
Universidade de Aveiro
2022

Bruno Filipe
Oliveira Aguiar

Deteção de atividades ilícitas de software Bots
através do DNS

Detection of illicit software Bot activities over DNS

“Human beings are born with different capacities. If they are free,
they are not equal. And if they are equal, they are not free.”

— Aleksandr Solzhenitsyn

Universidade de Aveiro
2022

Bruno Filipe
Oliveira Aguiar

Deteção de atividades ilícitas de software Bots
através do DNS

Detection of illicit software Bot activities over DNS

Universidade de Aveiro
2022

Bruno Filipe
Oliveira Aguiar

Deteção de atividades ilícitas de software Bots
através do DNS

Detection of illicit software Bot activities over DNS

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisi-
tos necessários à obtenção do grau de Mestre em Engenharia de Computadores e
Telemática, realizada sob a orientação científica do Doutor Paulo Jorge Salvador
Serra Ferreira, Professor associado do Departamento de Electrónica, Telecomu-
nicações e Informática da Universidade de Aveiro, e do Doutor Pétia Georgieva
Georgieva, Professor associado do Departamento de Eletrónica, Telecomunicações
e Informática da Universidade de Aveiro.

o júri / the jury
presidente / president Professor Doutor João Paulo Silva Barraca

Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Doutor Ricardo Santos Morla
Professor Auxiliar, Universidade do Porto - Faculdade de Engenharia

Professor Doutor Paulo Jorge Salvador Serra Ferreira
Professor Associado, Universidade de Aveiro

agradecimentos /
acknowledgements

Em primeiro lugar, gostaria de agradecer à minha família (Andreia Inlcuída) e
amigos o apoio que me têm dado ao longo de todo o meu percurso académico, e
em especial aos meus pais e avós onde sempre me tentaram dar todas as condições
necessárias para que eu pudesse ter aqui chegado.
Gostaria também de agradecer aos meus orientadores, Prof. Paulo Salvador e Prof.
Pétia Georgieva, por estarem sempre disponíveis em me ajudar, por tudo o que me
transmitiram e por todas as nossas trocas de ideias.
Por último mas não menos importante, gostaria de fazer um agradecimento especial
ao Éder, o membro de quatro patas da família e de uma lealdade (e energia) imensa,
que esteve sempre ao meu lado, muitas vezes no sentido literal, durante a maior
parte desta jornada.

Palavras Chave DNS, Deteção de Malware Bots, Detecção de Botnets, Detecção de Novidades,
Aprendizagem Automática

Resumo O DNS é um componente crítico da Internet, já que quase todas as aplicações
e organizações que a usam dependem dele para funcionar. A sua privação pode
deixá-las de fazerem parte da Internet, e por causa disso, o DNS é normalmente
o único protocolo permitido quando o acesso à Internet está restrito. A exposição
constante deste protocolo a entidades externas obrigam corporações a estarem
sempre atentas a software externo ilícito que pode fazer uso indevido do DNS para
estabelecer canais secretos e realizar várias atividades ilícitas, como comando e
controlo e exfiltração de dados.
A maioria das soluções atuais para detecção de malware bots e de botnets são
baseadas em técnicas inspeção profunda de pacotes, como analizar payloads de
pedidos de DNS, que podem revelar informação privada e sensitiva. Além disso,
a maioria das soluções existentes não consideram o uso lícito e cifrado de tráfego
DNS, onde técnicas como inspeção profunda de pacotes são impossíveis de serem
usadas.
Esta dissertação propõe mecanismos para detectar comportamentos de malware
bots e botnets que usam o DNS, que são robustos ao tráfego DNS cifrado e
que garantem a privacidade das entidades envolvidas ao analizar, em vez disso,
os padrões comportamentais das comunicações DNS usando estatística descritiva
em métricas recolhidas na rede, como taxas de pacotes, o tamanho dos pacotes,
e os tempos de atividade e silêncio. Após a caracterização dos comportamentos
do tráfego DNS, um estudo sobre os dados processados é realizado, sendo depois
usados para treinar os modelos de Detecção de Novidades.
Os modelos são treinados com dados lícitos recolhidos de multiplas atividades
lícitas, como ler as notícias, estudar, e usar redes sociais, em multiplos sistemas
operativos e com multiplas configurações. De seguida, os modelos são testados
com dados lícitos semelhantes, mas contendo também tráfego de malware bots.
Os nossos testes mostram que com modelos de Detecção de Novidades é possível
obter taxas de detecção na ordem dos 99%, e de 98% para malware bots que geram
pouco tráfego.
Este trabalho finaliza com algumas ideas para uma geração de tráfego ilícito mais
realista, já que as ferramentas atuais de DNS tunneling são limitadas quando
usadas para imitar usos de DNS lícito, e para uma melhor deteção de situações
onde malware bots geram pouco tráfego.

Keywords DNS, Bot Malware Detection, Botnet Detection, Anomaly Detection, Novelty De-
tection, Machine Learning

Abstract DNS is a critical component of the Internet where almost all Internet applications
and organizations rely on. Its shutdown can deprive them from being part of the
Internet, and hence, DNS is usually the only protocol to be allowed when Internet
access is firewalled. The constant exposure of this protocol to external entities force
corporations to always be observant of external rogue software that may misuse
the DNS to establish covert channels and perform multiple illicit activities, such as
command and control and data exfiltration.
Most current solutions for bot malware and botnet detection are based on Deep
Packet Inspection techniques, such as analyzing DNS query payloads, which may
reveal private and sensitive information. In addiction, the majority of existing so-
lutions do not consider the usage of licit and encrypted DNS traffic, where Deep
Packet Inspection techniques are impossible to be used.
This dissertation proposes mechanisms to detect malware bots and botnet behav-
iors on DNS traffic that are robust to encrypted DNS traffic and that ensure the
privacy of the involved entities by analyzing instead the behavioral patterns of DNS
communications using descriptive statistics over collected network metrics such as
packet rates, packet lengths, and silence and activity periods. After characterizing
DNS traffic behaviors, a study of the processed data is conducted, followed by the
training of Novelty Detection algorithms with the processed data.
Models are trained with licit data gathered from multiple licit activities, such as
reading the news, studying, and using social networks, in multiple operating sys-
tems, browsers, and configurations. Then, the models were tested with similar
data, but containing bot malware traffic. Our tests show that our best performing
models achieve detection rates in the order of 99%, and 92% for malware bots
using low throughput rates.
This work ends with some ideas for a more realistic generation of bot malware
traffic, as the current DNS Tunneling tools are limited when mimicking licit DNS
usages, and for a better detection of malware bots that use low throughput rates.

Contents

Contents i

List of Figures v

List of Tables ix

Acronyms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Outline . 4

2 State of the Art 7

2.1 Malware bots and botnets . 8

2.1.1 Introduction to the malware bot’s life-cycle 9

2.1.2 Propagation vectors . 9

2.1.3 The Rallying mechanism . 10

2.1.4 Botnet topologies . 10

2.1.4.1 Centralized topologies . 11

2.1.4.2 Decentralized topologies 11

2.1.4.3 More advanced topologies 12

2.1.5 Evading detection with covert channels and anonymization 12

2.1.5.1 Common protocols for covert channels 12

2.1.5.2 Information concealing . 13

2.1.5.3 Anonymization of C&C Services 14

i

2.2 DNS as a covert channel . 14

2.2.1 DNS overview . 15

2.2.1.1 DNS Resolution . 15

2.2.1.2 DNS Transport . 15

2.2.1.3 DNS Messages . 16

2.2.2 How DNS is misused for illicit activities 17

2.2.2.1 The DNS threat landscape 17

2.3 Botnet Detection techniques . 18

2.3.1 Host-based detection . 19

2.3.2 Network-based detection . 19

2.4 Machine Learning . 20

2.4.1 Machine Learning workflow . 21

2.4.2 Feature Selection . 22

2.4.2.1 Filter Approach . 22

2.4.2.2 Wrapper Approach . 24

2.4.2.3 Embedded Approach . 25

2.4.3 Dimensionality Reduction . 26

2.4.3.1 Principal Component Analysis 27

2.4.4 Anomaly Detection . 28

2.4.4.1 AD approaches . 30

2.4.4.2 Anomalies, Outliers and Novelties 31

2.4.4.3 Density-based models . 31

2.4.4.4 Boundary-based models . 34

2.5 Summary . 36

3 Methodologies for Network-based AD 39

3.1 Network-based AD workflow . 39

3.1.1 Data collection . 40

3.1.1.1 Data collection under data protection regulations 41

3.1.1.2 Emulating network behaviors of malware bots 44

3.1.2 Feature extraction . 45

3.1.2.1 Feature Extraction with Observation Windows 46

3.1.3 Data scaling . 48

3.1.4 Dimensionality Reduction . 49

ii

3.1.5 The Learning Process and model evaluation 50

3.2 Summary . 53

4 Methodologies evaluation and Results 55

4.1 Licit traffic collection . 55

4.2 Emulation of malware bot attacks . 56

4.2.1 Scenario 1: C&C over DNS with the Push mechanism using standard

behaviors . 59

4.2.2 Scenario 2: Data exfiltration over DNS using standard behaviors . . 60

4.2.3 Scenario 3: C&C with the Push Mechanism over DNS that mimics

licit behaviors . 60

4.2.4 Scenario 4: Data exfiltration over DNS that mimics licit behaviors

mechanisms . 62

4.2.5 Scenario 5: C&C with the Pull Mechanism over DNS mixed with licit

traffic . 62

4.2.6 Scenario 6: Low throughput Data exfiltration over DNS mixed with

licit traffic . 63

4.3 Dataset Exploration . 63

4.4 Dimensionality Reduction . 68

4.5 Classification Results . 70

4.5.1 Dataset with a sliding window of 70 minutes 71

4.5.1.1 Datasets with keep-alive messages 71

4.5.1.2 Datasets without keep-alive messages 72

4.5.2 Dataset with a sliding window of 15 minutes 75

4.5.2.1 Datasets with keep-alive messages 75

4.5.2.2 Datasets without keep-alive messages 76

4.5.3 Datasets with a sliding window of 75 minutes 78

4.5.3.1 Datasets with keep-alive messages 78

4.5.3.2 Datasets without keep-alive messages 79

4.6 Conclusion . 81

5 Conclusions and future work 83

5.1 Future work . 85

iii

References 87

Licit DNS traffic Throughput - Time Series 93

Licit DNS traffic - Histograms 95

Scenario 1: Illicit DNS traffic - Histograms 97

Scenario 3: Histogram comparison between licit and illicit traffic 101

Dataset with a sliding window of 70 minutes 103

Dataset with a sliding window of 15 minutes 115

Dataset with a sliding window of 75 minutes 123

iv

List of Figures

1.1 Misuse of DNS for data exfiltration purposes. Source: Detection of malicious and

low throughput data exfiltration over the DNS protocol [1]. 2

2.1 Typical Botnet structure. Source: Security of cyber-physical systems [6] 9

2.2 Botnet topologies. Source: Botnet Communication Patterns 12

2.3 Common application layer targets (2015). Source: Arbor Networks 13

2.4 A graphical view of Recursive and Iterative DNS 15

2.5 General format of DNS queries and responses. Source: TCP/IP illustrated (Vol.

1): The Protocols [26] . 17

2.6 Lasso, the Ridge and the Elastic Net Regressors in comparison. Source: Regular-

ization and variable selection via the elastic net [49] 26

2.7 An example of the Curse of Dimensionality. Source: The Curse of Dimensionality

in classification [51] . 27

2.8 3D to 2D space transformation using PCA . 28

2.9 Different types of anomalies. Source: A Unifying Review of Deep and Shallow

Anomaly Detection [55] . 30

2.10 1-dimensional Gaussian distribution with a defined threshold. Source: One-class

classification [60] . 32

2.11 Mixture of Gaussians . 33

3.1 Network-based AD workflow using semi-supervised algorithms 40

3.2 Raw network traces to network metrics . 42

3.3 Two approaches for C&C communications. Source: BotSniffer: Detecting Botnet

Command and Control Channels in Network Traffic [70] 45

3.4 An example of silence periods in collected network metrics 46

v

3.5 Comparison between sequential observation windows and sliding observation

windows over timestamped raw data . 47

3.6 Diagram of features extracted from multiple sub-windows. 48

3.7 High Correlation Filter Algorithm . 50

3.8 k-fold Cross-validation. Source: Scikit-Learn . 51

3.9 Illustration for the k-fold Cross-Validation with validation and test set at iteration k 52

4.1 Simulated corporate environment for the emulation of botnet attacks 57

4.2 Changes made in the client application of DNS2TCP 61

4.3 Example of illicit API requests and responses DNS activity 63

4.4 Example of illicit API requests and responses mixed with licit DNS activity . . . 63

4.5 Two examples of a possible ADS . 64

4.6 Example of features without keep-alive messages 65

4.7 Comparison between features without keep-alive messages produced with different

behavior approaches . 66

4.8 Comparison between features with keep-alive messages for data points which are

linearly separable . 67

4.9 F1-Score for multiple threshold values using PCA and the High Correlation Filter 69

1 Examples of throughput in licit DNS traffic - Time Series 93

2 Examples of throughput in licit DNS traffic - Histogram 95

3 Examples of Average Packet Lengths in licit DNS traffic - Histogram 96

4 Examples of generated throughput for Scenario 1 - Histogram 98

5 Examples of generated average packet length for Scenario 1 - Histogram 99

6 Comparison between licit (in blue) and illicit (in red) throughput generated by

the modified DNS2TCP with α = 0.0 for Scenario 3 101

7 Comparison between licit (in blue) and illicit (in red) average packet lengths

generated by the modified DNS2TCP with α = 0.0 for Scenario 3 102

8 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 1 104

9 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 2 105

vi

10 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 3 106

11 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 4 107

12 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 5 108

13 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 6 109

14 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 7 110

15 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 8 111

16 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 9 112

17 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 10 113

18 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 15 minutes - Part 1 116

19 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 15 minutes - Part 2 117

20 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 15 minutes - Part 3 118

21 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 15 minutes - Part 4 119

22 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 15 minutes - Part 5 120

23 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 15 minutes - Part 6 121

24 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 75 minutes - Part 1 124

25 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 75 minutes - Part 2 125

vii

26 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 75 minutes - Part 3 126

27 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 75 minutes - Part 4 127

28 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 75 minutes - Part 5 128

29 Comparison between licit (in blue) and illicit (in red) data points with and without

keep-alive messages for the Dataset with a sliding window of 75 minutes - Part 6 129

viii

List of Tables

4.1 k-fold . 70

4.2 Average results on 10-fold test sets with Dimensionality Reduction for datasets

with keep-alive messages and with a sliding window of 70 minutes (in percentage,

with a 95% confidence interval) . 71

4.3 Results of tests on new and unseen bot malware traffic with Dimensionality

Reduction for datasets with keep-alive messages and with a sliding window of 70

minutes . 72

4.4 Average results on 10-fold test sets without Dimensionality Reduction for datasets

without keep-alive messages and with a sliding window of 70 minutes (in percentage,

with a 95% confidence interval) . 73

4.5 Results of tests on new and unseen bot malware traffic without Dimensionality

Reduction for datasets without keep-alive messages and with a sliding window of

70 minutes . 73

4.6 Average results on 10-fold test sets with PCA for datasets without keep-alive

messages and with a sliding window of 70 minutes (in percentage, with a 95%

confidence interval) . 74

4.7 Results of tests on new and unseen bot malware traffic with PCA for datasets

without keep-alive messages and with a sliding window of 70 minutes 74

4.8 Average results on 10-fold test sets without Dimensionality Reduction for datasets

with keep-alive messages and with a sliding window of 15 minutes (in percentage,

with a 95% confidence interval) . 75

4.9 Results of tests on new and unseen bot malware traffic without Dimensionality

Reduction for datasets with keep-alive messages and with a sliding window of 15

minutes . 75

ix

4.10 Average results on 10-fold test sets with PCA for datasets with keep-alive messages

and with a sliding window of 15 minutes (in percentage, with a 95% confidence

interval) . 76

4.11 Results of tests on new and unseen bot malware traffic with PCA for datasets

with keep-alive messages and with a sliding window of 15 minutes 76

4.12 Average results on 10-fold test sets without Dimensionality Reduction for datasets

without keep-alive messages and with a sliding window of 15 minutes (in percentage,

with a 95% confidence interval) . 76

4.13 Results of tests on new and unseen bot malware traffic without Dimensionality

Reduction for datasets without keep-alive messages and with a sliding window of

15 minutes . 77

4.14 Average results on 10-fold test sets with PCA for datasets without keep-alive

messages and with a sliding window of 15 minutes (in percentage, with a 95%

confidence interval) . 78

4.15 Results of tests on new and unseen bot malware traffic with PCA for datasets

without keep-alive messages and with a sliding window of 15 minutes 78

4.16 Average results on 10-fold test sets with Dimensionality Reduction for datasets

with keep-alive messages and with a sliding window of 75 minutes (in percentage,

with a 95% confidence interval) . 79

4.17 Results of tests on new and unseen bot malware traffic with Dimensionality

Reduction for datasets with keep-alive messages and with a sliding window of 75

minutes . 79

4.18 Average results on 10-fold test sets without Dimensionality Reduction for datasets

without keep-alive messages and with a sliding window of 75 minutes (in percentage,

with a 95% confidence interval) . 80

4.19 Results of tests on new and unseen bot malware traffic with PCA for datasets

without keep-alive messages and with a sliding window of 70 minutes 80

4.20 Average results on 10-fold test sets with PCA for datasets without keep-alive

messages and with a sliding window of 75 minutes (in percentage, with a 95%

confidence interval) . 81

4.21 Results of tests on new and unseen bot malware traffic with PCA for datasets

without keep-alive messages and with a sliding window of 75 minutes 81

x

Acronyms

DDoS Distributed Denial-of-Service
C&C Command and Control
IP Internet Protocol
P2P Peer-to-Peer
DNS Domain Name System
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
DPI Deep Packet Inspection
DGA Domain Generation Algorithm
IRC Internet Chat Relay
TLD Top-Level Domain
TCP Transmission Control Protocol
UDP User Datagram Protocol
RFC Request for Comments
RR Resource Record
GDPR General Data Protection Regulation
PII Personal Identifiable Identification
TLS Transport Layer Security
DoT DNS over TLS
DoH DNS over HTTP
GNS3 Graphical Network Simulator-3
SSH Secure Shell Protocol
NAT Network Address Translation
EDNS Extension Mechanisms for DNS

pps Packets per second
MI Mutual Information
NP Nondeterministic Polynomial time
SFS Sequential Forward Selection
SBS Sequential Backward Selection
GA Genetic Algorithm
PSO Particle Swarm Optimization
RFE Recursive Feature Elimination
SVM Support Vector Machine
PCA Principal Component Analysis
PC Principal Component
AD Anomaly Detection
pdf Probability Density Function
MLE Maximum Likelihood Estimation
FPR False Positive Rate
EM Expectation-Minimization
KDE Kernel Density Estimation
kNN k-Nearest Neighbors
LOF Local Outlier Factor
SSL Secure Sockets Layer
API Application Programming Interface
ADS Anomaly Detection Server
GMM Gaussian Mixture Models
RAM Random-access memory

xi

CHAPTER 1
Introduction

This chapter describes the motivations that led up to the development of this Disserta-
tion, since the misuse of DNS to set up covert channels for malevolent purposes, to the
role of Machine Learning in Network-based detection mechanisms. We also address the
main contributions of this Dissertation, as well as a summary of its structure.

1.1 Motivation

The Internet has seen its use to grow steeply in the last decades with the digital trans-
formation of business processes, services and even reshaping cultures and interpersonal
relationships. With a wide heterogeneously of end devices communicating with each
other over wired, wireless, or cellular networks, corporations need to be in a constant
alert state as networks face nowadays multiple threats that are able to bypass traditional
security mechanisms and exploit inherent vulnerable systems.

Network devices are frequently compromised by external rogue software programmed
to perform multiple illicit activities. That rogue software agents are called as malware
bots (or illicit software bots) and they try to establish a covert channel with a rogue
entity that coordinates and manages the attacks. The communication between the bot
and its external control is usually called Command and Control (C&C), and can be
performed with stealth channels. One of the most common ways to archive this state
of stealthiness is the usage of DNS to create an hidden data channel, as DNS is an
important component of all Internet applications and organizations since it allows them
to be part of the Internet, and so its access needs to be always granted. The Figure 1.1
depicts an example of a illicit usage of DNS that exfiltrates a password.

Moreover, threat actors may not employ only one bot, but a illicit network of infected
devices within organizations to more efficiently execute their illicit activities. This
illicit network is called a botnet and they can be organized in centralised or distributed

1

Figure 1.1: Misuse of DNS for data exfiltration purposes. Source: Detection of malicious
and low throughput data exfiltration over the DNS protocol [1].

architectures, were each bot can be have different roles in the botnet, for instance as
a bot that relays commands to other bots, a bot that executes commands, or a data
exfiltration bot.

The prevention and detection of such C&C channels is complex because DNS is
a common and vital service to network and services operations, and illicit activity is
deeply embedded in it and it is hardly distinguishable from licit uses of the service.
Botmasters often create little traffic, or else their detection can led to persecution and
detention, therefore, the botnet traffic is generated, most of the time, on the infected
end-devices, and the more automated the bot end is, the less traffic it generates.

The detection of these anomalous behaviors must rely on constant monitoring of
the DNS services and network activity. With the advent of new and sophisticated
botnets, security professionals noticed that relying in approaches that only detect based
on patterns and behaviors of well-known botnets is not enough, forcing them to move
to methodologies that jointly use statistical and machine-learning techniques for the
identification of new, unseend phenomena.

Service anomalous behaviors can be detected using a Host-based approach, or using
a Network-based approach. The former monitors the internal behavior of computer
systems and analyses their process activities such as log files and system call arguments,
while the latter detect the illicit usage of resources by solely monitoring network
traffic behaviors over time activities. Host-based techniques can be implemented in
terminal devices, or in DNS Servers, however, most Machine Learning models are
computationally expensive to run in end devices and externally hosted DNS Services
may impose restricted management and control over them. By monitoring at a network
level, one is not restricted with the host’s computational resources and restrictions,
that might limit, not only the efficiency of Machine Learning algorithms, but also the
performance capabilities of the host itself.

With the traction that the Internet gained over the last years, privacy concerns
about the processing of identifiable and sensitive data were also on the rise. Companies

2

and organizations must meet their legal obligations accordingly to data protection
and privacy legislations when collecting data that can, directly or indirectly, identify
the data subjects. Under such regulations, network approaches based on Deep Packet
Inspection (DPI) techniques are often considered invasive as they look at the content of
packets to process such important data for botnet detection, therefore one should use as
minimal personal information as possible. On top of that, more and more services are
switching to secure and encrypted DNS, such as DNS over HTTPS (DoH) and DNS
over TLS (DoT) with the objective to prevent eavesdropping and the manipulation of
DNS payloads, hence using DPI techniques are simply not feasible in those scenarios.

1.2 Objectives

The main goal of this Dissertation is to provide a robust and data privacy focused
solution that detects if a device has been infected with a malware bot under a corporate
network. The large majority of current solutions are invasive and often deal with
DPI techniques that might contain actual data, for instance, the examination of DNS
payloads, such as using information entropy on DNS queries and the identification of
TCP and UDP packet headers. Naturally, this collection of personally identifiable data
also rise some privacy concerns, that were discussed early on, in Section Motivation.
In the contemplation of data privacy laws, our solution only uses IP addresses to
distinguish between the device being monitored and the DNS server, important for the
collection of upstream and downstream metrics.

Moreover, the usage of the DNS protocol by malware bots has been largely overlooked
in the literature, specially when the topic is low throughput malware communications
and the advent of licit and illicit DNS traffic over encrypted protocols. Detecting
encrypted DNS communications can be challenging, for the reason that DNS traffic
can be blended with traffic from other applications that also use the same encrypted
protocols. Nevertheless, companies may impose the usage of their own enterprise-
operated DNS servers, or the usage of allowed externally hosted services, blocking the
other third-party alternatives. This way, companies can ensure if the encrypted traffic
is DNS traffic or not. Additionally, licit encrypted DNS traffic most often shows very
different patterns from non-encrypted licit DNS usages, and Machine Learning models
should be able to not wrongly flag that traffic as malicious.

For the aforedescribed reasons, the proposed solution also aims to detect even the
slowest and lowest throughput malicious communications over DNS under encrypted
and non-encrypted DNS traffic, and this approach must stop well-known botnet at-
tacks as well as zero-day attacks as it relies in detecting anomalous patterns using
Novelty Detection mechanisms, rather than focusing in well-known botnet behaviors.

3

The detection of new and unseen behaviors can be performed with semi-supervised
algorithms that only train with unlabelled normal instances, constructing an accurate
and meaningful representation of a licit usage of DNS. That model must be tested with
labeled licit and illicit instances, classifying everything that deviates from the normal
behavior as an anomalous data point.

1.3 Contributions

In short, the developed work can be summarised into four points:
• The proposal of privacy-focused Anomaly Detection (AD) systems for the detection

of malware bots, using only IP addresses as personal identifiable data.
• Describe the processed metrics from network traces in a meaningful way with

the objective to properly feed AD systems, increasing their convergence and
performance.

• Accurately model a legitimate DNS behavior and detect a wide variety of possible
illicit activities over DNS, using the existing semi-supervised Novelty Detection
approaches.

• Validate the proposed approaches by designing multiple scenarios that emulate
possible malware-generated traffic behaviors with the objective to precisely detect
the presence of illicit communications in DNS.

1.4 Outline

The remainder of this Document is organized as follows:
1. State of the art (Chapter 2): Presents the context surrounding this Dis-

sertation, since the evading mechanisms of malware bots and botnets, to their
organization, and the current works regarding botnet detection techniques, spe-
cially the Machine Learning techniques currently used for AD.

2. Methodologies for AD (Chapter 3): Description of the design phase and the
proposed mechanisms for the detection of anomalous DNS usages. It depics the
entire pipeline, starting with the characterization of the scenario to be studied, the
extraction of meaningful features over observation windows, the pre-processing of
the created meaningful features, such as their normalization and dimensionality
reduction, and how to properly train the Novelty Detection models.

3. Results (Chapter 4): Showcases multiple scenarios of malware communications
using the DNS to be tested and the challenges associated with the emulation of
those scenarios, presenting later the results obtained from modelling and testing
the Novelty Detection algorithms.

4

4. Appendices: Depicts different graphs representing metrics derived from the raw
data and features extracted from those metrics with the objective to give the
reader a better visual understanding of the data.

5

CHAPTER 2
State of the Art

This chapter presents a brief background about malware bots and botnet communica-
tions, and the current state of the art relating to their detection, being divided into
four parts:

The first part is related to malware bots and botnets in general, more explicitly,
about how malware bots communicate with external entities using C&C channels, about
how they can infect other machines using active and passive propagation mechanisms
to form a botnet, about how botnets can be organized, for instance, in centralized
and decentralized topologies, and about how they can evade detection using common
Internet protocols, such as the DNS.

The second part gives an overview of how DNS works, since the translation of host
names into IP addresses, and vice-versa, to the format of DNS messages. The latter is
specially important to understand since malware bots that use the DNS protocol need
to comply with DNS norms and restrictions so that a successfully misuse of DNS can
happen. Furthermore, this second part also explains how malware can encode data
in DNS payload fields, and defines possible scenarios for the use of DNS as a covert
channel for C&C communications and data exfiltration tasks.

The third part focuses on the current botnet detection solutions, explaining why
relying in signatures of known botnets and Host-based solutions are infeasible. Moreover,
it explains the advantages of using Network-based approaches to monitor a wide range
of heterogeneous devices and why they are robust to code obfuscation and information
concealing techniques.

Finally, the fourth section describes a series of Machine Learning techniques for AD,
particularly feature engineering techniques, such as Feature Selection and Dimensionality
Reduction techniques, and Novelty Detection algorithms that are robust to the presence
of new and unseen phenomena. Many of these techniques will be used for AD of bot

7

malware and botnet detection over DNS, as described in the following chapters.

2.1 Malware bots and botnets

Malware bots are a major cyber-threat for today’s Internet, partially because they
can effectively disrupt targeted Infrastructures, but also because malicious actors can
simply rent malware services from cybercriminals without much effort, resulting in
large economic damages for corporations and individuals [2], [3]. This rogue software
is designed to perform a multitude of illicit activities [4], such as DDoS attacks, data
exfiltration, malware dissemination, bitcoin mining, identity theft, and so forth, while
taking control over the device’s operations. The term “Bot” derives from the word
“Robot”, which refers to a physical or a virtual agent capable of following a set of
actions, or instructions, in an automated way, mimicking, or replacing, the normal
behavior of a human.

Being a bot by itself is not malicious. Because of their automated nature, bots can
be used for licit and helpful purposes, such as performing customer services or indexing
content for search engines, operating much faster than humans. However, like many
other software applications, bots can also be used to perform malicious purposes. The
Malicious bot may not be fully automated, but have an external entity controlling it.
This entity is called the botmaster, and a Command and Control (C&C) channel can
be established with his bot, allowing the botmaster to send instructions (commands)
and receive data from the infected machine, and being an important communication
infrastructure to coordinate, manage or suspend attacks [5].

Since attacking enterprise networks can be very profitable, cybercriminals often use
sophisticated techniques to target specific companies and organizations. Instead of
using a single bot to carry out malicious activities, malware programs can infect other
terminal devices in the network, forming a distributed network of compromised devices.
This network is called a Botnet, and they are a preferred method of attack due to the
ease of computational and storage resource scalability and availability, their robustness
to shutdowns, and because bots can be physically away from each other, in different
timezones, countries, and thus under different laws, making them difficult to track.

