
Universidade de Aveiro
2022

Daniel Pinto Correia Navegação Semântica Aplicada a Passagens
Estreitas em Cadeira de Rodas Inteligente

Semantic Navigation Applied to Narrow Passages for
Intelligent Wheelchairs

Universidade de Aveiro
2022

Daniel Pinto Correia Navegação Semântica Aplicada a Passagens
Estreitas em Cadeira de Rodas Inteligente

Semantic Navigation Applied to Narrow Passages for
Intelligent Wheelchairs

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores
e Telemática, realizada sob a orientação científica do Doutor Artur José Carneiro
Pereira, Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e
Informática da Universidade de Aveiro, e do Doutor Eurico Farinha Pedrosa, Inves-
tigador Doutorado (Nível 1) do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro.

Esta dissertação contou com o apoio do projeto IntellWheels 2.0 com a
referência POCI-01-0247-FEDER-39898 e foi financiada pelo Fundo Europeu
de Desenvolvimento Regional (FEDER)

o júri / the jury
presidente / president Professor Doutor José Luís Costa Pinto de Azevedo

Professor Auxiliar do Departamento de Eletrónica Telecomunicações e Informática da Universidade
de Aveiro

vogais / examiners committee Professor Doutor Luís Paulo Gonçalves dos Reis
Professor Associado do Departamento de Engenharia Informática da Faculdade de Engenharia da
Universidade do Porto

Professor Doutor Artur José Carneiro Pereira
Professor Auxiliar do Departamento de Eletrónica Telecomunicações e Informática da Universidade
de Aveiro

agradecimentos /
acknowledgements

Desejo agradecer a todos os que contribuíram para que este trabalho fosse possível.
Em primeiro lugar quero agradecer ao Professor Doutor Artur José Carneiro Pereira
por ter aceite ser orientador da minha dissertação e pelo apoio sempre presente
desde o início. Agradeço ainda por todas as oportunidades de aprendizagem que
me proporcionou durante estes meses de trabalho. Agradeço igualmente ao Doutor
Eurico Farinha Pedrosa e ao Professor Doutor José Nuno Panelas Nunes Lau pelos
contributos essenciais para a conclusão desta dissertação. Quero agradecer aos
meus amigos e colegas de curso, em particular àqueles que sempre me apoiaram,
não só durante a dissertação mas durante estes últimos 5 anos. Um especial
agradecimento ao João Rodrigues, José Silva, João Abrantes e Luisa Vale que
ativamente me ajudaram em desafios no desenvolvimento ou na escrita da disser-
tação. Aos meus pais e ao meu irmão: por sempre me incentivarem na prossecução
dos estudos que me cativaram desde início, e que ainda hoje me apresentam novos
e interessantes desafios e pelos sacrifícios pessoais que permitiram que hoje os
concluísse.

Palavras Chave Navegação Semantica, Planeamento, Mapeamento, Passagens Estreitas, ROS,
Cadeira de Rodas Inteligent, Navegação em ambiente interior

Resumo Com o desenvolvimento da tecnologia em robótica, surgem novas oportunidades
para melhorar a qualidade de vida de pessoas com problemas de mobilidade. O
projeto IntellWheels nasce com o objetivo de criar um kit de hardware e software
capaz de transformar uma cadeira de rodas motorizada numa cadeira de rodas
inteligente e autónoma. Esta dissertação encaixa neste projeto no tópico de nave-
gação em ambientes interiores com o objetivo de adicionar uma camada semântica
à framework de navegação.
Em robótica, semântica é a capacidade de um robô entender o seu ambiente. No
caso de uma cadeira de rodas inteligente, isto é especialmente importante tendo
em conta que transporta um passageiro. Uma solução foi desenvolvida em que
conceitos de navegação semântica são usados para abordar o problema de atra-
vessar passagens estreitas, construindo uma camada adicional de mapeamento em
que estas passagens são automaticamente identificadas e marcadas no mapa e uma
camada extra de planeamento que recebe esta informação e toma decisões contro-
lando os planeadores de nível mais baixo.
Para validar esta solução, foram realizados testes, em ambiente simulado e ambi-
ente real para verificar se os componentes individuais funcionavam como preten-
dido.
Esta dissertação resultou numa melhoria das capacidades de navegação em ambi-
entes interiores da framework e é uma base para futuros desenvolvimentos na área
de navegação semântica para cadeiras de rodas inteligentes.

Keywords Semantic Navigation, Planning, Mapping, Narrow Passages, ROS, Intelligent
Wheelchair, Navigation in indoor environment

Abstract With the development of robotics technology, new opportunities for improving the
quality of life of people with mobility impairments arise. The IntellWheels project
was born with the goal of developing a hardware and software kit that can turn a
motorized wheelchair into an autonomous Intelligent Wheelchair. This dissertation
fits into this project on the topic of indoor navigation with the goal of adding a
semantic layer to the navigation framework.
Semantic in robotics is the ability of a robot to understand its environment. In
the case of an Intelligent Wheelchair, this is especially important considering it is a
robot that carries a passenger. A solution was developed where concepts of seman-
tic navigation are used to tackle the problem of crossing narrow passages, building
an additional mapping layer where these passages are automatically detected and
marked on the map and an extra planning layer that takes in this semantic infor-
mation and makes decisions for controlling the lower-level planners.
In order to validate this solution tests, in both simulated and real-world environ-
ments, were performed to verify if the individual components worked as intended.
This thesis resulted in an improvement of the indoor navigation capabilities of the
framework and is a base for further development in the area of semantic navigation
of Intelligent Wheelchairs.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Document Structure . 2

2 Background and related work 5

2.1 Navigation . 5

2.1.1 World Representation and Mapping 6

2.1.2 Localization . 10

2.1.3 Path Planning . 10

2.1.4 Plan Execution . 10

2.2 Robot Operating System . 11

2.2.1 Concepts . 11

2.2.2 Tools . 13

2.3 Intellwheels 2.0 . 15

2.3.1 Sensorization . 15

2.3.2 Odometry . 16

2.3.3 SLAM . 17

2.3.4 Costmaps . 17

i

2.3.5 Global Planning . 17

2.3.6 Local Planning . 17

2.4 Semantic Navigation . 18

2.4.1 Mapping . 18

2.4.2 Planning . 19

2.5 Semantic Navigation in Intelligent Wheelchairs 20

3 Semantic Navigation for Intelligent Wheelchairs 21

3.1 Proposed System Architecture . 22

3.2 Semantic Plan Cost . 23

3.3 Semantic Mapper: Automatic Narrow Passage Marking 24

3.3.1 Distance Map . 25

3.3.2 Extended Voronoi Graph . 26

3.3.3 Passage Segmentation . 27

3.3.4 Passage Boundaries and Approach Poses 29

3.3.5 Narrow Passage Comfort Cost . 31

3.3.6 Narrow Passage Representation . 31

3.4 Semantic Planning . 32

3.4.1 Passage Map . 33

3.4.2 Passage Crossing Detection . 34

3.4.3 Path Splitting . 35

3.4.4 Semantic Plan Cost . 36

3.4.5 Path Execution . 37

4 Experiments and Results 39

4.1 Assessing the Semantic Mapper . 39

4.2 Assessing the Semantic Planning . 40

4.3 Validity of the semantic planner functionality 43

4.3.1 Consecutive Passages Scenario . 44

4.3.2 Parallel Approach Scenario . 46

4.3.3 Narrow Corridor Scenario . 47

4.3.4 Evaluation of parameters for narrow passage crossing 49

4.4 Influence of Comfort Cost in semantic planning 50

ii

5 Conclusion 53

5.1 Discussion . 53

5.2 Limitations . 54

5.3 Future Work . 55

References 57

iii

List of Figures

2.1 Occupancy Grid . 6

2.2 Example of Topological and Topometric maps based on an occupancy grid of the

map assembled at IRIS-Lab . 7

2.3 GVG and EVG examples . 8

2.4 Euclidean distance map example . 9

2.5 Cost Map Example. 10

2.6 Internode communication in ROS . 12

2.7 RViz visualization tool . 13

2.8 Stage simulator with IRIS-Lab’s map . 14

2.9 Wheelchair footprint and LIDAR placement. 16

2.10 Mapping layers example based on an occupancy grid of the map assembled at

IRIS-Lab . 19

3.1 Conceptual Architecture . 22

3.2 Narrow Passage with respective boundaries and approach poses 23

3.3 IW crossing a narrow passage . 25

3.4 Distance Map Example . 26

3.5 EVG for the IRIS-Lab’s map . 27

3.6 Segmentation of the EVG into Passages . 29

3.7 Narrow Passage with Boundaries and Approach Poses 30

3.8 Critical Passage Message Structure . 31

3.9 Semantic planner flowchart . 33

3.10 Path cost evaluation process. 37

4.1 Results from Narrow Passage marking for the map at the IRIS-Lab. 40

v

4.2 Results from Narrow Passage marking for the map of a building at the University

of Freiburg. 40

4.3 Photograph of the experiment scenario assembled at IRIS-Lab. 41

4.4 IW in the starting position for tests . 42

4.5 Scenarios used for semantic planner functionality tests. 43

4.6 Results of plan division performed by the Semantic Planner 44

4.7 Paths taken by the wheelchair for the consecutive passages scenario. 45

4.8 Paths taken by the wheelchair for the parallel approach scenario. 47

4.9 Paths taken by the wheelchair for the narrow corridor scenario. 48

4.10 Scenario for testing the influence of comfort cost in semantic planning 51

4.11 Results of the tests of the influence of comfort cost in semantic planning. 52

vi

List of Tables

2.1 LIDAR sensors characteristics. 16

4.1 Results for the consecutive passages scenario of tests for validation of the Semantic

Planner . 46

4.2 Results for the parallel approach scenario of tests for validation of the Semantic

Planner . 46

4.3 Results for the narrow corridor scenario of tests for validation of the Semantic

Planner . 49

4.4 Results of evaluation of parameters for narrow passage crossing 50

vii

Glossary

ROS Robot Operating System
TEB Timed Elastic Band
SLAM Simultaneous Localization and Mapping
LaMa Localization and Mapping
LiDAR Light Detection and Ranging
IW Intelligent Wheelchair
GVG Generalized Voronoi Graph
EVG Extended Voronoi Graph
OG Occupancy Grid
IRIS-Lab Intelligent Robotics and Intelligent Systems Laboratory

ix

CHAPTER 1
Introduction

“Starting now and lasting until forever, your health and healthcare will be determined,
to a remarkable and somewhat disquieting degree, by how well the technology works.”

Robert Wachter

1.1 Motivation

Intelligent mobile robotics is ever more present all around us and the use of robotics
to improve the quality of life for the elderly or people with disabilities is a growing
field of study. In this context, intelligent wheelchairs play an important role to improve
the quality of life for people suffering from disabilities that affect their mobility. A
Intelligent Wheelchair (IW) improves on the capabilities of a conventional electric
wheelchair by removing the responsibility of the controls from the user, which can make
a huge difference for people without the dexterity to use the controls of an electric
wheelchair.

With the ambitious objective of developing a hardware and software kit for converting
a conventional electric wheelchair into an IW, the IntellWheels project was born in
2007. In 2019 the IntellWheels 2.0 project was created to improve and extend the work
developed in the previous version.

