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Resumo Um dos objetivos da análise de séries temporais é extrair características essenciais
da série para fins exploratórios ou preditivos. A Análise Espectral Singular (SSA) é
um método utilizado para esse fim, transformando a série original em uma matriz
de Hankel, também chamada de matriz trajetória. O seu único parâmetro é o
chamado comprimento da janela. A decomposição em valores singulares da matriz
trajetória permite a separação das componentes da série, uma vez que a estru-
tura em termos de valores e vetores singulares está de alguma forma associada à
tendência, componente oscilatória e ruído. Por sua vez, a visualização das etapas
daquele método é pouco explorada ou carece de interpretabilidade. Neste trabalho,
aproveitamos os resultados de uma particular decomposição em valores singulares
através do algoritmo NIPALS para implementar uma exibição gráfica das compo-
nentes principais usando HJ-biplots, nomeando-o método SSA-HJ-biplot. Trata-se
de uma ferramenta de natureza exploratória e cujo principal objetivo é aumentar a
interpretabilidade visual da SSA, facilitando o passo de agrupamento e, consequen-
temente, identificar características da série temporal. Ao explorar as propriedades
dos HJ-biplots e ajustar o comprimento da janela para a metade do comprimento
série, linhas e colunas da matriz trajetória podem ser representadas em um mesmo
SSA-HJ-biplot simultaneamente e de maneira ótima. Para contornar o potencial
problema de mudanças estruturais na série temporal, que podem dificultar a visuali-
zação da separação das componentes, propomos uma metodologia para a detecção
de change points e a aplicação do SSA-HJ-biplot em intervalos homogéneos, ou
seja, entre change points. Essa abordagem de detecção é baseada em mudanças
bruscas na direção das componentes principais, que são avaliadas por uma métrica
de distância criada para esse fim. Por fim, desenvolvemos um outro método de vi-
sualização baseado na SSA para estimar as periodicidades dominantes de uma série
temporal por meio de padrões geométricos, ao que chamamos SSA Área biplot.
Nesta parte da investigação, implementámos em R um pacote chamado areabiplot,
disponível na Comprehensive R Archive Network (CRAN).





Keywords Time Series, Singular Spectrum Analysis, Biplots, NIPALS Algorithm, Singular
Value Decomposition, Principal Component Analysis

Abstract One of the goals of time series analysis is to extract essential features from the
series for exploratory or predictive purposes. The SSA is a method used for this
intent, transforming the original series into a Hankel matrix, also called a trajectory
matrix. Its only parameter is the so-called window length. The decomposition into
singular values of the trajectory matrix allows the separation of the series com-
ponents since the structure in terms of singular values and vectors is somehow
associated with the trend, oscillatory component, and noise. In turn, the visualiza-
tion of the steps of that method is little explored or lacks interpretability. In this
work, we take advantage of the results of a particular decomposition into singular
values using the NIPALS algorithm to implement a graphical display of the prin-
cipal components using HJ-biplots, naming the method SSA-HJ-biplot. It is an
exploratory tool whose main objective is to increase the visual interpretability of the
SSA, facilitating the grouping step and, consequently, identifying characteristics of
the time series. By exploring the properties of the HJ-biplots and adjusting the
window length to half the series length, rows and columns of the trajectory matrix
can be represented in the same SSA-HJ-biplot simultaneously and optimally. To
circumvent the potential problem of structural changes in the time series, which
can make it challenging to visualize the separation of the components, we pro-
pose a methodology for the detection of change points and the application of the
SSA-HJ-biplot in homogeneous intervals, that is, between change points. This
detection approach is based on sudden changes in the direction of the principal
components, which are evaluated by a distance metric created for this purpose.
Finally, we developed another visualization method based on SSA to estimate the
dominant periodicities of a time series through geometric patterns, which we call
the SSA Biplot Area. In this part of the research, we implemented a package in R
called areabiplot, available on the Comprehensive R Archive Network (CRAN).
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Chapter 1

Overview

The linear methods used in Multivariate Statistical Analysis are typically applied to
i) summarize the data; ii) explore data structures and patterns; iii) examine and explain
the relationship between parts of the data; iv) make decisions and make inferences
based on data. When it comes to investigating the structure of datasets, mainly those
with high dimensionality, Principal Component Analysis (PCA) stands out for being a
dimension reduction tool and, at the same time, having an exploratory nature [47].

In short, PCA applies to datasets in which rows and columns represent individuals
and quantitative variables, respectively. One can consider the data matrix as either
a set of rows or columns, which allows studying individuals or variables according to
object choice. PCA considers the correlation matrix of a set of variables and computes
the eigenvalues representing each principal component’s variance when performing the
data dimension reduction. Hence, the method yields a smaller group of relevant and
uncorrelated components.

PCA applications have a broad spectrum, comprising biology and medicine to
climate and computer science fields. For example, data related to cell gene expression
patterns [108], magnetic resonance imaging [6] and computed tomography imaging
[28], climate change indicators based on temperature and precipitation [96], and face
recognition [81]. In all of them, the space of variables is usually high-dimensional and
favors the use of the PCA method.

Although several algorithms are available to calculate the principal components,
the singular value decomposition (SVD) method is the most used approach for this
purpose. In this context, the SVD decomposes a high-dimensional dataset into factors
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that most explain the variability of the data in terms of singular vectors and singular
values. An alternative and iterative way to extract the principal components is the
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm. NIPALS can be seen as
a simple ordinary least squares (OLS) regression sequence and can be applied even in
case of missing data [22]. Besides, it is faster than SVD [71] when it’s used for large
datasets.

After obtaining and selecting the principal components of interest, visualizing and
exploring the reduced variable space is crucial. Visualizing the principal components
with the highest percentages of explained variability allows us to perceive the essential
constitution of the original data, as they preserve the maximum amount of information
in their reduced form. The graphic display of this underlying structure intensifies the
researcher’s perception in a subjective rather than a quantitative way. Furthermore,
the visualization can facilitate the assimilation of what is represented, working as a
complement to the coldness of the numbers [56]. In this aspect, Biplot methods reinforce
the results of the PCA analysis. The PCA biplot, henceforward called just biplot,
is a multivariate exploratory visualization technique that simultaneously represents
individuals (by points) and variables (by arrows) at the same graphic, providing an
approximation for the data matrix elements through the projection of the points onto
the arrows [24].

Multivariate Analysis is sometimes combined with other techniques to create new
methods. An example of this combination is the Singular Spectrum Analysis (SSA),
a methodology used in Time Series Analysis for many different purposes, such as
exploratory inspection and forecasting. The SSA objective is to decompose an original
time series (TS) into a summation of some interpretable components, e.g., a slowly
varying trend, oscillatory components, and an irregular component, or noise [39]. The
method transforms a univariate TS into a trajectory matrix with a Hankel format,
specifying a window length as the only parameter. Unlike the classical multivariate
data matrix, the rows and columns of the trajectory matrix (lagged vectors) represent
subseries of the original TS instead of individuals and variables. Aiming to estimate
the spectral structure of the TS, the trajectory matrix is then factorized using the SVD,
resulting in a summation of elementary matrices of rank one [38]. A relevant issue
of the SSA method is how to group and add these rank-one elementary matrices to
separate the components of the TS.

1.1 Motivating reasons

When it comes to multivariate analysis, extracting meaningful information from
raw data or a method’s direct result can take some effort and experience. In turn,
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multivariate data visualization techniques harness human visual perception capabilities
to facilitate users to identify hidden dependencies and correlations. A practical effect
of the graphical representation of data is that it produces a different and brand-new
informational reality in the observer’s mind [109].

On the other hand, it is necessary to guarantee some interpretability to the graphic
representation so that the recipient can extract some knowledge, incorporating the
visual structure into the thought itself [111]. When the problem involves reducing the
dimensionality of the data, as in PCA, the retention of all factors extracted makes
interpretation either impractical or unproductive since many of them are irrelevant
to the method used [100]. In this sense, the choice of the visualization method in
the circumstances of a multivariate scenario requires some care to explore the results
obtained both comprehensively and efficiently.

In the context of the SSA method, after the SVD decomposition of the trajectory
matrix, the visualization techniques employed are mainly used to identify the groups of
rank-one matrices that will separate the additive components of the TS. The approaches
proposed in the literature are limited to scatter plots of pairs of eigenvectors, the scree
plot of eigenvalues, and a correlation matrix based on reconstructed series. Although
these procedures work in practice, they lack interpretability and a formal basis [45].
The use of biplot methods is proposed in the present study to fill this gap.

Biplots are a valuable visualization tool for exploratory analysis since allowing a
structural evaluation of a high-dimensional data matrix. When applied to the results of
PCA, the method permits an assessment in an interpretable way of i) the similarity
between individuals; ii) the variance of the variables; iii) the correlation between two
variables [24]. The geometric properties of the scalar product between rows and columns
of lower-rank matrices resulting from the SVD decomposition are the background for
interpreting classical biplots [77]. The biplot methods have a consolidated theoretical
basis with several variations, notably those proposed by Gabriel [24], Gower & Hand
[42], Galindo [25], and Gower, Groenen & van de Velden [41].

The results of the trajectory matrix factorization carried out in the SSA decomposi-
tion stage favor the application of biplot methods. However, the challenge is to build
the bases for the graphic interpretation of what is shown since the eigenstructure no
longer represents individuals and variables but intervals of the original series.

1.2 Research aims and novel contributions

The main objective of this thesis is to develop new exploratory methods to assist in
decomposing and analyzing a TS employing multivariate data visualization techniques.
The work is based on the eigenstructure revealed in the SSA decomposition stage.
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Besides, this investigation explores the existing correspondence between the components
of a TS and the principal components extracted from the respective trajectory matrix,
seeking to demonstrate this association using the biplot approach elaborated throughout
the research.

In the context of SSA, one can choose the window length as half the size of the series
to capture as many of its characteristics as possible. Then the corresponding trajectory
matrix will reveal a Hankel structure in which the rows and columns are equal or nearly
equal. Therefore, to represent the rows and columns simultaneously and with maximum
quality, an appropriate biplot must be chosen. The so-called HJ-biplots [25] meet this
criterion, allowing the interpretation of the lagged vectors under the perspective of
both rows and columns in the same graph. Following this premise, the first innovative
contribution presented in this thesis refers to constructing the SSA-HJ-biplot (Chapter
4). This new multivariate visualization approach assists in the grouping step while
providing interpretability to the principal components in terms of the TS analysis.
Subsequently, we sought to expand the meaning of what can be visually extracted from
the SSA-HJ-biplot, clarifying the details that help in the interpretation (Chapter 5).

On the other hand, TS complexity can become the visual representation of the
trajectory matrix eigenstructure challenging. In this particular, identifying structural
breaks in the TS allows its segmentation and the construction of biplots between
change points, making them easier to interpret. Some of these disturbances are trend
reversals, shifts in the TS levels, variability increase, and frequency alteration. Hence,
another contribution of this investigation is developing an approach that explores sudden
steering corrections of the principal components to identify points of structural changes
(Chapter 6). This original technique improves the capabilities of the SSA-HJ-biplot,
allowing the TS decomposition over homogeneous intervals, and guaranteeing more
visual interpretability.

Regarding a more specific purpose, a third novel contribution refers to creating
a graphical tool to explore the oscillatory components, taking advantage of the au-
tocorrelation between eigenvectors extracted from the trajectory matrix (Chapter 7).
This visualization procedure intends to determine essential characteristics related to
periodicity based on the idea that the perception of structural similarities suits the
human ability to identify what is comparable [101]. Thus, we build a type of biplot
closely related to the area biplot method [41], in which lagged vectors are connected
to form polygons. These geometric figures establish groups of almost similar triangles
that can reveal the periodicities of a series. Chapters 8 and 9 bring the most embryonic
phase of the investigation, in which the first questions about the conceived theme are
raised.

