g crii) - 1.84+001 1.35+0.01 1.44+0.01 180
Particle size distribution

Sand (%) 75.05+0.72 89.55+0.14 59.73+0.04 3®@.0.07 88.48+0.49

Silt (%) 17.39+0.72 6.62+0.14 26.06 £ 0.04 7490.07 11.52 +0.49

Clay (%) 8.43+0.53 4.05+0.45 1410+ 0.1 1.7 Bdl

USDA classification ~ Sandy Loam Sand Sandy Loam  Sand Sand
Pseudo total content of studied PTEs (mg)kg

Co - 109 +1 147 £1.2 92 +3.8 141+1.7

Cr - 1672 +110 2604 + 38 78+2.1 82+35

Ni - 2039+ 107 1861 +62 3629 29+1.2

Cd - Bdl Bdl 14 £0.6 43 £0.7

Pb - Bdl Bdl 2137 + 370 6761 + 1352

Zn - 33+3 63+5 12000 + 559 32000 + 3570
CaCl}, available contents of studied PTEs (mgkg

Co - 26+0.8 25.2+0.19 Bdl Bdl

Cr - 4.02 £0.05 7.65+0.17 Bdl Bdl

Ni - 274 +6.7 153 +3.2 Bdl Bdl

Cd - Bdl Bdl 0.35+0.01 0.80+£0.01

Pb - Bdl Bdl 987 £ 42 1022+ 38

Zn - Bdl Bdl 2688 + 33 4390 + 26

212 Average values * standard deviatior>(8). Bdl Below detection levelTKN Total Kjeldahl

213 Nitrogen; ECECEffective cation exchange capacity. Values inésaknd bold letter highlight values above the
214 guidelines for soils delivered by the Galician regibgovernment considering ecosystems protectiah an
215  industrial uses, respectively, for Cd (1 and 20kgd), Co (40 and 150 mg Kg, Cr (80 and 300 mg Ky, Ni

216 (75 and 200 mg kY, Pb (80 and 500 mg Kyand Zn (200 and 1000 mg Rg(DOG 2009).
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Table 2.Concentration of Cd, Co, Cr, Ni, Pb and Zn (mg kigy weight) inE. fetidaexposed to control

soil (OECD), quarry area (S1 and S2) and leadfmime (S3 and S4) sampling sites.

Element Sampling Sites

OECD S1 S2 S3 S4
Co Bdl 3.40 £ 0.9 3.10 £ 0.74a - -
Cr Bdl 18.76 £ 4.4a 15+3.7a - -
Ni Bdl 43.71 £ 10.6 35.7 £ 8.4a - -
Cd Bdl - - 1.63+0.34a 1.7 +0.6a
Pb Bdl - - 235+6.30 398.4+ 108.4a
Zn Bdl - - 250+ 66.1b 1405 + 368

Values are expressed as mean + standard deviBiibrhelow detection level. “-” not measured.
For each row, different letters in different sanspheeans significant differences from the worms sggo

to the control soil (one-way ANOVA test, LSD postchtestp < 0.05).

Soil physicochemical properties have a great imib@ein metal’s bioavailability and therefore, PTEs
uptake and accumulation by soil organisms. For gienearthworms exposed to S2 had similar PTEs
content in their bodies, when compared to thoseoseg to S1 (Table 2), although S2 has a higher
content of PTEs than S1. This could be explainedhgyhigher ECEC levels and by the higher clay,
organic matter (Table 1) and Fe/Mn oxides conteénS® compared to S1 (15.65 vs 2.24 g'kg
respectively), that contributed for reducing theawiailability of PTEs (Owojori et al. 2010; Arenhago
et al. 2016). The solubility of PTEs is also infiged by soil pH however, this factor was not of anaj
relevance in these soils as pH values were sit#dareen soils and slight to moderately basic.

In fact, and as mentioned above, Arenas-Lago et(24114; 2016) showed through sequential
extractions that only a small proportion of soil BBSTwas associated with exchangeable and organic
matter fractions for both sampling areas; therefoveas not the organic matter that had the mal@ i
reducing the chemical availability of PTEs in thesds. However, earthworms can ingest soil pasicl
and contaminants sorbed to poorly labile fractidbbsund to oxide and organic fractions), and their
passage through the gut can change the availabitity sorbed to exchangeable PTEs (Becquer et al.
2005; Sizmur et al. 2009; Nannoni et al. 2011; $izet al. 2011a,b) also observed that the ingestfon
PTEs bounded to soil components (mineral or oxidizctions) was an uptake route more significant
than the dermal uptake of dissolved ions from thiesolution. This could explain why higher levels
PTEs were found in earthworms exposed to soils witbw levels of bioavailable PTEs. Despite the
exposure, in all cases, the BAFs levels were dibwel, pointing for no bioaccumulation of these

elements in the organisms (Table 3).
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Table 3.Bioaccumulation Factor (BAF) values for earthworexposed to control (OECD), quarry area

(S1 and S2) and lead/zinc mine (S3 and S4) samples.

