
Bicomplex neural networks with hypergeometric activation
functions∗

N. Vieira‡

‡CIDMA - Center for Research and Development in Mathematics and Applications
Department of Mathematics, University of Aveiro

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Email: nloureirovieira@gmail.com

March 14, 2023

Abstract

Bicomplex convolutional neural networks (BCCNN) are a natural extension of the quaternion convolutional
neural networks for the bicomplex case. As it happens with the quaternionic case, BCCNN has the capability of
learning and modelling external dependencies that exist between neighbour features of an input vector and internal
latent dependencies within the feature. This property arises from the fact that, under certain circumstances, it is
possible to deal with the bicomplex number in a component-wise way. In this paper, we present a BCCNN, and
we apply it to a classification task involving the colorized version of the well-known dataset MNIST. Besides the
novelty of considering bicomplex numbers, our CNN considers an activation function a Bessel-type function. As
we see, our results present better results compared with the one where the classical ReLU activation function is
considered.

Keywords: Artificial neural networks and deep learning; Activation functions; Bicomplex convolutional neural
networks; Hypergeometric functions; Bessel functions

MSC 2010: 68T07; 68Q32; 30G35; 33C90; 33C10.

1 Introduction
Convolutional Neural Networks (CNN) are one of the most used tools in artificial intelligence. In recent years, they
became a key tool in numerous fields like image classification, face recognition and machine translation (see [13] and
references therein). The correct choice of the activation function can significantly affect the performance of CNN.
Sometimes, a chosen activation function does not possess all the necessary properties/characteristics for a specific
CNN. Usually, the process of selection of activation functions is manual and relies essentially on the architecture of
the Neural Network (NN), which leads to exhaustive trial-and-error methodologies, where the NN is retrained for
each activation function until the optimal configuration. Independently of the considered approach, it is clear that
the task of introducing new activation functions is, for sure, not easy and its benefits are sometimes limited. This
limitation comes from the fact that the several proposals presented in the literature reveal to be inconsistent and
task-dependent, and therefore the classical activation functions (for example, the ReLU) maintain their predominance
in practical applications.

The field of quaternions is the best-known extension of the field of complex numbers to the four-dimensional
setting. On one hand, one of the main advantages of this extension is that quaternions form a field where we can
consider all the customary operations. On the other hand, when we handle quaternions, we do not have commutativity
of the product, which brings several unwanted problems in the process of extension of the theory of holomorphic
functions for one complex variable. A possible way to overcome the issue of non-commutativity is to consider the
bicomplex numbers, which is a four-dimensional algebra with classical operations, that contains C as a subalgebra

∗The final version is published in Advances in Applied Clifford Algebras, 33-No.22, (2023), Article No.20 (14pp.). It as available via
the website https://link.springer.com/article/10.1007/s00006-023-01268-w

1

nloureirovieira@gmail.com
https://link.springer.com/article/10.1007/s00006-023-01268-w

and preserves the commutativity. Just as in the case of complex numbers, where the individual components of the
complex number can be treated independently as two real numbers, the bicomplex space can be treated as two
complex or four real numbers.

The bicomplex algebra can be applied in several fields. For example, in [18], the authors point out that the so-
called IHS-colour space representation (i.e., Intensity-Hue-Saturation) has broad applications, particularly in human
vision, can be mathematically represented by having values in bicomplex numbers. In [9] the authors take vantage
of the idempotent representation of bicomplex algebra to prove the possibility of reconstructing a bicomplex sparse
signal, with high probability, from a reduced number of bicomplex random samples. Moreover, the possibility of
having four separate components allows the consideration of three- and four-dimensional input feature vectors, which
are associated with image processing and robot kinematics [6, 21], and also with the field of capsule networks [20].
Thereby, a bicomplex neural network-based models are able to code latent interdependencies between groups of
input features during the learning process with fewer parameters than traditional NN, by taking advantage of the
component-wise multiplication that can be established between bicomplex numbers. The bicomplex approach gives a
better way of combining two-valued complex networks compared to the usual two-valued approach in the literature [3],
as we can treat the theory as a single variable one due to its algebra structure. In our approach, the structure of the
bicomplex algebra is essential in providing a convergent algorithm. For more details about the theory of bicomplex
numbers and its applications we refer the interested reader to [4, 7, 10,12].

