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Abstract

Motivated by the increasing of practical applications in fractional calculus, we study the classical gradient
method under the perspective of the ψ-Hilfer derivative. This allows us to cover in our study several definitions
of fractional derivatives that are found in the literature. The convergence of the ψ-Hilfer continuous fractional
gradient method is studied both for strongly and non-strongly convex cases. Using a series representation of the
target function, we develop an algorithm for the ψ-Hilfer fractional order gradient method. The numerical method
obtained by truncating higher-order terms was tested and analyzed using benchmark functions. Considering
variable order differentiation and optimizing the step size, the ψ-Hilfer fractional gradient method shows better
results in terms of speed and accuracy. Our results generalize previous works in the literature.
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1 Introduction
The gradient descent method is a classical convex optimization method. It is widely used in many areas of computer
science, for example in image processing [11,12], machine learning [4,10,24], and control systems [15]. Its use on a
large scale is essentially due to its intuitive structure, ease of implementation, and accuracy. In recent years, there has
been an increase in interest in the application of fractional calculus techniques to develop and implement fractional
gradient methods (FGM). We can find the first works dealing with such methods in [12, 20] to address problems in
the fields of signal processing and adaptive learning. The design of fractional least mean squares algorithms is another
example of the application of FGM [3, 14, 17]. Recently, some applications of FGM focused on artificial intelligence
subjects such as machine learning, deep learning, and neural networks (see [18,21,22] and references therein).

Replacing the first-order integer derivative with a fractional derivative in the gradient can improve the convergence,
because long-term information can be included. However, there are some convergence issues in the numerical
implementation of the FGM because the real extreme value of the target function is not always the same as the
fractional extreme value. In [2] the authors proposed a new FGM to overcome this problem, considering an iterative
update of the lower limit of integration in the fractional derivative to shorten the memory characteristic presented in the
fractional derivative, and truncating the higher order terms of the series expansion associated with the target function.
Afterwards, Wei et al. [23] designed another method involving variable fractional order to solve the convergence
problem.
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In the field of fractional calculation, several definitions of fractional and derivative integrals varying in their kernel
can be found, resulting in a wide range of definitions. This diversity allows certain problems to be tackled with specific
fractional operators. To establish a general operator, a ψ-fractional integral operator with respect to a function ψ

was proposed in [8,16], where the kernel depends on the function ψ with specific properties. To incorporate as many
fractional derivative definitions as possible into a single formulation, the concept of a fractional derivative of a function
with respect to a function ψ was introduced. In 2017, Almeida [1] proposed the ψ-Caputo fractional derivative and
studied its main properties. The same idea can be extended to define the ψ-Riemann-Liouville fractional derivative.
In 2018, Sousa and Oliveira [19] unified both definitions using Hilfer’s concept and introduced the ψ-Hilfer fractional
derivative. This approach offers the flexibility of choosing the differentiation type since Hilfer’s definition interpolates
smoothly between fractional derivatives of Caputo and Riemann-Liouville types. Additionally, by choosing the function
ψ we obtain well-known fractional derivatives, such as Caputo, Riemann-Liouville, Hadamard, Katugampola, Chen,
Jumarie, Prabhakar, Erdélyi-Kober, Weyl, among others (see [19, Sec. 5]).

The aim of this work is to propose a FGM where the fractional derivative is in the ψ-Hilfer sense. Using this
type of general derivatives allows us to deal with several fractional derivatives in the literature at the same time.
It also allows us to study some cases where the target function is a composition of functions. In the first part, we
prove some auxiliary results concerning the chain rule and solutions of some fractional partial differential equations
to study the convergence of the continuous ψ-fractional gradient method for strongly and non-strongly convex target
functions. In the second part, we introduce and implement numerical algorithms for the ψ-Hilfer FGM in the one
and two-dimensional cases, generalizing the ideas presented in [2, 23]. The proposed algorithms were tested using
benchmark functions. The numerical results show better performance when compared to the classical gradient in
terms of accuracy and number of iterations.

In summary, the paper is organized as follows: in Section 2 we recall some basic concepts about ψ-Hilfer derivative
and the two-parameter Mittag-Leffler function. We prove some auxiliary results in Section 3, which are then used
to analyze the continuous gradient method for strongly and non-strongly convex target functions in Section 4. In
the last section of the paper, we design and implement numerical algorithms for the ψ-Hilfer FGM by replacing the
lower limit of the fractional integral with the last iterate, and also by using variable order of differentiation together
with the optimization of the step size in each iteration. The convergence, accuracy, and speed of the algorithms are
analyzed through different examples.

2 General fractional derivatives and special functions
In this section, we recall some concepts related to fractional integrals and derivatives of a function with respect to
another function ψ (for more details see [1, 16,19]).

Definition 2.1 (cf. [19, Def. 4]) Let [a, b] be a finite or infinite interval on the real line R and α > 0. Also, let ψ be
an increasing and positive monotone function on (a, b). The left Riemann-Liouville fractional integral of a function
f with respect to another function ψ on [a, b] is defined by(

Iα;ψ
a+ f

)
(t) = 1

Γ (α)

∫ t

a

ψ′ (w) (ψ (t) − ψ (w))α−1
f (w) dw, t > a. (1)

Now, we introduce the definition of the so-called ψ-Hilfer fractional derivative of a function f with respect to another
function.

Definition 2.2 (cf. [19, Def. 7]) Let α > 0, m = ⌊α⌋ + 1, I = [a, b] be a finite or infinite interval on the real line
and f, ψ ∈ Cm [a, b] two functions such that ψ is a positive monotone increasing function and ψ′ (t) ̸= 0, for all
t ∈ I. The ψ-Hilfer left fractional derivative HDα,µ;ψ

t,a+ of order α and type µ ∈ [0, 1] is defined by(
HDα,µ;ψ

a+ f
)

(t) = I
µ(m−α);ψ
a+

(
1

ψ′ (t)
d

dt

)m
I

(1−µ)(m−α);ψ
a+ f (t) . (2)

We observe that when µ = 0 we recover the left fractional derivative ψ-Riemann-Liouville (see [19, Def. 5]) and when
µ = 1 we get the left ψ -Caputo fractional derivative (see [19, Def. 6]). The following list shows some fractional
derivatives that are encompassed in Definition 2.2 for specific choices of the function ψ and the parameter µ :

• Riemann-Liouville: ψ (t) = t, I = R+, and µ = 0;
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• Caputo: ψ (t) = t, I = R+, and µ = 1;

• Katugampola: ψ (t) = tρ, with ρ ∈ R+, I = R+, and µ = 0;

• Caputo-Katugampola: ψ (t) = tρ, with ρ ∈ R+, I = R+, and µ = 1;

• Hadamard : ψ (t) = ln (t), I =]1,+∞[, and µ = 0;

• Caputo-Hadamard : ψ (t) = ln (t), I =]1,+∞[, and µ = 1;

For a more complete list, we refer the interested reader to [19, Sec. 5]). By considering partial fractional integrals and
derivatives, the previous definitions can be defined for higher dimensions. (see [16, Ch. 5]). Furthermore, the ψ-Hilfer
fractional derivative of an n-dimensional vector function f (t) = (f1 (t) , . . . , fn (n)) is defined componentwise as

HDα,µ;ψ
a+ f (t) =

(
HDα,µ;ψ

a+ f1 (t) , . . . ,HDα,µ;ψ
a+ fn (t)

)
. (3)

Next, we present some technical results related to the previously introduced operators.

Theorem 2.3 (cf. [19, Thm. 5]) If f ∈ Cm [a, b], α > 0, m = ⌊α⌋ + 1, and µ ∈ [0, 1], then

Iα;ψ
a+

HDα,µ;ψ
a+ f (t) = f (t) −

m∑
k=1

(ψ (t) − ψ (a))γ−k

Γ (γ − k + 1) f
[m−k]
ψ I

(1−µ)(m−α);ψ
a+ f (a) , (4)

where γ = α+ µ (k − α) and f [m]
ψ f (t) =

(
1

ψ′(t)
d
dt

)m
f (t) .

Lemma 2.4 (cf. [19, Lem. 5]) Given δ ∈ R, consider the function f (t) = (ψ (t) − ψ (a))δ−1, where δ > m. Then,
for m = ⌊α⌋ + 1 and µ ∈ [0, 1] we have

HDα,µ;ψ
a+ f (x) = Γ (δ)

Γ (δ − α) (ψ (t) − ψ (a))δ−α−1
. (5)

Some results of the paper are given in terms of the two-parameter Mittag-Leffler function, which is defined by the
following power series (see [5])

Eβ1,β2 (z) =
+∞∑
n=0

zn

Γ (β1n+ β2) , Re (β1) > 0, β2 ∈ C, z ∈ C.

For z = −x, with x ∈ R+, 0 < β1 < 2, and β2 ∈ C, the two-parameter Mittag-Leffler function has the following
asymptotic expansion (see [5, Eqn. (4.7.3)]):

Eβ1,β2 (−x) = −
p∑
k=1

(−x)−k

Γ (β2 − β1k) +O
(

|x|−1−p
)
, p ∈ N, x → +∞. (6)

3 Auxiliary results
In this section, we present some auxiliary results needed for our work. These extend some results presented in [6] to
the ψ-Hilfer derivative of arbitrary type µ ∈ [0, 1].

