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ABSTRACT 28 

Shellfish farming and shellfish harvesting has been practiced for a long time in the Ria de Aveiro 29 

coastal lagoon (Portugal). Among commercial bivalves, Manila clam Ruditapes philippinarum 30 

represents one of the most important species inhabiting the Ria de Aveiro. Introduced in Portugal in 31 

1984, naturalised R. philippinarum clam populations have been subjected to several pressures that 32 

may threaten this resource sustainable management: illegal fishing, harvesting in chemically polluted 33 

sites with impacts on human health, lack of control in terms of productivity with the risk of a 34 

progressive decline of the biomass. On behalf of the ASARISAFE project (with the title Safety and 35 

sustainable management of valuable clam product in Portugal and China) the environmental quality of 36 

Manila clam harvesting sites was evaluated, focusing on inorganic pollution, health status of clams in 37 

terms of bioaccumulation as well as biochemical performance. Seasonal sampling campaigns were 38 

conducted in six R. philippinarum harvesting areas evaluating inorganic pollution levels, in clam’s 39 

tissues, sediment and water. Clams biochemical performance in terms of metabolism, energy 40 

reserves and oxidative stress was also assessed. The results obtained showed that mercury and 41 

arsenic (As) were the elements with the highest BAF (Bioaccumulation factor) values, but 42 

contamination levels in tissues and sediments varied among sampling areas and seasonal 43 

campaigns. The amount of clams consumed per week to exceed Provisional Tolerable Week Intake 44 

(PTWI, kg) was the lowest for As, revealing that less 0.05 kg of clams was enough to exceed PTWI. 45 

However, the results obtained further demonstrated that the clam’s biochemical performance was not 46 

responding to tissues contamination levels but were closely related to seasons, with distinct metabolic 47 

capacity and oxidative stress levels among distinct sampling periods during the year. 48 

 49 

Keywords: Clams; metal contamination; safety consumption; seasons; biochemical performance. 50 
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1. INTRODUCTION 52 

 53 

Coastal ecosystems, including lagoons and estuaries, are complex systems with high primary 54 

production (McLusky, 1999). They have a role of paramount importance in providing several 55 

ecosystem services, often associated to the sustenance of vast biological resources (Lillebø et al., 56 

2015). However, these ecosystems are often negatively impacted by natural shifts (Govender et al., 57 

2011) and anthropogenic activity (Langston et al., 2010), including climate change related factors and 58 

pollution. Classical environmental monitoring and ecological health status evaluation through water 59 

and sediment chemical analysis associated to the evaluation of biological effects upon inhabiting biota 60 

are approaches commonly used (WFD, 2000/60/EC) in order to assess negative impacts derived from 61 

chemical exposure before it becomes relevant in superior levels of the biological organization (Picado 62 

et al., 2007). Environmental monitoring has been based on the effects induced in benthic organisms, 63 

by the evaluation of alterations at the community level (benthic community parameters), and more 64 

recently, on individual and cellular levels (physiological and biochemical markers), mainly to assess 65 

the impacts of pollutants but, more recently, to investigate alterations derived from climate change, 66 

especially related with extreme weather events. Cellular alterations are widely described in literature 67 

as a response to natural and anthropogenic stressors (Magalhães et al., 2018, Munari et al, 2018, 68 

Gonçalves et al., 2017, Velez et al., 2016a, Carregosa et al., 2014, Harley et al. 2006). In particular, 69 

cellular biomarkers have been used to assess the negative impacts of metals and metalloids 70 

(Coppola et al., 2018), temperature (Keller et al., 2004), salinity (Freitas et al., 2015, Moreira et al., 71 

2016) and pH (Velez et al., 2016b). Within benthic macrofauna assemblages, clam species are 72 

identified as important bioindicators due to their high abundance and filter-feeding habits and socio-73 

economic relevance (reviewed in Bebianno et al., 2004).  74 

The Manila clam (Ruditapes philippinarum) is a native species from the Indo-Pacific region, 75 

introduced in Europe at the beginning of the 1970s for culture purposes (Flassch and Leborgne, 1992, 76 

Jensen et al., 2004), becoming a highly exploited resource (Pranovi et al., 2006, Dang et al., 2010). 77 

This species is commonly exploited in a wide variety of aquatic systems due to its fast adaption to 78 

new environmental scenarios, fast growth and high commercial value (Usero et al., 1997). More 79 

recently, R. philippinarum (Adams and Reeve, 1850) was introduced in Portugal, being currently one 80 

of the most widely used bivalve species to assess environmental quality (Costa et al., 2013, Martín-81 
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Diaz et al., 2007, Shin et al., 2002). As an example, Costa et al. (2013) performed histopathological 82 

assays in R. philippinarum specimens, aiming to assess the environmental quality of the Portuguese 83 

south coast. Studies conducted by Moschino et al. (2012) also demonstrated the capacity of Manila 84 

clam as a bioindicator species, revealing the clam’s responses to pollutants concentrations. 85 

Nevertheless, under environmental conditions when ecosystem pollution levels are low it is often 86 

difficult to determine whether effects are due to pollutants or natural environmental shifts closely 87 

linked with the organism’s life cycle (Sheehan and Power, 1999, Hook et al., 2014), which can 88 

seriously compromise the interpretation of monitoring data. Thus, it is important to understand how 89 

the natural variations associated with seasonal changes such as salinity and temperature may impact 90 

the inhabiting fauna life cycle and, consequently, can alter the organism’s responses to pollutants. 91 

Therefore, the general aim of the present study was to evaluate the capacity of R. 92 

philippinarum as bioindicator species in a low contaminated coastal system along four distinct 93 

seasons, testing the hypothesis that pollution levels may hide the effects induced by seasons on the 94 

clam’s natural biochemical performance. For this, the biochemical performance of R. philippinarum 95 

specimens, collected from six different areas along the Ria de Aveiro (Portugal), characterized by 96 

different metal(oid)s concentrations, was assessed during four seasons (spring, summer, fall, winter). 97 

The risk for human health derived from clam’s consumption was also evaluated.  98 
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2. METHODOLOGY 99 