In 2021, Figueiredo [1] developed a platform for indoor navigation for the IntellWheels
2.0 project and this dissertation comes as a continuation of this work. The navigation
of a wheelchair presents particular challenges compared to other mobile robots that
do not carry a passenger and the work described in this dissertation tackles specific
problems identified in previous work focusing on creating a navigation solution that
best suits the objectives of an IW.

1

1.2 Objectives

This dissertation aims to improve the quality of navigation in indoor spaces for the
Intellwheels 2.0’s Framework. The navigation of an Autonomous IW presents additional
challenges compared to other types of autonomous mobile robots, mainly on the count
of having to consider the presence of a passenger. These challenges include things like
the importance of the orientation of the wheelchair on a trajectory. While a robot
without a passenger can take the most convenient orientation to get to a goal, with
an IW, it would not make sense, for example, to travel backwards for more than short
distances.

Previous work on the Intellwheels 2.0 indoor navigation framework identified a few
particular problematic situations that remain to be solved, those situations including:

• Reliably and comfortably crossing narrow passages.
• Approaching very close to a wall (to reach a light switch for example).
• Placing the wheelchair partially under a table (to sit at the table for example).

Each of these situations has its own specificity and a unified approach to solve all
of them might not be the best strategy. The main objective of this dissertation is to
add to the IntellWheels 2.0’s indoor navigation framework a new layer of mapping and
planning. This new layer uses concepts of semantic navigation to identify problematic
situations and takes specific strategies to solve them.

Focusing on the narrow passages situation, this new layer is responsible for identifying
and marking the narrow passages on a map. This semantic information is then used to
achieve the following objectives:

• Increase the ability to cross narrow passages.
• Provide a greater level of comfort to the user while crossing narrow passages.

Besides improving the performance of the framework when it comes to crossing
narrow passages, this dissertation aims to build the basis for a semantic navigation
layer that can be extended to also consider other situations.

1.3 Document Structure

This document covers the implementation of a solution to achieve the previously
defined goals as well as the research that went into understanding the concepts necessary
for this implementation. Several experiments and respective results are also presented
and discussed reflecting on future work possibilities.

• Chapter 2: Presents the state of the art in autonomous robot navigation,
including traditional navigation topics as well as semantic mapping and planning

2

topics, and a brief description of the tools and frameworks used. In this chapter,
the context in which this work was developed as well as the previous work
developed by Figueiredo and related work in semantic navigation for intelligent
wheelchairs is also presented.

• Chapter 3: This chapter describes the system implemented. Firstly the ar-
chitecture is laid out and then the individual components are described and
explained.

• Chapter 4: Presents the experiments performed and respective results, along
with a discussion of these results.

• Chapter 5: The obtained results are critically discussed and a reflection on
possible improvements, different strategies and future work is presented. Final
thoughts and conclusion of the dissertation are presented in this chapter.

3

CHAPTER 2
Background and related work

In this chapter, topics of autonomous mobile robot navigation are presented as they
are relevant to the subject of this dissertation. Special attention is given to topics of
semantic navigation since it is the main focus of this work. Other tools and concepts
used in the development of this dissertation are also explained in this chapter. The
context in which the work developed for this dissertation was done is explained. The
previous work on which this work is built upon in presented. Finally, a brief overview
of previous works regarding semantic navigation in intelligent wheelchairs is presented.

2.1 Navigation

Navigation in autonomous mobile robots is a set of abilities a robot possesses that
allows it to move in its surrounding environment. These abilities must give the robot a
way to represent the environment it is located in, localise itself in this environment, plan
the strategy to get to a different position and execute this strategy without colliding
with obstacles. For this, there are 4 main concepts that navigation is built upon.

• Mapping - This is usually done through sensors mounted on the robot, but
can be acquired in different ways. The robot must have a meaningful way of
representing the surrounding world so it can perform the other tasks of navigation.

• Localization - Is the ability of having the knowledge of where the robot is located
in its environment.

• Planning - Having the representation of the world and knowing its location
within it, the robot can then make a plan of how to get to a goal position, taking
the form of a trajectory to be followed.

5

• Plan Execution - This is the part responsible for actually moving the robot, it
computes velocities and changes the trajectory planned in order to conform to
dynamic obstacles that may not be previously mapped.

2.1.1 World Representation and Mapping

World representation can take many different forms that are each suited for different
applications. This section focuses on the world representation methods that are relevant
for the work developed for this dissertation.

Occupancy Grid

Occupancy Grid (OG), firstly proposed by Elfes [2], is a simple, widespread way to
represent an indoor space in robotics. An OG consists of a 2D image that probabilistically
represents a physical space by dividing it into a discrete space of cells. For given
coordinates, a cell can be empty, occupied or unknown. An example can be seen in
figure 2.1. This method gives a simple representation of the world that can be used for
path planning without too much computational cost. It’s not a perfect representation
though, as it leaves out three-dimensional features.

The resolution of an OG can greatly impact both the precision of the representation
and the computational cost of performing calculations on it. These two factors must be
balanced also considering the precision of the sensors used to create the OG.

Figure 2.1: Occupancy Grid recorded in a building at University of Freiburg [3].

6

Topological and Topometric Maps

A topological map is represented by a graph composed of nodes that represent
places and edges that represent a spacial relation between places [4]. A topological map
leaves out the geometric detail of a metric map, necessary for navigation. Therefore,
the concept of a topometric map as described in [5] and [6] is more adequate since it
makes an association between the topological graph and the metric map. In practice,
this is done by giving each node in the topological graph the respective coordinates in
the metric map. A representation of these maps can be seen in figure 2.2.

(a) Metric map, as an occupancy gird (b) Topological map

(c) Topometric map, a combination of
the metric and topological maps

Figure 2.2: Example of Topological and Topometric maps based on an occupancy grid of
the map assembled at Intelligent Robotics and Intelligent Systems Laboratory
(IRIS-Lab)

7

Generalized Voronoi Graph

Choset and Nagatani [4] use the Generalized Voronoi Graph (GVG) that they define
as "the one-dimensional set of points equidistant to m obstacles in m dimensions" to
extract the topological map from an occupancy grid. For the plane, this can be specified
as the set of points equidistant to two obstacles such that for each point there is no
other obstacle at an inferior distance to this point, as defined in equation 2.1.

P = {p : ∃o, o′ ∈ O, where o ̸= o′ ∧ dist(p, o) = dist(p, o′)

∧ ∀o′′ ∈ O dist(p, o′′) ≥ dist(p, o)}
(2.1)

where p is a point, O is the set of all obstacles and dist(p, o) represents the minimal
distance of point p to obstacle o.

Later work by Beeson et al. [7] defined the Extended Voronoi Graph (EVG) as "the
subset of all points in the GVG closer than a threshold of M units from any obstacle,
added to the set of all points exactly M units away from the closest obstacle", as defined
in equation 2.2.

Q = {q : ∃o, o′ ∈ O, where o ̸= o′ ∧ dist(q, o) = dist(q, o′)

∧ dist(q, o) ≤ M ∧ ∀o′′ ∈ O dist(q, o′′) ≥ dist(q, o)}

∪

{q′ : ∃o ∈ O, wheredist(q′, o) = M

∧ ∀o′ ∈ O, dist(q′, o′) ≥ M}

(2.2)

where q is a point, O is the set of all obstacles and dist(q, o) represents the minimal
distance of point q to obstacle o.

(a) Generalized Voronoi Graph of the occupancy
grid of the map assembled at IRIS-Lab.

(b) Extended Voronoi Graph of the occupancy
grid form the IRIS-Lab map.

Figure 2.3: GVG and EVG examples. Points in red correspond to the GVG and the EVG in
each image respectively and the remaining image corresponds to the Occupancy
Grid

8

Beeson et al., as well as Choset [8][9], propose the use of Voronoi graphs for
topological map-building by discretising the continuous environment into a finite set of
places. Examples of both GVG and EVG can be seen in figure 2.3.

Distance Maps

Given an image full of 0’s and 1’s, the distance map or distance transform [10] of
that image is a 2D image where each pixel contains a value equal to the distance from
that pixel to the nearest 0. Distance maps can be calculated using different distance
metrics. For the purpose of this dissertation, euclidean distance is used for calculating
distance maps. An example of a distance map is represented in figure 2.4

(a) Example image where the black
squares correspond to 0’s

(b) Euclidean distance map from fig-
ure 2.4a

Figure 2.4: Euclidean distance map example

Cost Maps

Cost maps represent physical space in a discrete way where each point has an
associated cost. In the context of navigation in mobile robotics, cost maps are used
for representing the freedom a robot has to move in each location. Points that are far
from objects have a low-cost value as the robot can move freely, as opposed to points
that are coincident with objects, which have an infinite cost. Areas close to objects can
have an intermediary cost representing the possibility of navigation but with a higher
difficulty than completely free space. These maps are used for planning trajectories and
different planners can use them differently according to the characteristics of the robot
and requirements in its use. An example of these maps can be seen in figure 2.5.

9

(a) Section of the occupancy grid of the
map assembled at IRIS-Lab.

(b) Cost map of the occupancy grid in
figure 2.5a.

Figure 2.5: Cost Map Example.

2.1.2 Localization

The localization method depends on the sensorization of the robot. The localization
algorithm tries to overlap the reading from the sensors with the known map to find the
location of the robot.

Associated with localization, there is the concept of Odometry. Odometry is the
measure of change in position over time. This is measured through sensors and can be
used by the localization algorithm to help keep the location up to date while the robot
is moving.

2.1.3 Path Planning

The path planning phase is responsible for finding a path, in a known map, between
two points. The module responsible for this is usually called the Global Planner, in
contrast with the Local Planner which aids in the plan execution phase.

The global planner runs a path search algorithm on the whole map, considering also
the specific characteristics of the robot, to find a path from the current position to the
target position. The goal of the global planner is to find the shortest path between the
two positions that is possible for the robot to follow.

2.1.4 Plan Execution

Plan execution is responsible for generating velocity vectors to send to the robot in
order to follow the planned path. To do this, there is a level of planning required since
the original path from the global planning phase does not consider dynamic objects that
are not previously mapped. Therefore, this phase is usually supported by a different
planner called the local planner.

10

The local planner only considers the subsection of the map that is in the surroundings
of the robot. For this effect, the local planner has its own cost map that considers not
only the known map but also dynamic obstacles detected during plan execution time.

The goal of the local planner is to find a path from the robot to the point where
the global plan intercepts the edge of the local cost map. Since this planner does not
consider the whole map, it’s possible the path found is not optimal. The local planner
also determines the actual trajectory taken by the robot independently from the original
global plan, as well as the velocity vectors applied to the robot.

2.2 Robot Operating System

In this section, Robot Operating System (ROS) is presented and the main concepts
and tools used for this work are explained.

2.2.1 Concepts

According to the ROS Wiki1, “ROS is an open-source, meta-operating system
for your robot. It provides the services you would expect from an operating system,
including hardware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package management.”

In other words, ROS provides an abstraction layer that is adequate for a wide range
of hardware combinations. It has a modular organization focused on code reuse and
collaborative research and development [11].

Here are the main concepts of ROS as defined by the ROS Wiki:

• Node - A Node is the smallest processing unit in ROS. It acts like a process in a
typical operating system and usually performs a single purpose and communicates
with other nodes.

• Message - Messages are data structures for node-to-node communication. They
can contain simple data types (like integer, floating point or boolean) but also
other messages or arrays.