The botmaster himself can use a number of infected devices, called stepping-stones
[6], configuring them as proxy machines, SSH servers, or any other network redirection
services [7], until making it to its C&C servers. In reality, C&C channels aren’t
necessarily directly linked to the botmaster, but to one or more C&C servers that
act like rendezvous points, used by the botmaster to disseminate commands into the
network, following the same philosophy of the bot end: they can be far away from
each other, under different laws, making the bot network harder to take down. The

8

Figure 2.1 illustrates how a botmaster (Attacker) can access the C&C Servers through
stepping-stones and control the botnet to carry out various illicit activities.

Figure 2.1: Typical Botnet structure. Source: Security of cyber-physical systems [6]

2.1.1 Introduction to the malware bot’s life-cycle

In short, the life-cycle of a malware bot starts when the malicious program, in a binary
form called bot binary, is executed on a given machine. Beforehand, malicious actors
can choose different Propagation vectors in order to spread out the bot binaries. Once
in the victim’s machine, the bot agent may now initiate a process to discover its C&C
servers and establish a covert C&C channel, forming an overlay network. This process
is commonly called as Rallying. In an attempt to form a botnet, the infection can be
spread to other machines using the same Propagating mechanisms that the malware
bot used to get into the current infected host, or use new ones. To ensure that the
underlying hosts remain infected and available for the longest period of time possible,
and the botmaster and his botnet are not easily detected, the botnet needs to be
designed to be as stealthy as possible, and so, different evasion mechanisms need to be
developed.

2.1.2 Propagation vectors

One of the primary objectives for botmasters to achieve is to infect as many machines
as possible, and one way to accomplish this is by looking for vulnerable ones. The
exploitation can take place by scanning for one or more vulnerabilities in the targeted
machine, such as weak security policies [8] (weak passwords, for instance), or for some
zero-day vulnerability, in a stealthy manner. The exploitation of vulnerabilities can
help the malware bot to gain administrative access over the vulnerable host, and these
methods are usually called an active propagation vector because the bots are actively
searching for vulnerable hosts in the network [9].

9

Another way of propagation is when the infection requires some form of user
interaction. This is called passive propagation and can be done by making the use of
social engineering methods, tricking the victim to install a certain malware, or to reveal
confidential information. These means are built around human weaknesses and lack
of knowledge of good security practices, and can be specially crafted to target specific
victims of a company. Some examples of social engineering techniques are [10]:

1. Phishing schemes: where the victims are flooded with messages specially made
to stimulate a sense of curiosity, urgency or fear on them.

2. Pretexting: where the attacker creates a real or invented scenario (pretext)
impersonating a cow-worker, an authority agent, or someone that the victims will
trust to reveal some form of sensitive information.

3. Baiting/Trojan Horse: fraudulent websites, or infected physical media, like
USB pen sticks, that are made to look legitimate, guiding the victim to download
and/or install the malware, carrying the attack.

2.1.3 The Rallying mechanism

Rallying is a mechanism that bots use to discover their C&C servers and to establish a
hidden channel in order to be part of the botnet. The rallying can be done by using IP
addresses, or the domain name. IP addresses are usually hardcoded in the bot binary,
making them vulnerable to reverse engineering attacks, revealing their C&C server
IPs, and thus being easily blocked [9]. P2P networks, however, tend to use a different
hardcoding mechanism: they rely on a peer list, which contains a list of an initial set of
active peers with a limited size [11], and they do not reveal the list for other bots in
the network. This way, if the bot binary is reverse engineered, only a limited number of
peers are exposed.

The botmaster can also use the DNS to easily re-map the domain name entry to
another IP addresse if the others are shutdown, with no additional updates on the bot
end [9], [11]. However this is still a hardcoded way of connecting to the botnet, since
the domain name is static, which can be easily block listed. A more robust approach is
to generate domain names using a DGA that pre-calculates a seed. The seed is known
by the botmaster and the bot end computes it using an algorithm embedded in the bot
binary. The botmaster can now choose one of the many pseudo-generated domains to
be registered for its C&C servers, forming the C&C channel [12] infraestructure.

2.1.4 Botnet topologies

As aforementioned, a botnet can be seen as an overlay network of infected devices,
independent from the underlying physical network. Nonetheless, they can be grouped
in different network topologies, designed to be as stealthy as possible, or to suit a

10

particular need. They don’t need to be organized in a centralized manner, but adopt
other topologies such as a distributed, or a hybrid one.

2.1.4.1 Centralized topologies

In centralized topologies, all the commands and reports in the botnet are sent and
received by C&C servers. It is a simple topology, where all the bots in the bot end
rely on a single centralized C&C server. This simplicity provides a low latency and
makes the life of the botmaster easier, having only a single point of control. However, a
single point of control, also means a single point of failure, and if the C&C server is
taken down, the botmaster loses complete access to the botnet. To overcome the single
point of failure, the C&C server can be replicated making the botnet more resilient if
one of the C&C servers is shut down, and if the C&C servers are distributed in some
geographical order, optimizations in the communication for a location-related bot end
are possible.

A even more robust centralized topology is the Hierarchical one, which adds one
or more layers of C&C proxies. They are also infected machines who relay commands
sent by the C&C servers to the bot end. This setup is particularly difficult for security
researchers to estimate the overall size of the botnet, but has the disadvantage of having
a greater latency as commands need to pass through multiple communication branches,
or hops [13].

2.1.4.2 Decentralized topologies

With a decentralized structure, the bot management is either distributed among the
multiple C&C servers, or there is not really a hierarchy between the nodes in the
network, where each node can be dynamically a master or a slave, and act like a bot
or a C&C server [9]. These topologies are well defined, and can be grouped in the
following way [13]:

1. Peer-to-Peer: In this topology, any peer node can receive commands from its
botmaster and broadcast them to its known peer nodes in the peer list, under
different possible routes, making the routing unpredictable. This makes a very
resilient network to attacks, but the routing unpredictability makes some peers to
be exposed to high latency and one can enumerate other peers by monitoring the
communications of a single bot, or revealing a peer-list by a crawling attack.

2. Hybrid Peer-to-Peer botnet: only bots with a static global IP Address
are candidates for being in the peer lists, behaving like both bot clients and
C&C servers (servant bots), as peers with static global IP addresses tend to be
more active for longer periods of time, with better response times and greater
computational capabilities.

The fundamental botnet topologies aforedescribed can be seen in Figure 2.2.

11

Figure 2.2: Botnet topologies. Source: Botnet Communication Patterns
[14]

2.1.4.3 More advanced topologies

Although the most common botnet topologies have already been listed, it is important to
notice that novel variants from the above topologies can be developed, like, a stochastic
peer-to-peer botnet, proposed by Ruitenbeek et al.[15], where each infected machine
may exist in one of a set of possible stages, having different roles in the botnet, namely,
as bot recruiter, or as a data exfiltration bot, being active or inactive, and being able to
transit between stages, as one needs to perform a discrete event simulation to estimate
effectively the size of the botnet over time.

2.1.5 Evading detection with covert channels and anonymization

For malware bots that rely on command and control in order to operate, covert channels
play an important role as they are the backbone of the network, thus low latency and
stealth communication mechanisms need to be implemented if one wants to evade from
the deployed security measures. These mechanisms can be anything that enables the
botmaster to send commands and the bot end to fetch them. It can be done by sending
commands over the existing internet protocols, such as the HTTP protocol and the
DNS protocol, or over applications, such as Social Networks, of which are not trivial to
detect [16].

2.1.5.1 Common protocols for covert channels

One of the first protocols used for stealth communications was IRC protocol. IRC was
a popular protocol for instant messaging, providing almost real time communication
with the C&C servers. Despise that, its use in enterprise networks was not common,
making it easy to distinguish from normal traffic [9].

A more viable protocol of evading in enterprise networks is to use the HTTP Protocol,
as one can hide the bot malware traffic with normal web traffic, being easier to bypass

12

firewall with port-based filtering mechanisms [17]. For instance, covert channels can
be embedded in HTTP requests as encoded URL parameters, through HTTP cookies,
or into the protocol header fields [18]. The HTTP protocol can also be used in P2P
topologies, however, since it was originally designed for centralized topologies, replicated
messages can loop throughout the botnet, thus additional workarounds need to be
developed on top of the HTTP layer in order to prevent such application layer loops
[14].

DNS, on the other hand, is a decentralized and vital protocol for companies and
organizations, allowing them to be part of the Internet. Given its importance, it is not
surprising that DNS is constantly under abuse by actors with malicious intentions, and
its use in stealth communications will be discussed in more detail in the section DNS
as a covert channel. The Figure 2.3 shows the most common application layer targeted
protocols in cyber attacks, in 2015, where DNS is referenced as one of the most used.

Figure 2.3: Common application layer targets (2015). Source: Arbor Networks

2.1.5.2 Information concealing

In an attempt to evade from DPI detection methods, botmasters have started to
implement different information concealing techniques, such as encrypted covert channels,
code obfuscation and stenography [16]. These techniques make content based analysis
difficult and covert channels prevent the encrypted traffic from being discovered, as the
information needs to comply with transmission norms and restrictions. Using encrypted
methods, although, has some drawbacks. They might reveal abnormal communication
patterns [18], increased throughput and larger message lengths that can be easily

13

detected with statistical and temporal characteristics [9], when compared to unencrypted
DNS traffic. Nonetheless, Internet services and applications are increasingly switching
to secure and encrypted DNS communications, such as DNS over HTTPS (DoH) and
DNS over TLS (DoT), with the intent to prevent eavesdropping, the manipulation of
DNS payloads, and other man-in-the-middle attacks that might be menacing to the
user privacy and safety. This traffic can be way more similar with the behaviors of
encrypted C&C communications, thus their distinction may not be so trivial.

2.1.5.3 Anonymization of C&C Services

Further attempts in the anonymization of the botnet can be tried by the botmaster,
that may also want to conceal the location of its C&C servers by using anonymized
overlay networks, such as the Tor Network, hosting them as Tor hidden services [9].
Hidden services are services that are only accessible via Tor. When creating a hidden
service, it is generated a hidden service descriptor containing its public key and the
address of the Tor relays that it chose to be its introduction points. The clients (bot
end) can access the hidden service using the public key encoded in the onion address,
which downloads the descriptor, chooses a random Tor relay to act as a rendezvous point
and inform the introduction points about its rendezvous address. In this manner, the
C&C servers have their actual addresses and locations hidden, guaranteeing the service
anonymity. Although in theory this may seem an interesting idea, in reality it suffers
from the same vulnerabilities of the Tor Network. For centralized botnet architectures
it is possible to discover the IP addresses of the hidden services by exploiting the use
of the guard nodes, or performing traffic correlations between the bot end and the
Tor Network nodes. In P2P architectures that create a low-throughput routing system
to avoid traffic pattern analysis, crawling attacks can be performed against a given
infected device, enumerating the bots in the network. Since one is not using dynamic
IP addresses, but instead onion addresses, whose are uniquely assigned to each hidden
service, this creates a serious threat to botnet’s existence [19].

2.2 DNS as a covert channel

DNS is a mission-critical infrastructure where almost all Internet applications and
organizations rely on, as they need to remain available all the time or else they
disappear from the Internet. Even in heavily restricted corporate networks, DNS is
one of the few protocols, if not the only one, that is not blocked by firewalls and its
distributed design provides such advantages for botmasters over corporate networks
[20], [21], as they can misuse it to exfiltrate data, send commands and tunnel other
protocols.

14

2.2.1 DNS overview

As a globally distributed database system, DNS provides a mechanism of translation
between host names and IP addresses, and vice versa, in a hierarchical manner, meaning
that it resorts in root, TLD and authoritative name servers for the DNS resolution
of a specific host name. Being an authoritative name server implies that it holds the
DNS information for one zone, or else is just a local DNS cache serving client DNS
queries [22]. The DNS root server is the name server who parses the TLD from the
client’s query, redirecting one’s DNS resolver to a TLD name server based on its query
extension (.com, .pt, .org, etc), whereas the TLD name server contains all the domain
names that share a common domain extension [23]. They are both authoritative name
servers for their specific zones 1, but one usually refers to authoritative name servers as
name servers who provide definitive answers to DNS queries [24].

2.2.1.1 DNS Resolution

When a DNS resolution occurs, if a given domain is not stored in the local cache,
the local name server starts querying other DNS servers in the hierarchy, having two
different ways to do it so: (i) the Recursive way, where a DNS server queries other DNS
server on behalf of original DNS client, and (ii) the Iterative way, where the local name
server is forwarded to authoritative name servers, starting with the root servers [22]. In
Figure 2.7 a schematic representation of Recursive and Iterative DNS can be seen.

(a) Recursive DNS (b) Iterative DNS

Figure 2.4: A graphical view of Recursive and Iterative DNS

2.2.1.2 DNS Transport

According to RFC 1035, one can transmit DNS messages in datagrams, using the UDP
protocol, or in a byte stream, using the TCP protocol, on server port 53. Datagrams
are the prefered method of sending queries due to their lower overhead and better
performance, although for zone transfers one must use the TCP protocol because of

1https://www.iana.org/domains/root/servers

15

its reliability. In UDP, datagrams have a maximum size of 512 bytes, while in TCP
connections large messages are break into multiple segments.

2.2.1.3 DNS Messages

DNS messages follow a single format (Figure 2.5), which is divided in 5 sections: Header,
Question, Answer, Authority and Additional.

The Header is always present and specifies which of the remaining sections are
present and need to be derived, e.g. if a message is a query or a response, a standard
query or some other opcode, etc. The Header section has a static size of 12 bytes.

The Question section is used to carry a question to a name server, and it is composed
by:

1. QNAME: contains a sequence of labels representing a domain name, where each
label consists in a length octet followed by that that number of octets, terminating
with the zero length octet for the null label of the root. The maximum length of a
label is 63 bytes, or octets, due to the fact that the two most significant bits of the
length octet are reserved for message compressing, whereas the maximum length
of a query name is 255. As an example, the domain name www.twitter.com is
encoded as follows:

2. QTYPE: specifies the query type with a size of 2 bytes.
3. QCLASS: specifies the class of the query, with the same size of QTYPE.
The last three sections share the same format, namely a list of Resource Records.

RRs are a collection of entries in a DNS zone database [25], and are used to specify
information about a particular object, e.g. the DNS record type A is used to map a
given domain name to a particular IPv4 address, while the DNS record type CNAME is
used to map a given domain name to another domain name entry.

The Answer section contains a set of RRs that answer the question, the Authority
section contains a set of RRs that point toward an authoritative name server, and
the Additional section contains a set of RRs related to the query which are not strict
answers for that question. Their set size are defined at the count field, in the Header
section. When a given count field is zero, its corresponding section is empty.

The RR format is composed by:
1. NAME: the name of the owner to which the resource record pertains. Has a variable

size.
2. TYPE: a 2-byte field containing one of the RR TYPE codes.
3. CLASS: a 2-byte field containing one of the RR CLASS codes.

16

4. TTL: a 4-byte signed integer that specifies the time interval that the resource
record may be cached before the source of the information should again be
consulted. Zero values are interpreted to mean that the RR can only be used for
the transaction in progress, and should not be cached.

5. RDLENGTH: a 2-byte unsigned integer that specifies the length in octets of the
RDATA field.

6. RDATA: a variable length string of octets that describes the resource.

Figure 2.5: General format of DNS queries and responses. Source: TCP/IP illustrated (Vol.
1): The Protocols [26]

2.2.2 How DNS is misused for illicit activities

Usually, exfiltrated data and commands are encoded in the DNS payload fields (QNAME
and RDATA) over a RR request [27]. Data can be encoded in the host name, and the
botmaster can encode up to 63 characters in each label, where each character must be
a letter, a number or a hyphen, and the characters must be all upper case or lower case,
leaving one with an alphabet of 37 different possible characters. To effectively send
data over DNS, encoding schemes need to comply these restrictions.

However less commonly used in licit DNS traffic, Resource Records that have fewer
restrictions, like the TXT Record which is case-sensitive, can be employed, and so,
encoding schemes that use less bits per character are possible. For instance, Base32 is
a 5-bit encoding scheme that can be used in RRs with stricter restrictions, and Base64
in RRs similar to the TXT Record.

2.2.2.1 The DNS threat landscape

Asaf Nadler et al [1] defined two possible scenarios for the use of DNS as a covert
channel: as low throughput data exfiltration and high throughput DNS tunneling. Each
scenario has different communication patterns. DNS Tunneling software is typically

17

more reliable, as it relies in frequent keep-alive messages to inform that the client
software is alive and waiting for commands. These messages need to be different to
each other in order to bypass caching services in the go, that may drop queries if they
are identical to the recently received ones. DNS Tunneling software is used to establish
bi-directional and interactive channels, and they usually produce lengthy messages, as
packets with larger sizes decrease the likelihood of network congestion that, other way,
could cause an increase in packet loss and network latency.

In low throughput exfiltration, malware exchange queries less frequently, in a more
opportunistic and unexpected manner, and their packet sizes are better crafted as well,
meaning greater evasion from traditional security measures. Their connection is typically
unidirectional, receiving from the remote server, at most, acknowledge messages. These
slow and stealthy attacks are planned to be performed over longs periods of time, like
weeks or months, and are not usually detected via traditional defense systems.

DNS Tunneling software is typically used for C&C communications where keep-alive
messages inform the botmaster about the status of his bots, and their low-latency
nature enables a rapid dissemination of commands in the botnet. These features make
the illicit traffic much easier to be detected, and so, advanced C&C communications
may be implemented with more discrete and unexpected solutions. In data exfiltration
tasks, malware bots may mimic the licit DNS traffic of the host machine, or generate
less traffic in a low throughput manner, by blending with the licit traffic in order to
evade detection.

2.3 Botnet Detection techniques

As aforementioned in Section 2.1, business need to keep ahead with the growing and
novel botnet threats, or else they may see their security compromised and suffer massive
economic losses, therefore, botnet detection mechanisms need to be deployed. Detection
of malware bots and botnets can be mainly grouped in three categories [22]:

1. Honeypot-based detection: computer systems which don’t produce any value
are used as honeypots with the intention to lure malware from its actual target
[28]. This technique is useful to obtain malicious code samples, and analysis in
communication patterns can be performed in a controlled environment. Even
though this method has a very high accuracy in detection of known botnets, it
lacks the ability to detect unknown attacks, malicious encrypted traffic and it
cannot easily find malware bots that use social engineering as propagation vectors
[29].

2. Signature-based detection: This technique uses predefined patterns and com-
munication signatures of known botnets, and common methods include regular

18

expressions, blacklists, and N-gram models. Feature matching rules are used in
systems like Snort [29], which has a feature rich database, it can immediately
detect the presence of malware bots and it doesn’t create false positives. However
this solution does not prevent zero-day botnet attacks from happening, even if
they only have slightly different signatures [30] and code obfuscation technology
makes the detection impossible [29].

3. Anomaly-based detection: Anomalies in the network traffic are used to detect
bots, where unusual patterns may indicate its presence, like high traffic volume,
increased latency and unusual system behavior [31]. This technique solves the
problem of detecting unknown botnets and can be divided into Host-based detection
and Network-based detection.

2.3.1 Host-based detection

This strategy monitors the internal behavior of computer systems, for instance, in
terminal devices or/and in DNS Servers, by analysing their process activities, such as
system and socket calls, registry changes, file system changes, etc, rather than on their
external interfaces. Two examples of these techniques are the use of mining algorithms
in multiple log files to identify C&C channels, where their communications are recorded
in the host log file, used to detect normal and anomalous traffic [32], and the BotSwat,
which relies in the similarities between the system call arguments and network data in
order to predict if a given machine is being remotely controlled or not [30] [31].

Host-based techniques can cause however, performance issues, as they are constrained
in terms of the host’s computing and power resources, limiting the complexity and
efficiency of anomaly detection algorithms that may harm their functionality. In small,
low-powered end devices, like wearables, this technique is simply not feasible [33]. If
one is using cloud services that are managed and maintained by third party providers,
one is most likely to have restricted control over them, not being able to access key
administrative tasks and services, such as updating the firmware and accessing the
server shell, of which may incur multiple security problems and threats, for instance,
data leakages, sharing of resources and inside attacks [34].

2.3.2 Network-based detection

The other botnet detection approaches may struggle to detect unknown botnets, to
differentiate between the similarities of encrypted normal and anomalous traffic, or are
not simply suitable for the heterogeneity of computer systems. Network-based detection,
on the other hand, is a technique that tries to detect the presence of malware bots by
solely monitoring network traffic behaviors, extracting their statistical and temporal
characteristics, and hence being more robust to obfuscation and information concealing
techniques. [31].

19

Botmasters normally create little traffic, other way their detection can led to
persecution and detention. For that reason, botnet traffic is generated, most of the time,
at the bot end, when bots are executing their assigned tasks, therefore, observing and
monitoring traffic patterns at the end devices generally has greater success of detection.
Another key aspect of botnet traffic is the degree of coordination that a certain malware
bot has and the number of infected devices within the enterprise network. Malware
bots with a greater number of automated tasks are harder to detect via network traffic
analysis as they need to retrieve fewer commands from the C&C server in contrast to
less autonomous bot devices, generating lower throughput [14]. If the number of bots
in a network is low, their overall generated traffic is also low, being harder to detect.

Network-based detection can be divided into two groups: active and passive
monitoring. Active monitoring is a technique that is based on injection of new packets
into the network and measuring its reaction. It doesn’t monitor actual users, but
rather emulates real user behaviors with the drawback that it produces extra traffic.
With active monitors one can see potential vulnerabilities before the malware infection,
however, these network probes can cause interference with the normal traffic, having
low preference among researches and network security professionals. Passive monitoring
rely instead in packet traces, collected by network analyzers that capture live network
traffic features, such as packet rates and packet timing, while generating less strain
in networking systems [35][36]. These features can be posteriorly used to feed into
algorithms that find unsusual behaviors and patterns in data. This class of algorithms
have been widely studied in Statistics and Machine Learning, and are routinely named
as anomaly detection algorithms.

Although network anomaly detection seems promising, one must be aware that real-
world data might contain noise, which may indicate the presence of actual anomalies,
and normal behaviors are continually evolving, therefore a continuous development of
modern and more robust techniques needs to be taken in place [37].

2.4 Machine Learning

The searching for patterns in data has a long history of success [38]. In the 16th

century, a wealthy scientist, known for dedicating his life to astronomical observations,
Tycho Brahe, died, passing his lifetime observations to Kepler’s hands, at that time an
appointed astronomer. Kepler believed that the motion of the planets can be explained
through mathematical theory and analytical reasoning, and Tycho’s observations helped
Kepler to found the empirical laws of planetary motion, leading to the development
of classical mechanics [39]. In a similar way of thinking, Machine Learning algorithms
try to infer mathematical and statistical models from regularities in observational data

20

with multiple dimensions (features) extracting their analytical properties in a high-
dimensional space, and taking actions by dividing that space into regions of categories,
or classes.

In 1998, Tom Mitchell, a pioneer in the Machine Learning field, gave a modern
definition of what is exactly Machine Learning: "A computer program is said to learn
from experience E with respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience E.". In other words,
a Machine Learning algorithm must generalize the experience in a way that allows
to improve the machine performance on new, unseen data, without being literally
programmed, other way, it is just a hardcoded solution.

2.4.1 Machine Learning workflow

When doing a Machine Learning project, there are a number of practices that are
important to follow if one wants to achieve practical results. Starting from the data
collection part, a dataset can be created with data gathered from multiple sources,
like sensors, files, databases, etc, therefore ensuring the reliability of the sources is an
important step for a good outcome of the model. Nevertheless, real-world data is, most
of the time, messy, noisy, or simply missing, and hence data pre-processing needs to
be done before it gets processed by Machine Learning models.

Different and heterogeneous sources, sometimes, can take data in various formats.
For instance, data can be in a qualitative, or categorical, format, meaning that it is
not expressed in the form of numerical values, but, instead, in the form of nominal
or ordinal variables. They generally take this format to name, label, or categorize
particular features. They must, however, be transformed into discrete quantitative
values as Machine Learning models only accept qualitative data.

Missing data occur when certain values are missing in an observation, usually
due to human error when processing data, machine error when there is some form of
malfunction in the equipment, or when merging unrelated data. There are certain
ways to deal with missing values. One can simply ignore them by removing the row,
or column, where the missing value is located, however, this technique is only efficient
when there aren’t a lot of missing data points. Another technique of handling missing
data is filling the empty entries with estimated values, such as the mean or the highest
frequency value [40].

Data mining algorithms tend to assume that any dataset is free from disturbances
[41]. These disturbances are expressed, most of the time, in the form of outliers, and
can be treated with smoothing methods, such as the binning method, where the data is
sorted by bins and replaced with the mean value, or the min-max value, of the bin; the
regression method, where data can be smoothed by fitting it into a regression function;

21

and the clustering method, where outliers can be detected if they do not fit in any
particular cluster [42].

The next step is to research the model that will fit best for the type of data. If the
data is labeled, supervised learning algorithms will fit best for that particular problem
as they work with labeled datasets, otherwise, unsupervised learning algorithms are
more appropriate. If the problem requires integration with the environment and getting
feedback from it, then one should consider reinforcement learning algorithms.

In classic supervised and unsupervised learning, models are typically trained with
training sets and performance is validated through validation sets until satisfactory
performance is achieved. After the model training, one more validation is needed for
an unbiased performance estimation of the chosen Machine Learning algorithms. This
extra validation step is made with test sets that contain unseen data and it helps getting
a better sense on how the models will perform in unseen, real-world data.

2.4.2 Feature Selection

Feature Selection is a technique that aims to reduce the number of features by removing
the redundant and irrelevant ones. Selecting only a subset of relevant features benefits
in the reduction of computational costs and can improve the performance of the model.
Feature Selection methods primarily perform the reduction of features with the help
of the class value, being used to remove irrelevant features, although more robust
techniques can also remove the redundancy between features, for instance, by using
correlation [43].

Feature Selection methods can be divided into Filter, Wrapper and Embedded
approaches:

2.4.2.1 Filter Approach

Filter approaches are called this way because they filter out less relevant features before
a classification task. They are simple to implement and work by ranking the uniqueness
of the input variables through some scoring criteria. A feature is said to be unique
when it provides helpful information about a given class in the dataset. The variables
that don’t meet a certain threshold are regarded as irrelevant, being conditionally
independent from the class labels, and, therefore, removed from the feature set.

Pearson correlation coefficient.
Pearson correlation coefficient is a Filter technique that measures the linear correla-

tion between a feature and a class value, and is defined as:

R(i) = cov(Xi, Y)
σ(Xi) · σ(Y) (2.1)

22

Where xi is the ith feature, Y the class label, cov and σ are the covariance between
the two variables and their standard deviations. The result is a normalized value
between −1 and 1.

Mutual Information.
Mutual Information (MI) measures the mutual dependence between two variables.

It quantifies the amount of information that a variable obtained by observing another
variable [44]. To understand MI, the concept of entropy needs to be known, and it is
defined as:

H(Y) = −
∑
y∈Y

p(y) · log(p(y)) (2.2)

The equation 2.2 represents the uncertainty of the variable Y . If the entropy, or
uncertainty, of Y is measured under the observation of a given variable X, then it is
defined as

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) · log(p(y|x)) (2.3)

Where p(x, y) is the joint probability of x and y, and p(y|x) is the conditional probability
distribution. The decrease in uncertainty is given by:

I(Y, X) = H(Y)−H(Y |X) (2.4)

And it is defined as the MI between Y and X. Another way of writing MI is to define
it using the Kullback-Leibler Divergence between the joint probability and the product
of the marginal distributions p(x) and p(y):

I(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y) · log
p(x, y)

p(x)p(y) (2.5)

If the MI between Y and X is zero, they are independent, otherwise they have some
degree of dependency, meaning that one variable can provide information about the
other.

Other statistical tests can be used in feature ranking. For instance, Chi-Square
measures divergence from the expected distribution if the feature under observation is
assumed to be independent from the class value [45].

The downsides of using some Filter methods like the Pearson correlation coefficient
and MI are that they do not correlate between features, of which can be highly correlated
with each other, and features that are less relevant to the class value by themselves,
hence being discarded, can be relevant when combined with other features.

23

2.4.2.2 Wrapper Approach

Wrapper methods use the predictor model as a black box, performing a greedy search by
evaluating all the possible subsets and using the model performance as their objective
function. Since brute-forcing all the combinations is a NP-hard problem, the number of
subsets grows combinatorially. As a result, heuristic algorithms are used to speed-up
the selection process and some of them are going to be presented below.

Sequential forward selection.
The Sequential forward selection (SFS) algorithm starts with an empty set of sub-

optimal features. In the first step, single features are tested and the single best feature
is selected using the objective function. The single best feature is used to form a pair
with a feature picked from the remaining features and the best pair is selected. This
procedure continues until the required number of features are selected.

Sequential backward selection.
The Sequential backward selection (SBS) algorithm is similar to SFS algorithm,

although it starts from a subset containing all the features. In the first step, all the
subsets containing n−1 features are tested and the worst performing feature is removed.
This procedure continues until the required number of features are left.

Genetic Algorithms.
Genetic Algorithms (GAs) are stochastic methods that aim to mimic the behavior

of genetic evolution, and can be used to find the best suboptimal subset of features.
Features are encoded as chromosome bits (1 being active and 0 being inactive), the
model performance is the fitness function and the next generation can be created by
crossing-over and mutating the features of the best subsets.

Particle Swarm Optimization.
Like GAs, Particle Swarm Optimization (PSO) is a nature-inspired optimization

algorithm that came from the observations in social behaviors of natural systems. The
candidate subsets are called particles and the algorithm works on the concept that the
position of a particle is adjusted by a mathematical formula that takes into account
its local best known position and the swarm’s best known position. In this case, the
positions are each subset of features and the best known position can be calculated
with the model performance.