2.1. SITE DESCRIPTION 100 

The present study was conducted at the Ria de Aveiro (Figure 1), a shallow, vertically 101 

homogeneous, coastal lagoon located on the northwest coast of Portugal. This aquatic system is 45 102 

km long and 10 km wide, comprising a total surface area of 83 km2 at high tide, with 17 km2 of 103 

intertidal flats emerging at low tide (Dias et al., 2000). In addition, this aquatic system is characterized 104 

by narrow channels and by large areas of mud flats and salt marshes (Picado et al., 2009).  105 

Sampling was conducted in six different areas selected along the lagoon: Torreira (T - 40° 45' 106 

43.0'' N, 8° 41' 56.7''W), Sporting (S - 40° 40' 15 .2'' N, 8° 38' 45.9''W), São Jacinto (SJ - 40° 42' 24.1'' 107 

N, 8° 41' 50.6''W), Ílhavo (I - 40° 36' 59.3'' N, 8 ° 40' 51.3''W), Murtosa (M - 40° 43' 25.8'' N, 8° 3 9' 108 

33.8''W) and Cale do Ouro (CO - 40° 42' 02.9'' N, 8 ° 41' 09.3''W) (Figure 1). 109 

 110 

2.2. SAMPLING PROCEDURE 111 

In each studied area, three sampling sites were selected and seasonally sampled (Winter, 112 

Spring, Summer and Autumn), from late 2017 to early 2019. 113 

From each sampling site, eighteen specimens of R. philippinarum with similar size were 114 

collected (length: 4.6±0.64; width: 3.7±0.26). The whole soft tissue of three individuals was used for 115 

elements quantification, while the other fifteen individuals were used for biochemical analyses. 116 

Additionally, at each sampling site, pH, salinity, dissolved oxygen (DO), redox potential (Eh) 117 

and temperature were measured in the sediment-water interface using a handheld multiparametric 118 

probe. Sediment samples were collected for sediment grain-size analysis, total organic matter (TOM) 119 

determination and elements (chromium, Cr; nickel, Ni; copper, Cu; lead, Pb; cadmium, Cd; mercury, 120 

Hg; arsenic, As) quantification. 121 

Organisms and sediment samples for TOM determination and elements quantification were 122 

stored and transported on ice (approx. 0 °C) to the  laboratory and afterwards preserved at −20 °C 123 

until analyses. 124 

 125 

2.3. LABORATORY PROCEDURES 126 

2.3.1. ENVIRONMENTAL PARAMETERS 127 
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Sediment grain-size was carried out following the procedure described by Quintino et al. 128 

(1989). Silt and clay fraction (fine particles, with diameter < 0.063 mm) were wet sieved, whereas 129 

sand (0.063 – 2.000 mm) and gravel (particles with diameter > 2.000 mm) fractions were dry sieved 130 

through a tower of sieves spaced at 1 phi (Φ) (Φ = −log2 the particle diameter (mm)). Data were used 131 

to calculate the median grain-size value, P50, expressed in Ф units. Median grain-size and the 132 

percentage of fines content were used to classify the sediment, according to the Wentworth scale: 133 

very fine sand (median from 3 to 4 Ф); fine sand (2–3 Ф); medium sand (1–2 Ф); coarse sand (0–1 Ф); 134 

very coarse sand (−1 to 0 Ф). All sediment grain-size fractions were expressed as a percentage of the 135 

whole sediment dry weight (DW). The final classification adopted the description ‘clean’, ‘silty’ or ‘very 136 

silty’ when the silt and clay fraction ranged from 0% to 5%, from 5% to 25% and from 25% to 50% of 137 

the total sediment DW, respectively (Doeglas, 1968). Samples with more than 50% fines content were 138 

classified as mud. 139 

Total organic matter content (TOM) was determined according to Byers et al. (1978) as loss 140 

on ignition at 450 °C (with minimal risk of volatiz ing inorganic carbon) during 5 h. 141 

 142 

2.3.2. ELEMENTS DETERMINATION 143 

The concentration of mercury in water was determined by cold vapor atomic fluorescence 144 

spectroscopy (CV-AFS), with a PSA Millennium Merlin 10.036 analytical instrument, equipped with a 145 

detector PSA model 10.003. Stannous chloride (2% in 10% HCl) was used as reductant, and six 146 

standard solutions of Hg ranging between 2.5 and 60 ng/L, prepared by dilution of a commercial stock 147 

solution (Hg(NO3)2, 1000 ± 2 mg/L) in HNO3 (2% v/v), were used to obtain the calibration curve. The 148 

limit of quantification of the method was assumed as the lowest calibration standard, and a relative 149 

standard deviation among replicates <5% was considered. 150 

In sediment and organisms, mercury was directly quantified in freeze-dried samples (2-20 151 

mg) by thermal decomposition atomic absorption spectrometry with gold amalgamation (LECO model 152 

AMA-254), as described by Costley et al. (2000). Detection and quantification limits were 0.01 ng Hg 153 

and 0.03 ng Hg, respectively. Each sample was analysed at least in triplicate with an acceptable 154 

relative standard deviation among replicates <10%. Blanks were run between sample analyses, and 155 

Certified Reference Materials TORT-2 (Lobster hepatopancreas; 0.27±0.06 mg/kg of total Hg) and 156 
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MESS-3 (Marine Sediment, 0.091± 0.009 mg/kg of total Hg) were analysed several times daily. All 157 

percentages of recovery were within the range of 90-110%. 158 

The concentrations of Cu, As, Cd, Pb, Ni and Cr in water were measured by Inductively 159 

Coupled Plasma-Mass Spectrometry (ICP-MS) at the Central Analysis Laboratory of the University of 160 

Aveiro. All samples were previously diluted 15x in HNO3 (2 %, v/v) to avoid interferences (due to the 161 

matrix) associated with salinity. The limits of quantification in water samples for the studied elements 162 

were assumed as the lowest calibration standards: 2 µg/L (As, Cu), 1 µg/L (Ni), 0.5 µg/L (Cr), 0.2 µg/L 163 

(Pb) and 0.1 µg/L (Cd). 164 

In sediments and clams, the concentrations of Cu, As, Cd, Pb, Ni and Cr were also analysed 165 

by ICP-MS, after microwave assisted acid digestion, using a microwave system CEM MARS 5, model 166 