• Topic - Topics are an asynchronous way of node-to-node communication in ROS.
A publisher Node registers a topic with a message type and starts publishing
messages. Any Node can subscribe to a topic and will start receiving directly the
messages there published.

• Service - Services are a synchronous bidirectional way of node-to-node communi-
cation between a client and a server. A client requests a service with a service
request message and the server responds with a service response message.

1http://wiki.ros.org

11

Figure 2.6: Internode communication in ROS: ROS Nodes 2 and 3 subscribe to the topic
/myTopic that is published by ROS Node 1. ROS Node 1 also provides the
service /myService that is called by ROS Node 3

• Action - Action is another asynchronous communication method that, unlike
topics, is bidirectional. Actions are used instead of services where it takes a longer
time to respond after getting the request. The action client sets the goal for the
action and the action server performs the action and returns feedback and the
result to the client. Actions are preemptive and can be cancelled or replaced with
a different goal.

• Package - Software in ROS is organized in packages. Packages can contain nodes,
libraries, message definitions, configuration files or anything else that might be
required to run it.

• bag - bag is a file format to record ROS message data. A previously recorded
bag file can be played at a later time which is very useful for testing.

• Master - The Master node acts as a directory that associates topics to nodes,
enabling them to find each other and communicate.

• Parameter Server - It is part of the master and stores running parameters that
can be changed in run time.

The relation between Nodes, Topics and Services is represented in figure 2.6. The
peer-to-peer network of connected nodes is called the Computation Graph. This graph
can be visualized by running the ‘rqt_graph’2 node in the ‘rqt_graph’ package which
is part of the rqt set of tools explained in section 2.2.2.

ROS provides a client library3 to support various programming languages. Currently,
the main client libraries are for C++, Python and LISP programming languages.

2http://wiki.ros.org/rqt_graph
3http://wiki.ros.org/Client%20Libraries

12

Figure 2.7: RViz visualization tool. RViz subscribes to any ROS topics the user configures
and displays them in a graphic environment. In this example, we can see the
map, cost maps, the wheelchair footprint, the point cloud of the readings from
the Light Detection and Ranging (LiDAR) sensors and some other topics listed
on the left.

2.2.2 Tools

Visualization Tools

rqt is a framework for GUI development for ROS. A collection of rqt plugins is
available as well as the possibility to create customized plugins. These plugins are
very useful for the programmer and facilitate the visualization of concepts in the ROS
environment.

RViz4 is a 3D visualization tool for ROS. It is launched as a ROS node and can be
configured to subscribe to any topics the programmer wants and display them in 3D,
allowing visual verification of the data. RViz also allows to publish messages to topics,
which can be used to send data to the robot, like estimating the current location or
commanding a target position. In figure 2.7 we can see the RViz visualization tool.

Simulation Tools

Player and Stage are both software tools part of the Player Project5. Together they
provide all the components for the simulation of mobile robots in a 2D environment.
Player simulates the robot hardware and provides the robotic application with an
interface to retrieve data from the sensors and give commands to the actuators.

Stage simulates a population of robots, sensors and objects in a two-dimensional
environment and is often used as a Player plugin to provide the environment data to

4http://wiki.ros.org/rviz
5https://playerstage.sourceforge.net

13

Figure 2.8: Stage simulator with IRIS-Lab’s map. We can see the map, as well as the
wheelchair with its footprint in green. The red square represents a dynamic
obstacle that is not part of the map and can be moved in run-time.

Player. An example of a stage simulation can be seen in figure 2.8.
Gazebo6 is a powerful 3D simulator. It allows the simulation of both indoor and

outdoor spaces and of very different types of robots, making it very versatile and
used a lot in robotics. The versatility and complexity of this simulator also make it
computationally heavy. For this reason, the use of a simpler simulator is recommended
for applications that do not require the extra features it provides.

Planning Tools

Global Planner7 is a global planning algorithm that takes into consideration the
specific dimensions and geometry of the robot and, therefore, can command direction.
It provides 6 modes of operation:

• Forward - The robot always moves in the positive direction of the x-axis of its
referential.

• Interpolate - The robot always moves in the direction that is most convenient to
get to the goal.

• ForwardThenInterpolate - The robot starts moving in the positive direction of the
x-axis of its referential and then takes the more convenient direction to get to the
goal.

• Backward - The robot always moves in the negative direction of the x-axis of its
referential.

6https://gazebosim.org/home
7http://wiki.ros.org/global_planner

14

• Rightward - The robot always moves in the negative direction of the y-axis of its
referential.

• Leftward - The robot always moves in the positive direction of the y-axis of its
referential.

With these available modes, it is possible to develop different navigation modes for
different robots and situations.

Timed Elastic Band (TEB)8 is a local planner responsible for global plan execution
that works by deforming the global plan with attraction and repulsion forces. The
repulsion is triggered by obstacles and the attraction by special points in the global
plan called via points. TEB comes as an extension of classic elastic band planners by
considering also the time dimension [12].

2.3 Intellwheels 2.0

The Intellwheels 2.0 project aims to research and develop a framework/kit for IW
that allows the application of this concept to different types of conventional electric
wheelchairs. It also aims to separate the user interface from the control system, creating
a multimodal user interface that can adapt to different types of users and equipment.

In the context of this project, Universidade de Aveiro is responsible for developing
the Intellwheels Framework, which consists of the hardware and software kit to be
implemented in a conventional electric wheelchair, giving it autonomous navigation
capabilities. For the hardware, this kit should consist of a collection of sensors and a
processing unit. The software will be composed of several modules developed using
ROS.

The work developed for this dissertation, was developed in the context of this
project, aiming to further develop and improve the Intellwheels framework on its indoor
navigation capabilities. This dissertation is built upon an already existing platform
for IW navigation in indoor spaces developed by Figueiredo [1] in the context of the
IntellWheels 2.0 project. This platform already includes basic navigation functionalities
and is specified as follows.

2.3.1 Sensorization

To support indoor navigation, two LiDAR sensors were placed in the IW giving a
360º view at the height of about 42 centimetres from the ground. The use of LiDAR
is adequate for indoor navigation since objects and walls are typically closer to the
subject than in exterior places, and the absence of sunlight means less interference in
the readings.

8http://wiki.ros.org/teb_local_planner

15

RPLidar A2 RPLidar A3
Range (m) 12 25

Scanning Frequency (Hz) 12 13
View Field (degrees) 360 360

Angular Resolution (degrees) 1.0 0.250
Precision 1% up to 3 m 1% up to 3 m

2% : (3-5) m 2% : (3-5) m
2.5% : (5-12) m 2.5% : (5-25) m

Table 2.1: LiDAR sensors characteristics [1].

(a) Footprint and dimensions of the chair
with the sensors assembled. The cir-
cles represent the placement of the
LiDAR sensors. Sensor RPLidar A2
in front with an angle of 193.5º and
sensor RPLidar A3 in back with an
angle of 0º.

(b) Footprint of the wheelchair overlay-
ing the wheelchair itself.

Figure 2.9: Wheelchair footprint and LiDAR placement [1].

The two LiDAR sensors used are named RPLidar A2 and RPLidar A3. In
figure 2.9 the placement of the sensors is displayed in relation to the footprint of the
wheelchair. Sensor RPLidar A3 has better characteristics, as can be seen in table 2.1
and is placed in the back and sensor RPLidar A2 is placed in front.

2.3.2 Odometry

The wheelchair used does not contain encoders on its wheels. As such, the LiDAR
sensors are used to compute odometry data by calculating the difference between the

16

positions of two consecutive frames. Only the RPLidar A3 was used for odometry
approximation since, as previously explained, it has more accuracy than RPLidar A2.

2.3.3 SLAM

For Simultaneous Localization and Mapping (SLAM) operations, once again the
RPLidar A3 was used for its better characteristics. The Localization and Mapping
(LaMa) algorithm developed in Universidade de Aveiro (Pedrosa et al. [13]), is used
and by taking data from the sensors and odometry, it is capable of creating a map and
localizing itself in it. The algorithm can also function in location-only mode when a
previously created map is provided.

2.3.4 Costmaps

Two costmaps are used by the IW for navigation. One global costmap, that contains
all that known map, is created from the map provided by the SLAM library. Another
costmap is created using the data collected in real-time by the LiDAR sensors, this
local costmap is smaller in size since it is limited by the range of the sensors and, unlike
the global costmap, considers dynamic objects that were not presented in the map.
The local costmap is used by the local planner to determine the viable path for the
wheelchair to follow.

The determined resolution for both costmaps is 0.05 m/cel.

2.3.5 Global Planning

The function of the global planner is, as previously explained, to find a path between
the current position and a user-defined goal. For this purpose, the IW uses the ROS
Global Planner with the ROS implementation of pathfinding Dijkstra algorithm.

The parameters cost_factor, neutral_cost e lethal_cost allow to configure the be-
haviour of the planner and are set with the following values determined by experimental
tests:

• cost_factor = 0.55
• neutral_cost = 50
• lethal_cost = 253

These parameters are set to indicate to the global planner the characteristics of
the desired path, specifically, how far from obstacles it should pass and how much
importance to give to the costmaps.

2.3.6 Local Planning

The local planner sets the actual path the robot takes, considering the path generated
by the global planner, and the surrounding environment detected by the sensors.

17

Through experimental testing, the TEB planner was considered the best for indoor IW
navigation. This planner has various parameters that can be changed to slightly alter
the way the robot moves.

2.4 Semantic Navigation

Semantics is the branch of linguistics concerned with meaning. Semantic navigation
in autonomous mobile robotics is a concept that describes the ability of a robot to
have, and act upon, information about the meaning of elements in its environment in a
human-like way.

It is common, in semantic navigation approaches, to integrate a lower-level navigator.
This results in a layered architecture for mapping and planning. Assuming a priori
knowledge of the map in the form of an occupancy grid, upper layers of mapping can
be added representing topological and semantic knowledge.

The semantic planner in its turn, operates as an intermediary between the user and
the low-level navigator, creating a semantic plan for the user-defined goal that is then
divided into geometric goals passed down to the low-level navigator [14].

The addition of a semantic layer to the navigation of an autonomous mobile robot
architecture makes the robot capable of higher-level cognition and decision-making
and can adapt the navigation strategy, at a lower level, for different contexts, giving it
better navigation capabilities.

2.4.1 Mapping

Conventional navigation in mobile robotics usually relies on extracting geometrical
information from sensors and mapping this information in a way that can be used for
geometrical path planning and execution.

When adding to a mobile robot the capability of understanding its environment,
there is a need to represent this knowledge and connect it to the geometrical knowledge
of the world. This usually results in a layered structure, as can be seen in fig. 2.10, with
a metric map in its base, followed by a topological map and/or a semantics map in upper
layers [15][16]. This layered map structure has inclusively been used in autonomous
wheelchairs [17]

The semantic information can reside in different parts of this layered structure. In
the topological layer, for example, the nodes and edges can be tagged with semantic
information, like the type of space a node represents, or the cost of moving from one
node to another can be represented in the edges.

18

(a) Metric map, as an occupancy grid
(b) Topological map over metric map which

results in a topometric map.

