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Abstract: In this article, we develop a simple mathematical GNU Octave/MATLAB code that is
easy to modify for the simulation of mathematical models governed by fractional-order differential
equations, and for the resolution of fractional-order optimal control problems through Pontryagin’s
maximum principle (indirect approach to optimal control). For this purpose, a fractional-order model
for the respiratory syncytial virus (RSV) infection is considered. The model is an improvement
of one first proposed by the authors in 2018. The initial value problem associated with the RSV
infection fractional model is numerically solved using Garrapa’s £de12 solver and two simple
methods coded here in Octave/MATLAB: the fractional forward Euler’s method and the predict-
evaluate-correct-evaluate (PECE) method of Adams—Bashforth-Moulton. A fractional optimal control
problem is then formulated having treatment as the control. The fractional Pontryagin maximum
principle is used to characterize the fractional optimal control and the extremals of the problem are
determined numerically through the implementation of the forward-backward PECE method. The
implemented algorithms are available on GitHub and, at the end of the paper, in appendixes, both
for the uncontrolled initial value problem as well as for the fractional optimal control problem, using
the free GNU Octave computing software and assuring compatibility with MATLAB.

Keywords: numerical algorithms; fractional optimal control; Octave; respiratory syncytial virus
infection; open source code for fractional optimal control

MSC: 34A08; 49MO05; 92D30

1. Introduction

In 1695, L'Hopital asked Leibniz in a letter about the possible meaning of a derivative
of order 1/2 [1]. This episode is considered the kilometer zero of the Fractional Calculus
road. In recent years, the modeling of real-phenomenon with fractional-order derivatives
has caught the attention of many researchers. The associated problems have been modeled
and studied using fractional-order derivatives to better understand their dynamics. For
problems that arise in biology, ecology, engineering, physics, and some other fields of
applied sciences, see, e.g., [2-5].

Mathematical models can predict the evolution of an infectious disease, show the
predictable result of an epidemic, and support public health possible interventions. Com-
partmental models serve as a basic mathematical structure in epidemiology to comprehend
the dynamics of such systems. In the simplest case, the compartments divide the popu-
lation into two health states: susceptible to the infection of the pathogen agent, usually
denoted by S, and infected by the pathogen, usually denoted by the letter I. Phenomeno-
logical assumptions explain the way that these compartments interact, and the model is
constructed from there. Usually, these models are investigated through systems of ordinary
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differential equations. Other compartments could be included. Depending on the disease,
the recovered /immune/removed compartment, usually denoted by R, is very common. To
give further realism to the mathematical models and consider the influence of the past on
the current and future state of the disease, recently, fractional order differential equations
have been considered. In this regard, one can find, for example, research on dengue, Ebola,
tuberculosis, and HIV /AIDS [6-8].

Respiratory syncytial virus (RSV) is a prominent cause of acute lower respiratory infec-
tion in young children. Consequently, RSV is a considerable burden on healthcare systems.

In a recent study of RSV in Portugal [9], it is shown that RSV is accountable for a
substantial number of hospitalizations in children, especially when they have less than one
year old. Hospitalizations are mainly motivated by healthy children. The authors of [9]
conclude their study claiming that the creation of a universal RSV surveillance system to
guide prevention strategies are crucial.

In another context, a surveillance system was already implemented in Florida in
1999, to support clinical decision-making for the prophylaxis of premature newborns.
Since this infection is seasonal, a local periodic SEIRS mathematical model was proposed
in [10] to describe real data collected by Florida’s system. Later, a nonlocal fractional (non-
integer order) model was proposed in [11], where a fractional optimal control problem was
formulated and solved.

In this work, we start by introducing dimension corrections to the SEIRS-a epidemic
model presented in [11]. Afterwards, we apply fractional optimal control to the model
having treatment as the control variable. Differently from previous works, our computer
codes are presented in the text and they are intentionally easy to modify in order to motivate
readers to use them and adapt them to their own models and to their own contexts.

When « = 1, a fractional compartmental model represents a classical compartmental
model. Therefore, the presented codes can also solve classical optimal control models;
although, in that case, we suggest the reference [12] as a preferential option in such a scenario.

By providing the code of algorithms in an open programming language, we believe
that our work contributes to reducing the alleged “replication crisis” in science and, in
particular, in the field of dynamic optimization and control in biomedical research. This is
a crisis due to the fact that many scientific studies are difficult or impossible to validate
through replication [13].

The organization of the paper is as follows. In Section 2, we introduce the fractional-
order RSV model, correcting the model first presented in [11]. The numerical resolution of
the fractional RSV model is presented by three algorithms, being the subject of Section 3.
The fractional optimal control of RSV transmission is the subject of Section 4. We end with
conclusions and possible future work in Section 5.

2. A Fractional-Order RSV Model

We consider that the population under study consists of susceptible (S), infected but
not yet infectious (E), infected and infectious (I), and recovered (R) individuals. A char-
acteristic feature of RSV is that immunity after infection is temporary, so the recovered
individuals become susceptible again [14]. Let parameter y denote the birth rate, which
we assume equal to the mortality rate; individuals leave the latency period and become
infectious at a rate ¢; y be the rate of loss of immunity; and v be the rate of loss of infectious-
ness. We assume the latency period to be equal to the time between infection and the first
symptoms. The influence of seasonality on the transmission parameter 8 is modeled by the
cosine function. As in [15], we consider that the annual recruitment rate is seasonal due to
school opening/closing periods. Our system of fractional differential equations, the SEIR-«
epidemic model presented in [11] is given by
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6DFS(t) = A(t) — uS(

DY E(t) = B(£)S(8)I(t) — uE(t) —
GDFI(t) = eE(t) — pl(t) — vl )/
DY R(t) = vI(t) — uR(t) — yR(t),

where B(t) = bp(1 + by cos(27tt + @)) and (D denote the left Caputo derivative of or-
der « € (0,1] [2]. The parameter by is the mean of the transmission parameter and
by is the amplitude of the seasonal fluctuation in the transmission parameter, 8. Here,
A(t) = u(1+cq cos(2mtt + P)) is the recruitment rate (including newborns and immi-
grants), where parameter c; is the amplitude of the seasonal fluctuation in the recruitment
parameter, A, while ® is an angle that is chosen in agreement with real data. Note that in
the particular case of « = 1 we obtain from (2) the SEIRS model of [16].

