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resumo 
 

 

As redes sociais tornaram-se muito utilizadas por todo o mundo, permitindo 
ligar pessoas de diferentes países e criar comunidades globais. O Twitter, uma 
das redes sociais mais populares, permite que os seus utilizadores partilhem 
segmentos curtos de texto com um máximo de 280 caracteres. Esta partilha na 
rede gera uma enorme quantidade de dados sobre os seus utilizadores, 
podendo ser analisados sobre múltiplas perspetivas. Por exemplo, podem ser 
utilizados para extrair informação sobre a saúde de um segmento da 
população tendo em vista a vigilância de saúde pública.  
O objetivo deste trabalho foi a investigação e o desenvolvimento de soluções 
técnicas para participar no “Social Media Mining for Health Shared Task” 

(#SMM4H), um desafio constituído por diversas tarefas de processamento de 
linguagem natural relacionadas com o uso de dados provenientes de redes 
sociais para o propósito de investigação na área da saúde. O trabalho 
envolveu o desenvolvimento de modelos baseados em transformadores e 
outras técnicas relacionadas, para participação na tarefa 1 deste desafio, que 
por sua vez está dividida em 3 subtarefas: 1a) classificação de tweets 
relativamente à presença ou não de eventos adversos de medicamentos 
(ADE); 1b) reconhecimento de entidades com o objetivo de detetar menções 
de ADE; 1c) tarefa de normalização com o objetivo de associar as menções de 
ADE ao termo MedDRA correspondente (“Medical Dictionary for Regulatory 
Activities”). A abordagem com melhor desempenho na tarefa 1a foi um modelo 
BERTweet large treinado com dados gerados através de um processo de data 
augmentation. Relativamente à tarefa 1b, os melhores resultados foram 
obtidos usando um modelo RoBERTa large com dados de treino 
sobreamostrados. Na tarefa 1c utilizou-se um modelo RoBERTa base treinado 
com dados adicionais provenientes de um conjunto de dados externo. A 
abordagem utilizada na terceira tarefa não conseguiu alcançar resultados 
relevantes (F1 de 0.12), enquanto que os sistemas desenvolvidos para as 
duas primeiras alcançaram resultados ao nível dos melhores do desafio (F1 de 
0.69 e 0.66 respetivamente).  
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abstract 

 
Social media has become very widely used all over the world for its ability to 
connect people from different countries and create global communities. One of 
the most prominent social media platforms is Twitter. Twitter is a platform 
where users can share text segments with a maximum length of 280 
characters. Due to the nature of the platform, it generates very large amounts 
of text data about its users’ lives. This data can be used to extract health 
information about a segment of the population for the purpose of public health 
surveillance. Social Media Mining for Health Shared Task is a challenge that 
encompasses many Natural Language Processing tasks related to the use of 
social media data for health research purposes. This dissertation describes the 
approach I used in my participation in the Social Media Mining for Health 
Shared Task. I participated in task 1 of the Shared Task. This task was divided 
into three subtasks. Subtask 1a consisted of the classification of Tweets 
regarding the presence of Adverse Drug Events. Subtask 1b was a Named 
Entity Recognition task that aimed at detecting Adverse Drug Effect spans in 
tweets. Subtask 1c was a normalization task that sought to match an Adverse 
Drug Event mention to a Medical Dictionary for Regulatory Activities preferred 
term ID. Toward discovering the best approach for each of the subtasks I made 
many experiments with different models and techniques to distinguish the ones 
that were more suited for each subtask. To solve these subtasks, I used 
transformer-based models as well as other techniques that aim at solving the 
challenges present in each of the subtasks. The best-performing approach for 
subtask 1a was a BERTweet large model trained with an augmented training 
set. As for subtask 1b, the best results were obtained through a RoBERTa 
large model with oversampled training data. Regarding subtask 1c, I used a 
RoBERTa base model trained with data from an additional dataset beyond the 
one made available by the shared task organizers. The systems used for 
subtasks 1a and 1b both achieved state-of-the-art performance, however, the 
approach for the third subtask was not able to achieve favorable results. The 
system used in subtask 1a achieved an F1 score of 0.698, the one used in 
subtask 1b achieved a relaxed F1 score of 0.661, and the one used in the final 
subtask achieved a relaxed F1 score of 0.116. 
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1 Introduction 
 

 

Social media has become very widely used by people all over the world for all sorts of 

purposes, whether it be connecting with other people, checking the news, or sharing their 

opinions and experiences. Because of this, social networks have managed to produce very 

high amounts of data relating to a plethora of subjects. The data produced can contain 

valuable information, however, due to its high quantity, it is impossible to analyse it all 

manually. 

Twitter1 is a social media platform in which users mainly publish text segments with 

a maximum length of 280 characters referred to as tweets. Due to its widespread use and 

high user count, it generates high amounts of user-generated content very quickly. 

Furthermore, through Twitter data analysis it is also possible to track public opinion on 

several issues [1]. 

Public health surveillance consists of monitoring public health for the good of the 

population. A part of public health surveillance is pharmacovigilance, which focuses on the 

detection of adverse events related to medicinal products [2]. An example of an application 

of Twitter data analysis in public health surveillance is the detection of health conditions 

and disorders in tweets, which is researched by Prieto et al. [1]. In the more specific case of 

pharmacovigilance, an example of an application of data analysis is the detection of Adverse 

Drug Events (ADE) in tweets. 

 

1.1 Motivation 
 

There has been previous work on the identification of health states and specific vocabulary 

from electronic health records (EHRs) [3]. Electronic health records are digital records of 

patients and include information such as the patient’s medical history, medications, test 

results, etc. The Medications and Adverse Drug Events from Electronic Health Records 

(MADE) 2018 challenge [3] invited participants to create and submit systems for solving 

three shared tasks. These shared tasks encompassed the Named Entity Recognition (NER) 

of entities on EHRs as well as the classification of the relationships between those mentions. 

This challenge helped reveal state-of-the-art approaches towards solving the mentioned 

shared tasks. This challenge works with EHR, meaning that it deals with data generated by 

healthcare professionals that contains technical medical vocabulary. 

The Social Media Mining for Health Applications (#SMM4H) Shared Task [4] consists 

of Natural Language Processing (NLP) challenges related to using social media data for 

 
1 https://twitter.com/ 
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health research. The challenges presented consist mainly of classification tasks related to 

the identification of health states in Twitter messages. This year was the seventh edition of 

the shared task and each of the previous editions included the publishing of a plethora of 

articles related to the different approaches used for each of the tasks proposed in that year’s 

edition. This means that each edition presents a general idea of the state-of-the-art 

approaches existent for the tasks proposed for that year. These tasks include the 

identification of ADEs, adverse pregnancy outcomes, symptoms and other health states in 

social media text and encompass some other languages besides English. Contrary to the 

MADE challenge, this shared task uses social media data that introduces challenges present 

solely in this kind of user-generated data, such as the use of informal language, non-

technical vocabulary, and the occurrence of social media exclusive elements (user mentions, 

URLs). The existence of these challenges and the usefulness of using social media data for 

public health surveillance, makes this specific use of NLP in social media data for health 

research a very relevant research topic. 

 

1.2 Objectives 
 

The main objective of this dissertation is the development of computational models, using 

NLP techniques, machine learning algorithms, and deep learning to analyse social media 

data and extract health-related information. In order to accomplish the mentioned 

objective, I have participated in a task of the Social Media Mining for Health Applications 

Shared Task in the 2022 edition [4].  

The chosen task is task 1, which consists of the classification, extraction, and 

normalization of ADEs in English tweets. This task was separated into three subtasks, the 

classification task, the extraction task, and the normalization task.  The classification task 

consists of a binary classification of tweets relating to the presence of an ADE mention. The 

extraction task consists of a NER task in which the span of text that contains the detected 

ADE mention is extracted. Finally, the normalization subtask consists of labelling the 

detected ADEs with a Medical Dictionary for Regulatory Activities (MedDRA) term id. This 

task introduces a couple of challenges that require additional methods beyond simple 

applications of deep learning. The first challenge is present in subtasks 1a and 1b and relates 

to the class imbalance present in the training datasets, in the sense that tweets containing 

ADE are the minority in the datasets. The use of unbalanced training data negatively 

influences the training process of the used models, resulting in worse results. The second 

challenge has to do with the fact that MedDRA contains 23,000 preferred terms [4]. This 

implies that the third classification subtask has a very large label space that is not 

represented in the training sets requiring the system to recognize labels it has never seen 

before. 
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1.3 Thesis structure 
 

This work is comprised of four additional chapters after this introduction: 

• Background. This chapter introduces a variety of NLP and machine learning concepts 

and algorithms. Furthermore, it also presents some works that aimed at solving the 

same task as the one tackled in this dissertation. 

• Methodology. In this chapter, I described the experiments I used to discover the 

most effective approach towards solving each of the subtasks. In addition, I also 

presented the system I used to obtain the final submission results for the shared 

task. 

• Results. This chapter presents the results of the experiments described in the 

methodology chapter. Additionally, I also compare and analyse the results obtained 

to discern the best methods to use for each subtask. Finally, I presented the 

performance measures for my SMM4H Shared Task submission and compared them 

with the average submission results. 

• Conclusion. This chapter summarizes this dissertation and presents some 

suggestions for future work. 
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2 Background 
 

 

The main problems this dissertation proposes to tackle are binary and multi-label 

classification and NER tasks. A classification problem is a problem that proposes the 

labelling of each data point with one of multiple classes. Depending on the problem, these 

classes can hold different meanings. In the case of the subtask 1a, mentioned in the previous 

chapter, tweets are labelled with the classes ADE and noADE that represent, respectively, 

the presence of at least an ADE mention in the tweet and the absence of an ADE mention 

in the tweet. Subtask 1c is also considered a multiclass classification problem where the 

classes are the dictionary preferred term ids. A NER problem is a problem where certain 

entities are identified in text segments. These entities can vary widely depending on the 

domain of the task at hand. Subtask 1b is a NER task where the entities detected are ADE 

mentions, meaning that the task aims at the detection of spans of ADE mentions in tweets. 

 

2.1 Natural Language Processing 
 

In this chapter several concepts necessary in order to understand the work done in this 

dissertation are defined. This dissertation revolves around the use of NLP to solve some 

tasks. NLP is the use of artificial intelligence in conjunction with linguistics to develop 

systems capable of performing advanced language comprehension challenges [5]. Initially, 

NLP consisted of the usage of handmade rules and grammars to solve natural language 

comprehension problems, however, the complexity of natural language raised issues and 

challenges not solvable by the stated methods. These problems led to the origin of statistical 

NLP methods that, instead of relying on handcrafted rules, relied on methods that build 

statistical rules based on a set of annotated data. As such, these methods are the ones that 

I am going to focus on in this chapter. 

The statistical NLP methods encompass mainly machine learning algorithms. 

Machine learning algorithms are algorithms that allow a program to detect patterns in data 

and, through those patterns, create generalizations that can be used to generate predictions 

about new data [5]. These algorithms must be trained using a set of training data for the 

machine learning model to compute the optimal parameters to use for a specific task. Only 

after this training phase is the program able to make accurate predictions regarding a 

specific task. 

An important subset of machine learning methods is deep learning [6]. These 

methods are neural networks characterized by having a substantial number of layers. These 

methods use a large number of non-linear processing units distributed across many layers 
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to extract features from data. I will present some of these algorithms in the following 

sections of this chapter. 

Solving NLP problems requires a text processing pipeline with different phases for 

machine learning models to be used. The base NLP pipeline that uses machine learning 

algorithms is mainly defined by the following phases: 

• Pre-processing phase. 

• Feature extraction phase. 

• Prediction phase (Classification or detection). 

 

 
Figure 2.1- Base NLP pipeline. 