(c) Semantic map

Figure 2.10: Mapping layers example based on an occupancy grid of the map assembled at
IRIS-Lab

2.4.2 Planning

As previously said, path planning is an integral part of navigation in mobile robotics.
Semantic planning considers the available semantic information of the world, as opposed
to the geometry of the space in question. Semantic planning does not, however,
substitute traditional geometric planning (global and local), but acts instead as an
upper layer of planning that will command the geometric planners [18].

When there is an input of goal position in the map, the semantic planner uses
the semantic maps available and a set of rules to decide the semantic plan to take.
This semantic plan can be turned into a set of intermediate poses the robot must pass
through being passed to the lower-level planners for geometric navigation.

Also, by dividing the plan into sections, the semantic planner can choose to use
different path execution strategies for each section. The semantic planner can instruct

19

the lower-level planners with different configurations for each section, or even make use
of different planners for each section. This allows the robot to be better equipped with
the ability to navigate in different contexts and situations.

2.5 Semantic Navigation in Intelligent Wheelchairs

Semantic approaches to navigation in autonomous intelligent wheelchairs have been
proposed in other works [19] [20] [17]. These approaches extract semantic information
visually with RGB-D cameras or manually mark the semantic information on the map.
These systems use this semantic information both to navigate differently in particular
situations and to simplify the interaction between the user and the wheelchair.

There is also published work on intelligent wheelchairs where narrow passages were
automatically detected and a controller was used for crossing them [21][22]. These
systems were not fully autonomous though and were only assistive to the user in
particular situations.

20

CHAPTER 3
Semantic Navigation for Intelligent

Wheelchairs

Aiming to solve the problems found in previous work, the idea of adding a semantic
layer to the indoor navigation framework was considered a worthwhile approach, not
only for solving the identified issues, but also to build a more robust framework capable
of making better decisions in each situation.

With robots ever more present in many application areas and interacting more
with humans, it is important that robots are able to understand the meaning of the
surrounding world. As such, semantic navigation and mapping are growing concepts in
the field of robotics and allow robots to have not only geometric knowledge about the
world but also semantic knowledge that can be used in the decision-making process [5].

In the specific context of this project, the robot having semantic information about
narrow passages can improve navigation capabilities in several ways. Firstly, if the
robot knows it has to cross a narrow passage, it can first align in a specific position and
orientation so it can more easily pass through it.

Secondly, traditional planners try to get the shortest path to a goal, but there can
be cases where the shortest path passes through a difficult narrow passage, while a
slightly longer path is much easier and/or comfortable to follow. Having information
about how difficult a passage is to cross, allows the robot to consider these cases.

Finally, knowing which sections of a path correspond to narrow passages, allows
the robot to follow these sections in a different way, such as the use of a different local
planner, or simply reducing the speed so it is more comfortable for the passenger [23].

21

Figure 3.1: Conceptual Architecture proposed for semantic navigation. The architecture is
composed of four modules, the two most relevant for the semantic navigation
capabilities being the semantic mapper and semantic planner.

3.1 Proposed System Architecture

Two different aspects must be considered: acquiring semantic knowledge and acting
upon the semantic knowledge. In the problem of the narrow passages, this can be
mapped into two tasks:

• Mark the narrow passages on the known map.
• Consider the semantic information while navigating.

In figure 3.1 the main modules of the system are represented along whit the respective
data flows. To accomplish the tasks previously listed, the following modules were
developed:

• Semantic Mapper - Responsible for automatically marking the narrow passages
on the map.

• Semantic Planner - Acts as an upper layer to the navigation stack and makes a
semantic plan that consists of a set of intermediate goals ending in the user-defined
goal.

The other two modules represented in figure 3.1 are the global planner and the
executor. These modules are responsible for lower-level geometric navigation and are
controlled by the semantic planner.

The marking of the narrow passages is done automatically by analysis and processing
of the known map obtained by the mapping algorithm used in previous work and
explained in section 2.3.3.

From this marking results a list of narrow passages. A narrow passage is defined
as a driving section where all points of the Voronoi graph have an associated distance

22

Figure 3.2: Narrow Passage with respective Boundaries and Approach Poses. The boundaries
are in blue and are in this case coincident. The approach poses are in black with
a green arrow indicating their respective direction.

to the closest obstacle points lower or equal to a given threshold but big enough for the
wheelchair to traverse it. In the simple case, this section has only two boundaries,
while in more general cases, three or more boundaries can exist. Each boundary is
defined by a line, connecting the limit obstacle points of the passage, and an approach
pose as can be seen in figure 3.2. The approach pose establishes the best pose to enter
the narrow passage from that boundary. For this dissertation, only the simple case, of
narrow passages with only two boundaries, is considered. While marking the narrow
passage, a passage cost can also be calculated for a given cost function. This allows, in
later stages, to plan paths considering the difficulty of certain passages avoiding them
when possible and desirable.

In runtime, when the user sets a goal, the system checks if the path to the goal
crosses any narrow passage. If the path does cross one or more passages, the path
is then divided into sections and intermediate goals, corresponding to the passage(s)
approach poses. The semantic planner can then order the executor to use specific
strategies for each section of the path. This way, it is possible to pass through narrow
passages by applying a different strategy that would make less sense for navigation in
open space.

3.2 Semantic Plan Cost

Traditional navigation planners consider distance as the main factor for path cost.
When designing a navigation system for an IW we should consider not only the distance
to get to a goal but also the comfort of the passenger.

To address this problem, it was decided to consider a semantic plan cost, defined
by a cost function that takes the distance cost (Cd) and the comfort cost (Cc), giving
a total cost used for semantic planning. This function is represented in eq. (4.1) and
can be implemented in several ways. The study of which cost function is ideal for this

23

purpose was not a subject of this dissertation. The distance cost is a function of the
total distance of the path, and the comfort cost is a more subjective term that represents
the difficulty or discomfort of certain path sections like, for example, a narrow passage.
The semantic planner is responsible for calculating the semantic plan cost so it can
decide which path to take.

C = f(Cd, Cc) (3.1)

3.3 Semantic Mapper: Automatic Narrow Passage Marking

The first part of this solution is to find the narrow passages in the known map so
that we can later navigate considering this information. As previously said, a narrow
passage is a driving section between obstacle points, where the distance to the obstacle
points associated with the Voronoi graph is inferior to a certain threshold but big
enough for the wheelchair to traverse it. This interval of distances that defines what is
and is not considered a narrow passage depends on several factors, mainly, the width
and general shape of the IW.

In figure 3.3 the wheelchair used in this project is placed in the middle of a passage
with a width of 100cm as an example of a narrow passage. The steps for detecting
and marking the narrow passages are the following and will be explained in the next
sections:

• Calculate distance map
• Calculate the EVG
• Find sections of the EVG that may be a narrow passage
• Calculate the boundaries and approach poses of each narrow passage
• Calculate the associated cost for each passage

24

Figure 3.3: IW crossing narrow passage with 100cm of width at the IRIS-Lab map

3.3.1 Distance Map

The first step to finding narrow passages in the known map is to calculate the
corresponding distance map. This will be useful as it will allow us to quickly find the
distance to the nearest obstacle for any given pixel coordinates. The distance to the
nearest obstacle is obviously important since the very definition of a narrow passage
depends on the distance from obstacles.

The distance map is calculated using the python wrapper of the OpenCV1 library
called OpenCV-Python. OpenCV provides several methods for calculating distance
maps including the method distanceTransform() which was the one used. Figure 3.4
corresponds to the distance map for the Iris lab map generated from an Occupancy
Grid by the OpenCV library, represented in a greyscale image.

1https://opencv.org

25

(a) Ocupation grid created from the map at IRIS-Lab

(b) Distance map created form fig. 3.4a

Figure 3.4: Distance Map Example

3.3.2 Extended Voronoi Graph

As presented in section 2.1.1 the EVG can be a good tool for extracting a topological
map from an occupancy grid [7]. Furthermore, the Voronoi graph, by definition, will
include all the points exactly in the middle of all narrow passages, which will be useful
for identifying them later.

The computation of the Voronoi graph was performed based on the work developed
by Beeson, Jong and Kuipers on the EVG, which is available as open-source code2.
This code was extended and adapted to be integrated with ROS and works as a ROS
node in the system architecture. The occupancy grid is converted to a .pgm image and
is fed to the EVG algorithm along with the following parameters:

2https://github.com/OpenSLAM-org/openslam_evg-thin

26

Figure 3.5: EVG generated with the OpenSLAM_evg_thin algorithm from an occupation
grid of the map at IRIS-Lab. Some of the noise present in the original OG was
cleared to make the EVG less irregular.

• Max distance: Maximum distance from obstacles where a point can be considered
part of the Voronoi graph. This parameter corresponds to the M in equation 2.2.

• Min distance: Minimum distance from obstacles to consider a point part of the
Voronoi graph, if two obstacles are closer together than double this distance, there
will be no branch of the Voronoi graph in between these points. This parameter
corresponds to the m in equation 2.2.

• Pruning: Boolean value that enables or disables the pruning function of the
algorithm that removes superfluous branches of the Voronoi graph.

The parameters max_distance and min_distance are set respectively to half
of the upper and lower ends of the interval that defines what is considered a narrow
passage. The parameter pruning is set to false but this parameter does not affect the
next steps for which the EVG is used. The result is a list of points that compose the
EVG using image coordinates. Figure 3.5 shows the result of the EVG for the Iris lab
map occupation grid with min_distance = 35cm, max_distance = 80cm and no
pruning.

3.3.3 Passage Segmentation

With the EVG and the distance map, we can get the distance to the nearest obstacle
for every point in the EVG. Taking the subset of points in the EVG that are at a
distance contained in the narrow passage distance interval from the closest obstacle, we
get all the points of the EVG that are in the middle of passages. The narrow passages
can be derived from these points.

27

The algorithm for selecting these points from the EVG is represented in algorithm 1.
This algorithm starts taking a list of points that make the EVG and the distance
map for the map in use and selects all the points that are at an adequate distance
from obstacles. Then this list of points is divided into its connected components, each
corresponding to a narrow passage. Each group of connected points passes through
the method trimEdges that removes the ends of each segment keeping only the centre
part that corresponds to the actual passage. The result is a set of groups of points
where each group corresponds to the points of the EVG that constitute the middle of a
narrow passage.

In figure 3.6, sections of the EVG are marked in blue, corresponding to the groups
of points that go through the middle of the narrow passages and that will be used in
the next steps.

Algorithm 1 NarrowPassageSegmentation
Input: voronoiPoints, distanceMap
P = { }
foreach p ∈ voronoiPoints do

if MIN_PASSAGE_WIDTH ≤ distanceMap[p]*2 ≤ MAX_PASSAGE_WIDTH
then

P = P ∪ {p}
end

end
rawPassages = splitByAdjacency(P)
narrowPassages = { }
foreach passage ∈ rawPassages do

narrowPassages = narrowPassages ∪ {trimEdges(passage)}
end
return narrowPassages

28

Figure 3.6: Segmentation of the EVG into Passages. The blue segments correspond to the
points identified as narrow passages, and the points in red correspond to the
remaining points of the EVG.

3.3.4 Passage Boundaries and Approach Poses

The previous step results in a set of groups of points, where each group of points
corresponds to a narrow passage. Taking the points on opposite ends of each set and
finding the closest obstacle point, gives us the entry of the passage. Lines can be traced
between the two obstacle points on each side of the passage marking a boundary.
Narrow corridors will have two boundaries, one on each side, and doors will only
have one boundary, but for implementation simplicity, two coincident boundaries are
considered in this case. In figure 3.7 we can see an example of a narrow passage along
with its boundaries and approach poses.