The objective of this paper is to introduce a BCCNN where a generic activation function of Bessel-type is
considered. The purpose of our idea is to generalize the results presented in the literature for the quaternionic
case and to present an application of the novel activation functions of hypergeometric type introduced in [25]. The
structure of the paper reads as follows: Section 2 is dedicated to recalling some basic definitions of the bicomplex
numbers and special functions, which are necessary for the understanding of this work. In Section 3 based on the
ideas presented in [25] we introduce a general family of hypergeometric activation functions with several trainable
parameters. In the following section, we describe our BCCNN. We perform some numerical experiments in the last
section using the Colored MNIST, to validate our approach.

2 Preliminaries

2.1 Bicomplex algebra
The set BC of bicomplex numbers is defined by

BC := {z1 + jz2 : z1, z2 ∈ C} ,

where C is the set os complex numbers with the imaginary unit i, and where i and j are commuting imaginary
units, i.e., ij = k = ji, i2 = j2 = −1, and k2 = +1. Bicomplex numbers can be added and multiplied, in fact, if
Z = z1 + jz2 and W = w1 + jw2 are two bicomplex numbers, we have that

Z + W := (z1 + w1) + j (z2 + w2) , Z · W := (z1w1 − z2w2) + j (z1w2 + z2w1) ,

where the product is not component-wise. From the previous multiplication rules involving i, j, and k, we decompose
BC in two ways. Indeed, BC = C (i) + jC (i), where

C (i) = {Z = z1 + jz2 : z2 = 0} .

Likewise, we have BC = C (j)+iC (j). Moreover, if we consider z1 = x1 +iy1 and z2 = x2 +ix2, with x1, y1, x2, y2 ∈
R, we have the following alternative form of presenting a bicomplex number

Z = z1 + jz2 = x1 + iy1 + jx2 + ky2.

The structure of BC suggest three possible conjugations on BC:

• the bar-conjugation: Z = z1 + jz2;

• the †-conjugation: Z† = z1 − jz2;

• the ∗-conjugation: Z∗ = Z† =
(
Z

)† = z1 − jz2,

2

where z1 and z2 are usual complex conjugates to z1, z2 ∈ C (i). The euclidian norm of a bicomplex number Z on
BC, when it is seen as

C2 (i) := C (i) × C (i) := {(z1, z2) : z1 + jz2 ∈ BC}

or as

R4 = {(x1, y1, x2, y2) : (x1 + iy1) + j (x2 + iy2) ∈ BC}

is given by

∥Z∥ =
√

|z1|2 + |z2|2 =
√

x2
1 + y2

1 + x2
2 + y2

2 . (1)

The bicomplex space, BC, is not a division algebra, and it has two distinguished zero divisors, namely, e1 and
e2, which are idempotent, linearly independent over reals, and mutually annihilating with respect to the bicomplex
multiplications (see [12, Prop. 1.6.1]):

e1 := 1 + k
2 , e2 := 1 − k

2 , e1 · e2 = 0, e2
1 = e1, e2

2 = e2, e1 + e2 = 1, e1 − e2 = k.

We have that {e1, e2} form an idempotent basis of the complex algebra BC. Considering the complex numbers
β1 := z1 − iz2 and β2 := z1 + iz2 in C (i), we have that the idempotent representation of Z = z1 + jz2 in BC (i)
is given by Z = β1e1 + β2e2. This idempotent representation is the only representation for which multiplication is
component-wise, as it is indicated in the next proposition

Proposition 2.1 (cf. [12, Prop. 1.6.3]) The addition and multiplication of bicomplex numbers can be realized
component-wise in the idempotent representation presented previously. Specifically, if Z = a1e1 + a2e2 and W =
b1e1 + b2e2 are two bicomplex numbers, where a1, a2, b1, b2 ∈ C (i), then

Z + W = (a1 + b1) e1 + (a2 + b2) e2, Z · W = (a1b1) e1 + (a2b2) e2, Zn = an
1 e1 + a2

2e2.