Equations of model (1) do not have appropriate time dimensions. Indeed, on the
left-hand side the dimension is (time) ™%, while on the right-hand side the dimension is
(time)~!. We can conclude that model (1) is only consistent when & = 1. For more details
about the importance of consistency of dimensions, we refer the reader to [17,18] and the
references therein. Hence, we correct system (1) as follows:

M

§DIS() = A(t) — u*S(t) = B()S(DI(E) + v R(H),

DFE(t) = B(£)S(E)I(t) — p*E(t) — e"E(t), )
DY () = € E(t) — pI(t) — v*I(t),

GDFR(E) = v I(t) — uR(E) = y*R(t),

where B(t) = b (1 + by cos(2mt + @)) and A(t) = p*(1 + ¢ cos(2mt + P)).

3. Numerical Resolution of the Fractional RSV Model

In this section, we consider an initial value problem that consists of the fractional
system (2) and the following initial conditions in terms of percentage of total population:

S(0) = 0.426282, E(0) = 0.0109566, 1(0) = 0.0275076, R(0) =0.535254.  (3)

The values of (3) correspond to the endemic equilibrium of the fractional system (2). Note
that because we have introduced the dimension correction into the initial model, the
resulting model differs from the one presented in [11].

The RSV model parameters are presented in Table 1. The parameter values ¢, v, and 7y
were obtained from [14]. The birth rate, y, is borrowed from [19] for the state of Florida.
The birth rate is assumed equal to the mortality rate, which results in a constant population
during the duration of the study. Analogously to [10], the fractional model was fitted to
the data of the State of Florida, not including the north region, between September 2011
and July 2014. The data was collected from the Florida Department of Health [20]. In that
process, values of the following parameters were determined by fitting the model: (i) the
mean of the transmission parameter, by; (ii) and its relative seasonal amplitude, b;. As
previously in [10], we assume here that the amplitude of the seasonal fluctuation in the
recruitment parameter, ¢y, is equal to b;. The angle ® is assumed to be 7r/2. This value
allows the initial value of the transmission parameter to be the average, f(0) = by, and the
initial value of the recruitment rate to also be the average, A(0) = p.

The new fractional model maintains a better fit to real data than the classical model
(the absolute error is equal to 1716.12, which surpasses the value of 1719.12 corresponding
to the classical model. For more details see [11]. The best adjustment to real data is achieved
with a derivative order slightly different than the one determined before: & = 0.995. This
value is the one we consider in what follows.
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Table 1. RSV model parameters that, with the exception of by, by and ¢y, are borrowed from [10] and
references cited therein.

® v Y £ bo b1 c1 )]
0.0113 36 1.8 91 85 0.167 0.167 /2

Algorithms designed to obtain the numerical solution of the initial value problem, (2)
and (3), are now implemented under the free GNU Octave software (version 7.3.0), a high-
level language primarily intended for numerical computations. Octave uses a language that
is mostly compatible with MATLAB, being free [21]. In that regard, two known numerical
techniques are implemented: the forward Euler’s and the predict-evaluate-correct-evaluate
(PECE) methods. The obtained solutions are compared with the ones obtained through the
known and freely available fde12 routine.

3.1. The fdel2 Solver

Currently, neither GNU Octave nor MATLAB installation includes a built-in routine
dedicated to the resolution of nonlinear differential equations of fractional order. Neverthe-
less, in the “MATLAB Central File Exchange”, there exists a routine, named fde12, whose
implementation, based on Adams-Bashforth-Moulton scheme, is due to Garrapa [22]. This
Octave/MATLAB routine solves fractional order differential equations in the Caputo sense.
Convergence and accuracy of the numerical method are available in [23]. The stability
properties of the algorithm implemented by fde12 are studied in [24].

The initial value problem of Equation (2), with initial conditions (3), can be solved
with the £de12 function employing the implementation available in Appendix A.

The solution through Garrapa’s routine can then be obtained by introducing the
following instructions in the GNU Octave interface:

>> N = 400; alpha = 0.995;
>> [t,y] = model_SEIRS_fdel2(N, alpha)

3.2. Fractional Forward Euler’s Method
Let us consider the initial value problem (IVP):

Diy(t) = f(ty(t), 0<a <1, @
y(0) =yo, 0 <t < te,

where f(t,y(t)) is a given function that satisfies some smooth conditions [25].

The function y(t), known as the exact solution, that satisfies the IVP (4) is not what we
will obtain with this procedure. Instead, an approximation of it is computed in as many
points as we deem necessary.

The interval [0,f] is subdivided into n subintervals [t f;,1] of equal size
h= tf/n using the nodes tj = jh,forj=0,1,...,n.

Applying $D;* on both sides of (4), we obtain the following equivalent Volterra
integral equation [23]:

y(£) = yo +D; “f(ty(1)).