On each side of a narrow passage, there is an interception of the EVG. This is one of
the reasons the EVG was chosen as opposed to the GVG, as it always has an interception
at a fixed distance on either side of the passages. These points, combined with an
orientation vector pointing in the direction of the passage, compose the Approach
Poses. For each passage, getting the closest EVG interception on either side gives the
passage two approach pose.

In algorithm 2 we can see how this process is implemented. First, the algorithm gets
a list of points called voronoiSplits that correspond to the interceptions of the EVG.
Then, for each list of points that form a passage, from the previous step, it gets the
two most apart points.

For each of these end-points, it performs the following:

• Get the closest obstacle point to the end-point.
• Get the reflection of this object over the end-point.
• Get the closest obstacle to the reflection point.

29

Figure 3.7: Narrow Passage with Boundaries and Approach Poses. The boundaries are in
blue and the approach poses are black circles with green arrows pointing in their
respective direction.

This results in two obstacle points that are on opposite sides at the edge of the
passage. A line drawn between these two obstacle points forms a boundary of the
passage. This is performed for both end-points, resulting in two boundaries.

By getting the closest point to each end-point in the EVG interceptions we get the
position of the respective approach pose. Then the direction of the approach poses is
calculated so it points to the narrow passage.

The boundaries and approach poses are stored in each passage data structure.

Algorithm 2 FindBoundariesAndPoses
Input: narrowPassages, voronoiPoints, distanceMap
voronoiSplits = getInterceptions(voronoiPoints)
foreach passage ∈ narrowPassages do

end_points = getMostApartPoints(passage)
foreach p ∈ end_points do

obs = getClosestObs(p, distanceMap)
obsMirror = reflectionOverPoint(obs, p)
obsMirror = getClosestObs(obsMirror, distanceMap)
boundary = { obs, obsMirror }
passage.boundaries = passage.boundaries ∪ {boundary}
appr_p = getClosestInList(p, voronoiSplits)
direction = atan2(p.y - appr_p.y, p.x - appr_p.x)
approach_pose = { appr_p, direction }
passage.approach_poses = passage.approach_poses ∪ {approach_pose}

end
end

30

3.3.5 Narrow Passage Comfort Cost

The semantic mapper is responsible for assigning each narrow passage a comfort
cost. It is difficult to measure comfort in an objective way, but some published research
indicates that the main factors at play when it comes to comfort in autonomous
wheelchairs are the distance from obstacles and the velocity of the wheelchair [24], [23].
Sudden changes in direction are also a factor that contributes to discomfort.

Several strategies can be defined for calculating an appropriate cost function for the
comfort of each narrow passage considering the previously described metrics. For this
dissertation, since it was not possible to perform adequate passage comfort experiments,
the comfort cost (Cc) for narrow passages is defined as a function of the passage geometry
as represented in equation 3.2. This function can later be implemented upon further
study.

Cc = f(narrowPassage) (3.2)

3.3.6 Narrow Passage Representation

At the end of the previous processes, the result is a set of identified narrow passages,
each with two boundaries and two approach poses. The next challenge is then to
represent this information in a way that can then be used by the semantic planner. For
this purpose, a structure like the one represented in figure 3.8 is used. An array of
narrow passages in this format is then available and used by the semantic planner.

Figure 3.8: Critical Passage Message Structure

31

3.4 Semantic Planning

The semantic planner acts as an upper layer of planning above the global and local
planners. The only semantic function it plays is related to the narrow passages, and
the goal is to pass through the passage without colliding, obviously, and with the most
comfort possible, minimizing sudden movements and maximizing the distance from
obstacles. For this purpose, the strategy for traversing narrow passages is:

• Place the wheelchair at the approach pose with the correct orientation facing
the passage.

• Adopt a specific navigation strategy for narrow passages (lowering the speed for
example).

• Set the goal to the exit pose corresponding to the approach pose on the other
side of the passage with its direction flipped.

The first step when the user inputs a goal position is to request a plan for the goal
from the global planner and to detect if the plan crosses any narrow passage. If it does
not, the semantic planner simply forwards the goal to the executor, if it does, then the
plan has to be analysed by the semantic planner. This analysis checks alternative plans
and, if the final plan still passes through one or more narrow passages, it has to be
divided into sections. For example, if the path from the current position P to the set
goal G passes through passage α, the path from P to G would be divided in 3 sections,
from P to αapproach_pose, from αapproach_pose to αexit_pose, and from αexit_pose to G.

These sections can then be tackled in different ways during path execution where
the intermediate goals defined in the previous step are passed to the executor. All these
steps can be visualized in figure 3.9 which represents the logic flow of the semantic
planner.

32

Figure 3.9: Semantic planner simplified flowchart. We can see the steps of checking narrow
passage crossing, plan analysis and plan execution.

3.4.1 Passage Map

The semantic mapper produces a list of narrow passages that contain the necessary
information to know where on the map each passage is located. But in this raw
information, the boundaries are each represented by two points which, on its own, is
not very useful for detecting if a list of points, that constitutes a path, crosses any
boundary and therefore, any narrow passage.

When the semantic planner receives the list of narrow passages, it creates a passage
map that acts as a mask for the current navigation map in the form of an OG. This
mask consists of a 2D array image, with the same dimensions as the current map’s
occupation grid, where the boundaries for each passage are drawn with different values
for each boundary. These values are mapped to the indexes of an array that contains the

33

corresponding approach pose for each boundary. In the case of short narrow passages
(doors), where the two boundaries are coincident, the value in the map is multiplied
by -1 so it can be identified later. With this map, it is easy to go through a path,
as a sequence of points, and identify if any boundary is crossed as well as get the
corresponding approach pose.

3.4.2 Passage Crossing Detection

The Global Planner receives two poses, start and finish, and returns a plan, a set
of adjacent poses, from the first to the latter. When the user inputs a goal pose, the
semantic planner calls this service and gets a plan from the robot’s current position to
the user-defined goal.

The semantic planner then checks if this plan crosses any of the narrow passage
boundaries defined by the semantic mapper. It does this simply by going through all
the poses in the plan and checking if any of them coincides or is adjacent to a boundary.
By doing this, the semantic planner finds all the passages crossed by the path and keeps
that information for the next step.

Algotithm 3 explains this process. For each point in the plan, it gets the neighbour
points and verifies if any neighbour or the point itself coincides with a boundary in
the passage map. If this happens, it stops going through the points in the plan, saves
this point for the next step, and removes the already verifies section of the plan. The
algorithm repeats this process until it reaches the end of the plan without detecting
any more boundaries.

34

Algorithm 3 DividePlan
Input: plan, currentPose, passageMap
P = { }
detected = false
while not detected do

detected = false
i = 0
forall p ∈ plan do

neighbors = getNeighbors(p) ∪ {p}
forall n ∈ neighbors do

if passageMap[n] != 0 then
P = P ∪ {n}
detected = true
break

end
end
if detected then

plan.drop(i+k) /* Dismiss some points in the plan to avoid double
detection of a boundary */

break
end
i++

end
end
return P

3.4.3 Path Splitting

From the previous step, the planner knows the passages that are crossed by the
plan and must be tackled. If no passage was detected, this step is skipped since the
plan needs not to be divided. At the end of this step, the result is a list of intermediate
goals, the last one being the goal defined by the user.

In fact, this step actually occurs simultaneously with the passage detection. During
passage detection, whenever a boundary is found to be crossed the corresponding
approach pose is found and added to the list of intermediate goals. All boundaries
have a corresponding approach pose, but the orientation of these poses depends on it
being an entry pose or an exit pose which depends on the trajectory of the robot. By
default, the orientation of each pose points to the corresponding passage, therefore, if
the approach pose is to be an exit pose, this orientation must be flipped.

Thankfully, when traversing a path, entry boundaries and exit boundaries always
come interleaved so it is easy to keep track of which one it is by keeping track of the
robot’s semantic location. Starting with semantic location in_free_space, if the
robot crosses a passage boundary, it enters the passage becoming in_passage if the
robot then crosses another boundary, it comes back to in_free_space. This way, the

35

algorithm keeps track of which approach poses must have their orientation flipped.
On a side note, if the passage is a door, this becomes less important since when a
boundary is crossed, both boundaries are being crossed as they are coincident, in this
case when the boundary crossing is detected both entry and exit positions are added to
the list of intermediary goals straight away.

When the end of the path is reached, the result is a list of poses corresponding to
the approach poses some with the orientation flipped that will be the intermediate
goals passed to the executor and the last goal is the user-defined goal without change.
Each goal has also an associated type. This type can be one of the following:

• Free Space
• Door Entry
• Corridor Entry
• Door Exit
• Corridor Exit

These types are important because the type of goal will define the specific navigation
parameters used by the path execution step.

3.4.4 Semantic Plan Cost

As previously said, the semantic planner is responsible for calculating the total cost
of a plan considering the distance cost and the comfort cost. This can be done after
the path splitting step using a given cost function. The semantic planner takes the list
of intermediate goals, adds the length of the path between each one and the result is
the distance cost. It then takes the added comfort costs of the crossed passages and
inputs both this cost and the distance cost to a cost function resulting in the total
cost.

Then the problem becomes how to find other possible paths and evaluate if they
have a lower total cost. The distance cost can not be reduced, since the initial path
came from the global planner and this planner minimizes the distance when calculating
a path. However, the comfort cost could be lower if the path crossed different narrow
passages or none at all, at the cost of a greater total distance.

To evaluate this possibility, after acquiring a divided plan, the semantic planner
proceeds to check the viability of alternate paths. It does this by taking each narrow
passage crossed by this first path and closing them on the map. It closes them by
drawing lines in each passage respective boundaries. After closing these passages the
planner goes back to the step of Passage Crossing Detection described in section 3.4.2
and repeats all the subsequent steps until it gets a new divided plan. The total cost for
this new plan is then calculated and compared to the total cost of the previous path.

36

(a) (b) (c)

Figure 3.10: Path cost evaluation process. Visual representation of the algorithm that
considers the cost of alternate paths by blocking narrow passages.Considering
the example scenario in figure 3.10a where the start position is in green and
the goal position in red, firstly the semantic planner obtains the plan from the
global planner as in figure 3.10b, verifies that it passes through passage p4 and
calculates the total cost of the plan according to a cost function. Secondly, the
semantic planner blocks out passage p4 on the map and requests a new plan
from the global planner as in figure 3.10c, forcing this plan to pass through
the other passage. The semantic planner then calculates the total cost for this
new plan, compares it to the previous and chooses the final plan accordingly.

The path with the lowest cost is chosen. This process can be visualized in figure 3.10.
This implementation has some limitations that are discussed in the next chapters.

3.4.5 Path Execution

Taking the list of poses from the previous step, this step feeds the intermediate
goals to the executor until the IW gets to the goal.

Since the plan was divided into different sections (if any narrow passage was crossed
by the global plan), it’s possible to use a different navigation strategy for each one by
changing the executor configurations before sending each intermediate goal. In this
dissertation, only the narrow passages problem is considered, but these different sections
can represent different kinds of challenges like the ones presented in chapter 1, each
with its own navigation strategy.

37

CHAPTER 4
Experiments and Results

To validate the proposed solution and determine possible changes in configuration,
several simulations and real-world tests were performed to evaluate the performance of
the solution presented in chapter 3.