The multiplicative inverse of a bicomplex number Z = a1e1+a2e2, with a1 ·a2 ̸= 0 is given by Z−1 = a−1
1 e1+a−1

2 e2,
where a−1

1 and a−1
2 are the complex multiplicative inverses of a1 and a2, respectively (see [12, Thm. 1.6.5]). A

bicomplex number may be identified with real 4 × 4 matrices (that turns out to be more suitable for computations):

φR : Z = x1 + iy1 + jx2 + ky2 ∈ BC 7→

x1 −y1 −x2 y2

y1 x1 −y2 −x2

x2 −y2 x1 −y1

y2 x2 y1 x1

 . (2)

We have that every 4 × 4 matrix determines a linear (more exactly, a real linear) transformation in R4, however, not
all of them remain BC-linear when R4 is seen as BC. In the context of bicomplex convolutional neural networks,
there are some activation functions proposed in the literature involving bicomplex numbers. For example, in [4] the
authors considered the activation function P (z) = ϵl in T ⊂ Cn, where ϵ = exp

(2πi
k

)
be the root of the unity of

order k, and whenever 2πil
k ≤ arg (z) < 2πi(l+1)

k .

2.2 Special functions
In this work, we make use of the generalized hypergeometric function pFq, which is defined by (see [19])

pFq (a1, . . . , ap; b1, . . . , bq; z) = pFq

(
(aj)1:p ; (bi)1:q ; z

)
=

+∞∑
l=0

∏p
j=1 (aj)l∏q
i=1 (bi)l

xl

l! , (3)

where the convergence is guaranteed if one of the following conditions is satisfied:

p ≤ q ∨ q = p − 1 ∧ |z|< 1 ∨ q = p − 1 ∧ Re

p−1∑
i=1

bi −
p∑

j=1
aj

 > 0 ∧ |z|= 1. (4)

3

Moreover, (3) is an analytical function of a1, . . . , ap, b1, . . . , bq and z which is defined in Cp+q+1. In the cases p ≤ q

for fixed a1, . . . , ap, b1, . . . , bq, it is an entire function of z. If parameters ak include negative integers, the function
(3) degenerates to a polynomial in z.

Another special function that will play an important role in this work is the Bessel function of the first kin Jν ,
which is defined by the following series (see [1])

Jν (z) =
+∞∑
k=0

(−1)k

Γ (k + ν + 1) k!

(z

2

)2k+ν

. (5)

The Bessel function is related to the hypergeometric function 0F1 by the following relation (see [1])

Jν (z) = 1
Γ (1 + ν)

(z

2

)ν

0F1

(
; 1 + ν; −x2

4

)
, (6)

when ν is a non-negative integer. For more details about hypergeometric functions and other special functions, we
refer, for example, to [1].

3 General activation functions
The correct choice of the activation function can significantly affect the performance of CNN. Sometimes, a chosen
activation function does not possess all the necessary properties/characteristics for a specific CNN. Usually, the
process of selection of activation functions is manual and relies essentially on the architecture of the NN, which leads
to exhaustive trial-and-error methodologies, where the NN is retrained for each activation function until the optimal
configuration.

In this sense, and following the ideas presented in [25], we consider in our CNN a general multi-parametric
activation function in the context of automatic activation function design. The concepts of parametric activation
functions presented in [8], and the adaptative activation functions introduced in [26] inspired our work, and were
adapted to deal with hypergeometric functions. More precisely, we consider the following activation function:

H (x) = c1 + c2 xc3 + c4 xc5
pFq

(
(aj)1:p ; (bi)1:q ; c6 xc7

)
, (7)

where c1, c2, c4, c6 ∈ R, c5 ∈ N0, c3, c7 ∈ N, and the parameters in the hypergeometric function satisfy (4). Due
to a large number of parameters, it is possible to use (7) to approximate every continuous function on a compact
set. Moreover, in the case where the convergence is guaranteed, it is possible to define sub-ranges of the several
parameters that appear in (7) in order that the elements of the proposed class have some desirable properties that
are useful for the role of the activation function.