According to [25], $D, *f(t,y(t)) is then approximated by a left fractional rectangular
formula in such a way

h(X n

y(tus1) = Yo + m] Obj,n+lf(tj/y(j))r

where
binr=[(n—j+1)" = (n—j)"]
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This method was elected here since this approach agrees with the fact that fractional

derivatives are given by an integral.

Applying the fractional forward Euler’s method to approximate the four variables of
our fractional ordinary differential system of equations, we obtain the GNU Octave routine
implementation that can be found in Appendix B.

In Figure 1, the solution of the system of fractional differential Equation (2), with initial
conditions (3), obtained by the fde12 solver (solid line) is compared with the correspondent
solution of the forward Euler’s method (dashed line). The same discretization is used
by both implementations in the interval [0, ¢ final]/ considering 400 knots and the step size
h = tfina/399. We can verify that the graphics of system variables have strong oscillations.
As a consequence, the approximations obtained by the forward Euler’s method, a very

simple algorithm, have difficulty following the solution of a more sophisticated and robust

implementation like the one provided by the fde12 solver.
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Figure 1. State variables of the fractional differential system (2), considering « = 0.995, determined
with the £de12 solver and with Euler’s method: (a) Variation of the number of susceptible individuals;
(b) Variation of the number of exposed individuals; (c) Variation of the number of infected individuals;

(d) Variation of the number of recovered individuals.

The solver £de12 is a sophisticated routine that, in some cases, considers a number
of knots different from the one proposed by the user. We tested a few numbers of knots
and verified that the number 400 was not changed by the solver. This allows the direct
comparison with the approximations obtained by other routines, dispensing the use of
other tools (e.g., interpolation) and their associated errors.

For illustration purposes, we follow the instructions used in the GNU Octave interface
to obtain Figure 1a, which exhibits the variation of the number of susceptible individuals:

figure
hold on

plot( t,yf(1,:),t,ye(1,:),7--?)
xlabel(’time’)

ylabel(’S(t)?)
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legend( ’\it fdel2’,’Euler’);

legend (’boxoff’)

set(gca,’XTick’,[0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5])
hold off

where yf(1,:) is the vector of values of variable S(t) (susceptibles) determined by fde12
solver, while ye(1,:) is the vector of values of variable S(t) determined by Forward
Euler’s method.

The norm of the difference vector, the absolute difference between the results obtained
by the fde12 solver and the ones obtained by the proposed implementation of Euler’s
method, is presented in Table 2 using norms 1, 2, and co. Since Euler’s method has a global
error of order one [25], the error bound depends linearly on the step size, . Therefore,
reducing the step size should lead to greater accuracy in the approximations.

Table 2. Difference between results of fde12 solver and Euler’s method with norms 1, 2, and oo.

Variable S(t) E(t) I(t) R(t)
|[fde12 — Euler||; 3.89849 0.297874 0.776241 3.8815
||fde12 — Euler||, 0.221838 0.0196 0.0512966 0.22177
||[fde12 — Euler||co 0.0197738 0.00285878 0.00745357 0.019802

3.3. PECE Algorithm

Based on [26] and the references cited therein, we now propose an implementation of
the predict-evaluate-correct-evaluate (PECE) method of Adams—Basforth-Moulton. The
code is relatively simple, easy to modify, and can be tailored to solve a particular nonlinear
fractional differential model with constant, or time-varying, coefficients.

Applying the PECE method to approximate the four variables of our fractional ordi-
nary differential system of equations, we obtain the GNU Octave routine implementation
that can be found in Appendix C.

In Figure 2, the solution of the system of fractional differential Equation (2), with initial
conditions (3), obtained by the fde12 solver (solid line) is compared with the corresponding
solution of the PECE method (dashed line). We observe that the PECE method produces a
better approximation than Euler’s method since both curves in each plot are almost indis-
tinguishable. As before, here the same discretization is also used by both implementations
in the interval [0, ;uq1], considering 400 knots and the step size h = t ;41 /399.

The norm of the absolute difference between the results obtained by the £de12 solver
and the proposed implementation of the PECE method are presented in Table 3 making
use of norms 1, 2, and co. Since PECE’s method has a global error of order two [27], the
error bound depends quadratically on the step size, h. This explains why the results
obtained from the PECE implementation are better than those obtained from the forward
Euler’s method.

In Section 4, a fractional optimal control problem of the model is presented. The
computation of the corresponding optimal solution is carried out in a forward-backward
scheme with the PECE algorithm because custom made dedicated algorithms are, in general,
more efficient and can handle more complex models comparatively with generic codes.

Table 3. Difference between results of the £de12 solver and the PECE implementation with norms 1,

2, and oo.
Variable S(t) E(t) I(t) R(t)
||fde12 — PECE]||; 0.191041 0.0162465 0.0415721 0.18758
||fde12 — PECE||» 0.0115686 0.00106802 0.00269032 0.0113171

||fde12 — PECE]|| 0.00133593 0.000135793 0.000322856 0.00128548
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Figure 2. State variables of the fractional differential system (2), considering « = 0.995, determined
with the £de12 solver and with our PECE implementation: (a) Variation of the number of susceptible
individuals; (b) Variation of the number of exposed individuals; (c) Variation of the number of
infected individuals; (d) Variation of the number of recovered individuals.