As explained in the previous chapter, the semantic part of the system has two parts:
Automatic Narrow Passage Detection and Semantic Planning. These two parts
were tested independently and the respective experiments are presented separately in
this chapter.

4.1 Assessing the Semantic Mapper

In order to assess the semantic mapper (see section 3.3), and on its behalf algo-
rithms 1 and 2, the OGs depicted in figures 3.4a and 2.1 were used. Taking into
consideration the physical dimensions of the wheelchair available, the width interval
used to consider passage as narrow was [88 cm, 150 cm].

In figures 4.1 and 4.2 we can see the results obtained, drawn over the corresponding
OG images. Form the visual verification of these results, we can see that the algorithm
correctly identifies the narrow passages as defined in the previous chapter. This does
not always translate into the correct marking of what constitutes a narrow passage in
the real world, since the occupation grids used contain artefacts and objects that are
indistinguishable from the walls, form the LiDAR point of view.

39

Figure 4.1: Narrow passage marking of the occupation grid in figure 3.4a. For each narrow
passage, the boundaries are in blue and the approach poses are in black with a
green arrow pointing in the direction of entry for the respective passage.

Figure 4.2: Results from Narrow Passage marking for the map of a building at the University
of Freiburg.For each passage, the boundaries are in blue and the approach poses
are in black with a green arrow pointing in the direction of entry for the respective
passage.

4.2 Assessing the Semantic Planning

In this section, the methodology for the tests performed to evaluate the effectiveness
of the semantic planning module of the solution proposed in this dissertation is presented.
In figure 4.3 a photograph of the experiments scenario is displayed, this scenario was
assembled at IRIS-Lab and was used for both real-world and simulation tests. An
OG, created form this scenario and depicted in figure 3.4a was used for the tests. The
OG was occasionally modified for performing specific tests considering also the space
constraints in the lab.

40

Figure 4.3: Photograph of the experiment scenario assemble at IRIS-Lab.

It is important for each test to repeat each iteration several times to give a greater
confidence level in the results. For this, it must be assured that the starting conditions
are always, as close as possible, the same for each run, including the starting position of
the IW. For the simulation, tests it is easy to start the IW always in the same position,
as that can be adjusted in the simulator configuration. For the real-world tests, it was
necessary to assure the starting position was as close as possible to the same for all runs,
for this purpose, markers were placed on the floor in the desired position as showed
in figure 4.4, and the IW was carefully placed in the begin of each run to align with
the markers as close as possible. Additionally, the system requires the user input for a
location estimate on startup, to remove the possible variation of manually inputting
this estimation, this process was automated, giving the system the location estimate at
the beginning of each run for the specific starting position.

Three tests were performed for validating the semantic planner with different
objectives:

• Validity of the semantic planner functionality: The goal of this test is to verify if
the semantic planner correctly divides the global plan into sections according to
the narrow passages it crosses. The results were also compared with the results
without the use of semantics to verify the effectiveness of the aproach.

• Evaluation of parameters for narrow passage crossing: These tests use different
configurations of the local planner to find out if this can improve narrow passage
crossing performance.

• Influence of Comfort Cost in Semantic Planning: Validate the comfort cost
functionality of the semantic planner by applying a cost function and verifying if
the planner chooses the path accordingly.

For those purposes, the following metrics were considered for the results:

• Success in completing the task

41

Figure 4.4: IW in the starting position for tests. The blue tape on the floor marks the
position of each wheel for controlled repeatability.

• Time used to complete the task
• Comfort of the trajectory taken

The comfort metric is particularly difficult to evaluate and would require experiments
performed with a group of subjects to reliably measure the comfort level. Nonetheless,
as previously said, the main factors that play into passenger comfort levels in IW are
the distance from walls and obstacles, and the velocity [24], [23]. Taking this into
consideration, when crossing a narrow passage, a trajectory that maximizes distance
from the walls, and reduces velocity when traversing the passage, can be considered
more comfortable.

For both the real-world and simulation tests, 5 runs for each scenario were performed
with and without the use of the semantic planner. An occupant was seated in the IW
both for the realism of the tests, as the weight can impact the trajectory execution, as
well as for safety so the IW could be quickly turned off in case of eminent collision. The
presence of a person seated in the IW can also give a first-person idea of the comfort
and general feel of the trajectory, although this metric can not be trusted reliably.

Finally, the purpose of these tests is to evaluate the performance of the semantic
planner only, therefore, it is assumed that the semantic information available, specifically,
the list of narrow passages and respective information, is correct.

42

4.3 Validity of the semantic planner functionality

As described in section 3.4 the function of the semantic planner is to divide the path
from the current position to the user-defined goal and forward the intermediate goals
to the lower-level planners. The goal of these tests is to validate if the semantic planner
correctly identifies narrow passages in the path, correctly divides the path into sections
passing through the way-poses and can execute each section. Control runs, without the
use of the semantic planner, were also performed so the performance can be compared.

Three scenarios were considered, as can be seen in figure 4.5a, in the first scenario,
the path transverses two consecutive door-like narrow passages. In the second scenario
(fig 4.5b), the purpose was to force the wheelchair to start close to a wall, being the
narrow passage in that wall. Finally, the third scenario (fig 4.5c), forces the wheelchair
to transverse a corridor-like narrow passage.

(a) (b) (c)

Figure 4.5: Scenarios used for semantic planner functionality tests. In fig 4.5a, the path
goes from S to G1 through narrow passage P1 and then from G1 to G2 through
narrow passage P2. In fig 4.5b, the path goes from S to G1 through narrow
passage P1. Finally, in fig 4.5c, the path goes from S to G1 through narrow
passage P2.

Semantic Plan Division Results

In figure 4.6 we can see the plan division performed by the semantic planner for
each scenario. The sections in blue correspond to free space sections, the sections in
red correspond to the narrow passages and the red arrows are the intermediate goals
corresponding to the passages’ approach or exit poses. As intended, the semantic
planner divides the plan into sections according to the crossed narrow passages for each
goal, using the passages’ way-poses as intermediate goals separating plan sections.

43

(a) Path division for goal 1 of the
consecutive passages scenario.

(b) Path division for goal 2 of the
consecutive passages scenario.

(c) Path division for the parallel
aproach scenario.

(d) Path division for the narrow cor-
ridor scenario.

Figure 4.6: Results of plan division performed by the Semantic Planner. The plan is divided
into sections delimited by the narrow passages’ way-poses in red. The sections
of the plan are coloured in blue for free space sections and in red for narrow
passage sections. In green, we can see the wheelchair footprint and the plans of
the lower-level planners.

4.3.1 Consecutive Passages Scenario

The results for the consecutive passages scenario can be seen in figure 4.7 and
table 4.1. From these results, we can see that the semantic planner correctly divides
the path into sections going through the way poses. In figures 4.7b and 4.7d there is a
clear difference in the paths compared to the paths without using the semantic planner.
The paths created by the semantic planner are longer but result in a perpendicular
crossing of the passages, as intended.

Looking at the results in table 4.1 we can see that for simulation, both the strategies,

44

(a) Paths taken by the wheelchair
for 10 iterations in simulation
without the semantic planner.

(b) Paths taken by the wheelchair
for 10 iterations in simulation
with the semantic planner.

(c) Paths taken by the wheelchair for 5
iterations in the real world without
the semantic planner.

(d) Paths taken by the wheelchair for 5
iterations in the real world with the
semantic planner.

Figure 4.7: Paths taken by the wheelchair for the consecutive passages scenario. Paths
for both simulation and real-world experiments with and without the semantic
planner.

45

Configuration N Runs N Success Avg S - G1 Avg G1 - G2 Max G1 - G2
Sim W/O Semantic 10 10 7.54s 33.08s 68.10s
Sim W/ Semantic 10 10 9.06s 16.56s 25.70 s

R-W W/O Semantic 5 3 27.22s 32.68s 50.71s
R-W W/ Semantic 5 4 34.49s 39.09s 46.76s

Table 4.1: Results for the consecutive passages scenario of tests for validation of the Semantic
Planner. Comparison of results with and without the use of the Semantic Planner
both in simulation and real-world

with and without the use of the semantic planner, have a 100% success rate crossing
both passages. The same can not be said for the real-world tests, where the strategy
without semantic failed two of the five runs performed compared to only one failed run
from the semantic strategy. The most relevant result though comes from the times
measured. Crossing the first narrow passage, we can see that the use of the semantic
planner actually results in a slower crossing, this is to be expected since the resulting
path is longer. For the second passage though, since it is narrower and more difficult to
cross, we can see that the semantic approach, in spite of the longer path, results in a
faster crossing since the wheelchair is better positioned to cross the passage and can do
it more easily.

4.3.2 Parallel Approach Scenario

The results for the parallel approach scenario can be seen in figure 4.8 and table 4.2.
In these results, there is a clear difference between the simulation and real-world results.
In the simulation, even without the use of the semantic planner, the wheelchair can
successfully cross the passage. In the real world though this is not the case and, without
the semantic planner, the wheelchair fails to cross the passage most of the time. In
figure 4.8c we can see that even when the wheelchair is able to cross the passage, the
path it takes is very irregular and this combined with the times measured in table 4.2
shows that the wheelchair cannot reliably cross this passage with this solution. These
results are exactly as expected since this situation has been identified in previous work
as a particular problem.

Configuration N Runs N Success Avg S - G1 Max S - S1
Sim W/O Semantic 10 10 8.84s 9.70s
Sim W/ Semantic 10 10 11.74s 12.90s

R-W W/O Semantic 5 2 59.04s 75.33s
R-W W/ Semantic 5 5 34.13 37.94

Table 4.2: Results for the parallel approach scenario of tests for validation of the Semantic
Planner. Comparison of results with and without the use of the Semantic Planner
both in simulation and real-world

46

(a) Paths taken by the wheelchair for 5
iterations in simulation without the
semantic planner.

(b) Paths taken by the wheelchair for 5
iterations in simulation with the se-
mantic planner.

(c) Paths taken by the wheelchair for 5
iterations in the real world without
the semantic planner.

(d) Paths taken by the wheelchair for 5
iterations in the real world with the
semantic planner.

Figure 4.8: Paths taken by the wheelchair for the parallel approach scenario. Paths for both
simulation and real-world experiments with and without the semantic planner.

Using the semantic planner though, there is a clear difference. The path aligns with
the entrance of the passage and the wheelchair could successfully cross the passage every
time in the performed tests. In the simulation results, we can see that the semantic
aproach did take more time than the other, but this doesn’t translate into the real
world, where without the use of the semantic planner, the wheelchair has a real difficulty
crossing the passage.

4.3.3 Narrow Corridor Scenario

The results for the narrow corridor scenario can be seen in figure 4.9 and table 4.3.
Both approaches yielded similar results for this scenario. The semantic approach did
increase the time to cross the corridor both in simulation and in the real world, as can
be seen in table 4.3, but did not compromise the plan execution.

As for the path taken by each approach, in figure 4.9c. that shows the paths in
the real world without the use of the semantic planner, it is noticeable the movement
of the wheelchair is a bit irregular entering the passage although not as much as in

47

(a) Paths taken by the wheelchair for 5
iterations in simulation without the
semantic planner.

(b) Paths taken by the wheelchair for 5
iterations in simulation with the se-
mantic planner.