240/50. For quantification in sediments, 200 mg of homogenized air-dried sample was digested with 3 167 

mL of HNO3 (69%) and 6 mL of HF (40%) in Teflon vessel during 5 min with a ramping heating until 168 

175 °C, followed by 5 min at constant temperature o f 175 °C. The samples were then evaporated 169 

near to dryness at 175 °C in a plate heater, follow ed by re-dissolution with 1.5 mL HCl (1:1 V/V) and 1 170 

mL HNO3 (69%), and finally transferred into 25 mL polyethylene flasks with the volume made up with 171 

ultrapure water. For quantification of the clam’s soft tissues, 200 mg (previously frozen-dried) was 172 

transferred to Teflon bombs with 1 mL HNO3 65% (v/v) (Suprapur, Merck), 2 mL H2O2 and 1 mL mili-173 

Q H2O. Samples were left 15 min in the microwave with increasing temperature up to 180 ºC, which 174 

was maintained for 3 min. After cooling, samples were collected in polyethylene flasks, made up to a 175 

final volume of 25 mL with ultrapure water and stored at room temperature until quantification. The 176 

quality control was assured by running procedural blanks (reaction vessels without sample) and 177 

certified reference materials TORT-2 (for clams) and MESS-3 (for sediments) in parallel with samples. 178 

All blanks were below the quantification limit and the element recoveries in reference materials were 179 

always within the acceptable range of 80 to 120%. 180 

 181 

2.3.3. BIOCHEMICAL PARAMETERS 182 

After sampling, the clams were frozen, pulverized individually with liquid nitrogen and divided 183 

in 0.3 g fresh weight (FW) aliquots. Biochemical analyses were repeated in duplicate for each sample 184 

and biomarker. Extractions were performed using a 1:2 (w/v) proportion of specific buffers such as 185 

20% (w/v) trichloroacetic acid (TCA) buffer to perform lipid peroxidation (LPO). Reduced (GSH) and 186 



7 
 

oxidized (GSSG) glutathione parameters were carried out using a KPE buffer with 0.1% (v/v) Triton X-187 

100 and 0.6% (w/v) sulfosalicylic acid. Potassium phosphate (50 mM, pH=7), 1mM EDTA, 1% (v/v) 188 

Triton X-100, 1mM DTT was used to perform superoxide dismutase (SOD), catalase (CAT), 189 

glutathione peroxidase (GPx), S-glutathione transferase (GST’s), protein (PROT), glycogen (GLY) 190 

and Acetylcholinesterase (ATChI-ChE) tests. To assess electron transport system (ETS) activity, 191 

samples were extracted using a 0.1 M Tris-HCl pH 8.5 with 15% (w/v) PVP, 153 µM magnesium 192 

sulfate (MgSO4) and 0.2% (v/v) Triton X-100 buffer. 193 

 194 

2.3.3.1. Indicators of cellular damage and redox balance 195 

LPO was measured by quantifying malondialdehyde (MDA) according to the method 196 

described by Ohkawa et al. (1979) and the respective modifications referred in Carregosa et al. 197 

(2014). Absorbance was read at 535 nm (ε = 156 mM−1 cm−1). LPO levels were calculated using 198 

Lambert-Beer Law and expressed in nmol of MDA formed per g of FW. 199 

GSH and GSSG glutathione contents were determined according to Rahman et al. (2006) 200 

using GSSG as standards. Absorbance of GSH and GSSG was read at 412 nm. GSH and GSSG 201 

were expressed in µmol per g of FW. Reduced to oxidised glutathione ratio (GSH/GSSG) was 202 

calculated dividing GSH content by 2 x the amount of GSSG (adimensional). 203 

 204 

2.3.3.2. Enzymatic defences   205 

SOD activity was determined based on Beauchamp and Fridovich (1971) method. SOD 206 

standards (0.25 – 60 U/ml) were used to perform calibration curve and SOD activity was measured 207 

spectrophotometrically at 560 nm. Activity was expressed in units of enzyme (U) per g of FW. One U 208 

corresponds to the conversion of 1 µmol per min. 209 

CAT activity was quantified according to Johansson and Borg (1988). The assay was carried 210 

out using formaldehyde standards and the absorbance was measured at 540 nm. The results were 211 

expressed in U per g of FW. One U is defined as the amount of enzyme that caused the formation of 212 

1.0 nmol of formaldehyde, per min. 213 

Activity of GPx was quantified following Paglia and Valentine (1967). The absorbance was 214 

measured at 340 nm and determined using ε = 6.22 mmol-1cm-1 and the results were expressed as U 215 
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per g of FW. One unit of enzyme (U) represents the number of enzymes that caused the formation of 216 

1.0 µmol nicotinamide adenine dinucleotide phosphate (NADPH) per min. 217 

GSTs was determined following Habig et al. (1974). The absorbance was determined at 340 218 

nm using an extinction coefficient of 9.6 mM−1 cm−1, expressed in U per g of FW. One unit of enzyme 219 

(U) corresponds to the amount of enzyme that caused the formation of 1 µmol of dinitrophenyl 220 

thioether per min. 221 

 222 

2.3.3.3. Metabolic capacity and energy reserves 223 

ETS activity was measured based on King and Packard (1975) and modifications performed 224 

by De Coen and Janssen (1997) and the absorbance was read at 490 nm using Ɛ = 15,900 M−1cm−1, 225 

expressed in nmol/min per g of FW.  226 

PROT content was determined according to Robinson and Hogden (1940) and was carried 227 

out using bovine serum albumin (BSA) standards. The absorbance was read at 540 nm. Results were 228 

expressed in mgµ of PROT per g FW. 229 

Following the procedure described by Dubois et al (1956), GLY was quantified by the phenol–230 

sulfuric acid method using glucose standards. The absorbance was measured at 492 nm. Results 231 

were expressed in mg of GLY per g of FW. 232 

 233 

2.3.3.4. Neurotoxicity 234 

Acetylthiocholine iodide (ATChI, 5 mM) substrates were used for the determination of 235 