The multi-parametric activation function (7) groups several of the standard activation functions proposed in the
literature for deep NN. In Table 1, we indicate which cases are included in (7):

General
Activation
Functions

H (x)

Activation Function
Inside the Class

Identity Binary
Step ReLU GELU

ELU SELU PReLU Inverse
Tangent

Softsing Bent Identity Sinusoid Sinc
Gaussian

Activation Functions
Outside the Class

Sigmoid Hyperbolic
Tangent SoftPlus SNQL

SiLu

Table 1: General activation function H (x).

Moreover, in [25] is indicated in a detailed form how we derive the activation functions indicated in Table 1 from
the general expression (7). For example, if we consider c1 = c4 = 0, c2 = 0 (for x < 0) or c2 = 1 (for x ≥ 0),

4

c3, c5, c7 ∈ N, c6 ∈ R, and p = q = 0, we obtain

H (x) =

0 for x < 0

x for x ≥ 0
, (8)

which corresponds to the classical Rectified linear unit (ReLU).
Let us now pay attention to a particular case of (7), that involves the Bessel function of the first kind Jν (x),

with ν a half-positive integer. In fact, if we consider

c1 = c2 = 0, c4 =
√

π

2
2−ν

Γ (1 + ν) , c5 = 2ν, p = 0, q = 1 (b1 = 1 + ν) , c6 = −1
4 , c7 = 2, (9)

in (7), we obtain

H (x) = 2−ν

Γ (1 + ν) x2ν
0F1

(
−; 1 + ν; −x2

4

)
=

√
π

2 xν Jν (x) , (10)

which corresponds to a one-parameter activation function. It follows from the properties of the Bessel function of
the first kind that for half-integers values ν the activation function (10) reduces to the combination of polynomials
and elementary trigonometric functions such as sin and cos. In fact, for the first four positive half-integers, we have
that

ν = 1
2 ⇒ H (x) =

√
π

2 x
1
2 J 1

2
(x) = sin (x) , (11)

ν = 3
2 ⇒ H (x) =

√
π

2 x
3
2 J 3

2
(x) = sin (x) − x cos (x) , (12)

ν = 5
2 ⇒ H (x) =

√
π

2 x
5
2 J 5

2
(x) = −

(
x2 − 3

)
sin (x) − 3x cos (x) , (13)

ν = 7
2 ⇒ H (x) =

√
π

2 x
7
2 J 7

2
(x) = 3

(
5 − 2x2)

sin (x) + x
(
x2 − 15

)
cos (x) . (14)

In spite of (10) (and also (11)-(14)) not being monotonic functions in all the positive real line, we can restrict our
activation functions to intervals of the form Iν = [0; Mν], where Mν is the first positive zero of the Bessel function
Jν−1 (x) and corresponds to the first maximum positive point of Jν (x). In order to improve our results (see [25]),
we consider from now on the following linear combination of (11)-(14)

B (x) =
√

π

2

[
β1

√
xJ 1

2
(x) + β2

√
x3 J 3

2
(x) + β3

√
x5 J 5

2
(x) + β4

√
x7 J 7

2
(x)

]
, (15)

i.e., we combine the Bessel functions (11)-(14) using trainable parameters to dynamically change how much the
contribution of each Bessel function to the final activation function.

4 Bicomplex convolutional neural network
In this section, we define our BCCNN and appropriate parameter initialization. We can understand the BCCNN as a
generalization of the quaternionic convolutional neural network (QCNN) (see [15–17]) and of the classical real-valued
deep CNN (see [11]) to the case we deal with bicomplex numbers. Taking into account [16, 17, 23] about CNN via
quaternions and the theory of bicomplex numbers [12] we have that the bicomplex convolution operation is performed
via the real-number matrix representation (2). Hence, the one-dimensional convolutional layer, with a kernel that
contains featured maps, is split into 4 parts: the first part equal to x1, the second one to iy1, the third one to jx2,
and the last to ky2 of a bicomplex number Z = x1 + iy1 + jx2 + ky2.