We start presenting a representation formula for the solution of a Cauchy problem involving the ψ-Hilfer derivative.
Let us consider h : R+

0 × Rn → Rn and f : R → Rn. We have the following result.

Proposition 3.1 Let α ∈]0, 1] and µ ∈ [0, 1]. A continuous function f is a solution of the problem
HDα,µ;ψ

a+ f (t) = h (t, f (t)) , t ≥ a,

I
(1−α)(1−µ);ψ
a+ f (a+) = fa

(7)

if and only if f is given by

f (t) = fa
Γ (α+ µ (1 − α)) (ψ (t) − ψ (a))α+µ(1−α)−1 + 1

Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) h (s, f (s)) ds, t ≥ a.

(8)
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Proof: Applying Iα;ψ
a+ to both sides of the fractional differential equation in (7), and taking (4) with m = 1, we

have

Iα;ψ
a+

HDα,µ;ψ
a+ f (t) = f (t) − fa

Γ (α+ µ (1 − α)) (ψ (t) − ψ (a))α+µ(1−α)−1

which is equivalent to

f (t) = fa
Γ (α+ µ (1 − α)) (ψ (t) − ψ (a))α+µ(1−α)−1 + Iα;ψ

a+
HDα,µ;ψ

a+ f (t) .

From (1) and (7) we obtain the result.

■

Now, we present some results concerning the fractional derivative of a composite function. Let us consider g : Rn →
R, f : R → Rn, ∇ the classical gradient operator, and the ψ-Hilfer fractional derivative of an n-dimensional vector
function given by (3).

Theorem 3.2 Let α ∈]0, 1], µ ∈ [0, 1[, a ≥ 0, and the function ψ in the conditions of Definition 2.2. For t > a, let
us define the function ζt by setting

ζt (s) = g (f (s)) − g (f (t)) − ⟨(∇g) (f (t)) , f (s) − f (t)⟩ , (9)

where

(∇g) (f (t)) =
(
∂g

∂x1
(f (t)) , . . . , ∂g

∂xn
(f (t))

)
.

The following identity holds

Γ (1 − α)
(
HDα,µ;ψ

a+ [g (f (t))] −
〈

(∇g) (f (t)) ,HDα,µ;ψ
a+ f (t)

〉)
= [ψ (t) − ψ (a)]−α [g (f (t)) − ⟨(∇g) (f (t)) , f (t)⟩] − α

∫ t

a

(ψ (t) − ψ (s))−α−1
ψ′ (s) ζt (s) ds. (10)

Proof: By the Newton-Leibniz formula, one has for each component of the function f

fi (t) = fi (a) +
∫ t

a

f ′
i (s) ds = fi (a) + I1;ψ

a+

(
f ′
i

ψ′

)
(t) , i = 1, . . . , n.

From (3) we have, for i = 1, . . . , n

HDα,µ;ψ
a+ fi (t) = HDα,µ;ψ

a+ [fi (a)] (t) + HDα,µ;ψ
a+ ◦ I1;ψ

a+

(
f ′
i

ψ′

)
(t)

= I
µ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
I

(1−µ)(1−α);ψ
a+ [fi (a)] (t) + I

µ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
I

(1−µ)(1−α);ψ
a+ I1;ψ

a+

(
f ′
i

ψ′

)
(t)

= fi (a) Iµ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
I

(1−µ)(1−α);ψ
a+ [1] (t) + I

µ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
I

(1−µ)(1−α)+1;ψ
a+

(
f ′
i

ψ′

)
(t) .

(11)

Taking into account (1), we have for the first term in (11)

fi (a) Iµ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
I

(1−µ)(1−α);ψ
a+ [1] (t)

= fi (a) Iµ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
1

Γ ((1 − µ) (1 − α))

∫ t

a

(ψ (t) − ψ (s))(1−µ)(1−α)−1
ψ′ (s) ds

= fi (t) Iµ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

] [
(ψ (t) − ψ (a))(1−µ)(1−α)

Γ ((1 − µ) (1 − α) + 1)

]

= fi (a)
Γ (µ (1 − α))

∫ t

a

(ψ (t) − ψ (s))µ(1−α)−1 (ψ (s) − ψ (a))(1−µ)(1−α)−1

Γ ((1 − µ) (1 − α)) ψ′ (s) ds

= fi (a)
Γ (1 − α) (ψ (t) − ψ (a))−α

. (12)
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For the second term in (11), taking into account (1) and the Leibniz rule for differentiation under the integral sign,
we get

I
µ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
I

(1−µ)(1−α)+1;ψ
a+

(
f ′
i

ψ′

)
(t)

= I
µ(1−α);ψ
a+

[
1

ψ′ (t)
d

dt

]
1

Γ ((1 − µ) (1 − α) + 1)

∫ t

a

(ψ (t) − ψ (s))(1−µ)(1−α)
f ′
i (s) ds

= I
µ(1−α);ψ
a+

1
Γ ((1 − µ) (1 − α))

∫ t

a

(ψ (t) − ψ (s))(1−µ)(1−α)−1
f ′
i (s) ds

= I
µ(1−α);ψ
a+ I

(1−µ)(1−α);ψ
a+

(
f ′
i

ψ′

)
(t)

= 1
Γ (1 − α)

∫ t

a

(ψ (t) − ψ (s))−α
f ′
i (s) ds. (13)

From (12) and (13), expression (11) simplifies to

HDα,µ;ψ
a+ fi (t) = 1

Γ (1 − α)

[
fi (a) (ψ (t) − ψ (a))−α +

∫ t

a

(ψ (t) − ψ (s))−α
f ′
i (s) ds

]
, i = 1, . . . , n

and, therefore,

HDα,µ;ψ
a+ f (t) = 1

Γ (1 − α)

[
f (a) (ψ (t) − ψ (a))−α +

∫ t

a

(ψ (t) − ψ (s))−α
f ′ (s) ds

]
. (14)

Hence, we can write

Γ (1 − α)
(
HDα,µ;ψ

a+ [g (f (t))] −
〈

(∇g) (f (t)) ,HDα,µ;ψ
a+ f (t)

〉)
= [ψ (t) − ψ (a)]−α [g (f (a)) − ⟨(∇g) (f (t)) , f (a)⟩] +

∫ t

a

(ψ (t) − ψ (s))−α ⟨(∇g) (f (s)) − (∇g) (f (t)) , f ′ (s)⟩ ds

= [ψ (t) − ψ (a)]−α [g (f (a)) − ⟨(∇g) (f (t)) , f (a)⟩] +
∫ t

a

(ψ (t) − ψ (s))−α
dζt (s) (15)

which implies, by integrating by parts, that

Γ (1 − α)
(
HDα,µ;ψ

a+ [g (f (t))] −
〈

(∇g) (f (t)) ,HDα,µ;ψ
a+ f (t)

〉)
= [ψ (t) − ψ (a)]−α [g (f (a)) − ⟨(∇g) (f (t)) , f (a)⟩] + lim

s→t
[ψ (t) − ψ (s)]−α ζt (s) − [ψ (t) − ψ (a)]−α ζt (a)

− α

∫ t

a

(ψ (t) − ψ (a))−α−1
ψ′ (s) ζt (s) ds. (16)

Since α ∈]0, 1], we have by L’Hôpital’s rule that

lim
s→t

[ψ (t) − ψ (s)]−α ζt (s) = lim
s→t

ζt (s)
[ψ (t) − ψ (s)]α

= lim
s→t

ζ ′
t (s) [ψ (t) − ψ (s)]1−α

−αψ′ (s) = 0. (17)

Finally, by (17) and (9) we get from (16)

Γ (1 − α)
(
HDα,µ;ψ

a+ [g (f (t))] −
〈

(∇g) (f (t)) ,HDα,µ;ψ
a+ f (t)

〉)
= [ψ (t) − ψ (a)]−α [ζt (a) − g (f (t)) − ⟨(∇g) (f (t)) , f (t)⟩ − ζt (a)] − α

∫ t

a

(ψ (t) − ψ (s))−α−1
ψ′ (s) ζt (s) ds

which gives the desired result.

■
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Corollary 3.3 Let α ∈]0, 1], µ ∈ [0, 1[, a ≥ 0, and the function ψ in the conditions of Definition 2.2. If g : Rn → R
is of class C1 and convex, i.e.,

g (x) ≥ g (y) + ⟨∇g (x) , x− y⟩ , for all x, y ∈ Rn, (18)

then

HDα,µ;ψ
a+ g (f (t)) ≤

〈
(∇g) (f (t)) ,HDα,µ;ψ

a+ f (t)
〉

+ g (0)
Γ (1 − α) (ψ (t) − ψ (a))−α

. (19)

Proof: From (18) it follows that for x = 0

g (f (t)) − ⟨(∇g) (f (t)) , f (t)⟩ ≤ g (0) − ⟨(∇g) (f (t)) , 0⟩ = g (0) .

On the other hand, by Theorem 3.2 we have for x = 0

g (f (t)) − ⟨(∇g) (f (t)) , f (t)⟩ = Γ (1 − α) [ψ (t) − ψ (a)]α
(
HDα,µ;ψ

a+ [g (f (t))] −
〈

(∇g) (f (t)) ,HDα,µ;ψ
a+ f (t)

〉)
.