Acetylcholinesterase (ATChI-ChE) following the methods of Ellman et al. (1961) and modifications by 236 

Mennillo et al. (2017). The absorbance was measured at 412 nm and determined using ε = 13600 237 

nmol-1cm-1. The results were measured in nmol per min per g of FW and express the formation of the 238 

dianion of 5-thio-2-nitrobenzoic acid (TNB) per unit time (minute).  239 

 240 

 241 

2.4. DATA ANALYSIS  242 

Bioaccumulation factor (BAF) was determined dividing the total concentration of a given 243 

element in the organism tissue (DW) by the concentration of that element in the sediment (DW) 244 

(McGeer et al., 2003). The data matrix with the BAF per site and season [BAF x sampling area x 245 
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season] was normalised and the Euclidean similarity calculated between sampling areas. A Principal 246 

Coordinates Ordination analysis (PCO) was used to visualize differences among areas. The abiotic 247 

data highly correlated (r > 0.75) were represented as superimposed vectors in the graph. 248 

Data on sediment characteristics (contamination and physico-chemical properties) and 249 

species contamination were submitted to hypothesis testing using permutation multivariate analysis of 250 

variance with the PERMANOVA + add-on in PRIMER v6 (Anderson et al., 2008). The pseudo-F 251 

values in the PERMANOVA main tests were evaluated in terms of significance. When the main test 252 

revealed statistical significant differences (p ≤ 0.05), pairwise comparisons were performed. The t-253 

statistic in the pair-wise comparisons was evaluated in terms of significance among different 254 

conditions. The main null hypotheses tested were: a) considering clams bioaccumulation, for each 255 

area, no significant differences existed among different seasons; b) considering clams 256 

bioaccumulation, for each season, no significant differences existed among different areas. 257 

The data matrix including biomarkers and environmental data per site was normalised and the 258 

Euclidean distance calculated among centroids (i.e. the mean position of all the points representing a 259 

given sampling site for each one of the 4 seasons). Afterwards, the Euclidean similarity matrix was 260 

analysed using the PERMANOVA + add-on in PRIMER-E v.6 (Anderson et al., 2008) following 261 

unrestricted permutation of the raw data (9999 permutations) and the calculation of type III sums of 262 

squares. The main null hypotheses were: 1) considering clams biochemical responses, for each area, 263 

no significant differences existed among different seasons; 2) considering clams biochemical 264 

responses, for each season, no significant differences existed among different areas. 265 

Afterwards, the matrix containing biomarkers and metal(oids) concentrations per sampling 266 

area and season was used to perform another Principal Coordinates Ordination (PCO) analysis. In 267 

the PCO graph, the variables presenting a correlation higher than 75 % with samples ordination were 268 

represented as superimposed vectors. 269 

  270 
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3. RESULTS 271 

3.1 ENVIRONMENTAL PARAMETERS  272 

In the present study, the obtained results showed that salinity and water temperature were 273 

higher in the Summer compared to the coldest seasons, Winter and Autumn, which presented the 274 

lowest values respectively. In warmer seasons, area T presented the highest temperature values, 275 

while areas S and CO were the coldest ones. Nonetheless, the lowest water temperature value of this 276 

study was recorded during Autumn in area M. Regarding salinity, the highest value was obtained in  277 

area T, during summer sampling, but CO presented the highest values in the remaining seasons. 278 

Area S showed the lowest values of salinity. Additionally, the highest values of pH and DO were also 279 

registered in Summer with areas M and T. On the other hand, area S, on average, presented the 280 

lowest pH values and area CO the lowest DO. Eh values were higher during Autumn in area M, while 281 

the lowest values were in Summer in area CO. Nevertheless, both highest and lowest single values 282 

were obtained in Autumn in areas T and CO, respectively (Table 1 mean values per season, Table 1 283 

Supplementary material for full data). 284 

Concerning sediment data, Summer displayed higher median grain-size and percentage of fines. 285 

On the other hand, sediment mean grain-size was lower in Winter, whereas the lowest fines content 286 

was found in Spring. Comparing sampling areas, higher grain-size values and fines percentage were 287 

found in area CO and the lowest values observed in area SJ. Nonetheless, the majority of the 288 

sediments were classified as fine to very fine sand, as the areas presented Ф values between 2 and 289 

4, with general proportions of fines greater than 10 %. Although values were similar most seasons, 290 

the percentage of organic matter content (TOM) was higher during Winter and lower during Spring. 291 

Area S presented the highest TOM, while area SJ showed the lowest content of organic matter 292 

(Table 1, Table 1 Supplementary material). 293 

 294 

3.2. ELEMENTS CONCENTRATION 295 

Comparing seasons, Summer presented the highest elements concentrations in the water 296 

column for As, Ni and Cr compared to the 3 other seasons that for the majority of the elements 297 

presented concentrations lower than the LOQ (Table 2 mean values per season, Table 2 298 

Supplementary material for full data). In terms of sampling areas, area CO was, in general, the area 299 

that presenting the highest levels of elements’ concentration regardless the season. Nonetheless, 300 
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area M and area SJ presented the highest elements concentration in Autumn and Winter, respectively 301 

(Table 2 Supplementary material). 302 

Considering elements concentrations in sediments, Summer and Autumn were the seasons 303 

that for all areas presented higher values, with Cr being the element with higher concentration for the 304 

majority of the sampling areas (mean values equal to 26.2 µg/ g dw and 27.9 µg/ g dw for Summer 305 

and Autumn, respectively) (Table 2). Comparing areas, sediments with higher elements 306 

concentrations were found mainly in area CO in Summer and Autumn, while higher elements 307 

concentrations were observed in area S in spring and area SJ in winter (Table 2 Supplementary 308 

material). 309 

The highest element concentration for clam’s tissues were recorded during Winter season. 310 

Elements concentration in clams showed higher As concentration compared to the remaining 311 

elements (Winter mean: 72.3 µg/ g dw) (Table 2). Among areas, the highest concentrations were 312 

observed in area I (148 µg/ g dw), where As was the element with the highest concentration (Table 2 313 