Finally, it is known that the lack of software related to biplot methods prevents
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their widespread use [77]. With that in mind, our last contribution concerns filling
this gap with the implementation of a package in R [91] that automates the approach
developed in this investigation to estimate the periodicity of a TS (Chapter 10). The
package has dual applicability, being able to function both as a periodicity estimation
tool and in the broader multivariate context proposed by Gower [41].

1.3 Structure and organization

This thesis consists of a coherent and relevant set of research works and is divided
into three parts, namely:

• Part I - covers Chapters 1 to 3 and is dedicated to providing essential knowledge
about the issues under study. Chapter 1 provides an overview of the relevant
aspects of the research, pointing out the motivating reasons, the established
objectives to be reached, and elements of innovation. Chapter 2 introduces the
concepts and mathematical foundations of the methods used to develop and
implement the techniques, tools, and approaches throughout the investigation.
Chapter 3 outlines the issues dealt with in the study, indicating the relevance of
the contributions and the appropriate framework concerning the present state of
the art.

• Part II - comprises the Chapters 4 to 10, that bring seven works developed during
the investigation, as follows: i) four articles submitted to scientific journals indexed
in Scopus (Article I - published; Article II, Article III, and Article IV - in review);
ii) two articles submitted to international conferences (Article V - published in
the conference proceedings; Article VI - published as a book chapter); iii) an open
source Software (R package), published and available at the Comprehensive R
Archive Network (CRAN).

• Part III - contains the Chapters 11 and 12, committed to the articulated discussions
and the endings. Chapter 11 seeks to close the study by presenting some points
of intersection between the articles and other topics not previously addressed but
crucial for understanding what is proposed. Some open questions that emerged
from the work and perspectives for future research are also handled. Finally,
Chapter 12 concludes the work.

Relevant scientific communications resulting from this research are listed in the Ap-
pendix.
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Chapter 2

Background

2.1 Principal Components Analysis

2.1.1 Initial notes

Let S be a vector space over a field F and T : S → S a linear transformation. A
nonzero vector x ∈ S is called an eigenvector of T if exists an scalar λ ∈ F such that

T (x) = λx. (2.1)

Furthermore, the scalar λ is named the eigenvalue of T associated to the eigenvector
x [3, 94]. When S is a finite-dimensional vector space, then the expression in (2.1) is
equivalent to write

Ax = λx, (2.2)

where A is the matrix representation of the linear transformation T relative to a fixed
base at S. Hence, the p eigenvalues ofAp×p are the roots of the characteristic polynomial
det(A− λIp). Besides, if Ap×p is a real, symmetric matrix, then its eigenvalues are also
real. If, in addition, all eigenvalues are distinct, then the respective eigenvectors are
orthogonal [19].

Theorem 1 (Spectral Decomposition): Let A ∈ Mp×p. Then A is symmetric if and
only if there exists an orthogonal matrix Q ∈Mp×p and a diagonal matrix Λ ∈Mp×p,
such that

A = QΛQ′ , (2.3)
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that is equivalent to

A =
p∑
j=1

λjqjq
′

j, (2.4)

where λj , for j = 1, . . . , p, are the eigenvalues of A and constitutes the diagonal elements
of Λ. In turn, qj are the correspondent eigenvectors that form the columns of Q,
constituting an orthonormal set. In case all λj are distinct, then the associated qj are
unique [87].

2.1.2 PCA model construction

Let’s consider a set of m random variables X1 , . . . , Xm related to a sample of
n objects or individuals, organized as a random vector x = (X1, . . . ,Xm). Next, it
will be summarized as an (n ×m) data matrix X = [xij]i=1,··· ,n;j=1,··· ,m, in which the
columns represent the variables. In turn, each row vector belonging to the space Rm

expresses an individual. Thus:

X =



x11 x12 x13 . . . x1m

x21 x22 x23 . . . x2m

x31 x32 x33 . . . x3m
... ... ... . . . ...
xn1 xn2 xn3 . . . xnm


, (2.5)

and since m is usually large, projecting the m-dimensional row vectors into a reduced
space allows us to explore the data visually [32]. It is often essential to level the
m random quantities under study by the same reference point. Then a statistical
transformation is implemented consisting of centering the columns [X1 · · ·Xm] on the
mean by computing (for j = 1, . . . ,m):

X̂j = Xj − X̄j, (2.6)

where Xj = (x1j, x2j, · · · , xnj)′, and the jth column mean is calculated as

X̄j = 1
n

n∑
i=1

xij. (2.7)

Eventually, an extra transformation called scaling is applied, in which all centered x̂ij
elements are divided by the standard deviation of the corresponding column such that,
for j = 1, . . . ,m, we have

X̃j = X̂j

sj
, (2.8)

being that the standard deviation of the column Xj is given by

sj =
√√√√ 1
n− 1

n∑
i=1

(xij − X̄j)2, (2.9)
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resulting that the respective x̃j will be a unit vector. Note that no scaling is needed
when all the variables are measured in the same units and have similar dispersion [31].
Hereafter, we will assume that the matrix X refers to variables centered on the mean
and will define the sample covariance matrix S as

S = 1
n− 1X

′X. (2.10)

However, now and then, it can be convenient to use X′X instead of S. That is because
the eigenvectors of both matrices are the same, and the eigenvalues of the sample
covariance matrix are ( 1

n−1) of the eigenvalues of X′X [52, 53], i.e.,

(n− 1)S = X′X. (2.11)

That said, the PCA approach seeks to establish new uncorrelated variables through
linear combinations of the X columns that successively maximize the variance [53], as
below

t =
m∑
j=1

pjXj, (2.12)

or in its matrix form
t = Xp, (2.13)

in which p is a vector of constants p1, . . . , pm. The variance of the linear combination
in (2.13) is given by [53]

V ar(Xp) = p′Sp. (2.14)

Thus, the m-dimensional vector p that maximizes the quadratic form p′Sp, subject to
the normalization constraint p′p = 1 [52], will also be the unit solution that maximizes
the variance of t

max φ = p′Sp

s.t. p′p = 1.
(2.15)

It is equivalent to moving the constraint into the objective function and writing

max φ = p′Sp− λ(p′p− 1), (2.16)

where λ is a Lagrange multiplier. Following, taking the partial derivatives of φ with
respect to p and equating them to the null vector, results in

∂φ

∂p
= 0 ⇐⇒ 2Sp− 2λp = 0

⇐⇒ Sp = λp.
(2.17)

Therefore, it shows that the λ in (2.16) is the largest eigenvalue of S and p is the
corresponding eigenvector. Besides, λ represents the variance of t since

p′Sp = λp′p = λ. (2.18)

11



According to Theorem 1, and given that S is a real and symmetric matrix, then it has
an eigenstructure with precisely m real eigenvalues, whose associated eigenvectors form
an orthonormal set of vectors [19]. Hence, (2.15) must be adjusted to a sequence of
optimization problems indexed by k = 1, . . . ,m, and adding the orthogonality constraint
between the eigenvectors so that

max φ = p′kSpk

s.t. p′kpk = 1

p′jpk = 0, j∈{1,...,m}\{k}.

(2.19)

The solutions to the problem in (2.19) are the entire set of eigenvectors of S, and that
will compose the m new variables described as linear combinations of the X columns as
below:

tk =
m∑
j=1

pjkXj, (2.20)

for k = 1, . . . ,m, what is equivalent to

tk = Xpk. (2.21)

To summarize, it suffices to say that the linear combinations Xpk express the
PCs algebraically [53], meaning that they point to the directions of maximum data
variability in decreasing order. Moreover, the elements of the eigenvectors pk are called
PC unit-loadings, and the elements of tk are called PC scores, which stand for the data
cloud projections onto the PC directions [31].

2.1.3 Singular Value Decomposition

An equivalent way to obtain the spectral decomposition of S is computing the
Singular Value Decomposition (SVD) of X. The SVD can be seen as a generalization
of the spectral decomposition theorem regarding non-symmetric matrices [61].

Theorem 2 (Singular Value Decomposition): Let X ∈Mn×m and have rank r. Then,
one can write:

X = UΣV′ , (2.22)

that is equivalent to
X =

r∑
j=1

σjujv
′

j, (2.23)

where the matrices Un×r and Vm×r have orthonormal columns u1, . . . ,ur and v1, . . . ,vr,
designated as left and right singular vectors of X, respectively. In turn, Σr×r is a diagonal
matrix in which the σj are called singular values, satisfying σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0.
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To extract the singular vectors of the matrix Xn×m, let us consider:
1. its rows x′1, . . . ,x

′
n as points in the m-dimensional space;

2. the problem of minimizing the sum of the squares of the perpendicular distances
of x′1, . . . ,x

′
n to a line that passes through the origin, which is equivalent to

maximizing the sum of the squares of the lengths of the points projections onto
the line;

3. a unit vector v that points in the same direction of the line.
In these circumstances, each intended length is given by the absolute value of the scalar
projection of a row along the unit vector, i.e., |x′i.v|, for i = 1, . . . , n. It means that

‖Xv‖2 = v′X′Xv (2.24)

provides the sum of the squares of the scalar projections. Now, defining v1 as the first
singular vector of X, then the best-fit line in the least-squares sense is given by simply
doing

v1 = argmax
|v|=1

‖Xv‖. (2.25)

The first singular value that is associated with v1 is designated as σ1 and can be
computed as follows:

σ1 = ‖Xv1‖. (2.26)

The subsequent singular vectors are calculated successively, imposing the orthogonality
constraint between them such that

v2 = argmax
v⊥v1,|v|=1

‖Xv‖, (2.27)

and so on until
vr = argmax

v⊥(v1,v2,...,vr−1),|v|=1
‖Xv‖, (2.28)

with the respective singular values computed as

σj = ‖Xvj‖. (2.29)

Ultimately, naming the left singular vectors of X as uj, for j = 1, . . . , r, and defining
them as the normalized vectors 1

σj
Xvj , then they will also establish a set of orthogonal

vectors [93]. Besides, from (2.18) and (2.24), it is clear that the vj ’s are the eigenvectors
of the matrix X′X, and the σ2

j ’s are the respective eigenvalues.

Matrix approximation

The next theorem establishes that SVD provides the optimal low-rank approximation
to a matrix X.
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Theorem 3 (Eckart-Young): The optimal rank-k approximation to X, in an L2 sense,
is given by the rank-k SVD truncation Xk [18]:

argmax
Xk

‖X−Xk‖2 = UkΣkV
′

k, (2.30)

where the matrices Uk and Vk are the leading k columns of U and V, and Σk contains
the leading k × k sub-block of Σ.

It means that for k < r, one can approximate the matrix X by doing:

X ≈
k∑
j=1

σjujv
′

j, (2.31)

where each σj is a singular value, being uj and vj the corresponding left and right
singular vectors, respectively.