Element  >ampling Sites

OECD S1 S2 S3 S4
Co - 0.04 +0.0a 0.02 +0b - -
Cr - 0.01 £ 0a 0.01 £ 0a - -
Ni - 0.02+0a 0.02+ 0.01a - -
Cd - - - 0.11+ 0.02a 0.04+0.01b
Pb - - - 0.01+0b 0.06+ 0.01a
Zn - - - 0.02+ 0.01b 0.04+ 0.01a

Values are expressed as mean + standard deviatiorot measured.
For each row, different letters in different sanspheeans significant differences from the worms sggo

to the control soil between (one-way ANOVA test[_Bost hoc tesp < 0.05).

Similar results were also shown by several authassBAFs values decline with increasing PTEs
concentrations in soils (e.g., Nahmani et al. 2@@&ijnenburg and Vijver 2009, Colacevich et al. Qi
et al. 2018), as it was observed for BAF levelZof despite the high levels of Zn found in the bofly
organisms exposed to quarry soils. Alike resultsewalso reported for earthworms exposed to
metalliferous soils with levels of contaminatiomdar to those found in our studies (e.g., Morgad a
Morgan 1998, Andre et al. 2009, Colacevich et@l1). Earthworms also did not bioaccumulate some of
the studied PTEs, probably because of their alidityegulate and excrete them efficiently.

In general, BAF values were consistent with thaswigded by the sequential extraction carried out by
Arenas-Lago et al. (2014, 2016) consistently pomtifor the low chemical availability and low

bioavailability of PTEs in the studied soils.

3.3. The neurotoxic and oxidative stress responsetearthworms exposed to PTES rich soils
Increased uptake of PTEs does not always meanasedetoxicity for earthworms. Uptake and adverse
effects of PTEs can be modified by earthworms’ phlggical factors involved into regulation of metal
levels in their tissues or in their ability to elmate the excess of PTEs, such as, an increment of
chloragosomes for metal sequestration or metatdsieformation into less toxic species (Dai et 802
Nahmani et al. 2007, Stankovic et al. 2014, Warty@ui 2016, Li et al. 2018).

The impact of PTE concentrations on nheuromuscuataractions and in the oxidative stress system of
E. fetidais shown in Fig. 2 for organisms exposed to sagifsteam the quarry and mining area.

Although the acetylcholinesterase (AChE) has beewmpgsed as a biomarker of exposure to

neurotoxic compounds such as organic contamin&tEs may also inhibit AChE activity (Labrot et al.
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1996; Gaitonde et al. 2006; Lionetto et al. 2012ngxing et al. 2016). However, stimulatory effeafs
metals mixtures (Cr, Cu, Ni, Pb, Zn) on AChE ativivere also reported (Zheng et al. 2013). In the
present study, a significant inhibition of AChE iaity compared to the control group (OECD soil) was
observed for earthworms exposed to samples frongtiaery area (ANOVA: F=65.60; d.f.=2, 26; p <
0.0001; Fig. 2a) and lead/zinc mine area (ANOVA:F36; d.f.=2, 26; p < 0.0001; Fig. 2a). Inhibition
of AChE in exposed earthworms were ranged from 48%) to 68% (S2), and inhibitions of AChE
activity above 20% has been proposed as indicafiexposure to anticholinesterase agents (Ludk et
1975; Menéndez-Helman et al. 2015; Fajardo and @oa2018). Different PTEs such as Cd, Co, Cr, Pb
and Zn have been proposed as inhibitors of AChHnflai et al. 2002; Frasco et al. 2005; Gaitonde et
al. 2006; Dongxing et al. 2016; Hayat et al. 20Mkhinini et al. 2019), while Ni has shown
contradictory results (Frasco et al. 2005; Hayatl €2017). Our results indicate that the exposaoitgoth
types of soils displayed neurotoxic effects onleaorms.

