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Abstract

In the area of algebraic specification there are two main approaches for defining observational abstraction:
behavioural specifications use a notion of observational satisfaction for the axioms of a specification, whereas
abstractor specifications define an abstraction from the standard semantics of a specification w.r.t. an obser-
vational equivalence relation between algebras. Earlier work by Bidoit, Hennicker, Wirsing has shown that
in the case of first-order logic specifications both concepts coincide semantically under mild assumptions.
Analogous results have been shown by Sannella and Hofmann for higher-order logic specifications and re-
cently, by Hennicker and Madeira, for specifications of reactive systems using a dynamic logic with binders.
In this paper, we bring these results into a common setting: we isolate a small set of characteristic principles
to express the behaviour/abstractor equivalence and show that all three mentioned specification frameworks
satisfy these principles and therefore their behaviour and abstractor specifications coincide semantically
(under mild assumptions). As a new case we consider observational modal logic where observational satis-
faction of Hennessy-Milner logic formulae is defined “up to” silent transitions and observational abstraction
is defined by weak bisimulation. We show that in this case the behaviour/abstractor equivalence can only
be obtained, if we restrict models to weakly deterministic labelled transition systems.

Keywords: algebraic specification, specification of reactive systems, observable behaviour, observational
abstraction

1. Introduction

The observable behaviour of a system is a key concept in software development. Typically, a requirement
describes an observable property of a system and an implementation is correct if it satisfies the required
observable properties; a reactive system interacts with its environment by observable actions whereas its
internal actions are considered as hidden or non-observable. In the literature, one can find two main concepts
for semantically formalising observational behaviour. The so-called abstractor specification is based on
abstracting the standard model class of a specification by an observational equivalence relation between
algebras [18, 23, 20] whereas the so-called behavioural specification defines an observational satisfaction
relation where equality is not interpreted as identity but as observational indistinguishability of objects or
states [19, 17, 8].

Already in the eighties it was shown that the two concepts coincide if the axioms of a specification
are conditional equations with observable premises [19, 17]. In [2], Bidoit, Hennicker, Wirsing generalise
these results and show that in the case of first-order logic specifications there exists a duality between both
concepts which allows to express each one by the other; in particular, behaviour and abstractor specifications
coincide semantically under mild assumptions. Similar results have been proven by Sannella and Hofmann
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for higher-order logic specifications [13], and recently by Hennicker and Madeira for specifications of reactive
systems [12].

As Hofmann and Sannella observe in [13], the results of [2] are largely independent of the underlying
logic; they are based on the relation between the (partial) observational congruence of states, the abstraction
equivalence of models, and the quotient algebra. In this work we generalise these ideas and propose a new
approach, called behaviour-abstractor framework, which is based on a few characteristic principles and
entails the relationships between behavioural and abstractor specifications. The key idea is that for each
model we require the existence of an observationally equivalent “black box model” for which behavioural
satisfaction of sentences coincides with standard satisfaction. Moreover, abstraction equivalence of models
has to preserve behavioural satisfaction of sentences.

Then, for any concrete logical framework which satisfies these requirements, we get the semantic rela-
tionships between behavioural and abstractor specifications for free. In particular, we show that all three
mentioned specification frameworks admit black box models and satisfy the characteristic principles of the
behaviour-abstractor framework. As a novel case we consider observational modal logic where observational
satisfaction of Hennessy-Milner logic formulae is defined “up to” silent transitions and observational ab-
straction is defined by weak bisimulation. We show that in this case a behaviour-abstractor framework can
only be obtained, if we restrict models to weakly deterministic labelled transition systems.

An idea similar to the behaviour-abstractor framework is pursued by Misiak [16] but, in contrast to
our approach, Misiak’s formalisation uses behavioural institutions with specific semantic conditions on be-
havioural signature morphisms. His notion of behavioural satisfaction is predefined in terms of standard
satisfaction by using partial congruence relations and categorical quotient constructions. Instead, we are
working with an arbitrary behavioural satisfaction relation which must be respected by abstraction equiv-
alence and with a simple and general notion of black box model, for which behavioural satisfaction and
standard satisfaction coincide.

The paper is organised as follows: in Section 2 we present the behaviour-abstractor framework and show
that it entails the semantic relationships between behavioural and abstractor specifications. In Sections 3 –
6 we show that first-order logic, higher-order logic, dynamic logic with binders, and (observable) Hennessy-
Milner logic with weakly deterministic models form behaviour-abstractor frameworks. We finish with some
concluding remarks in Section 7.

Personal Note. Don, Martin and Rolf (the third and first authors of this paper) know each other since the
eighties where all three were investigating algebraic specifications. In 1981 during his stay at the University
of Edinburgh, Martin meets Don, at that time a PhD student of Rod Burstall. Don and Martin became close
friends and started working together. They propose the ”forget-restrict-identify” notion of implementation
for parameterised specifications and prove that (under appropriate assumptions) implementations compose
horizontally and vertically [22]. Moreover, they introduce the kernel specification language ASL which
includes an operator for abstractor specifications and has a loose semantics [23]. Rolf’s PhD thesis and his
further work on behavioural specifications were inspired by ASL and Don’s and Andrzej Tarlecki’s work on
observational equivalence of specifications [20]. Later, Don was the external reviewer of Rolf’s habilitation
thesis [9]. As stated above, the starting point of this paper was a remark in Don’s and Martin Hofmann’s
paper on behavioural abstraction and behavioural satisfaction in higher-order logic [13].

Working and discussing with Don is a very pleasant experience; he is not only an outstanding scientist
with deep theoretical insights and an excellent sense for practical applications; he is also a warm-hearted
and kind friend and colleague. We are looking forward to many further inspiring exchanges with him.

2. Behaviour-Abstractor Framework

In this section we identify a small but significant set of abstract requirements which are enough to define
behavioural and abstractor specifications and to study relationships between their semantics. Our basic
framework is independent of concrete logical formalisms.

Definition 1. A behaviour-abstractor framework BA = (Sign, Sen,Mod, |=,≡, |=beh,BB) consists of
2



• a class Sign of signatures,

• a family Sen = (Sen(Σ))Σ∈Sign of sets Sen(Σ) of Σ-sentences,

• a family Mod = (Mod(Σ))Σ∈Sign of classes Mod(Σ) of Σ-models,

• a family |= = (|=Σ)Σ∈Sign of satisfaction relations |=Σ ⊆ Mod(Σ)× Sen(Σ),

• a family ≡ = (≡Σ)Σ∈Sign of abstraction equivalences ≡Σ ⊆ Mod(Σ)×Mod(Σ),

• a family |=beh = (|=beh,Σ)Σ∈Sign of behavioural satisfaction relations |=beh,Σ ⊆ Mod(Σ)× Sen(Σ), and

• a family BB = (BBΣ)Σ∈Sign of black box functions BBΣ : Mod(Σ) → Mod(Σ),

such that the following conditions (1) - (3) are satisfied for each signature Σ ∈ Sign and for all Σ-models
M,M′ ∈ Mod(Σ):

(1) M ≡Σ M′ ⇒ (M |=beh,Σ ϕ iff M′ |=beh,Σ ϕ for all ϕ ∈ Sen(Σ)).