4. Fractional Optimal Control of RSV Transmission

The evolution of the variables of the model depends on some circumstances that can be
controlled. In what concerns RSV disease, treatment is commonly used as the control due
to its relevance in a hospital context (limitation in the number of beds and other resources).
Hence, we consider the following fractional optimal control problem: to minimize the

number of infectious individuals and the cost associated to control the disease with the
treatment of the patients, that is,

min J(I,T) = /Otf (K1 I(t) + 1 ’J]_“Z(t)> dt ®)

with given 0 < xq, Ky < oo, subject to the fractional control system

DES(t) = At

(8) — uS(t) = B(H)S(E)I(t) + v R(2),
DFE(t) = B(

)
)S(E)I(t) — p"E(t) — € E(t),
DY I(t) = € E(t) — pI(t) —v™I(t) = T(8)I(t),

GDFR(t) = v I(t) — u*R(E) —y*R(t) + T(£)I(t)

t
(6)

and given initial conditions

5(0), E(0), I(0), R(0) = 0. @)
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Here, T is the control variable, which designates treatment. Note that in absence of treat-
ment, that is, for T'(¢) = 0, then the control system (6) reduces to the SEIRS-x dynamical
system (2). The set of admissible control functions is

0= {T(~) € L®(0,t;) : 0 < T < Tnax, Vi € [o,tf}}. ®)

Two approaches can be chalked to solve optimal control problems: direct and indirect.
In direct methods, the resolution of the fractional optimal control problem is performed
through the application of a variety of discretization and numerical tools [28]. Indirect
methods are based on Pontryagin’s maximum principle and are more robust, although
less widespread in biological applications since they are not as easy to solve as direct ap-
proaches [29]. In what follows, we show how one can take advantage of Octave/MATLAB
to solve fractional optimal control problems through Pontryagin’s maximum principle,
reducing the problem to the solution of a boundary value problem.

Pontryagin’s maximum principle (PMP) for fractional optimal control can be used to
solve the problem [29,30]. The Hamiltonian of our optimal control problem is

H =11+ 1T + py (A — u*S — BSI 4+ ¥*R) + p2(BSI — y*E — €“E)
+ p3(e"E — pu*I —v*1 — TI) + ps(v*I — p*R — v*R + TI);

the optimality condition of PMP ensures that the optimal control is given by

T(t) = min{max{O, (pa(t) — pa(t)I(1) },Tmax}; )

21(2

while the adjoint system asserts that the co-state variables p;(t),i =1,...,4, satisfy

D p1(t) = pr(®)(u* + BOI(E)) = B(I(H)p2(t),

Df p2(t) = pa(8) (" + &%) — e ps(t),

Df pa(t) = —x1 + B(E)p1(£)S(E) — p2(H) (1) S(H) (10)
+p3(8)(* + v+ () = pa(t) (v +T(1)),

D, pa(t) = =" pa(t) + pa(B) (0" + %),

which is a fractional system of right Riemann-Liouville derivatives, whose operator is
represented by th‘f . In addition, the following transversality conditions hold:

D pil, =0 iy |, =pilty) =0, i=1....4 (11)

where ,Itlf_‘" is the right Riemann-Liouville fractional integral of order 1 — a.

Numerical Resolution of the RSV Fractional Optimal Control Problem

The optimal control problem (5)—(8) is numerically solved with the help of Pontryagin’s
maximum principle and its optimality conditions, as discussed at the beginning of Section 4,
implementing a forward-backward predict-evaluate-correct-evaluate (PECE) method of
Adams-Basforth-Moulton (see Section 3.3 for the PECE algorithm). The presented forward-
backward algorithm generalizes the algorithm proposed in reference [31].

First, we solve system (6) by the PECE procedure with initial conditions for the state
variables (7) given in terms of the percentage of the total population, that is, S(0) + E(0) +
I(0) + R(0) = 1, and a guess for the control over the time interval [0, (], and obtain the
values of the state variables S, E, I and R.
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Applying the change of variable
/
t=tr—t

to the system of adjoint Equation (10) and to the transversality conditions (11), we obtain
the following left Riemann-Liouville fractional initial value problem (12)—(13):

oDy p1(t) = =[p1 () (u* + () I(H)) — B(E) () p2(t)],
oDy pa(t') = —[pa(t) (u* + &) — e pa(t)],
oD p3(t') = —[—x1 + B )p1()S(H') — p2 () B(H')S(H) (12)
+p3(t) (U +v* + T(t)) — palt) (v* + T(t))],
oD pa(t') = —[=7*p1(t') + pa(t') (1" +7*)],
with initial conditions
pi(t) |,,=0, i=1,... 4 (13)

In turn, conditions (13) imply that

DS pi(t) =Dipi(t), i=1,...,4,

which means that the adjoint system (12) can be treated as a Caputo system of fractional
differential equations (see, e.g., [29], Section 3.3).

Given the initial conditions (13), we solve (12) with the PECE procedure and obtain
the values of the co-state variables p;, i =1, ..., 4. The control is then updated by a convex
combination of the previous control and the value from (9). This procedure is repeated
iteratively until the values of the controls at the previous iteration are very close to the ones
at the current iteration.

In our numerical computations, we consider that Tmax = 1 and the other parameters
are fixed according to Table 1. Such values allow the transmission parameter’s initial value
to be the average, (0) = by, and the recruitment rate initial value to also be the average,
A(0) = p. Our initial conditions, given by (3), guarantee the existence of a nontrivial
endemic equilibrium for the system (6) in the absence of control (T'(t) = 0), corresponding
to the population system (2) prior introduction of treatment. Because the World Health
Organization’s goals for most diseases are usually fixed for five-year periods, we assumed
tr = 5.

The algorithm is implemented in GNU Octave divided into four functions, the main
function named FOCP_PECE. The implementation of all those functions is available in
Appendix D.

The numerical solution of the fractional optimal control problem (5)—(13) with initial
conditions (3), determined by our FOCP_PECE routine and associated functions, is exhibited
in Figure 3. The introduction of treatment as control forces a reduction in the level of
infected individuals as we can see in Figure 3c.