Supplementary material). 314 

Winter was the season that recorded higher BAF values namely for As (13.5), which was the 315 

element more bioaccumulated in comparison with the remaining metal(loids) (Table 2). Area I 316 

presented the highest BAF levels for most of the elements (Table 2 Supplementary material). 317 

The Principal Coordinates Ordination (PCO) regarding BAF values demonstrated that the axis 318 

1 explained approximately 49 % of the total variation, separating most of the area M samplings 319 

(except Winter sampling) and the Summer sampling of area I, on the positive side of the axis, from 320 

areas T, S and SJ regardless the season, on the negative side. Nonetheless, no abiotic factor showed 321 

a strong correlation with this axis. On the other hand, the axis 2, that described 21 % of total variation, 322 

divided areas M and T, on the positive side of the axis, from area I except summer sapling, on the 323 

negative side. Salinity presented a positive correlation with this axis (Figure 2). 324 

 325 

 326 

3.3. DIETARY RISK ASSESSMENT 327 

The concentrations of most of the elements quantified in clam’s tissues were below the EFSA 328 

(European Food Safety Authority), USFDA (U.S. Food and Drug Administration) and FSANZ (Food 329 

Standards Australia New Zealand) maximum levels (Table 3 Supplementary material), except for As, 330 



12 
 

which exceeded safety limits. Overall, for the sampling sites under this study, As was the element of 331 

most concern in terms of human health. The obtained data showed that As values ranged between 332 

0.033 kg and 0.351 kg to exceed PTWI (1.05 mg 70 kg-1 week-1) (Table 3). When comparing sampling 333 

areas, results showed higher human health risks for areas S and I, regardless the season (Table 3). 334 

 335 

 336 

3.4. BIOCHEMICAL PARAMETERS 337 

When analysing  each sampling period (season) independently some patterns are 338 

highlighted: i) summer was the season that presented the highest values for LPO and GSH, while 339 

presenting the lowest values for ETS, GSTs and SOD. Autumn registered the highest values for SOD 340 

and CAT with the lowest values for AChE. Spring showed the highest values of ETS, GLY, GSTs and 341 

GSSG, while presenting the lowest values for PROT and GSH/GSSG. Winter was the season with 342 

higher levels of PROT, GPx, and AChE, while the lowest for GLY and CAT; ii) regardless the season, 343 

it was possible to identify a particular area for each set of biomarkers with the highest values for LPO, 344 

ETS and GLY in area T; PROT, GSTs and SOD in area S; area M for GPx and CAT; area I for AChE, 345 

GSH, GSSG and GSH/GSSG (Table 3).  346 

 347 

The PCO axis 1 explained 40.1% of the total variation of data separating Winter (in the 348 

negative side) from the remaining seasons (in the positive side). Axis 2 described 24.9% of the total 349 

variation, separating Summer (in the negative side) from Spring (in the positive side). The results 350 

obtained clearly demonstrated that sampling areas grouped together according to season, with 351 

different areas from the same season clustering together. GPx, AChE and PROT presented a strong 352 

correlation (r > 0.75) with PCO axis 1 negative side, with higher values associated to clams collected 353 

in Winter, regardless of the sampling area. On the other hand, CAT, GSSG and Ni content presented 354 

high correlation (r > 0.75) with PCO axis 1 positive side, with higher values associated with clams 355 

collected in Autumn. ETS, GSTs and GLY showed a strong correlation (r > 0.75) with the positive side 356 

of PCO axis 2, with higher values associated to clams collected during Spring in all the areas. LPO 357 

and GSH content presented a strong negative correlation with PCO axis 2, with higher values 358 

associated with clams from all areas collected during Summer (Figure 3).  359 
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4. DISCUSSION 360 

4.1. ELEMENTS DETERMINATION 361 

In the present study the results obtained showed higher water contamination during 362 

Summer, with area CO being the one with the highest values. The seasonal effect upon element 363 

concentration in water column was highlighted in this study suggesting higher metal(loids) water 364 

levels led to an additional concern about the elements’ bioavailability, particularly during Summer. 365 

Generally, higher metal(loids) concentrations in water are related to environmental parameters such 366 

as temperature and DO as a result of greater dissolution of metals (Waldichuk, 1985).  367 

Overall, the results obtained showed that the sampling areas represent low polluted to 368 

uncontaminated areas, with the concentration of elements in the sediments similar to values found in 369 

unpolluted areas (Chiesa et al., 2018; Velez et al., 2015; Freitas et al., 2012). In the sediments, higher 370 

concentrations of elements were obtained during Summer and Autumn and the most polluted area for 371 

these sampling periods was CO. Sediment becomes an important sink for metals that originally 372 

contaminate the water. Changes in the physicochemical parameters of water alter the bioavailability 373 

of the metals (Simpson and Batley 2003). The complex processes which influence the metal 374 

concentrations in the sediment are mainly pH, temperature, salinity, dissolved oxygen and organic 375 

matter content (Simpson et al. 2003), resulting in complex chemical reactivity and interactions 376 

between the solid and the solution phases of the metals (Guieu and Martin 2002, Peng et al. 2009). 377 

As example, Gati et al. (2016) assessed the sediment contamination with metals in the Danube Delta 378 

and how environmental shifts during one year can impact elements contamination. The authors 379 

showed that the deposition process was more intense at higher pH and temperature conditions.  380 

Despite sediments showed to be an important source of metals, Bat et al. (2013) showed 381 

that sediment can reduce metals toxicity to mussels. Concerning clams’ elements concentrations, the 382 

results obtained showed that Winter was the season with higher metal(loids) concentration where the 383 

most polluted area was I. The element of main concern was As. Velez et al. (2015) also assessed 384 

metals and As contamination on native and invasive clams from several areas of Ria de Aveiro 385 