 

The pipeline phases and their inputs and outputs are represented in Figure 2.1. In 

this chapter, I will present approaches and techniques regarding each of these phases in 

this chapter. This includes several NLP techniques and machine learning algorithms used in 

each of these stages. In addition, I will present several techniques and machine learning 

algorithms used in NLP problems.  

 

2.2 Pre-processing 
 

This sub-section presents some techniques used to pre-process the data. The pre-

processing consists of ways in which the text of the dataset is transformed in order to turn 

it into a format usable by machine learning algorithms. 

 

2.2.1 Tokenization 
 

Tokenization is the process of dividing text into multiple segments called tokens [7]. Most 

of the time these tokens are words. This process has to deal with language-specific and even 

source-specific characteristics of the text. 

Different languages use different punctuation in several ways, possibly leading to 

some problems when dividing the text into words. For the English language, an example of 

a problem of this nature is how to tokenize the text “I’ve” or “merry-go-round”. Furthermore, 

the source of the text can also bring some issues when tokenizing. In the case of user-
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generated text from social networks, the use of emojis, abbreviations, and URLs might 

introduce some issues in the tokenization process that have to be dealt with. 

This tokenization process sometimes also deals with the removal of stop words. In 

every language, there are very common words that do not add any information to the 

sentence they are used in. An example of these words in the case of the English language is 

the words “the”, “a”, “I” and “of”. Since they are not critical to the understanding and 

meaning of the message, in information retrieval tasks they are often ignored when 

processing text.  

 

2.2.2 Stemming and Lemmatization 
 

Lemmatization and stemming are text-processing techniques used in information retrieval. 

Both techniques aim at reducing different variations of certain words as a way to improve 

the performance of information retrieval tasks. 

Stemming simplifies different variations of words into their stem (grammatical root) 

by removing common prefixes and suffixes. An example of this technique is the reduction 

of “conditional” to “condition” or “glasses” to “glass”. The main difference between different 

stemmers lies in the degree to which the word is altered. More aggressive stemmers change 

words into shorter stems while more subtle stemmers apply less drastic changes to the 

words. Some common stemmers are the Porter Stemmer [8] and Snowball Stemmer also 

known as Porter 2 Stemmer [9]. The Snowball Stemmer is more aggressive than the Porter 

Stemmer and fixes some issues present in the Porter Stemmer. 

On the other hand, lemmatization reduces words using more intricate methods that 

also consider context and morphological analysis [10]. In other words, while stemming 

simply reduces the word without understanding its meaning, lemmatization considers the 

meaning of the word and its connection with other words. For example, lemmatization 

considers the connection between the words good and well, despite them not being similar.  

 

2.3 Feature extraction 
 

Feature extraction is the phase in which pre-processed data is turned into feature 

vectors that can be used by machine learning algorithms to execute a task such as 

classification. These feature vectors are used as representations of the data and, as such, 

heavily influence the effectiveness of the algorithms. In the specific case of textual data, 

which is the focus of this work, these extraction methods essentially turn the data into a set 

of numerical features that can be used as input for machine learning algorithms, since these 

can’t interpret raw text data. 
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Bag of words 

 

The bag of words model (BOW) is a simple way to extract features from the text [11]. In this 

model the only things considered are the words that appear in the documents and the 

frequency with which they appear in each document, meaning that the order in which they 

appear is irrelevant to this model. This model can represent a document using a vector in 

which each element corresponds to the frequency of appearance of each word present in 

the established vocabulary. Table 2.1 exemplifies the information contained in a bag of 

words model. 

 

Table 2.1 – Example of the information contained in a bag of words model. 

Documents  I  have  a  cat  do  not  like  dogs  

I have a cat  1  1  1  1  0  0  0  0  

I do not 

have a cat  

1  1  1  1  1  1  0  0  

I do not like 

dogs  

1  0  0  0  1  1  1  1  

 

This way of feature extraction will not work well with words that are overrepresented 

in the corpus. Since those words appear very frequently, they will impact the model despite 

not containing significant information. Possible solutions to this problem are the removal 

of stop words discussed in a previous section and the use of TF-IDF weighting. 

 

TF-IDF 

 

Term Frequency – Inverse Document Frequency (TF-IDF) is a term weighing scheme for 

information retrieval purposes [12]. This scheme allows for the calculation of the weight of 

terms in each document through their term frequency and inverse document frequency. In 

this context, the document frequency of a term is the number of documents in which the 

term appears. In information retrieval, a term’s document frequency (df) is an inverse 

measure of its informativeness because the occurrence of rare terms (that appear in fewer 

documents) contains more information than the appearance of very common terms among 

the documents. Thus, the inverse document frequency is a good measure of informativeness 

and can be calculated through the following formula when there are N documents: 
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𝒊𝒅𝒇 = 𝒍𝒐𝒈𝟏𝟎 (
𝑵

𝒅𝒇
) 

 

( 2.1) 

 

Term frequency is the number of times a term appears in a document. This helps 

ascertain the importance of a term since the more a term appears in a document, the more 

likely the document has information about the term and thus the more relevant it becomes.  

TF-IDF uses both the term frequency and the inverse document frequency to gauge 

the importance of a certain term in each document and, although it appears calculated in 

different forms in different sources, a widely used formula is the following one [12]: 

 

𝒘 = (𝒕𝒇) × 𝒍𝒐𝒈𝟏𝟎 (
𝑵

𝒅𝒇
) 

 

( 2.2) 

As was previously stated, this weighting scheme can be used in feature extraction to 

overcome the issue of overrepresented words of the bag of words model. Since this scheme 

takes into account the document frequency of the terms, the overrepresented terms will not 

heavily affect the model. Table 2.2 exemplifies the same example portrayed in Table 2.1 but 

using TF-IDF weighting. 

 

Table 2.2 – Example of document representation using TF-IDF. 

Documents  I  have  a  cat  do  not  like  dogs  

I have a cat  0 0.1761 0.1761 0.1761 0  0  0  0  

I do not 

have a cat  

0 0.1761 0.1761 0.1761 0.1761 0.1761 0  0  

I do not like 

dogs  

0 0  0  0  0.1761 0.1761  0.4771 0.4771 

 

Word2vec 

 

Word2vec is a technique that allows for the vectorization of words, meaning that it 

generates vectorial representations for words. By learning the word embeddings (vectors) 

using their contexts, words with similar contexts are mapped into vectors close to one 

another in the vector space [13], thus enabling the use of a similarity function to calculate 

the similarity between the words through their representations. This technique can use two 

neural network-based learning algorithms to generate features: continuous bag of words 

and continuous skip-grams [14]. While the continuous bag of words algorithm learns word 

representations by predicting a certain word using the surrounding words, the continuous 
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skip-grams algorithm learns word representations by using a certain word to predict the 

surrounding words.  

 

GloVe 

 

GloVe (Global Vectors) [15] is a model for word representation that generates real-valued 

vector representations for words. GloVe builds upon word co-occurrence statistics and uses 

a weighted least squares regression model to generate word representations. These 

statistics are obtained using word-word co-occurrence counts that can be represented by a 

matrix. In this matrix, both the rows and the columns represent words while the entries 

represent the number of times that a certain word (row) appears in the context of another 

word (column). Through these counts, it is possible to calculate word co-occurrence 

probabilities that can be used to extract some meaning about the relationship between 

words.  

 

Table 2.3 – Example of co-occurrence probabilities and ratio between probabilities [15]. 

Probability and 

Ratio 

k = solid k = gas k = water k = fashion 

P(k|ice) 1.9 ×  10−4  6.6 ×  10−5 3.0 ×  10−3 1.7 ×  10−5 

P(k|steam) 2.2 ×  10−5 7.8 ×  10−4 2.2 ×  10−3 1.8 ×  10−5 

P(k|ice)/P(k|steam) 8.9 8.5 ×  10−2 1.36 0.96 

 

Table 2.3 presents an example of co-occurrence probabilities and the ratio between 

probabilities. Table 2.3 shows that, for example, the co-occurrence of the words “ice” and 

“solid” is higher than the co-occurrence of the words “ice” and “fashion”, since the first pair 

of words are more related to each other. In addition, the ratio between probabilities allows 

for further exploration of the relationships between words. Taking the example of the ratio 

present in Table 2.3, it is possible to observe that when the ratio is significantly higher than 

one, the word “ice” is more related to the word in the column (case of “solid”), when the 

ratio is significantly smaller than 1, the word “steam” is more related to the word in the 

column (case of “gas”) and when the ratio is approximately one, both words of the ratio are 

equally related to the word in the column (case of “water” and “fashion”).  

 

Part-of-speech 

 

A part of speech tagger (POS tagger) is a tool used in NLP. This tool allows for the tagging 

of words/tokens in segments of text that contain information relating to the structure of the 



10 

 

sentence. These tags can be, for example, noun, verb, adjective, adverb, etc. Figure 2.2 shows 

an example of POS tagging. This tool can be implemented in many ways. 

 

 
Figure 2.2 - Example of POS tagging [16]. 

 

There are supervised methods in which the tagger needs previously a tagged corpus 

to retrieve information regarding the use of the tags. Depending on the type of tagger this 

can be statistical information related to the tag sequences or a ruleset to aid the tagging 

process [17]. There are also unsupervised methods in which there is no need for a previously 

tagged corpus. These methods can create a set of rules, tag sets and other information 

automatically through an untagged corpus [17].  

Regardless of whether the tagging method is supervised or unsupervised, they can 

also vary in their implementation. Some are stochastic, in the sense that they choose the 

tag for a given word through probabilities and frequencies calculated through a previously 

processed corpus, that can be tagged or untagged. Others are rule-based, in which they 

follow a set of rules to tag words. Finally, there are hybrid taggers that use both statistical 

methods and rules to tag [17].  

 

BERT 

 

BERT (Bidirectional Encoder Representations from Transformers) is a language 

representation model that is capable of achieving state-of-the-art performance in many NLP 

tasks such as classification, question answering, and language inference. Unlike other 

models, BERT is bidirectional, meaning that the representation of each word is influenced 

by both the preceding and the following words. The framework used in BERT has two 

phases, the pre-training phase, and the fine-tuning phase [18].  

The pre-training phase is composed of two unsupervised tasks. The first task is a 

procedure called “Masked Language Model” (MLM) that starts by masking 15% of the 

tokens of each sequence randomly. This masking can have three possible outcomes. In 80% 

of the cases, the token is replaced by a [MASK] token, in 10% of the time the token is 

replaced with another random one and in the remaining 10%, it is left as is. Then the masked 

tokens are predicted to train the parameters of the model. The second task is “Next 

Sentence Prediction” (NSP) in which the model predicts if two sentences are consecutive or 

not. In this task, only 50% of the pairs of sentences are truly consecutive [18].  

The fine-tuning phase can be tailored to many different NLP tasks, meaning that the 

process will be slightly different depending on the task the model is being used to solve. 
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For different tasks, there is a need to “plugin” task-specific inputs and outputs to tune the 

parameters [18].  

As previously mentioned, the BERT model can be tailored to many different NLP 

tasks from distinct domains, meaning that the model is not specialized for a specific task. 

NLP tasks of a specific domain, particularly the healthcare domain, display unique 

characteristics not present in other subjects that can be exploited in order to improve the 

performance of models. Therefore, by specializing the model for certain NLP tasks it is 

possible to obtain better performance in those specific tasks. With this in mind, there has 

been research that aimed to create improved BERT-based models for NLP tasks in specific 

domains. Some of the most relevant ones for this dissertation are the following: 

• RoBERTa, (Robustly optimized BERT approach) is a modified BERT model with an 

improved pre-training procedure [19]. The main differences are that in this model 

the masking patterns in the MLM procedure are dynamically generated, the NSP 

procedure was removed, and the model was pre-trained longer with more data 

using bigger batches. 

• BERTweet is a modified BERT model with a pre-training procedure based on 

RoBERTa that is pre-trained with Twitter data [20]. 

• BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical 

Text Mining) is a modified BERT model pre-trained with biomedical data [21]. 

 

2.4 Dataset balancing 
 

To train machine learning models, it is vital to have a large amount of data to feed to the 

models. In addition, when using supervised algorithms there is a need for labelled data. In 

a lot of NLP tasks, the data has to be manually labelled, which requires manpower and time. 

Furthermore, for some tasks, the resulting labelled datasets end up being highly 

imbalanced. In other words, one or more of the classes in the dataset is overrepresented 

while others are underrepresented, affecting the trained models negatively. 

To mitigate the effect of class imbalance in the models it is possible to use some 

techniques on the training data. Two of these techniques are random data oversampling 

and undersampling [22]. In random data oversampling random examples of the minority 

class are duplicated and in random data undersampling, random examples of the majority 

class are deleted. 

Another technique is the use of a weighted cross-entropy loss function [23]. This 

function is used when adjusting weights in some machine learning algorithms in the sense 

that the weights are adjusted to minimize the value of the function. By using a weighted 

version of the cross-entropy function the minority class instances in the dataset can 

influence the model to a greater extent. One more technique is increasing the gradient 

weight of the minority class [24]. This technique, just like the use of a weighted cross-



12 

 

entropy loss function, affects the weight the minority class has on the learning process of 

the model. Additionally, there is a technique of paraphrasing the data to extend it by 

translating it into a different pivot language and then translating it back [24]. 

 

2.5 Machine learning algorithms 
 

In this sub-section, some machine learning algorithms capable of solving tasks such as 

classification are presented. Machine learning algorithms can be supervised and 

unsupervised. The main difference between them is that supervised machine learning 

algorithms are trained using labelled data while unsupervised algorithms are not trained 

[25]. Supervised algorithms use labelled data to train a model that adapts itself to fit the 

training data, in other words, it changes its parameters to classify the training data correctly. 

On the other hand, unsupervised algorithms identify hidden patterns in unlabelled data and, 

thus, can organize information without the need for labelled data. 

 

2.5.1 Naïve Bayes 
 

Naïve Bayes is a supervised machine learning algorithm widely used in classification tasks. 

This algorithm has as its base the Bayes’ rule, which states that given two events A and B 

[26]: 

 

𝒑(𝑨|𝑩) =
𝒑(𝑩|𝑨) × 𝒑(𝑨)

𝒑(𝑩)
 

 

 

( 2.3) 

In the classification context, the rule is applied as follows, given a document E 

characterized by a feature vector (𝑥1,  𝑥2, 𝑥3, … , 𝑥𝑛) and a class c, the probability of that 

vector being of class c is [26]: 

 

𝒑(𝒄|𝑬) =  
𝒑(𝑬|𝒄)𝒑(𝒄)

𝒑(𝑬)
=

𝒑(𝒄) × ∏ 𝒑(𝒙𝒊|𝒄)𝒏
𝒊=𝟏

𝒑(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏)
 

 

 

( 2.4) 

In the Naïve Bayes algorithm, it is assumed that all features are independent, and 

that assumption is what allows for the development of the presented formula. The class 

used to classify a vector is given by the class that maximizes the previous expression: 
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�̂� = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒄

(𝒑(𝒄) × ∏ 𝒑(𝒙𝒊|𝒄)
𝒏

𝒊=𝟏
) 

 

 

( 2.5) 

Different implementations of the Naïve Bayes algorithm generally differ in the 

assumption of the distribution of the events. For example, in the case of Gaussian Naïve 

Bayes, the events are assumed to happen with a Gaussian distribution [27], in other words, 

the probability of a certain event is calculated using the following expression where 𝜇 is the 

mean and 𝜎 is the standard deviation of the distribution: 

 

𝒑(𝒙𝒊|𝒄) =
𝟏

√𝟐𝝅𝝈𝟐
× 𝒆

−
(𝒙𝒊−𝝁)𝟐

𝟐𝝈𝟐  
( 2.6) 

 

2.5.2 Decision Trees 
 

Decision tree classifiers are supervised machine learning classifiers. These allow for the 

partitioning of the data using if-else conditions applied to the objects’ features [28]. These 

classifiers can be represented as a graph, for example, the one in Figure 2.3. The figure 

illustrates a decision tree that classifies objects between 2 classes, “Yes” and “No”, using 

three conditions. The first condition is if the age of the entity is higher than 30, the second 

is if the value of the entity’s gender attribute, and the third is the value of the attribute 

Last R. 

 

  
Figure 2.3 – Example of a representation of a decision tree [28]. 
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The learning algorithm, at the training phase, chooses the best feature to use to split 

the objects in order to increase the homogeneity of the results in each node of the tree. 

These algorithms often use an impurity function to measure the homogeneity of each class 

at each node to choose the decisions that maximize the purity of each node. 

Some often-used impurity functions are the entropy or the Gini index [28]. Both 

functions originate values between zero and one where zero represents high purity and one 

represents a high level of disorder. The formula of the entropy function is represented in 

formula 2.7 and the formula of the Gini index is represented in formula 2.8 where, in both 

cases, 𝑝𝑖 is the probability of choosing an element from class I (relative frequency). 

 

𝑬 = − ∑ 𝐥𝐨𝐠 (𝒑𝒊) × 𝒑𝒊

𝒏

𝒊=𝟏

 

 

 

( 2.7) 

𝑮𝑰 = 𝟏 − ∑ 𝒑𝒊
𝟐

𝒏

𝒊=𝟏

 ( 2.8) 

 

 

2.5.3 Repeated Incremental Pruning to Produce Error Reductions 
 

Repeated Incremental Pruning to Produce Error Reductions (RIPPER) is a rule-based learning 

algorithm that can be used on the task of text categorization. This algorithm is an improved 

version of the incremental reduced error pruning (IREP) algorithm [29]. 

In this algorithm, the dataset is first divided between a growing set and a pruning 

set. The growing set had 2/3 of the dataset and the pruning had the remaining subset. Then 

the growing set is used to generate rules to separate the data points into the different 

classes. The rule generations can be done using similar techniques to the ones previously 

mentioned in decision trees. Each rule is grown using the growing set, in the sense that 

conditions are continuously added to the rule until it stops covering negative examples. 

Then it is pruned using the following expression, where PrPos and PrNeg are, respectively, 

the positive and negative data points relating to a binary classification belonging to the 

pruning set and where p and n are, respectively, the number of examples in PrPos and PrNeg 

covered by the rule Rule [30]. 

 

𝒗(𝑹𝒖𝒍𝒆, 𝑷𝒓𝑷𝒐𝒔, 𝑷𝒓𝑵𝒆𝒈) =
𝒑 − 𝒏

𝒑 + 𝒏
 ( 2.9) 
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The pruning of each rule is made to maximize the previous function, in other words, 

a final sequence of conditions of the rule is eliminated to maximize the previous function 

that is meant to represent the value/predictiveness of the rule. Each time a rule is added to 

the ruleset, the vectors of the growing set and of the pruning set that are covered by the 

added rule are eliminated from these sets. Additionally, there is a stopping condition for the 

addition of rules that takes into account the total description length of all the rules in the 

ruleset and of the examples computed as well as the positive examples not yet covered by 

the rules [30]. 

 

2.5.4 Support Vector Machine 
 

Support vector machine (SVM) is a supervised machine learning algorithm commonly used 

for classification problems. This algorithm uses support vectors to form a hyperplane that 

separates the classes and allows for the classification of new data points. What differentiates 

this algorithm from the others is that the hyperplane obtained through it achieves maximum 

separation, in other words, the margin of the classifier is maximized. This is useful since even 

in the chance of an error in the hyperplane location it is less likely for a misclassification to 

occur [31]. A hyperplane that separates the data points between two classes is exemplified 

by the black line in Figure 2.4, where the margins of the classifier are represented in the 

orange and green lines. 

 

 
Figure 2.4 – Representation of hyperplanes [31]. 

 

2.5.5 Neural Networks 
 

At the beginning of this chapter, I mentioned a subset of machine learning algorithms 

known as deep learning. I stated that these algorithms are neural networks with a large 
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number of layers.  Neural networks are a family of machine learning algorithms that can 

learn in a supervised or unsupervised way. Neural networks were inspired by the structure 

of the human brain in the sense that the nodes exchange information in a similar way that 

neurons exchange signals [32]. These algorithms can be used for many tasks including 

classification, making them relevant to this work.  

Neural networks are networks of units that are connected through their inputs and 

outputs where the outputs of some units are inputs of others. The basic unit of this 

algorithm works as a function that, given many inputs, computes a single output value. In 

each unit, a weighted sum of the inputs is computed in the manner shown in equation 2.10 

where 𝑤𝑖 are the weights of the inputs 𝑥𝑖 and 𝑤0 is the bias, which is an offset parameter. 

 

𝒂 = ∑ 𝒘𝒊𝒙𝒊

𝒅

𝒊=𝟏

+ 𝒘𝟎 

 

( 2.10) 

After the weighted sum is computed an activation function is applied to that value. 

That activation function is a nonlinear function that determines the output of the unit. This 

function can vary between units, even in the same network depending on the problem that 

is being solved [33]. Figure 2.5 shows some commonly used activation functions. 

 

 

Figure 2.5 -A selection of activation functions: (a) linear, (b) threshold, (c) threshold linear, (d) sigmoidal [33].  

 

In the case of supervised learning, in the training phase, the values of the weights 

are adjusted in order to minimize an error function. A commonly used error function is the 
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sum-of-squares error given by the expression 2.11 where n is the number of training set 

data points, 𝑥𝑞 is an input, 𝑡𝑞 is the desired output value and 𝑦(𝑥𝑞; 𝑤) is the value predicted. 

 

𝑬 =
𝟏

𝟐
∑{𝒚(𝒙𝒒; 𝒘) − 𝒕𝒒}𝟐

𝒏

𝒒=𝟏

 

 

( 2.11) 

The minimization is usually done using the derivative of the error function relative 

to the weights of the network to obtain the gradient vector of the error function. Through 

the gradient vector, it is possible to minimize the error function through the method of 

gradient descent in which fixed value steps are taken towards the direction of the greatest 

decrease in error [33]. 

 

Recurrent neural networks 

 

Recurrent neural networks (RNN) are a family of neural networks used in tasks where the 

data is sequential and each data point is correlated with the others, such as in temporal data 

or text data (due to the specific ordering of words) [34]. In these cases, the data points are 

generally not independent, meaning that there is a relation between them that can be used 

to improve the task at hand. It is important to note that different RNN architectures can 

capture different information that can be used for the prediction. Regular RNNs are 

generally only capable of capturing information from previous time states, but by adding a 

delay to the output it is possible to capture some information from future time states. Figure 

2.6 shows the information captured by different RNN types on prediction. As the image 

states, a simple Time Delay Neural Network (TDNN) only captures information from a few 

states before the current one and a few states after. Furthermore, a forward RNN can capture 

information from all the preceding time states as well as some of the next states if the output 

is delayed. Lastly, the image also shows that a Bidirectional Recurrent Neural Network 

(BRNN) is capable of capturing the information of all preceding and future time states to 

use for prediction. 
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Figure 2.6 – Visualization of the amount of information captured by different network structures [34].  

 

A specific architecture used in recurrent neural networks is long short-term memory 

(LSTM) [35]. This architecture aims to solve the vanishing gradient problem. This problem 

influences recurring neural networks in the sense that the gradient, as I mentioned 

previously, can be used in the training phase to adjust the weights of the network. In RNNs 

the gradient tends to vanish when backpropagated through the layers, hindering the 

training process. The problem is solved by adding gate units that help to avoid weight 

conflicts and memory cells that facilitate information storage. 