The evolution of the control treatment is traced in Figure 4 and follows the seasonality
of the RSV infection.
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Figure 3. Comparison of optimal state variables for the FOCP, defined by (5)—(13), subject to the initial

conditions (3) with homonymous variables of the original model prior to the use of control treatment.

(a) Evolution of susceptible individuals. (b) Evolution of exposed individuals. (c) Evolution of
infected individuals. (d) Evolution of recovered individuals.
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Figure 4. Optimal Control T for the RSV fractional optimal control problem (5)-(13) subject to the
initial conditions (3).

5. Conclusions

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract
infection in infants and children worldwide. In addition, RSV causes serious diseases in
elderly and immune-compromised individuals [10]. In this work, we improved a fractional
compartmental model for RSV and applied optimal control to the resulting model. The
Octave/MATLAB codes, developed in the computation of numerical solutions, are available
in appendixes and were purposely simplified in order to be easily adapted to other contexts
and models. We trust this will motivate more researchers to use fractional optimal control
in the modeling of real applications. As future work, we plan to investigate the use of

others measures to control the transmission of the disease and the benefit of the fractional
approach in other contexts and geographical regions.
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Appendix A. Resolution of the IVP with the fde12 Function

Here, the initial value problem (2) and (3) is solved in Octave/MATLAB with the help
of the £de12 function [22].

function [t, y] = model_SEIRS_fdel2(N,alpha)

% initial conditions
y0=[0.426282; 0.0109566; 0.0275076; 0.535254];

% Values of parameters

miu = 0.0113; niu = 36; epsilon = 91; b0 = 85; bl = 0.167; cl1 = 0.167;
gama = 1.8; tfinal = 5; phi = pi/2;

ft = linspace(0,tfinal,N); h = tfinal/(N-1);

% Correction of values of parameters
miu_ = miu~alpha; niu_ = niu~alpha; epsilon_ = epsilon~alpha;
gama_ = gama~alpha;

% time-dependent parameters
flambda = @(t) miu."alpha.*(1 + cl.* cos( 2.*% pi.*x t + phi) );
fbeta = @(t) b0."alpha.* (1 + bl.* cos( 2.% pi.*x t + phi ) );

% Differential system of equations of the model

fdefun = @(t,y,ft) [flambda(t)-miu_*y(1)-fbeta(t)*y(1)*y(3)+gama_xy(4);
fbeta(t)*y (1) *y(3) - (miu_+epsilon_)*y(2);
epsilon_*y(2)-(miu_+niu_)*y(3);
niu_xy(3)-miu_xy(4)-gama_xy(4)];

% resolution of system with solver fdel2
[t,y] = fdel2(alpha,fdefun,0,tfinal,y0,h,ft);

end
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Appendix B. Resolution of the IVP with the Forward Euler Method

Here, the initial value problem (2) and (3) is solved in Octave/MATLAB by using
the fractional forward Euler’s method to approximate the four variables of the fractional
system of equations.

function [t,y] = model_SEIRS_EULER(N,alpha)

% Values of parameters
miu = 0.0113; niu = 36; epsilon = 91; gama = 1.8; tfinal = 5; b0 = 85;
bl = 0.167; c1 = 0.167; phi = pi/2;

% initial conditions
SO = 0.426282; EO = 0.0109566; I0 = 0.0275076; RO = 0.535254;

% Correction of values of parameters
miu_ = miu~alpha; niu_ = niu~alpha; epsilon_ = epsilon~alpha;
gama_ = gama~alpha;

% time-dependent parameters
flambda = @(t) miu_*(1 + c1 * cos( 2 * pi * t + phi) );
fbeta = @(t) bO~alpha.* (1 + bl * cos( 2 * pi * t + phi ) );

% Initialization of variables

t = linspace(0,tfinal,N); h = tfinal/N; init = zeros(1,N);
S = init; E = init; I = init; R = init;

S(1) = S0; E(1) = EO; I(1) = I0; R(1) = RO;

beta = fbeta(t); lambda = flambda(t);

for j = 2:N
aux_s = 0; aux_e = 0; aux_i = 0; aux_r = 0;
for k = 1:j-1

bk = (j-k+1)~alpha-(j-k)~alpha;

% Differential system of equations of the model
aux_s = aux_s+bk*(lambda (k) -miu_x*S(k)-beta(k)*S(k)*I(k)
+gama_*R(k)) ;
aux_e = aux_e+bk*(beta(k)*S(k)*I(k)-(miu_+epsilon_)*E(k));
aux_i = aux_i+bk*(epsilon_*E(k)-(miu_+niu_)*I(k));
aux_r = aux_r+bk*(niu_*I(k)-miu_*R(k)-gama_x*R(k));
end
S(j) = SO+h~alpha/gamma(l+alpha)*aux_s;

E(j) = EO+h~alpha/gamma(1+alpha)*aux_e;
I(j) = IO+h~alpha/gamma(l+alpha)*aux_i;
R(j) = RO+h~alpha/gamma(l+alpha)*aux_r;

end
y(1,:) =8; y(2,:) =E; y(3,:) =1I; y(4,:) =R;

end
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Appendix C. Resolution of the IVP with the PECE Method

Now, the initial value problem (2) and (3) is solved in Octave/MATLAB by using the
predict-evaluate-correct-evaluate (PECE) method of Adams—Bashforth-Moulton.

function [t,y] = model_SEIRS_PECE(N,alpha)

% Values of parameters
miu = 0.0113; niu = 36; epsilon = 91; gama = 1.8; tfinal = 5;
b0 = 85; bl = 0.167; c1=0.167; phi = pi/2;