2.1.4 NIPALS algorithm

The Partial Least Squares (PLS) method is a family of iterative least squares-
based algorithms that solve problems related to multivariate analysis, such as multiple
regression and path modeling. The nonlinear iterative partial least squares (NIPALS)
algorithm is the PLS approach used to compute the principal components in (2.21)
when it comes to PCA. In its turn, the PCA method allows us to write a rank-r matrix
X as a summation of r rank-one matrices

X = M1 + M2 + · · ·+ Mr, (2.32)

where each rank-one matrix is computed as

Mj = tjp
′

j, (2.33)

being tj , for j = 1, . . . , r, the vectors containing the projections of the sample points on
the jth PC direction and called score vectors. As for pj , those are the vectors containing
the angle cosines of the direction vector corresponding to the jth PC and are named
loading vectors.
The NIPALS algorithm calculates one PC at a time so that it first computes t1 and p1

from the X matrix. Next, X is deflated by doing

E1 = X− t1p
′

1, (2.34)

where E1 is the first residual matrix. Then, t2 and p2 are calculated from the first
residual matrix. After, the second residual matrix E2 is obtained deflating E1 as follows

E2 = E1 − t2p
′

2. (2.35)

14



The procedure is repeated until Er is achieved, such that

Er+k = 0, ∀k > 0. (2.36)

The steps of the NIPALS algorithm are described as follows:

Algorithm 1: NIPALS algorithm
Input: E0 = X
Output: P = [p1, . . . ,pr],T = [t1, . . . , tr]
for j = 1 to r do

Step 0: Initialize tj
Step 1:
repeat

Step 1.1: pj = E′j−1tj/(t
′

jtj);
Step 1.2: pj = pj/‖pj‖ ;
Step 1.3: tj = Ej−1pj;

until convergence of tj;
Step 2: Ej = Ej−1 − tjp

′
j

end

Observe that, from the relations established inside Step 1 of the NIPALS algorithm,
one can obtain

E′j−1Ej−1pj = t′jtjpj, (2.37)

and
Ej−1E

′

j−1t∗j = t′jtjt∗j , (2.38)

where t∗j is the jth unit score vector, which is equivalent to write

tj =
√

t′jtjt∗j .

It means that the scalar t′jtj is the largest eigenvalue of both E′j−1Ej−1 and Ej−1E
′

j−1

matrices, being pj and tj the corresponding eigenvectors. Moreover, when j = 1 in the
algorithm, the equations in (2.37) and (2.38) can be write as

X′X p1 = t′1t1 p1

XX′ t∗1 = t′1t1 t∗1,

implying that the first unit score vector and the first loading vector are exactly the
first left and right singular vectors of X, respectively, as well as

√
t′1t1 returns the

first singular value of X. For j > 1, and considering the column space of X, the
NIPALS computes the j-th principal component over the orthogonal complement of the
subspace t1p′1 + · · ·+ tj−1p′j−1, which is equivalent to the SVD approach of imposing
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the orthogonality restriction among singular vectors when maximizing its objective
function. Thus, ∀ j = 1, . . . , d, t∗j and pj are equal to the left and right singular vectors
of the SVD of X, respectively, and each

√
t′jtj is the corresponding singular value. The

NIPALS decomposition of X is then given by

X =
√

t′1t1t∗1p′1 + · · ·+
√

t′dtdt∗dp′d. (2.39)

Defining the matrix Σ as a diagonal matrix containing the singular values
√

t′jtj
arranged in decreasing order, one can write the matrix form of the expansion (2.39) as

X = T∗ΣP′, (2.40)

where T∗ is the (unit-)scores matrix whose column vectors t∗j are orthonormal, and P
is the (unit-)loadings matrix whose column vectors pj are also orthonormal.

2.2 Singular Spectrum Analysis

Given that, in the case of TS analysis, the main objective of the SSA is the
decomposition of the original series into additive and interpretable components (e.g.,
trend, seasonality, and noise), this section begins with a brief discussion about them.
Then, the basic SSA scheme is presented in detail, from transforming a univariate real
series into a trajectory matrix to reconstructing the so-called elementary series through
the diagonal averaging procedure.

2.2.1 Time series decomposition

Simply put, a TS can be defined as observations of a given phenomenon ordered
over time. But not only that, it is crucial that these observations are time-sensitive.
On the other hand, the time intervals at which measurements take place are usually
regular, for example, annually, quarterly, monthly, weekly, or daily [14]. First, let’s
define a TS as a set of time-indexed random variables

{Y1, . . . ,YT}, (2.41)

whereas an observed TS is represented as a set of realizations of the random variables
as

{y1, . . . , yT}. (2.42)

Decomposing a TS means, at any time t, separating unobservable components that are
(or are not) associated with distinct variations in time. Traditionally, they are classified
as i) long-term trend (Tt); ii) cyclical movements super-imposed upon the long-term
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trend (Ct) [15]; iii) seasonal movements within each year (St); iv) residual variations
(Rt). Then, an additive decomposition model is written as

Yt = Tt + Ct + St +Rt. (2.43)

When decomposing a TS, it is common to consider the trend and the cycle as a single
component, designating it only as trend for simplicity [49]. Hence, for this investigation,
the TS components are:

1. a global trend represented by a low-degree polynomial function, such as

f(t) = a0 + a1t+ · · ·+ amt
m, (2.44)

where t is the time, ai are real constants, and m denotes the degree of the
polynomial function;

2. a regular oscillatory component, with a period p, that can be synthesized as
a function g(t) and defined by a linear combination of sines and cosines with
constant coefficients, i.e., expressed as a Fourier series such that

g(t) =
p∑

m=0
(αmcos(ωmt) + βmsin(ωmt)), (2.45)

where ωm = 2πm/p;
3. an irregular component εt, or noise at instant t.

Thus, the additive decomposition model to be considered becomes [49]:

Yt = f(t) + g(t) + εt. (2.46)

Although other TS decomposition methods have some effectiveness, such as X11 [15,
p. 79] and Seasonal Extraction in ARIMA Time Series (SEATS) [15, p. 121], the most
used is the well-known Seasonal and Trend Decomposition using Loess (STL). That
is a filtering procedure for decomposing a TS into the three previously mentioned
components: trend, seasonal, and remainder [13]. Below is an example of applying the
method using the stl function of the stat package in R [83], represented in Figure 2.1
and coded as:

> plot(stl(data, t.window=13, s.window=17)

The data are the records of CO2 concentration in the Earth’s atmosphere, measured
monthly from January 1965 to December 1980 at an observing station on Mauna Loa in
Hawaii [58]. The parameter t.window provides the number of consecutive observations
that can be used to estimate the trend. In turn, s.window represents the number of
consecutive years used to estimate a value in the seasonal component.
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Figure 2.1: CO2 TS decomposition through STL method.

2.2.2 Basic SSA

To deconstruct a TS into some interpretable components, SSA draws to some extent
on the theory behind PCA [45]. As we will see below, the trajectory matrix’s SVD
decomposition backs the method and provides the desired interpretability. The basic
scheme of the SSA method consists of two stages, decomposition and reconstruction.
The decomposition stage is split into embedding and SVD steps, while the reconstruction
is into grouping and diagonal averaging. The details regarding each one of them come
next.

Stage 1 (1st Step): Embedding

Consider a univariate real-valued TS Y = (y0, . . . , yn−1) of length n, and let ` be the
integer representing the so-called window length, in which 0 < ` < n. The embedding
step maps Y to a sequence of multidimensional `-lagged vectors

xi = (yi−1, . . . , yi+`−2)′ , 1 ≤ i ≤ κ, (2.47)
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where κ = n− `+ 1. From there, the trajectory matrix is constructed so that

X = [x1 . . .xκ], (2.48)

a Hankel matrix in which the columns are the `-lagged vectors. It means that X consists
of the transformation of a TS into a Hankel matrix using an embedding operator T,
such that

T(Y ) = X =



y0 y1 y2 . . . yκ−1

y1 y2 y3 . . . yκ

y2 y3 y4 . . . yκ+1
... ... ... . . . ...

y`−1 y` y`+1 . . . yn−1


, (2.49)

where xij = yi+j−2. As a final note, the value of ` must be large enough for the lagged
vectors to capture an essential part of the behavior of the series.

Stage 1 (2nd Step): SVD

The result of this step is the decomposition of the trajectory matrix as a sum of
rank-one matrices so that

X =
d∑
i=1

√
λiuiv′i (2.50)

where d = rank(X). Besides, λi, i = 1, . . . , d, are the eigenvalues of the matrix XX′

arranged in decreasing order of magnitudes (λi > 0), and associated to the orthonormal
system of the eigenvectors u1, . . . ,ud, being

vi = X′ui/
√
λi. (2.51)

In the SVD context, the elements of the collection (
√
λi,ui,vi) are the singular values,

left and right singular vectors of X, respectively. Moreover, one can write (2.48) in
matrix form if we define

Xi =
√
λiuivi (2.52)

to get
X = X1 + · · ·+ Xd. (2.53)

Stage 2 (3rd Step): Grouping

The grouping step performs the separation of the additive components of the series
[40], identifying the sets of rank-one matrices in (2.51) associated with the trend, the
oscillatory component, and the noise. Then, given the index set I = {1, . . . , d}, the
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step starts with the partitioning of I into disjoint subsets Ik, k = 1, . . . , p, yielding in
the following decomposition

X = XI1 + · · ·+ XIp , (2.54)

where XI =
∑
i∈I

Xi [39].

Stage 2 (4th Step): Diagonal Averaging

The diagonal averaging transfers a matrix resulting from the grouping step to
a corresponding TS [39]. Concretely, each ` × κ matrix XIk

, k = 1, ..., p, in (2.54)
provides a reconstruction of an associated series Ỹ (k) = (ỹ(k)

0 , . . . , ỹ
(k)
n−1), whose elements

correspond to the means of the anti-diagonals in XIk
. Hence, each ỹ(k)

ι , ι = 0, . . . , (n−1),
is computed as:

ỹ(k)
ι =



1
ι+1

ι+1∑
m=1

x̃m,ι−m+2, if 0 ≤ ι < `− 1,

1
`

∑̀
m=1

x̃m,ι−m+2, if `− 1 ≤ ι < κ,

1
n−ι

n−κ+1∑
m=ι−κ+2

x̃m,ι−m+2, if κ ≤ ι < n.

(2.55)

Just for the sake of argument, let’s consider a toy example to show the procedure of this
step schematically, such that Y = (y0, . . . , y5) and where ` = 3. Next, suppose that the
matrix X̃ = XIk

was determined in the grouping step, and it is associated with some
component of Y . Thus, the corresponding TS Ỹ will be computed by averaging the
skewed diagonals (i+ j = constant) as in Figure 2.2 and established in (2.55). Essential
to note yet that the final result provides the decomposition of the original TS Y into a
sum of reconstructed series as below

Y =
p∑

k=1
Ỹ (k). (2.56)
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ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5 ← Ỹ (k)

x̃11 x̃12 x̃13 x̃14

x̃21 x̃22 x̃23 x̃24 ← X̃

x̃31 x̃32 x̃33 x̃34

Figure 2.2: The diagonal averaging scheme through a toy example.

2.2.3 Separability

The concept of separability plays a crucial role in the series decomposition, especially
in the grouping step. Considering the TS Y and a fixed `, let us assume just two
identified groups associated to the matrices XI1 and XI2 , where I1 = {i1, . . . , ir} and
I2 = I \ I1, for 1 ≤ i1 < · · · < ir ≤ d. Furthermore, consider the corresponding
reconstructed series (2.55) Ỹ (1) and Ỹ (2) and their respective trajectory matrices X̃(1)

and X̃(2). Thus, if XI1 = X̃(1) and XI2 = X̃(2), then we say that Ỹ (1) and Ỹ (2) are
separable.

Denoting the linear spaces spanned by the columns of X̃(1) and X̃(2) by L(`,1) and
L(`,2), and those spanned by the columns of (X̃(1))′ and (X̃(2))′ by L(κ,1) and L(κ,2), the
separability stated before means that L(`,1) ⊥ L(`,2) and L(κ,1) ⊥ L(κ,2), being named
weak. In this case, X̃(1)(X̃(2))′ = 0`×`, and also (X̃(1))′X̃(2) = 0κ×κ. If, in addition to
the spaces orthogonality, the set of singular values of X̃(1) and X̃(2) are disjoint, then
Ỹ (1) and Ỹ (2) are said to be strongly separable [9].