 

Convolutional neural networks 

 

Convolutional neural networks (CNN) are another type of neural network that is especially 

effective in image processing and other computer vision tasks. These networks are 

characterized by the use of convolution and, consequently, convolution layers. 

Convolution networks are constituted by three types of layers: convolution layers, 

pooling layers, and fully connected layers. Convolutional layers are used as a means of 

feature extraction. For this purpose, they use an array of numbers called kernel to execute 

a convolution operation to the input array. The mentioned convolution operation consists 

of an element-wise product between the kernel and the input. In a single layer, this 

operation is executed many times moving the kernel through different elements of the input 

to capture features from the whole input [36]. This operation is exemplified in Figure 2.7. 
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Figure 2.7 – Example of a convolution operation [36]. 

 

Pooling layers execute down-sampling operations leading to a reduction of 

dimensionality. In these layers, a filter is moved through the input applying an operation 

that leads to the aggregation of the input values. The two most common aggregation 

operations used are max pooling and average pooling. In the case of max-pooling, the 

output of the aggregation is the maximum value between the input values and in the case 

of average pooling, the output is an average of the input values [37]. 

The fully connected layers are the final layers of CNNs. In these, the output of the 

previous convolutional or pooling layer is transformed into a one-dimensional vector before 

being fed into one or more successive fully connected layers. The last fully-connected layer 

originates the final output of the network [36]. 

 

2.5.6 Ensemble Classifiers 
 

Ensemble classifiers is a classification technique where many weak classifiers are used on 

the same object, and its final classification is decided using a function that aggregates all 

the classifications made by the weak classifiers. The generation of ensemble classifiers can 

be done in many ways, such as modifying the training parameters for each classifier, the 

feature set of each classifier and even by training different classifiers with different sets of 

the training dataset [38]. 

A specific method of ensemble classifiers is bagging or bootstrap aggregation. In 

this method, the different weak classifiers are trained samples of a training set obtained 

using the bootstrapping sample technique in which many documents of the main training 

set are chosen randomly with possible repetition. And after the training, the classification is 

done by majority voting on the results of the weak classifiers [39]. Due to the independence 

of the weak classifiers in this case their training and classifying processes can be parallelized. 
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A specific case of ensemble classifiers and the bagging method is called random 

forest. In this case, all the weak classifiers are decision trees trained in one of the ways 

previously mentioned, whether by training them in different sets of the training data set or 

by using different feature sets. The final classification is made using majority voting using 

the various trained decision trees [40]. 

Another method of using ensemble classifiers is boosting. In this method, the 

classifiers are trained in a way that each trained model tries to correct the mistakes made 

by the previously trained models.  

A way to do this is by using modified training sets for different classifiers to make 

up for the misclassifications of the other models [23]. For example, the first classifier is 

trained with the original training set, the second classifier is trained with a modified training 

set where the misclassified examples from the first classifier were over-samples while the 

examples correctly classified by the first classifier were under-sampled. 

 

2.6 Medical Dictionary 
 

In NLP tasks in the health domain, whether it be classification or NER, medical dictionaries 

can be useful. As such, in this sub-section, a couple of medical language systems that have 

been used in NLP tasks are presented. 

 

2.6.1 Unified Medical Language System 
 

The Unified Medical Language System (UMLS) is a set of files and software that gathers 

biomedical vocabularies and standards. These resources can be accessed through different 

tools, such as the web browser, a local installation, or an Application Programming Interface 

(API) [41]. 

This system has been used in many different ways in the tasks of classification and 

extraction of adverse drug reactions and other health-related NER tasks. It has been used 

to tag tokens to aid in NER tasks and to filter and annotate datasets [42]. Furthermore, it 

has been used in the identification of medical semantic types and ids to aid in a classification 

task [43]. Finally, it has also been used in the construction of an adverse drug reaction (ADR) 

lexicon for the task of extraction of ADRs [13]. 

 

2.6.2 Medical Dictionary for Regulatory Activities 
 

MedDRA (medical dictionary for regulatory activities) is a dictionary with standardised 

international medical terminology to use in registration, documentation, and safety 

monitoring of medicinal products through all the stages of the development cycle [44]. The 

existence of a single global medical dictionary comes with some advantages such as: 
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• Eliminates the need to perform a conversion between terminologies, preventing 

possible information loss or distortion originating from the conversion process. 

• Improves the quality and timeliness of the available data. 

• Increases the consistency of the terminology used throughout the development 

process of medicinal products. 

• Eases the exchange of data relating to medicinal products. 

 

It is important to note that MedDRA has been translated into 13 languages besides 

English. Furthermore, terms have a unique 8-digit code that is assigned to every translation 

of the same term. This has been used by Dima et al. [23] in a named entity resolution task 

in which the normalized concept of extracted ADEs was predicted. 

 

2.7 Evaluation 
 

In binary classification, a model, after being trained, must be evaluated in order to check its 

performance and compare it with other models. This is done with a test set, which is a 

labelled dataset that is used to check whether the algorithm is classifying the data correctly. 

After the model classifies the test set it is necessary to take into account the following 

numbers: 

• Number of true positives (TP), which is the number of labels correctly classified as 

positive. 

• Number of true negatives (TN), which is the number of labels correctly classified as 

negative. 

• Number of false positives (FP), which is the number of labels incorrectly classified as 

positive. 

• Number of false negatives (FN), which is the number of labels incorrectly classified 

as negative. 

 

These numbers are used to calculate three performance metrics [22]. The first is 

precision, which is the ratio between the number of correctly classified positive labels and 

the number of samples classified as positive. 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

( 2.12) 

The second metric is recall, which is the ratio between the number of correctly 

classified positive labels and the number of positive samples in the training set. 
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𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

( 2.13) 

Finally, the third metric is the 𝐹1𝑠𝑐𝑜𝑟𝑒 score, which uses the first two metrics in its 

formula. 

 

𝑭𝟏𝒔𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 

( 2.14) 

2.8  Relevant works 

 

In this sub-section, I will present some approaches used in previous edition of the SMM4H 

Shared Task (2021) [45] to solve this year’s task 1. This task has been a long running task in 

the previous editions of the challenge. For each subtask, I will start with an overview of the 

methods used and then highlight some specific approaches that achieved state-of-the-art 

performance.  

 

Subtask 1a 

 

In subtask 1a, the classification of tweets regarding the presence of an ADE mention, all the 

approaches used transformer-based models. The most prominent models in this subtask 

were BERT and RoBERTa since they were used in almost all the submissions. Beyond the 

transformer-based models, each team used other techniques to improve the effectiveness 

of the models, such as random undersampling and oversampling. 

One of best-performing submissions in this subtask used the RoBERTa large with a 

binary classification head [22]. In addition, in order to overcome the class imbalance of the 

training dataset, the team used random oversampling with a strategy of 0.1, followed by a 

random undersampling with a strategy of 0.5. Another important aspect I would like to 

stress is that this approach did not remove mentions, hashtags, and URLs, since these were 

deemed beneficial for the performance of the model. 

There was another system that displayed the same F1 score measure as the previous 

one, although with a higher performance and lower Recall. This approach used a RoBERTa 

large model in conjunction with a ChemBERTa model [46]. A ChemBERTa model is a model 

based on RoBERTa base that was trained with representations of chemical structures [47]. 

In this system, the training data was randomly oversampled, and the URLs and mentions 

were replaced with placeholders. This system started by finding the drug mention for each 

tweet, representing the chemical structure of the drug as a Simplified Molecular Input Line-

entry System (SMILES) string, encoding it with the ChemBERTa model and taking the final 

[CLS] embedding. Then, for each tweet with a drug mention, the ChemBERTa embedding 

was concatenated to the text embeddings. Finally, these concatenated embeddings were 
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used as input for a fully-connected network with one hidden layer that was, in turn, used for 

classification.  

Even though both of the previous systems displayed the best F1 score values, none 

of them displayed the best Recall value. The approach that exhibited the best Recall measure 

used an ensemble of BERT model variants [24]. Furthermore, this system also used random 

oversampling to bridge the class imbalance problem observed in the training dataset. 

Additionally, data cleaning was also performed in the form of masking Twitter handles, URLs, 

emails, phone numbers and money, performing hashtag expansion and codifying emojis.  

 

Subtask 1b 

 

In subtask 1b, the detection of ADE mention spans, all the submitted approaches used 

transformer-based models. The models used in the best-performing submissions on this 

subtask were BioBERT and RoBERTa. As with the first subtask, these approaches used 

techniques to improve the effectiveness of the transformer-based models.  

The best-performing approach for this subtask used an ensemble of BioBERT models 

in Multi-Task Learning (MTL) architectures [23]. A Multi-Task Learning architecture can 

tackle all three subtasks (classification, extraction and normalization) simultaneously by 

using a shared model that is trained for all of the subtasks. The models in used ensemble 

were trained using the boosting learning method. More specifically, the ensemble used was 

constituted of five models in a MTL architecture. The first model was trained using the 

unaltered training data. The second one was trained with an altered training dataset that 

had undergone oversampling of misclassified examples from the first classifier and 

undersampling of the correctly classified examples. The third classifier was trained with an 

altered training data that had the examples classified differently by the first two classifiers 

oversampled and the other ones undersampled. The last two classifiers were trained with 

an augmented training set oversampled and undersampled according to the same approach 

used by the third model. Even though this approach encompassed all of the subtasks, it was 

only capable of achieving state-of-the-art performance in this subtask. 

The second best-performing system for this subtask used a BiLSTM-CRF model [48] 

with many embeddings and features generated using different feature extraction methods 

[49]. This team’s approach used contextual embeddings from BERT, Byte-Pair subword 

embeddings [50] and fastText sub-word embeddings [51].  

 

Subtask 1c 

 

In subtask 1c, the normalization of ADE mentions to MedDRA preferred term IDs, while most 

of the approaches included the use of a transformer-based model, one of the best-

performing systems did not. This subtask also displayed a broader variety of models and 
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methods throughout the submissions, even though there were fewer submissions 

compared to the previous subtasks. Additionally, the best-performing approaches used a 

joint approach that tackles both subtasks 1b and 1c. 

The best-performing approach for this subtask used a pipeline that joins subtasks 

1b and 1c. The first step of this pipeline was the NER of ADE mentions in the tweets [46]. 

This step was achieved using EnRuDR-BERT [52] with certain dictionary-based features and 

training the model with the following two additional datasets: CSIRO Adverse Drug Event 

Corpus (CADEC) [53] and COMETA corpus [54]. The second step consisted in the 

normalization of the detected ADE mention spans. This step used two distinct models. The 

first model was a classifier that used BERT-generated features and a softmax layer. The 

second one was a neural model that used similarity distances between BERT representation 

vectors of the ADE mention detected and the ADE preferred term. These models are 

combined based on a distance threshold given by the second model. In other words, 

depending on the distance value displayed on the prediction of the second model, either 

the prediction of the second model is accepted, or the prediction of the first model is. 

Although this team used a joint approach on subtasks 1b and 1c, this system only displayed 

state-of-the-art performance in subtask 1c. 

One of the second best-performing approach for this task used a Neural Transition-

based Joint Model with a heterogeneous feature set [55]. The Neural Transition-based Joint 

Model [48], [56] was used in a NER context and extended by adding a linking action for the 

normalization context. The feature set used included character-level encodings generated 

through a CNN, non-contextual word representations produced using GloVe [15] and 

contextual word representations using ELMo [57]. This submission also performed some 

pre-processing steps in the tweets, namely lowercasing the tokens, replacing escape 

characters, and replacing user mentions and hashtags with single-word placeholders. Some 

pre-processing steps were also used in the MedDRA preferred terms. These were the 

replacement of numerical words to their numbers, remotion of punctuations, tokenization 

of the mentions and the lowercasing of the tokens. The best-performing submission from 

this team used a voting result obtained through the five best-performing model results. 

There was another system that displayed the same F1 score as the previous model. 