For the activation function, we consider a combination of the so-called split activation introduced in [24] for the
quaternionic case with the real-valued activation function (15) defined in terms of Bessel functions, i.e.,

F (Z) = B (x1) + iB (y1) + jB (x2) + kB (y2) . (16)

Taking into account the properties of the Bessel functions and the ideas presented in [4] we can introduce the concept
of threshold function associated to our activation function (16).

5

Definition 4.1 Let n ≥ 1 and T ⊂ C2 (i). Then, a complex valued function f : T → C is called a threshold function
if there exists a weighting vector W = (w0, w1, w2), where wi ∈ C (i) such that:

f (z1, z2) = F (w0 + w1z1 + w2z2) , z1, z2 ∈ T.

Moreover, proceeding similarly as in the proof of Theorem 3.3 of [4], we have the following result:

Theorem 4.2 Let T ⊂ C2 (i) a bounded domain and f : T → C a threshold function and (w0, 0) a weighting vector
of f (z1, z2). Then, there exists w′

0 ∈ C and δ > 0 such that (w′
0, w1, w2) is a weighting vector of f whenever

|wj | < δ with j = 1, 2.

Differentiable cost guarantees backward propagation. More precisely, the gradient with respect to a loss function
J is expressed for each component of the bicomplex weights wl that composes the matrix W l at the layer l, being
the output layer the quantification of the error with respect to the target vector for each neuron. The convolution of
a bicomplex filter matrix with a bicomplex vector is performed taking into account the previous multiplications rules,
in fact, let W = X1 + iY1 + jX2 + kY2 be a bicomplex weight filter matrix, and Z = x1 + iy1 + jx2 + ky2 the
bicomplex input vector. The bicomplex convolution W ⊗ Z is defined as follows:

W ⊗ Z = (X1x1 − Y1y1 − X2x2 − Y2y2) + i (X1y1 + Y1x1 + X2y2 − Y2x2)

+ j (X1x2 − Y1y2 + X2x1 + Y2y1) + k (X1y2 + Y1x2 − X2y1 + Y2x1) (17)

and can thus be expressed in a matrix form following the matrix representation (2):

W ⊗ Z =

x1 −y1 −x2 y2

y1 x1 −y2 −x2

x2 −y2 x1 −y1

y2 x2 y1 x1

 ∗

x1

y1

x2

y2

 =

x′

1
iy′

1
jx′

2
ky′

2

A suitable initialization scheme improves neural network convergence and reduces the risk of exploding and vanishing
gradient. However, bicomplex numbers cannot be initialized component-wise as for the traditional minimization
criteria. The reason for this relies on the specific bicomplex algebra and the interaction between the components.
Based on the ideas presented in [16,17], a weight component w of the weight matrix W can be sampled as follows:

w0 = λ cos (θ) , wi = λ Z̃i sin (θ) , wj = λ Z̃j sin (θ) , wk = λ Z̃k sin (θ) . (18)

The angle θ is randomly generated in the interval [−π, π]. The bicomplex Z̃ is defined as a purely normalized
imaginary, and is expressed as 0 + iZ̃i + jZ̃j + kZ̃k. The imaginary components iy1, jx2, and ky2 are sampled from
the uniform distribution in [0, 1] to obtain Z, which is then normalized via (1) to obtain Z̃. The parameter λ is
sampled from [−σ, σ], where (see [16,17])

σ = 1√
2 (nin + nout)

, and σ = 1√
2nin

,

with nin and nout the number of neurons on the input and the output layers.

5 Numerical examples
In this final section, we present a simple numerical implementation where we consider the Bessel-type activation
function (16) and we compare its behaviour with the classical ReLU activation function in order to perform a
comparative analysis of the results and show the effectiveness of our approach.