Recursive Feature Elimination.
Recursive Feature Elimination (RFE) is a Feature Selection method that ranks

features by their coefficients, or importance, and simply removes the least important

24

feature, one by one, until the optimal number of features is left. Features are ranked
using some estimator, such as Support Vector Machines (SVM) or Decision Trees[46],
and by recursively eliminating a small number of features per iteration, RFE attempts to
eliminate irrelevant features and collinearity that may degrade the model’s performance.

Using Wrapper approaches have some drawbacks [43]. If the number of samples
is large, the majority of time is spent in training the model, rather than choosing the
best subset of features, thus being computationally expensive. In GAs, the same subset
of features might be evaluated multiple times since they are memoryless. Overfitting
can also occur if the predictor model has poor generalization during the test set.
Limitations in SFS and SBS can be found when highly correlated features are included
in the suboptimal subset if they gave the highest performance in the objective function.
Alternative implementations of SFS and SBS propose to solve this problem by adding
additional phases to reduce the maximum number of features, and statistical distance
tests as objective functions to obtain less redundant features. For instance, MI can
be used as an objective function for greedy search algorithms and can be designed in
a way that the MI between the selected feature and the subset is minimized. This is
formulated as:

I(Y, f)− β
∑
s∈S

I(f ; s) (2.6)

Where Y is the class label, f is the current selected feature, s is a feature in the selected
subset S, and β a parameter to control the weight of the MI between the selected
feature and the subset.

2.4.2.3 Embedded Approach

Embedded methods intent to perform feature selection during the model’s training
phase, being embedded in the algorithms themselves. This approach is faster than
Wrapper methods because the feature selection is done in parallel, rather than retraining
the algorithm with different subsets [47].

Regularization models.
Embedded mechanisms can be expressed in the regularization form and are commonly

used in Least square solutions for linear problems. They induce penalties to features
that don’t contribute to the model, by reducing its coefficients to small values, or to
zero values. Examples of regularization models are:

1. Ridge regression: penalizes the sum of squares, where larger weights contribute
more to the penalization, hence penalizing features that have larger weights;

2. LASSO regression: penalizes the sum of absolutes, and so, small weighted
coefficients may reach the zero value, vanishing their feature. This technique has

25

some limitations. If there is a group of highly correlated features, LASSO tends
to select only one feature, ignoring the others [48].

3. Elastic Net: is a weighted combination of Ridge and LASSO regressions and
pretends to overcome the limitations of LASSO regression by not easily eliminating
highly correlated features.

A graphical representation of the afore-mentioned regularization methods can be
seen in Figure 2.6.

Figure 2.6: Lasso, the Ridge and the Elastic Net Regressors in comparison. Source: Regu-
larization and variable selection via the elastic net [49]

Feature Importance.
Feature Importance is generally related to Tree-based classifiers as they split a

dataset based on its features, i.e., ranking them by how well they improve the purity
of the node. This particularity makes Tree-based algorithms suitable, not only for
classification and regression tasks, but also for feature selection tasks. Random Forests
are a prime example of an effective feature selector based on Feature Importance, where
decision trees vote for the one that contains the best subset of features.

2.4.3 Dimensionality Reduction

Dimensionality Reduction is a process of transforming high dimensional data in low
dimensional representations, aiming to address the Curse of Dimensionality problem
while maintaining as much of the variance as possible [50]. Compressing the number of
dimensions in a dataset has several benefits, as it can lead to lesser training times and
memory usage, faster model convergence, better data visualization, and even greater
model performance. This occurs because increasing the number features, or dimensions,
while maintaining the size of the training set, decreases exponentially the density
of training samples. Intuitively, having sparser data increases the odds of finding a
separable hyperplane, as for a given training sample, the likelihood of being in the

26

wrong side of the best hyperplane is infinitely small when the number of dimensions
are infinitely large. However, the model starts to learn exceptions to that training set
so that an infinite amount of new and unseen data may not fit into these exceptions,
i.e. we say that the model is overfitting the training data [51].

(a) More features increases the changes of hav-
ing a perfect separable hyperplane

(b) If we project the perfect separable hyper-
plane onto a 2D space, we can see that
the classifier starts to overfitting.

Figure 2.7: An example of the Curse of Dimensionality. Source: The Curse of Dimensionality
in classification [51]

2.4.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is the most widely used dimensionality reduction
technique and it works by finding the basis vectors of the orthonormal sub-space where
data vary the most [52]. In Statistics, the variance is a measure of dispersion, revealing
how data is spread out from their average value. The dispersion of each pair of variables
in the feature space can be calculated by the covariance matrix [53]:

S = 1
n− 1BBT (2.7)

Where each column of a matrix B, with dimensions m× n, contains the deviations of
each sample from its mean, being represented as follows:

B = |−→x1 −−→µ |...|−→xn −−→µ | (2.8)

With −→xi being the sample vector and −→u being the mean of the column.
A matrix is said to be positive semi-definitive if it can be obtained as the product

of a matrix by its transpose and it is always symmetric. Looking at equation 2.7, one
can see that BBT respects this assumption, and so, the covariance matrix is symmetric
and positive semi-definitive, meaning that it can be orthogonally diagonalized, its

27

eigenvalues are always real, non-negative numbers and its eigenvectors are pairwise
orthogonal when their eigenvalues are different.

The eigen-decomposition is important to PCA because the principal components
(PCs) are eigenvectors that can be extracted from the linear combinations of the features
in a dataset, selecting those with the largest eigenvalues that point in the direction to
the largest variance, while being orthonormal (PCs that have different eigenvalues), or
else the transformation can be heavily disturbed. The Figure 2.8 exemplifies a PCA
transformation to a lower coordinate system where each axis is a principal component.

Figure 2.8: 3D to 2D space transformation using PCA

2.4.4 Anomaly Detection

Anomaly Detection (AD) is the process of identifying patterns in data that differ
greatly from the expected behavior, and it is routinely used in fraud detection, cyber-
security, and healthcare, among other areas. These unusual observations that deviate
considerably from the normal distribution are often called as anomalies, and they
might indicate a potential threat to the resilience and security of any system that is
being monitored [54]. Their detection, although, can be challenging. For instance, the
variability of legitimate behaviors can be very large, and anomalies themselves can be
very diverse, in a way that makes a predictor to not identify correctly the anomalous
data, or to have a high false alarm rate, thus proper preprocessing, normalization, and
feature selection or dimensionality reduction methods are important steps to take to
improve detectability.

In a statistical context, an anomaly can be defined as a data point x, or a group
of points, contained in a data space X that lies in a low probability region under a
distribution P+, representing a normal behavior and described with some pmf! p+(x).
Consequently, a set of anomalies can be formalized as

A = {x ∈ X|p+(x) ≤ τ}, τ ≥ 0 (2.9)

where the probability of A under P+ is lower or equal than some defined threshold τ

[55].

28

Anomalies can also be categorized in three major groups, based on their nature
[54]–[56]:

1. Point anomaly: a individual anomalous data point that differs from the standard
behavior. For instance, an illegal transaction in a fraud detecting system, or a
unique cat image in a dataset of dog images.

2. Contextual anomaly: a data point that is considered an anomaly in some
particular context. As an example, a value of 100 Km/h is considered an abnormal
velocity when tracking the speed of a bike, but typical when the tracking object
is a car. In this type of anomalies, the distribution representing the normal
behavior is better defined as a conditional distribution P+

x|T , described with some
pdf, p+(x|t), that depends on some contextual variable T .

3. Collective anomaly: a subset of data instances that might be normal by
themselves, but their occurrence as a collection is considered anomalous with
respect to the entire dataset, when related together, such as similar, or related,
botnet attacks.

With the advent of Deep Learning methods for AD, Ruff et al. [55] suggested the
creation of two new groups of anomalies targeted by Deep AD models:

1. Sensory (low-level) anomalies: deviations that occur in the low-level feature
hierarchy, such as edges in images and individual words in semantic concepts and
topics in text. Examples of low-level anomalies could be character typos in text,
and texture defects in images of clothes.

2. Semantic (high-level) anomalies: samples that don’t fit in the normal class are
inferred as samples that came from a different, anomalous class. Some anomalies
can be indistinguishable from normal instances in the raw or low-level feature
spaces, but when transformed to higher-level feature hierarchies, divergent patterns
start to emerge. For instance, a dog with a a texture and color similar to a cat
can be confused with a cat in the raw feature space, but be easily recognizable as
a dog to the discriminative classifier when transformed to a higher level feature
space.

The Figure 2.9 illustrates the different types of anomalies aforedescribed that can be
encountered when solving different AD tasks.

29

Figure 2.9: Different types of anomalies. Source: A Unifying Review of Deep and Shallow
Anomaly Detection [55]

2.4.4.1 AD approaches

The availability of class labels impacts in the choice of Machine Learning models for
AD. Therefore, AD methods can be divided into three categories [55], [56]:

1. Supervised AD: this approach assumes that the entire dataset is labeled,
hence it tries to build a predictive model that discriminates between normal and
anomaly classes, and requires a balanced dataset and a accurate representation
of anomalous classes. Although supervised settings are faster to compute and
usually achieve higher accuracy in the given classes, they normally are not used
in a real world scenario where one does not have access to all types of anomalies.

2. Unsupervised AD: models from this category are, arguably, the most commonly
used in AD tasks, due to the fact that these algorithms do not require training
data, and take into account that anomalies are rare to find and costly to generate,
providing lower false alarms when these assumptions are true. They suppose
that one cannot ensure accurately the ground-truth level sets of P+, and so,
they assume that data is a mixture of normal and abnormal instances with an
estimated contamination rate η ∈ (0, 0.5]. A downside of this estimation is that
the contamination present in the dataset makes the decision boundary more prone
to be distorted.

3. Semi-supervised AD: Semi-supervised AD algorithms attempt to build a model
around the normal behavior, and use that model to identify abnormal instances
in the test data. They can use unlabeled anomalous samples in the training phase
together with the normal class labeled, as well as training with only the normal
instances, in an unsupervised manner. The latter is usually preferred as it is less

30

prone to overfitting due to the scarcity of anomalous samples and the outputed
models are usually more robust in detecting anomalies, even if they are only a
few, nonetheless data must be noise-free and have no contamination whatsoever.

2.4.4.2 Anomalies, Outliers and Novelties

Although the vast majority of the literature treat anomalies, outliers and novelties as
being the same, some studies [55], [56] argue that these terms have subtle differences:
an anomaly can be characterized as being a data entity from a distribution other than
P+, for instance, if P+ represents a distribution of dogs, then a cat is from a different
distribution P−, i.e. an anomaly. An outlier, on the other way, can be considered a
rare instance from P+ that happens to lie in a low probability region, and a novelty, an
instance from a new region of a non-stationary distribution P+. For instance, a rare
breed of dogs is considered as an outlier, and a new of dogs a novelty.

Despite the differences in terminology, methods for detecting anomaly, outlier and
novelty instances are mostly the same, nevertheless, outlier detection estimators usually
are unsupervised, require a polluted dataset, i.e. a dataset with outliers, and assume
that outliers/anomalies cannot create a dense cluster but be in low density regions,
whereas novelty detection algorithms must be trained with a pollution-free set of normal
instances and novelties/anomalies can create a dense cluster as long as they are in a
low probability region under the trained distribution P+ [57].

Because these terms are used interchangeably, and because we have a perfect ground-
truth about what is normal and what is not, as one can see throughout the Chapter 3, in
this thesis only Novelty Detection algorithms will be considered, and for simplification
purposes, they are going to be referred to as AD algorithms.

2.4.4.3 Density-based models

The most straightforward approach to perform AD is to compute the Mahalanobis
distance, from a test point to the distribution P+, i.e. how many standard deviations
that point is from the mean, classifying it as a normal instance or an anomaly based
on a defined threshold value [55]. This is analogous to assume that the training data
is generated by some underlying probability distribution, of which can be estimated
during the training phase, evaluating the log-likelihood of a test sample in conformity
with that model.

Density estimation techniques can be divided into two major groups: the parametric
methods, where they fit a given model on data assuming that data come from a
population that can be modelled by a probability distribution with a finite set of
parameters, and non-parametric methods, where they do not make assumptions about

31

the underlying probability distribution, and so, they can adapt very easily to the
complexity of data that do not conform to a particular known distribution [58].

Multivariate Gaussian model.
The simplest model that one can assume that data is generated from is the Gaussian

distribution (Figure 2.10). Normal distributions are observed commonly in nature.
Even though populations might not follow a Gaussian distribution frequently, the
distribution of its sample means, most often, will [59]. This probability distribution for
a d-dimensional object x of some data X is denoted as follows:

pN (x; µ, Σ) = 1
(2π)d/2|Σ|1/2 exp

{1
2(x− µ)T Σ−1(x− µ)

}
(2.10)

where µ is the mean, and Σ is the covariance matrix. With this approach, the most

Figure 2.10: 1-dimensional Gaussian distribution with a defined threshold. Source: One-
class classification [60]

costly computational operation is the inversion of the covariance matrix [60], and to
estimate the optimal parameters of the assumed Gaussian distribution, one can use the
Maximum Likelihood Estimation (MLE) that is defined as:

l(µ, Σ; X) = arg max
µ,Σ

m∏
i=1

pN (x(i); µ, Σ)

⇒ arg min
µ,Σ

−
m∑

i=1
log pN (x(i); µ, Σ)

(2.11)

The advantages of using logarithms to compute the MLE are that they require less
computational resources since one can rewrite the product of the likelihoods as the
sum of the log likelihoods, of which is faster to compute, and taking the product of
likelihoods would become very small, that one would run out of floating point precision,
yielding an underflow. One can also convert the MLE into a minimization problem by

32

taking the sum of the negative log likelihoods (Equation 2.11) and finding a closed-form
solution for the estimates of the multivariate Gaussian parameters µ and Σ:

∂l(µ, Σ; X)
∂µ

= 0

⇒ µ̂ = 1
m

m∑
i=1

x(i)
(2.12a)

∂l(µ, Σ; X)
∂Σ−1 = 0

⇒ Σ̂ = 1
m

m∑
i=1

(x(i) − µ̂)(x(i) − µ̂)T
(2.12b)

Gaussian Mixture Models.
The underlying distribution of most datasets are not convex and unimodal. For

those cases, one way of getting a more flexible model is to mixture a finite number of
normal distributions, forming a linear superposition of Gaussians [60]:

p(x) = 1
N

∑
j

αjpN (x; µj , Σj) (2.13)

where N is the number of Gaussian components, and αj are the mixing coefficients.
When number of Gaussian components is defined beforehand, the means and covariances
can efficiently be estimated using the Expectation-Minimization (EM) algorithm, which
is a powerful method of finding maximum likelihood solutions for models with latent
variables [38].

When the training set is sufficiently large, this method works very well, showing a
smaller bias in comparison to the single Gaussian distribution, however it requires a
large number of training samples to overcome the Curse of Dimensionality, and thus
shows more variance with a limited amount of samples. An illustration of a Mixture of
Gaussians is depicted in Figure 2.11.

Figure 2.11: Mixture of Gaussians

33

Kernel Density Estimation.
Kernel Density Estimation (KDE), also known as Parzen Windows Estimation, is a

non-parametric way of estimating the pdf of random variables. Being non-parametric,
KDE algorithms do not make assumptions about the underlying distribution of the
training data, allowing they to naturally follow the shape of data, like a histogram
would, but using kernels to smoothen the distribution. The generalized formula for
KDE is as follows:

p(x) = 1
nh

n∑
i=1

ϕ(x− xi

h
) (2.14)

where ϕ is the Kernel method, and h is a smoothing parameter, called bandwidth. The
Kernel method is placed on each data point and then a sum of the local contributions of
each kernel is calculated. Often, ϕ is represented as a standard gaussian with mean zero
and variance 1, centered on each training point [58], [61], and so, the only parameter
that one needs to estimate is the bandwidth, making the training costs are almost zero.
On the contrary, the testing is expensive, as all training examples have to be stored
to posteriorly compute and sort the distances from all testing objects to all training
objects.

Given that non-parametric methods try to build a model around the training data,
they also suffer from the Course of Dimensionality, where the number of data samples to
provide the same spatial resolution required to model an estimator in a lower dimension
grows exponentially, however they are a powerful method of modelling a representation
of normality.

2.4.4.4 Boundary-based models

Estimating a complete data density in an effort to construct a representation of normality
might be too demanding, specially when the data to do so is scarce and only the data
boundaries are enough. Therefore, Boundary-based methods for AD optimize a closed
boundary around the training set. The volume of the boundary is not always minimized,
but most algorithms have a strong bias towards minimal volumes. Although Boundary-
based methods require less samples than Density-based methods, they rely heavily on
the distances between objects, therefore, data scaling plays an important role in the
viability of these methods.

Nearest Neighbor.
The Nearest Neighbor method can be derived from a local density estimation by

the k-Nearest Neighbours (kNN) algorithms. It avoids explicit density estimation,
using only the Euclidean or Mahalanobis distances to the first nearest neighbor. One
advantage of using this algorithm is that, like the KDE, it does not require to construct
a model of normality since the training data points are stored to later measure the

34

distance to a given a test point. However, it can be computationally expensive during
the test phase. In the nearest neighbor density estimation a cell, often an hypersphere
in d dimensions, is centered around the test point z. The volume of the cell grows until
it engulfs k data points from the training set. The local density can be estimated using
the following formula:

pNN(z) = k/N

Vk(||z −NN tr
k (z)||) (2.15)

where NN tr
k (z) is the k nearest neighbor of z in the training set and Vk the volume of

the cell engulfing that training point.
In the One-Class classifier, a new test point belongs to the normal class if its larger

or equal to the local density of its nearest neighbor in the training set, with k = 1:

fNNtr(z) = pNN(z) ≥ pNN(NN tr(z)) (2.16)

This is equivalent to:

fNNtr(z) = V (||z −NN tr(z)||)
V (||NN tr(z)−NN tr(NN tr(z))||) ≤ 1

⇒ ||z −NN tr(z)||
||NN tr(z)−NN tr(NN tr(z))|| ≤ 1

(2.17)

Meaning that the distance from the test point z to its nearest neighbor in the training
set NN tr(z) is compared with the distance from this neighbor NN tr(z) to its nearest
neighbor.

Local Outlier Factor.
The Local Outlier Factor (LOF) is an algorithm that estimates the local density of

test points to data points that are its neighbors. By comparing these, we can determine
which data points have similar densities, and which have substantially lesser density
than its neighbors, being considered as outliers. However, this algorithm differs from
the kNN algorithm because kNN do not work well when the training set has different
density regions, and so, LOF is more robust to outliers [62].

If we consider the k-distance of an object o, denoted as distk(o), as the distance
to its k-th nearest neighbor, and its k-distance neighborhood denoted as Nk(o) =
o′|o′ ∈ D, dist(o, o′) ≤ distk(o), then the local reachability density lrd of o is defined as:

lrd(o) = ||Nk(o)||∑
o′∈Nk(o) reachdistk(o′ ← o) (2.18)

where, reachdistk(o′ ← o) = maxdistk(o), dist(o, o′) is the reachability distance, i.e.,
the maximum distance of two points and the k-distance of that point. The local
reachability density is a way of computing the density of k-nearest points around a

35

point by taking the inverse of the sum of all of the reachability distances of all the
k-nearest neighbors.

Finally, the LOF can be calculated as the average ratio of local reachability of o

and its k-nearest neighbors:

LOFk(o) =
∑

o′∈Nk(o)
lrdk(o′)
lrdk(o)

||Nk(o)|| (2.19)

This means that if the density of the neighbors is lower than the density of o, then
the point o is an inliner, otherwise it would mean that the point o is an outlier.

One-Class Support Vector Machines.
One-Class SVM, or ν-SVM, is the unsupervised version of Multi-Class SVM that

learns to minimize the volume of the data-enclosing hyperplane of the single class of
instances in training data, considering all the other samples outside that hyperplane
as outliers. For both One-Class and Multi-Class paradigms, SVMs are able to classify
instances of classes by projecting the data points to a higher-dimensional space using a
non-linear function ϕ. With this kernel function, data points can be linearly separated
by an hyper-plane defined as wT + b = 0 in a higher dimensional feature space F that
determines the margins from the origin. The objective function of the One-Class SVM
is defined by the following minimization problem [63]:

minw,b,ξi

||w||2

2 + 1
νn

i=1∑
n

ξi − ρ

subject to :

yi(wT ϕ(xi) + b) ≥ ρ− ξi for all i = 1, ..., n

ξi ≥ 0 for all i = 1, ..., n

(2.20)

where ν is a regularization term that sets a upper bound on the number of samples
that lie on the wrong side of the hyperplane, and thus being considered as outliers ,
and a lower bound on the number of samples used as Support Vector.

2.5 Summary

In this chapter, it was understood how malware bots can establish a C&C channel with
C&C servers by using some rogue DNS server, and how they can be part of a larger
network of compromised devices, called botnet. Anomaly-based Detection techniques
can be effective in detecting malware bots and botnets activities, as well as as unknown
behaviors. However, by using them in terminal devices, they are constrained to the
host’s limited computing resources. Network-based Anomaly Detection approaches are

36

more suitable to the heterogeneity of computer systems, and therefore they are the
preferred method for this dissertation.

Anomaly Detection uses Machine Learning algorithms to detect anomalies in data,
meaning that a proper workflow must be followed. In this workflow, data plays the
most important role as the way it is processed greatly impacts the performance of these
models. In Anomaly Detection, and specially in Novelty models, one must be careful in
using Feature Selection techniques, as these techniques use the target value to remove
irrelevant and redundant features. Moreover, Novelty Detection methods only train
with normal instances. Feeding these algorithms with non-clean data will negatively
impact their performance.

In the next chapter, robust and privacy-focused mechanisms will be proposed,
with proper data collection and processing, using proper unsupervised dimensionality
reduction techniques that do not using the class values and with Novelty Detection
models that are able to detect even zero-day attacks of malware bots that use the DNS
to perform their illicit activities.

37

CHAPTER 3
Methodologies for Network-based

AD

As stated throughout the chapters 1 and 2, DNS is an important and vital communication
channel for all Internet applications and organizations. The fact that it must be allowed
in enterprise networks for a proper function of services and business processes, entails
the necessity of actively monitoring its usage, otherwise it can be misused for illicit
purposes, such as data exfiltration and C&C communications. The large majority of
current solutions for AD perform DPI techniques, processing unnecessary personal
information, that might cause privacy concerns from the data subjects, encasing the
organization in privacy related issues and large fines. Moreover, in circumstances where
the DNS communication is encrypted, these approaches would be useless.

Therefore, this section proposes a privacy-focused framework for Network-based AD,
where it processes as minimal personal and identifiable information as possible, while
still successfully extracting relevant features for the modelling of semi-supervised AD
algorithms.

3.1 Network-based AD workflow

Considering that Machine Learning algorithms are sensitive to the quality of data, all
Machine Learning projects need to follow a number of steps, if the goal is to achieve
satisfactory results. These number of steps, although, might be slightly different,
according to the type of Machine Learning models that one is working with. In the
case of semi-supervised learning algorithms for AD, the proper way to train them is
to feed them with only normal instances. Once a concept of normality is learnt, that
model is validated, and posteriorly tested, with datasets that contain a mixture of
normal instances and anomalies. For bot malware detection using Network-based AD

39

approaches, normal instances and anomalies are a product of preprocessed features,
extracted from metrics collected from licit and bot malware traffic traces, respectively.
A visual representation of a proper Network-based AD workflow for semi-supervised
algorithms can be seen in Figure 3.1.

Licit
Dataset

Illicit
Dataset

Licit traffic collection

Packet Sniffer

Traffic metrics

Feature extraction

Packet Sniffer

Traffic metrics

Feature extraction

Malware bot traffic collection

(a) Data collection and feature extraction

Licit
Dataset

Data Preprocessing

Data Scaling

Illicit
Dataset

Dimensionality
Reduction

Data Scaling Dimensionality
Reduction

Training
Dataset

Validation
Dataset

Test
Dataset

Learning process

AD Model training

Hyper-parameter
Tunning

Best hyperparameter
settings

Test best model
against unseen data

Data Scaling Dimensionality
Reduction

(b) AD pipeline

Figure 3.1: Network-based AD workflow using semi-supervised algorithms

3.1.1 Data collection

As stated before, semi-supervised AD techniques often try to reconstruct a model
that represents a normal behavior, classifying a test point that deviates from this
representation of normality as a novel instance, or an anomaly. In this case, the normal
behavior is all the possible forms that a licit usage of the DNS can take, the novel
instances must be observations extracted from malware activity, and the goal is to
find out if the DNS is being used for malicious purposes, flagging all the DNS traffic
generated by a given machine that show an abnormal pattern as anomalies, inferring
afterwards that it is infected.

Using open datasets with licit and malware communication traces can be challenging.
Public DNS datasets with C&C and data exfiltration traces can be limited in variety,
the reliability of the ground-truth is hard to be ensured, since licit and illicit DNS traffic
can be encrypted, and new normal and malware bot activity patterns are continually
emerging as Internet technology evolve. Labeling samples with mixed traffic is also a
complex and time-consuming task, since one often needs to combine DPI techniques and
expert knowledge for a successful labeling, and yet, they cannot ensure that network
attacks are fully identified [64].

40

A better approach for a perfect ground-truth is to emulate malware traffic in a
Laboratory environment, providing reliable data to Machine Learning models, where
their predictive capacity could, otherwise, be degraded upon their deployment in a
real world scenario, if malware bot attacks and normal behaviors were mislabeled.
This emulation must gather a vast variety of possible illicit communication behaviors
over multiple malware bot activities. Furthermore, the licit traffic must also cover a
wide range of possible normal behaviors, and it must be produced under a controlled
environment to ensure that the terminal device is not infected with some sort of virus,
worm, Trojan horse or an active botnet.

As Figure 3.1a illustrates, the capture of both licit and illicit traffic can be done
with software or hardware devices, called packet sniffers, that can intercept and log
traffic data over a link in the network. This raw data is, most of the time, expressed in a
qualitative format, and if not, some of them may be categorical, in the form of nominal
variables. Machine Learning models don’t know how to process such non-numerical
data, meaning that the raw data must be transformed into quantitative forms. In
network traces, this transformation can be done by measuring, or counting, the events
of interest with a frequency of ∆, being ∆ the sampling interval, or the timestamp
resolution, resulting in a discrete time series of multiple metrics.

3.1.1.1 Data collection under data protection regulations

Botnet detection often deals with personal information, as it is needed to successfully
detect and disrupt the C&C infrastructure employed by the botmaster. There are
different techniques that researchers and cyber-security professionals can use to track
botmaster activity, as well as infected devices, and they were discussed earlier in Section
2.3. In our case, we are only interested in identifying the misuse of the DNS to establish
covert channels, or to exfiltrate data, by solely monitoring the DNS communications
of individual terminal devices. This approach, despite the fact that it is robust to
concealing techniques and more privacy friendly than the other solutions, still requires
us to process IP addresses, of which are classified as Personal Identifiable Identification
(PII), as they can reveal personal data such as geographical localization of individuals
[65]. This collection is lawful in regulations like the GDPR if it is contemplated in a
contract or under legitimate interest of improving the provided service. In contractual
agreements, the data controller must inform the purpose of processing such collected
data, from both internal and external sources, and if additional processing is made,
that information has to be provided to the data subject as well. Once the personal
information is stored, companies must ensure its integrity and confidentiality, and
the data subject must have the right to request, obtain and destroy their personal
information, including data provided to third parties for processing.

41

For the reasons aforedescribed, and because one should use as minimal PII as
possible, the proposed collection of traffic metrics for malware bot detection uses IP
addresses to solely differentiate if a given processed IP is from a set of known, and
permitted, DNS servers or is an end device, which is turn, is useful for the collection of
upstream and downstream network metrics, such as, the upstream and downstream
metrics of packet rates and average packet lengths in each sampling interval. The
Figure 3.2 depicts the proposed network metrics computed from a network trace and
the Algorithm 1 presents an implementation for their computation.

Figure 3.2: Raw network traces to network metrics

42

Algorithm 1 Collection of network metrics from network traces
Require: capture, nameservers

dt← 1 ▷ Interval (s)
npkts← 0 ▷ Number of packets
meta_set← {}
for each pkt ∈ capture do

if npkts is zero then
first_ts← pkt.sniff_timestamp

end if
ks← (pkt.sniff_timestamp− first_ts)/dt
if pkt.ip.src ∈ nameservers then

meta_set[ks][1]← pkt.length
else

meta_set[ks][0]← pkt.length
end if
npkts← npkts + 1

end for
time_lst← sorted(list(meta_set.keys()))
time← range(time_lst[0], time_lst[1])
for each t ∈ time do

if (kt := meta_set.get(t)) ̸= NULL then
if kt[0] ̸= [] then

client_pps← len(kt[0])
client_avgpktlen← int(sum(kt[0])/len(kt[0]))

else
client_pps← 0
client_avgpktlen← 0

end if
if kt[1] ̸= [] then

server_pps← len(kt[1])
server_avgpktlen← int(sum(kt[1])/len(kt[1]))

else
server_pps← 0
server_avgpktlen← 0

end if
datafile← t, client_pps, client_avgpktlen, server_pps, server_avgpktlen

else
datafile← t, 0, 0, 0, 0

end if
end for

43

3.1.1.2 Emulating network behaviors of malware bots

The emulation of illicit DNS usages passes through using DNS Tunneling tools that
embed data in DNS queries and that deliver DNS requests and responses between the
client and the C&C server. The C&C server can afterwards forward the received data
to the botmaster. There are a number of public DNS Tunneling tools with distinct
implementations, using different DNS RR types, encoding schemes, and offering multiple
levels of configurations. The three most common DNS Tunneling tools are [66], [67]:

• Iodine: has a wide range of possible configurations. It allows Base32, Base64,
Base64u and Base128 encoding schemes, and several DNS RRs are supported, with
NULL and PRIVATE being the ones that provide the faster upstream throughput.
In addiction, Iodine uses EDNS0, a specification that allows the resolver to accept
DNS messages of size larger than 512 bytes, the standard size of UDP messages
proposed by RFC 1035.