Catalase is an important component of the antiowidizfence system, an antioxidant enzyme that
regulates the amount of,8,, protecting cells from their toxic effects (Ghrigi al. 2019). In our assay,
CAT activity was significantly inhibited on S2 frothe quarry area (ANOVA: F=5.719; d.f.=2, 15; p =
0.0143; Fig. 2b), but their activity was signifi¢gnincreased in the S3 sample from the lead/zineemn
(ANOVA: F=9.789; d.f.=2, 12; p =0.003; Fig. 2b).

In the earthworms exposed to quarry soils, otherymes may have been activated to avoid an
oxidative stress response (Zhang et al. 2009; 28a8tana et al. 2018; Yin et al. 2018; Ghribi et al
2019). In fact, despite the inhibition of CAT adtyy no significant increase in lipid peroxidatiovas
recorded in these samples, as a reduction on thA btibcentration was observed (ANOVA: F=54.52;
d.f.=2, 28;p < 0.0001; Fig. 2e).

Earthworms exposed to the lead/zinc mine samplewesth a different enzymatic activity profile with
an increase in CAT activity, but only significaor fS3 (Fig. 2b). These results suggest that earthg/o
exposure to high levels of Cd, Pb and Zn may indateoxidative stress response and, consequently,
catalase activation (Ghribi et al. 2019). Such oesp was able to prevent lipid peroxidation on sgpo
organisms, as lipid peroxidation levels were sigaiftly decreased for exposed organisms (ANOVA:
F=6.744; d.f.=2, 34p = 0.0034; Fig. 2e). Although other enzymes of thé-axidant system may have
been involved in oxidative stress response, this wat the case of GST, because no significant

differences, between worms exposed to control amdaeninated soils, were detected in our study (Fig.
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2¢). According to Grelle and Descamps (1998) oritdnat and Scarps (2001), GST activityinfetida,

is not affected by PTEs, but that is not suppobigdther studies (e.g., Cataldo et al. 2011; Waniy)de
2014; Ojo et al. 2016). Therefore, there is stillaonsensus in the usefulness of GST as a biomafker
PTEs exposure. Similar results have been previodsiscribed by other authors for multi-metallic
contamination on marine and terrestrial invertedsgiRodriguez-Ariza et al. 1992, Labrot et al. 1996
Ramos-Gomez et al. 2008, Balgit al. 2016). In any case, our results, suggesttiiese variations could
be indicative of compensatory antioxidant defencadaptative mechanisms for long-term exposures and
high PTE concentrations, as indicated by Labrat.et1996) and Babiet al. (2016).

The energy metabolism was affected in earthwornposed to the most contaminated sample from
the quarry area (S2) (ANOVA: F= 5.465; d.f.=2, p5+ 0.0165) (Fig. 2d), while the LDH activity was
also reduced in earthworms exposed to both sarfglesthe lead/zinc mine (ANOVA: F=42.31; d.f.=2,
17;p < 0.0001) (Fig. 2d). These results suggest an inenénm the anaerobic metabolism under PTEs
stress (Diamantino et al. 2001, Bessa et al. 2Gh&),was more evident for samples from the lead/zi
mine (Cd, Pb, and Zn as primary contaminants) tloarthe quarry area (Co, Cr and Ni as primary

contaminants).

3.4. DNA damage

The effect of PTEs exposure on DNA was evaluatealith comet assay for earthworms exposed to both
study areas (Fig. 3). An increase in DNA damage olzerved for earthworms exposed to both areas,
although with some differences. While no significdifferences were observed between worms exposed
to samples from the quarry area and control s@éiSGVA, F: 0.747; d.f.: 2,6p = 0.5129) (Fig. 3),
significant differences were detected between aamims exposed to lead/zinc mine samples and those

exposed to the control (ANOVA, F: 5.277; d.f.: 206+ 0.0476) (Fig. 3).
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Fig. 2. Mean activity of acetylcholinesterase (a), caldb), glutathione S-transferase (c), lactate
dehydrogenase (d) and lipid peroxidation (e)Eirfetidafollowing 28 days exposure to control (OECD
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Asterisks indicate a significant differences to toatrol p < 0.05).
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Earthworms exposed to samples from the lead/zimer{€d, Pb and Zn as contaminants) showed a
higher frequency of cells with more considerable DNamage (classes 2, 3 and 4) than organisms
exposed to samples from the quarry area (Co, CiNan¢Fig. 4). The differences observed between the
soils analysed, may be explained by the differenée®il properties and available contents betwisath
areas, as the bioavailable fraction of PTEs wakdrifpr the lead/zinc mine area (up to 20%, altimoib
showed up to 43% of Pb for soil S3) than for tharquarea (around a 12-17%, although Co showed up

to 23% for S1).
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Fig. 4. Percentage of coelomocytes with various levelDHAA damage irEisenia fetidaafter exposure

to control (OECD soil), quarry (S1 and S2) and nsois (S3 and S4)..