In our numerical simulation, we consider the Colored MNIST dataset and a BCCNN as a baseline model. The
MNIST dataset consists of handwritten digits, which contains a training set of 60 000 examples, and a test set of
10 000 examples. Each sample is a 28 × 28 pixels image with the digits 0 to 9, the values assigned to the pixels
elements range from 0 to 255. To obtain the Colored MNIST we display the training images using a color map and
its reversed version. We emphasize that the consideration of a colorized version of the MNIST dataset will be more
difficult for the network to train.

6

Figure 1: First 25 images of the Colorised MNIST

The BCCNN model takes into account (18) and it is built in a way that we have a convolutional group, which
is composed of 2 convolutional layers, the first one has 1 convolutional filter as input and 25 convolutional filters
as output, the second layer has 25 filters as input and 50 filters as outputs, each filter has a kernel size of 3 × 3.
After the convolutional layers, we have a fully connected layer with 28800 units as input and 100 units outputs
followed by the final layer with 100 units inputs and 10 units outputs which gives the final output prediction for the
10 classes expected by the Colorised MNIST dataset. We use ReLU and (16) as activation functions except in the
last layer where we use a LogSoftmax activation. We employ the negative log-likelihood loss (NLLLoss) and Adam
algorithm as optimisers. For the learning rate, we opted to use a dynamic value which is reduced when the loss metric
has stopped improving, this is also known as ReduceLROnPlateau. As the initial learning rate value, we follow the
guidelines from [22] and choose the value where the gradient towards the minimum loss value is steeper, which in
our case, was found to be around 1.8 × 10−3.

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Learning rate

300

400

500

600

700

800

900

Lo
ss
 v
al
ue

lr=2.031e-04

(a) Loss values vs learning rates values.

0 20 40 60 80 100
Training Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 (N
LL

Lo
ss

)

ReLU-train loss
ReLU-val loss

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Loss/Accuracy
ReLU-train acc
ReLU-val acc

(b) Loss and accuracy history.

Figure 2: BCCNN model for the baseline models in the Colored MNIST dataset.

In Figure 2 we show the performance of the baseline model for the BCCNN models with ReLU as activation
function. In Figure 2(A) the dashed red line highlight shows the layers where the gradient towards the minimum loss
value is steeper, in this case, 2.031 × e-04. In Figure 2(B) the continuous (resp. dot-dashed) line shows the loss
(resp. accuracy) for the BCCNN model with ReLU activation function. These results will serve as a benchmark to
test against the proposed new activation functions. Now we consider (16) as an activation function and we see the
behaviour of the BCCNN:

7

10−7 10−5 10−3 10−1

Learning rate

500

1000

1500

2000

2500

3000

3500

4000

Lo
ss
 v
al
ue

lr=1.425e-06

(a) Loss vs learning rate values per epoch.

0 20 40 60 80 100
Training Epochs

0

1

2

3

4

Lo
ss

 (N
LL

Lo
ss

)

ReLU-train loss
ReLU-val loss
(x)-train loss
(x)-val loss

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Loss/Accuracy
ReLU-train acc
ReLU-val acc
(x)-train acc
(x)-val acc

(b) Loss vs accuracy values per epoch.

0 20 40 60 80 100
Training Epochs

0

1

2

3

4
Lo
ss
 (N

LL
Lo
ss
)

ReLU-train loss
ReLU-val loss
(x)-train loss
(x)-val loss0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

Loss/Accuracy
ReLU-train acc
ReLU-val acc
(x)-train acc
(x)-val acc

(c) Effects of set βi as dynamic parameter to be
adjust during the training phase.

Figure 3: Performance of the baseline model for the FC models with Bessel type activation functions.