• DNS2TCP: has limited configuration. DNS messages are encapsulated in TXT
RRs and the encoding scheme used is the Base64. Performance wise, DNS2TCP
has greater throughput comparing to Iodine, but higher overhead as well. A reason
for the greater overhead is the frequency of keep-alive messages as DNS2TCP
sends keep-alives every second. In Iodine, this parameter is configurable.

• Dnscat2: primarily designed to create an encrypted C&C channel over DNS. It
supports a large number of RRs and encoding schemes, but has greater overhead
and smaller throughput in comparison to the alternatives.

Once the C&C infraestruture is built up, there are two major approaches to deliver
commands to malware bots: by either using pull mechanisms or push mechanisms
[68], [69] (Figure 3.3). In pull mechanisms, bots retrieve commands actively from a
C&C server, where botmasters publish them, following a publish–subscribe pattern,
while in push mechanisms bots establish a session with C&C servers and passively wait
for the arrival of commands. The former is typically used in centralized topologies,
especially in HTTP botnets, while the latter is commonly used in P2P bots that relay
commands and in IRC-based bots. In DNS botnets the study of these two types of C&C
communications have been overlooked, thus one should beware of both implementations.

For the emulation of data exfiltration tasks, malware bots just need to exfiltrate the
encoded data to DNS servers without being detected, by implementing the behaviors
described later in The DNS threat landscape, and no activity is needed from the C&C
server at all.

44

Figure 3.3: Two approaches for C&C communications. Source: BotSniffer: Detecting Botnet
Command and Control Channels in Network Traffic [70]

3.1.2 Feature extraction

The collected network traffic metrics may be numerical, but they have no profound
insights, and do not show any meaningful attributes or relationships whatsoever [71].
Data are the must-have food for Machine Learning models, their quality is critical
to their ability to make good predictions. If we feed those models with poor and
meaningless data, they will not generalize well and improve from the given experience,
that has no relevant representation in the first place.

Notwithstanding, network traffic metrics can be properly processed and used to
extract patterns with real, underlying meaning. For instance, extracting statistical
features, such as the mean and the standard deviation of packet lengths over a time
period, from licit and illicit DNS traffic might reveal divergent distributions that could
further indicate that a given machine is infected and being part of a botnet. This
process of creating a reduced set of groups with meaningful representations from raw
data is called feature extraction and it can speed-up the computations of AD algorithms
while increasing their performance.

Having timestamped raw data also enables one to extract features that might reveal
an underlying periodicity from malware traffic, such as activity and silence moments.
In network traces, a silence moment is represented by a sampling slot with all metrics
equal to zero, and an activity event by a sampling slot with at least one metric value
other than zero. Sequences with one or more consecutive silence, or activity, moments
are posteriorly grouped together in silence and activity periods, and their frequencies,
as well as their lengths, can be measured. An illustration of two silence periods, one
with a length of 2 seconds, and the other with a length of 9 seconds, can be seen in
Figure 3.4.

45

Silence period
of length: 9s

Silence period of length: 2s

Figure 3.4: An example of silence periods in collected network metrics

3.1.2.1 Feature Extraction with Observation Windows

Observations windows is a technique that allows one to derive relevant features from a
stream of metrics, or events, over consecutive time intervals [72], i.e., windows. The
computed features describe events that occurred in a given timestamp, representing
an observation, and multiple observations form a characterization of an entity, also
called as profile, enabling one to group entities that show a similar behavior and to
detect illicit entities that reveal behavioral deviations from the known group. A simple
approach to observation windows, is to implement them in a sequential manner, where
all windows have the same size θ and if a window is at sample i, then that window will
end at sample i + θ and the next window would begin at sample i + θ + 1 (Figure 3.5a).
A disadvantage of this approach, however, is that, depending on the size of the window,
different observation windows may extract very different patterns, being challenging to
obtain a coherent representation of the underlying distributions.

A better way to apply observation windows to timestamped metrics is if the next
window do not start at a steeply step such as i + θ + 1, but rather at a lighter step,
such as i + ∆, with ∆ < θ (Figure 3.5b). In this approach, closer windows will
be partially overlapped, allowing for longer periods of observation and a smoother
relationship between data points. Another advantage of having partially overlapped
windows (sliding windows) is that, although the behavioral differences between samples
will be smaller, creating similar observations for small sliding values, they generate
significantly more samples than the sequential approach, wherefore Machine Learning
models have more data to learn from, increasing the odds of a better generalization,
and they also allow for longer periods of observation, while maintaining a short period
of decision.

Another common window technique for a robust and rich to feature extraction is
to use sliding windows with multiple observation sizes, creating different meaningful
representations and perceptions about the collected data by varying the observation
time interval. The dataset must be split according to the larger window size, as well as
the specified sliding value, and for every sub-window at sample i the relevant features

46

...

Metric 1

Metric 2

Metric n
...

Obs. Window n

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+1

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+2

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+3

Time

(a) Sequential observation windows approach

...

Metric 1

Metric 2

Metric n
...

Obs. Window n

Time

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+1

...

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+2

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+3

(b) Sliding observation windows approach

Figure 3.5: Comparison between sequential observation windows and sliding observation
windows over timestamped raw data

are computed. In Network-based botnet detection [73], [74], a common way of extracting
relevant features is to extract descriptive statistics, of which seek to describe, i.e. give
meaning to, the collected data by giving short summaries about the sample metrics
in a sub-window. Furthermore, descriptive statistics can be divided into measures of
central tendency and measures of variability: Measures of central tendency describe
the center position of a probability distribution for the sample metrics, for instance, by
measuring the frequency of each data point in the distribution and describing it using
the mean, median, mode, or other central tendency measurement that gives an insight
about their common patterns, while measures of variability, analyze the dispersion
and the shape of the distribution, describing how the data is distributed within the
sub-window, and common measures of dispersion are the variance, standard deviation
and quantiles. With regard to heavy-tailed distributions (distributions that goes to zero
slower than ones with exponential tails), one can also use trimmed estimators, such as,
the trimmed mean and the interquartile range, of which are considered more robust to
the presence of extreme values in data, specially when dealing with mixture distributions
and distributions that have longer tails than the assumed normal distribution [75]. As
showcased in Figure 3.6, the mean, 5% trimmed mean, standard deviation, 85, 90, 95
and 99 quantile, and maximum values with regard to the collected traffic metrics and
the activity and silence periods are computed. For the latter, also the number of silence

47

and activity periods are retained. These statistics captured from different sub-windows
are then joined into a single feature vector, forming the dataset.

Time

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+1

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+2

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+3

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+1

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+2

...

......

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+3

...

Metric 1

Metric 2

Metric n
...

Obs. Window n

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+1

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+2

...

Metric 1

Metric 2

Metric n
...

Obs. Window n+3

mean

5% trimmed mean

standard deviation

standard deviation

maximum value

85-quantile

90-quantile

95-quantile

99-quantile

number of silence/activity
periods

Upstream and
downstream traffic

metrics

Silence and
activity periods

Figure 3.6: Diagram of features extracted from multiple sub-windows.

3.1.3 Data scaling

Data preprocessing is an important step to achieve good outcomes in novelty detection
tasks. It includes removing possible outliers and noise from the data, dealing with
incomplete or missing values, and transformation of data into a common scale. Because
our data was produced in controlled environments, they should be outlier and noise-free,
however, as features came from multiple metrics, they are in different ranges. Most
predictive models do not generalize well on features whose scales differ vastly, therefore
their ranges should be either scaled or transformed so that each feature contributes
equally to the final predictive result. Having scaled variables also help Machine Learning
model that have gradient descent as an optimization technique to converge much faster,
and coefficients are penalized properly when regularization techniques are applied in
loss functions.

The two most common feature scaling methods are Normalization and Standard-
ization. In Normalization, data are transformed into a homogeneous range of values,
often between 0 and 1, or -1 and 1, it is typically used when the underlying distribution
unknown, or when the data do not follow a bell-shaped curve, and it is computed as
follows:

x′ = x−min

max−min
(3.1)

While in Feature Standardization, the values of each feature are set with a zero-mean
and a standard deviation equals to one, being calculated by the formula:

x′ = x− x

σ
(3.2)

48

where σ is the standard deviation, of the feature vector, and x the mean value of
the feature vector. Standardization normally works best when data follows a normal
distribution, although this is not always true, and so, one should test and see what
scaling technique is more appropriate in that particular case.

After choosing the scaling technique, the mean and standard deviation of features,
with regard to Standarization, or the maximum and minimum values of features, with
regard to Normalization, should be computed. These computations must be done
only with the training set, while the transformation is applied to both the training
and test sets.

3.1.4 Dimensionality Reduction

Although data scaling guarantees that features have an equal contribution, it does
not imply that these features are equally important for the decision process of the
model. As an example, if we consider that there are n sub-windows in each observation
window, with m extracted features in each sub-window, then, each observation will have
n×m features. Despite the fact that one should extract as many relevant features as
possible, in favor of a detailed and accurate representation of network traffic behaviors,
most likely, some extracted features may be irrelevant, and/or redundant, to the class
value. Furthermore, having many features but a low number of samples may decrease
the performance of Machine Learning models. This phenomena is called the Curse of
Dimensionality, and it was discussed in Dimensionality Reduction.

In this situation, one could thing that using Feature Selection methods would resolve
this problem by using only a subset of those features to train the AD models. However,
those methods require the presence of both licit and illicit class values for the filtering
of irrelevant features, and since the objective is to design an AD system, illicit data
should not be used during the training phase, in order to build a reliable representation
of normality. To avoid having the models biased towards known malware bots traffic
patterns, one should consider techniques that do not require the use of the target value,
resorting in unsupervised dimensionality reduction methods.

The most common unsupervised dimensionality reduction technique is the PCA,
which transforms a large set of features into a smaller set of uncorrelated features, while
preserving the most variance in the dataset. This technique was already discussed
in Principal Component Analysis, nevertheless, other unsupervised dimensionality
reduction techniques, such as the High Correlation Filter, can be used. The High
Correlation Filter uses the Pearson correlation matrix to identify correlations between
features. Once they are calculated, one can set a threshold to remove the features that
show a correlation higher than the threshold. This algorithm can be seen in Figure 3.7.

In a similar way to data scaling, the eigen decomposition with regard to PCA, and

49

the features to remove with regard to the High Correlation Filter must be computed
only with the training set, while the transformation is applied to both the training and
test sets.

Figure 3.7: High Correlation Filter Algorithm

3.1.5 The Learning Process and model evaluation

Once the data is preprocessed, it is finally ready to be used by AD models. First, we
need to split the dataset with licit instances into training and test sets. The main
reason to have a test dataset is to test the model against new and unseen malware bot
traffic, therefore the test set must contain, not only licit samples, but also samples from
new and unseen bot malware attacks.

When evaluating different hyper-parameter settings for models using a single test
set, there is risk of overfitting on the test set, as parameters can be tweaked until the
model fits optimally on that particular set, not generalizing well on a real-world scenario.
A straightforward solution for this problem is to create a new set, called validation set,
also with licit and illicit instances, to be used for hyper-parameter tuning, and once the
experiment is done, a final evaluation is done on the test set. However, having three
sets can impact greatly in the number of samples used to train the model and build a
good representation of normality, and the results can depend on a particular random
choice of instances in the training and validation sets.

Therefore, a better practice for classic Machine Learning techniques is to use Cross-
Validation techniques, such as the k-fold Cross-Validation depicted in Figure 3.8, that
use different partitions of the data, in a iterative way, to train the model and choose
the best hyper-parameter settings for more accurate out-of-sample and overfitting
estimations, specially when data is scarce, or the number of features is large. The
reported performance metrics in the loop are then averaged to find the best hyper-
parameters and a final evaluation is done using the test set. Furthermore, one can
nest the Cross-Validation to simultaneously select the best set of hyper-parameters and
evaluate them on different test sets, multiple times. The two ways of doing a nested
Cross-Validation are:

50

Figure 3.8: k-fold Cross-validation. Source: Scikit-Learn

• k*l-fold Cross-Validation: The total dataset is split into k sets. The k − 1
sets are combined to form a training outer set and the remainder is the test set,
used to produce a unbiased model evaluation. This procedure is repeated for each
of the k sets. Each outer training set is further sub-divided into l inner sets. A
set is selected as a inner validation set for model hyper-parameter tuning and
the other l − 1 inner sets are used as training sets, and it is also repeated for
each one of the l sets. After choosing the best hyper-parameter settings for the
inner Cross-Validation, a new model with the best hyper-parameters is fit on the
entire outer training set and evaluated with the outer test set. This approach is
computationally expensive as it performs k ∗ l iterations at least, but it should
return accurate estimates when choosing the best hyper-parameter settings.

• k-fold Cross-Validation with validation and test set: A single k-fold Cross-
Validation is used for both validation and testing purposes. The total dataset
is split into k sets. The k − 1 sets are combined to form the training set, and
the remaining set is used to form the validation and test sets, to further mix
with malware bot samples. Similar to k*l-fold Cross-Validation, the training
set is used to construct a representation of normality, the validation set for the
hyper-parameter tuning, and the test set to evaluate the model with the best
hyper-parameter settings.

In both approaches, the validation and test sets should have an equal amount of
licit and malware bot samples, in order to not get skewed performance metrics. They
are both implemented, however, due to the intensive computational demand for the
former, the latter was chosen to test our models, and the splitting process at fold k is
illustrated in Figure 3.9.

51

Fold 1 Fold 2 Fold 3 ... Fold k-3 Fold k-2 Fold k-1 Fold k

Fold 1 Fold 2 Fold 3 ... Fold k-3 Fold k-2 Fold k-1 Fold k

Licit dataset

Ilicit dataset

Training set Validation set Test set

Figure 3.9: Illustration for the k-fold Cross-Validation with validation and test set at
iteration k

At each fold, the k-fold Cross-Validation with validation and test set approach
selects the hyper-parameter setting that obtained the best weighted F1-Score, and an
additional evaluation is made with the test set, obtaining the weighted F1-Score and
the False Positive Rate (FPR). Consequently, the precision and recall metrics must
be computed from the confusion matrix for both normal and abnormal classes. If we
consider that the known observations are in group i, the predicted values in group j, 0
is the class number of licit samples, and 1 the class number of anomalies, then we get
the following equations:

precisioni = Cii∑
j Cji

(3.3a)

recalli = Cii∑
i Cji

(3.3b)

F1i = 2 · precisioni · recalli
precisioni + recalli

(3.3c)

F1weighted = w0 · F10 + w1 · F11 (3.3d)

FPR = 1− precision0 (3.3e)

where, in this case, 0.50 is the value of w0 and w1.
To choose between different estimators, the results of weighted F1-Scores and FPRs

must be averaged and a confidence interval must be computed according to the equation
3.4, where σ is the standard deviation of a set of given metric values, n its total number,
and Z, a tabular value, is the 1−C

2 percentile point of the standard normal distribution

52

for a confidence interval of C%.

CIC = Z
σ√
n

(3.4)

Once the best estimator is chosen, the best hyper-parameter setting is selected
according to the best weighted F1-Score and FPR.

3.2 Summary

The methodologies presented throughout this chapter aim to establish a robust and
privacy-focused framework for Network-based bot malware detection over DNS, of
which has been largely overlooked in the literature. The majority of strategies use
DPI techniques and unnecessary PII. With this in mind, the main features of these
methodologies are:

• Privacy-focused solutions for bot botnet and bot malware detection: since the
arrival of new privacy and data protection regulations, invasive strategies can
leave companies and organizations dipped in privacy related issues, loosing the
trust of their costumers.

• It focuses on pattern and behavioral analysis, since analysing the patterns of
packet lengths and packet rates to analysing the behaviors of silence and activity
periods.

• It does not need to feed the models with every imaginable type of anomalous
behavior, as they only train with "clean" data, building a representation of
normality.

• It resorts in multiple feature engineering techniques to avoid feeding some models
with non-relevant data.

• It focuses in optimizing the model performance based on low FPR and high
weighted F1 Score, penalizing greatly the incorrectly classified cases.

By using Novelty Detection models, we are in a better position to cover a wide
range of out-of-normal behaviors, than we would if we used classic binary classifiers,
yet we also need anomalous samples to evaluate the performance of such models.
These mechanisms will be further discussed in chapter 4, where they will be employed
to perform novelty detection in different scenarios, using different DNS tunneling
frameworks, C&C methods and behaviors.

53

CHAPTER 4
Methodologies evaluation and

Results

This chapter describes the conducted experiments to validate the methodologies pre-
sented in Chapter 3 for AD, including the realization of different scenarios that misuse
the DNS, since the establishment of C&C infrastructures to data exfiltration. The goal
is to evaluate the accuracy of the proposed methodologies, identifying correctly malware
activity over DNS while having low False Positives.

4.1 Licit traffic collection

As stated in section Data collection, Novelty Detection models need a good variety of
possible licit usages of DNS, in order to successfully construct a model of normality.
Furthermore, the licit DNS activity must be collected under a controlled environment
to ensure the integrity of the ground-truth.

With that in mind, the licit DNS traffic was collected using Wireshark 1, while
performing multiple activities in a web browser, such as reading the news, studying,
using social networks and consuming media, and streaming music via Spotify’s own
application 2, for, around, 3 hours straight. These use cases were produced under the
three major operating systems: Linux Ubuntu 3, macOS Big Sur 4 and Windows 11
5. In some Linux Ubuntu traces the option to send diagnostic data is activated, while
in others the machine do not send any diagnostic data whatsoever. In Windows and
macOS systems this option is required. For each operating system, the browser used

1shttps://www.wireshark.org/
2https://www.spotify.com/pt-pt/
3https://ubuntu.com/download
4https://apps.apple.com/us/app/macos-big-sur/id1526878132
5https://www.microsoft.com/pt-pt/software-download/windows11

55

in captures was the pre-installed one, namely Firefox 6 in Linux Ubuntu, Safari 7 in
macOS and Microsoft Edge 8 in Windows. In order to cover a wide variety of licit use
cases, some of them use ad blockers, while others don’t, and in one use case, even the
JavaScript was disabled and media larger than 50kb was blocked. To prevent false
alarms from encrypted, but licit traffic, two use cases in Linux Ubuntu using DNS over
TLS (DoT), one with the ad blocker active and other without using ad blockers, were
also captured.

The collected traces were afterwards transformed in traffic metrics, using the Al-
gorithm 1, and examples of upstream and downstream throughput in a Time Series
and Histogram graph, as well as the upstream and downstream average packet length
Histogram in licit traffic can be consulted in Figures 1, 2 and 3, respectively.

4.2 Emulation of malware bot attacks

AD algorithms may be trained only with one class, but they must be tested with
new and unseen normal observations, as well as with new and unseen abnormal data
points, that are, for our case, observations extracted from emulated botnet activity.For
this reason, we partially simulated a corporate network using GNS3 with an infected
computer, a DNS Server and a Router, a public DNS server used by the botmaster to
register a domain for the further establishment of the covert channel, a C&C server
and the botmaster’s computer. The DNS servers were implemented with BIND9, using
the default settings, and static routing was used at the core of the simulation. All
devices are accessible via SSH using a NAT interface, and they can also be connected
to real world Internet using a TAP interface. The simulated environment is depicted in
Figure 4.1. As a side note, since we did not configure any mapping methods between
private and public corporate addresses, all nodes in the Internet simulation know the
company’s private addresses, although, this is not a big issue as we are only interested
in monitoring the link between the infected machine and its corporate DNS server.

Once the virtual network simulation is set up, now we can think about how to
emulate botnet traffic for different possible scenarios and what technologies to use. We
decided to pick the two most common DNS tunneling tools to emulate botnet traffic:
Iodine 9 and DNS2TCP 10. In Iodine, we decided to use the NULL RR type as it
provides the faster upstream throughput among the available RRs, and we configured
the keep-alive messages to have a low enough frequency to not get SERVFAIL messages,
i.e. 9 seconds, while in DNS2TCP the RR used is the TXT query type with Base64.

6https://www.mozilla.org/pt-PT/firefox/new/
7https://www.apple.com/safari/
8https://www.microsoft.com/pt-pt/edge?form=MA13FJ
9https://github.com/yarrick/iodine

10https://github.com/denisix/dns2tcp

56

Figure 4.1: Simulated corporate environment for the emulation of botnet attacks

To have a broad diversity of possible attacks, 6 scenarios were a botnet can try to
emulate a normal behavior, or to blend with normal traffic without being detected,
were produced: the Scenario 1, were we emulate a C&C channel over DNS using the
original Iodine and DNS2TCP tools, the Scenario 2, were we emulate exfiltration of
data, also with the original Iodine and DNS2TCP tools, two more advanced scenarios,
Scenario 3 and Scenario 4, were we emulate a C&C channel and exfiltration of data
with a modified version of the DNS2TCP tool (the motivation behind this decision
will be discussed in that subsection), the Scenario 5, were we emulate stealth C&C
traffic with Pull mechanisms, and finally the Scenario 6, were we emulate a slow and
low exfiltration of data using the modified version of the DNS2TCP. The algorithm 1
was again used to extract the raw features of traffic generated by the botnet emulation
in all scenarios.

As referenced in section The DNS threat landscape, keep-alive messages are useful
for botmasters to know if machines are still under their control or not. Nonetheless,
sophisticated botnets can use more adequate methods to check the status of their bots, or
not use any methods at all, and thus one should also train the developed AD algorithms
without those messages. In Iodine, keep-alive subdomains always have 8 characters in
length and they all can be decoded without UnicodeDecodeError exceptions, while in
DNS2TCP keep-alive subdomains always have 10 characters in length. In both tools
any encoded data that is passed through has a larger size than their keep-alive messages,

57

consequently, two scripts to remove those messages were created: the Algorithm 2 and
the Algorithm 3.

Algorithm 2 Remove DNS2TCP keep-alive messages
Require: capture, outputfile_name

pktdump← PcapWriter(outputfile_name, append = True)
for each pkt ∈ capture do

in_pkt = NULL
if ”DNS” ∈ pkt then

name_query ← pkt[”DNS”].qd.qname.decode()
names← name_query.split(′.′)
if len(names[0]) = 10 and (pkt.len = 65 or pkt.len = 90) then

nop
else

in_pkt = pkt
end if

end if
if in_pkt ̸= NULL then

pktdump.write(in_pkt)
end if

end for

58

Algorithm 3 Remove Iodine keep-alive messages
Require: capture, outputfile_name

pktdump← PcapWriter(outputfile_name, append = True)
for each pkt ∈ capture do

in_pkt = NULL
if ”DNS” ∈ pkt then

try
name_query ← pkt[”DNS”].qd.qname.decode()
if (”.t.b0t.pt” ∈ name_query) and (len(name_query.split(”.”)[0]) = 8)

then
nop

else
in_pkt← pkt

end if
catch UnicodeDecodeError

in_pkt← pkt
end try

end if
if in_pkt ̸= NULL then

pktdump.write(in_pkt)
end if

end for

4.2.1 Scenario 1: C&C over DNS with the Push mechanism using
standard behaviors

This scenario aims to address the C&C infrastructures that use Push mechanisms to run
commands on the underlying bots. The control of infected machines can be done using
simple remote shell programs, like Ncat, to more complex and robust C&C frameworks,
like Meterpreter or Merlin, of which allow botmasters to establish stealth channels that
mimic licit network traffic. For these reasons, we produced C&C traffic using Ncat 11

to send commands and receive data from the infected host over DNS2TCP and Iodine
DNS tunneling tools, and we also produced Ncat traffic encrypted with SSL.

Most C&C frameworks do not support the DNS protocol, and their ability to produce
stealth traffic over DNS tunneling software is poor, therefore a script in Python 12 was
made having in mind that the attacker can choose different probability distributions
that resemble licit behaviors, for instance, a beta negative binomial distribution for the
throughput and a normal distribution for the packet length emulation, while trying to
guess their parameters. Because sometimes relying in parametric distributions may not
be the best option to reproduce licit behaviors, some network traces were produced

11https://nmap.org/ncat/
12https://www.python.org/downloads/release/python-380/

59

with additional workarounds, such as adding a weighted choice to samples drawn from
those distributions. Examples of generated throughput and average packet length for
this scenario can be seen in Figures 4 and 5.

4.2.2 Scenario 2: Data exfiltration over DNS using standard behaviors

As seen previously in section More advanced topologies, botnets may not be listening
to commands during all of their life-cycle, but rather be in a different stage. One of the
most critic stages of an attack is exfiltration of data, and during this phase, botnets
can steal private and sensitive data without any activity from the botmaster or their
C&C servers whatsoever.

In this scenario, we developed a script in Python to exfiltrate a file over Iodine and
DNS2TCP while trying to emulate the normal activity using again different probability
distributions that resemble licit packet length and throughput patterns of a targeted
machine, in order to evade being detected.

4.2.3 Scenario 3: C&C with the Push Mechanism over DNS that mimics
licit behaviors

Using available remote shells and C&C frameworks can provide low latency and ro-
bustness to one’s botnet, however their patterns and behaviors are well known to
cyber-security blue teams. Moreover, using DNS tunneling software, like Iodine and
DNS2TCP, creates a difficult challenge to emulate licit packet lengths, as this software
relies in a pre-fixed buffer size to send data, and, although TCP provides a reliable way
of delivering messages, being stream oriented means that there is no assuredness about
the preservation of message bounds.

These characteristics about the TCP protocol and DNS tunneling software led us
to create a new script to send C&C commands and get the output data, written in C,
where the the Nagle’s Algorithm, responsible to reduce the number of small packets
sent over the network with the goal of improving network congestion, was disabled with
the socket option TCP_NODELAY, and TCP_QUICKACK was enabled to stop the delay of
TCP acknowledgments that, one again, initially served to improve network congestion.
It is important to consider that since we control the throughput, the silence periods
and the packet lengths, these features are not needed and can be inconvenient for a
botnet that attempts to emulate a normal behavior.

The last thing that we need is a way to ensure that messages are delivered with the
size that we want. This can be done at the application level, by changing the source
code of DNS tunneling tools. We picked the DNS2TCP source code to be edited, since
it can send more packets per second (pps) than Iodine, thus being more capable of
generating a realistic throughput. In our client and server scripts, messages are sent

60

with the message size attached at the beginning, occupying 3 octets, i.e. the packet
size can be up to 999 bytes, being more than enough to reproduce realistic packet sizes.
In the modified DNS2TCP 13, client and server applications receive those messages,
read the first 3 octets and store the number in a variable called str_size_message,
and then, read up to str_size_message bytes from the socket’s file descriptor. This
implementation is illustrated in Figure 4.2, and now we have a reliable way of tunneling
packets with a specific size.

S o m e _ o tu p u tc m d

C&C client app

S o m e _ o tu p u tc m d

0 1 4 S o m e _ o tu p u tc m d
Modified DNS2TCP Client

read(...) 0 1 4

S o e o u p um dm _ c t tread(...)
send(...)

Infected machine

DNS request

C&C Server

TCP Stream

Modified DNS2TCP Server

read(...)
send(...) S o m e _ o tu p u tc m d

Botmaster
C&C server app

read(...) S o m e _ o tu p u tc m d

TCP Stream

(a) Visual Example of a command output sent to the botmaster

(b) Modified code

Figure 4.2: Changes made in the client application of DNS2TCP

Comparing to the techniques used in Scenario 1 for the emulation of normal behaviors,
we use a different method to send data back to the C&C server, instead of estimating

13https://github.com/brnaguiar/dns2tcp-custom

61

parameters from a parametric distribution. In the server application, commands are
sent randomly between 0 and 15 seconds, and the client application receives them,
runs them and returns their outputs according to empirical mass functions extracted
from observed licit behaviors of the target machine. For instance, a bot binary might
observe the packet rate, packet lengths and silence periods of the host machine to later
generate botnet traffic according to the empirical probabilities computed from those
characteristics. Furthermore, we applied the Laplace Smoothing technique to smooth
the empirical data, supposing that the attacker might want also to generate similar
distributions to the licit ones, but not equal. This method is given by the formula:

Pi = xi + α

N + αd
(4.1)

Where xi/N is the empirical probability, α the smoothing parameter, and d the number
of measured variables. This technique is present only in few captures, with small
smoothing values to ensure that the malware behavior doesn’t deviate that much
from the licit distribution. A comparison between licit and illicit traffic generated by
the modified DNS2TCP is portrayed in Figures 6 and 7. It is worth noting that the
generated packet sizes may not be identical to the licit ones because of the DNS2TCP
encoding scheme.

4.2.4 Scenario 4: Data exfiltration over DNS that mimics licit behaviors
mechanisms

In this scenario, we emulate a exfiltration of data with a similar technique applied to
Scenario 2, using the modified DNS2TCP. A script to exfiltrate a file made in C with the
Nagle’s Algorithm deactivated and the TCP_QUICKACK enabled mimics a licit behavior
according to empirical probabilities extracted from observing licit DNS activity of the
infected machine.

4.2.5 Scenario 5: C&C with the Pull Mechanism over DNS mixed with
licit traffic

In C&C infrastructures that use Pull mechanisms, bots usually ask for commands,
instead of waiting for them. This approach is more loose in comparison to the Push
mechanism, meaning that commands have considerably more latency to arrive to the
bot end, although the bot end usually generate less traffic as it typically does not
send the command’s output back to the botmaster. A small API was developed in
Python with FastAPI 14 to replicate the behaviors of bots that request new commands
and the responses from the server. Attempting to evade detection by generating little
traffic, requests are made within an interval between 10 and 15 minutes. An example
of generated requests and responses is depicted in Figure 4.3.