(2) M ≡Σ BBΣ(M).

(3) BBΣ(M) |=beh,Σ ϕ iff BBΣ(M) |=Σ ϕ for all ϕ ∈ Sen(Σ).

The idea of an abstraction equivalence is to relate models which show the same observable behaviour.
The idea of behavioural satisfaction is to relax the (ordinary) satisfaction relation such that it is sufficient
if properties are satisfied from the observational point of view and not necessarily literally. Condition
(1) relates abstraction equivalence and behavioural satisfaction by requiring that abstraction equivalence
preserves behavioural satisfaction of sentences. The black box function constructs, for each Σ-model M,
a so-called black box view of M. The intuitive idea is that BBΣ(M) shows the observable behaviour of
M abstracting away implementation details which are not visible for the user of a system. Of course, the
black box view of M should be equivalent to M according to the abstraction equivalence. This is expressed
by condition (2). Condition (3) formalises an intrinsic property of black box views, for which behavioural
satisfaction of sentences should be the same as ordinary satisfaction.

Remark 1. The first four ingredients of a behaviour-abstractor framework in Def. 1 are close to an institu-
tion [4] but omit signature morphisms. We do deliberately not work with institutions here, since signature
morphisms play no role for the semantic equivalence of behavioural and abstractor specifications, see Theo-
rem 5.11 in [2], Theorem 6.7 in [13], Theorem 8 in [12], and Lemma 2 in [16]. Of course, instead of the first
four items in Def. 1, we could also use a standard institution. However, the behavioural satisfaction relation
assumed in item 6 does, in general, not respect the satisfaction condition of institutions for standard sig-
natures and signature morphisms. For instance, none of the concrete behavioural specification frameworks
considered later on forms an institution.1

Given a behaviour-abstractor framework BA, a (flat) specification SP = (Σ,Φ) over BA consists of a
signature Σ ∈ Sign and a set Φ ⊆ Sen(Σ) of Σ-sentences, also called axioms, which specifiy properties of the
models of the specification. The (ordinary) semantics of SP is given by the class of all Σ-models satisfying
the axioms, i.e. Mod(SP) = {M ∈ Mod(Σ) | M |=Σ ϕ for all φ ∈ Φ}. In many cases the ordinary semantics
of a specification is too restrictive since for its realisation it is often not necessary that all properties of the
specification are literally satisfied but it is sufficient if the realisation has the desired observable behaviour.
In the literature two prominent approaches have been proposed to provide semantics for a specification which
takes into account abstraction w.r.t. observable behaviour. One way is to use the abstraction equivalence

1To obtain a behavioural institution specific notions of behavioural signatures are needed which require appropriate restric-
tions on signature morphisms to get the satisfaction condition of an institution w.r.t. behavioural satisfaction. Examples are
hidden algebra [5], constructor-based observational logic [1], its institution-independent generalisation [16], and the recently
proposed behavioural institution for dynamic logic with binders [11].
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and to consider the abstractor specification abstract SP wrt ≡Σ whose model class consists of all Σ-models
equivalent to an ordinary model of SP , i.e.

Mod(abstract SP wrt ≡Σ ) = {M ∈ Mod(Σ) | ∃N ∈ Mod(SP) : M ≡Σ N}.
Another possibility is to rely on the behavioural satisfaction relation and to consider the behavioural spec-

ification behaviour SP wrt |=beh,Σ whose model class consists of all Σ-models which satisfy behaviourally
the axioms of the specification, i.e.

Mod(behaviour SP wrt |=beh,Σ ) = {M ∈ Mod(Σ) | M |=beh,Σ ϕ for all φ ∈ Φ}.
As explained in Sect. 1 several papers have established relationships between the two approaches in

concrete specification formalisms, like many-sorted first-order logic, higher-order logic, and recently, in the
domain of reactive systems using a dynamic logic with binders. The purpose of the behaviour-abstractor
framework is to identify the crucial concepts needed to relate (the semantics of) behavioural and abstractor
specifications such that one gets for free the results of the following theorem whenever a concrete formalism
is a behaviour-abstractor framework. The first part of the theorem shows that behavioural semantics is
always included in abstractor semantics; the second part shows that behavioural and abstractor semantics
coincide if all ordinary models of a specification SP satisfy also behaviourally the axioms of SP . It may
sound strange that ordinary satisfaction does not always imply behavioural satisfaction but there are indeed
some cases where this can happen as illustrated in [2], Example 3.18, and in [12], Sect. 5.

Theorem 1. Let BA be a behaviour-abstractor framework and SP = (Σ,Φ) a specification over BA.

1. Mod(behaviour SP wrt |=beh,Σ ) ⊆ Mod(abstract SP wrt ≡Σ ).

2. Mod(SP) ⊆ Mod(behaviour SP wrt |=beh,Σ ) if and only if
Mod(behaviour SP wrt |=beh,Σ ) = Mod(abstract SP wrt ≡Σ ).

Proof. 1. Let M ∈ Mod(behaviour SP wrt |=beh,Σ ). Then M |=beh,Σ Φ (i.e. M |=beh,Σ ϕ for all φ ∈
Φ). By property (2) of a behaviour-abstractor framework, M ≡Σ BBΣ(M). Hence, by property (1),
BBΣ(M) |=beh,Σ Φ. Thus, by property (3), BBΣ(M) |=Σ Φ, i.e. BBΣ(M) ∈ Mod(SP). Since M ≡Σ

BBΣ(M), we get M ∈ Mod(abstract SP wrt ≡Σ ).
2. “⇒”: “⊆” follows from 1. For the proof of “⊇”, let M ∈ Mod(abstract SP wrt ≡Σ ). Then there

exists N ∈ Mod(SP) such that M ≡Σ N . By assumption, N ∈ Mod(behaviour SP wrt |=beh,Σ ). Hence,
N |=beh,Σ Φ and, by property (1), M |=beh,Σ Φ. Therefore, M ∈ Mod(behaviour SP wrt |=beh,Σ ).
“⇐”: Is trivial, since, by definition, Mod(SP) ⊆ Mod(abstract SP wrt ≡Σ ). �

To prove that a concrete framework is a behaviour-abstractor framework, it is sometimes useful to show,
instead of condition (3), that condition (3’) formulated in the following lemma holds.