In Figure ??, the orange (resp. blue) continuous line corresponds to the training (resp. validation) phase for
the activation function F (x) with βi = 1, while the dot-dashed green (resp. red) line correspond to the results
for the baseline model with ReLU activation function training (resp. validation) phase. From the analysis of Figure
??, we have that for the case where all βi in (16) are equal to one (see Figure ??(B)), the BCCNN gives poor
classification accuracy and also shows a constant behaviour. If we let the values of βi be chosen by the BCCNN
as a new parameter during the training phase, we found a better result as displayed in Figure ??(C), although the
accuracy on the validation dataset stays around 90%, the maximum accuracy is reached around epoch 20, which
shows the advantage of such activation against the traditional ReLU activation.

6 Conclusions
In this paper, we consider bicomplex neural networks with an activation function of Bessel type. The consideration of
this new type of activation function leads to better results when compared with the correspondent ones obtained if we
consider ReLU. Our numerical experiments reveal that Bessel-type functions combine, in the same activation function,
the characteristics of the ReLU and the sinusoid activation functions. In fact, as we indicated in the manuscript, in the
case when ν is a half-integer positive, the Bessel function reduces to a combination of trigonometric and polynomial
functions. Compared with the ReLU activation function, Bessel-type functions reach high levels of accuracy more
rapidly. Moreover, due to the influence of the sinusoid component, the Bessel-type activation functions have a lower
saturation point when compared with the ReLU activation function.

In future work, it would be interesting to consider bicomplex neural networks in more challenging classification
tasks, such as the classification of clinical images. Another possible direction consists in considering this new activation
function in the quaternionic case, the hyperbolic case, as well in the case of higher dimension hypercomplex algebras,
commutative or not. The consideration of these higher algebras simply reduces errors and their implementation.
Hypercomplex valued NN allows the accumulation of several complex variables into a single variable theory that can
reduce calculations and improve the accuracy of the algorithms.

Acknowledgements
The work of the author was supported by Portuguese funds through CIDMA–Center for Research and Development in
Mathematics and Applications, and FCT–Fundação para a Ciência e a Tecnologia, within projects UIDB/04106/2020

8

and UIDP/04106/2020. He was also supported by FCT via the 2018 FCT program of Stimulus of Scientific Em-
ployment - Individual Support (Ref: CEECIND/01131/2018). N. Vieira expresses his appreciation for the support he
has received from the projects Machine Learning and Special Functions as Activation Functions in Image Processing
(Ref: CPCA/A1/421343/2021) and Hypergeometric Functions and Machine Learning in the Diagnosis Process (Ref:
CPCA-IAC/AV/475089/2022), and from the German Research Foundation (Ref: SM 281/15-1).

References
[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical

tables. 10th printing, National Bureau of Standards, Wiley-Interscience Publication, John Wiley & Sons, New
York etc., 1972.

[2] R. Agarwal, U.P. Sharma, and R.P. Agarwal, Bicomplex Mittag-Leffler functions and associeted properties, J.
Nonlinear Sci. Appl. 15 (2022), 48–60.

[3] I.N. Aizenberg, N.N. Aizenberg, J. Vandewalle, Multi-Valued and Universal Binary Neurons, Theory, Learning,
and Applications, Springer New York, NY, 2000

[4] D. Alpay, K. Dikil, and M. Vajiac, A note on the complex and bicomplex valued neural networks, Appl. Math.
Comput. 445 (2023), Article No. 127864 (12pp.).

[5] P. Arena, L. Fortuna, I. Occhipinti, and M.G. Xibilia, Neural networks for quaternionic-valued functions approx-
imation, In: 1994 IEEE Internaticnal Symposium on Circuits and Systems - ISCAS94, 6, 307–310.

[6] N.A. Aspragathos and J.K. Dimitros, A comparative study of three methods for robot kinematics, Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 28-No.2 (1998), 135–145.

[7] H. De Bie, D. Struppa, A. Vajiac, M. Vajiac, The Cauchy-Kowalewski product for bicomplex holomorphic
functions, Math. Nachr. 285-No.10 (2012), 1230–1242.

[8] G. Bingham and R. Miikkulainen, Discovering parametric activation functions, ArXiv preprint,
ArXiv:2006.03179v4, 2006.