14https://fastapi.tiangolo.com/

62

Figure 4.3: Example of illicit API requests and responses DNS activity

Because one could figure out promptly that it is not a normal behavior when
comparing it to the licit DNS traffic captured in Section Licit traffic collection, this
simulated botnet activity was later mixed with the licit traffic, in a way that it becomes
really difficult to detect the abnormal activity, as showcased in Figure 4.4 for the
example of Figure 4.3.

Figure 4.4: Example of illicit API requests and responses mixed with licit DNS activity

4.2.6 Scenario 6: Low throughput Data exfiltration over DNS mixed with
licit traffic

Sophisticated botnets may generate low throughput traffic when exfiltrating data,
aiming to be practically unnoticeable to security measures and impossible to distinguish
from normal traffic. For this case, we used the modified DNS2TCP and applied the
same techniques employed in Scenario 3 and Scenario 4 to generate packet lengths and
throughput, although the latter was restricted to a maximum of 4 pps. To emulate
slow DNS activity, we decided to code a weighted list were the script samples a random
number and, based on it, sleeps between 6 and 10 seconds with a probability of 0.20, for
7 minutes with a probability of 0.20 and between 11 and 15 minutes with a probability
of 0.60.

Similar to Scenario 5, this malware activity was later mixed with licit traffic, to be
challenging for AD algorithms to detect the presence of illicit behaviors.

4.3 Dataset Exploration

All datasets were produced with the sliding windows approach, with multiple observation
sizes, and for each scenario, a dataset has around 30 hours worth of data. When in
production, the trained algorithms may live in a Anomaly Detection Server (ADS),
and this ADS may have multiple instances of AD models trained with one or multiple
sliding window sizes, therefore, models trained with smaller window sizes do not need to

63

wait for models trained with bigger observation sizes to do the traffic classification task,
while still having more moments of decision. Because of these reasons, we decided to
create datasets with different observation window sizes, namely datasets with a sliding
window of 15 minutes and sub-windows of 300 and 600 seconds, datasets with a sliding
window of 75 minutes and sub-windows of 2700 and 3600 seconds, and datasets with a
sliding window of 70 minutes and sub-windows with 450, 750, 2250 and 3375 seconds,
all with a 2-second sliding distance. The last sliding window approach was produced to
cover every anomaly that might occur when only one instance is presented in a ADS,
and the first two sliding window approaches were produced with the purpose of having
two AD instances with different sliding window sizes running in the ADS. The Figure
4.5 exemplifies the proposal of having multiple instances trained with multiple sliding
observation window sizes.

Anomaly Detection Server

Feature extraction with a sliding window of
70 minutes and sub-windows with 50, 750,

2250 and 3375 seconds

Nolvety Classifier trained with a sliding
window of 70 minutes and sub-windows with

50, 750, 2250 and 3375 seconds

Classification

(a) ADS with one instance trained with a dataset with a sliding window of 70 minutes

Anomaly Detection Server

Feature extraction with a sliding window of
15 minutes and sub-windows with 300 and

600 seconds

Nolvety Classifier trained with a sliding
window of 70 minutes and sub-windows with

300 and 600 seconds

Classification

Feature extraction with a sliding window of
75 minutes and sub-windows with 2700 and

3600 seconds

Nolvety Classifier trained with a sliding
window of 75 minutes and sub-windows with

2700 and 3600 seconds

Classification

(b) ADS with two instances trained with datasets with sliding windows of 15 and 75 minutes.

Figure 4.5: Two examples of a possible ADS

A comparison between all licit (in blue) and illicit (in red) data points from all

64

scenarios, including features extracted from traffic with keep-alive messages, can be
seen in appendices 5.1, 5.1 and 5.1. When analyzing these graphs, and comparing
the features avg_pkt_len_upload_std_300 and activity_quantile_99_900 from the
Dataset with a sliding window of 15 minutes with the same features without keep-alive
messages showcased in Figure 4.6 from the same dataset, one could that see that
malware bots that send keep-alive messages often produce traffic patterns that are
very divergent and distinguishable from licit behaviors, as keep-alive messages create
many outliers in data, whereas illicit traffic without them is much more blended in licit
instances. These keep-alive messages are present only in datasets that use standard
behaviors, as periodic messages change the behavioral patterns of bot malware traffic
when mimicking licit behaviors and their frequency change the low throughput nature
of Scenarios 5 and 6.

(a) A comparison between licit (in blue) and illicit (in red) data points without keep-alive messages
for the feature Average Packet Length Upload - Standard Deviation - of a 300 second observation
window

(b) A comparison between licit (in blue) and illicit (in red) data points without keep-alive messages
for the feature Activity - 99-quantile - of a 900 second observation window

Figure 4.6: Example of features without keep-alive messages

Furthermore, if we compare illicit traffic emulated with different behavioral ap-
proaches (Figure 4.7), such as, malware bots that use standard behaviors, malware bots
that mimic licit traffic and malware bots that mix with licit traffic, we will see that
using standard behaviors, i.e. using parametric models, often produce traffic with more
divergent distributions and that low throughput malware traffic when mixed with licit
traffic can be very effective in deluding the current security systems.

If we display the data into Scatter plots, we will see that it is possible for licit data
to be linearly separable from illicit data with keep-alive messages, for large enough
observation window sizes. Figure 4.8 showcases some combination of features that
make the licit and illicit data instances linearly separable. For instance, the data from
features pps_upload_max_2250 and pps_upload_quantile_85_2250 for the Dataset

65

(a) A comparison between licit (in blue) and illicit (in red) data points without keep-alive messages
that was produced with standard behaviors

(b) A comparison between licit (in blue) and illicit (in red) data points without keep-alive messages
that was produced mimicking the licit traffic

(c) A comparison between licit (in blue) and illicit (in red) data points without keep-alive messages
that was produced mixed with licit traffic

Figure 4.7: Comparison between features without keep-alive messages produced with differ-
ent behavior approaches

with a sliding window of 70 minutes, which have keep-alive messages, are linearly
separable, and the same is applied for features pps_upload_quantile_99_2700 and
avg_pkt_len_upload_mean_2700, for the Dataset with a sliding window of 75 minutes.

66

0 10 20 30 40

0

10

20

30

40

50

60

70

80

0 20 40 60 80

0

10

20

30

40

Scatter matrix for Dataset with a sliding window of 70 minutes

pps_upload_max_2250 pps_upload_quantile_85_2250

pp
s_

up
lo

ad
_m

ax
_2

25
0

pp
s_

up
lo

ad
_q

ua
nt

ile
_8

5_
22

50

(a) A comparison between licit (in blue) and illicit (in red) data points with keep-alive messages for
the Dataset with a sliding window of 70 minutes

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

0 20 40 60 80

0

10

20

30

40

50

Scatter matrix for Dataset with a sliding window of 75 minutes

pps_upload_quantile_99_2700 avg_pkt_len_upload_mean_2700

pp
s_

up
lo

ad
_q

ua
nt

ile
_9

9_
27

00
av

g_
pk

t_
le

n_
up

lo
ad

_m
ea

n_
27

00

(b) A comparison between licit (in blue) and illicit (in red) data points with keep-alive messages for
the Dataset with a sliding window of 75 minutes

Figure 4.8: Comparison between features with keep-alive messages for data points which
are linearly separable

67

4.4 Dimensionality Reduction

Given the number of features, it is important to consider feature dimensionality tech-
niques that may increase the performance of AD tasks, or speed up the model con-
vergence. As mentioned in section 3.1.4, classic Feature Selection techniques are not
indicated for AD as they may overfit the choice of features to our particular set of
collected anomalies, where new and unseen bot malware traffic patterns may be more
detectable using other set of features that was previously removed. The appropriate
way of reducing the dimensionality of our dataset is to use unsupervised dimension-
ality reduction methods, such as PCA and the High Correlation Filter. We used the
Scikit-Learn Python 15 implementation of PCA and our implementation of the High
Correlation Filter, as showcased in Figure 3.7, to conduct this process. To determine
what percentage of variance to keep, in the case of PCA, and the correlation threshold
in the case of High Correlation Filter, one must test multiple values, to later use them
to train multiple AD classifiers.

Since AD models need anomalies to test their model of normality, all datasets
regarding the different scenarios of bot malware traffic were merged into a single dataset.
To test the efficiency of the chosen values, we used the One-Class SVM classifier with
the values k ∈ 0.85, 0.90, 0.95, 0.98, 0.99 for the variance percentage and correlation
percentage threshold, with 5-fold Cross-Validation. The results for the dataset using a
sliding window of 15 minutes depicted in Figure 4.9a show that using a high percentage
of variance for PCA, or a high threshold percentage for the High Correlation Filter
improves the classification task, however, F1-Score reached its peak when the threshold
value was 0.90 for PCA and 0.95 for the High Correlation Filter. For datasets with a
sliding value of 70 minutes, Figure 4.9b shows that the best threshold value for PCA
is 0.85, and the best threshold value for the High Correlation Filter is 0.99, where for
this sliding window it seems to be a better dimensionality reduction technique to be
applied, rather than PCA. Finally, for the dataset with a sliding window of 75 minutes,
the threshold value of 0.99 is the value that shows the best F1-Score for the PCA and
High Correlation Filter approaches, even if it means higher training times.

Because the High Correlation Filter only surpasses PCA when applied in datasets
with a sliding window of 70 minutes, and it needs a threshold value closer to 1 to do it
so, we decided to test the used AD models without any dimensionality reduction, and
to test the same models only with the use of PCA with the a threshold value of 0.85 for
datasets with a sliding window of 70 minutes, 0.90 for datasets with a sliding window
of 15 minutes, and 0.99 for datasets with a sliding window of 75 minutes.

15https://scikit-learn.org/stable/

68

0.7 0.75 0.8 0.85 0.9 0.95 1

0.6

0.65

0.7

0.75

0.8

0.85 Method
High Correlation Filter
PCA

Tested threshold values for PCA and High Correlation Filter

Threshold value

F1
-S

co
re

(a) F1-Score for multiple threshold values for the dataset with a sliding window of 15 minutes

0.7 0.75 0.8 0.85 0.9 0.95 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95 Method
High Correlation Filter
PCA

Tested threshold values for PCA and High Correlation Filter

Threshold value

F1
-S

co
re

(b) F1-Score for multiple threshold values for the dataset with a sliding window of 70 minutes

0.7 0.75 0.8 0.85 0.9 0.95 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95 Method
High Correlation Filter
PCA

Tested threshold values for PCA and High Correlation Filter

Threshold value

F1
-S

co
re

(c) F1-Score for multiple threshold values for the dataset with a sliding window of 75 minutes

Figure 4.9: F1-Score for multiple threshold values using PCA and the High Correlation
Filter

69

4.5 Classification Results

The final step is to train each AD model with all features, and the selected features
with the High Correlation Filter and the selected PCs with PCA, and to record the
results, using datasets with different sliding window sizes and different sub-windows.
Beforehand, we used the standardization as feature scaling for our data. The tested
models were Gaussian Mixture Models (GMM), KDE, LOF, and One-Class SVM, using
the Scikit-Learn Python implementations, running on a Jupyter Notebook 16. For the
sliding window size of size 70 minutes, we tested the above models over 4 datasets,
namely, a dataset with anomalies from the Scenario 1 and Scenario 2 where illicit traffic
use standard behaviors, a dataset with anomalies from the Scenario 3 and Scenario 4
where illicit traffic mimics licit behaviors, a dataset with anomalies from the Scenario
5 and Scenario 6 where low throughput C&C and data exfiltration traffic is mixed
with licit traffic, and finally a dataset containing all the above anomalies. Keep-alive
messages are only present in the dataset that use standard behaviors.

For each dataset and each model, we took the data points from a from a random
illicit capture and merged them with an equal amount of licit samples drew from the
training data. This set was used to test the best model found in k-fold Cross-Validation
in new and unseen bot malware traffic, simulating, therefore, a real-world scenario.
The rest of the licit and illicit data points were used as training sets for the k-fold
Cross-Validation, using 10 folds (k = 10), although illicit instances were only used
to create the validation sets for hyper-parameter optimization, and the test sets to
evaluate the best model in each fold, both with also an equal amount of licit samples.

Table 4.1 showcases the ranges used for hyper-parameter optimization of thr used
AD models.

Model Parameter Ranges

GMM n_components: [5, 50]
KDE kernel: gaussian, bandwidth: [0.001, 10]
LOF n_neighbors: [2, 50]

ν-SVM kernel: rbf, nu: [0.01, 0.5], gamma: [0.01, 0.5]

Table 4.1: k-fold

In what concerns training and testing times, we register the time that a model
took in hyper-parameter searching, as well as in the classification of test samples, in
each fold. Because absolute times depend, for instance, on the hardware, or on the
programming language used, we compared the relative times (speedup) of the models
to the training and testing times of the GMM model ran without any dimensionality

16https://jupyter.org/

70

reduction technique, and using the dataset with a sliding window of 15 minutes with
keep-alive messages. Its average training time was 31m53s ± 2m37s and its average
testing time was 4m14s± 43s, with a 95% confidence interval, and all models were run
in a machine with an Intel Core i7-1165G7 Processor and 16GB of RAM. The speedup
formula used to compute the relative times is given by:

S = Tref

Tmodel

(4.2)

where, Tref is the training, or testing, time of the above GMM model used as reference,
and Tmodel, the training, or testing, time of the model being tested.

4.5.1 Dataset with a sliding window of 70 minutes

4.5.1.1 Datasets with keep-alive messages

Keep-alive may create more traffic than the necessary in some scenarios. As we showcased
in section 4.3, in this scenario, only two features are enough to able to linearly separate
and classify the given data when using "big enough" observation windows. Consequently,
we used the features pps_upload_max_2250 and pps_upload_quantile_85_2250 from
the Dataset with a sliding window of 70 minutes to train the AD classifiers and test
them against malware bot traffic that use keep-alive messages. One must be aware
that using these two features will only work with these particular anomalies with keep-
alive messages. Other keep-alive message patterns might have less linearly separable
features, or other linear separable features. Table 4.2 shows that most of the tested
AD had no difficulties in correctly classifying the test data, with KDE having an ideal
classification score on 10-fold Cross-Validation test sets and GMM and One-Class SVM
with very close ideal scores. In term of false positives, KDE and One-Class SVM had
no false positives on 10-fold Cross-Validation test sets, with One-Class SVM having the
best training time.

WITH Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.07± 0.82 100.0 ± 0.0 55.21± 0.76 99.55± 0.08
FPR 1.77± 1.56 0.0 ± 0.0 43.33± 0.31 0.0 ± 0.0

Training speedup 45.89 61.76 60.35 689.93
Testing speedup 100.0 898.61 8090.49 3586.33

Table 4.2: Average results on 10-fold test sets with Dimensionality Reduction for datasets
with keep-alive messages and with a sliding window of 70 minutes (in percentage,
with a 95% confidence interval)

Interestingly, on the test set with new and unseen bot malware traffic, LOF registed
a perfect classification score, even if on the 10-fold Cross-Validation its score were far
for satisfactory. The rest of the AD also performed very well with no false positives
whatsoever.

71

WITH Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 100.0 100.0 100.0 98.77
FPR 0.0 0.0 0.0 0.0

Table 4.3: Results of tests on new and unseen bot malware traffic with Dimensionality
Reduction for datasets with keep-alive messages and with a sliding window of 70
minutes

4.5.1.2 Datasets without keep-alive messages

Results shown in Table 4.4 state that most of the tested AD models perform well on the
majority types of anomalies, which do not have keep-alive messages. For illicit traffic
that uses standard behaviors, or that mimicks licit traffic, KDE is the model that shows
the best F1-Score and a very low FPR, nonetheless One-Class SVM, or One-Class SVM,
also shows an ideal FPR. In addiction, One-Class SVM has the best testing speedup
for anomalies with standard behaviors and for anomalies that mimic licit traffic.

In anomalies mixed with licit traffic and when all types of anomalies are present,
however, AD models had a decrease in performance, with worst F1-Scores and high
FPRs. Nonetheless, KDE shows the best F1-Score and FPR in anomalies mixed with
licit traffic, and when all anomalies are present, LOF shows the best F1-Score and
One-Class SVM the best FPR. One common aspect to the majority of the results is
that models with lower F1-Scores often show higher FPRs, which means that they often
produce false alarms, even though they are able to identify most of the anomalies (high
Recall).

In terms of training and testing times, One-Class SVM has the best testing times
for anomalies with standard behaviors and anomalies that mimic licit traffic, however
LOF has the best training and test times for anomalies mixed with licit traffic and
when all anomalies are present.

The results of tests on new and unseen bot malware traffic (Table 4.5) show that,
once again, KDE was the model with the best F1-Scores and FPRs for anomalies with
stantard behaviors and anomalies that mimic licit traffic. When the anomalies were
mixed with licit traffic, boundary-based AD models, namely LOF and One-Class SVM,
had the worst results, with low F1-Scores and a high number of false positives. For this
type of anomalies, GMM was the model with the best F1-Score and the only without
any false alarms. When all anomalies are present, GMM was also the model with the
best F1-Score, but all models were able to correctly classify every licit data point.

When PCA is active (Table 4.6), keeping 85% of variance, some models slightly
increased their performance, while others slightly decreased, although in most of them,

72

WITHOUT Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 97.83± 1.27 99.99 ± 0.01 99.75± 0.09 98.86± 0.21
FPR 3.95± 2.29 0.0 ± 0.0 0.10± 0.08 0.0 ± 0.0

Training speedup 4.34 15.58 15.72 4.93
Testing speedup 4.73 23.30 33.47 234.07

mimicking licit traffic F1-Score 99.08± 0.71 99.93 ± 0.05 98.95± 0.23 97.14± 0.32
FPR 1.29± 1.28 0.06 ± 0.07 0.82± 0.41 3.46± 0.44

Training speedup 4.66 85.32 2.18 5.36
Testing speedup 9.60 22.71 35.55 269.18

mixed with licit traffic F1-Score 88.93± 1.56 92.28 ± 0.41 81.91± 0.72 84.26± 0.73
FPR 14.41± 2.88 4.97 ± 0.80 17.36± 1.78 12.93± 0.88

Training speedup 4.44 16.49 16.92 5.85
Testing speedup 11.84 38.98 41.86 33.67

all anomalies F1-Score 75.10± 1.49 88.03± 0.85 89.44 ± 0.55 87.69± 0.52
FPR 31.89± 1.17 18.04± 1.36 11.77± 1.52 6.58 ± 2.38

Training speedup 3.90 17.11 18.08 6.60
Testing speedup 4.39 24.56 42.86 41.48

Table 4.4: Average results on 10-fold test sets without Dimensionality Reduction for datasets
without keep-alive messages and with a sliding window of 70 minutes (in per-
centage, with a 95% confidence interval)

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.95 100.0 99.20 98.97
FPR 0.0 0.0 1.28 0.0

mimicking licit traffic F1-Score 99.84 99.98 99.19 89.04
FPR 0.0 0.0 0.0 16.82

mixed with licit traffic F1-Score 95.96 89.48 78.87 79.52
FPR 0.0 8.69 22.03 20.30

all anomalies F1-Score 99.85 98.07 94.28 89.29
FPR 0.0 0.0 0.0 0.0

Table 4.5: Results of tests on new and unseen bot malware traffic without Dimensionality
Reduction for datasets without keep-alive messages and with a sliding window
of 70 minutes

their training and testing speedups vastly increased, meaning that using PCA is more
computationally efficient. In anomalies that use standard behaviors, that mimic licit
traffic, and that are mixed with licit traffic, KDE continues to be the model that has
the best F1-Score, and obtained the best testing time in anomalies that mimic licit
traffic, however, its FPR slightly increased. The FPR of One-Class SVM remains to be
ideal for anomalies with standard behaviors, and LOF was the model that had the best
testing time. When we tested the chosen AD models with all anomalies, One-Class
SVM obtained the best F1-Score, although, that F1-Score is lower when comparing
with the best F1-Scores when the different types of anomalies where tested separately.

73

Its FPR was also a bit high, although lesser than the best FPR when bot malware
traffic is mixed with licit traffic. LOF obtained the best testing times in last type of
anomalies and when all anomalies are present.

WITH PCA
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.42± 0.46 99.77 ± 0.17 98.41± 0.23 98.26± 0.16
FPR 0.94± 0.90 0.36± 0.33 1.50± 0.3 0.0 ± 0.0

Training speedup 34.96 54.36 56.55 62.72
Testing speedup 90.51 654.12 1559.69 1058.02

mimicking licit traffic F1-Score 98.07± 0.31 99.43 ± 0.09 96.71± 0.39 95.24± 0.38
FPR 2.24± 0.60 0.35 ± 0.15 2.27± 0.66 3.30± 0.31

Training speedup 30.72 49.71 54.95 57.86
Testing speedup 59.98 6665.90 2482.30 550.40

mixed with licit traffic F1-Score 70.67± 0.74 92.25 ± 0.54 82.58± 0.73 85.66± 0.58
FPR 29.28± 1.77 5.86 ± 0.94 17.75± 2.11 12.26± 0.59

Training speedup 32.45 48.36 46.20 52.99
Testing speedup 58.76 606.20 3426.20 142.22

all anomalies F1-Score 86.72± 0.81 82.16± 0.94 88.53± 0.48 88.65 ± 0.47
FPR 18.57± 1.39 25.49± 1.02 11.71± 1.41 4.19 ± 0.60

Training speedup 36.89 60.02 57.69 68.67
Testing speedup 63.13 508.22 3594.42 171.01

Table 4.6: Average results on 10-fold test sets with PCA for datasets without keep-alive
messages and with a sliding window of 70 minutes (in percentage, with a 95%
confidence interval)

When the above methods were tested against new and unseen bot malware traffic
(Table 4.7), results where in pair with the Cross-Validation scores, with FPRs being
ideal most of the time, however, in anomalies mixed with licit traffic, FPRs where
higher than those reported in Cross-Validation. KDE was the model that performed
best in all types of anomalies.

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.68 99.76 99.26 97.98
FPR 0.0 0.0 0.0 0.0

mimicking licit traffic F1-Score 99.17 99.62 98.24 96.69
FPR 0.0 0.0 0.0 0.0

mixed with licit traffic F1-Score 73.68 90.35 71.09 82.87
FPR 27.50 10.01 32.36 16.61

all anomalies F1-Score 97.39 99.02 93.49 89.49
FPR 0.0 0.0 0.0 0.0

Table 4.7: Results of tests on new and unseen bot malware traffic with PCA for datasets
without keep-alive messages and with a sliding window of 70 minutes

74

4.5.2 Dataset with a sliding window of 15 minutes

4.5.2.1 Datasets with keep-alive messages

As showcased in section Dataset Exploration, since for observation windows with smaller
sizes and malware traffic with keep-alive messages we do not have data with enough
deviations to be linearly separable, we decided to train and test the models without
any dimensionality reduction by keeping all features and with PCA keeping 90% of the
variance.

The results displayed in tables 4.8 and 4.9 show that LOF obtained the best F1-Score
on 10-fold test sets with very FPRs, however, its F1-Score on the test with new and
unseen bot malware traffic was the lowest among all tested AD models. One-Class
SVM did not report any false positives whatsoever and had a great F1-Score in both
Cross-Validation and new and unseen bot malware test set, being also the model with
the fastest testing times.

WITHOUT Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 76.42± 0.35 76.61± 0.17 99.41 ± 0.04 99.32± 0.07
FPR 30.93± 0.29 30.77± 0.14 0.06± 0.13 0.0 ± 0.0

Training speedup 1.0 4.47 3.43 0.81
Testing speedup 1.0 3.79 6.86 63.5

Table 4.8: Average results on 10-fold test sets without Dimensionality Reduction for datasets
with keep-alive messages and with a sliding window of 15 minutes (in percentage,
with a 95% confidence interval)

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 100.0 100.0 83.20 97.51
FPR 0.0 0.0 0.0 0.0

Table 4.9: Results of tests on new and unseen bot malware traffic without Dimensionality
Reduction for datasets with keep-alive messages and with a sliding window of 15
minutes

When training and testing the models with PCA, results in tables 4.10 and 4.11
show that was the One-Class SVM, this time, that obtained the best F1-Score on 10-fold
Cross-Validation, with no false positives, and, again, with the best testing time. On
the test set with new and unseen bot malware traffic, GMM and KDE obtained ideal
F1-Scores and no AD model reported any false positives whatsoever.

75

WITH PCA
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 76.39± 0.45 76.31± 0.50 89.21± 0.57 99.35 ± 0.09
FPR 30.96± 0.37 31.02± 0.41 17.17± 0.71 0.0 ± 0.0

Training speedup 18.94 38.26 35.43 18.22
Testing speedup 25.4 84.67 875.86 976.92

Table 4.10: Average results on 10-fold test sets with PCA for datasets with keep-alive
messages and with a sliding window of 15 minutes (in percentage, with a 95%
confidence interval)

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 100.0 100.0 99.53 99.26
FPR 0.0 0.0 0.0 0.0

Table 4.11: Results of tests on new and unseen bot malware traffic with PCA for datasets
with keep-alive messages and with a sliding window of 15 minutes

4.5.2.2 Datasets without keep-alive messages

With a sliding window of 15 minutes, anomalies with standard behaviors and that
mimic licit traffic reported great performance on detecting these type of anomalies
(Table 4.12), nonetheless, for anomalies that mimic licit traffic, FPRs slightly increased.
For anomalies mixed with licit traffic and when all anomalies were present, performance
results were suboptimal with KDE having the highest detection rate, but lower FPRs
than the LOF and One-Class SVM algorithms.

WITHOUT Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.57± 0.21 99.63 ± 0.10 98.95± 0.16 95.58± 0.42
FPR 0.35± 0.41 0.43± 0.26 0.65± 0.31 0.0 ± 0.0

Training speedup 1.1 3.13 10.99 2.99
Testing speedup 1.38 5.91 23.09 63.5

mimicking licit traffic F1-Score 93.12± 0.98 97.73 ± 0.18 94.86± 0.22 90.05± 0.37
FPR 7.15± 2.71 1.54 ± 0.33 3.76± 0.61 1.77± 0.28

Training speedup 2.64 10.28 10.69 3.32
Testing speedup 3.26 13.37 23.09 10.16

mixed with licit traffic F1-Score 70.27± 1.34 81.01 ± 0.32 71.35± 0.58 73.02± 0.46
FPR 32.71± 1.97 15.71± 1.99 31.73± 1.10 10.92 ± 0.25

Training speedup 2.91 8.14 10.75 3.07
Testing speedup 3.63 15.88 25.4 2.25

all anomalies F1-Score 84.88± 1.20 84.89 ± 0.59 84.47± 0.55 81.72± 0.34
FPR 19.31± 1.68 21.32± 1.23 18.73 ± 1.68 19.11± 1.23

Training speedup 3.57 11.59 13.1 3.63
Testing speedup 5.29 18.14 28.2 14.11

Table 4.12: Average results on 10-fold test sets without Dimensionality Reduction for datasets
without keep-alive messages and with a sliding window of 15 minutes (in
percentage, with a 95% confidence interval)

76

Testing the best models obtained in Cross-Validation with data containing new and
unseen malware traffic (Figure 4.13), results show that for anomalies with standard
behaviors and anomalies that mimic licit traffic almost all models reported ideal FPRs
with great detection rates, however for anomalies mixed with licit traffic and when
all anomalies were present, the detection rates and the number of false positives were
suboptimal.

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.99 98.20 99.29 95.41
FPR 0.0 0.0 0.04 0.0

mimicking licit traffic F1-Score 94.99 98.46 95.60 90.94
FPR 0.0 0.0 0.0 0.0

mixed with licit traffic F1-Score 41.11 73.64 70.39 69.15
FPR 49.94 28.49 33.32 18.74

all anomalies F1-Score 64.22 40.23 77.84 40.62
FPR 39.07 48.87 26.84 51.65

Table 4.13: Results of tests on new and unseen bot malware traffic without Dimensionality
Reduction for datasets without keep-alive messages and with a sliding window
of 15 minutes

When using PCA as method for dimensionality reduction in datasets with a sliding
window of 15 minutes, Table 4.14 shows that the detection rates and FPRs were in
general slightly worse than using all features, however for anomalies that mimic licit
traffic, the best performing model, KDE, increased its performance and its training and
testing times. tfor

Testing the models that performed best with data with new and unseen malware
bot traffic, in anomalies with standard behaviors, KDE was the best performing model,
however all models reported ideal FPRs, and in anomalies that mimic licit traffic, GMM
obtained the lowest FPR. KDE was the model with the best detection rated for all
kinds of anomalies, and One-Class SVM obtained an ideal FPR also when all anomalies
were present.

In sum, comparing to the datasets with a sliding window of 70 minutes, using
datasets with smaller observation windows decreased the performance of Novelty models,
nonetheless, it is still possible to have great detection rates with low false positives with
anomalies that use standard behaviors and anomalies that mimic licit traffic, being
faster to detect those type of anomalies. In anomalies mixed with licit traffic, however,
training these Novelty models with these window sizes did not produce optimal results.