(Portugal). The authors recognized this ecosystem as a low contaminated despite the concern 386 

associated to high concentrations of As. Despite higher metal(loids) concentrations in the water 387 

column during hotter seasons, clam’s tissues showed higher accumulation during colder periods. This 388 

might be related with the low pH verified in the most affected sites (S and I). pH affects both solubility 389 
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of metal hydroxide minerals and adsorption-desorption processes. The solubility of metal hydroxide 390 

minerals increases along with the acidification leading to more dissolved metals that might become 391 

available for incorporation in biological processes. Ionic metal species are also commonly the most 392 

toxic forms to aquatic organisms (Salomons, 1995) which may explain different biochemical 393 

responses for different seasons. Riba et al. (2003) studied the effect of both pH and salinity upon 394 

water and sediment interactions by assessing biological effects on R. philippinarum organisms. The 395 

authors concluded that at low values of both variables (pH=6.5 and S=10), the biological effects were 396 

the highest, and it was related with free ion occurrence. Thus, this hypothesis might help to establish 397 

a pattern that varies not only with the temperature but also with other physico-chemical parameters.  398 

The concentrations of As, Cd and Hg presented higher BAF values, with higher 399 

concentrations in the organisms (BAF>1) than in sediments, while for the remaining elements the 400 

concentrations were higher in the sediments than in the organisms (BAF<1). The toxicity of an 401 

element is not only dependent on the total amount accumulated but on its’ partition as well. Elements 402 

in solution interfere with macromolecules with metabolically important functions, such as enzymes, 403 

transporters or DNA and therefore are more toxic than insoluble elements (Valko et al., 2005; 404 

Pytharopoulou et al., 2008; Zhang et al.,2010). Elements such as Cd and As, that are accumulated in 405 

higher proportions in the soluble fraction, are potentially more toxic than the others. These results are 406 

in agreement with the study conducted by Freitas et al. (2012) that performed an environmental study 407 

for R. philippinarum in the same ecosystem. 408 

 409 

4.2. DIETARY RISK ASSESSMENT 410 

Clams are one of the main shellfish resources in the world, with 3.5 million tonnes produced 411 

in 2010 (FAO, 2011). The results presented in this work show that the risk of dietary exposure to 412 

inorganic elements from clam’s consumption occurs predominantly in Spring time. However, for all the 413 

seasons, data showed a distinct hazard associated to As, especially during Spring at I area. In this 414 

area, data showed that an adult (70 kg) is in health risk danger by consuming 0.033 kg of clams, in 415 

one week. When comparing element concentrations of clams with previous studies also from an area 416 

in Ria de Aveiro with similar element concentrations (Figueira and Freitas et al., 2013), it is possible to 417 

observe the same pattern for the same elements. However, the metal(loids) concentrations increased 418 

when comparing the obtained Spring results with this study conducted by Figueira and Freitas et al. 419 
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(2013) (carried out in March) which may suggest a decrease of the ecosystem quality in the past 420 

years. When comparing with other systems worldwide, consumers of clams from this coastal system 421 

have a similar or lower risk of exceeding the PTWI for Cd, As, Pb, and Hg (Hamza-Chaffai et al., 422 

2000, Kucuksezgin et al., 2010, l et al., 2012). In agreement with the study conducted by Figueira and 423 

Freitas (2013) the results obtained also evidence that, even at low-contamination areas, the maximum 424 

levels for some elements can easily be achieved, prohibiting marketing and preventing clams culture 425 

for commercial purposes in many areas. However, it is well known that other ecosystems (more 426 

polluted) have higher hazard standards such as China, in which the Environmental Quality Standards 427 

(EQSs) for Cd, Cu, and Zn are 0.35, 3.02, 51.4 µg/g dw in clams, respectively (Lu et al., 2019). Liu et 428 

al. (2017) conducted an environmental assessment along Laizhou Bay, China where Cd (53.19 mg/kg 429 

DW) and Hg (9.18 mg/kg DW) were the metals with higher tissues’ concentrations. In comparison with 430 

the present study it is important to highlight that all the results are within the health risk levels and 431 

clams from Ria de Aveiro constitute a low source of metal(loids) through diet. Moreover, the hazard 432 

character of each element is well marked regardless the contamination level of the ecosystem, once 433 

that Liu et al. (2017) also concluded that As was the element of higher human health concern by 434 

hazard quotient assessment. 435 

It is of paramount interest to carry out more environmental assessment and quality 436 

monitoring to understand how the potentially hazardous elements will impact human health. Despite 437 

the fact that this general concern is already well established, the dietary risk assessment is yet 438 

neglected favouring bioaccumulation, water and sediment concentration evaluations.  439 

 440 

4.3. BIOCHEMICAL PARAMETERS 441 

The present study reveals biochemical responses of R. philippinarum when subjected to 442 

environmental stressors, analysing the relationship between pollutants levels in clams’ tissues and 443 

biochemical responses. When exposed to stress factors, organisms may be subjected to oxidative 444 

damage resulting from increased concentration of Reactive Oxygen Species (ROS). Lipid 445 

peroxidation (LPO) and protein oxidation are well known effects of cellular oxidative damage, 446 

provoked by peroxidation of membrane lipids and proteins, respectively. In order to eliminate ROS 447 

and prevent cellular damages, bivalves may be capable of activating their antioxidant defences, 448 

namely by increasing their antioxidant enzymes.  449 
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In the present study the abiotic factors had an important role once the cellular damage 450 

increased along temperature, salinity and DO. Moreover, during colder seasons organisms were able 451 

to activate defence mechanisms in order to successfully prevent oxidative stress. Also higher 452 

detoxification rates seemed to respond to lower pH and Eh. In view to this, higher metabolic rates 453 

were verified which may explain the increase of the element’s bioaccumulation. The importance and 454 

impact not only of environmental factors but also pollutants upon cellular fitness is already described 455 

in literature (Andrade et al., 2019; Coppola 2017, 2018; De Marchi et al.,2017; Velez et al., 2016a,b,c; 456 

Carregosa et al., 2014; Verlecar et al., 2007; Heise et al., 2003). 457 

The results obtained further demonstrated that clams biochemical performance was closely 458 

related with seasons and not with areas elements concentrations, highlighting that pollution levels in 459 

all the studied areas were low and seasons induced higher impacts than pollutants on clams’ 460 

biochemical responses. The present findings are in accordance with to a previously study by Guo et 461 

al. (2017), who detected the impact of contaminants in Qingdao coastal area of China in scallop 462 

Chlamys farreri during the year. In particular, the results obtained showed that during Summer clams 463 

presented higher LPO levels, which may indicate cellular damage, while it was demonstrated that 464 

higher neurotoxicity was observed during Winter. Higher LPO levels and GSH/GSSG ratio during 465 