On the other hand, if XI1 and XI2 are just close to being Hankel matrices, we will
say that Ỹ (1) and Ỹ (2) are approximately separable. Therefore, the main objective of
the grouping step is to find I1, . . . , Ip so that XI1 , . . . ,XIp are close to being Hankel
matrices and satisfies 2.54, ensuring the successful decomposition of Y [9, 39].

2.2.4 Visualization tools available in SSA

In the vocabulary of the SSA method, each collection (
√
λi,ui,vi), i = 1, . . . , d, is

called eigentriple [39]. Their elements are used to build additional graphics that help
to separate the components in the grouping step. The scree plot of

√
λi against i is

helpful to identify the eigentriples associated with both trend and seasonal components.
Dominant singular values indicate the corresponding eigentriples are related to the
trend. In their turn, pairs of singular values very close to each other point out that the
correspondent eigentriples are related to a harmonic component.
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For example, take the trajectory matrix X of the CO2 series mentioned above, using
a window length ` equal to n/2. From the SVD of X, the scree plot of the singular
values looks as shown in Figure 2.3. The first singular value stands out from the others,
indicating that the first eigentriple and the trend are related. Another way to separate
the trend group is through a scatter plot of the elements of an eigenvector. A slowly
varying of them implies an association of the corresponding eigentriple with the trend
[36]. Figure 2.4 brings about an example related to the TS CO2, in which the first left
singular vector presents such behavior.

The periodicity extraction with period P = 1/w is performed through scatterplots
of pairs of eigenvectors, where w is the frequency of a harmonic component. When
patterns appear in quasi-regular polygons, the number of vertices must coincide with P
[45]. In Figure 2.5, one can see that the second graph formed by the eigenvectors u2

and u3 establishes a pattern where P = 12, meaning that the correspondent eigentriples
are related to the seasonal component. The plateau formed by the second and third
singular values in Figure 2.3 corroborates this understanding. The same goes for the
fourth graph in Figure 2.5, with the eigenvectors u4 and u5, where P = 6.

1st visualization tool available in SSA

Figure 2.3: The scree plot of the singular values of the trajectory matrix X corresponding
to the TS CO2.
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2nd visualization tool available in SSA

Figure 2.4: Slowly varying left singular vector u1 (TS CO2).
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3rd visualization tool available in SSA

Figure 2.5: Paired eigenvectors 1–10 for the TS CO2.
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2.3 Biplot methods

The biplot is a multivariate visualization technique, usually constructed as a 2- or
3-dimensional graph, allowing simultaneous representation of both objects and variables
of data sets. Biplots can reveal essential characteristics of multivariate data structure,
e.g., patterns of correlations between variables or similarities between individuals [43].
Generally, any (`× κ) matrix X of rank d can be factorized as

X = AB′, (2.57)

where A and B are (` × d) and (κ × d) matrices each of rank d [84]. For example,
Gabriel [24] conceived the Biplot method by adopting the following classical notation
for this type of factorization:

X = GH′, (2.58)

in which G is a (`× q) matrix and H has a dimension of (κ× q), with q ≤ d and such
that their rows create two sets of q-dimensional points, as follows

G =


g11 g12 . . . g1q

g21 g22 . . . g2q
... ... . . . ...
g`1 g`2 . . . g`q

 , and H =


h11 h12 . . . h1q

h21 h22 . . . h2q
... ... . . . ...
hκ1 hκ2 . . . hκq

 . (2.59)

Taking q = 2, one can simultaneously represent X’s rows and columns on the same
graph, the so-called biplot, in which the rows of G are reproduced by points and the
columns of H′ are depicted as vectors connected to the origin (arrows). Even when q > 2,
it is possible to construct a biplot after obtaining the best rank two approximation of X,
in the sense of least square. A 2-dimensional biplot displays both row markers g1, · · · ,g`
and column markers h1, · · · ,hκ of X, so that the inner product g′ihj approximates the
element xij of X [77], such that

[x]`,κi,j=1 ≈


g′1
g′2
...
g′`


[
h1 h2 · · · hκ

]
, (2.60)

for i = 1, · · · , ` and j = 1, · · · , κ. Taking into account the singular values decomposition
performed by the NIPALS algorithm (2.40), the factorization of X can assume different
configurations (Figure 2.6), resulting in different types of biplots [43].

When the factorization considers G = T∗ and H = PΣ, the result is said to preserve
the column metrics of X, and the corresponding biplot receives different denominations,
such as i) Gabriel biplot; ii) classic biplot; iii) covariance biplot; and iv) GH-biplot.
Assuming Xcolumnshavecentered, the GH-biplot satisfies the following properties [77]:
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1. The norm of a column marker hj is proportional to the standard deviation of the
respective variable;

2. The cosine of the angle formed by column markers approximates the correlation
between the related variables;

3. The columns are better represented than the rows in terms of quality.
Another possibility is to define J = T∗Σ and K = P. In this respect, the factorization
will preserve the metric of the rows in the so-called form biplot or JK-biplot. Ergo,
the Euclidean distances between the row markers approximate the Euclidean distances
between the respective individuals in the full space. The representation of the rows is
better than the columns.

Figure 2.6: Biplot types according to the matrix factorization configuration.

2.3.1 HJ-Biplot

Based on SVD, a different type of biplot, called HJ-biplot, was proposed in 1986 by
Galindo [25] in which optimal quality representation of the ` rows and the κ columns
of X is ensured in the same Euclidean space. An HJ-biplot version based on NIPALS
instead of the SVD can be constructed taking the rows of the matrix J = T∗Σ as row
markers, and the rows of the matrix H = PΣ as column markers of X. Indeed, the
NIPALS decomposition in (2.40) results in that

XP = T∗ΣP′P = T∗Σ.
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So, the ` rows of the matrix J = T∗Σ correspond to the projections of the ` points
represented by the rows (individuals) of X onto the subspace spanned by the loading
vectors p1 and p2, that is, the best-fit two-dimensional subspace for X. Likewise, the
κ rows of the matrix H = PΣ coincide with the projections of the κ points expressed
by the columns (variables) of X onto the subspace spanned by the normalized score
vectors t∗1 and t∗2, as seen below:

(T∗)′X = (T∗)′T∗ΣP′ ⇐⇒ X′T∗ = PΣ.

From (2.40) follows that both row and column representations of X, XP and X′T∗,
respectively, are related since

A = X′BΣ−1 (2.61)

and
B = XAΣ−1, (2.62)

where A = XP and B = X′T∗.
It means that the coordinates of the variables can be expressed as a weighted

average of the coordinates of the individuals and vice-versa. Consequently, it allows
the representation of the rows and columns in the same Cartesian coordinates system
with optimal quality of representation [25, 77]. However, in the HJ simultaneous
representation, the inner product j′`hκ does not provide an approximation to the
element x`κ of X anymore, and consequently

X 6= JH′.

Accordingly, the interpretation of the HJ-biplot representation can be performed as
follows:

• The distance between points corresponds to how different the associated individuals
are (dissimilarities), just like in JK-biplots;

• As it occurs in GH-biplot, the size of an arrow (variable) is proportional to the
standard deviation of the associated variable, i.e., the longer the arrow, the greater
the correspondent standard deviation;

• The cosine of the angle between arrows approximates the correlation between
the variables they represent. Thus, if the angle is next to 90 degrees it indicates
a poor correlation, while an angle close to 0 degrees or 180 degrees suggests a
strong correlation, being positive in the first case and negative in the other.

2.3.2 Area Biplot

The Area Biplot is a visualization technique used to estimate data values through
the areas spanned by triangles constructed from the results of the SVD of X. To
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guarantee that the row and column markers exhibit a similar spread, another type of
target matrix factorization is proposed in [41]. Standardizing both matrices A and B
facilitate the visual inspection of the biplots as follows:

A = ( `
κ

) 1
4T∗2Σ

1
2
2 , (2.63)

and

B = (κ
`

) 1
4P2Σ

1
2
2 , (2.64)

where T∗2 and P2 denote two consecutive columns of T∗ and P, and Σ2 the diagonal
matrix with the two corresponding singular values. The inner product matrix AB′

provides an approximation for X. Briefly, the procedure to construct an area biplot
starts rotating the row markers by 90◦, i.e., doing

a[r]
i = Rai, (2.65)

in which R is the (2× 2) 90◦ counterclockwise rotation matrix. If we consider θij as
the angle between the vectors ai and bj, then

cos(θij) = sin(θij + π/2) = sin(φij). (2.66)

Hence, instead of writing the inner product between ai and bj as

a′ibj = ‖ai‖ ‖bj‖ cos(θij), (2.67)

one can consider
a′ibj = ‖ai‖ ‖bj‖ sin(φij), (2.68)

where φij is the angle between the 90◦-rotated biplot point a[r]
i and the biplot vector bj .

Besides, that is what justifies the choice for the 90◦ = π⁄2 counterclockwise rotation.
So, the expression (2.68) provides twice the area of the triangle formed by the origin
and the endpoints of the vectors a[r]

i and bj (Figure 2.7). Therefore, the element xij
may be estimated by the double of the triangle area.

28



Figure 2.7: Area biplot construction: after rotating the point ai, twice the highlighted
triangle area provides an estimation for element xij .
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Chapter 3

Research progression

In the context of Statistics, matrix decomposition and matrix factorization (MF) are
interchangeable ways of referring to techniques used for data dimensionality reduction
while preserving as much information as possible. Two prominent areas in which MF
techniques are widely applied are Omics technology [78, 92] and recommender systems
[59, 70]. In the first case, the high-dimensional biological data is represented through
a matrix containing in its rows expression counts, methylation levels, protein concen-
trations, etc., and individual samples in its columns [92]. The most commonly used
MF techniques in Omics data are independent component analysis (ICA), non-negative
matrix factorization (NMF), and PCA [30, 78, 92, 102]. Unlike PCA, which imposes
the orthogonality constraint between components, ICA uses statistical independence be-
tween them when projecting the data into a lower-dimensional space [78]. The objective
is to extract components that are maximally independent and non-Gaussian [50, 54].
NMF methods place non-negativity constraints on the data model, imposing all elements
of the factor matrices to be greater than or equal to zero [102]. As for recommender
systems, these engines deal with data sparseness while seeking to predict the rating
a user would give to an item [70]. The primary MF technique in recommendation
platforms is SVD or variations such as Improved Regularized SVD (RSVD2) [80].

In this thesis, the NIPALS [105] was the MF method chosen to decompose the
trajectory matrix X (in 2.49) due to its ability to deal with missing data [22, 106].
The versatility of NIPALS allows its application in several fields, such as data science
[48], where it was used to improve the performance of classification algorithms in high-
dimensional data, and geophysics [33], in a study carried out to determine temporal
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variations of geoid heights. The algorithm performs a singular value decomposition
calculating the scores and loadings iteratively. The NIPALS yields a sequence of
orthogonal vector linear combinations of the data points. It is difficult to interpret
these raw results in vector terms other than through visualization [68]. Therefore, we
sought to apply biplot methods to understand the underlying data structure and its
generation process. With this, we intend to establish the minimum criteria of visual
interpretation to associate groups of eigentriples to the components of a TS. Also,
we expect to circumvent eventual issues related to changes in the TS structure by
applying the segmentation procedure and creating a way to identify the breakpoints.
We expect other insights will emerge regarding the series’ characteristics due to the
biplots’ interpretability.

3.1 Trajectory matrix factorization

3.1.1 State of the art

In the original basic SSA, the Hankel trajectory matrix X factorization using the
SVD method [38, 39, 45] poses some problems. A well-known setback is that the SVD
of X is the most time-consuming step of the procedure [60]. The SVD computation
of a given matrix evolved from methods based on planes rotation [23, 46, 57] to the
most usual Golub and Reinsch algorithm (GR) [34]. Even so, GR algorithm performs
O(`2κ+`κ2+κ3) multiplications, reaching O(n3) when ` ≈ N/2, its worst computational
complexity [60].