Lemma 2. Let BA = (Sign, Sen,Mod, |=,≡, |=beh,BB) satisfy conditions (1) and (2) of a behaviour-abstractor
framework. Then BA satisfies condition (3), i.e., BA is a behaviour-abstractor framework, if and only if
BA satisfies the following condition (3’) for each signature Σ and for all Σ-models M ∈ Mod(Σ):

(3’) M |=beh,Σ ϕ iff BBΣ(M) |=Σ ϕ for all ϕ ∈ Sen(Σ).

Proof. Let M ∈ Mod(Σ) and ϕ ∈ Sen(Σ). Conditions (1) and (2) imply

(∗) M |=beh,Σ ϕ iff BBΣ(M) |=beh,Σ ϕ.

“⇒”: Assume condition (3) holds. Then: M |=beh,Σ ϕ iff, by (*), BBΣ(M) |=beh,Σ ϕ iff, by (3),
BBΣ(M) |=Σ ϕ. Hence (3’) holds.
“⇐”: Assume condition (3’) holds. Then: BBΣ(M) |=beh,Σ ϕ iff, by (*), M |=beh,Σ ϕ iff, by (3’),
BBΣ(M) |=Σ ϕ. Hence (3) holds. �
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3. Many-Sorted First-Order Logic with Equality

In this section we consider a behaviour-abstractor framework in the context of many-sorted first-order
logic with equality (without predicate symbols). In this context relationships between behavioural and
abstractor specifications have been studied in detail in [2]. The purpose of this section is mainly to show
which bits and pieces of [2] are significant to instantiate Sect. 2 and to get the relationships between
behavioural and abstractor specifications for free by applying Thm. 1. In the following some basic notions
of algebraic specifications are only briefly summarised; for more details see e.g. [21].

Signatures and sentences. A many-sorted signature Σ = (S,OP) consists of a set S of sorts and a set OP of
operation symbols op : s1, . . . , sn → s. For any Σ = (S,OP), we assume a family X = (Xs)s∈S of pairwise
disjoint sets Xs of variables of sort s. For each s ∈ S, TΣ(X)s denotes the set of terms of sort s built in
the usual way over Σ and X and TΣ(X) denotes the family (TΣ(X)s)s∈S . To take into account the aspect
of observability we consider observational signatures ΣObs = (Σ,Obs) where Σ = (S,OP) is a many-sorted
signature and Obs ⊆ S is a set of observable sorts. The class of observational signatures is denoted by
SignFO to emphasise that our basic logic is first-order logic. In fact the observable sorts are still irrelevant
here up to the point where we consider abstraction equivalences. For any many-sorted signature Σ, the set
of Σ-formulas is given by

ϕ ::= t = r | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∀x:s.ϕ | ∃x:s.ϕ

where t, r ∈ TΣ(X)s are terms of the same sort s and x is a variable of some sort s. For any observational
signature ΣObs = (Σ,Obs), a ΣObs-sentence is a Σ-formula ϕ which contains no free variables. Free variables
are defined as usual in first-order logic. The set of ΣObs-sentences is denoted by SenFO(ΣObs).

Models. Models for an observational signature ΣObs = (Σ,Obs) are Σ-algebras A = ((As)s∈S , (op
A)op∈OP)

with (non-empty) carrier sets As and functions opA respecting the arity of op. The class of all ΣObs-models
is denoted by ModFO(ΣObs). Together with Σ-algebra homomorphisms this class forms a category.

Satisfaction relation. Given a Σ-algebra A and a valuation α : X → A, there is an interpretation function
Iα : TΣ(X) → A which evaluates terms as usual. (More precisely, α and Iα are S-sorted families of functions.)
For any Σ-algebra A and valuation α : X → A,

• A,α |=FO
Σ t = r iff Iα(t) = Iα(r);

• A,α |=FO
Σ ∀x:s.ϕ iff for all valuations β : X → A with β(y) = α(y) for all y �= x: A, β |=FO

Σ ϕ.

We omit the remaining cases which are inductively defined as usual in first-order logic. For any observational
signature ΣObs = (Σ,Obs), a model A ∈ ModFO(ΣObs) satisfies a ΣObs-sentence ϕ, denoted by A |=FO

ΣObs
ϕ,

iff A,α |=FO
Σ ϕ for some valuation α (which is anyway irrelevant, since ΣObs-sentences have no free variables).

Abstraction equivalence. Let ΣObs = (Σ,Obs) ∈ SignFO and A,A′ ∈ ModFO(ΣObs). A is observationally
equivalent to A′, denoted by A ≡FO

ΣObs
A′, if there exists an S-sorted family Y = (Ys)s∈S of variables with

Ys = ∅ for all s /∈ Obs and valuations α : Y → A, α′ : Y → A′ which are surjective on observable sorts, such
that for all equations t = r with terms t, r ∈ TΣ(Y )s of observable sort s ∈ Obs,

A,α |=FO
ΣObs

t = r iff A′, α′ |=FO
ΣObs

t = r.

The basic idea behind this definition is that two algebras are equivalent from the observational point of
view if they cannot be distinguished by interpreting equations of observable sorts. This idea stems from
the algebraic specification language ASL [23] where an arbitrary set W of terms could be used to compare
algebras. A subtle point is to determine which variables are allowed in the terms. There are different
variations studied in the literature; for an overview see [2], Example 4.4. We have decided to follow Nivela,
Orejas [17] and allow variables of observable sorts whose values are considered as inputs for the observable
experiments.
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Behavioural satisfaction relation. Abstraction equivalences compare the observable behaviour of algebras.
Another possibility for taking care about observability is to consider the elements “inside” an algebra and
to define an indistinguishability relation for them. This idea goes back to Reichel [19] and has later been
defined in different variations concerning the input variables of observable experiments; for an overview
see [2], Example 3.5. We follow here again Nivela, Orejas [17] and allow variables of observable sorts.
Let ΣObs = (Σ,Obs) be an observational signature. Observable experiments are represented by observable
contexts. An observable context with application sort s and result sort s′ ∈ Obs is a Σ-term of sort s′,
which contains a distinguished variable zs /∈ X of sort s and possibly further variables in X of arbitrary
observable sorts. Let A be a Σ-algebra. The sub-algebra of A generated over the carrier sets of observable
sorts by using functions opA of A is denoted by GenΣObs

(A). Two elements a, b ∈ A are observationally
equal, denoted by a ≈ΣObs,A b, if and only if a, b ∈ GenΣObs

(A) and for all observable contexts c (applicable
to a and b) the application of c to a and to b yields the same observable result. The application of observable
contexts is defined as expected (see, e.g.,[2]) but taking into account that variables x ∈ X occurring in an
observable context must be evaluated in the generated part GenΣObs

(A).
The behavioural satisfaction relation for A ∈ ModFO(ΣObs) and ϕ ∈ SenFO(ΣObs), writtenA |=FO

beh,ΣObs
ϕ,

is defined analogously to the standard satisfaction relation with the exception that the equality symbol “=”
is interpreted by the observational equality ≈ΣObs,A and quantifiers range only over elements in GenΣObs

(A).