This system used a joint approach for subtasks 1b and 1c [58]. The training data was 

reformulated using a labelling scheme that joined NER labels and the MedDRA preferred 

term tags. This system used BERT vector embeddings, POS tags and character embeddings 

originated through a single layer LSTM. In addition, a Bi-LSTM layer was used so as to 

incorporate all the embeddings and model the interactions between them. Furthermore, the 

CADEC dataset was added to the training data.  
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2.9 Summary 
 

This chapter presented a background of the methods and algorithms used for NLP tasks. I 

started by introducing some general NLP concepts and the stages for a pipeline that can be 

used to solve this kind of problems. Then I proceeded to presenting methods used in each 

of the stages of the presented NER pipeline. I started with pre-processing techniques such 

as tokenization and stemming. After that, I presented feature extraction methods as well as 

dataset balancing techniques. Next, I presented machine learning algorithms, some medical 

dictionaries, and the most used evaluation measures in NLP tasks. I finalized this chapter by 

showing the best-performing approaches for the classification, NER and normalization 

subtasks tackled in this work that appeared in the SMM4H Shared Task 2021 edition. By 

analysing the best-performing approaches, it was possible to discern the most effective 

techniques and algorithms for each subtask. For all the subtasks, transformer-based models 

represented a majority of the submissions and almost all of the state-of-the-art systems. 

For subtask 1a, random data sampling techniques proved to be useful to overcome the class 

imbalance of the training dataset. When it came to subtask 1b, the use of a MTL architecture 

proved to be beneficial. In addition, the use of heterogeneous embeddings with a BiLSTM-

CRF model also showed good results. Finally, for subtask 1c, a more diverse set of 

approaches were used, however, a joint training approach with subtask 1b was seen in the 

three best-performing systems and the use of the CADEC dataset was also present in two 

of the best-performing submissions. 
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3 Methodology 
 

 

In this chapter, I will present the approaches used to solve the previously proposed tasks of 

the SMM4H 2022 Shared Task [4]. I will go through the datasets used, pre-processing 

executed, and models trained for each of the tacked subtasks.  

The used models consist mainly of transformer-based models because these were 

used in works from previous years of the shared task and obtained high F1 scores. 

Furthermore, since these models have hardware requirements (particularly GPU 

requirements) not met by my personal computer, I used Google Collaboratory for training 

and testing models. The use of Google Collaboratory introduced many restrictions related 

to resource use such as available GPU processing time and available RAM. These restrictions 

can be mainly felt in the hyperparameter tunning phase since they restrict the possible 

algorithms and search space that can be used due to GPU use time constraints. 

 

3.1 Social Media Mining for Health Shared Task 
 

SMM4H Shared Task is a challenge that includes a plethora of NLP tasks related to the use 

of social media data in health research. As I have previously mentioned I participated in the 

2022 edition of the SMM4H Shared Task [4], specifically task 1. This edition of the shared 

task has ten different tasks, where some of them are divided into subtasks. These tasks 

encompass a variety of health research areas, NLP challenges and languages. Task 1 is 

divided into three subtasks. The first subtask, 1a, is a binary classification task where tweets 

are classified regarding the presence of at least one ADE mention in the tweet. The second 

subtask, 1b, is a NER task with the objective of extracting ADE mention spans in tweets. The 

third subtask, 1c, is a normalization task that aims at matching ADE mentions to MedDRA 

preferred term IDs. This task presents a couple of challenges. One of them is that there is a 

class imbalance present in the available datasets that, when used to train machine learning 

models, negatively impacts the effectiveness of those models. The other challenge 

introduced in this task is the fact that, for subtask 1c, there are a very high number of labels. 

MedDRA makes available 23.000 preferred terms, making it difficult to classify ADE mentions 

to those terms, especially since only a small part of those terms is represented in the training 

dataset. 

The organizers of the shared task provided 3 datasets for use in the task, the training 

set, validation set and test set [59]. The training set was meant to be used to train the models 

developed by the participants. The validation set was meant to test the approaches of the 

participants prior to the final submission and could be added to the training data for the 

final submission model. The test set was meant to evaluate the approaches of the final 

submission of each participating team. 
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The final submission for task 1 of the SMM4H Shared Task consisted of three tab-

separated values (tsv) files, containing predictions for each one of the subtasks. These 

predictions consisted of the developed system predictions for the test dataset provided by 

the challenge organizers. In the case of subtask 1a, the file only had to contain the labels 

predicted by the system for each tweet. For subtask 1b, it also had to contain the spans that 

contain the ADE mention, which included the text span and the character indexes where the 

span started and ended. And for subtask 1c, the file had to include an additional column 

that contained the MedDRA preferred term ID relating to the ADE mention detected. My 

team submitted results for subtasks 1a and 1b, however, I explored all three subtasks in this 

dissertation.  

 

3.2 Datasets 

 

3.2.1 Challenge Dataset 
 

As previously mentioned the organizers of the shared task provided 3 datasets for use in 

the training, validation, and test phases [59]. The training and validation datasets were 

labelled regarding each of the subtasks, meaning that they were annotated with the 

ADE/noADE label, the ADE mention spans (includes span start and end character indexes 

and span text), and the MedDRA dictionary standard concept IDs mapped to the mention. 

 

Table 3.1 - Characteristics of the provided datasets. 

Dataset ADE noADE Total # 

Training set 1239 16146 17385 

Validation set 65 850 915 

Test set NA NA 10984 

 

Table 3.1 presents the characteristics of the datasets provided by the task organizers. 

This table allows us to clearly see the class imbalance issue present in the datasets. It is of 

note that some tweets have more than a single ADE mention, meaning that the number of 

mentions and MedDRA standard concept used to train models in subtasks 1b and 1c is 

higher than the number of positive tweets. The training set had 1711 ADE spans and the 

validation set had 87 ADE spans. As previously mentioned, for subtask 1c each mention was 

labelled with a MedDRA ID and only a very small subset of MedDRA IDs appeared in each 

dataset. In the training set, there were only 473 unique MedDRA IDs, in the validation set, 

there were 67 unique MedDRA IDs and in total there were 482 unique IDs. 

The test set was meant to be used to submit the results of the model predictions to 

the shared task. This set is unlabelled and the only way to check the precision, recall and F1 
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measures of the predictions on the test set is through submitting the prediction file in the 

Codalab2 platform since the labels of the test set are never disclosed to the public. 

 

3.2.2 WEBRADR Benchmark Reference Dataset 
 

Besides the datasets provided by the organizers of the SMM4H Shared task, the WEBRADR 

Benchmark Reference dataset was also used [60]. This dataset contains tweets labelled 

regarding the presence of ADE mentions. The dataset was constructed by first retrieving 

tweets containing at least one of the drugs of interest focused on in the article. Further 

processing was done to decrease the number of tweets retrieved, such as the removal of 

duplicates. The annotation process was performed independently and in parallel by two 

teams of trained annotators. The dataset contains further information besides the 

classification, namely: 

• Tweet ID – Unique Twitter post ID. 

• Classification – Tweet label (‘AE tweet’ or ‘Non-AE tweet’). 

• Event(s) as reported – ADE span. 

• Event(s) coded (PT) – MedDRA preferred term relating to the ADE mention. 

 

This dataset has 57473 tweets, with 1056 positive and 56417 negative examples. 

Since the dataset provided only tweet IDs without the text, to use this dataset, each tweet’s 

text had to be retrieved using the Twitter API. To get all the tweets of the dataset, a script 

that retrieves each tweet’s text using the API was written. The endpoint for retrieving tweets 

allows each call to request the text of one hundred tweets and, because of that, the script 

retrieves tweets in batches of one hundred. Beyond the retrieval of the tweets, the script 

also processed them by removing newline and tab characters and replacing user mentions 

and URLs with the placeholders “@USER___” and “HTTPURL___”. Even though the Twitter API 

allowed for the retrieval of the tweets, a lot of these were no longer available to the public. 

Therefore, only 31.122 tweets, with 588 being positive examples were retrieved. These 

positive examples contained 730 ADE mentions with 474 unique MedDRA preferred terms. 

Five of these unique terms were not found in an updated version of the MedDRA, possibly 

due to a version difference between the current set of MedDRA preferred terms and the 

one used when building the dataset. Even though this dataset is not intended for training 

purposes, it was used in subtasks 1b and 1c to increase the number of spans used to train 

the models. 

 

 

 
2 https://codalab.org/ 
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3.3 Dataset transformations 
 

One of the main challenges presented by these subtasks was the dataset imbalance and the 

lack of positive (ADE) examples. To bridge the dataset imbalance issue, dataset balancing 

techniques like the ones mentioned in the previous chapter were used. The used balancing 

techniques were: 

• Random data oversampling. 

• Random data undersampling. 

• Data augmentation. 

 

These data balancing techniques were experimented with, to find out which of these 

methods is more effective. Both of the random data sampling techniques were implemented 

using the Python sklearn3 library. Random data oversampling was used with a sampling 

strategy of 0.3 and random data undersampling was used with a strategy of 0.1. To employ 

data augmentation, the TextAttack Python library [61] was used to produce examples 

through different text transformations. For each tweet in the minority class, five different 

tweets were generated through the following transformations: 

• Replacing characters with random characters. 

• Swapping characters with QWERTY adjacent characters. 

• Replacing words with synonyms provided through Wordnet [62], [63]. 

• Performing contractions on recognized combinations. 

 

The generated tweets had at least half of their words modified using one of the 

mentioned transformations. It is of note that two constraints were used to limit the 

transformations made to the tweets, namely, words could not be modified more than once 

and stopwords would not be modified. Table 3.2 presents an example of a tweet present in 

the training set and 5 new tweets generated through the data augmentations 

transformations. Table 3.3 displays the characteristics of the test dataset after it has 

undergone the previously mentioned dataset transformations. 

 

 

 

 

 

 

 

 

 
3 https://scikit-learn.org/stable/ 
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Table 3.2 - Examples of tweets generated through data augmentation transformations. 

Original tweet @USER____ if #avelox has hurt your liver, 

avoid tylenol always, as it further damages 

liver, eat grapefruit unless taking cardiac 

drugs 

Generated tweet #1 @USER____ if #Rvelox has pain your lVver, 

obviate Panadol always, as it further harm 

liver, consume grapeeruit unlAss carry 

cardiac drugs 

Generated tweet #2 @USER____ if #avelop has offend your 

liver, annul Datril aleays, as it further 

wrong liver-colored, rust vrapefruit unless 

carry cardiac drugs" 

Generated tweet #3 @USER____ if #avelox has scathe your liver, 

forfend Datril aHways, as it further 

indemnity liver-colored, gat grapefWuit 

unliss deal cardiac drugs 

Generated tweet #4 @USER____ if #avelox has suffering your 

liver-colored, forefend Panadol invariably, 

as it further amends lxver, ewt gralefruit 

unless fetching cardiac drugs 

Generated tweet #5 @USER____ if #avelox has wound your 

liver-colored, deflect tylenol constantly, as 

it further redress liver-colored, corrode 

gqapefruit unless winning cardiac drugx 

 

Table 3.3 - Training dataset characteristics after applying re-sampling and data augmentation techniques. 

Dataset ADE noADE # 

Original Training set 1239 16146 17385 

Random 

Oversampling 

4843 16146 20989 

Random 

Undersampling 

1239 12390 13629 

Dataset 

Augmentation 

6154 16146 22300 
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3.4 Pre-processing 
 

A pre-processing step was done to prepare the raw text for the models used for 

classification. This step varied slightly between the different subtasks. For all subtasks the 

special instance character ‘&amp.’ was replaced with the ‘&’ character and for subtask 1b 

the tweets were lowercased. 

Beyond the mentioned pre-processing steps, the tweets were also tokenized. 