(c) Paths taken by the wheelchair for 5
iterations in the real world without
the semantic planner.

(d) Paths taken by the wheelchair for 5
iterations in the real world with the
semantic planner.

Figure 4.9: Paths taken by the wheelchair for the narrow corridor scenario. Paths for both
simulation and real-world experiments with and without the semantic planner.

the previous scenario. With the use of the semantic planner, we can see that the
chair executes a backwards motion to align with the passage, this motion can be a
bit awkward as it might not be necessary if the wheelchair performed a wider arch
approaching the passage, but it is a more consistent approach when compared with the
results without the use of semantic since every iteration produces a similar movement
without much unpredictability. Furthermore, the semantic approach resulted in a path
that kept the wheelchair further from the walls that, as previously discussed, might be
more comfortable for the passenger.

48

Configuration N Runs N Success Avg S - G1 Max S - S1
Sim W/O Semantic 10 10 9.64s 9.70s
Sim W/ Semantic 10 10 14.87s 15.00s

R-W W/O Semantic 5 5 17.16s 20.81s
R-W W/ Semantic 5 5 32.94s 36.92s

Table 4.3: Results for the narrow corridor scenario of tests for validation of the Semantic
Planner. Comparison of results with and without the use of the Semantic Planner
both in simulation and real-world

4.3.4 Evaluation of parameters for narrow passage crossing

For this solution, the only changes considered for different plan sections were the
valueas of the parameters of the local planner, specifically:

• Goal XY tolerance
• Goal yaw tolerance
• Max linear speed

The first two parameters are related to the tolerance given by the local planner to the
defined goal. Tighter tolerances mean the final position of the IW will be closer to the
goal, on the other hand, the planner might have difficulty in reaching the exact position
of the goal and this can result in a long time to finish the trajectory, or even failure.
The second parameter is simply the maximum linear velocity of the IW. Adjusting
these parameters depending on the type the next intermediate goal of the plan might
yield better results than using the same parameters for all navigation.

For these tests, different values for the parameters mentioned above are tested while
crossing narrow passages. The objective of these tests is to find if the passage crossing
performance can be improved by a different configuration of the local planner, since the
ability to divide the path into different sections, by the semantic planner, allows the
use of different values for the parameters in each section.

The parameters are set at the beginning of each path section, based on the type of
intermediate goal. The types of intermediate goals, are explained in section 3.4.3 but
are simplified for these tests by not distinguishing between doors and corridors. So the
possible types of intermediate goals are:

• FREE_SPACE
• PASSAGE_ENTRY
• PASSAGE_EXIT

The default parameters used are the following:

• Goal xy tolerance: 0.5m
• Goal yawn tolerance: 0.5 rad

49

hhhhhhhhhhhhhhhhhhTolerances
Max Speed (m/s) 0.3 0.5 0.8

XY = 0.5 m
Yaw = 0.5 rad 31.92s 28.01s 25.93s

XY = 0.1 m
Yaw = 0.1 rad 60.82s 31.93s 31.94s

XY = 0.2 m
Yaw = 0.2 rad 34.93s 30.94s 29.93s

Table 4.4: Results of evaluation of parameters for narrow passage crossing

• Max xy speed: 0.8 m/s

These defaults are always used except for 2 cases. When the goal is of type
PASSAGE_ENTRY, the two tolerance parameters are changed. When the goal is
of type PASSAGE_EXIT, the parameter for maximum speed is changed. This way
we can control how much the chair tries to align with the passage entry and how fast it
crosses the passage.

The scenario for these tests is the same as one of the scenarios used for a previous
test and can be seen in Figure 4.5b. This scenario was chosen because it is the more
challenging. The time taken to get from the start position to goal 1 was measured, this
gives a good sense of the performance with different parameters.

The results for simulation tests can be seen in table 4.4, which correspond to the
time to get from the start position to the goal represented in Figure 4.5b. In all these
tests, the wheelchair could successfully cross the passage in this scenario. The main
differences are related to time and comfort. With tighter tolerances for the entrance
way-pose, the wheelchair, sometimes, has difficulty placing itself in the position within
the tolerances, resulting in an awkward back and forward motion and possibly even
the necessity to make a 360º turn to achieve the position which significantly increases
the time taken to cross the passage. This does not result in greater success crossing
the passage and therefore using tighter tolerance parameters for approaching narrow
passages is not helpful for narrow passage crossing.

Decreasing the speed, while crossing the narrow passages, results, unsurprisingly,
in a longer time to cross the passage. However, there can be some benefits to comfort
form the lower speed. Further tests must be performed to find the ideal speed which
may depend on the passage width, as well as the individual preference of the passenger.

4.4 Influence of Comfort Cost in semantic planning

As explained in chapter 3, the developed solution considers not only the distance, but
also a comfort cost for semantic path planning. The study of the optimal implementation

50

Figure 4.10: Scenario for testing the influence of comfort cost in semantic planning.

of previously presented equations 3.1 and 3.2, is not a subject of this dissertation,
however, in order to test the functionality of semantic plan cost, this functions had to
be implemented.

It was considered that the semantic plan cost would be calculated according to
equation 4.1. The semantic plan cost for these tests is the sum of the distance cost
(total distance of the path), with the sum of the comfort factors, defined in equation 4.2,
for all crossed narrow passages, multiplied by a factor Kc representing the maximum
distance in meters a narrow passage, with the highest comfort cost, can add to the cost
of a path.

C = Cd + Kc F c (4.1)

F c = M − w

M − m
(4.2)

The scenario used for this test is the one represented in fig. 4.10, and depending
on the value of Kc, the planner should choose to go through narrow passage P3 or P4
since the shortest path goes through passage P4 but passage P3 is wider and therefore,
more comfortable.

Since these tests only relate to the ability of the semantic planner to choose the
correct path and not the execution of said path, simulation tests were sufficient to
validate this functionality. Two tests were performed, one with Kc = 1 and another
with Kc = 10. It is expected that for the first test the semantic planner chooses
the shortest path, through passage p4 and for the second test it chooses the more
comfortable path through passage p3.

The distanceCost and comfotCost for the two possible paths are as following:

51

(a) First path consid-
ered by the seman-
tic planner that
goes through pas-
sage p4.

(b) Second path
considered by the
semantic planner
that goes through
passage p3.

(c) Final path chosen
by the semantic
planner for test 1
with Kc = 1

(d) Final path chosen
by the semantic
planner for test 2
with Kc = 10

Figure 4.11: Results of the tests of the influence of comfort cost in semantic planning.

• Path 1, through passage p4:
Cd = 5.49
Fc = 0.75

• Path 2, through passage p3:
Cd = 7.78
Fc = 0.375

When applying equation 4.2 to this costs with different values of Kc we get:

• Kc = 1:
Cpath1 = 6.23
Cpath2 = 8.15

• Kc = 10:
Cpath1 = 12.96
Cpath2 = 11.61

From these calculations, is to be expected that the semantic planner chooses path1
for Kc = 1 and chooses path2 for Kc = 10. This expectation is confirmed by the
results in figure 4.11. In this figure we can see that the semantic planner considers
both paths (figs 4.11a and 4.11b), and then decides the path to take according to the
calculated costs.

This test showed that the semantic planner correctly analyses possible alternate
paths by closing the narrow passage found in the first path. It also shows that it
correctly calculates the total cost of each path for the given cost function and selects
the most adequate path accordingly.

52

CHAPTER 5
Conclusion

The work developed for this dissertation resulted in a solution for improving the
navigation of a IW in indoor spaces based on semantic navigation, particularly on the
matter of crossing narrow passages. In this chapter, I discuss the chosen implementation
and the results presented in the previous chapter, as well as reflect on the future work
to be developed in this project.

5.1 Discussion

The results were generally satisfactory. The algorithm for automatically marking
narrow passages correctly identified all narrow passages although it had some false
positives due to imperfections of the OG map. This could be solved by a pre-processing
of the occupation grid removing the artefacts that do not correspond to actual obstacles.
The implementation of the algorithm is also not optimised for execution time and as
such, it needs some time to run when the system starts and it needs a pre-generated
map.

The semantic planner performed as intended and correctly divided the path into
sections divided by intermediate goals and correctly passed these goals to the executor.
It also considers correctly the comfort cost of each passage and chooses the trajectory
accordingly. Using different values for navigation parameters, of the local planner, when
crossing narrow passages, we obtained positive results but it did not have a determining
impact on the success rate.

The objectives of this dissertation were achieved. Namely, with this semantic
navigation approach, the wheelchair can cross narrow passages with an increased

53

success rate and approach each passage from different angles. The ability to use a
different speed when crossing narrow passages can also increase passenger comfort.
Although no experiments with subjects were performed to evaluate the comfort, some
things were noticed while running the experiments for this dissertation. It was noticed
that the semantic solution, by aligning with the narrow passage before crossing it, gave
an increased confidence level to the passenger while without the semantic solution, there
was a perception of bigger collision probability.

Although the results were not perfect when it comes to the performance crossing
narrow passages, the results did validate the general architecture of the solution. The
use of a semantic mapper and semantic planner proved to unlock several possibilities
for navigation that are discussed in section 5.3.

5.2 Limitations

During the development and experiments processes, some limitations of the proposed
system and of the wheelchair itself were identified. Firstly, relating to the used wheelchair,
as can be seen in figure 4.4, the front wheels of the wheelchair are free-turning wheels,
which can cause some issues. When the wheelchair completes a section of its path where
it turns on itself, or moves backwards, these wheels can become in a side-ways position
and, when the wheelchair then initiates a forward motion, this position of the front
wheels causes an unpredictable, (from the plan executor point of view) sudden angular
movement. This is especially noticeable when approaching narrow passages. When
the wheelchair tries to position itself in the approach pose, this can force it to turn
on itself or go a little backwards to align better with the narrow passage, then, when
the wheelchair moves forward to go through the passage, the unpredictable position of
the front wheels causes a different movement of the wheelchair than the plan executor
expected. This is particularly problematic when trying to cross narrow passages, as we
are working with tight margins and this unpredictable motion may cause the wheelchair
to get into a position where it becomes impossible to cross the passage or even cause a
collision. The back wheels of the wheelchair are also free-turning and cause a similar
effect.

The sensorization of the wheelchair also as some limitations. The accuracy of the
used LiDARs greatly impacts the indoor navigation capabilities. By increasing the
accuracy and resolution of the LiDAR readings, the wheelchair could get a more precise
localisation which greatly impacts the ability to cross narrow passages. The presence of
encoders on the wheelchair’s wheels would give better odometry data than the used
method which would also improve the localization capabilities.

Secondly, regarding the implementation of the semantic plan cost, the final solution

54

is not a complete one. When the semantic planner identifies that the shortest path to a
goal crosses narrow passages, it should consider all other possible paths to verify if there
is any with a lower semantic plan cost. This problem gets increasingly complicated the
more alternative paths there are to a narrow passage. The implemented solution is a
simplification of this functionality that only considers one possible alternative path, by
blocking all narrow passages crossed by the first path obtained from the global planner,
and requesting a new path. The path with the lowest cost of the two is selected. A
solution for this problem is discussed in section 5.3.