Condition (1) of a behaviour-abstractor framework in Def. 1 requires that behavioural satisfaction is
preserved by abstraction equivalence. In the context of many-sorted first-order logic this is indeed the case:

Lemma 3. For any ΣObs ∈ SignFO and for all A,A′ ∈ ModFO(ΣObs),

(1) A ≡FO
ΣObs

A′ ⇒ (A |=FO
beh,ΣObs

ϕ iff A′ |=FO
beh,ΣObs

ϕ for all ϕ ∈ SenFO(ΣObs)).

Proof. An analogous statement to (1) has been proved in [2], Proposition 5.5, in a more abstract setting
considering partial Σ-congruences ≈ and equivalences ≡, such that ≡ is factorizable by ≈. Factorizability
means that algebras are equivalent w.r.t. ≡ if and only if their quotients w.r.t. ≈ are isomorphic. In [2],
Example 5.4, it was shown that ≡FO

ΣObs
is factorizable by ≈ΣObs

and therefore (1) holds. �

We have also shown in [2], Theorem 5.6, that even the converse direction of Lemma 3 holds if quotients
w.r.t. ≈ are countable.

Black box function. The black box view of a ΣObs-model A is defined as the quotient algebra of GenΣObs
(A)

w.r.t. the observational equality ≈ΣObs,A, i.e. BBFO
ΣObs

(A) =def GenΣObs
(A)/≈ΣObs,A. It is well-defined, since

≈ΣObs,A is a total Σ-congruence on GenΣObs
(A).

Theorem 4. BAFO = (SignFO, SenFO,ModFO, |=FO,≡FO, |=FO
beh,BBFO) is a behaviour-abstractor frame-

work, where SenFO = (SenFO(ΣObs))ΣObs∈SignFO is the family of sets SenFO(ΣObs) of ΣObs-sentences, and

similarly for the other components of BAFO.

Proof. We have to show that conditions (1) - (3) of Def. 1 hold. (1) holds by Lemma 3. It remains to
show that conditions (2) and (3) are satisfied by the black box construction, i.e. that for any ΣObs ∈ SignFO

and for all A ∈ ModFO(ΣObs),

(2) A ≡FO
ΣObs

BBFO
ΣObs

(A), and

(3) BBFO
ΣObs

(A) |=FO
beh,ΣObs

ϕ iff BBFO
ΣObs

(A) |=FO
ΣObs

ϕ for all ϕ ∈ SenFO(ΣObs).

(2) has been proved in [2], Lemma 5.8, in the more abstract setting explained in the proof of Lemma 3. It
assumes again factorizability but also “weak regularity” of ≈ΣObs

, a property which requires that the quotient
construction is idempotent up to isomorphism. Since this is fulfilled for quotients w.r.t. observational
equalities, see [2], Example 3.15, (2) holds.

Instead of (3) we show condition (3’), see Lemma 2, i.e. that for any ΣObs-model A and ΣObs-sentence
ϕ, A |=FO

beh,ΣObs
ϕ iff A/≈ΣObs,A|=FO

ΣObs
ϕ. But this is a direct application of Thm. 3.11 in [2] since we know

that observational equalities are partial congruences. �
6



As a consequence of Thm. 4 we can instantiate Thm. 1 and get the respective relationships between
behavioural and abstractor specifications in the context of many-sorted first-order logic. Analogous results
have been obtained in Thm. 5.9 and Thm. 5.11 of [2] for factorizable equivalences and weakly regular partial
congruences.

4. Higher-Order Logic

The results of [2] have been generalised to higher-order logic by Hofmann and Sannella in [13]. In the
following of this section we will collect those pieces of [13] which constitute a behaviour-abstractor framework.
We will only give a compact summary; for more details see [13].

Signatures and sentences. We consider again observational signatures ΣObs = (Σ,Obs) where Σ = (S,OP)
is a many-sorted signature and Obs ⊆ S is a set of observable sorts. In contrast to first-order logic,
operation symbols op : s1, . . . , sn → s are considered as constants of type s1, . . . , sn → s. The sorts in S
are called base types and observable sorts are base types as well. Hofmann and Sannella argue “All other
types, including bracket types are hidden in the sense that their values may only be inspected indirectly
by performing experiments (i.e. evaluating terms) that yield a result of a type in OBS”. The class of
observational signatures is denoted by SignHO to emphasise that we are going to work in higher-order logic.
Given ΣObs = (Σ,Obs), the types over Σ are defined by the grammar

τ ::= b | [τ1, . . . , τn]

where b ∈ S and n ≥ 0. Bracket types denote n-ary predicates; the type [ ] is regarded as a proposition.
The terms over Σ are given by the grammar

t ::= x | op(t1, . . . , tn) | λ(x1:τ1, . . . , xn:τn).t | t(t1, . . . , tn) | t⇒ t′ | ∀x:τ.t

where x, x1, . . . , xn are variables. A sequence Γ = (x1:τ1, . . . , xn:τn) with pairwise distinct typed variables xi

is called a variable context. In [13] there are typing rules to derive t : τ from a context Γ and then t is called
a term in context Γ. A term is closed if it is typable in the empty context. A formula in context Γ is a term
ϕ such that ϕ : [ ] is derivable from Γ. Hofmann and Sannella point out that “there is no need to include
equality as a built-in predicate, since it is expressible using higher-order quantification”. An equation t =τ t′

is an abbreviation for ∀P :[τ ].P (t)⇒ P (t′). A closed formula ϕ is a higher-order ΣObs-sentence. The set of
higher-order ΣObs-sentences is denoted by SenHO(ΣObs).

Models. Models for an observational signature ΣObs = (Σ,Obs) are again Σ-algebras A =
((As)s∈S , (op

A)op∈OP). The class of all ΣObs-models is denoted by ModHO(ΣObs). Together with Σ-algebra
homomorphisms this class forms a category. Given a Σ-algebra A, types of the form [τ1, . . . , τn] are inter-
preted by [[[τ1, . . . , τn]]]

A = Pow([[τ1]]
A × . . .× [[τn]]

A) where Pow denotes the power set functor for sets. In
particular, [[[ ]]]A is a two element set {∅, {∗}}. Following [13], we write ff for ∅ and tt for {∗}.