[9] P. Cerejeiras, Y. Fu, and N. Gomes, Bicomplex signals with sparsity constraints, Math Meth. Appl Sci. 41-No.13
(2018), 5140–5158

[10] F. Colombo, I. Sabadini, D.C. Struppa, A. Vajiac, and M.B. Vajiac, Singularities of functions of one and several
bicomplex variables, Ark. Mat. 49-No.2 (2011), 277–294.

[11] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, 770–778.

[12] E. Luna-Elizarraras, M. Shapiro, and D.C. Struppa, and A. Vajiac, Bicomplex Holomorphic Functions. The
Algebra, Geometry and Analysis of Bicomplex Numbers, Birkhüser/Springer, Cham, 2015.

[13] G. Maguolo, L. Nanni and S. Ghidoni, Ensemble of convolutional neural networks trained with different activation
functions, Expert Syst. Appl. 166 (2021), Article No. 114048 (8pp.).

[14] J. Paneva-Konovska, Bessel type functions as multi-index Mittag-Leffler functions: Erdélyi-Kober integral rela-
tions, AIP Conference Proceedings 2333 (2021), Article No.060003 (8pp.).

[15] T. Parcollet, M. Ravanelli, M. Morchid, G. Linarès, C. Trabelsi, R. De Mori, and Y. Bengio, Quaternion recurrent
neural networks, in Proceedings of the 7th International Conference on Learning Representations (ICLR 2019),
2019, Annual Conference of the International Speech Communication Association (INTERSPEECH), 2018,
Article No. 149936 (19pp.).

[16] T. Parcollet, M. Morchid, G. Linarès, and R. De Mori, Quaternion Convolutional Neural Networks for Theme
Identification of Telephone Conversations, in Proceedings of the 2018 IEEE Spoken Language Technology Work-
shop (SLT 2018), 2018, Article No. 145107 (7pp.).

9

[17] T. Parcollet, Y. Zhang, M. Morchid, C. Trabelsi, G. Linarès, R. De Mori, and Y. Bengio, Quaternion convolutional
neural networks for end-to-end automatic speech recognition, in Proceedings of the Annual Conference of the
International Speech Communication Association (INTERSPEECH), 2018, 22–26.

[18] S.C. Pei, J.H. Chang, and J.J. Ding, Commutative reduced biquaternions and their fourier transform for signal
and image processing applications, IEEE Trans Signal Process. 52-No.7 (2004), 2012–2031.

[19] A.P. Prudnikov, Yu. Brychkov, and O.I. Marichev, Integrals and series. Volume 3: More special functions, Transl.
from the Russian by G. G. Gould, Gordon and Breach Science Publishers, New York, 1990.

[20] S. Sabour, N. Frosst, and G.E. Hinton, Dynamic routing between capsules, Adv Neural Inf Process Syst. 2017
(2017), 3857–3867.

[21] S.J. Sangwine, Fourier transforms of colour images using quaternion or hypercomplex, numbers, Electronics
letters 32No.21 (1996), 1979–1980, 1996.

[22] L.N. Smith, A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size,
momentum, and weight decay, arXiv preprint arXiv:1803.09820, 2018.

[23] C. Trabelsi, O. Bilaniuk, D. Serdyuk, S. Subramanian, J.F. Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and
C.J. Pal, Deep complex networks, ArXiv preprint, ArXiv:1705.09792, 2017.

[24] B.C. Ujang, C.C. Took, and D.P. Mandic, Quaternion valued nonlinear adaptative filtering, IEEE Trans. Neural
Ntew. 28-No.8 (2011), 1193–1206.

[25] N. Vieira and F. Freitas, Hypergeometric functions as activation functions: the particular case of the Bessel type
functions, submitted.

[26] J. Zamora-Esquivel, A.C. Vargas, J.R. Camacho-Perez, P.L. Meyer, H. Cordourier, and O. Tickoo, Adaptative
activation functions using fractional calculus, 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), 2019, 2006–2013.

10

	Introduction
	Preliminaries
	Bicomplex algebra
	Special functions

	General activation functions
	Bicomplex convolutional neural network
	Numerical examples
	Conclusions