Combining the two previous expressions we obtain our result.

■

If we consider µ = 0, which corresponds to the ψ-Riemann-Liouville case, the previous results reduce to Proposition
3.3 and Corollary 3.4 in [6], respectively. Moreover, the correspondent results for the ψ-Caputo case (µ = 1) are
presented in Proposition 3.1 of [6].

Now, we present an auxiliary result involving the two-parameter Mittag-Leffler function.

Proposition 3.4 Let α ∈]0, 1], µ ∈ [0, 1[, and a ≥ 0. Moreover, let ψ be in the conditions of Definition 2.2 such
that sup {ψ (t) : t ≥ a} = +∞. Then the following limit holds

lim
t→+∞

∫ t

a

(ψ (t) − ψ (a))α−1
ψ′ (s) Eα,α+µ(1−α) (−λ (ψ (s) − ψ (a))α) ds = 0.

Proof: Taking into account Theorem 5.1 in [9] for the case of the homogeneous equation, we have that the solution
of the initial value problem

HDα,µ;ψ
a+ u (t) = −λu (t) ; λ ∈ R+, α ∈]0, 1], µ ∈ [0, 1], t ≥ a

I
1−α−µ(1−α);ψ
a+ u(a) = ua

is given by

u (t) = (ψ (t) − ψ (a))α−µ(1−α)−1
Eα,α+µ(1−α) (−λ (ψ (t) − ψ (a))α) .

Hence, by Proposition 3.1 we have

Eα,αµ(1−α) (−λ (ψ (t) − ψ (a))α) = ua
Γ (α+ µ (1 − α)) (ψ (t) − ψ (a))α+µ(1−α)−1

− λ

Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) Eα,α+µ(1−α) (−λ (ψ (s) − ψ (a))α) ds.

Taking the limit when t → +∞ on both sides and considering the asymptotic expansion (6), we conclude that the
left-hand side tends to zero and the first term of the right-hand side also tends to zero. Hence, we get

0 = 0 − λ

Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) Eα,α+µ(1−α) (−λ (ψ (s) − ψ (a))α) ds

which leads to our result.

■

The case when µ = 1, i.e. the ψ-Caputo case, was already study in [6] and corresponds to Lemma 3.7.

6



4 Continuous gradient method via the ψ-Hilfer derivative
Assume that we aim to determine the minimum of a function f : Rn → R. To achieve this, the gradient descent
method is used, starting with an initial prediction x0 of the local minimum and producing a sequence x0, x1, x2, . . .

based on the following recurrence relation:

xk+1 = xk − θk∇f (xk) , (20)

where the step size θ > 0 is either constant or varying at each iteration k. The sequence {xk}+∞
k=0 generated by the

gradient descent method is monotonic, i.e., f (x0) > f (x1) > f (x2) > . . ., and is expected to converge to a local
minimum of f . Typically, the stopping criterion is in the form ∥∇f (x)∥ ≤ ϵ, where ϵ > 0. By expressing (20) as

xk+1 − xk
θk

= −∇f (xk) , (21)

we can interpret (21) as the discretization of the initial value problem

y′ (t) = − (∇f) (y (t)) , y (0) = y0 ∈ Rn, (22)

using the explicit Euler scheme with step size θk. The system (22) is known as the continuous gradient method
(see [6]). Assuming that f is both strongly convex and smooth, the solutions of (20) and (22) converge to the
unique stationary point at an exponential rate. In general, if a convergence result is proved for a continuous method,
then we can construct various finite difference schemes for the solution of the Cauchy problem associated. Let us
now consider the following ψ-fractional version of (22)

HDα,µ;ψ
a+ z (t) = −θ (∇f) (z (t)) , t ≥ a (23)

such that z : R → Rn, f : Rn → R, α ∈]0, 1], µ ∈ [0, 1[, and I1−α;ψ
a+ z (a+) = za ∈ Rn, where the last expression is

evaluated at the limit t → a+. For y∗ ∈ S (f) = {z ∈ Rn : ∇f (z) = 0}, let us define the following sum of squares
error function:

φ (t) = 1
2 ∥z (t) − y∗∥2

, t ≥ a. (24)

4.1 The convex case
Here we investigate (23) under the assumption of non-strongly convexity of f .

Theorem 4.1 Let α ∈]0, 1] and µ ∈ [0, 1[. Suppose that the function f : Rn → R is of class C1 and convex, i.e. f
satisfies (18). For the ψ-fractional differential equation (23), with step size θ constant, the solution z (·) converges
to y∗ with the upper bound

∥z (t) − y∗∥2 ≤ C |ψ (t) − ψ (a)|−µ(1−α)
, for all t ≥ a. (25)

Proof: By Corollary 3.3 applied to (24) and the fact that f is of class C1 and convex, we have

HDα,µ;ψ
a+ φ (t) ≤ −θ ⟨z (t) − y∗, (∇f) (z (t))⟩ ≤ θ [f (y∗ (t)) − f (z (t))] ≤ 0, for all t ≥ a.

By the properties of ψ (see Definition 2.2), the previous expression is equivalent to

Iα;ψ
a+

HDα,µ;ψ
a+ φ (t) ≤ θ Iα;ψ

a+ [f (y∗ (t)) − f (z (t))] ≤ 0.

Using the composition rule (4) with m = 1 we have that

φ (t) − (ψ (t) − ψ (a))−µ(1−α)

Γ (1 − µ (1 − α)) I
(1−µ)(1−α);ψ
a+ φ

(
a+) ≤ 0.

From (24) and considering C = 1
Γ(1−µ(1−α)) I

(1−µ)(1−α);ψ
a+ φ (a+), we obtain our result.

■

If we consider µ = 0 in the previous result we recover Theorem 4.2 in [6].
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4.2 The strongly convex case
Here, we show that under the assumption of strong convexity of the function f , the solution of (23) admits a
Mittag-Leffler convergence, which is a general type of exponential convergence, to the stationary point. We recall
the definition of a strongly convex function.

Definition 4.2 (cf. [6]) A function f ∈ C1 is strongly convex with parameter mf > 0 if

f (x) ≥ f (y) + ⟨∇f (y) , x− y⟩ + mf

2 ∥x− y∥2
, for all x, y ∈ Rn,

where ∇ stands for the gradient operator.

Theorem 4.3 Let α ∈]0, 1] and µ ∈ [0, 1[. Suppose that f is of class C2 and it is strongly convex. Considering the
ψ-fractional differential equation (23), where the step size θ is a constant, then the solution z (·) converges to y∗,
with the upper bound

∥z (t) − y∗∥2 ≤ φa [ψ (t) − ψ (a)](α−1)(1−µ)
Eα,α+µ(1−α) (−θmf (ψ (t) − ψ (a))α) , t ≥ a,

where φa = 1
2I

(1−µ)(1−α);ψ
a+ ∥z (t) − y∗∥2 (a+).

Proof: In Definition 4.2, if we consider y = z (t) and x = y∗, we have for t ≥ a and mf > 0 that

f (y∗) ≥ f (z (t)) − ⟨(∇f) (z (t)) , y∗ − z (t)⟩ + mf

2 ∥y∗ − z (t)∥2

which is equivalent to

⟨(∇f) (z (t)) , y∗ − z (t)⟩ ≥ f (z (t)) − f (y∗) + mf

2 ∥y∗ − z (t)∥2 ≥ mf

2 ∥y∗ − z (t)∥2
, (26)

where the last inequality holds since y∗ ∈ arg (minx∈Rn f (x)). From (23), Corollary 3.3, and (26), we have

HDα,µ;ψ
a+ φ (t) ≤

〈
z (t) − y∗,HDα,µ;ψ

a+ z (t)
〉

= −θ ⟨z (t) − y∗, (∇f) (z (t))⟩

≤ −θmf

2 ∥z (t) − y∗∥2
. (27)

Setting

h (t) = −θmf

2 ∥z (t) − y∗∥2 − HDα,µ;ψ
a+ φ (t) , (28)

we have from (27) that h (t) ≥ 0 for all t ≥ a, and moreover, from (28) and recalling (24), the previous expression
is equivalent to

HDα,µ;ψ
a+ φ (t) = −θmf φ (t) − h (t) . (29)

By Theorem 5.1 in [9] we have that the solution of (29) is

φ (t) = φa [ψ (t) − ψ (a)]α+µ(1−α)−1
Eα,α+µ(1−α) (−θmf (ψ (t) − ψ (a))α)

−
∫ t

a

(ψ (t) − ψ (a))α−1
ψ′ (w) Eα,α (−θmf (ψ (t) − ψ (a))α) h (w) dw (30)

≤ φa [ψ (t) − ψ (a)]α+µ(1−α)−1
Eα,α+µ(1−α) (−θmf (ψ (t) − ψ (a))α) , (31)

where the last inequality holds since the integrand function in (30) is positive and 0 ≤ a < t.

■
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4.3 Convergence at an exponential rate
Theorem 4.3 establishes the Mittag-Leffler convergence rate for the solution of (23) to a stationary point. Specifically,
when α = 1, the exponential rate O

(
e−θ,mfψ(t)) of the continuous gradient method (22) is recovered for any

µ ∈ [0, 1].