Satisfaction relation. Given a Σ-algebra A and a variable context Γ, a Γ-environment on A is a Types(Σ)-
sorted family of valuations ρ = (ρτ : Γτ → [[τ ]]A)τ∈Types(Σ) where Γτ shows the variables of type τ occurring
in Γ. For a given Γ-environment ρ, terms t in context Γ can be interpreted such that, if t : τ is derivable from
Γ, then [[t]]Aρ ∈ [[τ ]]A; see [13], Proposition 3.6. For a formula ϕ in context Γ and Γ-environment ρ, A satisfies

ϕ, denoted here by A, ρ |=HO
Σ ϕ, iff [[ϕ]]Aρ = tt. For any observational signature ΣObs = (Σ,Obs), a model

A ∈ ModHO(ΣObs) satisfies a higher-order ΣObs-sentence ϕ, denoted here by A |=HO
ΣObs

ϕ, iff A, ρ |=HO
Σ ϕ for

some environment ρ (which is anyway irrelevant, since ΣObs-sentences are closed terms).

7



Abstraction equivalence. Let ΣObs = (Σ,Obs) ∈ SignHO and A,A′ ∈ ModHO(ΣObs). Then A and A′ are
ordinary Σ-algebras with distinguished carrier sets of observable elements, as in the first-order case. Hofmann
and Sannella use in [13] indeed the same observational equivalence between algebras as defined in the last
section, which we denote here by ≡HO

ΣObs
(and which is denoted by ≡OBS in [13]). They write “It might

seem surprising that the definition of ≡OBS does not make use of the higher-order features of the language,
except as a result of the way that equality is expressed via quantification over predicates. . . . The reason for
this choice is that the natural modification of the definition of ≡OBS to make use of higher-order formulae
(Defintion 5.19) gives exactly the same relation, see Corollary 5.22.”

Behavioural satisfaction relation. In higher-order logic observational equality of elements on the base types
is defined as in the first-order case and denoted again by ≈ΣObs,A, for any Σ-algebra A. The situation
is, however, more complicated for higher-order types. Hofmann and Sannella show in [13] how to extend
partial congruence relations ≈ on base types to bracket types. The point is that “We must make sure that
the predicate variables only range over predicates which “respect” the partial congruence”; see [13]. This
means that predicates do “not differentiate between values that are related by ≈”. Then, Hofmann and
Sannella give an interpretation for all types, such that ≈ is respected, and an interpretation of terms in
those domains; see Def. 3.21 and Def. 3.26 in [13]. For a given Γ-environment ρ w.r.t. ≈ and term t in
context Γ, if t : τ is derviable from Γ, then [[t]]≈,A

ρ ∈ [[τ ]]≈,A; see [13], Corollary 3.28. Hofmann and Sannella
explain that a comparison of the interpretation of terms w.r.t. ≈ with the standard interpretation “reveals
that the only difference is the change to the meaning of λ-abstraction and universal quantification induced
by the different interpretation of types”.

For a formula ϕ in context Γ and a Γ-environment ρ w.r.t. ≈, A satisfies behaviourally ϕ, denoted here
by A, ρ |=HO

beh,Σ ϕ, iff [[ϕ]]≈,A
ρ = tt. Since the observational equality ≈ΣObs,A is a partial Σ-congruence for

any Σ-algebra A, one defines, for any observational signature ΣObs = (Σ,Obs), A ∈ ModHO(ΣObs) and
higher-order ΣObs-sentence ϕ: A satisfies behaviourally ϕ, denoted here by A |=HO

beh,ΣObs
ϕ, iff A, ρ |=HO

beh,Σ ϕ
for some environment ρ (which is again irrelevant, since ΣObs-sentences are closed terms).

Black box function. The black box view of a ΣObs-model A is defined, as in first-order logic, as the quotient
algebra of GenΣObs

(A) w.r.t. the observational equality ≈ΣObs,A, i.e. BBHO
ΣObs

(A) =def GenΣObs
(A)/≈ΣObs,A.

Elements of GenΣObs
(A) are called “OBS -reachable” in [13].

Theorem 5. BAHO = (SignHO, SenHO,ModHO, |=HO,≡HO, |=HO
beh,BBHO) is a behaviour-abstractor frame-

work, where SenHO = (SenHO(ΣObs))ΣObs∈SignHO is the family of sets SenHO(ΣObs) of higher-order ΣObs-

sentences, and similarly for the other components of BAHO.

Proof. Let ΣObs be an observational signature. First we show that condition (3’) of Lemma 2 holds, i.e.
that for any A ∈ ModHO(ΣObs),

(3’) A |=HO
beh,ΣObs

ϕ iff A/≈ΣObs,A|=HO
ΣObs

ϕ for all ϕ ∈ SenFO(ΣObs).

But this is a direct application of Thm. 3.35 in [13].
Now we can prove condition (1) of Def. 1 which is not explicitly discussed in [13] but is interesting, since

it shows that also in higher-order logic behavioural satisfaction is preserved by abstraction equivalence. For
all A,A′ ∈ ModHO(ΣObs),

(1) A ≡HO
ΣObs

A′ ⇒ (A |=HO
beh,ΣObs

ϕ iff A′ |=HO
beh,ΣObs

ϕ for all ϕ ∈ SenHO(ΣObs)).

For the proof of (1), we assume A ≡HO
ΣObs

A′. Let A |=HO
beh,ΣObs

ϕ for some ϕ ∈ SenHO(ΣObs). By (3’), we

know, A/≈ΣObs,A|=HO
ΣObs

ϕ, i.e. BBHO
ΣObs

(A) |=HO
ΣObs

ϕ. Since ≡HO
ΣObs

is factorizable by ≈ΣObs
(Prop. 4.15 and

Cor. 5.16 in [13]), BBHO
ΣObs

(A) and BBHO
ΣObs

(A′) are isomorphic. Hence, by Cor. 3.14 in [13], BBHO
ΣObs

(A′) |=HO
ΣObs

ϕ. Then we can apply again (3’) and obtain A′ |=HO
beh,ΣObs

ϕ. The converse direction is analogous.

At next, we show that (2) of Def. 1 holds, i.e. that for all A ∈ ModHO(ΣObs),
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(2) A ≡HO
ΣObs

BBHO
ΣObs

(A).

(2) has been stated in [13] within the proof of Theorem 6.5 for factorizable abstraction equivalences and
“regular” partial congruences. That both is valid for ≡OBS and ≈ΣObs

has been shown in [13]; Prop. 4.15,
Cor. 5.16 and Prop. 4.7.

Now we know that (3’) holds and that (1) and (2) hold. Hence, according to Lemma 2, BAHO is a
behaviour-abstractor framework. �

As a consequence of Thm. 5 we can instantiate Thm. 1 and get the respective relationships between
behavioural and abstractor specifications in the context of higher-order logic. Analogous results have been
obtained in Thm. 6.6 and Thm. 6.7 of [13] for factorizable equivalences and weakly regular partial congru-
ences.