The higher concentration of PTEs observed in eantms exposed to S3 and S4 may have increased
oxidative stress, which in turn may have increa@dA damage (Reinecke and Reinecke 2004; Taze et
al. 2016; Wu et al. 2016), however other factors/ raso be involved. According to Bigorgne et al.
(2010) in a study performed with OECD soils spikeih Cr and Ni, soil properties can also have
significant impact for the occurrence of genotorifects inE. fetida The interaction between soil
components and PTEs, depending on their naturespecation, may change metal availability and their
genotoxicity, as some metal species interact withADmore efficiently than others, conferring them a
higher genotoxic potential (Reinecke and Reined@42 Manerikar et al. 2008; Bonnard et al. 2010). |
this case, for lead/zinc mine (Fig. 4), DNA damaggults may be related to Cd toxicity, rather tRénor

Zn, as indicated by Li et al. (2009), Muangphra @wbneratne (2011) or Wu et al. (2012). These astho
reported, for soils contaminated by Cd and Pb, BHdA damage was more severe under Cd exposure
than Pb for earthworm&( fetidaandPheretima peguanaynder monometallic and combined exposure
of these metals. Wu et al. (2012) indicated thatdbmbination of Cd and Pb can give antagonisttsssu
due to the competition of both elements by the seneptors at the biomembrane. Voua Otomo et al.

(2014) described a similar situation wih andreiexposed to an artificial soil spiked with Cd, Zrdan
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Cd/zn, where Cd was more genotoxic than Zn, antdahiagonist interactions were also indicated lier t
metal mixture.

Regarding the response observed for oxidative stresmarkers and the DNA damage observed, it
was expected that the inhibition of CAT and LDHiwities recorded in earthworms exposed to S2 from
the quarry area (Fig. 2b, 2d), would increase DNugrability to oxidative damage. However, that was
not observed in this study. Also, the incremenChT activity observed for S3 from lead/zinc mineswa
expected to contribute to the protection of DNAiagaoxidative stress in earthworms exposed to this
mine soil. However, significant DNA damage was dttd in the organisms exposed to S3 soil. These
results suggest that alterations in CAT activity dot play a significant role in the protectionmflA.

The lack of extensive DNA damage, in the organiemgosed to quarry soils (Fig. 4), despite the
known genotoxicity of Cr and Ni (Bigorgne et al.12), may be explained by their low availability and

also the presence of metals species that may tasaot with DNA so efficiently.

4. Conclusions
In the previous works, sequential chemical extomdifor both areas showed that the proportion bf so
PTEs levels associated with exchangeable and argaaiter fractions were very low, pointing for the
low bioavailability of PTEs. However, in this study mild salt extraction showed a clear difference
between the quarry and mine soils, as the lat®wet a higher chemical availability of Cd, Pb amdiZ
parallel with higher contents of these metals mhbdy of earthworms. This was also coincident with
observed neurotoxic and oxidative stress effestsyell as with the detection of significant DNA dage
in earthworms exposed to mine soils. The opposite ecorded for the quarry soils, as the low chalmic
availability was coincident with no oxidative stsemnd no DNA damages. Only neurotoxic effects were
recorded in earthworms exposed to the quarry sBifd- values never indicated a significant PTEs
bioaccumulation, given the high concentration ofsth elements in the soils. However, this study,
demonstrates that depending on the method, chemrmn@édlability may give a wrong perception of the
risks posed by contaminated soils. Therefore, studor risk assessment of abandoned mining areas
should be performed using an integrated approaath itttludes chemical and biological analyses, to
obtain a realistic perspective on the toxicity gbgeexposed organisms.

Complex contaminated environments such as abandqmedy and mining areas, with a mixture of

contaminants, chemical transformations, inheremirenmental factors, and the potential for contaamin
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interactions, can cause a myriad of effects on segmrganisms. Multibiomarker assessments should be
carried out to improve the knowledge and reducestamties on complex environments such as those

that involve metal mixtures.
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Highlights:
- Sequential chemical extractions may underestimate the hazard of soils contaminated with PTEs.
- A multibiomarker approach provides a better evaluation of PTEs bioavailability in complex soils.

- BAF values may provide misleading conclusions about soils hazardous to earthworms.
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