% initial conditions
SO = 0.426282; EO = 0.0109566; I0 = 0.0275076; RO = 0.535254;

% Correction of values of parameters
miu_ = miu~alpha; niu_ = niu~alpha; epsilon_ = epsilon~alpha;
gama_ = gama~alpha;

% time-dependent parameters
flambda = @(t) miu_*(1 + cl * cos( 2 * pi * t + phi) );
fbeta = @(t) bO~alpha.* (1 + bl * cos( 2 * pi * t + phi ) );

% Initialization of variables

t = linspace(0,tfinal,N); h = tfinal/N; init = zeros(1,N);
beta = fbeta(t); lambda = flambda(t);

S = init; E = init; I = init; R = init; b = init; a = init;
S(1) = S0; E(1) = EO; I(1) = I0; R(1) = RO;

Sp =8; Ep = E; Ip = I; Rp = R;

% computation of coefficients a_k and b_k
for k = 1:N

b(k) = k~alpha-(k-1)~alpha;

a(k) = (k+1)~(alpha+1)-2*k~(alpha+1)+(k-1)~(alpha+1);
end

for j = 2:N
% First part: prediction

aux_s = 0; aux_e = 0; aux_i = 0; aux_r = 0;
for k = 1:j

% Differential system of equations of the model
aux_s = aux_s+b(j-k+1)*(lambda(k)-miu_*S(k)...
-beta (k) *S (k) *I (k)+gama_*R(k)) ;
aux_e = aux_e+b(j-k+1)*(beta(k)*S(k)*I(k)...
-(miu_+epsilon_)*E(k));
aux_i = aux_i+b(j-k+1)*(epsilon_*E(k)-(miu_+niu_)*I(k));
aux_r = aux_r+b(j-k+1)*(niu_*I(k)-miu_*R(k)-gama_*R(k));
end

Sp(j) = SO+h~alpha/gamma(l+alpha)*aux_s;

Ep(j) = EO+h~alpha/gamma(1+alpha)*aux_e;
Ip(j) = IO+h~alpha/gamma(l+alpha)*aux_i;
Rp(j) = RO+h~alpha/gamma(1+alpha)*aux_r;
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% Second part: correction

aux_ss = lambda(j)-miu_*Sp(j)-beta(j)*Sp(j)*Ip(j)+gama_»Rp(j);
aux_ee = beta(j)*Sp(j)*Ip(j)-(miu_+epsilon_)*Ep(j);

aux_ii = epsilon_*Ep(j)-(miu_+niu_)*Ip(j);

aux_rr = niu_*Ip(j)-miu_*Rp(j)-gama_xRp(j);

auxx = ((j-1)~(alpha+1)-(j-1-alpha)*j~alpha);

aux_s0 = auxx*(lambda(1l)-miu_xS(1)-beta(1)*S(1)*I(1)+gama_*R(1));
aux_e0 = auxx* (beta(1)*S(1)*I(1)-(miu_+epsilon_)*E(1));

aux_i0 = auxx*(epsilon_*E(1)-(miu_+niu_)*I(1));

aux_r0 = auxx*(niu_*I(1)-miu_*R(1)-gama_*R(1));

0; aux_e = 0; aux_i = 0; aux_r = O;
1:j-1

aux_s
for k

% Differential system of equations of the model

aux_s = aux_s+a(j-k)*(lambda (k) -miu_xS(k)-beta(k)*S(k)*I(k)...
+gama_x*R(k)) ;

aux_e = aux_e+a(j-k)*(beta(k)*S(k)*I(k)-(miu_+epsilon_)*E(k));

aux_i = aux_i+a(j-k)*(epsilon_*E(k)-(miu_+niu_)*I(k));

aux_r = aux_r+a(j-k)*(niu_=I(k)-miu_*R(k)-gama_*R(k));

end

S(j) = SO+h~alpha/gamma(2+alpha)* (aux_ss+aux_sO+aux_s) ;

E(j) = EO+h~alpha/gamma(2+alpha)*(aux_ee+taux_eO+aux_e) ;

I(j) = I0+h~alpha/gamma(2+alpha)*(aux_ii+aux_iO+aux_1i);

R(j) = RO+h~alpha/gamma(2+alpha)* (aux_rr+aux_rO+aux_r);
end

y(,:) =8; y(2,:) =E; y(3,:) =1I; y(4,:) =R;

end

Appendix D. Numerical Resolution of the Fractional Optimal Control Problem

Here, we provide our Octave/MATLAB code for the numerical solution of the frac-
tional optimal control problem (5)-(13) with initial conditions (3).

function [t,y] = FOCP_PECE(N,alpha);
% values assumed as global

global tfinal miu niu epsilon gama bO bl c1 phi k1 k2 SO EO IO RO;

% Values of parameters
miu = 0.0113; niu = 36; epsilon = 91; gama = 1.8; tfinal = 5;
b0 = 85; bl = 0.167; phi = pi/2; cl = .167;

% parameters of the algorithm
k1 =1; k2 = 0.001; trmax = 1.0; tol = 0.001; test = 1;
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% initial conditions
SO = 0.426282; EO = 0.0109566; I0 = 0.0275076; RO = 0.535254;

% initialization of variables

t = linspace(0,tfinal,N);

init = zeros(1,N); S = init; E = init; I = init; R = init;
pl = init; p2 = init; p3 = init; p4 = init; Ta = init;

% iterations of the numerical method

while test>tol,

0ldS = S; oldE = E; oldI = I; oldR = R;

oldpl = pl; oldp2 = p2; oldp3 = p3; oldp4 = p4; oldTa = Ta;