5. Dynamic Logic with Binders

Dynamic logic with binders, called D↓-logic, has been introduced in [14] as a logic which allows to express
properties of reactive systems from abstract safety and liveness properties down to concrete ones specifying
the (recursive) structure of processes. It combines modalities indexed by regular expressions of actions, as
in Dynamic Logic [6], and state variables with binders, as in Hybrid Logic [3]. We show in this section that
D↓-logic offers all ingredients required for a behaviour-abstractor framework.

Signatures and sentences. A D↓-signature is a set A of atomic actions. The class of D↓-signatures is denoted
by SignD

↓
. The set of composed actions Act(A), induced by atomic actions A, is given by

α ::= a | α;α | α+ α | α∗

where a ∈ A. For any A ∈ SignD
↓
, the set of A-formulas is given by

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | 〈α〉ϕ | [α]ϕ | x | ↓ x. ϕ | @xϕ

where α ∈ Act(A) and x ∈ X is a variable belonging to a universal set X of state variables. An A-sentence
is an A-formula ϕ which contains no free variables. Free variables are defined as usual with ↓ being the only
operator binding variables. The idea of the binder operator ↓ x.ϕ is to assign to variable x the current state
of evaluation and then to continue with evaluating ϕ. The operator @xϕ evaluates ϕ in the state assigned
to x. D↓ retains from Hybrid Logic these two constructions but omits the use of nominals since we are only
interested in properties of states reachable from the initial state, i.e. processes. The set of A-sentences is

denoted by SenD
↓
(A).

Models. Models in D↓ are reachable, labelled transition systems with initial state. Let A ∈ SignD
↓
be a

set of atomic actions. An A-model is a triple M = (W,w0, R) where W is a set of states, w0 ∈ W is the
initial state and R = (Ra ⊆ W ×W )a∈A is a family of transition relations such that, for each w ∈ W , either
w = w0 or there is a finite sequence of transitions (wk−1, wk) ∈ Rak

, 1 ≤ k ≤ n, with ak ∈ A, such that

wn = w. The class of A-models is denoted by ModD
↓
(A).

Satisfaction relation. To define the satisfaction relation we need to clarify how composed actions are in-
terpreted in models. Let α ∈ Act(A) and M = (W,w0, R). The interpretation of α in M extends the
interpretation of atomic actions by Rα;α′ = Rα · Rα′ , Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)

�, with the oper-
ations ·, ∪ and 	 standing for relational composition, union and reflexive-transitive closure. A valuation is
a function g : X → W . Given such a valuation g, a variable x ∈ X and a state w ∈ W , g[x �→ w] denotes
the valuation with g[x �→ w](x) = w and g[x �→ w](y) = g(y) for any y ∈ X, y �= x. For any A-model

M = (W,w0, R) ∈ ModD
↓
(A), state w ∈ W and valuation g : X → W ,

• M, g, w |=D↓
A 〈α〉ϕ iff there is a v ∈ W with (w, v) ∈ Rα and M, g, v |=D↓

A ϕ;
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• M, g, w |=D↓
A x iff g(x) = w;

• M, g, w |=D↓
A ↓ x. ϕ iff M, g[x �→ w], w |=D↓

A ϕ;

• M, g, w |=D↓
A @xϕ iff M, g, g(x) |=D↓

A ϕ.

We omit the remaining cases which are (inductively) defined as usual. If ϕ is an A-sentence, then the

valuation is irrelevant, i.e., M, g, w |=D↓
A ϕ iff M, w |=D↓

A ϕ. M satisfies an A-sentence ϕ, denoted by

M |=D↓
A ϕ, iff M, w0 |=D↓

A ϕ.

Abstraction equivalence. As abstraction equivalence for A-models we use bisimulation equivalence. Let
M = (W,w0, R) and M′ = (W ′, w′

0, R
′) be two A-models. A bisimulation relation between M and M′ is a

relation S ⊆ W ×W ′ that contains (w0, w
′
0) and satisfies

(zig) for any a ∈ A, w, v ∈ W , w′ ∈ W ′ such that (w,w′) ∈ S :
if (w, v) ∈ Ra, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R′

a and (v, v′) ∈ S;

(zag) for any a ∈ A, w ∈ W , w′, v′ ∈ W ′ such that (w,w′) ∈ S :
if (w′, v′) ∈ R′

a, then there is a v ∈ W such that (w, v) ∈ Ra and (v, v′) ∈ S.

Two A-models M,M′ ∈ ModD
↓
(A) are bisimulation equivalent, denoted by M ≡D↓

A M′, if there exists
a bisimulation relation between M and M′. It is well known that bisimulation equivalence is indeed an

equivalence relation on the class of A-models. Moreover, if M ≡D↓
A M′, then there exists a greatest

bisimulation relation between M and M′, which we denote by ∼M′
M .

Behavioural satisfaction relation. In [12] we have shown that satisfaction of A-sentences in D↓ is, in general,
not preserved by bisimulation equivalence. To overcome this we have introduced a behavioural satisfaction
relation (called observational satisfaction in [12]) between A-models and A-sentences which relaxes the
satisfaction relation in D↓ defined above. The crucial idea is that behavioural satisfaction allows to interpret
variables x by states which are not identical but only observationally equal to the current value of x. For
this purpose, we consider for any A-model M = (W,w0, R) the greatest bisimulation relation ∼M

M ⊆ W ×W
on the states of M which we call observational equality. Instead of ∼M

M we write briefly ∼M.
Let M = (W,w0, R) be an A-model, w ∈ W and g : X → W a valuation. The behavioural satisfaction

of an A-formula ϕ in state w of M w.r.t. valuation g, denoted by M, g, w |=D↓
beh,A ϕ, is defined analogously

to the satisfaction relation |=D↓
A above with the exception of

M, g, w |=D↓
beh,A x iff g(x) ∼M w.

For each A-sentence ϕ ∈ SignD
↓
(A), the valuation is irrelevant and M satisfies behaviourally ϕ, denoted

by M |=D↓
beh,A ϕ, iff M, w0 |=D↓

beh,A ϕ.

In the context of D↓-logic, condition (1) of a behaviour-abstractor framework in Def. 1 expresses modal
invariance of A-sentences w.r.t. bisimulation equivalence and behavioural satisfaction. This was one of the
main results in [12] (Corollary 3) and is formulated in the following lemma. We have also shown in [12] that
even the converse direction holds for image-finite transition systems.

Lemma 6. For any A ∈ SignD
↓
and for all M,M′ ∈ ModD

↓
(A),

(1) M ≡D↓
A M′ ⇒ (M |=D↓

beh,A ϕ iff M′ |=D↓
beh,A ϕ for all ϕ ∈ SenD

↓
(A)).
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Black box function. To define the black box view of an A-model M we consider a quotient construction
which identifies observationally equal states. Let M = (W,w0, R). The quotient of M w.r.t. ∼M is the
A-model M/∼= (W/∼, [w0], R/∼), where

• W/∼= {[w] |w ∈ W} with [w] = {w′ |w′ ∼M w}, and for all a ∈ A,

• (R/∼)a = {([w], [v]) | ∃w′ ∈ [w], v′ ∈ [v] : (w′, v′) ∈ Ra}.