It is natural in an SSA-based application to expect to get just a few leading
eigentriples. Since they carry a lot of signal information, the cost of a complete
decomposition is wasteful. In multivariate SSA (MSSA) cases, performing a low-rank
factorization via the Lanczos bidiagonalization algorithm [11, 29] or via randomized
SVD [79] are a thrifty (regarding memory) and agile way to reduce the number of
operations required for SSA purposes. In the basic context, a randomized SSA (rSSA)
is proposed in [86], in which the SVD step is carried out by the randomized SVD
proposed by Halko et al. [44]. This is done by obtaining an approximation of the
trajectory matrix X using random sampling methods, followed by decomposing the
resulting matrix.

Another possible drawback is the decomposition of a trajectory matrix when the TS
presents missing data (MD). An imputation method for TS of finite rank is proposed in
[35] and called "Caterpillar"-SSA (CSSA). Assuming that the TS is governed by some
linear recurring formula (LRF), the CSSA relies on the continuity of the computed
component structure to fill the gaps. An improved CSSA (ICSSA) is proposed in [55],
modifying the original to reject outliers and make the model parameters more robust
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to the different temporal patterns. Other methods based on different approaches have
been applied in geophysics [88, 90], climatology [65], and finance [16].

3.1.2 Addressed issues

To strike a balance between solving the problem of time-consuming computation
associated with SVD and an eventual need for imputation when dealing with MD, we
raise the following points at issue:

(P1) A comprehensive solution : Is it feasible to build or adapt an existing
algorithm to simultaneously solve both problems (speed and MD)?

Throughout the investigation, we proposed applying the NIPALS algorithm as a
direct way to get around the gap-filling problem. We made only a few modifications
to express the decomposition results in terms of singular values and singular vectors,
adapting them to the biplot scheme. The NIPALS algorithm is powerful because of
its speed and simplicity [75]. Instead of computing the PCs simultaneously as in SVD,
NIPALS performs an iterative regression procedure when factorizing X and calculating
the PCs. NIPALS handles missing values without any imputation [71, 106] since it
ignores the blanks when executing the regressions, which is equivalent to setting all
missing points to zero in the least-squares objective function.

Besides, it is faster than SVD when applied to large matrices [71]. To compute
the first q PCs, the complexity for NIPALS is O(`κqi), in which i is the number of
iterations until convergence [95].

(P2) Instability and other weaknesses : Is the convergence of the chosen al-
gorithm always guaranteed?

The NIPALS algorithm is very similar to the Power method [22, 67], except that
the latter applies to square matrices. Besides, the convergence in the Power method is
not always guaranteed if the given matrix is non-diagonalizable [103]. The NIPALS
is applied directly to centered and scaled data matrices. According to Geladi and
Kowalski [31], NIPALS usually converges in practical situations. But eventually, it does
not happen when there are two or more very similar eigenvalues.

Some criticisms are made of the NIPALS algorithm, but not only concerning
convergence. Miyashita et al. [75] hold that, in some instances, the first principal
component may not be obtained. They suggest a modification to the original algorithm
to work around this problem. Seasholtz and Gates [89] reinforce that if the algorithm
converges in just one step, then the eigenvalue is ambiguous, i.e., it is impossible to say
which eigenvalue was computed if the first or any other. They propose to keep using
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the SVD to decompose a matrix.

3.2 PCs visualization

3.2.1 State of the art

Originally formulated by Gabriel [24], the biplot method was detailed by Gower and
Hand [42]. In the context of PCA, biplots are a simultaneous graphical representation
of the rows and columns of a multivariate data matrix in reduced-dimensional subspaces
[43]. When applying the method, it is essential to consider which configuration to
preserve in the subspace, if of the rows (individuals) or the columns (variables). Each
choice produces a different biplot with distinct interpretations.

In the GH-biplot construction (or column-metric-preserving biplot), the singular
values are fully assigned to the right singular vectors. On the other hand, when the
matrix Σ is allocated to the T∗ matrix in (2.40), then it characterizes the row-metric-
preserving case. Recently, Balcerowska-Czerniak et al. [4] used this concept in the
chemometrics context to compound identification using the X-ray diffraction technique;
Bassani et al. [5] applied the JK-biplots to genomics to discover common patterns of
expression; Torres-Salinas et al. [97] used this factorization configuration to represent
bibliometric indicators through biplots in the information systems field.

Galindo [25] elaborated an alternative possibility called HJ-biplot. On it, Σ is
assigned to both T∗ and P matrices, obtaining a simultaneous representation of both
rows and columns of X with maximum quality. Several scientific fields have newly
applied this approach, including hydrology [10], biotechnology [74], environmental
science [27], engineering [98], health [20], and sustainable development [26, 69].

Concerning applying biplot methods to time series, mention should be made of
Alvarez & Galindo [2]. The authors used the HJ-biplot to study the traffic in communi-
cation networks, suggesting a better biplot method performance than the PCA alone,
being more informative about time series behavior. In the same direction, Yang et al.
[107] proposed an algorithm to visualize and analyze large time series using PCA and
biplots. In turn, Ivanov & Evtimov [51] used biplots to examine the seasonality of a
univariate time series containing temperature anomalies of the Northern Hemisphere.

Nieto et al. [77] pointed out the lack of software has been a deterrent to popularizing
biplot utilization as a multivariate visualization technique and presented an inferential
version of a biplot in R [83], based on bootstrap confidence intervals for the parameters
defined by the row and column markers [64]. Still, in R, the GGEBiplotGUI package
[7] is another attempt to expand the availability of software based on the method.
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3.2.2 Addressed issues

One of the main issues raised throughout this work is visually capturing the series’
essence as much as possible and how it behaves over time. The other is to present our
contribution to the absence of software concerning biplots.

(P3) Capturing the essence of the TS : What parameters and adjustments
are needed to explore the trajectory matrix in the representation through biplots
optimally?

Consider the conformation of the trajectory matrix X, containing in its rows
` κ-lagged vectors and, in its columns, κ `-lagged vectors. Also, note that both
cases are representations of subseries of the TS. The ideal situation is to get some
balance in the κ-lagged and `-lagged vectors’ lengths. The equilibrium is achieved
by setting the window length as ` = n/2. This procedure follows the SSA the-
ory, which establishes an ` large enough so that the `-lagged vectors (and, in this
case, also the κ-lagged vectors) incorporate an essential part of the behavior of
the TS. Likewise, the choice of the HJ-biplot to illustrate the X decomposition
is a natural consequence. The method created by Galindo [25] guarantees optimal
quality representation of the ` rows and the κ columns of X in the same Euclidean space.

(P4) Revealing the TS periodicity : How can the biplot method be used to
emphasize the visualization of features of the TS studied?

It is possible to check a periodicity of a TS when using a pair of eigentriples
associated with an oscillatory component to construct the HJ-biplot. Nevertheless, this
characteristic is not visually highlighted. A possible solution to help bring more contrast
to the periodicity is using geometric patterns to detach it. Area biplots approximate the
values of elements of a data matrix through the area of specific triangles constructed
from the eigenvectors [41]. In this investigation, we propose a different construction
to the polygons, in which their areas will help to evaluate the autocorrelation among
`-lagged vectors and from which the periodicity will emerge more clearly.

The original area biplot is based on building triangles from the counterclockwise
rotation of row markers. On the other hand, our suggested version rotates the column
markers to construct the triangles.

(P5) Automating the visualization : How to automate (and distribute) the
suggested method’s visualization process to reveal the TS periodicity?

An R package is a suitable way to collect and distribute codes to be reusable.
Submitting it to the Comprehensive R Archive Network (CRAN) is an intelligent
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decision to get traction with the community. The devtools R package [104] provides all
the functions necessary to build a package aimed at automating tasks in R.

The approach proposed in this investigation to reveal the periodicity of a TS is
based on the method proposed by Gower [41]. However, no computational tool has
been implemented so far for the automatic construction of an area biplot. We set out
to resolve this by building an R package and submitting it to CRAN.

3.3 TS structural changes

3.3.1 State of the art

A broad spectrum of problems can be addressed through SSA, ranging from ex-
ploratory analysis and forecasting in the field of time series analysis to parameter
estimation in signal processing [37]. As a result, the scope of applications of SSA is
also extensive, including quality control [12, 21, 82], renewable energy [72, 73, 110], and
health [99]. Lately, SSA methods have been created to assess structural damage control
[8, 66]. They are pretty much based on the idea of finding out the points where the
eigenstructure presents some important modification.

This brings us to the problem of detecting heterogeneities in a TS. A series is homo-
geneous if it is governed by some linear recurrence relation (LRR) [39]. Heterogeneity
occurs when the TS goes from one homogeneous state to another due to its exposure to a
local perturbation. A disturbance can result in spectrum dispersion, causing a variation
over time. One strategy to get around this inconvenience is to segment the original
series with some overlaps. Then, for example, the SSA can be applied to each subseries
and the results analyzed accordingly. Leles et al. [62, 63] proposed a method called
overlap-SSA (ov-SSA) using this segmentation approach to analyze non-stationary TS.

Finding the short interval within the TS where the transition occurs characterizes
a change-point detection (CPD) problem. Golyandina et al. [39] suggested a more
comprehensive solution, calling it a structural change detection problem. Their proposal
is based on heterogeneity detection and uses a sequential SSA application. They created
a metric to evaluate the distances between lagged vectors and the trajectory space, i.e.,
the space spanned by some eigenvectors of the lag-covariance matrix, determined in
different series intervals. Moskvina & Zhigljavsky [76] developed a similar algorithm
but restricted to a CPD perspective. More recently, Alanqari et al. [1] presented
another CPD algorithm based on the underlying dynamics of multivariate time series
observations through a Spatio-temporal model.
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3.3.2 Addressed issues

Complex series in which change points appear can make it challenging to identify
the dominant structures visually. We will work to implement a sequential application
of the SSA to determine the point where an interruption of the LRR arises, com-
bining it with a metric for CPD through robust trajectory matrix factorization strategies.

(P6) A simple segmentation approach : How to take advantage of the SVD
sensitivity to data contamination in order to build a CPD strategy using SSA?

In previous work [39, 76], the segmentation scheme determines two disjunct intervals
(base and test), taken sequentially from the original series, which means constructing
two trajectory matrices in each iteration. Then, the occurrence of a perturbation is
evaluated in terms of Euclidean distances related to the (base and test) trajectory
matrices. In this investigation, we have in view a particular procedure. Instead of
applying a single decomposition method to two different trajectory matrices (base and
test) iteratively throughout the series, we intend to apply two different decomposition
methods (one robust and the other ordinary) on the same trajectory matrix.

Using a procedure similar to the one used by Rodrigues et al. in [85], it seems
possible to capture an interruption of the LRR by measuring some distances created by
adopting a robust and regular approach to decompose the same matrix of trajectory.

(P7) Creating metrics : How to handling the distances?
Moskvina & Zhigljavsky [76] associate the arising of a disturb with an increase in

the Euclidean distance between the lagged vectors of the TM (base) and the subspace
generated by the eigenvectors of the lag-covariance matrix (test). Differently, we
intend to use the differences caused by an eventual change of direction of some PCs
(eigenvectors) to compute a metric in the identification of interruption of the LRR.