Theorem 4.4 Let α ∈]0, 1[, µ ∈ [0, 1[, and ψ satisfy the conditions of Definition 2.2 with sup {ψ (t) : t ≥ a} = +∞.
Let also f : Rn → R a function that is C1, convex and Lipschitz smooth with constant Lf , that is,

∥∇f (x) − ∇f (y)∥ ≤ Lf ∥x− y∥ , for all x, y ∈ Rn. (32)

If the solution z (·) of (23) converges to y∗ at the exponential rate O
(
e−ωψ(t)), then y∗ = 0.

Proof: Let z (·) be a solution of (23) converging to the stationary point y∗ at the rate O
(
e−ωψ(t)). Then, there

exists a t1 greater or equal to a such that

∥z (t) − y∗∥ ≤ e−ωψ(t), for all t ≥ t1. (33)

By contradiction, let us assume that y∗ ̸= 0. We can then set

k = θ

∥y∗∥
+ 1. (34)

From Formula (4.11.4b) in [5]

Eα,β (z) = 2E2α,β
(
z2)− Eα,β (−z) , Re (α) > 0, β ∈ C (35)

we can find t2 ≥ t1 with the property that

Eα,β (−Lf (ψ (t) − ψ (a))α) ≥ k e−ωψ(t), for all t ≥ t2. (36)

By Proposition 3.1, z (·) is of the following form

z (t) = za
Γ (α+ µ (1 − α)) (ψ (t) − ψ (a))α+µ(1−α)−1 − θ

Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) (∇f) (z (s)) ds

which is equivalent to

za (ψ (t) − ψ (a))α+µ(1−α)−1 = Γ (α+ µ (1 − α)) z (t)

+ θ Γ (α+ µ (1 − α))
Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) (∇f) (z (s)) ds. (37)

Putting

u (t) = za (ψ (t) − ψ (a))α+µ(1−α)−1 − Γ (α+ µ (1 − α)) y∗

then by (37) we get

∥u (t)∥ =
∥∥∥za (ψ (t) − ψ (a))α+µ(1−α)−1 − Γ (α+ µ (1 − α)) y∗

∥∥∥
≤ Γ (α+ µ (1 − α)) ∥z (t) − y∗∥ + θ Γ (α+ µ (1 − α))

Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) ∥(∇f) (z (s))∥ ds.

By the assumption (32) we obtain

∥u (t)∥ ≤ Γ (α+ µ (1 − α)) ∥z (t) − y∗∥ + θ Lf Γ (α+ µ (1 − α))
Γ (α)

∫ t

a

(ψ (t) − ψ (s))α−1
ψ′ (s) ∥z (t) − y∗∥ ds

= Γ (α+ µ (1 − α)) ∥z (t) − y∗∥ + θ Lf Γ (α+ µ (1 − α))
Γ (α)

∫ t2

a

(ψ (t) − ψ (s))α−1
ψ′ (s) ∥z (t) − y∗∥ ds

+ θ Lf Γ (α+ µ (1 − α))
Γ (α)

∫ t

t2

(ψ (t) − ψ (s))α−1
ψ′ (s) ∥z (t) − y∗∥ ds. (38)
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Now, denoting Q = sup {∥z (·) − y∗∥ : t ∈ [a, t2]} and using (36), we get

∥u (t)∥ ≤ Γ (α+ µ (1 − α)) ∥z (t) − y∗∥ + θ LfQΓ (α+ µ (1 − α))
Γ (α)

∫ t2

a

(ψ (t) − ψ (s))α−1
ψ′ (s) ds

+ θ Lf Γ (α+ µ (1 − α))
Γ (α)

∫ t

t2

(ψ (t) − ψ (s))α−1
ψ′ (s) Eα,α+µ(1−α) (−Lf (ψ (s) − ψ (a))α) ds

= Γ (α+ µ (1 − α)) ∥z (t) − y∗∥ + θ LfQΓ (α+ µ (1 − α))
αΓ (α) [(ψ (t) − ψ (a))α − (ψ (t) − ψ (t2))α]

+ θ Lf Γ (α+ µ (1 − α))
Γ (α)

∫ t

t2

(ψ (t) − ψ (s))α−1
ψ′ (s) Eα,α+µ(1−α) (−Lf (ψ (s) − ψ (a))α) ds.

By the mean value theorem (applied to the function (ψ (t) − ψ (·))α), there exists δ ∈]a, t2[ such that

(ψ (t) − ψ (a))α − (ψ (t) − ψ (t2))α = −α (ψ (t) − ψ (δ))α−1
ψ′ (δ)

which implies, as α ∈]0, 1] and sup {ψ (t) : t ≥ a} = +∞, that

lim
t→+∞

[(ψ (t) − ψ (a))α − (ψ (t) − ψ (t2))α] = −α lim
t→+∞

[
(ψ (t) − ψ (δ))α−1

ψ′ (δ)
]

= −α lim
t→+∞

ψ′ (δ)
(ψ (t) − ψ (δ))1−α = 0. (39)

Hence, taking the limit of ∥u (t)∥ when t → +∞, we get

lim
t→+∞

∥u (t)∥ = 0 ⇔ Γ (α+ µ (1 − α)) ∥y∗∥ = 0.

This implies that ∥y∗∥ = 0 which is a contradiction.

■

5 ψ-Hilfer fractional gradient method
The aim of this section is to construct and implement a numerical method for the ψ-Hilfer FGM in the one and two
dimensional cases. For both cases we perform numerical simulations using benchmark functions.

5.1 The one dimensional case
5.1.1 Design of the numerical method

The gradient descent method typically takes steps proportional to the negative gradient (or approximate gradient)
of a function at the current iteration, that is, xk+1 is updated by the following law

xk+1 = xk − θ f ′(xk), k = 0, 1, 2, . . . , (40)

where θ > 0 is the step size or learning rate, and f ′(xk) is the first derivative of f evaluated at x = xk. We assume
that f : R → R admits a local minimum at the point x∗ in Dρ (x∗) = {x ∈ R : |x− x∗| < ρ}, for some ρ > 0, and
f admits a Taylor series expansion centered at x0 = a

f(x) =
+∞∑
p=0

f (p)(a)
p! (x− a)p (41)

with domain of convergence D ⊆ R such that X∗ ∈ D. Since we want to consider the fractional gradient in the
ψ-Hilfer sense, our first (and natural attempt) is to consider the iterative method

xk+1 = xk − θ HDα,µ;ψ
a+ f (ψ (xk)) , k = 0, 1, 2, . . . (42)
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where HDα,µ;ψ
a+ is the ψ-Hilfer derivative of order α ∈]0, 1[ and type µ ∈ [0, 1] given by (2), and the function ψ is in

the conditions of Definition 2.2. However, a simple example shows that (42) is not the correct approach. In fact, let
us consider the quadratic function f (x) = (x− h)2 with minimum at x∗ = h. For this function we have that

HDα,µ;ψ
a+ f (x) =

2∑
p=p0

f (p)(a)
Γ (p+ 1 − α) (x− a)p−α

, (43)

where p0 = 0 if µ ∈ [0, 1[ and p0 = 1 if µ = 1. Since HDα,µ;ψ
a+ f (h) ̸= 0 then the iterative method (42) does

not converge to the real minimum point. This example shows that the ψ-Hilfer FGM with a fixed lower limit of
integration does not converge to the minimum point. This is due to the influence of long-time memory terms, which
is an intrinsic feature of fractional derivatives. In order to address this problem and inspired by the ideas presented
in [2,23], we replace the starting point a in the fractional derivative by the term xk−1 of the previous iteration, that
is

xk+1 = xk − θ HDα,µ;ψ
x+

k−1
f (ψ (xk)) , k = 1, 2, . . . (44)

where α ∈]0, 1[, µ ∈ [0, 1], and θ > 0. This eliminates the long time memory effect during the iteration procedure.
In this sense, and taking into account the series representation (41) and the differentiation rule (5), we get

HDα,µ;ψ
x+

k−1
f (ψ (xk)) =

+∞∑
p=p0

f (p)(ψ (xk−1))
Γ (p+ 1 − α) (ψ (xk) − ψ (xk−1))p−α

, (45)

where p0 = 0 if µ ∈ [0, 1[ or p0 = 1 if µ = 1. Thus, the representation formula (45) depends only on µ = 1 or µ ̸= 1.
With this modification in the ψ-Hilfer FGM we obtain the following convergence result.

Theorem 5.1 If the algorithm (44) is convergent, with the fractional gradient given by (45), then it converges to
the minimum point of f (ψ (·)).