77

WITH PCA
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 98.38 ± 0.30 97.46± 1.71 96.35± 0.41 97.21± 0.21
FPR 1.38 ± 0.88 3.87± 3.22 2.72± 1.62± 0.25

Training speedup 19.52 32.98 34.97 19.32
Testing speedup 25.4 254.00 301.20 409.68

mimicking licit traffic F1-Score 85.38± 0.48 98.03 ± 0.18 92.57± 0.27 86.44± 0.63
FPR 16.94± 1.20 1.33 ± 0.22 5.61± 0.40 13.12± 4.32

Training speedup 20.79 37.14 39.04 21.26
Testing speedup 28.22 3629 983.75 73.09

mixed with licit traffic F1-Score 54.49± 0.87 78.99 ± 0.55 68.73± 1.49 71.82± 0.56
FPR 45.10± 0.95 19.24 ± 1.42 33.91± 1.82 28.37± 0.70

Training speedup 19.32 28.55 37.51 19.78
Testing speedup 33.55 254 1788.73 32.31

all anomalies F1-Score 78.17± 0.36 81.07± 2.09 83.72 ± 0.52 81.67± 0.35
FPR 27.80± 0.54 26.30± 2.09 19.47± 0.99 11.01 ± 0.41

Training speedup 20.35 35.15 36.99 17.11
Testing speedup 28.22 371.39 1137.64 15.34

Table 4.14: Average results on 10-fold test sets with PCA for datasets without keep-alive
messages and with a sliding window of 15 minutes (in percentage, with a 95%
confidence interval)

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 98.94 99.41 97.82 97.93
FPR 0.0 0.0 0.0 0.0

mimicking licit traffic F1-Score 93.87 98.09 94.47 95.12
FPR 0.60 0.73 0.81 1.13

mixed with licit traffic F1-Score 43.95 82.05 77.85 73.88
FPR 54.12 10.71 22.68 24.73

all anomalies F1-Score 95.92 98.93 93.06 85.46
FPR 0.52 0.17 3.86 0.0

Table 4.15: Results of tests on new and unseen bot malware traffic with PCA for datasets
without keep-alive messages and with a sliding window of 15 minutes

4.5.3 Datasets with a sliding window of 75 minutes

4.5.3.1 Datasets with keep-alive messages

Similar to section 4.5.1.1, using bigger observation windows make the illicit data more
divergent from the licit instances, and so, as showcased in section 4.3, we only need two
features for data to be linearly separable. For datasets using a sliding window of 75
minutes, the features chosen to train the AD algorithms with linearly separable data
were pps_upload_quantile_99_2700 and avg_pkt_len_upload_mean_2700. Table
4.16 shows that the best performing model was the KDE with ideal detection and false
positive rates, however, the One-Class SVM obtained the best training and testing

78

times with no false positives on Cross-Validation.

WITH Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.67± 0.29 100.0 ± 0.0 99.78± 0.10 99.44± 0.03
FPR 0.64± 0.57 0.0 ± 0.0 0.10± 0.11 0.0 ± 0.0

Training speedup 52.26 59.72 58.83 94.65
Testing speedup 144.88 834.15 2495.39 3898.37

Table 4.16: Average results on 10-fold test sets with Dimensionality Reduction for datasets
with keep-alive messages and with a sliding window of 75 minutes (in percentage,
with a 95% confidence interval)

In the test set with new and unseen malware bot traffic with keep-alive messages,
all models performed as expected with KDE and GMM having ideal detection rates
and FPRs.

WITH Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 100.0 100.0 99.95 99.44
FPR 0.0 0.0 0.0 0.0

Table 4.17: Results of tests on new and unseen bot malware traffic with Dimensionality
Reduction for datasets with keep-alive messages and with a sliding window of
75 minutes

4.5.3.2 Datasets without keep-alive messages

With a sliding window of 75 minutes and without keep-alive messages in malware bot
traffic (Table 4.18), KDE was the model that had the best detection rates in all types of
anomalies, however, when all anomalies were present LOF obtained the best detection
rate. In anomalies that use standard behaviors KDE and One-Class SVM obtained ideal
FPRs, with One-Class SVM obtaining again an ideal FPR in anomalies that mimic
licit traffic and having the best testing times in all situations.

In Table 4.19, testing the best model instances with new and unseen bot malware
traffic reveals that in anomalies with standard behaviors, GMM matched the detection
and false positive rates of KDE, and in general, KDE obtained the best detection rates.
However, when all anomalies are present, GMM obtained a detection rate greater than
KDE.

When PCA was used (Table 4.20), KDE continued to be the model that had the
best detection rates in the three types of anomalies, having slightly better detection
rates with PCA in anomalies using standard behaviors and that mimic licit traffic than
without dimensionality reduction, however, in anomalies mixed with licit traffic, the

79

WITHOUT Dimensionality Reduction
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 98.83± 0.97 100.0 ± 0.0 99.85± .05 99.27± 0.30
FPR 2.16± 1.81 0.0 ± 0.0 0.22± 0.09 0.0 ± 0.0

Training speedup 10.27 24.76 22.45 18.31
Testing speedup 11.34 43.89 54.58 638.44

mimicking licit traffic F1-Score 99.73± 0.23 99.90 ± 0.04 99.47± 0.13 98.70± 0.20
FPR 0.46± 0.47 0.09± 0.08 0.38± 0.26 0.0 ± 0.0

Training speedup 9.25 19.45 20.86 18.66
Testing speedup 21.93 34.42 49.24 412.43

mixed with licit traffic F1-Score 84.43± 3.05 98.02 ± 0.16 90.93± 0.59 93.13± 0.31
FPR 21.90± 3.31 0.50 ± 0.24 7.16± 1.29 3.75± 0.26

Training speedup 5.62 8.66 10.84 7.29
Testing speedup 8.01 17.35 22.31 44.94

all anomalies F1-Score 76.88± 2.14 86.16± 0.58 93.50 ± 0.40 92.57± 0.34
FPR 30.39± 1.79 20.93± 0.76 6.64± 1.02 1.10 ± 0.16

Training speedup 11.43 22.69 19.89 14.82
Testing speedup 12.33 36.49 44.92 64.67

Table 4.18: Average results on 10-fold test sets without Dimensionality Reduction for datasets
without keep-alive messages and with a sliding window of 75 minutes (in
percentage, with a 95% confidence interval)

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 100.0 100.0 99.06 99.32
FPR 0.0 0.0 1.81 0.0

mimicking licit traffic F1-Score 99.97 99.98 99.59 98.44
FPR 0.0 0.0 0.0 0.0

mixed with licit traffic F1-Score 96.97 98.54 94.51 94.64
FPR 5.02 0.0 0.0 0.0

all anomalies F1-Score 99.98 98.92 96.00 92.99
FPR 0.0 0.0 0.0 0.0

Table 4.19: Results of tests on new and unseen bot malware traffic with PCA for datasets
without keep-alive messages and with a sliding window of 70 minutes

model registed a FPR greater than 1%. One-Class SVM also increased its detection
rates being the model with the highest detection rate and the lowest FPR when all
anomalies are present, and it was the model had, overall, the best training and testing
times.

Testing the best performing models in Cross-Validation with new and unssen bot
malware traffic (Table 4.21) shows than, once again, KDE the model that had the best
detection and false positive rates overall. In anomalies with standard behaviors, GMM
had also an ideal detection and false positive rate, and when all anomalies were present,
GMM was the best performing model.

In sum, comparing to the datasets with a sliding window of 70 minutes and the

80

WITH PCA
Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 99.73± 0.45 100.0 ± 0.0 99.89± 0.07 99.36± 0.13
FPR 0.50± 0.85 0.0 ± 0.0 0.06± 0.08 0.0 ± 0.0

Training speedup 31.58 48.03 27.15 59.95
Testing speedup 47.43 194.71 76.67 1967.65

mimicking licit traffic F1-Score 97.83± 2.04 99.93 ± 0.04 99.24± 0.21 98.86± 0.17
FPR 3.72± 3.52 0.11± 0.08 0.46± 0.18 0.0 ± 0.0

Training speedup 32.06 52.04 24.99 59.01
Testing speedup 66.59 1255.81 68.92 1342.73

mixed with licit traffic F1-Score 92.76± 1.82 97.46 ± 0.29 89.12± 0.60 91.86± 0.38
FPR 9.62± 3.29 1.55 ± 0.36 9.71± 1.18 7.08± 0.47

Training speedup 29.97 45.10 26.00 54.67
Testing speedup 52.96 544.60 68.41 318.70

all anomalies F1-Score 76.84± 0.65 85.22± 0.64 93.15± 0.38 93.63 ± 0.47
FPR 30.57± 0.55 22.13± 0.78 6.57± 0.94 2.51 ± 0.36

Training speedup 28.33 48.11 26.61 60.39
Testing speedup 70.26 194.96 71.14 326.28

Table 4.20: Average results on 10-fold test sets with PCA for datasets without keep-alive
messages and with a sliding window of 75 minutes (in percentage, with a 95%
confidence interval)

Type of anomaly GMM KDE LOF One-Class SVM

standard behaviors F1-Score 100.0 100.0 88.57 99.46
FPR 0.0 0.0 18.38 0.0

mimicking licit traffic F1-Score 99.95 99.98 99.64 98.73
FPR 0.0 0.0 0.0 0.0

mixed with licit traffic F1-Score 87.14 96.34 85.36 90.12
FPR 18.48 4.12 17.10 9.56

all anomalies F1-Score 99.98 99.54 95.99 94.42
FPR 0.0 0.0 0.0 0.0

Table 4.21: Results of tests on new and unseen bot malware traffic with PCA for datasets
without keep-alive messages and with a sliding window of 75 minutes

datasets with a sliding window of 15 minutes, using larger observation windows increased
the performance of Novelty models, achieving higher detection rates and very low false
positive rates, even for anomalies that generate very low throughput rates.

4.6 Conclusion

Training Machine Learning classifiers on every type of existing bot malware behaviors is
realistically not possible. This work covered only a few possible behaviors that malware
bots might have with the objective to evade the current security measures, although
many other possible illicit behaviors may arise. In order to create a reliable model, even

81

for anomalies that one is not aware of, we trained AD models that resort in Novelty
Detection techniques and that only need to be familiar with licit behaviors, modelling
a representation of normality. If by any means, legitimate DNS usages change, or if
new ones arise, they only have to be re-trained with the new licit data.

The reported results show that in anomalies that have regular throughput rates,
namely anomalies that use standard behaviors and anomalies that mimic licit traffic,
most AD models perform very well, with satisfactory F1-Scores and very low false
alarms, nonetheless, for low throughput bot malware traffic were bots only send a few
packets from time to time, it is still possible to have satisfactory results with a FPR
< 1% using KDE. More moments of decision with larger observation windows may be
needed to evaluate if the rest of the tested classical Novelty Detection algorithms can
generate satisfactory FPRs for these anomalies using low throughput rates.

These tests were conducted in with a licit dataset that was produced by capturing
licit behaviors from multiple operating systems, browser applications and configurations.
Nonetheless, all these licit network traces only represent different behaviors from one user,
and so, it would be advantageous to gather more behaviors from multiple users, where
density-based AD algorithms may use them to create denser distributions of normality
and boundary-based AD algorithms to create more precise decision boundaries.

82

CHAPTER 5
Conclusions and future work

The study in chapter 2 showed that the DNS infraestructure is vulnerable by default
to illicit usages. Since it is a critical part of the Internet, multiple studies regarding
the usage of DNS as a covert channel were conducted, aiming to identify the illicit
communications of malware bots and botnets. Notwithstanding, they all rely on DPI
techniques, such as analysing DNS queries entropy’s, which may contain sensitive
information. Moreover, these methodologies are ineffective when encrypted DNS traffic
is being used inside a corporate network. On the other hand, the proposed AD
mechanisms focus on the behavioral and temporal characteristics of DNS traffic instead
of DNS payloads, being more robust to a wider range of possible illicit usages of DNS.

These methodologies extract statistical features from the captured network metrics
that might reveal divergent behaviors between licit and illicit traffic patterns and
different underlying silence and activity periods. Furthermore, the usage of Novelty
Detection algorithms for AD tasks enables us to only model the typical DNS behaviors,
so that the trained classifier is not bound to any specific type of malware bot behavior,
with the addition of being robust to new and unseen phenomena. This class of Machine
Learning algorithms, although, cannot be optimized with standard Feature Selection
methods, but instead with unsupervised dimensionality reduction techniques, since
Novelty Detection models fundamentally train in an unsupervised way, and they
must not have prior knowledge regarding malware behaviors. A common unsupervised
dimensionality reduction technique is the PCA, however, we also proposed an alternative
unsupervised solution for AD using a High Correlation Filter.

To validate those mechanisms to detect illicit DNS usages, we designed 6 scenarios of
possible bot malware behaviors. The first two scenarios were designed to replicate C&C
communications with Push mechanisms and data exfiltration using parametric statistical
distributions similar to the collected licit ones. Scenarios 5 and 6 have the same purpose,

83

however we used a different method to mimic licit traffic, which is collecting the licit
traffic metrics and generating packet rates and packet lengths according to the empirical
probabilities processed from those licit captures. This is essentially a non-parametric
way of mimicking licit traffic. Finally, the two last scenarios were produced to cover
those cases where malware bots generate C&C and data exfiltration traffic by sending
fewer packets with greater silence periods in between, aiming to be blended with licit
traffic. These type of low throughput illicit communications are very difficult to detect
with the current mechanisms.

In order to test those scenarios with the chosen Novelty Detection algorithms,
Scenarios 1 and 2 were grouped in anomalies with standard behaviors, Scenarios 3 and
4 in anomalies mimicking licit traffic, and Scenarios 5 and 6 in anomalies mixed with
licit traffic. We also tested those models with the presence of all types of anomalies,
and with the presence of keep-alive messages, for the case of anomalies with standard
behaviors, all with different sliding windows with multiple observation sub-windows,
aiming to capture different perspectives of the collected data.

In the first type of anomalies, the Novelty Detection models were able to detect
the anomalous behaviors with ease when the illicit data did not contained keep-alive
messages. Some models were able to obtain very high detection rates (98%− 100%)
and an ideal FPRs, with and without PCA, with good training and testing times, as it
was the case of KDE for a 99% detection rate and One-Class SVM with an ideal 0%
FPR. When keep-alive messages are present, boundary-based models outperformed
density-based models with One-Class SVM reaching 98% detection rates with smaller
sliding windows, and with larger sliding windows, it was possible to achieve ideal
detection rates with no false positives.

Anomalies that mimic licit behaviors were also effortless to detect with detection
rates ranging between 97% and 99% with and without PCA. This time FPRs were a
bit higher, meaning that licit behaviors were more mistook with illicit samples, however
some FPRs were still under 1%.

Being more difficult to detect, the detection rates for anomalies with low throughput
rates that were mixed with licit traffic were satisfactory, with the best detection rate
reaching 98% with a FPR lower than 1%, however the FPRs for most classifiers were
higher than the other two types of anomalies. Besides that, tests on new and unseen
malware bot traffic were very satisfactory, with the best detection rate being 98% with
an ideal FPR.

When traffic from all types of anomalies were present in datasets, the detection rates
ranged between 83% and 93%, i.e. overall lower than when only one type of anomaly was
present. False positives increased, however, it was still possible to achieve FPRs in the
order of 1%. The reason for these lower performance metrics is that some anomalies may

84

require different hyper-parameter settings. We conclude that using hyper-parameter
searching may not be the best practice for AD, as it may overfit particular anomalies.
Using random hyper-parameter settings, or choosing hyper-parameter settings with
proven efficacy in this particular problem of AD is more adequate.

In conclusion, these tests showed the viability of the methodologies proposed in
chapter 3, even if it is impossible to check all kinds of bot malware behaviors, and sets
the ground for the development of more robust and privacy focused solutions for bot
malware and botnet detection that rely in AD using network traffic behaviors instead
of analyzing DNS query payloads and other DPI techniques.

5.1 Future work

Anomaly Detection is a vast field where we barely scratched the surface. In our work, we
tested our licit and illicit data with four classic Novelty Detection algorithms, however,
many other algorithms can be tried out, for instance, by using Deep Anomaly Detection
models such as Neural Generative Models and Normalizing Flows, which might be
useful to detect malware bots that use low throughput rates with higher detection rates,
lower FPRs and smaller observation windows.

Popular DNS Tunneling tools are designed to be as efficient as possible, with high
upstream and downstream throughputs and low latency so that surfing the web, or
downloading files at a reasonable time over DNS, is possible. Although, they often
achieve it by generating large DNS packets aiming to reduce network congestion, which
can be an inconvenient for a malware bot that attempts to mimic a licit behavior.
Keep-alive messages are also an inconvenient as they can induce additional overhead
to these tools. In this work, we resolved the problem of bigger DNS packet sizes than
usual by editing the source code of DNS2TCP, however, it would be interesting to have
proper DNS Tunneling tools specifically designed to emulate licit DNS usages with
realistic packet sizes and higher configuration capabilities, such as the possibility to
configure RRs, encoding schemes, and disable keep-alive messages.

85

References

[1] A. Nadler, A. Aminov, and A. Shabtai, “Detection of malicious and low throughput data
exfiltration over the dns protocol,” Computers & Security, vol. 80, pp. 36–53, 2019, issn:
0167-4048. doi: https://doi.org/10.1016/j.cose.2018.09.006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818304000.

[2] C. Wilson, “Botnets, cybercrime, and cyberterrorism: Vulnerabilities and policy issues for
congress,” LIBRARY OF CONGRESS WASHINGTON DC CONGRESSIONAL RESEARCH
SERVICE, 2008.

[3] K. Alieyan, A. ALmomani, A. Manasrah, and M. M. Kadhum, “A survey of botnet detection
based on dns,” Neural Computing and Applications, vol. 28, no. 7, pp. 1541–1558, 2017.

[4] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and botnet detection,” in 2009
Third International Conference on Emerging Security Information, Systems and Technologies,
2009, pp. 268–273. doi: 10.1109/SECURWARE.2009.48.

[5] A. Karim, R. B. Salleh, M. Shiraz, S. A. A. Shah, I. Awan, and N. B. Anuar, “Botnet detection
techniques: Review, future trends, and issues,” Journal of Zhejiang University SCIENCE C,
vol. 15, no. 11, pp. 943–983, Nov. 2014, issn: 1869-196X. doi: 10.1631/jzus.C1300242. [Online].
Available: https://doi.org/10.1631/jzus.C1300242.

[6] H. K. et al, “Security of cyber-physical systems,” in The Structure of Botnets, 2020, pp. 88–103.
doi: 10.1007/978-3-030-45541-5.

[7] D. Ramsbrock and X. Wang, “The botnet problem,” in Dec. 2013, pp. 223–238, isbn:
9780123943972. doi: 10.1016/B978-0-12-394397-2.00012-X.

[8] N. Negash and X. Che, “An overview of modern botnets,” Information Security Journal: A
Global Perspective, vol. 24, no. 4-6, pp. 127–132, 2015. doi: 10.1080/19393555.2015.1075629.
eprint: https://doi.org/10.1080/19393555.2015.1075629. [Online]. Available: https:
//doi.org/10.1080/19393555.2015.1075629.

[9] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam, “A taxonomy of botnet
behavior, detection, and defense,” IEEE Communications Surveys Tutorials, vol. 16, no. 2,
pp. 898–924, 2014. doi: 10.1109/SURV.2013.091213.00134.

[10] F. L. Greitzer, J. R. Strozer, S. Cohen, A. P. Moore, D. Mundie, and J. Cowley, “Analysis of
unintentional insider threats deriving from social engineering exploits,” in 2014 IEEE Security
and Privacy Workshops, 2014, pp. 236–250. doi: 10.1109/SPW.2014.39.

[11] T. Ranka, “Taxonomy of botnet threats,” 2006.

[12] A. K. Sood and S. Zeadally, “A taxonomy of domain-generation algorithms,” IEEE Security
Privacy, vol. 14, no. 4, pp. 46–53, 2016. doi: 10.1109/MSP.2016.76.

[13] G. Ollmann, “Botnet communication topologies,” Retrieved September, pp. 1–9, 2009.

[14] G. Vormayr, T. Zseby, and J. Fabini, “Botnet communication patterns,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2768–2796, 2017. doi: 10.1109/COMST.2017.2749442.

87

https://doi.org/https://doi.org/10.1016/j.cose.2018.09.006
https://www.sciencedirect.com/science/article/pii/S0167404818304000
https://doi.org/10.1109/SECURWARE.2009.48
https://doi.org/10.1631/jzus.C1300242
https://doi.org/10.1631/jzus.C1300242
https://doi.org/10.1007/978-3-030-45541-5
https://doi.org/10.1016/B978-0-12-394397-2.00012-X
https://doi.org/10.1080/19393555.2015.1075629
https://doi.org/10.1080/19393555.2015.1075629
https://doi.org/10.1080/19393555.2015.1075629
https://doi.org/10.1080/19393555.2015.1075629
https://doi.org/10.1109/SURV.2013.091213.00134
https://doi.org/10.1109/SPW.2014.39
https://doi.org/10.1109/MSP.2016.76
https://doi.org/10.1109/COMST.2017.2749442

[15] E. V. Ruitenbeek and W. H. Sanders, “Modeling peer-to-peer botnets,” in 2008 Fifth Interna-
tional Conference on Quantitative Evaluation of Systems, 2008, pp. 307–316. doi: 10.1109/
QEST.2008.43.

[16] N. Pantic and M. I. Husain, “Covert botnet command and control using twitter,” in Proceedings
of the 31st Annual Computer Security Applications Conference, ser. ACSAC ’15, Los Angeles,
CA, USA: Association for Computing Machinery, 2015, pp. 171–180, isbn: 9781450336826.
doi: 10.1145/2818000.2818047. [Online]. Available: https://doi.org/10.1145/2818000.
2818047.

[17] H. R. Zeidanloo and A. A. Manaf, “Botnet command and control mechanisms,” in 2009 Second
International Conference on Computer and Electrical Engineering, vol. 1, 2009, pp. 564–568.
doi: 10.1109/ICCEE.2009.151.

[18] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels and countermeasures
in computer network protocols,” IEEE Communications Surveys & Tutorials, vol. 9, no. 3,
pp. 44–57, 2007. doi: 10.1109/COMST.2007.4317620.

[19] M. Casenove and A. Miraglia, “Botnet over tor: The illusion of hiding,” in 2014 6th International
Conference On Cyber Conflict (CyCon 2014), 2014, pp. 273–282. doi: 10.1109/CYCON.2014.
6916408.

[20] C. Marrison, “Understanding the threats to dns and how to secure it,” Network Security,
vol. 2015, no. 10, pp. 8–10, 2015, issn: 1353-4858. doi: https://doi.org/10.1016/S1353-
4858(15)30090-8. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1353485815300908.

[21] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos, M. v. Steen, and N. Pohlmann, “On botnets
that use dns for command and control,” in 2011 Seventh European Conference on Computer
Network Defense, 2011, pp. 9–16. doi: 10.1109/EC2ND.2011.16.

[22] S. Yassine, J. Khalife, M. Chamoun, and H. El Ghor, “A survey of dns tunnelling detection
techniques using machine learning.,” in BDCSIntell, 2018, pp. 63–66.

[23] A. Ramdas and R. Muthukrishnan, “A survey on dns security issues and mitigation techniques,”
in 2019 International Conference on Intelligent Computing and Control Systems (ICCS), IEEE,
2019, pp. 781–784.

[24] Cloudflare. “What are the different types of dns server?” (2022), [Online]. Available: https:
//www.cloudflare.com/learning/dns/dns-server-types/.

[25] IBM. “Domain name system resource records.” (2021), [Online]. Available: https://www.ibm.
com/docs/en/i/7.1?topic=concepts-dns-resource-records.

[26] K. R. Fall and W. R. Stevens, TCP/IP illustrated, volume 1: The protocols. addison-Wesley,
2011.

[27] S. Shafieian, D. Smith, and M. Zulkernine, “Detecting dns tunneling using ensemble learning,”
in Network and System Security, Z. Yan, R. Molva, W. Mazurczyk, and R. Kantola, Eds., Cham:
Springer International Publishing, 2017, pp. 112–127, isbn: 978-3-319-64701-2.

[28] N. Raghava, D. Sahgal, and S. Chandna, “Classification of botnet detection based on botnet
architechture,” in 2012 International Conference on Communication Systems and Network
Technologies, 2012, pp. 569–572. doi: 10.1109/CSNT.2012.128.

[29] Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo, “Survey on botnet detection techniques: Classifi-
cation, methods, and evaluation,” Mathematical Problems in Engineering, vol. 2021, 2021.

[30] H. R. Zeidanloo, M. J. Z. Shooshtari, P. V. Amoli, M. Safari, and M. Zamani, “A taxonomy of
botnet detection techniques,” in 2010 3rd International Conference on Computer Science and
Information Technology, vol. 2, 2010, pp. 158–162. doi: 10.1109/ICCSIT.2010.5563555.

88

https://doi.org/10.1109/QEST.2008.43
https://doi.org/10.1109/QEST.2008.43
https://doi.org/10.1145/2818000.2818047
https://doi.org/10.1145/2818000.2818047
https://doi.org/10.1145/2818000.2818047
https://doi.org/10.1109/ICCEE.2009.151
https://doi.org/10.1109/COMST.2007.4317620
https://doi.org/10.1109/CYCON.2014.6916408
https://doi.org/10.1109/CYCON.2014.6916408
https://doi.org/https://doi.org/10.1016/S1353-4858(15)30090-8
https://doi.org/https://doi.org/10.1016/S1353-4858(15)30090-8
https://www.sciencedirect.com/science/article/pii/S1353485815300908
https://www.sciencedirect.com/science/article/pii/S1353485815300908
https://doi.org/10.1109/EC2ND.2011.16
https://www.cloudflare.com/learning/dns/dns-server-types/
https://www.cloudflare.com/learning/dns/dns-server-types/
https://www.ibm.com/docs/en/i/7.1?topic=concepts-dns-resource-records
https://www.ibm.com/docs/en/i/7.1?topic=concepts-dns-resource-records
https://doi.org/10.1109/CSNT.2012.128
https://doi.org/10.1109/ICCSIT.2010.5563555

[31] M. Singh, M. Singh, and S. Kaur, “Issues and challenges in dns based botnet detection: A
survey,” Computers & Security, vol. 86, pp. 28–52, 2019.

[32] Sudhakar and S. Kumar, “Botnet detection techniques and research challenges,” in 2019
International Conference on Recent Advances in Energy-efficient Computing and Communication
(ICRAECC), 2019, pp. 1–6. doi: 10.1109/ICRAECC43874.2019.8995028.

[33] Y. Meidan, M. Bohadana, Y. Mathov, et al., “N-baiot—network-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018.
doi: 10.1109/MPRV.2018.03367731.

[34] R. P. Padhy, M. R. Patra, and S. C. Satapathy, “Cloud computing: Security issues and research
challenges,” International Journal of Computer Science and Information Technology & Security
(IJCSITS), vol. 1, no. 2, pp. 136–146, 2011.

[35] A. H. Lashkari, G. D. Gil, J. E. Keenan, K. F. Mbah, and A. A. Ghorbani, “A survey leading to
a new evaluation framework for network-based botnet detection,” in Proceedings of the 2017 the
7th International Conference on Communication and Network Security, ser. ICCNS 2017, Tokyo,
Japan: Association for Computing Machinery, 2017, pp. 59–66, isbn: 9781450353496. doi: 10.
1145/3163058.3163059. [Online]. Available: https://doi.org/10.1145/3163058.3163059.

[36] D. Hein. “Active monitoring and passive monitoring: What’s the difference?” (2019), [Online].
Available: https://solutionsreview.com/network-monitoring/active-monitoring-and-
passive-monitoring-whats-the-difference/.

[37] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection techniques,”
Journal of Network and Computer Applications, vol. 60, pp. 19–31, 2016, issn: 1084-8045. doi:
https://doi.org/10.1016/j.jnca.2015.11.016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1084804515002891.

[38] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, 4. Springer, 2006,
vol. 4.

[39] “The science: Orbital mechanics.” (2009), [Online]. Available: https://earthobservatory.
nasa.gov/features/OrbitsHistory/page2.php.

[40] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A survey
on missing data in machine learning,” Journal of Big Data, vol. 8, no. 1, pp. 1–37, 2021.

[41] S. Garcıa, S. Ramırez-Gallego, J. Luengo, J. M. Benıtez, and F. Herrera, “Big data preprocessing:
Methods and prospects,” Big Data Analytics, vol. 1, no. 1, pp. 1–22, 2016.

[42] S. A. Alasadi and W. S. Bhaya, “Review of data preprocessing techniques in data mining,”
Journal of Engineering and Applied Sciences, vol. 12, no. 16, pp. 4102–4107, 2017.

[43] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers &
Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014, 40th-year commemorative issue, issn:
0045-7906. doi: https://doi.org/10.1016/j.compeleceng.2013.11.024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790613003066.

[44] T. M. Cover, J. A. Thomas, et al., “Entropy, relative entropy and mutual information,” Elements
of information theory, vol. 2, no. 1, pp. 12–13, 1991.

[45] G. Forman et al., “An extensive empirical study of feature selection metrics for text classifica-
tion.,” J. Mach. Learn. Res., vol. 3, no. Mar, pp. 1289–1305, 2003.

[46] “Recursive feature elimination (rfe) for feature selection in python.” (2020), [Online]. Available:
https://machinelearningmastery.com/rfe-feature-selection-in-python/.

89

https://doi.org/10.1109/ICRAECC43874.2019.8995028
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1145/3163058.3163059
https://doi.org/10.1145/3163058.3163059
https://doi.org/10.1145/3163058.3163059
https://solutionsreview.com/network-monitoring/active-monitoring-and-passive-monitoring-whats-the-difference/
https://solutionsreview.com/network-monitoring/active-monitoring-and-passive-monitoring-whats-the-difference/
https://doi.org/https://doi.org/10.1016/j.jnca.2015.11.016
https://www.sciencedirect.com/science/article/pii/S1084804515002891
https://www.sciencedirect.com/science/article/pii/S1084804515002891
https://earthobservatory.nasa.gov/features/OrbitsHistory/page2.php
https://earthobservatory.nasa.gov/features/OrbitsHistory/page2.php
https://doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.024
https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://machinelearningmastery.com/rfe-feature-selection-in-python/

[47] A. Jović, K. Brkić, and N. Bogunović, “A review of feature selection methods with applications,”
in 2015 38th International Convention on Information and Communication Technology, Electron-
ics and Microelectronics (MIPRO), 2015, pp. 1200–1205. doi: 10.1109/MIPRO.2015.7160458.