Summer may result from ROS overproduction due to thermal stress but also due to increased 466 

mitochondrial respiratory activity as well observed in the Spring period. To prevent the accumulation 467 

of these molecules organisms produce and/or activate antioxidant enzymes. However, during 468 

summer, these defence mechanisms did not show well marked responses to detoxify ROS caused by 469 

thermal stress, leading to the occurrence of cellular damage (Solan and Whiteley, 2016). Also, Velez 470 

et al. (2017) verified higher LPO levels when exposed R. decussatus and R. philippinarum to warming 471 

conditions (21 ºC) for 28 days. Furthermore, during Autumn the highest SOD and CAT activities were 472 

observed. These results may indicate that temperatures from 17 to 19 ºC influence the antioxidant 473 

enzymes activations to prevent the cellular damage. Moreover, during Winter (lower temperatures), 474 

the GPx, GRed as well SOD and CAT activities showed to be able to prevent the membranes 475 

integrity, reduce the GSH/GSSG ratio and AChE showed a well-marked increase. Also De Marchi et 476 

al. (2017, 2018) studied the impact of pH and salinity combined with multi-walled carbon nanotubes 477 

and did not observe significant differences for AChE activities when exposed R. philippinarum 478 

organisms to low pH and salinity alone. Thus, the present study highlights the importance of 479 
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temperature and elements interactions. The water temperature rise is well documented in literature as 480 

an important environmental stressor alone or combined with other pollutants upon bivalves (Andrade 481 

et al., 2019; Coppola 2017, 2018; Verlecar et al., 2007; Heise et al.,2003), causing several effects 482 

assessed through different biomarkers, namely upon clams (Dubousquet et al.,2016; Anacleto et al., 483 

2014; Abele et al., 2002). However, it is of paramount interest to assess and control environmental 484 

conditions in order to understand how several pollutants mixed in the water column interact among 485 

each other and with the inhabitant organisms. This purpose will allow adequate laws establishment 486 

and ensure the consumer’s safety in terms of health risk.  487 

 488 

5. CONCLUSIONS 489 

It is of major importance to highlight that element partitioning is nowadays neglected by 490 

shellfish marketing. The impact that this has on the elements’ bioavailability is very important to the 491 

consumers once that depends on the digestive capacity of each person (Rainbow and Smith, 2010; 492 

Metian et al., 2009). Bivalve species that have higher proportion of elements in solution generally 493 

constitutes higher risk to consumers than species that accumulate insoluble forms of metal(loids). The 494 

present study further highlights the importance of identifying the potential interfering factors and their 495 

impacts on the biomarker signals observed in wild populations. Biomarkers can thus, be significantly 496 

affected not only by anthropogenic or natural stressors but also by the combined action of both. 497 

Moreover, the optimal season for carrying out biomarker field studies or regular monitoring is of 498 

utmost relevance and should be investigated prior to including biomarkers in monitoring programs.  499 

In conclusion, the present study emphasizes that benthic communities may provide more 500 

reliable information relatively to environmental fluctuations. Biomarkers can be used as 501 

complementary tools, however special attention is needed to choose appropriate bioindicator species, 502 

season as well as suitable battery of markers depending on nature of possible contaminants. Thus, 503 

this may lead to an increased ability to discriminate natural effects from others making biomarkers 504 

reliable in risk assessment studies. 505 
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Figure captions 

 

Figure 1. Sampling areas: T - Torreira; M - Murtosa; SJ - São Jacinto; CO - Cale do 

Ouro; S - Sporting; I - Ílhavo. 

Figure 2. Centroid ordination diagram (PCO) based on water and sediment physico-

chemical parameters and values for the bioaccumulation factor (BAF), measured for all 

the sampling areas along four seasons. Pearson correlation vectors are superimposed as 

supplementary variables (r > 0.7). 

Figure 3. Centroid ordination diagram (PCO) based on biochemical data and clams 

metal(loids) concentrations, measured for all the sampling areas along four seasons. 

Pearson correlation vectors are superimposed as supplementary variables (r > 0.8). 

 

 



Table 1. Environmental characterization for each season (mean values ±standard deviation), in terms of water 
parameters (salinity, temperature (TEMP. / °C), pH, dissolved oxygen (DO / µg/L) and redox potential (Eh / 
mV)) and sediment parameters (median value (Φ), fines (%), total organic matter content (TOM / %)). 
 
 
 

 

SEASON TEMP pH SALINITY DO Eh Φ FINES TOM 

SUMMER 20.0 ± 1.8 8.1 ± 0.3 35.1 ± 0.8 9.3 ± 3.4 120 ± 27 2.7 ± 0.9 38.3 ± 29.8 4.54 ± 2.30 

AUTUMN 10.1 ± 0.7 8.0 ± 0.1 34.4 ± 0.9 7.5 ± 0.3 187 ± 72 2.6 ± 0.7 23.1 ± 13.7 4.25 ± 1.76 

SPRING 19.1 ± 1.4 7.8 ± 0.1 25.3 ± 4.7 7.7 ± 1.0 148 ± 53 2.4 ± 0.4 15.7 ± 9.3 4.15 ± 1.93 

WINTER 11.5 ± 1.2 7.8 ± 0.2 23.9 ± 7.4 8.7 ± 0.2 141 ± 10 2.4 ± 0.3 27.0 ± 18.4 4.63 ± 2.80 



Table 2. Elements concentration (Cu, As, Cd, Pb, Hg, Ni and Cr) in Water (µg/L), sediments (µg/g, dry weight) and clams’ tissue (µg/g, dry weight) and the bioaccumulation 
factor (BAF: ratio between element concentration in the tissue and in the sediment) for each season (mean value ± standard deviation (SD)). Quantification limit (QL) in 
water samples per element in µg/ L (Cu, 2; As, 2; Cd, 0.1; Pb, 0.2; Hg, 0.0025; Ni, 1; Cr, 0.5). Values below this limit represented as <QL. 
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SUMMER 
40.7 
±9.7 

11.7 
±6.6 

6.3 
±0.9 

0.9 
±0.7 

37.8 
±6.2 

11.9 
±4.8 

50.0 
±30.9 

6.2 
±7.2 

<QL 
0.3 
±0.1 

0.6 
±0.1 
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±0.5 
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Table 3. Biochemical parameters results for each sampling site (T, Torreira; S, Sporting; SJ, São Jacinto; I, Ílhavo; M, Murtosa; CO, Cale do Ouro) and season (Summer, 
Autumn, Spring and Winter). The highest values per season are with bold and highest levels per year are marked with a * . Results expressed in the following values: LPO in 
nmol MDA/g FW; ETS in nmol/ min/g FW; PROT and GLY in mg/ g FW; SOD, CAT, GPx and GRed in U/g FW; GSH and GSSG in µmol/g FW; AChE in µmol/ min/ g 
FW (FW: fresh weight).  