Proof: Let x∗ be the minimum point of f (ψ (·)). We prove that the sequence (xk)k∈N converges to x∗ by
contradiction. Assume that xk converges to a different x ̸= x∗ and f ′(ψ (x)) ̸= 0. Since the algorithm is convergent,
we have that limk→+∞ ∥xk − x∥ = 0. Moreover, for any small positive ϵ there exists a sufficiently large number
N ∈ N such that

|ψ (xk−1) − ψ (x)| < ϵ < |ψ (x∗) − ψ (x)| (46)

for any k > N . Thus,

δ = inf
p>N

∣∣∣f (p0)(ψ (xk−1))
∣∣∣ > 0

must hold. From (45) we have

|xk+1 − xk|

= θ

∣∣∣∣HDα,µ;ψ
x+

k−1
f (ψ (xk))

∣∣∣∣
= θ

∣∣∣∣∣
+∞∑
p=0

f (p+p0)(ψ (xk−1))
Γ (p+ p0 + 1 − α) (ψ (xk) − ψ (xk−1))p+p0−α

∣∣∣∣∣
≥ θ

∣∣∣∣f (p0)(ψ (xk−1))
Γ (p0 + 1 − α) (ψ (xk) − ψ (xk−1))p0−α

∣∣∣∣− θ

∣∣∣∣∣
+∞∑
p=1

f (p+p0)(ψ (xk−1))
Γ (p+ p0 + 1 − α) (ψ (xk) − ψ (xk−1))p+p0−α

∣∣∣∣∣ .
Considering

C = sup
p≥N

∣∣f (p0)(ψ (xk−1))
∣∣

Γ (p0 + 1 − α) (47)
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we have, from the previous expression, that

|xk+1 − xk| ≥ θ

∣∣∣∣f (p0)(ψ (xk−1))
Γ (p0 + 1 − α) (ψ (xk) − ψ (xk−1))p0−α

∣∣∣∣− θ C

+∞∑
p=1

|ψ (xk) − ψ (xk−1) |p+p0−α
.

The geometric series in the previous expression is convergent for k sufficiently large. Hence, we get

|xk+1 − xk| ≥ θ

∣∣∣∣f (p0)(ψ (xk−1))
Γ (p0 + 1 − α) (ψ (xk) − ψ (xk−1))p0−α

∣∣∣∣− θ C
|ψ (xk) − ψ (xk−1)|1+p0−α

1 − |ψ (xk) − ψ (xk−1)|

which is equivalent to

|xk+1 − xk| ≥ θ

[∣∣∣∣f (p0)(ψ (xk−1))
Γ (p0 + 1 − α)

∣∣∣∣− C
|ψ (xk) − ψ (xk−1)|

1 − |ψ (xk) − ψ (xk−1)|

]
|ψ (xk) − ψ (xk−1)|p0−α

≥ d |ψ (xk) − ψ (xk−1)|p0−α
, (48)

where

d = d (ϵ) = θ

[
δ

Γ (p0 + 1 − α) − 2Cϵ
1 − ϵ

]
. (49)

One can always find ϵ sufficiently small such that

δ

Γ (p0 + 1 − α) − 2Cϵ
1 − ϵ

>
2ϵα

θ
⇔ δ

Γ (p0 + 1 − α) >
2ϵα

θ
+ 2Cϵ

1 − ϵ
(50)

because the function

g (ϵ) = 2ϵα

θ
+ 2Cϵ

1 − ϵ

is positive increasing for α ∈]0, 1], θ ∈]0, 1[, and ϵ ∈]0, 1[. Hence, from (48) and taking into account (50), we obtain

|xk+1 − xk| > 2ϵp0 =
{

2ϵ, if µ = 1
2, if µ ∈ [0, 1[

. (51)

On the other hand, from the assumption (46) we have

|xk+1 − xk| ≤ |ψ (xk+1) − ψ (xk)| ≤ |ψ (xk+1) − ψ (x)| + |ψ (x) − ψ (xk)| = 2ϵ

which contradicts (51). This completes the proof.

■

Sometimes, the function f is not smooth enough in order to admit a series representation in the form (41) and,
therefore, the implementation of (44) using the series (45) is not possible. For implementation in practice, we need
to truncate the series. In a first approach we consider only the term of the series containing f ′(ψ (xk)) as it is the
most relevant for the gradient method. Thus, the ψ-Hilfer FGM (44) simplifies to

xk+1 = xk − θ
f ′(ψ (xk−1))

Γ (2 − α) (ψ (xk) − ψ (xk−1))1−α
. (52)

Furthermore, in order to avoid the appearance of complex numbers, we introduce modulus in the expression (52),
that is,

xk+1 = xk − θ
f ′(ψ (xk−1))

Γ (2 − α) |ψ (xk) − ψ (xk−1)|1−α
. (53)

As (53) is independent of the µ parameter, from now on we call the method just ψ-FGM. Following the same
arguments as in the proof of Theorem 5.1, we have the following result.

Theorem 5.2 If the algorithm (44) is convergent, with the fractional gradient given by (53), then it converges to
the minimum point of f (ψ (·)).
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In the following pseudocode, we describe the implementation of the algorithm (53).

Inputs:
Functions: ψ (x) , f ′(ψ (x))

Fixed parameters: α, a, θ, ϵ

Initial guess: x0

Output: k-iteration: xk
Initialization
k = 2, x1 = a

while |f ′(ψ (xk))| ≥ ϵ do

xk = xk−1 − θ
f ′(ψ (xk−2))

Γ (2 − α) |ψ (xk−1) − ψ (xk−2)|1−α

k = k + 1
end

Algorithm 1: ψ-FGM with higher order truncation

As we have seen, it is possible to construct a ψ-FGM that converges to the minimum point of a function. To
improve the convergence of the proposed method we can consider variable order differentiation α(x) in each iteration.
Some examples of α(x) are given by (see [23]):

α (x) = 1
1 + β J (x) , (54)

α (x) = 2
1 + eβ J(x) , (55)

α (x) = 1
cos (β J (x)) , (56)

α (x) = 1 − 2
π

arctan (β J (x)) ,

(57)

α (x) = 1 − tanh (β J (x)) , (58)

where β > 0 and we consider the loss function J (x) = (f ′ (ψ (x)))2 to be minimized in each iteration. The
consideration of the square in the loss function guarantees its non-negativity. All examples given satisfy

lim
β→0

α (x) = 1 = lim
x→x∗

α (x) , (59)

where the second limit results from the fact that J (x) → 0 as x → x∗. Variable order differentiation turns the
ψ-FGM into a learning method, since as x gradually approaches x∗ then α (x) ≈ 1. The ψ-FGM with variable order
is given by

xk+1 = xk − θ
f ′(ψ (xk−1))

Γ (2 − α (xk)) |ψ (xk) − ψ (xk−1)|1−α(xk)
.

Theorem 5.1 remains valid for this variation of Algorithm 1.

5.1.2 Numerical simulations

Now, we provide some examples that show the validity of the previous algorithms applied to the quadratic function
f (x) = (x− 1)2, which is one of the simplest benchmark functions. This function is a convex function with a unique
global minimum at x∗ = 1. For the ψ-derivative, we consider the following cases:

• Caputo and Riemann-Liouville fractional derivatives: ψ1 (x) = x, I = [0,+∞[, and a = 0;

• Hadamard fractional derivative: ψ2 (x) = ln (x), I = [1,+∞[, and a = 1;

• Katugampola fractional derivative: ψ3 (x) = x0.5, I = [0,+∞[, and a = 0.5. In this case, a cannot coincide
with the lower limit of the interval I because ψ′ is not defined at x = 0.
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The Figures 1, 2, and 3 show the numerical results of Algorithm 1 applied to the composite functions f (ψ1 (·)),
f (ψ2 (·)), and f (ψ3 (·)) , choosing different parameters. In Figure 1, we consider θ = 0.1, x0 = 2, ϵ = e-09, and
different orders of differentiation α = 0.4, 0.6, 0.8, 1.0.

Figure 1: Algorithm 1 for different orders of differentiation α.

Analyzing the plots in Figure 1, we see that the convergence of the ψ-FGM in the non-integer case is slower, in
general, than in the integer case (α = 1.0). In Figure 2 we consider x0 = 2, α = 0.75, ϵ = e-09, and different step
sizes θ = 0.05, 0.1, 0.2, 0.3.

Figure 2: Algorithm 1 for different step sizes θ.

The plots in Figure 2 show that the increment of the step size makes convergence faster. The optimization of
the step size in each iteration would lead to the optimal convergence of the method in a few iterations. In Figure
3 we consider different initial approximations x0, and the values α = 0.75, θ = 0.1, and ϵ = e-09. As expected,
convergence becomes faster as x0 approaches the minimum point.

Figure 3: Algorithm 1 for different initial approximations x0.

Now, we show the numerical simulations of Algorithm 1 with variable order of differentiation α (x). In Figure 4
we consider θ = 0.1, β = 0.1, x0 = 2, ϵ = e-09, and the variable order functions (54)-(58). In Figure 5 we exhibit
the behaviour of the algorithm for α(x) given by (58) and different values of β.

Figure 4: Algorithm 1 for different variable orders of differentiation.
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Figure 5: Algorithm 1 with α(x) = 1 − tanh(βJ(x)) and different values of β.

From these plots we conclude that in the one-dimensional case, the consideration of variable order differentiation
can speed the convergence, but it is in general slower than the classical gradient descent method with integer
derivative. A further improvement of the algorithm could be to consider a variable step size optimized in each
iteration. This idea is implemented in the next section, where we consider optimization problems in R2.