3.4 The research conduction piece by piece

This research project was designed to publish a coherent and relevant set of scientific
articles in journals with recognized international merit selection committees. In addition,
the proposal also intended to offer complimentary contributions in the form of posters and
oral communications in scientific meetings and proceedings of international conferences.
The following publications list seeks to answer the questions formulated and explained
in Sections 3.1 to 3.3. One can find the entire content of these works in Part II.
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3.4.1 The main point

The first research paper (Article I) brings the main concepts behind a new SSA-
HJ-biplot method to support the SSA grouping stage. It is a visualization method
based on biplots that allow the graphical representation of the spectral structure of a
TS. Its interpretability helps analyze the series through eigenvectors’ representation
characteristics. Article I explores and formalizes the general ideas presented in Article
V, going beyond by considering a series containing missing data in applying the method.
In sequence, Article II treats the details concerning the interpretability enhancement of
the method, caring to extract information as much as possible about the SSA-HJ-biplots.
Both deal with issues P1, P2, and P3. In addition, Article I and Article II partially
address question P4, as the visual perception of the TS periodicity requires some effort
when evaluated directly from a HJ-biplot.

3.4.2 Improving the method

The third work (Article III) sought to strengthen the visualization of the separation
of TS components by applying the SSA-HJ-biplot method in series where structural
changes occur. First, the TS is segmented concerning identified change points. Next,
one can apply the SSA-HJ-biplot over each interval, making visual interpretation easier.
A new approach for change point detection is suggested based on sudden shifts in the
direction of the PCs. It is evaluated by computing the difference by applying two
decomposition methods (robust and ordinary) on the same trajectory matrix. These
differences will be more accentuated when there is an eventual change in the direction
of some PCs (eigenvectors) in case of interruption of the LRF. Article III focuses on
bringing solutions to issues P6, and P7.

3.4.3 A different approach

Article IV discusses a multivariate visualization technique to estimate the dominant
periodicities of a time series. It consists of a version of the area biplot method built
from PCs associated with pairs of singular values close to each other. After pinning
a biplot vector of interest (i.e., some loading vector related to a lagged vector), the
remaining are rotated at 90 degrees. Triangles are created connecting the origin of the
factorial axes to the endpoints of these vectors. These polygons establish patterns that
provide visual information regarding the autocorrelation between the corresponding
lagged vectors. Periodicity emerges from these patterns. The method gave rise to a
Software (package) called areabiplot, implemented in R [83]. Article IV addresses the
issue raised in point P4.
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3.4.4 The starting point

Article V is a guide to validate the initial ideas, serving as a compass for subsequent
work. Article I and Article II elaborate and give depth to the concepts presented in
that initial essay. Article III and Article IV intend to solve the difficulties faced in the
first experiments conducted while writing that embryonic monograph. In this way, this
content is somehow related to all the questions raised from P1 to P7.

3.4.5 Preparation for the graphical tool

Article VI’s content is related to applying biplot methods from factoring matrices
using PLS regression algorithms. However, this article was a first attempt at developing
the areabiplot R package [91]. As mentioned earlier, the lack of software prevents the
widespread use of biplot methods. In this sense, the code implemented for Article
VI served as the basis for developing the function built into the areabiplot package.
Since the main application of this software is directed to the results of the trajectory
matrix decomposition of the SSA method, the work developed in Article VI helped in
answering question P5.

3.4.6 Graphical tool implementation

The last piece consists of a Software implementation in R Programming Environment
[83], called areabiplot [91]. The R package areabiplot was conceived under MIT License,
giving users express permission to reuse code for any purpose. The tool can be used
both to reveal an estimate for the periodicity of a TS (context of this research) and
to estimate the elements of a data matrix (original context suggested by Gower). The
Software is intrinsically connected to the issue P5.

From the publication date, the areabiplot package has more than 6000 downloads
from the cloud.r-project.org CRAN mirror (3.1), as data collected through the following
code:

1 devtools :: install _ github (" metacran / cranlogs ")
2

3 library ( cranlogs )
4

5 X = cran_ downloads ( packages = " areabiplot ", from = "2021 -03 -10",
6 to = "2022 -09 -30")
7

8 inds <- seq(as.Date("2021 -03 -10"), as.Date("2022 -09 -30"), by = "day")
9

10 Y <- ts(X[,2], start = c(2021 , as. numeric ( format (inds [1], "%j"))),
11 frequency = 365)
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12

13

14 plot(Y,type="l",col="blue",ylab=" Number of downloads per day", main="
R package areabiplot ",

15 font.main = 3, cex.main = 1.2)

Figure 3.1: Number of downloads per day of the areabiplot package from the cloud.r-
project.org CRAN mirror.
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Chapter 4

Article I

Time Series components separation based on Singular Spectral
Analysis visualization: an HJ-biplot method application

Published:

Silva, A., Freitas, A. (2020). Time Series components separation based on Singular
Spectral Analysis visualization: an HJ-biplot method application. Statistics, Optimiza-
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Time Series components separation based on Singular Spectral Analysis
visualization: an HJ-biplot method application

Alberto Oliveira da Silva 1,2,∗, Adelaide Freitas 1,2

1Department of Mathematics, University of Aveiro, Portugal
2Center for Research & Development in Mathematics and Applications (CIDMA), University of Aveiro, Portugal

Abstract The extraction of essential features of any real-valued time series is crucial for exploring, modeling and
producing, for example, forecasts. Taking advantage of the representation of a time series data by its trajectory matrix
of Hankel constructed using Singular Spectrum Analysis, as well as of its decomposition through Principal Component
Analysis via Partial Least Squares, we implement a graphical display employing the biplot methodology. A diversity of
types of biplots can be constructed depending on the two matrices considered in the factorization of the trajectory matrix.
In this work, we discuss the called HJ-biplot which yields a simultaneous representation of both rows and columns of the
matrix with maximum quality. Interpretation of this type of biplot on Hankel related trajectory matrices is discussed from a
real-world data set.

Keywords Singular Spectrum Analysis, NIPALS algorithm, Biplots
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1. Introduction

Time series (TS) data emerge in many scientific fields. The analysis of this type of data can be based on the time or
the frequency domain. When its evaluation is based on time-domain, parametric models are proposed. When the
study is in terms of frequency-domain, approaches using non-parametric models, such as the Spectral Analysis, are
usually developed. A TS can be classified as stationary if properties of the underlying generation process do not
change over time, e.g., the mean and the variance are constants. Otherwise, the TS is said to be nonstationary and,
in this case, can reveal a trend, i.e., a smooth and slowly varying part of the series. Any TS can be decomposed
into a variety of components, for instance, (1) global trend (only for nonstationary TS), (2) oscillatory shape, e.g.,
a seasonal variation, and (3) irregular component, or noise. Generally, it is possible to model the trend by mean of
a low degree polynomial function

f(t) = a0 + a1t + · · · + amtm

where t is the time, ai are real constants and m denoting here the degree of the polynomial function. Likewise, the
regular oscillatory, with a period p, can be synthesized as a function g(t) defined by a linear combination of sines
and cosines with constant coefficients, i.e., expressed as a Fourier series

g(t) =

p∑

m=0

(αm cos(ωmt) + βm sin(ωmt))
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where ωm = 2πm/p. Thus, a classic model of a TS may be obtained by a systematic component, given by the
addition (or multiplication) of f(t) and g(t), plus a random component defined by a white noise, {εt}, which is
independent of the signal.

Singular Spectrum Analysis (SSA) is a methodology used in Time Series Analysis for many different purposes,
such as exploratory inspection and forecasting [6]. Differently from other techniques, the SSA does not take into
consideration whether the model is additive or multiplicative. Besides, no trend model or previous knowledge
about the periodicity of the series is required to apply SSA [5]. In the basic version of SSA, the object is a one-
dimensional real-valued TS and consists of two successive stages. In the first one, the decomposition stage, the
TS is transformed into a Hankel matrix, named as trajectory matrix, on which the Singular Value Decomposition
(SVD) is applied, resulting in the summation of rank-one matrices. Next, in the reconstruction stage, some of
these rank-one matrices are grouped appropriately (grouping step). From those groups, in the so-called diagonal
averaging step, an approximation for the original object or components of the TS, like trend, oscillatory shape,
and noise, separately, can be obtained. The form of a TS and the eigenvectors resulting from the decomposition
of its trajectory matrix are related. Thus, the graphical representation of these eigenvectors is a proper way to
visualize the components of a TS. For example, a plot of the first eigenvector is suitable to evaluate the existence
of a trend. In turn, a scatterplot of two eigenvectors close to each other can determine a geometric pattern in some
cases, being useful for assessing the existence of a seasonal component ([6] for more details). This work presents
a graphical tool based on pairs of eigenvectors that, in the same plot, combines more information and can lead to
the identification of relevant features of a TS.

For any matrix Z whose rank is r, the SVD factorization provides the best approximation matrix Z̃, in the
least-squares sense, whose rank is less than r. Further, if Z̃ has rank 2, then the SVD allows practical graphical
representations of both rows and columns of the approximation matrix employing the Biplot method [2, 3]. Biplots
provide easier interpretations and are much more informative than the traditional scatterplots, beyond that might
facilitate the work in the grouping step in SSA. Several types of biplots can be constructed depending on how
the three factors identified by SVD are aggregated to obtain only two factors. Herein, the option is the HJ-biplot
method proposed by Galindo (1986), which yields a simultaneous representation of both rows and columns of Z̃
with maximum quality [3].

Taking the Hankel-related trajectory matrix arisen from Basic SSA, an HJ-biplot type exploratory tool is
constructed to visualize and identify patterns in nonstationary TS, and its interpretation is discussed. This work
suggests the factorization of the trajectory matrix using the Nonlinear Iterative Partial Least Squares (NIPALS)
algorithm [14] since it is capable of dealing with missing values, commonly in TS, without employing any
imputation method [13, 15]. For complete matrices, it is essential to point out that the NIPALS algorithm provides
equivalent results to their factorization via SVD concerning the singular vectors and the singular values.

The paper is organized as follows. In Section 2, a short overview of theoretical background related to methods
involved in this work is provided. In Section 3, the proposed biplot approach to the SSA method and its
interpretation are discussed. In Section 4, the suggested technique is performed on a real-world TS using the
statistical software R [12]. Some R-code fragments are indicated. Conclusions are presented in Section 5.

2. Methods

2.1. Basic Singular Spectrum Analysis

Consider a real-valued TS Y = (y1, , yn) of length n. Basic SSA is a model-free tool used to recognize and identify
the structure of Y [6]. As aforementioned above, the SSA consists of two complementary stages: decomposition
and reconstruction. Each stage in this algorithm includes two steps.
First Stage: Decomposition.
Let ℓ (1 < ℓ < n) an integer value representing the so-called window length, as well as κ = n − ℓ + 1. Hereupon,
the embedding procedure consists in representing Y in κ lagged vectors x1, · · · ,xκ, each one of size ℓ (ℓ-
lagged vectors), i.e., xj = [yj , , yj+ℓ−1]

′, 1 ≤ j ≤ κ. This sequence of κ vectors forms the trajectory matrix
X = [x1 · · ·xκ], a Hankel matrix that has in its columns the ℓ-lagged vectors. Thus, the trajectory matrix consists
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of the transformation of a time series into a Hankel matrix by means of an embedding operator T , such that

T (Y ) = X =




y1 y2 y3 · · · yκ

y2 y3 y4 · · · yκ+1

y3 y4 y5 · · · yκ+2

...
...

...
. . .

...
yℓ yℓ+1 yℓ+2 · · · yn




Next, SVD is executed for the trajectory matrix X resulting

X =

d∑

i=1

√
λiuiv

′
i ,

where d = rank(X), λi, i = 1, · · · , d, are the eigenvalues of the matrix X′X arranged in decreasing order of
magnitudes (λi > 0), and associated to the orthonormal system of the eigenvectors {v1, · · · ,vd} of X′X, and

ui = Xvi/
√

λi .