% forward PECE iterations
[y1] = systeml_control(Ta,t,N,alpha);
S=y1(1,:); E=y1(2,:); I =y1(3,:); R = y1(4,:);

% backward PECE iterations
[y2] = system2_adjoint(S,I,Ta,t,N,alpha);
pl = y2(1,:); p2 = y2(2,:); p3 = y2(3,:); pd = y2(4,:);

% new control
Ta = projection((p3-p4).*I/(2xk2),trmax);
Ta = ( Ta + oldTa ) / 2;

% Relative error values for convergence
vector = [max(abs(S-01dS))/(max(abs(8))),...
max (abs (01dE-E))/(max(abs(E))), ...
max (abs (0ldI-I))/(max(abs(I))),...
max (abs (01dR-R))/(max(abs(R))),...
max (abs (oldpl-p1))/(max(abs(pl))),...
max (abs (01ldp2-p2))/ (max(abs(p2))), ...
max (abs (01dp3-p3))/ (max(abs(p3))), ...
max (abs (oldp4-p4) )/ (max(abs(p4))),
max (abs(0ldTa-Ta))/(max(abs(Ta)))]1*100;

test = max(vector);
end

y(1,:) =8; y(2,:) = E; y(3,:) =I; y4,:) =R; y(5,:) = Ta;
y(6,:) = pl; y(7,:) = p2; y(8,:) = p3; y(9,:) = p4;

end

% function II: resolution of the fractional control system

function [y]l= systeml_control(Ta,t,N,alpha)

global b0 bl cl phi miu gama epsilon niu tfinal SO EO IO RO;
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% time-dependent parameters
flambda = @(t) miu~alpha*(l + cl * cos( 2 * pi * t + phi) );
fbeta = @(t) bO~alpha.* (1 + bl * cos( 2 * pi * t + phi ) );

% Correction of values of parameters
miu_ = miu~alpha; niu_ = niu~alpha; epsilon_ = epsilon~alpha;
gama_ = gama~alpha;

% initialization of variables

beta = fbeta(t); lambda = flambda(t);

h = tfinal/N; init = zeros(1,N);

S = init; E = init; I = init; R = init; a = init; b = init;
S(1) = S0; E(1) = EO; I(1) = I0; R(1) = RO;

Sp = init; Ep = init; Ip = init; Rp = init;

% computation of coefficients a_k and b_k
for k = 1:N

b(k) = k~alpha-(k-1)~alpha;

a(k) = (k+1)~(alpha+1)-2*k~(alpha+1)+(k-1)~(alpha+1);
end

for j = 2:N
% First part: predict

% differential equations of control system
aux_s = 0; aux_e = 0; aux_i = 0; aux_r = O;
for k = 1:j
aux_s = aux_s+b(j-k+1)*(lambda(k)-miu_*S(k)...
-beta (k) *S (k) *I(k)+gama_*R(k)) ;
aux_e = aux_e+b(j-k+1)*(beta(k)*S(k)*I(k)...
- (miu_+epsilon_)*E(k));
aux_i = aux_i+b(j-k+1)*(epsilon_*E(k)-(miu_+niu_+Ta(k))*I(k));
aux_r = aux_r+b(j-k+1)*(niu_*I(k)-miu_*R(k)-gama_*R(k)...
+Ta(k)*I(k));

end
Sp(j) = SO+h~alpha/gamma(l+alpha)*aux_s;
Ep(j) = EO+h~alpha/gamma(1+alpha)*aux_e;

Ip(j) = IO+h~alpha/gamma(l+alpha)*aux_i;
Rp(j) = RO+h~alpha/gamma(1+alpha)*aux_r;

% Second part: correct

aux_ss = lambda(j)-miu_*Sp(j)-beta(j)*Sp(j)*Ip(j)+gama_»Rp(j);
beta(j)*Sp(j)*Ip(j)-(miu_+epsilon_)*Ep(j);
aux_ii = epsilon_*Ep(j)-(miu_+niu_+Ta(j))*Ip(j);

niu_*Ip(j)-miu_*Rp(j)-gama_*Rp(j)+Ta(j)*Ip(j);

aux_ee

aux_rr

auxx = ((j-1)~(alpha+l)-(j-1-alpha)*j~alpha);

aux_s0 = auxx*(lambda(l)-miu_x*S(1)-beta(1)*S(1)*I(1)+gama_*R(1));
aux_e0 = auxx* (beta(1)*S(1)*I(1)-(miu_+epsilon_)*E(1));

aux_i0 = auxx*(epsilon_*E(1)-(miu_+niu_+Ta(1))*I(1));

aux_r0 = auxx*(niu_*I(1)-miu_xR(1)-gama_*R(1)+Ta(1)*I(1));
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aux_s = 0; aux_e = 0; aux_i = 0; aux_r = 0;
for k = 1:j-1
aux_s = aux_s+a(j-k)*(lambda(k)-miu_*S(k)-beta(k)*S(k)*I(k)...