5.2 The two dimensional case
5.2.1 Untrained approach

Motivated by the ideas presented in [2,23], we extend the results presented in Subsection 5.1 to the two-dimensional
case. We consider a function ψ in the conditions of Definition 2.2 and the vector-valued function Ψ : R2 → R2 given
by Ψ (X) = (ψ (x) , ψ (y)) with X = (x, y). Moreover, let f : R2 → R be a function that admits a local minimum
at the point X∗ in Dρ (X∗) =

{
X ∈ R2 : ∥X −X∗∥ < ρ

}
, for some ρ > 0. We want to find a local minimum point

of the function f (Ψ (X)) = f (ψ (x) , ψ (y)) with X = (x, y), through the iterative method

Xk+1 = Xk − θ

(
H∇α,µ;ψ

X+
k−1

f

)
(Ψ (Xk)) , θ > 0. (60)

We assume that f admits a Taylor series centered at the point (a1, a2) ∈ Dρ (X∗) given by

f (x, y) =
+∞∑
p=0

+∞∑
q=0

(
∂p+qf

∂px ∂
q
y

)
(a1, a2) 1

p! q! (x− a1)p (y − a2)q (61)

with domain of convergence D ⊆ R2 such that X∗ ∈ D. Then the ψ-Hilfer fractional gradient in (60) is given by(
H∇α,µ;ψ

X+
k−1

f

)
(Ψ (Xk)) =

((
H

x+
k−1

∂α,µ;ψ
x f

)
(Ψ (Xk)) ,

(
H

y+
k−1

∂α,µ;ψ
y f

)
(Ψ (Xk))

)
, (62)

where
(

H
x+

k−1
∂α,µ;ψ
x f

)
(Ψ (Xk)) and

(
H

y+
k−1

∂α,µ;ψ
x f

)
(Ψ (Xk)) denote the partial ψ-Hilfer derivatives of f , with respect

to x and y, of order α ∈]0, 1], type µ ∈ [0, 1], and with the lower limit of integration replaced by xk−1 and yk−1,

respectively. Taking into account (61) and (5) we have the following expressions for the components of (62)

(
H

x+
k−1

∂α,µ;ψ
x f

)
(Ψ (Xk)) =

+∞∑
p=p0

+∞∑
q=0

(
∂p+qf

∂px ∂
q
y

)
(Ψ (Xk−1)) (ψ (yk) − ψ (yk−1))q

q!
(ψ (xk) − ψ (xk−1))p−α

Γ (p+ 1 − α) , (63)

(
H

y+
k−1

∂α,µ;ψ
x f

)
(Ψ (Xk)) =

+∞∑
p=0

+∞∑
q=q0

(
∂p+qf

∂px ∂
q
y

)
(Ψ (Xk−1)) (ψ (xk) − ψ (xk−1))p

p!
(ψ (yk) − ψ (yk−1))q−α

Γ (q + 1 − α) , (64)

where

p0 = q0 =
{

0, if µ ∈ [0, 1[
1, if µ = 1

. (65)

The iterative method proposed in (60) takes into account the short memory characteristic of the fractional derivatives
and, as in the one-dimensional case, we can see from (63)-(64) that the method does not depend on the type of
derivative µ. Furthermore, due to the freedom of choice of the µ parameter (µ = 1 or µ ∈ [0, 1[) and the ψ function,
we can deal with several fractional derivatives (see Section 5 in [19]). We have the following convergence result.

Theorem 5.3 If the algorithm (60) is convergent, where the fractional gradient is given by (62)-(64), then it
converges to the minimum point of f (Ψ (·)).
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Proof: Let X∗ be the minimum point of f (Ψ (·)). We prove that the sequence (Xk)k∈N converges to X∗ by
contradiction. Assume that Xk converges to a different X ̸= X∗ and f ′

x (Ψ (X)) ̸= 0 ̸= f ′
y (Ψ (X)). Since the

algorithm is convergent, we have that limk→+∞ ∥Xk −X∥ = 0. Moreover, for any small positive ϵ there exists a
sufficiently large number N ∈ N such that

(ψ (xk−1) − ψ (x))2
<
ϵ2

2 < (ψ (x∗) − ψ (x))2 and (ψ (yk−1) − ψ (y))2
<
ϵ2

2 < (ψ (y∗) − ψ (y))2 (66)

for any k > N . Thus,

δ1 = inf
p,q>N

∣∣∣∣∂p0f

∂xp0
(Ψ (Xk−1))

∣∣∣∣ > 0 and δ2 = inf
p,q>N

∣∣∣∣∂q0f

∂yq0
(Ψ (Xk−1))

∣∣∣∣ > 0 (67)

must hold. From (62)-(64) we have

∥Xk+1 −Xk∥2

= θ2
∥∥∥∥H∇α,µ;ψ

x+
k−1

f (Ψ (Xk−1))
∥∥∥∥2

= θ2

(+∞∑
p=0

+∞∑
q=0

(
∂p+p0+qf

∂p+p0
x ∂qy

)
(Ψ (Xk−1)) (ψ (yk) − ψ (yk−1))q

q!
(ψ (xk) − ψ (xk−1))p+p0−α

Γ (p+ p0 + 1 − α)

)2

+ θ2

(+∞∑
p=0

+∞∑
q=0

(
∂p+q+q0f

∂px ∂
q+q0
y

)
(Ψ (Xk−1)) (ψ (xk) − ψ (xk−1))p

p!
(ψ (yk) − ψ (yk−1))q+q0−α

Γ (q + q0 + 1 − α)

)2

≥ θ2

(
∂p0f

∂xp0
(Ψ (Xk−1)) (ψ (xk) − ψ (xk−1))p0−α

Γ (p0 + 1 − α)

)2

− θ2

(+∞∑
p=1

+∞∑
q=1

(
∂p+p0+qf

∂px ∂
q
y

)
(Ψ (Xk−1)) (ψ (yk) − ψ (yk−1))q

q!
(ψ (xk) − ψ (xk−1))p+p0−α

Γ (p+ p0 + 1 − α)

)2

+ θ2

(
∂q0f

∂yq0
(Ψ (Xk−1)) (ψ (yk) − ψ (yk−1))q0−α

Γ (q0 + 1 − α)

)2

− θ2

(+∞∑
p=1

+∞∑
q=1

(
∂p+q+q0f

∂px ∂
q
y

)
(Ψ (Xk−1)) (ψ (xk) − ψ (xk−1))p

p!
(ψ (yk) − ψ (yk−1))q+q0−α

Γ (q + q0 + 1 − α)

)2

.

Considering

C1 = sup
p,q≥N

∣∣∣∂p0f
∂xp0 (Ψ (Xk−1))

∣∣∣
Γ (p0 + 1 − α) q! and C2 = sup

p,q≥N

∣∣∣∂q0f
∂yq0 (Ψ (Xk−1))

∣∣∣
Γ (q0 + 1 − α) p!

we have, from the previous expression, that

∥Xk+1 −Xk∥2

≥ θ2

(
∂p0f

∂xp0
(Ψ (Xk−1)) (ψ (xk) − ψ (xk−1))p0−α

Γ (p0 + 1 − α)

)2

− θ2C2
1

(+∞∑
p=1

+∞∑
q=1

(ψ (yk) − ψ (yk−1))q (ψ (xk) − ψ (xk−1))p+p0−α

)2

+ θ2

(
∂q0f

∂yq0
(Ψ (Xk−1)) (ψ (yk) − ψ (yk−1))q0−α

Γ (q0 + 1 − α)

)2

− θ2C2
2

(+∞∑
p=1

+∞∑
q=1

(ψ (xk) − ψ (xk−1))p (ψ (yk) − ψ (yk−1))q+q0−α

)2

.
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The double series that appear in the previous expression are of geometric type with positive radius less than 1. Hence,
by the sum of a geometric series we have that

∥Xk+1 −Xk∥2

≥ θ2

(
∂p0f

∂xp0
(Ψ (Xk−1)) (ψ (xk) − ψ (xk−1))p0−α

Γ (p0 + 1 − α)

)2

− θ2C2
1

(
ψ (yk) − ψ (yk−1)

1 − (ψ (yk) − ψ (yk−1))

)2
(

(ψ (xk) − ψ (xk−1))1+p0−α

1 − (ψ (xk) − ψ (xk−1))

)2

+ θ2

(
∂q0f

∂yq0
(Ψ (Xk−1)) (ψ (yk) − ψ (yk−1))q0−α

Γ (q0 + 1 − α)

)2

− θ2C2
2

(
ψ (xk) − ψ (xk−1)

1 − (ψ (xk) − ψ (xk−1))

)2
(

(ψ (yk) − ψ (yk−1))1+q0−α

1 − (ψ (yk) − ψ (yk−1))

)2

which is equivalent to

∥Xk+1 −Xk∥2

≥ θ2

( ∂p0f
∂xp0 (Ψ (Xk−1))
Γ (p0 + 1 − α)

)2

− C2
1

(
ψ (yk) − ψ (yk−1)

1 − (ψ (yk) − ψ (yk−1))

)2(
ψ (xk) − ψ (xk−1)

1 − (ψ (xk) − ψ (xk−1))

)2


×
(

(ψ (xk) − ψ (xk−1))p0−α
)2

+ θ2

( ∂q0f
∂yq0 (Ψ (Xk−1))
Γ (q0 + 1 − α)

)2

− C2
2

(
ψ (xk) − ψ (xk−1)

1 − (ψ (xk) − ψ (xk−1))

)2(
ψ (yk) − ψ (yk−1)

1 − (ψ (yk) − ψ (yk−1))

)2


×
(

(ψ (yk) − ψ (yk−1))q0−α
)2

≥ d1

(
(ψ (xk) − ψ (xk−1))p0−α

)2
+ d2

(
(ψ (yk) − ψ (yk−1))q0−α

)2
, (68)

where

d1 = d1 (ϵ) = θ2

((
δ1

Γ (p0 + 1 − α)

)2
− C2

1

(
ϵ

1 − ϵ

)4
)

and

d2 = d2 (ϵ) = θ2

((
δ2

Γ (q0 + 1 − α)

)2
− C2

2

(
ϵ

1 − ϵ

)4
)
.