[48] V. Fonti and E. Belitser, “Feature selection using lasso,” VU Amsterdam research paper in
business analytics, vol. 30, pp. 1–25, 2017.

[49] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the
royal statistical society: series B (statistical methodology), vol. 67, no. 2, pp. 301–320, 2005.

[50] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A comprehensive review of
dimensionality reduction techniques for feature selection and feature extraction,” Journal of
Applied Science and Technology Trends, vol. 1, no. 2, pp. 56–70, 2020.

[51] V. Spruyt. “The curse of dimensionality in classification.” (2014), [Online]. Available: https:
//www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/.

[52] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews:
computational statistics, vol. 2, no. 4, pp. 433–459, 2010.

[53] J. Jauregui, “Principal component analysis with linear algebra,” Philadelphia: Penn Arts &
Sciences, 2012.

[54] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing
surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[55] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, et al., “A unifying review of deep and shallow
anomaly detection,” Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.

[56] H. Hojjati, T. K. K. Ho, and N. Armanfard, “Self-supervised anomaly detection: A survey and
outlook,” arXiv preprint arXiv:2205.05173, 2022.

[57] Scikit-Learn. “Novelty and outlier detection.” (2022), [Online]. Available: https://scikit-
learn.org/stable/modules/outlier_detection.html.

[58] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty detection,”
Signal processing, vol. 99, pp. 215–249, 2014.

[59] S. W. Smith, “Properties of convolution,” The Scientist and Engineer’s Guide to Digital Signal
Processing, pp. 123–140, 1997.

[60] D. M. Johannes, “One-class classification,” Ph.D. dissertation, Delft University of Technology,
2001.

[61] D. Miljković, “Review of novelty detection methods,” in The 33rd International Convention
MIPRO, IEEE, 2010, pp. 593–598.

[62] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-based local
outliers,” in Proceedings of the 2000 ACM SIGMOD international conference on Management
of data, 2000, pp. 93–104.

[63] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector
method for novelty detection,” Advances in neural information processing systems, vol. 12, 1999.

[64] M. R. Oliveira, J. Neves, R. Valadas, and P. Salvador, “Do we need a perfect ground-truth for
benchmarking internet traffic classifiers?” In 2015 IEEE Conference on Computer Communica-
tions (INFOCOM), IEEE, 2015, pp. 2452–2460.

[65] L. Böck, M. Fejrskov, K. Demetzou, S. Karuppayah, M. Mühlhäuser, and E. Vasilomanolakis,
“Processing of botnet tracking data under the gdpr,” Computer Law & Security Review, vol. 45,
p. 105 652, 2022.

90

https://doi.org/10.1109/MIPRO.2015.7160458
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/outlier_detection.html

[66] A. Merlo, G. Papaleo, S. Veneziano, and M. Aiello, “A comparative performance evaluation
of dns tunneling tools,” in Computational Intelligence in Security for Information Systems,
Springer, 2011, pp. 84–91.

[67] Y. Wang, A. Zhou, S. Liao, R. Zheng, R. Hu, and L. Zhang, “A comprehensive survey on dns
tunnel detection,” Computer Networks, vol. 197, p. 108 322, 2021.

[68] P. Wang, L. Wu, B. Aslam, and C. C. Zou, “A systematic study on peer-to-peer botnets,” in
2009 Proceedings of 18th International Conference on Computer Communications and Networks,
IEEE, 2009, pp. 1–8.

[69] B. Choi, S.-K. Choi, and K. Cho, “Detection of mobile botnet using vpn,” in 2013 Seventh
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
IEEE, 2013, pp. 142–148.

[70] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and control channels in
network traffic,” 2008.

[71] E. Adi, A. Anwar, Z. Baig, and S. Zeadally, “Machine learning and data analytics for the iot,”
Neural Computing and Applications, vol. 32, no. 20, pp. 16 205–16 233, 2020.

[72] Azelcast. “Sliding window aggregation.” (2022), [Online]. Available: https://docs.hazelcast.
com/hazelcast/5.1/architecture/sliding-window.

[73] A. H. Lashkari, G. D. Gil, J. E. Keenan, K. F. Mbah, and A. A. Ghorbani, “A survey leading
to a new evaluation framework for network-based botnet detection,” in Proceedings of the 2017
the 7th International Conference on Communication and Network Security, 2017, pp. 59–66.

[74] C. Pascoal, M. R. De Oliveira, R. Valadas, P. Filzmoser, P. Salvador, and A. Pacheco, “Robust
feature selection and robust PCA for internet traffic anomaly detection,” in 2012 Proceedings
Ieee Infocom, IEEE, 2012, pp. 1755–1763.

[75] P. J. Huber, “Robust statistics,” in International encyclopedia of statistical science, Springer,
2011, pp. 1248–1251.

91

https://docs.hazelcast.com/hazelcast/5.1/architecture/sliding-window
https://docs.hazelcast.com/hazelcast/5.1/architecture/sliding-window

Licit DNS traffic Throughput -
Time Series

0 2k 4k 6k 8k 10k
0

50

100

150

0 2k 4k 6k 8k 10k
0

50

100

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

0 2k 4k 6k 8k 10k
0

50
100
150
200

0 2k 4k 6k 8k 10k
0

50

100

150

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Th
ro

ug
hp

ut
 (p

ps
)

Th
ro

ug
hp

ut
 (p

ps
)

Th
ro

ug
hp

ut
 (p

ps
)

Th
ro

ug
hp

ut
 (p

ps
)

Th
ro

ug
hp

ut
 (p

ps
)

Th
ro

ug
hp

ut
 (p

ps
)

UPSTREAM throughput in a macOS capture using Safari without Ad Blockers

DOWNSTREAM throughput in a macOS capture using Safari without Ad Blockers

UPSTREAM throughput in an Ubuntu Linux capture with Ad Blocker, disabled JavaScript and limited media transfer

DOWNSTREAM throughput in an Ubuntu Linux capture with Ad Blocker, disabled JavaScript and limited media transfer

UPSTREAM throughput in an Ubuntu Linux capture using DoT without Ad Blockers

DOWNSTREAM throughput in an Ubuntu Linux capture using DoT without Ad Blockers

Figure 1: Examples of throughput in licit DNS traffic - Time Series

93

Licit DNS traffic - Histograms

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120
0

100

200

300

2 4 6 8 10 12 14 16
0

0.1
0.2
0.3
0.4

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0 50 100 150 200
0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160
0

0.1
0.2
0.3
0.4

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

UPSTREAM throughput in a macOS capture using Safari without Ad Blockers

DOWNSTREAM throughput in a macOS capture using Safari without Ad Blockers

UPSTREAM throughput in an Ubuntu Linux capture with Ad Blocker, disabled JavaScript and limited media transfer

DOWNSTREAM throughput in an Ubuntu Linux capture with Ad Blocker, disabled JavaScript and limited media transfer

UPSTREAM throughput in an Ubuntu Linux capture using DoT without Ad Blockers

DOWNSTREAM throughput in an Ubuntu Linux capture using DoT without Ad Blockers

Figure 2: Examples of throughput in licit DNS traffic - Histogram

95

80 100 120 140
0

0.05

0.1

0.15

100 150 200 250 300 350
0

0.05

0.1

70 80 90 100 110 120
0

0.05

0.1

0.15

0.2

100 150 200 250
0

0.05

0.1

0.15

200 400 600
0

0.1

0.2

0.3

200 400 600
0

0.1

0.2

0.3

Average Packet Length (bytes) Average Packet Length (bytes)

Average Packet Length (bytes) Average Packet Length (bytes)

Average Packet Length (bytes) Average Packet Length (bytes)

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

UPSTREAM Avg pkt len in a macOS capture using
Safari without Ad Blockers

DOWNSTREAM Avg pkt len in a macOS capture using
Safari without Ad Blockers

UPSTREAM Avg pkt len in an Ubuntu Linux capture with
Ad Blocker, disabled JavaScript and limited media transfer

DOWNSTREAM Avg pkt len in an Ubuntu Linux capture with
Ad Blocker, disabled JavaScript and limited media transfer

UPSTREAM Avg pkt len in an Ubuntu Linux capture using
DoT without Ad Blockers

DOWNSTREAM Avg pkt len in an Ubuntu Linux capture using
DoT without Ad Blockers

Figure 3: Examples of Average Packet Lengths in licit DNS traffic - Histogram

96

Scenario 1: Illicit DNS traffic -
Histograms

97

5 10 15 20 25 30 35
0

0.2

0.4

0.6

2 4 6 8 10 12
0

0.2

0.4

0.6

5 10 15 20
0

0.1

0.2

0.3

0.4

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

2 4 6 8 10 12 14 16 18
0

500

1000

2 4 6 8 10 12 14 16 18
0

50

100

150

200

10 20 30 40 50
0

0.2

0.4

0.6

5 10 15 20 25 30 35
0

0.1

0.2

0.3

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

UPSTREAM throughput using Ncat with DNS2TCP and keep-alive messages

UPSTREAM throughput using Ncat with Iodine and keep-alive messages

UPSTREAM throughput using Ncat with DNS2TCP and WITHOUT keep-alive messages

UPSTREAM throughput using Ncat/SSL with DNS2TCP and keep-alive messages

UPSTREAM throughput using Ncat/SSL with Iodine and keep-alive messages

UPSTREAM throughput using Ncat/SSL with Iodine and WITHOUT keep-alive messages

UPSTREAM throughput using standard behaviors with DNS2TCP and keep-alive messages

UPSTREAM throughput using standard behaviors with DNS2TCP and WITHOUT keep-alive messages

Figure 4: Examples of generated throughput for Scenario 1 - Histogram

98

80 100 120 140 160
0

0.5

1

100 200 300
0

0.05

0.1

0.15

0.2

100 150 200 250 300
0

0.1

0.2

100 200 300 400
0

0.2

0.4

0.6

100 150 200 250
0

0.05

0.1

100 200 300 400 500
0

0.1

0.2

100 120 140
0

0.2

0.4

0.6

0.8

100 150 200
0

0.05

0.1

0.15

0.2

Average Packet Length (bytes) Average Packet Length (bytes)

Average Packet Length (bytes) Average Packet Length (bytes)

Average Packet Length (bytes) Average Packet Length (bytes)

Average Packet Length (bytes) Average Packet Length (bytes)

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

UPSTREAM Avg pkt len using Ncat with DNS2TCP and
 keep-alive messages

UPSTREAM Avg pkt len using Ncat with DNS2TCP and
 WITHOUT keep-alive messages

UPSTREAM Avg pkt len using Ncat with Iodine and
 WITHOUT keep-alive messages

UPSTREAM Avg pkt len using Ncat with Iodine and
 keep-alive messages

UPSTREAM Avg pkt len using Ncat/SSL with DNS2TCP and
 WITHOUT keep-alive messages

UPSTREAM Avg pkt len using Ncat/SSL with Iodine and
 WITHOUT keep-alive messages

UPSTREAM Avg pkt len using standard behaviors
 with DNS2TCP and keep-alive messages

UPSTREAM Avg pkt len using standard behaviors
 with DNS2TCP and WITHOUT keep-alive messages

Figure 5: Examples of generated average packet length for Scenario 1 - Histogram

99

Scenario 3: Histogram comparison
between licit and illicit traffic

5 10 15 20 25 30
0

0.2

0.4

5 10 15 20
0

0.2

0.4

5 10 15 20 25 30
0

0.2

0.4

2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

Upload (pps)

Upload (pps)

Upload (pps)

Upload (pps)

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

UPSTREAM throughput from a licit capture in Linux Ubuntu with Ad Block

UPSTREAM throughput generated from the above licit distribution with the modified DNS2TCP and WITHOUT keep-alive messages

DOWNSTREAM throughput from a licit capture in Linux Ubuntu with Ad Block

DOWNSTREAM throughput generated from the above licit distribution with the modified DNS2TCP and WITHOUT keep-alive messages

Figure 6: Comparison between licit (in blue) and illicit (in red) throughput generated by
the modified DNS2TCP with α = 0.0 for Scenario 3

101

80 100 120 140
0

0.05

0.1

0.15

80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

100 150 200 250 300 350
0

0.05

0.1

100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Average Packet Length (bytes) Average Packet Length (bytes)

Average Packet Length (bytes) Average Packet Length (bytes)

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

UPSTREAM Avg pkt len from a licit capture in Linux Ubuntu
UPSTREAM Avg pkt len generated from the aside licit distribution

with the modified DNS2TCP WITHOUT keep-alive messages

DOWNSTREAM Avg pkt len from a licit capture in Linux
Ubuntu

DOWNSTREAM Avg pkt len generated from the aside licit distribution
with the modified DNS2TCP WITHOUT keep-alive messages

Figure 7: Comparison between licit (in blue) and illicit (in red) average packet lengths
generated by the modified DNS2TCP with α = 0.0 for Scenario 3

102

Dataset with a sliding window of 70
minutes

103

0 1 2 3 4 5
0

0.02
0.04

0 1 2 3
0

0.05
0.1

0.15

0 5 10
0

0.01
0.02
0.03
0.04

50 100 150
0

0.02
0.04

2 4 6
0

0.2
0.4
0.6
0.8

2 4 6 8 10 12
0

0.2
0.4

5 10 15 20 25
0

0.1
0.2

20 40 60
0

0.05
0.1

0.15

0 20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

0 20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.05
0.1

0.15

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

50 100 150 200
0

0.05
0.1

0.15
0.2

50 100 150 200 250 300
0

0.02
0.04
0.06

0 1 2 3 4 5
0

0.02
0.04

0 1 2 3
0

0.05
0.1

0.15

5 10
0

0.01
0.02
0.03

50 100 150
0

0.01
0.02
0.03
0.04

2 4 6 8
0

0.2
0.4
0.6
0.8

5 10
0

0.2
0.4

5 10 15 20 25
0

0.1
0.2

10 20 30 40 50
0

0.05
0.1

0.15

0 20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_mean_450 pps_upload_trim_mean_05_450

pps_upload_std_450 pps_upload_max_450

pps_upload_quantile_85_450 pps_upload_quantile_90_450

pps_upload_quantile_95_450 pps_upload_quantile_99_450

avg_pkt_len_upload_mean_450 avg_pkt_len_upload_trim_mean_05_450

avg_pkt_len_upload_std_450 avg_pkt_len_upload_max_450

avg_pkt_len_upload_quantile_85_450 avg_pkt_len_upload_quantile_90_450

avg_pkt_len_upload_quantile_95_450 avg_pkt_len_upload_quantile_99_450

pps_download_mean_450 pps_download_trim_mean_05_450

pps_download_std_450 pps_download_max_450

pps_download_quantile_85_450 pps_download_quantile_90_450

pps_download_quantile_95_450 pps_download_quantile_99_450

avg_pkt_len_download_mean_450 avg_pkt_len_download_trim_mean_05_450

Figure 8: Comparison between licit (in blue) and illicit (in red) data points with and without
keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 1

104

0 50 100
0

0.02
0.04
0.06

100 200 300 400 500
0

0.02
0.04
0.06

50 100 150 200 250 300
0

0.2
0.4
0.6
0.8

100 200 300
0

0.2
0.4

100 200 300
0

0.05
0.1

0.15

100 200 300 400
0

0.02
0.04
0.06

0 1 2 3 4
0

0.02
0.04
0.06

0 0.5 1 1.5 2 2.5
0

0.05

0.1

2 4 6 8 10 12
0

0.01
0.02
0.03

50 100 150
0

0.02
0.04

1 2 3 4 5
0

0.2
0.4
0.6
0.8

2 4 6 8
0

0.2
0.4

5 10 15
0

0.1
0.2
0.3

20 40 60
0

0.05
0.1

0 20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

0 20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.05
0.1

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

50 100 150 200
0

0.05
0.1

0.15
0.2

50 100 150 200 250 300
0

0.02
0.04
0.06
0.08

0 1 2 3 4
0

0.01
0.02
0.03

0 0.5 1 1.5 2 2.5 3
0

0.05
0.1

2 4 6 8 10
0

0.01
0.02

50 100 150
0

0.02
0.04
0.06

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_std_450 avg_pkt_len_download_max_450

avg_pkt_len_download_quantile_85_450 avg_pkt_len_download_quantile_90_450

avg_pkt_len_download_quantile_95_450 avg_pkt_len_download_quantile_99_450

silence_n_450 silence_mean_450

silence_trim_mean_05_450 silence_std_450

silence_max_450 silence_quantile_85_450

silence_quantile_90_450 silence_quantile_95_450

silence_quantile_99_450 activity_n_450

activity_mean_450 activity_trim_mean_05_450

activity_std_450 activity_max_450

activity_quantile_85_450 activity_quantile_90_450

activity_quantile_95_450 activity_quantile_99_450

pps_upload_mean_750 pps_upload_trim_mean_05_750

Figure 9: Comparison between licit (in blue) and illicit (in red) data points with and without
keep-alive messages for the Dataset with a sliding window of 70 minutes - Part 2

105

1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

2 4 6 8 10 12
0

0.2
0.4

5 10 15 20
0

0.1
0.2
0.3

10 20 30 40
0

0.05
0.1

0 20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

50 100
0

0.02
0.04
0.06

200 300 400 500 600
0

0.02
0.04
0.06

50 100 150 200 250
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.2
0.4

100 200 300
0

0.05
0.1

0.15

100 200 300 400
0

0.02
0.04

1 2 3 4
0

0.02
0.04

0 0.5 1 1.5 2 2.5
0

0.05
0.1

5 10
0

0.01
0.02
0.03
0.04

50 100 150 200
0

0.02
0.04
0.06
0.08

0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

2 4 6 8
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30 40 50
0

0.05
0.1

20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.05
0.1

0.15

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_std_750 pps_upload_max_750

pps_upload_quantile_85_750 pps_upload_quantile_90_750

pps_upload_quantile_95_750 pps_upload_quantile_99_750

avg_pkt_len_upload_mean_750 avg_pkt_len_upload_trim_mean_05_750

avg_pkt_len_upload_std_750 avg_pkt_len_upload_max_750

avg_pkt_len_upload_quantile_85_750 avg_pkt_len_upload_quantile_90_750

avg_pkt_len_upload_quantile_95_750 avg_pkt_len_upload_quantile_99_750

pps_download_mean_750 pps_download_trim_mean_05_750

pps_download_std_750 pps_download_max_750

pps_download_quantile_85_750 pps_download_quantile_90_750

pps_download_quantile_95_750 pps_download_quantile_99_750

avg_pkt_len_download_mean_750 avg_pkt_len_download_trim_mean_05_750

avg_pkt_len_download_std_750 avg_pkt_len_download_max_750

Figure 10: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 3

106

50 100 150
0

0.05
0.1

0.15
0.2

100 150 200 250
0

0.05

0.1

1 2 3 4
0

0.01
0.02
0.03
0.04

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8
0

0.01
0.02
0.03

50 100 150
0

0.02
0.04
0.06
0.08

0.5 1 1.5 2 2.5 3
0

0.5

1

2 4 6 8
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30 40
0

0.05
0.1

20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

20 40 60 80 100 120
0

0.02
0.04
0.06

200 400 600
0

0.05
0.1

50 100 150 200
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

100 200 300
0

0.05
0.1

0.15

200 300 400
0

0.02
0.04
0.06
0.08

1 2 3
0

0.02
0.04
0.06
0.08

0 0.5 1 1.5 2
0

0.05
0.1

2 4 6 8 10
0

0.02
0.04
0.06

50 100 150 200
0

0.02
0.04
0.06

1 1.5 2 2.5 3
0

0.5

1

2 4 6
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30 40
0

0.02
0.04
0.06
0.08

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_quantile_85_750 avg_pkt_len_download_quantile_90_750

avg_pkt_len_download_quantile_95_750 avg_pkt_len_download_quantile_99_750

silence_n_750 silence_mean_750

silence_trim_mean_05_750 silence_std_750

silence_max_750 silence_quantile_85_750

silence_quantile_90_750 silence_quantile_95_750

silence_quantile_99_750 activity_n_750

activity_mean_750 activity_trim_mean_05_750

activity_std_750 activity_max_750

activity_quantile_85_750 activity_quantile_90_750

activity_quantile_95_750 activity_quantile_99_750

pps_upload_mean_2250 pps_upload_trim_mean_05_2250

pps_upload_std_2250 pps_upload_max_2250

Figure 11: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 4

107

20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.1
0.2
0.3

60 80 100 120 140 160
0

0.5

1

50 100 150
0

0.2
0.4

50 100 150
0

0.05
0.1

0.15

100 150 200 250
0

0.05
0.1

1 2 3
0

0.02
0.04

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8
0

0.01
0.02
0.03
0.04

50 100 150
0

0.05
0.1

1 1.2 1.4 1.6 1.8 2
0

0.5

1

2 4 6 8
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30
0

0.02
0.04
0.06
0.08

20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

20 40 60 80 100
0

0.02
0.04
0.06
0.08

200 400 600
0

0.05
0.1

100 150 200
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

100 200 300
0

0.05
0.1

0.15

200 300 400
0

0.02
0.04
0.06

1 2 3
0

0.02
0.04
0.06
0.08

0 0.5 1 1.5 2
0

0.05

0.1

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_quantile_85_2250 pps_upload_quantile_90_2250

pps_upload_quantile_95_2250 pps_upload_quantile_99_2250

avg_pkt_len_upload_mean_2250 avg_pkt_len_upload_trim_mean_05_2250

avg_pkt_len_upload_std_2250 avg_pkt_len_upload_max_2250

avg_pkt_len_upload_quantile_85_2250 avg_pkt_len_upload_quantile_90_2250

avg_pkt_len_upload_quantile_95_2250 avg_pkt_len_upload_quantile_99_2250

pps_download_mean_2250 pps_download_trim_mean_05_2250

pps_download_std_2250 pps_download_max_2250

pps_download_quantile_85_2250 pps_download_quantile_90_2250

pps_download_quantile_95_2250 pps_download_quantile_99_2250

avg_pkt_len_download_mean_2250 avg_pkt_len_download_trim_mean_05_2250

avg_pkt_len_download_std_2250 avg_pkt_len_download_max_2250

avg_pkt_len_download_quantile_85_2250 avg_pkt_len_download_quantile_90_2250

Figure 12: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 5

108

2 4 6 8 10
0

0.02
0.04
0.06
0.08

50 100 150 200
0

0.02
0.04
0.06
0.08

0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

2 4 6
0

0.2
0.4

5 10 15
0

0.1
0.2
0.3

10 20 30 40
0

0.05
0.1

20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.1
0.2
0.3

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

50 100 150
0

0.05
0.1

0.15

100 150 200 250
0

0.05
0.1

0.15

1 2 3
0

0.02
0.04

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8
0

0.01
0.02
0.03
0.04

50 100 150
0

0.05
0.1

0.5 1 1.5 2
0

0.5

1

2 4 6 8
0

0.2
0.4

5 10 15
0

0.1
0.2
0.3

10 20 30
0

0.05
0.1

20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

50 100
0

0.02
0.04
0.06
0.08

200 400 600 800
0

0.02
0.04
0.06
0.08

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_quantile_95_2250 avg_pkt_len_download_quantile_99_2250

silence_n_2250 silence_mean_2250

silence_trim_mean_05_2250 silence_std_2250

silence_max_2250 silence_quantile_85_2250

silence_quantile_90_2250 silence_quantile_95_2250

silence_quantile_99_2250 activity_n_2250

activity_mean_2250 activity_trim_mean_05_2250

activity_std_2250 activity_max_2250

activity_quantile_85_2250 activity_quantile_90_2250

activity_quantile_95_2250 activity_quantile_99_2250

pps_upload_mean_3375 pps_upload_trim_mean_05_3375

pps_upload_std_3375 pps_upload_max_3375

pps_upload_quantile_85_3375 pps_upload_quantile_90_3375

Figure 13: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 6

109

0 50 100 150 200 250
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

100 200 300
0

0.05
0.1

0.15

200 300 400
0

0.02
0.04
0.06

100 200 300 400
0

0.01
0.02
0.03

100 200 300 400
0

0.01
0.02
0.03
0.04

100 200 300 400
0

0.02
0.04

50 100 150 200
0

0.02
0.04
0.06
0.08

100 200 300 400
0

0.05

0.1

100 200 300 400
0

0.05
0.1

0.15

100 200 300 400
0

0.05
0.1

100 200 300 400
0

0.05
0.1

100 200 300 400
0

0.05
0.1

200 400 600
0

0.01
0.02

50 100 150
0

0.01
0.02
0.03

50 100 150
0

0.02
0.04
0.06

50 100 150
0

0.02
0.04
0.06

0 100 200 300 400
0

0.05
0.1

100 200 300
0

0.05
0.1

0.15

100 200 300
0

0.05
0.1

100 200 300
0

0.05
0.1

100 200 300 400
0

0.05
0.1

0 500 1000 1500 2000
0

0.01
0.02
0.03
0.04

20 40 60
0

0.02
0.04

20 40 60
0

0.01
0.02
0.03
0.04

20 40 60 80 100 120
0

0.02
0.04
0.06

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_quantile_95_3375 pps_upload_quantile_99_3375

avg_pkt_len_upload_mean_3375 avg_pkt_len_upload_trim_mean_05_3375

avg_pkt_len_upload_std_3375 avg_pkt_len_upload_max_3375

avg_pkt_len_upload_quantile_85_3375 avg_pkt_len_upload_quantile_90_3375

avg_pkt_len_upload_quantile_95_3375 avg_pkt_len_upload_quantile_99_3375

pps_download_mean_3375 pps_download_trim_mean_05_3375

pps_download_std_3375 pps_download_max_3375

pps_download_quantile_85_3375 pps_download_quantile_90_3375

pps_download_quantile_95_3375 pps_download_quantile_99_3375

avg_pkt_len_download_mean_3375 avg_pkt_len_download_trim_mean_05_3375

avg_pkt_len_download_std_3375 avg_pkt_len_download_max_3375

avg_pkt_len_download_quantile_85_3375 avg_pkt_len_download_quantile_90_3375

avg_pkt_len_download_quantile_95_3375 avg_pkt_len_download_quantile_99_3375

Figure 14: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 7

110

0 100 200 300 400
0

0.05
0.1

50 100 150 200
0

0.05
0.1

100 200 300
0

0.05
0.1

100 200 300
0

0.05
0.1

0 100 200 300 400
0

0.05
0.1

0 1000 2000 3000
0

0.01
0.02
0.03
0.04

20 40 60
0

0.02
0.04

20 40 60
0

0.02
0.04

20 40 60 80 100
0

0.02
0.04
0.06
0.08

0 100 200 300 400
0

0.05
0.1

0.15

50 100 150
0

0.05
0.1

50 100 150 200
0

0.05
0.1

100 200 300
0

0.05
0.1

0 100 200 300 400
0

0.05
0.1

0 1000 2000 3000 4000
0

0.01
0.02
0.03

10 20 30 40 50
0

0.02
0.04

10 20 30 40 50
0

0.02
0.04
0.06

20 40 60 80 100
0

0.02
0.04
0.06

0 100 200 300 400
0

0.05
0.1

0.15

50 100
0

0.05
0.1

50 100 150
0

0.05
0.1

100 200 300
0

0.05
0.1

0 100 200 300 400
0

0.05
0.1

0 100 200 300 400
0

0.1
0.2
0.3

0 100 200 300 400
0

0.2
0.4
0.6

0 100 200 300 400
0

0.2
0.4
0.6

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

silence_n_3375 silence_mean_3375

silence_trim_mean_05_3375 silence_std_3375

silence_max_3375 silence_quantile_85_3375

silence_quantile_90_3375 silence_quantile_95_3375

silence_quantile_99_3375 activity_n_3375

activity_mean_3375 activity_trim_mean_05_3375

activity_std_3375 activity_max_3375

activity_quantile_85_3375 activity_quantile_90_3375

activity_quantile_95_3375 activity_quantile_99_3375

pps_upload_mean_4200 pps_upload_trim_mean_05_4200

pps_upload_std_4200 pps_upload_max_4200

pps_upload_quantile_85_4200 pps_upload_quantile_90_4200

pps_upload_quantile_95_4200 pps_upload_quantile_99_4200

Figure 15: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 8

111

50 100 150 200
0

0.05
0.1

0.15

0 100 200 300 400
0

0.2
0.4

0 100 200 300 400
0

0.2
0.4

0 100 200 300 400
0

0.1
0.2
0.3
0.4

0 100 200 300 400
0

0.1
0.2
0.3

0 100 200 300 400
0

0.2
0.4

0 200 400 600
0

0.1
0.2
0.3

0 200 400 600
0

0.2
0.4
0.6

0 200 400 600
0

0.2
0.4
0.6

0 100 200 300
0

0.1
0.2
0.3

0 200 400 600
0

0.1
0.2
0.3
0.4

0 200 400 600
0

0.2
0.4
0.6

0 200 400 600
0

0.2
0.4

0 200 400 600
0

0.1
0.2
0.3
0.4

0 200 400 600
0

0.2
0.4

500 1000 1500 2000
0

0.1
0.2
0.3

0 500 1000 1500 2000
0

0.2
0.4
0.6

0 500 1000 1500 2000
0

0.2
0.4
0.6

0 200 400 600 800 1000
0

0.2
0.4
0.6

0 500 1000 1500 2000
0

0.2
0.4
0.6

0 500 1000 1500 2000
0

0.2
0.4
0.6
0.8

0 500 1000 1500 2000
0

0.2
0.4
0.6

0 500 1000 1500 2000
0

0.2
0.4
0.6

0 500 1000 1500 2000
0

0.2
0.4
0.6

1000 2000 3000
0

0.1
0.2
0.3

0 1000 2000 3000
0

0.2
0.4
0.6

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_upload_mean_4200 avg_pkt_len_upload_trim_mean_05_4200

avg_pkt_len_upload_std_4200 avg_pkt_len_upload_max_4200

avg_pkt_len_upload_quantile_85_4200 avg_pkt_len_upload_quantile_90_4200

avg_pkt_len_upload_quantile_95_4200 avg_pkt_len_upload_quantile_99_4200

pps_download_mean_4200 pps_download_trim_mean_05_4200

pps_download_std_4200 pps_download_max_4200

pps_download_quantile_85_4200 pps_download_quantile_90_4200

pps_download_quantile_95_4200 pps_download_quantile_99_4200

avg_pkt_len_download_mean_4200 avg_pkt_len_download_trim_mean_05_4200

avg_pkt_len_download_std_4200 avg_pkt_len_download_max_4200

avg_pkt_len_download_quantile_85_4200 avg_pkt_len_download_quantile_90_4200

avg_pkt_len_download_quantile_95_4200 avg_pkt_len_download_quantile_99_4200

silence_n_4200 silence_mean_4200

Figure 16: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 9

112

0 1000 2000 3000
0

0.2

0.4

0.6

0 500 1000 1500
0

0.2
0.4
0.6
0.8

0 1000 2000 3000
0

0.2

0.4

0.6

0 1000 2000 3000
0

0.2
0.4
0.6
0.8

0 1000 2000 3000
0

0.2

0.4

0.6

0 1000 2000 3000
0

0.2

0.4

0.6

0 1000 2000 3000
0

0.2

0.4

0.6

1000 2000 3000 4000
0

0.1

0.2

0.3

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0 500 1000 1500 2000
0

0.5

1

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0 1000 2000 3000 4000
0

0.2
0.4
0.6
0.8

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0 1000 2000 3000 4000
0

0.2

0.4

0.6

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

P
er
ce

nt
ag

e

silence_trim_mean_05_4200 silence_std_4200

silence_max_4200 silence_quantile_85_4200

silence_quantile_90_4200 silence_quantile_95_4200

silence_quantile_99_4200 activity_n_4200

activity_mean_4200 activity_trim_mean_05_4200

activity_std_4200 activity_max_4200

activity_quantile_85_4200 activity_quantile_90_4200

activity_quantile_95_4200 activity_quantile_99_4200

Figure 17: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 70 minutes
- Part 10