5.3 Future Work

The main success of the presented solution was the implementation of a semantic
layer for autonomous IW navigation. This implementation allowed to use of a different
strategy for crossing narrow passages. This strategy was to divide the path and place the
IW in an approach position for each narrow passage that facilitated the crossing of said
passage. Although this yielded good results, this strategy did not prove to be optimal
and future work could involve the development of a specific path following algorithm for
the narrow passage sections of the path. Other path following algorithms can also be
added to the system as the semantic capabilities extend form only considering narrow
passages, to also consider other situations as presented in chapter 1 like placing the
chair partially under a table.

The semantic mapper correctly marks the narrow passages on the map but its
functionality could be extended to include complete topological and semantic mapping.
This would allow the semantic planner to create a plan based on the semantic and
topological information without having to request a geometric plan form the global
planner. This semantic planning phase would be much faster than the current solution
since it wouldn’t have to perform a path search on the entire metric map. A complete
topological map would also solve the problem of considering the alternative paths
according to semantic plan cost. The topological map could have on its edges all the
needed distance and comfort cost information so the semantic planner could consider
them in the semantic planing phase without having to block out passages and requesting
plans from the global planner.

The sensorization of the wheelchair could also be revisited. The use of LiDARs with
better accuracy, or the installation of encoders on the wheels, would probably increase
the ability of narrow passage crossing as well as the indoor navigation capabilities overall.
This assertion comes from the experience of performing tests with the wheelchair, were it
was noticeable that the inaccuracies in localization and mapping significantly impacted
the navigation.

55

References

[1] P. F. d. S. Figueiredo, “Navegação no interior de cadeira de rodas inteligente,” M.S. thesis,
Universidade de Aveiro, Dec. 2021.

[2] A. Elfes, “Sonar based real-world mapping navigation,” Robotics and Automation, IEEE Journal
of, vol. RA-3, pp. 249–265, Jul. 1987. doi: 10.1109/JRA.1987.1087096.

[3] D. Holz and S. Behnke, “Sancta simplicitas - on the efficiency and achievable results of slam
using icp-based incremental registration,” Jun. 2010, pp. 1380–1387. doi: 10.1109/ROBOT.2010.
5509918.

[4] H. Choset and K. Nagatani, “Topological simultaneous localization and mapping (slam): Toward
exact localization without explicit localization,” IEEE Transactions on Robotics and Automation,
vol. 17, no. 2, pp. 125–137, 2001. doi: 10.1109/70.928558.

[5] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A survey,”
Robotics and Autonomous Systems, vol. 66, pp. 86–103, 2015, issn: 0921-8890. doi: https://
doi.org/10.1016/j.robot.2014.12.006. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0921889014003030.

[6] M. Hiller, C. Qiu, F. Particke, C. Hofmann, and J. Thielecke, “Learning topometric semantic
maps from occupancy grids,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019, pp. 4190–4197. doi: 10.1109/IROS40897.2019.8968111.

[7] P. Beeson, N. Jong, and B. Kuipers, “Towards autonomous topological place detection using
the extended voronoi graph,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, 2005, pp. 4373–4379. doi: 10.1109/ROBOT.2005.1570793.

[8] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical generalized voronoi
graph,” The International Journal of Robotics Research, vol. 19, no. 2, pp. 96–125, 2000.
doi: 10.1177/02783640022066770. eprint: https://doi.org/10.1177/02783640022066770.
[Online]. Available: https://doi.org/10.1177/02783640022066770.

[9] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, “Sensor-based exploration: Incremental
construction of the hierarchical generalized voronoi graph,” The International Journal of
Robotics Research, vol. 19, no. 2, pp. 126–148, 2000. doi: 10.1177/02783640022066789. eprint:
https://doi.org/10.1177/02783640022066789. [Online]. Available: https://doi.org/10.
1177/02783640022066789.

[10] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture processing,” Journal of
the ACM (JACM), vol. 13, no. 4, pp. 471–494, 1966.

[11] P. YoonSeok, C. HanCheol, J. RyuWoon, and T. Lim, ROS Robot Programing. 1505, 145, Gasan
Digital 1-ro, GeumCheon-gu, Seoul, Republic of Korea: ROBOTIS Co.,Ltd., 2017.

[12] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Efficient trajectory optimiza-
tion using a sparse model,” in 2013 European Conference on Mobile Robots, 2013, pp. 138–143.
doi: 10.1109/ECMR.2013.6698833.

57

https://doi.org/10.1109/JRA.1987.1087096
https://doi.org/10.1109/ROBOT.2010.5509918
https://doi.org/10.1109/ROBOT.2010.5509918
https://doi.org/10.1109/70.928558
https://doi.org/https://doi.org/10.1016/j.robot.2014.12.006
https://doi.org/https://doi.org/10.1016/j.robot.2014.12.006
https://www.sciencedirect.com/science/article/pii/S0921889014003030
https://www.sciencedirect.com/science/article/pii/S0921889014003030
https://doi.org/10.1109/IROS40897.2019.8968111
https://doi.org/10.1109/ROBOT.2005.1570793
https://doi.org/10.1177/02783640022066770
https://doi.org/10.1177/02783640022066770
https://doi.org/10.1177/02783640022066770
https://doi.org/10.1177/02783640022066789
https://doi.org/10.1177/02783640022066789
https://doi.org/10.1177/02783640022066789
https://doi.org/10.1177/02783640022066789
https://doi.org/10.1109/ECMR.2013.6698833

[13] E. Pedrosa, A. Pereira, and N. Lau, “Efficient localization based on scan matching with a
continuous likelihood field,” in 2017 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), 2017, pp. 61–66. doi: 10.1109/ICARSC.2017.7964053.

[14] J. Crespo, “Arquitectura y diseño de un sistema completo de navegación semántica. descripción
de su ontología y gestión de conocimiento,” Ph.D. dissertation, Universidad Carlos III de
Madrid. Departamento de Ingeniería de Sistemas y Automática, 2017. [Online]. Available:
http://hdl.handle.net/10016/25277.

[15] T. Levitt and B. Kuipers, “Navigation and mapping in large scale space,” AI Magazine, vol. 9,
pp. 25–43, Jun. 1988. doi: 10.1609/aimag.v9i2.674.

[16] J. Crespo, J. C. Castillo, O. M. Mozos, and R. Barber, “Semantic information for robot navigation:
A survey,” Applied Sciences, vol. 10, no. 2, 2020, issn: 2076-3417. doi: 10.3390/app10020497.
[Online]. Available: https://www.mdpi.com/2076-3417/10/2/497.

[17] R. Li, L. Wei, D. Gu, H. Hu, and K. D. McDonald-Maier, “Multi-layered map based navigation
and interaction for an intelligent wheelchair,” in 2013 IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2013, pp. 115–120. doi: 10.1109/ROBIO.2013.6739445.

[18] S. Cailhol, P. Fillatreau, Y. Zhao, and J.-Y. Fourquet, “Multi-layer path planning control
for the simulation of manipulation tasks: Involving semantics and topology,” Robotics and
Computer-Integrated Manufacturing, vol. 57, pp. 17–28, 2019, issn: 0736-5845. doi: https:
//doi.org/10.1016/j.rcim.2018.10.010. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0736584517301187.

[19] Z. Wei, W. Chen, and J. Wang, “3d semantic map-based shared control for smart wheelchair,” in
Intelligent Robotics and Applications, C.-Y. Su, S. Rakheja, and H. Liu, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 41–51.

[20] B. Decoux, R. Khemmar, N. Ragot, et al., “A dataset for temporal semantic segmentation
dedicated to smart mobility of wheelchairs on sidewalks,” Journal of Imaging, vol. 8, no. 8,
2022, issn: 2313-433X. [Online]. Available: https://www.mdpi.com/2313-433X/8/8/216.

[21] M. F. Pinto, I. C. d. S. Júnior, and A. L. M. Marcato, “Methodology for autonomous crossing
narrow passages applied on assistive mobile robots,” vol. 30, 2019, pp. 943–953. doi: 10.1007/
s40313-019-00499-2. [Online]. Available: https://doi.org/10.1007/s40313-019-00499-2.

[22] F. Leishman, O. Horn, and G. Bourhis, “Smart wheelchair control through a deictic approach,”
Robotics and Autonomous Systems, vol. 58, no. 10, pp. 1149–1158, 2010, issn: 0921-8890.
doi: https : / / doi . org / 10 . 1016 / j . robot . 2010 . 06 . 007. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S0921889010001272.

[23] Y. Morales, N. Kallakuri, K. Shinozawa, T. Miyashita, and N. Hagita, “Human-comfortable
navigation for an autonomous robotic wheelchair,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2013, pp. 2737–2743. doi: 10.1109/IROS.2013.6696743.

[24] T. Sawabe, T. Okajima, M. Kanbara, and N. Hagita, “Evaluating passenger characteristics
for ride comfort in autonomous wheelchairs,” in 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC), 2017, pp. 102–107. doi: 10.1109/ITSC.2017.
8317910.

58

https://doi.org/10.1109/ICARSC.2017.7964053
http://hdl.handle.net/10016/25277
https://doi.org/10.1609/aimag.v9i2.674
https://doi.org/10.3390/app10020497
https://www.mdpi.com/2076-3417/10/2/497
https://doi.org/10.1109/ROBIO.2013.6739445
https://doi.org/https://doi.org/10.1016/j.rcim.2018.10.010
https://doi.org/https://doi.org/10.1016/j.rcim.2018.10.010
https://www.sciencedirect.com/science/article/pii/S0736584517301187
https://www.sciencedirect.com/science/article/pii/S0736584517301187
https://www.mdpi.com/2313-433X/8/8/216
https://doi.org/10.1007/s40313-019-00499-2
https://doi.org/10.1007/s40313-019-00499-2
https://doi.org/10.1007/s40313-019-00499-2
https://doi.org/https://doi.org/10.1016/j.robot.2010.06.007
https://www.sciencedirect.com/science/article/pii/S0921889010001272
https://www.sciencedirect.com/science/article/pii/S0921889010001272
https://doi.org/10.1109/IROS.2013.6696743
https://doi.org/10.1109/ITSC.2017.8317910
https://doi.org/10.1109/ITSC.2017.8317910

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivation
	Objectives
	Document Structure

	Background and related work
	Navigation
	World Representation and Mapping
	Localization
	Path Planning
	Plan Execution

	Robot Operating System
	Concepts
	Tools

	Intellwheels 2.0
	Sensorization
	Odometry
	SLAM
	Costmaps
	Global Planning
	Local Planning

	Semantic Navigation
	Mapping
	Planning

	Semantic Navigation in Intelligent Wheelchairs

	Semantic Navigation for Intelligent Wheelchairs
	Proposed System Architecture
	Semantic Plan Cost
	Semantic Mapper: Automatic Narrow Passage Marking
	Distance Map
	Extended Voronoi Graph
	Passage Segmentation
	Passage Boundaries and Approach Poses
	Narrow Passage Comfort Cost
	Narrow Passage Representation

	Semantic Planning
	Passage Map
	Passage Crossing Detection
	Path Splitting
	Semantic Plan Cost
	Path Execution

	Experiments and Results
	Assessing the Semantic Mapper
	Assessing the Semantic Planning
	Validity of the semantic planner functionality
	Consecutive Passages Scenario
	Parallel Approach Scenario
	Narrow Corridor Scenario
	Evaluation of parameters for narrow passage crossing

	Influence of Comfort Cost in semantic planning

	Conclusion
	Discussion
	Limitations
	Future Work

	References