One can always find ϵ sufficiently small such that(
δ1

Γ (p0 + 1 − α)

)2
− C2

1

(
ϵ

1 − ϵ

)4
>
ϵ2α

θ2 ⇔
(

δ1

Γ (p0 + 1 − α)

)2
>
ϵ2α

θ2 + C2
1

(
ϵ

1 − ϵ

)4
(69)

and (
δ2

Γ (q0 + 1 − α)

)2
− C2

1

(
ϵ

1 − ϵ

)4
>
ϵ2α

θ2 ⇔
(

δ2

Γ (q0 + 1 − α)

)2
>
ϵ2α

θ2 + C2
2

(
ϵ

1 − ϵ

)4
, (70)

because the functions

g1 (ϵ) = ϵ2α

θ2 + C2
1

(
ϵ

1 − ϵ

)4
and g2 (ϵ) = ϵ2α

θ2 + C2
2

(
ϵ

1 − ϵ

)4
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are positive increasing for α ∈]0, 1], θ ∈]0, 1[, and ϵ ∈]0, 1[. Hence, from (68) and taking into account (69) and (70),
we obtain

∥Xk+1 −Xk∥2
> ϵ2αϵ2p0−2α + ϵ2αϵ2q0−2α =

{
2ϵ2, if µ = 1
2, if µ ∈ [0, 1[

. (71)

On the other hand, from the assumption (70) we have

∥Xk+1 −Xk∥2 ≤ ∥Ψ (Xk+1) − Ψ (Xk)∥2

≤ (ψ (xk+1) − ψ (xk))2 + (ψ (yk+1) − ψ (yk))2

≤ (ψ (xk+1) − ψ (x))2 + (ψ (x) − ψ (xk))2 + (ψ (yk+1) − ψ (y))2 (ψ (y) − ψ (yk))2

<
ϵ2

2 + ϵ2

2 + ϵ2

2 + ϵ2

2 = 2ϵ2

which contradicts (71). This completes the proof.

■

Despite the convergence of (60), it is important to point out that sometimes the function f (Ψ (·)) is not smooth
enough sufficiently smooth and hence the algorithm involving the double series (63) and (64) cannot be implemented.
Moreover, in the same way as was done for the one-dimensional case, and assuming that f is at least of the class
C1, we only consider the following terms of (63) and (64)

f ′
x(Ψ (Xk−1))
Γ (2 − α) (ψ (xk) − ψ (xk−1))1−α (term p = 1 and q = 0 in (63)) ,

f ′
y(Ψ (Xk−1))
Γ (2 − α) (ψ (yk) − ψ (yk−1))1−α

, (term p = 0 and q = 1 in (64)) .

Thus, the higher order terms are eliminated and therefore we have the following update of (62):(
H∇α,µ;ψ

X+
k−1

f

)
(Ψ (Xk)) =

(
f ′
x(Ψ (Xk−1))
Γ (2 − α) (ψ (xk) − ψ (xk−1))1−α

,
f ′
y(Ψ (Xk−1))
Γ (2 − α) (ψ (yk) − ψ (yk−1))1−α

)
.

To avoid the appearance of complex numbers, we also consider(
H∇α,µ;ψ

X+
k−1

f

)
(Ψ (Xk)) =

(
f ′
x(Ψ (Xk−1))
Γ (2 − α) |ψ (xk) − ψ (xk−1)|1−α

,
f ′
y (Ψ (Xk−1))
Γ (2 − α) |ψ (yk) − ψ (yk−1)|1−α

)
.

(72)

In a similar way as it was done in Theorem 5.3, we can state the following result.

Theorem 5.4 If the algorithm (60) is convergent, where the fractional gradient is given by (72), then it converges
to the minimum point of f (Ψ (·)).
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The following pseudocode describes the implementation of the previous algorithm.

Inputs:
Functions: ψ (x) , f ′

x(Ψ (X)), f ′
y(Ψ (X))

Fixed parameters: α, a, θ, ϵ

Initial guess: X0 = [x0, y0]

Output: k-iteration: Xk = [xk, yk]
Initialization
k = 2, X1 = [a, a]

while
∥∥∥H∇α,µ;ψ

X+
k

f (Ψ (Xk+1))
∥∥∥ ≥ ϵ do

xk = xk−1 − θ
f ′
x(Ψ (Xk−2))
Γ (2 − α) |ψ (xk−1) − ψ (xk−2)|1−α

yk = yk−1 − θ
f ′
y(Ψ (Xk−2))
Γ (2 − α) |ψ (yk−1) − ψ (yk−2)|1−α

Xk = [xk, yk]
k = k + 1

end

Algorithm 2: 2D ψ-FGM with higher order truncation

5.2.2 The trained approach

In this section, we refine Algorithm 2 in two ways that train our algorithm in each iteration to find the most accurate
Xk. First we consider a variable step size θk > 0 that is updated in each iteration by minimizing the following
function

ϕ (θk) = f

(
Ψ (Xk) − θk

(
H∇α,µ;ψ

X+
k−1

f

)
(Ψ (Xk))

)
.

In the second refinement, we adjust the order of integration α with Xk. More precisely, if f is a non-negative function
with a unique minimum point X∗, we can consider any of the functions (54)-(58). In our approach, we only consider
the following variable fractional order

α (X) = 1 − 2
π

arctan (β J (X)) , (73)

where the loss function is J (X) = ∥∇f(Ψ (X))∥. From (73) we infer that when J (X) ≈ 0 one has α (X) ≈ 1, and
when J (X) ≫ 0 one has α (X) ≈ 0. As a consequence of the previous refinements we have the following iterative
method:

Xk+1 = Xk − θk

(
H∇α(Xk),µ;ψ

X+
k−1

f

)
(Ψ (Xk)) , (74)

where the fractional gradient is given by(
H∇α(Xk),µ;ψ

X+
k−1

f

)
(Ψ (Xk))

=
(
f ′
x(Ψ (Xk−1))

Γ (2 − α (Xk)) |ψ (xk) − ψ (xk−1)|1−α(Xk)
,
f ′
y(Ψ (Xk−1))

Γ (2 − α (Xk)) |ψ (yk) − ψ (yk−1)|1−α(Xk)
)
. (75)

Likewise, with a variable fractional order α (X), the following theorem follows.

Theorem 5.5 If the algorithm (74) is convergent, where the fractional gradient is given by (75), then it converges
to the minimum point of f (Ψ (·)).
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The proof of this result follows the same reasoning of the proof of Theorem 5.3 and therefore it is omitted. The
following pseudocode describes the implementation of the trained algorithm (75).

Inputs:
Functions: ψ (x) , f ′

x(Ψ (X)), f ′
y(Ψ (X))

Fixed parameters: α(X), a, ϵ, β

Initial guess: X0 = [x0, y0]

Output: k-iteration: Xk = [xk, yk]
Initialization
k = 2, X1 = [a, a]

while
∥∥∥H∇α(Xk),µ;ψ

X+
k

f (Ψ (Xk+1))
∥∥∥ ≥ ϵ do

J (Xk−2) = ∥∇f (Ψ (Xk−2))∥

α (Xk−2) = subs(α(X), J(X), J (Xk−2))

θk = Solve
[
Diff

[
f

(
Ψ (Xk) − θ

(
H∇α(Xk),µ;ψ

X+
k−1

f

)
(Ψ (Xk))

)]
= 0, θ

]
xk = xk−1 − θk

f ′
x(Ψ (Xk−2))
Γ (2 − α) |ψ (xk−1) − ψ (xk−2)|1−α(Xk−2)

yk = yk−1 − θk
f ′
y(Ψ (Xk−2))
Γ (2 − α) |ψ (yk−1) − ψ (yk−2)|1−α(Xk−2)

Xk = [xk, yk]

k = k + 1
end

Algorithm 3: 2D ψ-FGM with variable fractional order and optimized step size

5.2.3 Numerical simulations

In this section, we implement Algorithms 2 and 3 for finding the local minimum point of the function f (Ψ (·)) for
particular choices of f and ψ. For the function f we consider the following cases:

• f1 (x, y) = 4x2 − 4xy + 2y2 with minimum point at (0, 0),

• Matyas function: f2 (x, y) = 0.26
(
x2 + y2)− 0.48xy with minimum point at (0, 0),

• Wayburn and Seader No.1 function: f3 (x, y) =
(
x6 + y4 − 17

)2 +(2x+ y − 4)2 with minimum point at (1, 2).