113

Dataset with a sliding window of 15
minutes

115

0 2 4 6
0

0.02
0.04

0 1 2 3
0

0.05
0.1

0 5 10 15 20 25
0

0.02
0.04

50 100 150 200
0

0.02
0.04
0.06

2 4 6 8 10
0

0.2
0.4
0.6

5 10 15 20
0

0.2
0.4

0 10 20 30 40
0

0.1
0.2
0.3

0 50 100
0

0.05
0.1

0.15

0 20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

0 20 40 60
0

0.01
0.02
0.03

100 200 300 400 500 600
0

0.05
0.1

0.15

50 100 150
0

0.2
0.4
0.6

50 100 150
0

0.1
0.2
0.3
0.4
0.5

50 100 150 200
0

0.05
0.1

0.15
0.2

0 100 200 300
0

0.02
0.04
0.06

0 2 4 6
0

0.02
0.04

0 1 2 3
0

0.05
0.1

0 5 10 15 20
0

0.02
0.04

50 100 150
0

0.02
0.04
0.06

2 4 6 8 10
0

0.2
0.4
0.6
0.8

5 10 15 20
0

0.2
0.4

0 10 20 30
0

0.1
0.2
0.3

0 20 40 60 80 100
0

0.05
0.1

0.15

0 20 40 60 80 100
0

0.05
0.1

0.15

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_mean_300 pps_upload_trim_mean_05_300

pps_upload_std_300 pps_upload_max_300

pps_upload_quantile_85_300 pps_upload_quantile_90_300

pps_upload_quantile_95_300 pps_upload_quantile_99_300

avg_pkt_len_upload_mean_300 avg_pkt_len_upload_trim_mean_05_300

avg_pkt_len_upload_std_300 avg_pkt_len_upload_max_300

avg_pkt_len_upload_quantile_85_300 avg_pkt_len_upload_quantile_90_300

avg_pkt_len_upload_quantile_95_300 avg_pkt_len_upload_quantile_99_300

pps_download_mean_300 pps_download_trim_mean_05_300

pps_download_std_300 pps_download_max_300

pps_download_quantile_85_300 pps_download_quantile_90_300

pps_download_quantile_95_300 pps_download_quantile_99_300

avg_pkt_len_download_mean_300 avg_pkt_len_download_trim_mean_05_300

Figure 18: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 15 minutes
- Part 1

116

0 50 100
0

0.02
0.04

200 400 600
0

0.02
0.04
0.06

50 100 150 200 250 300
0

0.2
0.4
0.6
0.8

100 200 300
0

0.1
0.2
0.3
0.4

0 100 200 300
0

0.05
0.1

0.15

0 100 200 300 400
0

0.02
0.04
0.06

0 1 2 3 4 5
0

0.02
0.04

0 1 2 3
0

0.05
0.1

0.15

5 10 15 20
0

0.01
0.02
0.03
0.04

50 100 150 200
0

0.01
0.02
0.03
0.04

2 4 6
0

0.2
0.4
0.6
0.8

5 10
0

0.2
0.4

0 5 10 15 20 25
0

0.1
0.2
0.3

0 50 100
0

0.05
0.1

0.15

0 20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

0 20 40 60
0

0.01
0.02
0.03

100 200 300 400 500 600
0

0.05
0.1

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

50 100 150 200
0

0.05
0.1

0.15

0 50 100 150 200 250 300
0

0.02
0.04
0.06
0.08

0 1 2 3 4
0

0.02
0.04

0 1 2 3
0

0.05

0.1

5 10 15
0

0.01
0.02

50 100 150
0

0.02
0.04

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_std_300 avg_pkt_len_download_max_300

avg_pkt_len_download_quantile_85_300 avg_pkt_len_download_quantile_90_300

avg_pkt_len_download_quantile_95_300 avg_pkt_len_download_quantile_99_300

silence_n_300 silence_mean_300

silence_trim_mean_05_300 silence_std_300

silence_max_300 silence_quantile_85_300

silence_quantile_90_300 silence_quantile_95_300

silence_quantile_99_300 activity_n_300

activity_mean_300 activity_trim_mean_05_300

activity_std_300 activity_max_300

activity_quantile_85_300 activity_quantile_90_300

activity_quantile_95_300 activity_quantile_99_300

pps_upload_mean_600 pps_upload_trim_mean_05_600

Figure 19: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 15 minutes
- Part 2

117

2 4 6 8
0

0.2
0.4
0.6
0.8

5 10
0

0.2
0.4

0 5 10 15 20
0

0.1
0.2
0.3

0 20 40 60 80
0

0.05
0.1

0 20 40 60 80 100
0

0.05
0.1

0.15

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

0 50 100
0

0.02
0.04

200 400 600
0

0.02
0.04
0.06

0 100 200 300
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

0 100 200 300
0

0.05
0.1

0.15

0 100 200 300 400
0

0.01
0.02
0.03
0.04

1 2 3 4
0

0.02
0.04
0.06

0 0.5 1 1.5 2 2.5
0

0.05
0.1

5 10 15
0

0.02
0.04

50 100 150 200
0

0.02
0.04

1 2 3 4 5
0

0.2
0.4
0.6
0.8

2 4 6 8 10 12
0

0.2
0.4

0 5 10 15 20
0

0.1
0.2
0.3

0 20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.01
0.02
0.03

100 200 300 400 500 600
0

0.05
0.1

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_std_600 pps_upload_max_600

pps_upload_quantile_85_600 pps_upload_quantile_90_600

pps_upload_quantile_95_600 pps_upload_quantile_99_600

avg_pkt_len_upload_mean_600 avg_pkt_len_upload_trim_mean_05_600

avg_pkt_len_upload_std_600 avg_pkt_len_upload_max_600

avg_pkt_len_upload_quantile_85_600 avg_pkt_len_upload_quantile_90_600

avg_pkt_len_upload_quantile_95_600 avg_pkt_len_upload_quantile_99_600

pps_download_mean_600 pps_download_trim_mean_05_600

pps_download_std_600 pps_download_max_600

pps_download_quantile_85_600 pps_download_quantile_90_600

pps_download_quantile_95_600 pps_download_quantile_99_600

avg_pkt_len_download_mean_600 avg_pkt_len_download_trim_mean_05_600

avg_pkt_len_download_std_600 avg_pkt_len_download_max_600

Figure 20: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 15 minutes
- Part 3

118

50 100 150 200
0

0.05
0.1

0.15

0 50 100 150 200 250 300
0

0.02
0.04
0.06
0.08

1 2 3 4
0

0.02
0.04

0 0.5 1 1.5 2 2.5 3
0

0.05
0.1

5 10
0

0.01
0.02
0.03

50 100 150
0

0.02
0.04
0.06

1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

5 10
0

0.2
0.4

5 10 15
0

0.1
0.2
0.3

0 20 40 60
0

0.05
0.1

20 40 60 80 100
0

0.05
0.1

0.15

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

50 100
0

0.02
0.04

200 400 600 800
0

0.02
0.04
0.06

0 100 200 300
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

0 100 200 300
0

0.05
0.1

0.15

0 100 200 300 400
0

0.01
0.02
0.03
0.04

50 100 150 200 250 300
0

0.01
0.02
0.03
0.04

50 100 150 200 250 300
0

0.02
0.04

50 100 150 200 250 300
0

0.02
0.04

50 100
0

0.02
0.04
0.06
0.08

50 100 150 200 250 300
0

0.05
0.1

50 100 150 200 250 300
0

0.05
0.1

50 100 150 200 250 300
0

0.05
0.1

50 100 150 200 250 300
0

0.05
0.1

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_quantile_85_600 avg_pkt_len_download_quantile_90_600

avg_pkt_len_download_quantile_95_600 avg_pkt_len_download_quantile_99_600

silence_n_600 silence_mean_600

silence_trim_mean_05_600 silence_std_600

silence_max_600 silence_quantile_85_600

silence_quantile_90_600 silence_quantile_95_600

silence_quantile_99_600 activity_n_600

activity_mean_600 activity_trim_mean_05_600

activity_std_600 activity_max_600

activity_quantile_85_600 activity_quantile_90_600

activity_quantile_95_600 activity_quantile_99_600

pps_upload_mean_900 pps_upload_trim_mean_05_900

pps_upload_std_900 pps_upload_max_900

Figure 21: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 15 minutes
- Part 4

119

50 100 150 200 250 300
0

0.05

0.1

100 200 300 400 500
0

0.01
0.02
0.03

50 100 150
0

0.01
0.02
0.03

50 100 150
0

0.01
0.02

50 100 150
0

0.02
0.04
0.06

100 200 300 400
0

0.05

0.1

100 200 300
0

0.05
0.1

0.15

100 200 300
0

0.05
0.1

100 200 300 400
0

0.05
0.1

100 200 300 400
0

0.05
0.1

200 400 600 800
0

0.005
0.01

0.015

50 100
0

0.01
0.02

50 100
0

0.01
0.02
0.03

50 100 150
0

0.02
0.04
0.06

100 200 300 400
0

0.02
0.04
0.06
0.08

100 200 300
0

0.05
0.1

0.15

100 200 300
0

0.05
0.1

100 200 300 400
0

0.05
0.1

100 200 300 400
0

0.05
0.1

0 50 100 150 200 250 300
0

0.1
0.2
0.3

50 100 150 200 250 300
0

0.2
0.4
0.6

50 100 150 200 250 300
0

0.2
0.4
0.6

50 100
0

0.02
0.04
0.06

0 50 100 150 200 250 300
0

0.1
0.2
0.3

0 50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

0 50 100 150 200 250 300
0

0.2
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_quantile_85_900 pps_upload_quantile_90_900

pps_upload_quantile_95_900 pps_upload_quantile_99_900

avg_pkt_len_upload_mean_900 avg_pkt_len_upload_trim_mean_05_900

avg_pkt_len_upload_std_900 avg_pkt_len_upload_max_900

avg_pkt_len_upload_quantile_85_900 avg_pkt_len_upload_quantile_90_900

avg_pkt_len_upload_quantile_95_900 avg_pkt_len_upload_quantile_99_900

pps_download_mean_900 pps_download_trim_mean_05_900

pps_download_std_900 pps_download_max_900

pps_download_quantile_85_900 pps_download_quantile_90_900

pps_download_quantile_95_900 pps_download_quantile_99_900

avg_pkt_len_download_mean_900 avg_pkt_len_download_trim_mean_05_900

avg_pkt_len_download_std_900 avg_pkt_len_download_max_900

avg_pkt_len_download_quantile_85_900 avg_pkt_len_download_quantile_90_900

Figure 22: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 15 minutes
- Part 5

120

0 50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

0 50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

0 100 200 300 400 500 600
0

0.1
0.2
0.3

0 100 200 300 400 500 600
0

0.2
0.4
0.6

0 100 200 300 400 500 600
0

0.2
0.4
0.6

0 50 100 150 200 250
0

0.1
0.2
0.3

0 100 200 300 400 500 600
0

0.1
0.2
0.3
0.4

0 100 200 300 400 500 600
0

0.2

0.4

0 100 200 300 400 500 600
0

0.1
0.2
0.3
0.4

0 100 200 300 400 500 600
0

0.1
0.2
0.3
0.4

0 100 200 300 400 500 600
0

0.2

0.4

200 400 600 800
0

0.1
0.2
0.3

0 200 400 600 800
0

0.2
0.4
0.6

0 200 400 600 800
0

0.2
0.4
0.6

0 100 200 300 400
0

0.2

0.4

0 200 400 600 800
0

0.1
0.2
0.3

0 200 400 600 800
0

0.2
0.4
0.6

0 200 400 600 800
0

0.2

0.4

0 200 400 600 800
0

0.1
0.2
0.3
0.4

0 200 400 600 800
0

0.2

0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_quantile_95_900 avg_pkt_len_download_quantile_99_900

silence_n_900 silence_mean_900

silence_trim_mean_05_900 silence_std_900

silence_max_900 silence_quantile_85_900

silence_quantile_90_900 silence_quantile_95_900

silence_quantile_99_900 activity_n_900

activity_mean_900 activity_trim_mean_05_900

activity_std_900 activity_max_900

activity_quantile_85_900 activity_quantile_90_900

activity_quantile_95_900 activity_quantile_99_900

Figure 23: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 15 minutes
- Part 6

121

Dataset with a sliding window of 75
minutes

123

1 2 3 4
0

0.02
0.04
0.06

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8 10
0

0.02
0.04

50 100 150 200
0

0.02
0.04
0.06

0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

2 4 6 8
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30 40 50
0

0.05

0.1

20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.1
0.2

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

50 100 150
0

0.05
0.1

0.15

100 150 200 250
0

0.05

0.1

1 2 3 4
0

0.01
0.02
0.03
0.04

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8
0

0.01
0.02
0.03
0.04

50 100 150
0

0.05

0.1

0 0.5 1 1.5 2
0

0.5

1

2 4 6 8
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30
0

0.05
0.1

20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_mean_2700 pps_upload_trim_mean_05_2700

pps_upload_std_2700 pps_upload_max_2700

pps_upload_quantile_85_2700 pps_upload_quantile_90_2700

pps_upload_quantile_95_2700 pps_upload_quantile_99_2700

avg_pkt_len_upload_mean_2700 avg_pkt_len_upload_trim_mean_05_2700

avg_pkt_len_upload_std_2700 avg_pkt_len_upload_max_2700

avg_pkt_len_upload_quantile_85_2700 avg_pkt_len_upload_quantile_90_2700

avg_pkt_len_upload_quantile_95_2700 avg_pkt_len_upload_quantile_99_2700

pps_download_mean_2700 pps_download_trim_mean_05_2700

pps_download_std_2700 pps_download_max_2700

pps_download_quantile_85_2700 pps_download_quantile_90_2700

pps_download_quantile_95_2700 pps_download_quantile_99_2700

avg_pkt_len_download_mean_2700 avg_pkt_len_download_trim_mean_05_2700

Figure 24: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 75 minutes
- Part 1

124

20 40 60 80 100
0

0.02
0.04
0.06

200 400 600
0

0.05
0.1

50 100 150 200
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

100 200 300
0

0.05
0.1

0.15

200 300 400
0

0.05

0.1

1 2 3
0

0.05

0.1

0 0.5 1 1.5 2
0

0.05
0.1

2 4 6 8 10
0

0.02
0.04
0.06
0.08

50 100 150 200
0

0.02
0.04
0.06
0.08

0.5 1 1.5 2
0

0.5

1

2 4 6
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30 40
0

0.05
0.1

20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.02
0.04
0.06
0.08

100 200 300 400 500 600
0

0.1
0.2
0.3

50 100 150
0

0.5

1

50 100 150
0

0.2
0.4

50 100 150
0

0.05
0.1

0.15

100 150 200 250
0

0.05
0.1

0.15

1 2 3
0

0.02
0.04
0.06

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8
0

0.02
0.04

50 100 150
0

0.05
0.1

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_std_2700 avg_pkt_len_download_max_2700

avg_pkt_len_download_quantile_85_2700 avg_pkt_len_download_quantile_90_2700

avg_pkt_len_download_quantile_95_2700 avg_pkt_len_download_quantile_99_2700

silence_n_2700 silence_mean_2700

silence_trim_mean_05_2700 silence_std_2700

silence_max_2700 silence_quantile_85_2700

silence_quantile_90_2700 silence_quantile_95_2700

silence_quantile_99_2700 activity_n_2700

activity_mean_2700 activity_trim_mean_05_2700

activity_std_2700 activity_max_2700

activity_quantile_85_2700 activity_quantile_90_2700

activity_quantile_95_2700 activity_quantile_99_2700

pps_upload_mean_3600 pps_upload_trim_mean_05_3600

Figure 25: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 75 minutes
- Part 2

125

0 0.5 1 1.5 2
0

0.5

1

2 4 6 8
0

0.2
0.4
0.6

5 10 15
0

0.1
0.2
0.3

10 20 30
0

0.05
0.1

20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

20 40 60 80 100
0

0.02
0.04
0.06
0.08

200 400 600
0

0.05
0.1

50 100 150 200
0

0.2
0.4
0.6
0.8

50 100 150 200 250 300
0

0.1
0.2
0.3
0.4

0 100 200 300
0

0.05
0.1

0.15

200 300 400
0

0.02
0.04
0.06

1 2 3
0

0.02
0.04
0.06
0.08

0 0.5 1 1.5 2
0

0.05
0.1

2 4 6 8 10
0

0.02
0.04
0.06
0.08

50 100 150 200
0

0.02
0.04
0.06
0.08

0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

2 4 6
0

0.2
0.4

5 10 15
0

0.1
0.2
0.3

10 20 30 40
0

0.05
0.1

20 40 60 80
0

0.05
0.1

0.15

0 20 40 60 80
0

0.1
0.2
0.3
0.4

20 40 60
0

0.05

0.1

100 200 300 400 500 600
0

0.1
0.2
0.3

50 100 150
0

0.2
0.4
0.6
0.8

50 100 150
0

0.2
0.4

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_std_3600 pps_upload_max_3600

pps_upload_quantile_85_3600 pps_upload_quantile_90_3600

pps_upload_quantile_95_3600 pps_upload_quantile_99_3600

avg_pkt_len_upload_mean_3600 avg_pkt_len_upload_trim_mean_05_3600

avg_pkt_len_upload_std_3600 avg_pkt_len_upload_max_3600

avg_pkt_len_upload_quantile_85_3600 avg_pkt_len_upload_quantile_90_3600

avg_pkt_len_upload_quantile_95_3600 avg_pkt_len_upload_quantile_99_3600

pps_download_mean_3600 pps_download_trim_mean_05_3600

pps_download_std_3600 pps_download_max_3600

pps_download_quantile_85_3600 pps_download_quantile_90_3600

pps_download_quantile_95_3600 pps_download_quantile_99_3600

avg_pkt_len_download_mean_3600 avg_pkt_len_download_trim_mean_05_3600

avg_pkt_len_download_std_3600 avg_pkt_len_download_max_3600

Figure 26: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 75 minutes
- Part 3

126

50 100 150
0

0.05
0.1

0.15

100 150 200 250
0

0.05
0.1

0.15

1 2 3
0

0.01
0.02
0.03
0.04

0 0.5 1 1.5 2 2.5
0

0.05
0.1

2 4 6 8
0

0.02
0.04

50 100 150
0

0.05
0.1

0.5 1 1.5 2
0

0.5

1

2 4 6
0

0.2
0.4

5 10 15
0

0.1
0.2
0.3

10 20 30
0

0.05
0.1

20 40 60 80 100
0

0.1
0.2

0 20 40 60 80 100
0

0.1
0.2
0.3
0.4

50 100
0

0.02
0.04
0.06
0.08

200 400 600 800
0

0.02
0.04
0.06
0.08

0 50 100 150 200 250
0

0.2
0.4
0.6
0.8

0 100 200 300
0

0.1
0.2
0.3
0.4

100 200 300
0

0.05
0.1

0.15

200 300 400
0

0.05
0.1

0 500 1000 1500 2000 2500
0

0.01
0.02
0.03
0.04

20 40 60 80
0

0.01
0.02
0.03
0.04

20 40 60
0

0.01
0.02
0.03
0.04

20 40 60 80 100
0

0.02
0.04
0.06

0 100 200 300 400
0

0.05
0.1

0.15

50 100 150 200
0

0.05
0.1

100 200 300
0

0.05
0.1

100 200 300
0

0.05
0.1

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_quantile_85_3600 avg_pkt_len_download_quantile_90_3600

avg_pkt_len_download_quantile_95_3600 avg_pkt_len_download_quantile_99_3600

silence_n_3600 silence_mean_3600

silence_trim_mean_05_3600 silence_std_3600

silence_max_3600 silence_quantile_85_3600

silence_quantile_90_3600 silence_quantile_95_3600

silence_quantile_99_3600 activity_n_3600

activity_mean_3600 activity_trim_mean_05_3600

activity_std_3600 activity_max_3600

activity_quantile_85_3600 activity_quantile_90_3600

activity_quantile_95_3600 activity_quantile_99_3600

pps_upload_mean_4500 pps_upload_trim_mean_05_4500

pps_upload_std_4500 pps_upload_max_4500

Figure 27: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 75 minutes
- Part 4

127

0 100 200 300 400
0

0.05
0.1

0 1000 2000 3000
0

0.01
0.02
0.03
0.04

20 40 60
0

0.02
0.04
0.06

10 20 30 40 50 60
0

0.01
0.02
0.03
0.04

20 40 60 80 100
0

0.02
0.04
0.06

0 100 200 300 400
0

0.05
0.1

0.15

50 100 150
0

0.05
0.1

50 100 150 200
0

0.05
0.1

100 200 300
0

0.05
0.1

0 100 200 300 400
0

0.05
0.1

0 1000 2000 3000 4000
0

0.01
0.02
0.03

10 20 30 40 50
0

0.02
0.04

10 20 30 40 50
0

0.02
0.04
0.06

20 40 60 80
0

0.02
0.04
0.06

0 100 200 300 400
0

0.05
0.1

0.15

50 100
0

0.05
0.1

50 100 150
0

0.05
0.1

100 200 300
0

0.05
0.1

0 100 200 300 400
0

0.05
0.1

500 1000 1500 2000 2500
0

0.1
0.2
0.3

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6

0 500 1000
0

0.2
0.4
0.6
0.8

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6
0.8

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

pps_upload_quantile_85_4500 pps_upload_quantile_90_4500

pps_upload_quantile_95_4500 pps_upload_quantile_99_4500

avg_pkt_len_upload_mean_4500 avg_pkt_len_upload_trim_mean_05_4500

avg_pkt_len_upload_std_4500 avg_pkt_len_upload_max_4500

avg_pkt_len_upload_quantile_85_4500 avg_pkt_len_upload_quantile_90_4500

avg_pkt_len_upload_quantile_95_4500 avg_pkt_len_upload_quantile_99_4500

pps_download_mean_4500 pps_download_trim_mean_05_4500

pps_download_std_4500 pps_download_max_4500

pps_download_quantile_85_4500 pps_download_quantile_90_4500

pps_download_quantile_95_4500 pps_download_quantile_99_4500

avg_pkt_len_download_mean_4500 avg_pkt_len_download_trim_mean_05_4500

avg_pkt_len_download_std_4500 avg_pkt_len_download_max_4500

avg_pkt_len_download_quantile_85_4500 avg_pkt_len_download_quantile_90_4500

Figure 28: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 75 minutes
- Part 5

128

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6

0 500 1000 1500 2000 2500
0

0.2
0.4
0.6

1000 2000 3000
0

0.1
0.2
0.3

0 1000 2000 3000
0

0.2
0.4
0.6

0 1000 2000 3000
0

0.2
0.4
0.6

0 500 1000 1500
0

0.5

1

0 1000 2000 3000
0

0.2
0.4
0.6

0 1000 2000 3000
0

0.2
0.4
0.6
0.8

0 1000 2000 3000
0

0.2
0.4
0.6

0 1000 2000 3000
0

0.2
0.4
0.6

0 1000 2000 3000
0

0.2
0.4
0.6

1000 2000 3000 4000
0

0.1
0.2
0.3

0 1000 2000 3000 4000
0

0.2
0.4
0.6

0 1000 2000 3000 4000
0

0.2
0.4
0.6

0 500 1000 1500 2000
0

0.5

1

0 1000 2000 3000 4000
0

0.2
0.4
0.6

0 1000 2000 3000 4000
0

0.2
0.4
0.6
0.8

0 1000 2000 3000 4000
0

0.2
0.4
0.6

0 1000 2000 3000 4000
0

0.2
0.4
0.6

0 1000 2000 3000 4000
0

0.2
0.4
0.6

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

P
er
ce
nt
ag

e

avg_pkt_len_download_quantile_95_4500 avg_pkt_len_download_quantile_99_4500

silence_n_4500 silence_mean_4500

silence_trim_mean_05_4500 silence_std_4500

silence_max_4500 silence_quantile_85_4500

silence_quantile_90_4500 silence_quantile_95_4500

silence_quantile_99_4500 activity_n_4500

activity_mean_4500 activity_trim_mean_05_4500

activity_std_4500 activity_max_4500

activity_quantile_85_4500 activity_quantile_90_4500

activity_quantile_95_4500 activity_quantile_99_4500

Figure 29: Comparison between licit (in blue) and illicit (in red) data points with and
without keep-alive messages for the Dataset with a sliding window of 75 minutes
- Part 6

129

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Outline

	State of the Art
	Malware bots and botnets
	Introduction to the malware bot’s life-cycle
	Propagation vectors
	The Rallying mechanism
	Botnet topologies
	Centralized topologies
	Decentralized topologies
	More advanced topologies

	Evading detection with covert channels and anonymization
	Common protocols for covert channels
	Information concealing
	Anonymization of C&C Services

	DNS as a covert channel
	DNS overview
	DNS Resolution
	DNS Transport
	DNS Messages

	How DNS is misused for illicit activities
	The DNS threat landscape

	Botnet Detection techniques
	Host-based detection
	Network-based detection

	Machine Learning
	Machine Learning workflow
	Feature Selection
	Filter Approach
	Wrapper Approach
	Embedded Approach

	Dimensionality Reduction
	Principal Component Analysis

	Anomaly Detection
	AD approaches
	Anomalies, Outliers and Novelties
	Density-based models
	Boundary-based models

	Summary

	Methodologies for Network-based AD
	Network-based AD workflow
	Data collection
	Data collection under data protection regulations
	Emulating network behaviors of malware bots

	Feature extraction
	Feature Extraction with Observation Windows

	Data scaling
	Dimensionality Reduction
	The Learning Process and model evaluation

	Summary

	Methodologies evaluation and Results
	Licit traffic collection
	Emulation of malware bot attacks
	Scenario 1: C&C over DNS with the Push mechanism using standard behaviors
	Scenario 2: Data exfiltration over DNS using standard behaviors
	Scenario 3: C&C with the Push Mechanism over DNS that mimics licit behaviors
	Scenario 4: Data exfiltration over DNS that mimics licit behaviors mechanisms
	Scenario 5: C&C with the Pull Mechanism over DNS mixed with licit traffic
	Scenario 6: Low throughput Data exfiltration over DNS mixed with licit traffic

	Dataset Exploration
	Dimensionality Reduction
	Classification Results
	Dataset with a sliding window of 70 minutes
	Datasets with keep-alive messages
	Datasets without keep-alive messages

	Dataset with a sliding window of 15 minutes
	Datasets with keep-alive messages
	Datasets without keep-alive messages

	Datasets with a sliding window of 75 minutes
	Datasets with keep-alive messages
	Datasets without keep-alive messages

	Conclusion

	Conclusions and future work
	Future work

	References
	Licit DNS traffic Throughput - Time Series
	Licit DNS traffic - Histograms
	Scenario 1: Illicit DNS traffic - Histograms
	Scenario 3: Histogram comparison between licit and illicit traffic
	Dataset with a sliding window of 70 minutes
	Dataset with a sliding window of 15 minutes
	Dataset with a sliding window of 75 minutes