Since ∼M is a bisimulation relation, M/∼ is well-defined. For any M ∈ ModD
↓
(A), the black box view of

M is defined by BBD↓
A (M) =def M/∼.

Theorem 7. BAD↓
= (SignD

↓
, SenD

↓
,ModD

↓
, |=D↓

,≡D↓
, |=D↓

beh,BBD↓
) is a behaviour-abstractor framework,

where SenD
↓
= (SenD

↓
(A))

A∈SignD↓ is the family of sets SenD
↓
(A) of A-sentences, and similary for the other

components of BAD↓
.

Proof. Condition (1) of Def. 1 holds by Lemma 6. Conditions (2) and (3) expressed in D↓-logic require,

that for any A ∈ SignD
↓
and for all M ∈ ModD

↓
(A),

(2) M ≡D↓
A BBD↓

A (M).

(3) BBD↓
A (M) |=D↓

beh,A ϕ iff BBD↓
A (M) |=D↓

A ϕ for all ϕ ∈ SenD
↓
(A).

For (2) it is straightforward to show that M ≡D↓
A M/∼, since the definition of R/∼ entails that the

relation B ⊆ W ×W/∼ with B = {(w, [w]) |w ∈ W} is a bisimulation relation between M and M/∼, and

hence between M and BBD↓
A (M). For a detailed proof of this fact see proof of Thm. 8 in [12].

Instead of (3) we show condition (3’), see Lemma 2, i.e., that for any A-model M and A-sentence ϕ,

M |=D↓
beh,A ϕ iff M/∼|=D↓

A ϕ. This is exactly the content of Thm. 5 in [12]. �

As a consequence of Thm. 7 we can instantiate Thm. 1 and get the respective relationships between
behavioural and abstractor specifications in the context of D↓-logic. The same results have been obtained
in Thm. 8 of [12] with a direct proof in D↓-logic.

6. Hennessy-Milner Logic

Hennessy-Milner Logic is a modal logic introduced by Hennessy and Milner to characterise bisimulation
equivalence; c.f. [7]. In this section we discuss how to obtain a behaviour-abstractor framework for Hennessy-
Milner logic.

Signatures and sentences. A HM-signature is a set V of visible actions. The class of HM-signatures is
denoted by SignHM. For any V ∈ SignHM, the set of V -sentences is given by

ϕ ::= tt | ff | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | [a]ϕ
where a ∈ V ∪ {ε} is a visible action or the empty action ε. As we will see below the empty action has no
effect when evaluating sentences; it is also not part of classical Hennessy-Milner logic but we have introduced
it here because we will use the same set of sentences when considering “observable” Hennessy-Milner logic
below. The set of V -sentences is denoted by SenHM(V ).

Models. Models are reachable, labelled transition systems with initial state. Additionally to visible actions
in V , transitions can also be labelled with the internal (invisible) action τ . Thus, for any V ∈ SignHM, a
V -model is an A-model as defined in Sect. 5 with A = V ∪ {τ}. A V -model is τ -free if it does not contain
(silent) τ -transitions. The class of V -models is denoted by ModHM(V ).
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Satisfaction relation. The satisfaction relation |=HM
V between V -models M and V -sentences ϕ is defined by

restricting the satisfaction relation defined for D↓-logic in Sect. 5 to V -sentences and adding the (trivial)
cases

• M, w |=HM
V 〈ε〉ϕ iff M, w |=HM

V [ε]ϕ iff M, w |=HM
V ϕ

where w ∈ W . Note that valuations of variables are omitted since V -sentences are variable-free. M satisfies
a V -sentence ϕ, denoted by M |=HM

V ϕ, if M, w0 |=HM
V ϕ.

Abstraction equivalence. As abstraction equivalence we use weak bisimulations, called observable bisimula-
tions in [24]. For the definition we must first define the τ -closure of transition relations with visible actions.
Let M = (W,w0, R) be a V -model with transition relations R = (Ra ⊆ W ×W )a∈V∪{τ}. For each a ∈ V ,

the τ -closure of Ra is the set R̂a ⊆ W ×W such that (w, v) ∈ R̂a if and only if there is a finite sequence
of transitions from w to v containing exactly one transition labelled with visible action a surrounded by
arbitrarily many τ -transitions. The set R̂ε ⊆ W × W contains all pairs (w, v) such that there is a finite,
possibly empty, sequence of τ -transitions from w to v. Let M = (W,w0, R) and M′ = (W ′, w′

0, R
′) be

two V -models. A weak bisimulation relation between M and M′ is a relation S ⊆ W ×W ′ that contains
(w0, w

′
0) and satisfies

(weak-zig) for any a ∈ V ∪ {ε}, w, v ∈ W , w′ ∈ W ′ such that (w,w′) ∈ S :
if (w, v) ∈ R̂a, then there is a v′ ∈ W ′ such that (w′, v′) ∈ R̂′

a and (v, v′) ∈ S;

(weak-zag) for any a ∈ V ∪ {ε}, w ∈ W , w′, v′ ∈ W ′ such that (w,w′) ∈ S :
if (w′, v′) ∈ R̂′

a, then there is a v ∈ W such that (w, v) ∈ R̂a and (v, v′) ∈ S.

Two V -models M,M′ ∈ ModHM(A) are weakly bisimulation equivalent, denoted by M ≡HM
V M′, if

there exists a weak bisimulation relation between M and M′. It is well known that weak bisimulation
equivalence is indeed an equivalence relation on the class of V -models. Moreover, if M ≡D↓

A M′, then there

exists a greatest weak bisimulation relation between M and M′, which we denote by ≈M′
M .

Behavioural satisfaction relation. For behavioural satisfaction of V -sentences we use the satisfaction relation
defined for observable modal logic in [24] which abstracts from invisble τ -transitions. For this purpose we
use again the relations R̂a (with a ∈ V ∪ {ε}) defined above. For any M = (W,w0, R) ∈ ModHM(V ), state
w ∈ W and a ∈ V ∪ {ε},

• M, w |=HM
beh,V 〈a〉ϕ iff there is a v ∈ W with (w, v) ∈ R̂a and M, v |=HM

beh,V ϕ;

• M, w |=HM
V [a]ϕ iff for any v ∈ W with (w, v) ∈ R̂a it holds M, v |=HM

V ϕ.