The function f1 is a classic convex quadratic function in R2 and can be considered an academic example for
implementing our algorithms. The choice of functions f2 and f3 is due to the fact that they are benchmark functions
used to test and evaluate several characteristics of optimization algorithms, such as convergence rate, precision,
robustness and general performance. More precisely, the Matyas function has a plate shape and the Wayburn and
Seader No.1 function has a valley shape, which implies slow convergence to the minimum point of the corresponding
function. For the functions ψ in the vector function Ψ, we consider the choices

• ψ1(x) = x, with x ∈ I = [0,+∞[,

• ψ2(x) = x2, with x ∈ I = [0,+∞[,

• ψ3(x) = ln x, with x ∈ I = [1,+∞[.

For the numerical simulations we consider some combinations of the functions fi, i = 1, 2, and ψj , j = 1, 2, 3 and
compare the results in the following scenarios:
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• Algorithm 3 with α (X) = 1, that corresponds to the classical 2D gradient descent method,

• Algorithm 2 with α (X) = 0.8 and step size θ = 0.1,

• Algorithm 3 with α (X) = 1 − 2
π

arctan(β J(X)), with β = 0.1.

Figure 6 shows the target functions f1 (Ψ1 (X)) = 4x2 −4xy+2y2 and f1 (Ψ2 (X)) = 4x4 −4x2y2 +2y4, both with
a local minimum point at X∗ = (0, 0). Figures 7 and 8 show the Xk iterates in the corresponding contour plots of
the functions. The plots on the right show the amplification close to the minimum point. The results of numerical
simulations are summarized in Table 1. The stopping criterion used was ϵ = e-09.

Figure 6: Graphical representations of f1 (Ψ1 (X)) and f1 (Ψ2 (X))

Figure 7: Iterates for f1 (Ψ1 (X)).

Figure 8: Iterates for f1 (Ψ2 (X)).
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α θ k X0 Xk ∥Xk −X∗∥
f1 (Ψ1 (X))

Classical Gradient 1.0 optimized 49 [1.50, 2.50] [7.8188e-11, 1.3031e-10] 1.5197e-10
Algorithm 2 0.8 0.1 2480 [0.75, 1.25] [3.3860e-08, 5.3902e-08] 6.3655e-10
Algorithm 3 variable optimized 50 [1.50, 2.50] [9.3483e-11, 1.4213e-10] 1.7012e-10

f1 (Ψ2 (X))
Classical Gradient 1.0 optimized 77 [1.50, 2.50] [3.3370e-04, 5.5617e-04] 6.4860e-04

Algorithm 2 0.8 0.1 divergence [0.75, 1.25] — —
Algorithm 3 variable optimized 73 [1.50, 2.50] [3.9399e-04,−5.4845e-04] 6.7530e-04

Table 1: Information about the k-iteration associated to Figures 7 and 8.

In Table 1 we present the information concerning the Xk iterates of the implemented algorithms. When we
consider Ψ1, we achieve the global minimum point in the three cases, however, it is clear that Algorithm 2 leads to
worst results in terms of speediness, while the Classical Case and Algorithm 3 have similar results. If we consider
Ψ2, and we restrict our analysis to the two fastest algorithms, we conclude that in this case, Algorithm 3 provides a
more accurate approximation in fewer iterations. We point out that the objective function f1 (Ψ2 (·)) is a function
with less convexity near the minimum point when compared with the objective function f1 (Ψ1 (·)), which leads to
an optimization problem that is more challenging under the numerical point of view.

In the next set of figures and tables, we consider the Matyas function to test our algorithms. More precisely, we
consider the functions f2 (Ψ1 (X)) = 0.26

(
x2 + y2) − 0.48xy with local minimum at the point X∗ = (0, 0), and

f2 (Ψ3 (X)) = 0.26
(
ln2 (x) + ln2 (y)

)
− 0.48 ln (x) ln (y) with local minimum at the point X∗ = (1, 1).

Figure 9: Graphical representations of f2 (Ψ1 (X)) and f2 (Ψ3 (X))

Figure 9 shows booth functions f2 (Ψ1 (·)) and f2 (Ψ3 (·)) with a plate-shape. Considering the same stopping
criteria, we have the following results.
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Figure 10: Iterates for f2 (Ψ1 (X)).

Figure 11: Iterates for f2 (Ψ3 (X)).

α θ k X0 Xk ∥Xk −X∗∥
f2 (Ψ1 (X))

Classical Gradient 1.0 optimized 43 [1.50, 2.50] [8.9458e-09, 8.8320e-09] 1.2571e-08
Algorithm 2 0.8 1.0 94777 [0.75, 1.25] [1.7395e-06, 1.7395e-06] 2.4600e-06
Algorithm 3 variable optimized 27 [1.50, 2.50] [1.4056e-08, 1.3811e-08] 1.9727e-08

f2 (Ψ3 (X))
Classical Gradient 1.0 optimized 51 [1.50, 2.50] [1, 1] 0.5e-16

Algorithm 2 0.8 0.1 divergence [0.75, 1.25] — —
Algorithm 3 variable optimized 29 [1.50, 2.50] [1, 1] 0.5e-16

Table 2: Information about the k-iteration associated to Figures 10 and 11.

From the analysis of Table 2 we see that the three methods converge in the case of f2(Ψ1), but the Algorithm 2
is the worst in terms of iterations. The Classic Case and the Algorithm 3 have similar results in terms of precision,
however, the Algorithm 3 presents a better performance in terms of number of iterations. In the case of f2(Ψ3)
the Algorithm 2 diverges and the other two are convergent. The Algorithm 3 required half of the iterations when
compared with the Classical Gradient Method.

In the final set of figures and tables, the function f3 is composed with Ψ1 and Ψ2. Taking into account the
results obtained previously for the Matyas function, where it is clear that Algorithm 2 leads to worst results in terms
of rapidness and accuracy, we only implement the Classical Gradient Method and Algorithm 3. The following figure
shows the graphical representation of f3 (Ψ1 (X)) =

(
x6 + y4 − 17

)2 + (2x+ y − 4)2 with local minimum at the
point X∗ = (1, 2) and f3 (Ψ2 (X)) =

(
x12 + y8 − 17

)2 +
(
2x2 + y2 − 4

)2 with local maximum at X∗ = (0, 0) (or
a local minimum of the function −f3 (Ψ2 (X))).

23



Figure 12: Graphical representations of f3 (Ψ1 (X)) and −f3 (Ψ2 (X))

The plots in Figure 12 show that both functions are valley-shape. Figures 13 and 14 and Table 3 show the
numerical results obtained.

Figure 13: Iterates for f3 (Ψ1 (X)).

Figure 14: Iterates for f3 (Ψ2 (X)).

α θ k X0 Xk ∥Xk −X∗∥
f3 (Ψ1 (X))

Classical Gradient 1.0 optimized 2923 [1.50, 2.50] [1, 2] 0.5e-16
Algorithm 3 variable optimized 71 [1.50, 2.50] [1, 2] 1.378364e-10

f3 (Ψ2 (X))
Classical Gradient 1.0 optimized 51 [0.50, 0.25] [1.6446e-12,−1.3283e-11] 1.3385e-11

Algorithm 3 variable optimized 39 [0.50, 0.25] [−1.0755e-12, 2.1842e-11] 2.1868e-11

Table 3: Information about the k-iteration associated to Figures 13 and 14.
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In this last case, we see that the Classic Gradient Method and the Algorithm 3 provide very good approximations.
The Algorithm 3 performs better in terms of number of iterations. For instance, in the case of f3(Ψ1) the number
of iterations decreased around 97 % in comparison with the Classical Gradient Method.

6 Conclusions
In this work, we study the classical gradient method from the perspective of the ψ-Hilfer fractional derivative. In the
first part of the article, we consider the continuous gradient method and perform the convergence analysis for strongly
and non-strongly convex cases. The identification of functions of the Lyapunov type together with the auxiliary results
demonstrated, allowed establishing the convergence of the generating trajectories in the case of ψ-Hilfer.

In the second part of the paper, we first conclude that the ψ-Hilfer FGM with the ψ-Hilfer gradient given as
a power series can converge to a point different from the extreme point. To work out this problem, we propose
an algorithm with a variable lower bound of integration, reducing the influence of long-time memory terms. By
truncating the higher order terms, we obtain the ψ-FGM that allows easy implementation in practice. Furthermore,
to increase the precision and speed of the method, we optimized the step size in each iteration and considered a
variable order of differentiation. These two tunable parameters improve the performance of the method in terms of
speed of convergence.

Our numerical simulations show that the proposed FGM achieves the approximation with the same or better
precision, but in much less iterations when compared to the classical gradient method with optimized step size. We
emphasize that in our 2D numerical simulations, the Matyas function and the Wayburn and Seader Nº1’ functions
are well-known benchmark functions used to test optimization methods. These functions have the shapes of plates
and valleys, respectively, representing an extra challenge in numerical simulations.

As a future work, it is interesting to further develop this theory and to see its application in the field of convolutional
neural networks.
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