Transformer-based models to solve each of the subtasks and for different transformer-

based models different tokenization processes are needed. Therefore, different tokenizers 

are used for each model. In the case of subtask 1b, the input for the model tokenizer is a 

list of text tokens. This means that in this case, a prior tokenization had to be executed. This 

additional tokenization was performed using the TweetTokenizer from the nltk4 Python 

library. 

In subtask 1c, the main problem is the high number of possible labels when 

classifying the mentions. In an attempt to overcome this problem, the labels were limited to 

the ones that appear in the training set. Meaning that, when using a training set with a 

certain number of labels, the model will predict using only the labels seen when training the 

model. 

 

3.5 Transformer models 
 

In the experiments carried out for each of the subtasks, models available on HuggingFace5 

were used. The most effective models for these tasks were identified through works relating 

to the approaches used on the same subtasks of the SMM4H Shared task in previous years. 

These models were used together with a classification or a NER head depending on the 

subtask and the heads varied from model to model. The models experimented with for 

solving these tasks were the following: 

• BERT base uncased. 

• BERT large uncased. 

• RoBERTa base. 

• RoBERTa large. 

• BERTweet base. 

• BERTWeet large. 

 

The BERT uncased models [18] were the first transformer-based models used in the 

experiments and are versions of the BERT model which do not distinguish words with cased 

 
4 https://www.nltk.org/ 
5 https://huggingface.co/models 
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or uncased letters (do not make a difference between the words ‘English’ and ‘english’). 

These transformer models were pretrained on English text with the objectives of MLM and 

NSP. The model was trained on an English Wikipedia dataset and a book text dataset. This 

model has a base and a large version that vary on the number of encoder layers stacked on 

top of each other (12 in the case of base and 24 in the case of large). In this model, the 

classification and NER heads are comprised of a dropout layer and a linear layer that outputs 

a vector with the scores for each of the classes. Both heads take as input tokens obtained 

through the model, however, each of the heads takes different tokens. The classification 

head’s input is the classification token and the input for the NER head is the whole sequence 

of tokens. 

The RoBERTa models [19] are modified BERT models with an improved pre-training 

procedure. This model is also pretrained with the following additional datasets: CC-News 

[64] (English portion of the CommonCrawl news dataset), OpenWebText [65] (open-source 

recreation of web text), and the Stories dataset [66] (subset of CommonCrawl data). Contrary 

to the BERT uncased models, this model is case sensitive, meaning that it distinguishes 

words with differently cased letters (distinguishes the words ‘English’ and ‘english’). Like the 

previously presented models, this model also has base and large versions. In this model, the 

classification head consists of a sequence of five layers that takes as input the classification 

token obtained through the model. These layers are, in order, a dropout layer, a linear layer, 

a hyperbolic tangent layer, another dropout layer and, finally, a linear layer that outputs the 

scores for each of the classes. The NER head used in this model is equal to the one that was 

used in the BERT uncased model. 

The BERTweet models [20] are models with the BERT architecture that use a 

pretraining procedure based on RoBERTa and are meant to be used in tweet NLP tasks. The 

data used for pretraining this model consists of two corpora of tweets. The first one is a 

general collection of pre-processed English tweets (Twitter Stream by Archive Team6) and 

the second one is a collection of COVID-19 related tweets that have undergone the same 

pre-processing as the first corpus. Like the previous models, this one also has base and large 

versions. Since this model is similar to the RoBERTa model, the classification and NER heads 

were similar to the ones used for that model. 

 

3.6 Performance measures 
 

In the executed experiments, to test the models used, many performance measures were 

calculated and used to compare the approaches. Since subtask 1a is a binary classification 

task, the measures are calculated as described in the second chapter in the “Evaluation” 

section. However, for subtasks 1b (NER task) and 1c (multiclass classification task), the 

 
6 https://archive.org/details/twitterstream 



33 

 

numbers used to calculate the measures had to be counted differently. In this section, I will 

present the ways the measures used to evaluate the submissions for these subtasks were 

calculated. For subtasks 1b and 1c, according to the way the performance measures were 

calculated in the result evaluation in the shared task, the following values were used to 

compare performance: 

• Number of true positives (TP), which is the number of spans correctly recognized. 

• Number of false positives (FP), which is the number of spans incorrectly recognized. 

• Number of false negatives (FN), which is the number of spans unrecognized by the 

system. 

 

Subtask 1b also distinguishes between relaxed or overlapping measures and strict 

measures. In relaxed measures, the span is correctly recognized in the condition that the 

predicted span overlaps at least partially with the correct span. In other words, if the 

predicted span contains at least part of the correct span, the prediction is considered a true 

positive. Conversely, in strict measures, a predicted span is only considered a true positive 

if the predicted span starts and ends exactly at the same character as the correct span. 

The evaluation of a submission for subtask 1c also includes strict and relaxed 

measures. This happens because this subtask’s predictions are meant to be applied to the 

spans detected in the previous subtask. The difference when calculating the measures 

relative to subtask 1b is that the correct recognition of an ADE span is dependent on the 

additional condition that the predicted class (MedDRA ID) is the correct one. It is of note 

that, on the intermediate experiments made for subtask 1c, I do not present separate strict 

and relaxed measures. The reason is that in these experiments I test solely the system for 

subtask 1c, with the supposition that the spans are correctly guessed, so that I can test the 

multiclass classification approaches independently of the NER module used for the 

preceding subtask. 

 

3.7 Experiments 
 

For each subtask, different experiments were executed so as to ascertain which of the 

models and approaches are more effective. This entails testing different models trained with 

different data and observing which ones display better performance metrics for each of the 

subtasks. 

In an initial experimental stage, the different models enumerated in the previous 

subsection were trained with the challenge training data for each of the different subtasks. 

In this phase, each of the models is trained with the same hyperparameters and 

implementation and tested using the challenge validation set. In further experiments, the 

best-performing model for each task is selected and trained with different data. This data 
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includes data generated through dataset transformations mentioned in prior sections as 

well as examples from the WEBRADR Reference dataset. 

As mentioned previously, for subtask 1a I evaluated the different transformer-based 

models on a classification task, meaning that I trained each of them on the challenge 

training set for a classification task. In this subtask’s experiments the models were trained 

with the following hyperparameters: 

• Number of training epochs: 3. 

• Batch size: 32. 

• Initial learning rate: 2e-5. 

• Number of warmup steps: 0. 

• Weight decay: 0.01. 

 

It is of note that when training the model BERT large uncased the batch size 

parameter had to be reduced to 16 due to memory constraints. I performed further testing 

by training the best-performing model with re-sampled or augmented training data. 

For subtask 1b, the different transformer-based models were evaluated in the same 

way as in the prior subtask and used similar hyperparameters, the main difference being 

that the models were trained for a NER task instead of a binary classification task. In this 

subtask, further experiments focused on evaluating the random sampling techniques 

previously described as well as the addition of WEBRADR Reference Dataset examples to 

the model training data.  

Finally, for subtask 1c the models were evaluated on a multiclass classification task. 

As in the previous subtasks, the models were trained using the same hyperparameters. 

Further experimentation was performed in this subtask regarding whether to train the 

models with the whole tweet containing an ADE mention or with just the ADE mention span. 

Moreover, for this final challenge, I also evaluated the impact of using WEBRADR Reference 

dataset ADE spans as training data. 

 

3.8 Hyperparameter search 
 

For implementing hyperparameter search algorithms I used the Ray Tune library [67]. This 

library contains many hyperparameter tunning methods and algorithms such as BOHB 

(Bayesian Optimization and HyperBand)[68] and Population Based training [69]. Due to 

memory restrictions of the development environment, the hyperparameter search algorithm 

used was the Population Based training algorithm.  

Even though this hyperparameter search algorithm was implemented, I was not 

capable of observing the results of the hyperparameter search, because of the GPU use time 

restrictions of the Google Colab development environment. A thorough process of 
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hyperparameter search takes significant time, therefore I was not able to complete the 

search process. 

 

3.9 System Architecture 
 

I mentioned at the start of this chapter that the final submission for task 1 of SMM4H Shared 

task was comprised of three tsv files that contained the predictions made by the developed 

models of the tweets in the test dataset. Even though my team only participated in two of 

the subtasks, in this section I will describe the architecture of the system I used to obtain 

the predictions for all three subtasks. 

Figure 3.1 presents the architecture of the system used to obtain the aforementioned 

predictions. Firstly, three transformer models are trained, each for one specific subtask. It is 

of note that, for the final challenge submission, I added the validation set provided by the 

organizers to the training data used to train each of the models. This implies that this data 

was merged with the training set, and possible dataset transformations were performed to 

this merged set. Then the model trained for subtask 1a is used to generate the predictions 

for the related subtask. After generating these predictions, the model trained for subtask 1b 

is used to produce the predictions of the ADE mention spans of the tweets classified 

positively by the model used in subtask 1a, thus originating the subtask 1b predictions. 

Finally, the subtask 1b predictions are used in conjunction with the model trained for 

subtask 1c, to generate the predictions of the MedDRA preferred term IDs relating to the 

ADE spans identified in the previous subtask. 
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Figure 3.1 - System used to generate the predictions in a final submission of the SMM4H Shared task. 

 

 

3.10  Summary 
 

In this chapter, I presented the methods and approaches I used in this dissertation. I started 

by presenting the shared task in which I participated as well as analysing the shared task 

datasets provided by the organizers. I noted that one of the difficulties this task presents is 

the class unbalance present in the datasets, that ends up negatively influencing the training 

process of machine learning models. I also presented the characteristics of the WEBRADR 

Reference Dataset, that was also used in the experiments carried out. After that, I explained 

the implementation of the dataset balancing methods I employed. These were random 

oversampling, undersampling and data augmentation. Then I proceeded in presenting the 

pre-processing steps made in each subtask and the transformer-based models used in the 

experiments. Next, I explained the performance measures used in the evaluation stages for 

each subtask. I then proceeded to explain the experiments carried out to discover the best 

approaches for each of the subtasks. I ended this chapter by explaining the architecture of 

the system used to generate the predictions used in the submission for the SMM4H Shared 

Task.  
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4 Results 
 

 

In this chapter, I will present the results obtained through the training and testing of models 

as described in the previous chapter. I will divide this chapter into sections, each one 

referring to the experiments and results of a subtask.  

 

4.1 Subtask 1a 
 

In this section, I will present the results pertaining to the experiments executed in relation 

to subtask 1a, the classification of tweets regarding the presence of an ADE mention. I will 

first present results regarding the different transformer models used in order to ascertain 

which one is most suited to this task. I will then present the results concerning the different 

random data sampling and data augmentation methods used to overcome the class 

imbalance problem present in the training dataset.  

 

4.1.1 Model experiments 
 

In the last chapter, I mentioned that I started by training the different transformer-based 

models for subtask 1a using the training data made available by the task organizers. This 

implies the pre-processing of the training data as formerly described. The models were 

tested using the challenge validation dataset. 

 

Table 4.1 - Results for different transformer models for subtask 1a. 

Model Precision Recall F1 

BERT base uncased 0.750 0.692 0.720 

BERT large uncased 0.797 0.723 0.758 

RoBERTa base 0.731 0.754 0.742 

RoBERTa large 0.778 0.862 0.818 

BERTweet base 0.754 0.662 0.705 

BERTweet large 0.797 0.846 0.821 

 

Table 4.1 shows the results of the experiments where transformer models were 

trained for the first subtask and tested using the challenge validation dataset. The results 

shown in the table indicate that the model BERTweet large presents the best performance 

for this task with an F1 value of 0.821. Even though the aforementioned model displayed 

the best F1 score when it comes to the other performance metrics, other models obtained 

equal or better values. For the precision metric, the model BERT large uncased presented 
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an equal value of 0.797. Furthermore, for the recall metric, the model RoBERTa large 

presents a higher value of 0.862. 