The elements of the triple (
√

λi,ui,vi) are also known as singular values, left and right singular vectors of X,
respectively. Besides, defining

Xi =
√

λiuiv
′
i,

X can be represented by a sum of d 1-rank matrices, i.e.,

X = X1 + · · · + Xd. (1)

Second Stage: Reconstruction.
Once the expansion (1) has been determined, the second stage of SSA starts with the partitioning of the index set
{1, · · · , d} into disjoints subsets Ij , j = 1, · · · , p, leading to the decomposition given as follows

XI = XI1 + · · · + · · ·XIp ,

where XI =
∑

i∈I

Xi. The intention of the grouping procedure is the separation of the additive components of the

TS [7]. The objective of the next phase, the diagonal averaging step, is to take each matrix XIj of the grouping step
and transform it into a Hankel matrix X̃Ij

, converting the result into a TS [6] by means of

Ỹ Ij = T −1
(
X̃Ij

)
.

2.2. PCA through NIPALS

The NIPALS algorithm belongs to the Partial Least Squares (PLS) family, a set of iterative algorithms that
implement a wide range of multivariate explanatory and exploratory techniques. The NIPALS is designed as an
iterative estimation method for Principal Component Analysis (PCA), that computes the principal components
through an iterative sequence of simple ordinary least squares regressions [13, 14]. NIPALS on X produces a
decomposition of the matrix so that the principal components are computed one-by-one [13], providing equivalent
results to the SVD concerning the singular vectors and the singular values. A particular feature of the NIPALS
algorithm is that, in each iteration, only present data are considered in the regressions performed, ignoring the
missing elements. It is equivalent to defining all missing points as zero in the least-squares objective function.
Therefore, in the case of missing data, no imputation method is necessary when applying NIPALS, which can be
evaluated as an advantage over the SVD.
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Considering a d-rank trajectory matrix, the algorithm decomposes X as a sum of d 1-rank matrices in terms of
the outer product of two vectors, a score ti and a loading pi, so that

X = t1p
′
1 + · · · + tdp

′
d.

The elements of the scores vector ti are the projections of the sample points on the principal component (PC)
direction, while each loading in pi is the cosine of the angle between the component direction vector and a variable
axis [4]. The NIPALS first computes t1 and p1 from X and, then, the outer product t1p

′
1 is subtracted from X

to calculate the residual matrix E1. After, E1 is used to compute t2 and p2, and the residual E2 is calculated
subtracting t2p

′
2 from E1, and so on until to obtain td and pd. The NIPALS algorithm is shown in Algorithm 1.

Algorithm 1 (NIPALS)
Input: E0 = X
Output: P = [p1 · · ·pd], T = [t1 · · · td]

For all i = 1, · · · d Do
1) initialize ti

2) Repeat
pi = E′

i−1ti/t
′
iti

pi = pi/||pi||
ti = Ei−1pi

until convergence of pi

3) Ei = Ei−1 − tip
′
i

End For

From the internal relations in each iteration of the NIPALS algorithm, and after normalizing ti, such that

t∗
i = ti/||ti|| ⇐⇒ ti =

√
t′
itit

∗
i ,

the following equations can be verified [13]:

E′
i−1Ei−1pi = λipi (2)

Ei−1E
′
i−1t

∗
i = λit

∗
i , (3)

where λi = t′
iti is the eigenvalue of both matrices E′

i−1Ei−1 and Ei−1E
′
i−1, as well as pi and t∗

i are their
corresponding eigenvectors with unit norm. In the first iteration of the algorithm, i.e., for i = 1, the equations
in (2) and (3) are reduced to

X′Xp1 = λ1 p1

XX′ t∗
1 = λ1 t∗

1

and it is clear that the first normalized score vector and the first loading vector are exactly the first left and right
singular vectors of X, respectively, as well as

√
t′
1t1 returns the first singular value of X. Moreover, for i > 1,

and considering the column space of X, the NIPALS computes the i-th principal component over the orthogonal
complement of the subspace t1p

′
1 + · · · + ti−1p

′
i−1, which is equivalent to the SVD approach of imposing the

orthogonality restriction among singular vectors when maximizing its objective function. It implies yet that, ∀
i = 1, · · · , d, t∗

i and pi are equal to the left and right singular vectors of the SVD of X, respectively, and each√
t′
iti is the corresponding singular value. The NIPALS decomposition of X is then given by

X =
√

t′
1t1t

∗
1p

′
1 + · · · +

√
t′
dtdt

∗
dp

′
d. (4)

Defining the matrix Σ as a diagonal matrix containing the singular values
√

t′
iti arranged in decreasing order, one

can write the matrix form of the expansion (4) as

X = T∗ΣP′, (5)

where T∗ is the (unit-)scores matrix whose column vectors t∗
i are orthonormal, and P is the (unit-)loadings matrix

whose column vectors pi are also orthonormal.
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2.3. Biplots

Biplot is a 2- or 3-dimensional graph that allows the joint plotting of both objects and variables of multivariate
data sets [2]. Biplots can reveal essential characteristics of multivariate data structure, e.g., patterns of correlations
between variables or similarities between observations [8]. Consider a d-rank target (ℓ × κ) data matrix X with
factorization in the form

X = GH′, (6)

where G is a (ℓ × q) matrix and H is a (κ × q) matrix, with q ≤ d. The matrices G and H create two sets of q-
dimensional points. If q = 2 then the rows and columns of X can be simultaneously represented in the so called
biplot, in which the rows of G are reproduced by points and the columns of H′ are depicted as vectors connected
to the origin (arrows). When q > 2, the best 2-rank approximation of X, in the sense of least square, is considered.
Thus, a (2-dimensional) biplot displays both row markers g1, · · · ,gℓ and column markers h1, · · · ,hκ of X, such
that the inner product g′

ihj provides an approximation to the element xij of X [9]. Based on SVD of X, many
factorization form of X can be taken into account, and hence different choices of G and H, and types of biplots
[8]. From the equation (5), and considering G = T∗ and H = PΣ, the resultant factorization is characterized
by preserving the column metrics of X, and the associated biplot is called Gabriel biplot, or classic biplot or
covariance biplot or GH-biplot. In this case, if X has been centered by columns, this type of biplot satisfies the
following properties [9]:

• The norm of a column marker hj is proportional to the standard deviation of the respective variable;
• The cosine of the angle formed by column markers approximates the correlation between the related

variables;
• The columns are better represented than the rows in terms of quality.

On the other hand, by defining G = T∗Σ and H = P, this factorization will preserve the metric of the rows in
the so-called form biplot or JK-biplot, in which the Euclidean distances between the row markers approximate the
Euclidian distances between the respective individuals in the full space, and the quality of representation of the
rows is better than the columns.

Based on SVD, a different type of biplot, called HJ-biplot, was proposed in 1986 by Galindo [3] in which optimal
quality representation of the ℓ rows and the κ columns of X is ensured in the same Euclidean space. An HJ-biplot
version based on NIPALS instead of the SVD can be constructed taking the rows of the matrix J = T∗Σ as row
markers, and the rows of the matrix H = PΣ as column markers of X. Indeed, from the NIPALS decomposition
in (5), results that

XP = T∗ΣP′P = T∗Σ.

So, the ℓ rows of the matrix J = T∗Σ correspond to the projections of the ℓ points represented by the rows
(individuals) of X onto the subspace spanned by the loading vectors p1 and p2, that is, the best-fit two-dimensional
subspace for X. Likewise, the κ rows of the matrix H = PΣ coincide with the projections of the κ points expressed
by the columns (variables) of X onto the subspace spanned by the normalized score vectors t∗

1 and t∗
2, as seen

below:
(T∗)′X = (T∗)′T∗ΣP′ ⇐⇒ X′T∗ = PΣ

From (5) follows that both row and column representations of X, XP and X′T∗, respectively, are related since

B = X′AΣ−1 and A = XBΣ−1,

where B = X′T∗ and A = XP. It means that the coordinates of the variables can be expressed as a weighted
average of the coordinates of the individuals, and vice-versa. As a consequence, it allows the representation of the
rows and columns in the same cartesian coordinates system with optimal quality of representation [3, 9]. However,
in the HJ simultaneous representation, the inner product j′ihj does not provide an approximation to the element
xij , i = 1, 2, · · · , ℓ and j = 1, 2, · · · , κ, of X anymore, and consequently

X ̸= JH′

Accordingly, the interpretation of the HJ-biplot representation can be performed as follows:
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• The distance between points corresponds to how different the associated individuals are (dissimilarities), just
like in JK-biplots;

• As it occurs in GH-biplot, the size of an arrow (variable) is proportional to the standard deviation of the
associated variable, i.e., the longer the arrow, the greater the correspondent standard deviation;

• The cosine of the angle between arrows approximates the correlation between the variables they represent.
Thus, if the angle is next to 90 degree it indicates a poor correlation, while an angle close to 0 degree or 180
degree suggests a strong correlation, being positive in the first case and negative in the other.

3. The SSA-HJ-Biplot

In the basic version of the SSA, the trajectory matrix that will be decomposed by the NIPALS algorithm has
some peculiarities in relation to the usual multivariate data matrix. Instead of individuals and variables, the rows
and columns of the Hankel trajectory matrix represent κ-lagged and ℓ-lagged vectors of a univariate time series,
respectively. A row marker, determined by the rows of T∗Σ, i.e., j′i = t′

i, i = 1, · · · , ℓ, is depicted as a point in the
SSA-HJ-biplot and corresponds to a κ-lagged vector. Each HJ-biplot point may receive a label from identifying
the period, e.g., month or year, in which that κ-lagged vector begins, and thus improve the graph interpretation
regarding the data. It means that the points in the SSA-HJ-biplot can represent not only the κ-lagged vectors that
start in a given period but also the month itself. In turn, an arrow represents the column marker associated with a
ℓ-lagged vector. An SSA-HJ-biplot uses any two principal components to visualize information about a TS in an
integrative way, since the row and column markers are displayed simultaneously on the same graph, with maximum
representation quality. In its turn, each PC is associated with a TS component, e.g., trend, seasonality, and noise,
explaining a proportion of the variability of the data, given by

PC%(i) =
t′
iti∑d

j=1 t′
jtj

. (7)

Some auxiliary graphs can reveal this relationship between a PC and a TS component. For instance, in a scree plot
of

√
t′
iti [5], most of the time the first principal components are related to highlighted singular values, indicating

an association with the trend. Once these PCs are identified, one can visualize the trend plotting each one of these
PCs against an index j = 1, · · · , κ. Some precautions are necessary to obtain the best results when constructing the
SSA-HJ-biplot. For example, the window length ℓ has to be large enough so that each ℓ-lagged vector captures a
substantial part of the behavior of the TS [6]. Still, but at the same time, it should permit the interpretability of the
graphics display. A window length equals to n/2 provides both capabilities because it allows for a most detailed
decomposition [6]. Beyond that, it is worth keeping in mind, the higher the percentage of variability explained, the
better the quality of the adjustment of the SSA-HJ-biplot [3].

The interpretation of the SSA-HJ-biplot for a Hankel trajectory matrix is performed as follows:

• Proximity of points. Biplot points whose euclidean distances are small imply similarity in the behavior of
the associated κ-lagged vectors; hence, if there is a natural number π such that

||gt − gt+π|| ≈ 0, ∀t ,

then,
||(yt, · · · , yt+κ−1) − (yt+π, · · · , yt+π+κ−1)|| ≈ 0, ∀t .