+gama_x*R(k)) ;
aux_e = aux_e+a(j-k)*(beta(k)*S(k)*I(k)-(miu_+epsilon_)*E(k));
aux_i = aux_i+a(j-k)*(epsilon_*E(k)-(miu_+niu_+Ta(k))*I(k));
aux_r = aux_r+a(j-k)*(niu_*I(k)-miu_*R(k)...
-gama_*R (k) +Ta (k) *I(k));

end

S(j) = SO0+h~alpha/gamma(2+alpha)*(aux_ss+aux_sO+aux_s);

E(j) = EO+h~alpha/gamma(2+alpha)* (aux_eet+aux_eO+aux_e) ;

I(j) = I0+h~alpha/gamma(2+alpha)*(aux_ii+aux_iO+aux_1i);

R(j) = RO+h~alpha/gamma(2+alpha)* (aux_rr+aux_rO+aux_r);
end

y(1,:) =8; y(2,:) = E; y(3,:) =1I; y(4,:) = R;

end

% function III: resolution of the fractional adjoint system

function [y] = system2_adjoint(S,I,Ta,t,N,alpha)
global miu gama epsilon niu tfinal k1 bO bl phi;

% time-dependent parameter
fbeta = @(t) bO~alpha.* (1 + bl * cos( 2 * pi * t + phi ) );

% Correction of values of parameters
miu_=miu~alpha; niu_=niu~alpha; epsilon_=epsilon~alpha;
gama_=gama~alpha;

% initialization of variables

beta = fbeta(t);

h = tfinal/N; init = zeros(1,N); a = init; b = init;
pl = init; p2 = init; p3 = init; p4 = init;

plp = init; p2p = init; p3p = init; p4p = init;

% First part: predict

S = S(end:-1:1); I = I(end:-1:1);
Ta = Ta(end:-1:1); beta = beta(end:-1:1);

% computation of coefficients a_k and b_k

for k = 1:N

b(k) = k~alpha-(k-1)~alpha;

a(k) = (k+1)~(alpha+1)-2*k~(alpha+1)+(k-1)~(alpha+1);
end

for j = 2:N
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% differential equations of adjoint system
aux_pl = 0; aux_p2 = 0; aux_p3 = 0; aux_p4 = 0;
for k = 1:j
aux_pl = aux_pl+b(j-k+1)*(-1)*(p1(k)*(miu_+beta(k)*I(k))- ...
beta (k)*I (k) *p2(k)) ;
aux_p2 = aux_p2+b(j-k+1)*(-1)*(p2(k)* (miu_+epsilon_)...
-epsilon_*p3(k));
aux_p3 = aux_p3+b(j-k+1)*(-1)*(-kil+beta(k)*pl(k)*S(k)...
-p2 (k) *beta (k) *S (k) +p3 (k) * (miu_+niu_+Ta(k)) ...
-p4(k)*(niu_+Ta(k)));
aux_p4 = aux_p4+b(j-k+1)*(-1)*(-gama_*pl(k)...
+p4 (k) * (miu_+gama_)) ;
end

plp(j) = h~alpha/gamma(1+alpha)*aux_p1l;
p2p(j) = h~alpha/gamma(l+alpha)*aux_p2;
p3p(j) = h~alpha/gamma(l+alpha)*aux_p3;
p4p(j) = h-alpha/gamma(1+alpha)*aux_p4;

% Second part: correct

aux_ppl (-1)*(plp(j)*(miu_+beta(j)*I(j))-beta(j)*I(j)*p2p(j));

aux_pp2 = (-1)*(p2p(j)*(miu_+epsilon_)-epsilon_x*p3p(j));

aux_pp3 = (-1)*(-kl+beta(j)*plp(j)*S(j)-p2p(j)*beta(j)*S(j)...
+p3p(j) * (miu_+niu_+Ta(j))-pdp(j)*(niu_+Ta(j)));
aux_pp4 = (-1)*(-gama_x*plp(j)+pdp(j)*(miu_+gama_));

auxx = (-1)*((j-1)~(alpha+1)-(j-1-alpha)*j~alpha) ;

aux_pl0 = auxx*(pl(1)*(miu_+beta(1)*I(1))-beta(1)*I(1)*p2(1));

aux_p20 = auxx*(p2(1)*(miu_+epsilon_)-epsilon_*p3(1));

aux_p30 = auxx*(-kl+beta(1)*pl(1)*S(1)-p2(1)*beta(1)*S(1)...
+p3(1)*(miu_+niu_+Ta(1))-p4(1)*(niu_+Ta(1)));

aux_p40 = auxx*(-gama_x*pl(1)+p4(1)*(miu_+gama_));

aux_pl = 0; aux_p2 = 0; aux_p3 = 0; aux_p4 = 0;
for k = 1:j-1
aux_pl = aux_pl+a(j-k)*(-1)*(pl(k)*(miu_+beta(k)*I(k))- ...
beta (k)*I (k) *p2(k));
aux_p2 = aux_p2+a(j-k)*(-1)*( p2(k)*(miu_+epsilon_)...
-epsilon_*p3(k));
aux_p3 = aux_p3+a(j-k)*(-1)*( -kl+beta(k)*pl(k)*S(k)...
-p2 (k) *beta (k) *S (k) +p3 (k) * (miu_+niu_+Ta(k)) ...
-p4(k)*(niu_+Ta(k)));
aux_p4 = aux_p4+a(j-k)*(-1)*(-gama_*pl (k) +p4 (k) * (miu_+gama_)) ;
end

p1(j) = h~alpha/gamma(2+alpha)*(aux_ppl+aux_pl0+aux_pl);

p2(j) = h~alpha/gamma(2+alpha)* (aux_pp2+aux_p20+aux_p2) ;

p3(j) = h~alpha/gamma(2+alpha) * (aux_pp3+aux_p30+aux_p3) ;

p4(j) = h~alpha/gamma(2+alpha) * (aux_pp4+aux_p40+aux_p4) ;
end

y(1,:) = pl(end:-1:1); y(2,:) = p2(end:-1:1); y(3,:) = p3(end:-1:1);
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y(4,:) = p4(end:-1:1);

end

% function IV: control projection over the set of admissible controls

function [v] = projection(vect,trmax)
isNeg = vect<0; vect(isNeg) = 0;
isHuge = vect>trmax; vect(isHuge) = trmax;

v = vect;

end
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