The base models all present lower performance metrics than their large 

counterparts. In addition, the best-performing base model was the RoBERTa base model 

with an F1 value of 0.742 and recall value of 0.754, surpassing the recall value of the BERT 

large uncased model. Moreover, the model BERTweet base showed the best precision 

among base models at 0.750. 

As observed previously, the large models are more suitable for solving the current 

subtask, since they present better performance values than their base counterparts. The 

large models use more resources, such as memory, in exchange for better performance, but 

since the evaluation of a given approach for this subtask does not account for resource 

usage, the large models have the upper hand over the base models. 

 

4.1.2 Training dataset transformation experiments 
 

Experiments were also executed regarding different methods of data sampling and data 

augmentation so as to find out the best method to overcome the best class imbalance 

problem. In these experiments, the best-performing transformer-based model for this task 

was trained using different training data. The previous section showed that the best-

performing model for this subtask was BERTweet large, and thus, that is the model used in 

these experiments. 

 

Table 4.2 - Results when training BERTweet large model classifier using different training dataset 

transformations. 

Training set Precision Recall F1 

Base set 0.797 0.846 0.821 

Text Augmentation 0.909 0.769 0.833 

Oversampling 0.809 0.846 0.827 

Undersampling 0.778 0.862 0.818 

 

Table 4.2 shows the results of testing a BERTweet large model trained with different 

dataset transformations with the challenge validation set. The best performance was 

obtained when training the model with the training dataset augmented as described in the 

previous chapter. This approach yielded an F1 value of 0.833 and had the best precision 

metric among all of the methods with a precision of 0.909. The dataset transformation which 

showed the best recall was the random undersampling transformation with a recall value of 

0.862. It is of note that, even though text augmentation showed the best overall 

performance, using random oversampling also showed good results having an F1 score 
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slightly lower than the text augmentation method with a value of 0.827. Furthermore, this 

approach had a better balance between precision and recall, displaying a lower precision 

and a higher recall than the data augmentation alternative. 

 

4.2 Subtask 1b 
 

In this section, I will present the results regarding the experiments performed in relation to 

subtask 1b, the detection of ADE mention spans on tweets. I will first the present results of 

the different transformer models used to find out which one is most suited to this task. I will 

then present results pertaining to the use of random sampling techniques on the training 

data and to the addition of WEBRADR Reference Dataset samples to the training data. 

 

4.2.1 Model experiments 
 

I started by training the different transformer-based models for subtask 1b using the 

training data made available by the task organizers. This implies the pre-processing of the 

training data as formerly described. In this subtask, the model BERTweet base was not used, 

because this model’s tokenizer did not implement the function ‘word_ids’ that is responsible 

for mapping the tokens to their corresponding words and is necessary for pre-processing 

the input text for this subtask. The models were tested using the challenge validation 

dataset. 

In this subtask, there are relaxed and strict metrics. Since the strict metrics are more 

representative of the effectiveness of the span detection capabilities of the model, those 

metrics will be more important when deciding which model is better. 

 

Table 4.3 - Results for different transformer models for subtask 1b tested using the challenge validation 

dataset. 

 Relaxed Strict 

Model Precision Recall F1  Precision Recall F1 

BERT base uncased 0.868 0.673 0.789 0.395 0.345 0.368 

BERT large 

uncased 

0.924 0.629 0.748 0.379 0.287 0.327 

RoBERTa base 0.875 0.769 0.819 0.612 0.563 0.587 

RoBERTa large 0.892 0.841 0.865 0.639 0.609 0.624 

BERTweet large 0.885 0.837 0.860 0.598 0.598 0.598 

 

Table 4.3 presents the results when testing different models trained for subtask 1b. 

In this task, the best performing model was RoBERTa large with a strict F1 score of 0.624, 
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having outperformed every other model on almost all metrics. The only time this model was 

outperformed was by BERT large uncased with a relaxed precision metric of 0.924. Contrary 

to the previous subtask, this time, the base models performed a lot better when compared 

to their large counterparts. This is especially noticeable when BERT base uncased 

outperformed BERT large uncased in practically all metrics. 

In both the relaxed and strict measures, the relative performance of the models is 

the same, in the sense that the best and worst models are the same (when evaluating them 

with F1 score). It is of note that, even though BERTweet was pre-trained using Twitter data, 

the RoBERTa large model still managed to exceed BERTweet’s performance. 

 

4.2.2 Training dataset transformations 
 

In this subtask, different experiments were made by altering the training data used in the 

best-performing model from the previous experiments to increase its effectiveness. In the 

previous subsection, I observed that the best-performing model for this subtask was 

RoBERTa large. The following experiments train this model using the training dataset with 

the following transformations: 

• Adding WEBRADR Reference Dataset positive example to the training data. 

• Using random oversampling. 

• Using random undersampling. 

• Using random oversampling to the training dataset after the addition of WEBRADR 

Reference Dataset positive examples. 

 

Table 4.4 - Results when training a RoBERTa-large model NER pipeline with different data. 

 Relaxed Strict 

Training data Precision Recall F1  Precision Recall F1 

Base set 0.892 0.841 0.865 0.639 0.609 0.624 

Base set with 

reference dataset 

0.887 0.798 0.840 0.650 0.598 0.623 

Oversampled base 

set 

0.905 0.854 0.879 0.667 0.644 0.655 

Underampled base 

set 

0.894 0.854 0.874 0.647 0.632 0.640 

Oversampled base 

set w/ reference 

dataset 

0.890 0.820 0.854 0.634 0.598 0.615 
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Table 4.4 displays the results originated from training a RoBERTa large model with 

different training data transformations using different training data. This table shows that 

the best performance is obtained when using an oversampled version of the base training 

dataset and this dataset transformation displayed an F1 score of 0.655. This training data 

transformation outperformed all the other ones in almost all performance measures. The 

use of random undersampling led to better performance measures relative to the base 

training dataset, however, it is still outperformed by the oversampled training data.  

The use of the WEBRADR Reference Dataset negatively influenced the relaxed 

performance measures, displaying a decrease in all relaxed measures. However, when it 

comes to strict performance measures, the addition of reference dataset positive examples 

shows a negligible difference in performance (F1 score), displaying a higher precision and 

lower recall measures. Furthermore, using positive reference dataset examples together with 

random oversampling showed a decrease in all performance measures. The negative effects 

of the use of this dataset as training data can have a couple of explanations. The first one is 

that the methods used to retrieve and build this dataset were different from the ones used 

for the challenge datasets. The second one is that the data collection for this dataset was 

limited to six drugs of interest, possibly resulting in data with little variety and relevance for 

identifying ADE mentions related to other drugs. 

 

4.3 Subtask 1c 
 

In this section, I will describe results relating to the experiments performed in relation to 

subtask 1c, the mapping of ADE mentions to a standard concept ID in the MedDRA 

vocabulary. I will first present the results of the different transformer models used to find 

out which one is most suited to this task. Furthermore, I will compare results when encoding 

the full tweet or just the ADE mention when mapping the mention to the MedDRA ID. Finally, 

I will also investigate the impact of using the WEBRADR Reference dataset as training data, 

by testing the best-performing model from the previous experiments using reference 

dataset examples as training data. 

 

4.3.1 Experiments using mention encoding 
 

In this subtask, I started by training the different transformer models with the ADE mentions 

of the training dataset provided by the challenge organizers. These models were trained 

solely with the mention span without the rest of the tweet in which this mention was 

integrated. 

 

 

 



42 

 

Table 4.5- Results for different transformer models for subtask 1c when encoding the ADE mention. 

Model Precision Recall F1 

BERT base uncased 0.138 0.138 0.138 

BERT large uncased 0.138 0.138 0.138 

RoBERTa base 0.172 0.172 0.172 

RoBERTa large 0.161 0.161 0.161 

BERTweet base 0.092 0.092 0.092 

BERTweet large 0.103 0.103 0.103 

 

Table 4.5 shows the results originated by training different transformer models on 

ADE mentions for subtask 1c. The table shows that the best-performing model was RoBERTa 

base with an F1 value of 0.172. 

In this experiment, some base models either outperform or display a similar 

performance to their large counterparts. More specifically, BERT base uncased and BERT 

large uncased both displayed the same performance measures and RoBERTa base 

outperformed RoBERTa large. In addition, in this experiment, the BERTweet models 

displayed the worst performance. This is possibly due to the fact that these models were 

pre-trained with whole tweets and, in this experiment, the models were fine-tuned/trained 

with ADE mentions, without context of the tweet to which the mentions belong to. 

 

4.3.2 Experiments using tweet encoding 
 

In this experiment, I trained the different transformer models with the tweets that included 

the ADE mentions of the training dataset provided by the challenge organizers. This time 

these models were trained with the whole tweet that included the ADE span.  

 

Table 4.6- Results for different transformer models for subtask 1c when encoding the whole ADE tweet. 

Model Precision Recall F1 

BERT base uncased 0.092 0.092 0.092 

BERT large uncased 0.069 0.069 0.069 

RoBERTa base 0.126 0.126 0.126 

RoBERTa large 0.126 0.126 0.126 

BERTweet base 0.115 0.115 0.115 

BERTweet large 0.103 0.103 0.103 
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Table 4.6 exhibits the results of the experiments where the transformer models were 

trained with whole tweets that contain the ADE mention. In this case, both types of RoBERTa 

models displayed the highest performance measures, revealing an F1 score of 0.126. As in 

the previous experiment, the base models had the same or better performance measures 

than their large counterparts.  

Comparatively to the last experiment, the performance of the BERT uncased models 

and the RoBERTa models both decreased. Furthermore, the performance of the BERTweet 

models either remained unaltered (large model) or increased (base model). The fact that the 

performance of the BERT uncased and RoBERTa models decreased could be because, by 

mapping the mention using the whole tweet, different mentions that appear in the same 

tweet would have the same input in the pipeline and thus would have the same MedDRA 

ID attributed to them, leading to incorrect mappings in cases where there are different ADE 

mentions in the same tweet. The only case where the performance was increased relative to 

the last experiment was in the BERTweet models and that could be explained by the fact 

that, since these models were pre-trained using Twitter datasets, they are more suited to 

tasks where the input is a tweet, which is the case in this experiment. 

By examining Table 4.5 and Table 4.6 I can see that training the models with the ADE 

mention instead of the whole tweet leads to better overall results. Furthermore, these two 

experiments show that the best approach is to train the RoBERTa base model using the ADE 

mention spans. 

 

4.3.3 WEBRADR Reference Dataset 
 

In this experiment, I trained the best performing model from the previous experiments, 

RoBERTa base, using solely the ADE spans of the challenge training data together with spans 

from the WEBRADR Reference Dataset. It is of note that introducing the WEBRADR dataset 

also introduced 139 new MedDRA IDs not present in the training and validation datasets.  

 

Table 4.7- Results obtained when training RoBERTa base model for subtask 1c with different training data. 

Training data Precision Recall F1 

Base set 0.172 0.172 0.172 

Base set with reference 

dataset 

0.184 0.184 0.184 

 

Table 4.7 shows the results regarding the use of the WEBRADR Reference Dataset 

when training a RoBERTa base model for subtask 1c. It is possible to observe that the use 

of the reference dataset together with the training dataset when training the model 

improves the performance of the model.  



44 

 

4.4 Final approach 
 

In this section, I will describe the results regarding two approaches. The first one is about 

my formal submission for the SMM4H Shared task, describing the main reasoning behind 

the submission as well as the results of that submission. As I have mentioned at the 

beginning of the chapter, this first approach only encompasses the first two subtasks. The 

second one relates to the best solution found after the deadline for the formal submission 

of the shared task had already passed. This approach accounts for all the experiments that 

have been described previously in this chapter and encompass all three subtasks. Both 

approaches generated results through systems with structures like the one described in 

Figure 3.1, with the exception that the first approach only included subtasks 1a and 1b. 