Behavioural satisfaction for the other cases tt,ff , ϕ ∧ ϕ′ and ϕ ∨ ϕ′ is defined as expected. M satisfies
behaviourally a V -sentence ϕ, denoted by M |=HM

beh,V ϕ, iff M, w0 |=HM
beh,V ϕ.

To prove condition (1) of a behaviour-abstractor framework in Def. 1 in the context of Hennessy-Milner
logic with weak bisimulation equivalence and behavioural satisfaction, we need the following lemma. The
validity of the lemma is stated in [24], Sect. 3.5, Prop. 3. The converse direction of (1) is also shown in [24],
Prop. 4, under the assumption of observationally image-finite processes.

Lemma 8. For any A ∈ SignHM and for all M,M′ ∈ ModHM(V ),

(1) M ≡HM
V M′ ⇒ (M |=HM

beh,V ϕ iff M′ |=HM
beh,V ϕ for all ϕ ∈ SenHM(V )).
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Figure 1: Counterexample: V -model M

Black box function. To define a black box view of a V -model M we must construct BBHM
V (M) such that:

(2) M ≡HM
V BBHM

V (M).

(3) BBHM
V (M) |=HM

beh,V ϕ iff BBHM
V (M) |=HM

V ϕ for all ϕ ∈ SenHM(V ).

Interestingly, such a model does, in general, not exist. For the proof, we use the counterexample repre-
sented by the V -model M in Fig. 1 with initial state w0.

Let us assume that there exists a V -model N such that (2) M ≡HM
V N and (3) N |=HM

beh,V ϕ iff N |=HM
V

ϕ for all ϕ ∈ SenHM(V ). Let ϕ be the V -sentence 〈a〉tt ∧ 〈b〉tt. Obviously, M |=HM
beh,V 〈a〉tt ∧ 〈b〉tt. If (2)

holds, then we obtain by (1): N |=HM
beh,V 〈a〉tt ∧ 〈b〉tt. If (3) holds we get N |=HM

V 〈a〉tt ∧ 〈b〉tt. Hence the
initial state of N , say v0, must have a choice between (at least) two transitions, one labeled with a and the
other one labelled with b. But then one can easily check that there is no weak bisimulation between M and
N containing (w0, v0). Thus we get a contradiction to the assumption (2).

As a consequence we cannot construct an appropriate black box view for all models M ∈ ModHM(V ).
This leads us to the idea to restrict the class of V -models in an appropriate way. To do so, we consider weakly
deterministic V -models as defined in [10], and similarly under the notion of (weak) determinacy in [15]. For
the definition we need some auxiliary notions: Let M = (W,w0, R) ∈ ModHM(V ). A state w ∈ W is
observably reachable in M if either (w0, w) ∈ R̂ε or there exists a non-empty sequence a1 . . . an ∈ V ∗ of
visible actions and a finite sequence of transitions (wk−1, wk) ∈ R̂ak

, 1 ≤ k ≤ n, such that wn = w. An
observable trace of M is a finite, possibly empty, sequence λ ∈ V ∗ such that there is some w ∈ W which
is observably reachable by λ. Let ≈M denote the greatest weak bisimulation relation ≈M

M between M and
M. M is called weakly deterministic if for all states w,w′ ∈ W which are reachable by the same observable
trace λ it holds: w ≈M w′.

In [10], Prop. A.1, we have proved that for any weakly deterministic V -model M there exist a minimal
V -model N without τ -transitions, which is weakly bisimilar to M and hence M ≡HM

V N . Therefore, we
restrict the class of V -models to weakly deterministic V -models and denote this class by ModHM

wd (V ). For
each M ∈ ModHM

wd (V ) we define the black box view of M by using the construction of [10] which works as
follows:

First, we define an equivalence relation ≈tr on the observable traces of M such that, for observable
traces λ1, λ2 ∈ V ∗, λ1 ≈tr λ2 iff for all states w ∈ W reachable by λ1 and for all states w′ ∈ W reachable
by λ2 it holds: w ≈M w′. For each observable trace λ, [λ]≈tr

denotes the equivalence class of λ w.r.t. ≈tr .
Then, for M ∈ ModHM

wd (V ), we define BBHM
V (M) =def (WB , w0,B , RB) with

• WB = {[λ]≈tr
|λ ∈ V ∗ is an observable trace of M},

• w0,B = [ε]≈tr
,

• (RB)τ = ∅, and for a ∈ V , (RB)a = {([λ]≈tr
, [λ′]≈tr

) |λa ∈ [λ′]≈tr
}.

Since M is weakly deterministic everything is well-defined, and according to [10], Prop. A.1, we get (2)
M ≡HM

V BBHM
V (M). Since BBHM

V (M) has no τ -transitions, behavioural satisfaction coincides with standard
satisfaction of V -sentences and thus also condition (3) of Def. 1 is satisfied. Moreover, (1) holds by Lemma 8.
Thus the following theorem holds:
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Theorem 9. BAHM = (SignHM, SenHM,ModHM
wd , |=HM,≡HM, |=HM

beh ,BBHM) is a behaviour-abstractor frame-

work, where SenHM = (SenHM(V ))V ∈SignHM is the family of sets SenHM(V ) of V -sentences, ModHM
wd =

(ModHM
wd (V ))V ∈SignHM is the family of classes ModHM

wd (V ) of weakly deterministic V -models, and similarly

for the other components of BAHM.

As a consequence of Thm. 9 we can instantiate Thm. 1 and get the respective relationships between
behavioural and abstractor specifications in the context of Hennessy-Milner logic with weakly deterministic
models.

7. Concluding Remarks

In this paper we have proposed a new behaviour-abstractor framework with a few characteristic principles
for expressing the semantic relationships between abstractor and behavioural specifications. The key idea
is that for each model of a specification an observationally equivalent black box model must exist for
which behavioural satisfaction of sentences coincides with standard satisfaction. In contrast to the original
approach in [2] and the general approach of Misiak [16], the behaviour-abstractor framework is neither based
on partial (observational) congruences nor on standard/categorical quotient constructions but requires (only)
the existence of black box models.

In the second part of the paper we have recovered the main currently known behaviour/abstractor rela-
tionships for specific logical frameworks: first-order logic, higher-order logic, and dynamic logic with binders
are all instances of the behaviour-abstractor framework. Moreover, as a new result we have shown that
(observational) Hennessy-Milner logic is also an instance of the behaviour-abstractor framework, subject
to the condition that only weakly deterministic models are considered. The unrestricted Hennessy-Milner
setting provides a counterexample. As the example in Section 6 shows, a black box model satisfying condi-
tions (2) and (3) of a behaviour-abstractor framework does, in general, not exist and thus the unrestricted
Hennessy-Milner setting is not a behaviour-abstractor framework.

This work covers the case of flat specifications. Future work could consider an extension to structured
specifications, either following the approach in [2] or using structured behavioural specifications as in [16].
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