 

BIOCHEMICAL PARAMETERS 
SITE LPO ETS PROT GLY GPx GSTs SOD CAT GSH GSSG GSH/GSSG AChE 

SU
M

M
E

R
 

T 27.0* 9.15 25.2 2.14 4.59x10-3 7.66x10-3 7.86x10-2 19.9 5.94x10-2 5.56x10-2 1.13 5.53x10-1 
S 24.2 11.5 24.0 1.91 8.41x10-3 4.54x10-3 8.13x10-2 14.6 6.06x10-2 5.61x10-2 1.10 4.63x10-1 
SJ 15.2 7.84 24.5 5.31 1.85x10-2 8.02x10-3 8.70x10-2 21.4 6.24x10-2 6.10x10-2 1.06 6.01x10-1 
I 25.4 12.5 22.4 1.59 1.86x10-2 7.42x10-3 9.84x10-2 21.6 1.03x10-1* 5.38x10-2 2.25 4.36x10-1 

M 18.7 8.95 21.4 1.59 6.15x10-3 7.62x10-3 7.97x10-2 17.5 6.94x10-2 6.74x10-2 1.05 5.37x10-1 
CO 19.5 10.7 22.4 1.59 8.93x10-3 5.01x10-3 7.74x10-2 9.57 7.10x10-2 6.02x10-2 1.20 4.87x10-1 

A
U

T
U

M
N

 

T 16.3 55.0 19.2 8.14 1.02x10-2 9.84x10-2 1.44 15.8 4.07x10-2 5.48x10-2 7.65x10-1 2.38x10-1 
S 12,8 55.1 25.1 11.3 6.69x10-3 2.12x10-1 3.69* 26.7 3.81x10-2 5.40x10-2 7.10x10-1 3.44x10-1 
SJ 9.14 49.1 15.1 9.14 9.29x10-3 1.19x10-1 1.84 22.6 3.62x10-2 6.60x10-2 5.63x10-1 2.21x10-1 
I 13.8 54.7 19.1 7.88 5.95 x10-2 1.52x10-1 2.52 21.9 3.99x10-2 5.38x10-2 7.50x10-1 3.38x10-1 

M 14.5 70.0 15.0 6.02 1.17 x10-2 1.61x10-1 3.29 31.8* 4.08x10-2 6.37x10-2 7.01x10-1 2.85x10-1 
CO 8.62 38.7 16.7 3.83 9.93x10-3 1.36x10-1 3.43 29.4 3.65x10-2 5.49x10-2 6.74x10-1 2.43x10-1 

SP
R

IN
G

 

T 7.55 95.7* 14.9 15.9* 8.68x10-2 5.81x10-1 4.12x10-1 19.6 2.52x10-2 9.38x10-2 1.41x10-1 7.54x10-1 
S 8.07 82.1 10.4 3.89 8.10x10-2 7.18x10-1* 3.98x10-1 21.1 2.39x10-2 7.83x10-2 1.57x10-1 4.36x10-1 
SJ 14.7 71.4 17.4 7.07 9.18x10-2 4.26x10-1 1.34x10-1 17.7 2.21x10-2 8.58x10-2 1.44x10-1 5.60x10-1 
I 10.4 95.3 16.4 7.94 6.61x10-2 6.65x10-1 3.80x10-1 25.9 2.68x10-2 1.08x10-1 1.27x10-1 1.07 

M 14.2 82.7 20.9 6.44 1.14x10-1 4.42x10-1 1.91 17.8 2.28x10-2 6.73x10-2 1.55x10-1 4.02x10-1 
CO 12.3 87.3 16.1 11.0 8.92x10-2 5.88x10-1 1.43 16.3 2.47x10-2 7.81x10-2 1.69x10-1 7.22x10-1 

W
IN

T
E

R
 

T 9.15 70.4 38.1 1.77 2.70x10-1 6.22 x10-2 1.91x10-1 7.53 9.56x10-3 4.09x10-3 1.40 4.39 
S 11.5 63.8 38.9* 1.69 2.48x10-1 7.99x10-2 1.92x10-1 7.15 1.06x10-2 7.74x10-3 2.30* 2.60 
SJ 7.84 27.2 33.1 1.87 2.67x10-1 7.86x10-2 1.91x10-1 4.81 3.50x10-3 1.39x10-2* 1.94x10-1 2.95 
I 12.5 35.1 37.2 1.70 2.65x10-1 7.57x10-2 1.91x10-1 7.78 2.15x10-2 8.92x10-3 1.43 4.20 

M 8.95 51.2 36.0 1.55 3.14x10-1* 7.20x10-2 1.92x10-1 6.70 9.17x10-3 6.52x10-3 7.68x10-1 4.60* 
CO 10.7 38.3 34.4 2.63 2.68x10-1 6.24x10-2 1.93x10-1 4.74 7.47x10-3 9.90x10-3 3.85x10-1 3.61 







• Seasonal changes overlaps pollution levels effects on clam’s biochemical machinery. 

• Cu, Cr and As are the elements with higher concentrations in sediments, water and 

tissues, respectively. 

• As is the element of most concern in terms of human health, with values as lower as 

0.05 kg to exceed PTWI  

• Higher LPO levels and GSH/GSSG ratio during Summer and Spring; 

• Membranes’ integrity prevention during Winter and Autumn due to antioxidant 

defences. 
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