The final results for the best approach were obtained by training the systems on the 

challenge test set. I reiterate that these results could only be obtained by submitting 

predictions to the Codalab7 platform since the labels for the test dataset have not been 

made available to the challenge participants. 

 

4.4.1 Challenge Submission 
 

This sub-section describes the formal submission made to the shared task. This submission 

was accompanied with a description of the approach used to solve the task, thus, the 

following results are also available in a published paper [70]. Regarding the approach for 

subtask 1a, I trained the model BERTweet large for a binary classification task with the 

challenge training and validation datasets after they have undergone the data 

augmentation approach described in the previous chapter. The submission consisted of the 

predictions originated by this model through the classification of the test data. 

I obtained the results for subtask 1b by training the model BERTweet large, the 

second-best performing model for subtask 1b, with the challenge training data together 

with the positive examples from the WEBRADR Reference Dataset.  

 

Table 4.8 - Results when training a BERTweet-large model for subtask 1b with different data. 

Training data Precision Recall F1 

Base training set 0.598 0.598 0.598 

Base set with pos examples 

from WEBRADR dataset 

0.609 0.609 0.609 

 

 
7 https://codalab.org/ 
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To check the positive impact of using reference dataset positive tweets, I trained the 

BERTweet large model using the challenge training data with and without the reference 

dataset positive examples to check the impact of those positive examples in the 

performance of the model. These results are presented in Table 4.8 and they reveal that the 

inclusion of reference dataset positive examples in the training data led to a small increase 

in performance for the model. 

 

Table 4.9- Results of the submission for subtask 1a. 

 Precision Recall F1 

Submission 0.839 0.598 0.698 

Average 0.646 0.497 0.562 

 

Table 4.10 - Results of the submission for subtask 1b. 

 Relaxed Strict 

 Precision Recall F1 Precision Recall F1 

Submission 0.828 0.341 0.484 0.560 0.235 0.331 

Average 0.539 0.517 0.527 0.344 0.339 0.341 

 

Table 4.9 and Table 4.10 present the results obtained regarding the formal 

submissions for shared task for subtasks 1a and 1b respectively. For subtask 1a my approach 

presented higher performance measures than the average of all submissions. However, for 

subtask 1b, my model was only able to surpass the average performance in the precision 

measure (both in the relaxed and strict measure). 

 

4.4.2 Best approach 
 

This sub-section describes a proposed best approach accounting for the combination of 

models and training data that obtained the best performance measures in the previous 

sections of this chapter. For subtask 1a, the approach is the same as the one mentioned in 

the challenge submission sub-section, sharing the same performance measures described 

in the previous subsection. 

Concerning subtask 1b, a different approach is used. This time the used model is the 

RoBERTa large model trained with an oversampled version of the training dataset combined 

with the validation dataset. Finally, for subtask 1c the RoBERTa base model was used. This 

model was trained solely with ADE spans from the challenge training dataset combined with 

the validation dataset and the WEBRADR Reference Dataset. 
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Table 4.11- Results of the best approach found for subtask 1b. 

 Relaxed Strict 

 Precision Recall F1 Precision Recall F1 

Submission 0.780 0.573 0.661 0.456 0.347 0.394 

Average 0.539 0.517 0.527 0.344 0.339 0.341 

 

Table 4.12- Results of the best approach found for subtask 1c. 

 Relaxed Strict 

 Precision Recall F1 Precision Recall F1 

Submission 0.106 0.081 0.092 0.086 0.065 0.074 

Average 0.120 0.112 0.116 0.085 0.082 0.083 

 

Table 4.11 and Table 4.12 present the results for subtasks 1b and 1c respectively 

obtained through the best approach found in the experiments described in this chapter. In 

this case, since subtask 1c is dependent on the results from subtask 1b, the measures 

presented for that subtask include the relaxed and strict metrics. The results for the best 

approach for subtask 1b both surpassed the average submission results as well as the formal 

submission I made for this task in all performance measures. As for subtask 1c, the results 

for the best approach were below the submission average. The only exception being the 

strict precision measure, which was slightly higher than the average. 

 

4.5 Summary 
 

In this chapter, I presented and discussed the results obtained through different 

experiments intended to pinpoint the best approach for solving the tackled shared task. The 

results were obtained mainly through testing different models on the challenge validation 

dataset. The code used to obtain the results shown in this chapter is publicly available on 

GitHub8.  

I started by testing the effectiveness of different transformer-based models on 

subtask 1a. The experiments revealed that the model that performed the best for the first 

subtask was BERTweet large.  Further testing was performed in order to figure out the best 

way to overcome the class imbalance problem observed in the training dataset. Those tests 

revealed that using data augmentation helps to solve the problem of dataset imbalance, 

improving the performance of the BERTweet large model. 

I then proceeded to experiment on different models to figure out the best approach 

for subtask 1b. This time the best-performing model was RoBERTa large. For this subtask, I 

 
8 https://github.com/edgargsm/SMM4H2022 
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experiment with random sampling techniques and investigated the effect of using positive 

examples from the WEBRADR Reference dataset when training the model. These 

experiments revealed that the random sampling techniques improved the performance of 

the RoBERTa large model, being random oversampling the most effective method. In 

addition, the effect of the positive examples of the WEBRADR dataset was found to be 

negligible. 

For the final subtask, I experiment with different models, in the same way as with the 

first subtask. This time the best-performing model was RoBERTa base. I also compared the 

performance of different models when these were trained using only the ADE span or using 

the whole ADE tweet and found out that encoding just the ADE span leads to more 

favourable results. In this subtask, I also studied the effect of using examples from the 

WEBRADR Reference Dataset and found out that this dataset improves the performance of 

the model for this subtask. 

Finally, I compared the performance of the best approaches found in this chapter 

with the average results of the approaches submitted by other teams for the SMM4H Shared 

Task. For subtasks 1a and 1b, the performance measures of my best approach were higher 

than the average submission results. However, the approach for subtask 1c was not able to 

surpass the average submission performance measures, leading me to conclude that the 

method used was not suitable for this subtask and, consequently, for classification tasks 

with a very large number of labels. 
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5 Conclusion 
 

 

In this work, I explored a plethora of approaches towards solving task 1 from Social Media 

Mining for Health Applications Shared Task 2022. This task is divided into three subtasks. 

Subtask 1a is a binary classification task relating to the classification of tweets regarding the 

presence of an ADE mention. Subtask 1b is a NER task that aims to identify the ADE mention 

spans in tweets. The remaining subtask 1c is a multiclass classification task that classifies 

ADE mentions to a MedDRA dictionary preferred term ID. The main difficulties presented in 

this task were the class imbalance of the datasets and, in the case of the third subtask, the 

high number of possible classes, where most of them aren’t present in the dataset. 

I started this work by introducing various NLP techniques that encompass different 

stages of an NLP pipeline, such as data pre-processing, dataset augmentation and machine 

learning models. I also showed some state-of-the-art approaches that can be used to solve 

the proposed tasks. Following the background chapter, I described the methodology used 

to identify the best approaches for the shared task. I focused on using transformer-based 

models in all subtasks since these were considered to be state-of-the-art approaches in 

previous editions of the shared task. 

The experiments in subtask 1a focused on figuring out the best model for the job 

and the most effective way to bridge the issue of class imbalance in the used datasets. As 

for subtask 1b, I tested different models, random sampling techniques and the impact of 

WEBRADR Reference Dataset positive examples on the performance of the used model. In 

subtask 1c, as in the previous subtask, I tested the different transformer-based models and 

the use of WEBRADR Reference Dataset as training data. In addition, in this last subtask, I 

also compared the performance of the models when they are trained with the entire tweet 

and when they are trained solely with the ADE mention span.  

The best-performing approach for subtask 1a was the BERTweet large model trained 

with augmented training data. This allows me to infer that introducing variability in the data 

by adding new ADE tweets generated through data augmentation can be effective as a 

means to bridge the class imbalance issue. In addition, since the BERTweet large models are 

pre-trained using health-related tweets, it was expected that it would be the optimal choice 

for solving this subtask. 

As for subtask 1b, the best performing model turned out to be RoBERTa large trained 

with randomly oversampled training data. Furthermore, the use of WEBRADR Reference 

Dataset positive examples did not improve the performance of the model and, when 

coupled with random oversampling worsened the effectiveness of the model. The fact that 

the RoBERTa large model outperformed the BERTweet large model in this subtask leads me 

to presume that the use of health-related tweets in the pre-training of the model is not 
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beneficial in this type of NER tasks. The use of positive examples from the reference dataset 

did not influence the performance heavily by itself possibly due to the low number of 

examples, however, by using random oversampling in conjunction with those examples I 

was able to see an amplified effect of the introduction of these examples. This effect was 

negative due to two possible reasons. One is that the examples of the reference dataset 

were retrieved in a different way than the challenge dataset. Secondly, in contrast to the 

challenge dataset, the data collection of that dataset focused only on six drugs of interest. 

Finally, for the last subtask, the best performing model was a RoBERTa base model 

trained with ADE mention spans from both the training data and the WEBRADR Reference 

Dataset. This subtask’s training data was a lot more limited since it was restricted to the ADE 

mention spans and this possibly contributed to the fact that a base model could outperform 

its large counterpart. The experiments in this subtask also revealed that the best overall 

performance was obtained by training the models on just the ADE mention span instead of 

the whole tweet. This could be because of the instances where a tweet has multiple 

mentions with different ADEs, which would be classified equally if the whole tweet was used 

to classify the mentions. This time the use of reference dataset data improved the 

performance of the model. There could be a few reasons for this. One is that, since there is 

little training data for this subtask, the impact of introducing new data points to the training 

process is more noticeable. Another reason might be that contrary to the previous subtask, 

by using just ADE mention spans for classification, the impact of the collection of the data 

in the reference dataset becomes irrelevant. Finally, the introduction of new examples also 

leads to the introduction of more labels present in the challenge training data spans as well 

as labels yet unknown by the model in the training phase. 

 

5.1 Social Media Mining for Health Shared Task 
 

My team’s submission [70] results for the SMM4H Shared Task are available in this year’s 

overview [4]. My submission for the first subtask managed to achieve state-of-the-art 

performance, presenting an F1 score of 0.698, surpassing all other submissions in this 

performance measure. The submission for the second subtask did not display high-

performance measures. On the other hand, the final approach I presented for this subtask 

when compared with the submissions reported in the shared task overview, managed to 

surpass the other team’s results on the test dataset, and achieve state-of-the-art results, 

with a relaxed F1 score of 0.661. My approach towards solving subtask 1c was not able to 

reach the average submission performance measures and, thus, not able to reach state-of-

the-art performance, having been surpassed by approaches that do not use transformer-

based models. 

These results allow me to conclude that transformer-based models represent the 

current state-of-the-art approaches for subtasks 1a and 1b. Moreover, the use of data 
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augmentation and random data oversampling are effective methods for balancing training 

datasets. Finally, for subtask 1c, while my approach did not present state-of-the-art results, 

the best-performing approaches found in the shared task overview also used transformer 

models, albeit in a different way. This indicates that this subtask requires more intricate 

methods in order to obtain better results. 

 

5.2 Future work 
 

Through working on the proposed task of the SMM4H Shared Task, I was able to learn about 

many machine-learning models and techniques, with an emphasis on transformer-based 

models, since these were the most prominent and best-performing models presented in 

previous editions of the shared task. Through this process, I was able to explore a couple of 

libraries, particularly the scikit-learn and transformer libraries. Furthermore, during this 

process, I had to be wary of the resources I was using due to Google Colab GPU usage 

limitations. 

For the task worked on in this dissertation, future work could encompass the study 

of the use of ensembles of transformer-based models for the referred task. Besides that, it 

could also explore other approaches that do not include transformer-based models, 

especially for subtask 1c, since some of these approaches obtained above average scores in 

the shared task. 
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