This fact leads to suspect that (yt, · · · , yt+κ−1) = (yt+π, · · · , yt+π+κ−1), for all t, which means that the TS
might have periodic fluctuations (seasonality) with period π;

• Length of biplot vectors. If some arrows have roughly the same size, this indicates that the correspondent
ℓ-lagged vectors have standard deviation also close; hence, if there is a natural number τ < κ such that

||hτ || ≈ ||hτ+j ||, ∀j = 1, 2, · · · , κ − τ ,
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then,
var(xτ ) ≈ var(xτ+j), ∀j = 1, 2, · · · , κ − τ ,

which suggests that the TS (y1, · · · , yt, · · · , yn) might be generated by a variance stationary process for
t > τ ;

• Angle between two biplot vectors. If the angle between two arrows is close to 90 degrees, a correlation near
to zero is expected which means no similar behaviors of the respective ℓ-lagged vectors. If the angle between
two arrows is next to 0 (180, resp.) degree, then a strong and positive (negative, resp.) correlation between
the two ℓ-lagged vectors associated is suspected. Thus, if there exists a natural number η < κ such that

| cos (∠(hj ,hj+η)) | ≈ 1, ∀j = 1, · · · , τ,

for some τ ∈ {1, · · · , κ − η}, then

|cor(xj ,xj+η)| ≈ 1, ∀j = 1, · · · , τ.

Consequently, there are real constants a and b ̸= 0 such that yj+η ≈ a + byj , for j = 1, · · · , τ . This means
that (y1, · · · , yκ) might be generated by a τ -th order stationary process.

As a rule, a singular value represents the contribution of the corresponding PC in the form of the TS. As the trend
generally characterizes the shape of a TS, its singular values are higher than the others, that is, they are the first
eigenvalues [1]. It means that the directions of the highest variability of a time series are related to the trend, and as
mentioned before, it can be modeled employing a low degree polynomial function, such as in (1). Still, when two
singular values are close enough, i.e., √

t′
iti ≈

√
t′
hth,

this is an evidence of the formation of plateaus in the scree plot and indicates that the associated PC is informative
about the oscillatory components of the TS [6], as long as the principal component explains high variability of the
data. It occurs because the periodical shape of a TS can be expressed as a Fourier series, as in (1). Consequently,
for each m, the sine and cosine of (ωmt) will determine orthogonal directions of a pair of PC, and the associated
singular values will be close to each other. Apart from the interpretation of similarities using Euclidean distances,
the projections of the biplot points into a PC axis helps in the identification of the TS components. If the projections
evolve in time in the same principal component growth direction, it means this PC is associated with the trend, as
well as the trend is crescent. Otherwise, if the evolution in time occurs in the opposite direction, the trend is
decreasing. Moreover, this procedure allows detecting a trend change direction quickly. In turn, a pattern in terms
of proximity between the projections can occur. In this case, it indicates the correspondence between the PC and
the periodicity of the TS.

4. Example

In this section, a real-world TS is used to demonstrate the capabilities of the SSA-HJ-biplot. Two R-libraries
accompany this study: imputeTS [10] which contains a function for obtaining graphical representations of TS
with missing data, and nipals [16] which is aimed to perform PCA using NIPALS algorithm. This TS (data in
the R-code below) contains the records of the carbon dioxide concentration in the Earth’s atmosphere, measured
monthly from January of 1965 to December of 1980 (n = 192) at an observing station on Mauna Loa in Hawaii
[11]. This time series is referred to as TS CO2 in this work and presents missing data, as can be verified in Figure
1. For constructing this plot, the following R-code was used:

> Y <- ts(data, start=1965, end=1980, frequency = 12)
> library(imputeTS)
> plotNA.distribution(Y, main="Monthly Dioxide Carbon Concentration

+ (ts CO2)",xlab="", ylab="CO2 concentration")
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Figure 1. Records of carbon dioxide (CO2) concentration in the Earth’s atmosphere measured monthly from January of 1965
to December of 1980 at an observing station on Mauna Loa in Hawaii. Missing data are represented in red.

As mentioned before, the NIPALS algorithm handles the missing values conveniently without the need to
complete the data. For the execution of the NIPALS algorithm on the (ℓ × κ) trajectory matrix (X), the following
R-code was used:

> n = 192; L = ceiling(n/2); K = n - L + 1
> X = outer((1:L),(1:K),function(x,y) data[(x+y-1)])
> library(nipals)
> res = nipals(X, center = TRUE, scale = FALSE)

In the embedding step of the SSA, the window length used was ℓ = n/2 = 96 observations, resulting in
κ = 97. The R-object res above contains, among others, the (unit-)scores matrix T∗, the diagonal matrix Σ, and
the (unit-)loadings matrix P related to the NIPALS decomposition (5) of the trajectory matrix, and are computed as:

> Tstar = res$scores
> Sigma = diag(res$eig)
> P = res$loadings

respectively. Table 1 shows the proportion of variability explained by the ten first PC and calculated according
to (7). Therefore, it turns out that the five first PC explain about 98% of the data variability, with less than 2%
remaining from the 6th PC onwards. In its turn, Figure 2 brings the scree plot, in which the dominant singular
value

√
t′
1t1 represents the 1st PC and explains about 67% of the data variability, being associated with the trend.

Figure 3 shows the first SSA-HJ-biplot, in which the biplot points are labeled with the month and year when the
κ-lagged vector starts, ranging from January of the first year (J1) to December of the eighth year (D8). The biplot
markers displayed in Figure 3 were obtained using the following R-code:

> J = Tstar %*% Sigma
> H = P %*% Sigma
> points(J[,1],J[,2],col="blue")
> arrows(0,0,H[,1],H[,2],length=0.1,lwd=1, col="grey")
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Table 1. Proportion of variability explained by the ten first principal components

PC (i) Variance (%) PC (i) Variance (%)
1 66.830 6 0.376
2 14.707 7 0.316
3 14.444 8 0.291
4 1.096 9 0.106
5 1.070 10 0.080
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Figure 2. Scree plot of the singular values of the trajectory matrix after NIPALS decomposition.

> arrows(0,0,H[1:6,1],H[1:6,2],length=0.1,lwd=1, col="black")

It can be verified in Figure 3 that as the 1st PC increases, the projection of the points representing the κ-lagged
vectors also progress over time, indicating a crescent trend. On the other hand, the projections into the 2nd PC
determine a pattern in terms of proximity regarding the months, i.e., projections of points with the same tag, e.g.,
J1, · · · ,J8, always falls close to the same coordinate. This pattern repeats for all months and indicates, then, a
periodicity of twelve months. Therefore, the first SSA-HJ-biplot combines different structural components of the
TS CO2, since the 1st PC is related to trend and the 2nd PC to seasonality.

Still in Figure 3, for any year, points near to each other indicate similarity in the behavior of the κ-lagged vectors,
e.g., the set of points {A,Y,U} or {O,N,D}. It means that the κ-lagged vectors starting in April, May, and June, or
the κ-lagged vectors beginning in October, November, and December resemble each other in terms of the object
of interest. Also, the labeling strategy proved to be useful to capture the series behavior in the month itself, since
April, May, and June correspond precisely to the periods in which the highest concentration of carbon dioxide
occurs in the atmosphere. Besides, October, November, and December are the months with the lowest measured
level of CO2.

In turn, the column markers (ℓ-lagged vectors) are represented as black arrows up to the sixth ℓ-lagged vector
(tagged as L1, . . . , L6 in Figure 3), ordered from top to bottom. From the seventh ℓ-lagged vector onwards, the
pattern repeats itself, and so they were plotted in gray. It means that the first group of arrows, which is at the top,
refer to the ℓ-lagged vectors beginning in January and July, just below those as starting in February and August, and
so on. The angle between two consecutive arrows Li and Lj, such that i = 1, · · · , 5 and j = i + 1, indicates a strong
autocorrelation between the respective ℓ-lagged vectors since Li and Lj form very sharp angles. Comparing the
angles between L1 and the others up to L6, they vary from a value close to 0o to a value close to 90o, which suggests
a fading of the autocorrelations. Figure 4 shows the SSA-HJ-biplot formed by the 2nd and 3rd PCs, while Figure
5 exhibits the SSA-HJ-biplot constructed from the 4th and 5th PCs. Along with the first SSA-HJ-biplot, these are
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Figure 3. First SSA-HJ-biplot, constructed with the 1st and 2nd PC.

the only ones that produce interpretable results or evidence some pattern in the time series, being that these results
are in agreement with the one verified in the scree plot of the singular values in Figure 2, where the pair of points
related to

√
t′
2t2 and

√
t′
3t3 are around at the same level, the same concerning

√
t′
4t4 and

√
t′
5t5. In Figure 4,

there are 12 distinct groups of row markers, each one of them referring to a κ-lagged vector starting in a specific
month. Also, the column markers associated with each one of these groups show strong autocorrelation between
the ℓ-lagged vectors. All of this indicates a seasonal pattern, with peaks and valleys separated by 12 months. In
turn, the SSA-HJ-biplot in Figure 5 groups the lagged vectors two by two, e.g., January and July, February and
August, and so on. Interpreting this together with the biplot in Figure 4, where these same groups occur but in the
opposite directions, one can conclude that the valleys tend to be six months behind the peaks.

Therefore, the result of the grouping step for the decomposition of the TS CO2 should be X1 and X2, the first
corresponding to the trend component, and the second describing the seasonal component, in which

X1 =
√

t′
1t1t

∗
1p

′
1 ,

and

X2 =

5∑

i=2

√
t′
itit

∗
i p

′
i ,

with the remaining being related to the noise component. The application of the diagonal averaging procedure over
X1 and X2 produces the reconstructed series Ỹ (1) and Ỹ (2), whose graphical representations are shown in Figure
6.
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Figure 4. Second SSA-HJ-biplot of the 2nd and 3rd PCs describing an oscillatory component of TS CO2 of period 12
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Figure 5. Third SSA-HJ-biplot of the 4th and 5th PCs also describing an oscillatory component of TS CO2.
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Figure 6. Separation of the trend and seasonal components of TS CO2 using the SSA-HJ-biplot technique.

5. Conclusions

This paper attempts to provide an integrative graphical tool to visualize and understand the underlying structure
of the trajectory matrix, which is the result of the embedding step of the SSA. The SSA-HJ-biplot visualization
method appears to be a promising exploratory technique, as it provides interpretability for the results of the SSA
decomposition step, as illustrated by an example in this work. The SSA-HJ-biplots and auxiliary graphics provided
a visual solution for the decomposition of the analyzed time series, properly separating the trend and the oscillatory
component, using biplot axes up to the 5th PC. Also, it allowed the identification of all relevant eigentriple,
composed by the singular values

√
t′
iti, by the left singular vectors t∗

i , and by the right singular vectors pi,
i = 1, , 5, to perform the grouping step. The study also revealed that the SSA-HJ-biplot points, representative of the
row markers (j′i), can also depict the period itself in terms of dissimilarities, being possible to visually verify the
months with the highest and lowest levels of CO2 concentration in the atmosphere throughout the years. The first
SSA-HJ-biplot, built using the 1st and 2nd PCs, proved yet to be useful in dealing with autocorrelations between
the column markers, which are drawn as arrows and represent the ℓ-lagged vectors. This study is promising in
the sense that the SSA-HJ-biplot has great potential as an exploratory tool to analyze the structure of a univariate
TS due to its visual appeal in such a complex issue. Nevertheless, TS may present complicated characteristics
that make their analysis more challenging. For instance, prior detection of change-points in the TS is essential to
highlight vital features, and consequently, to provide a better interpretation of SSA-HJ-biplots in complex TS data.
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An SSA-HJ-biplot is a tool designed to visualize the characteristics of a
time series, having an exploratory nature. The graphical display is based on
the HJ-biplot methodology and the NIPALS decomposition of Hankel (ℓ×κ)
trajectory matrices. The approach aims to increase the visual interpretability
of the Singular Spectrum Analysis method, making the grouping step easier.
In this work, we detail the interpretation of this type of biplot when ℓ ≈ κ
and for columns-centered trajectory matrices, associating the eigenstructure
to the components of the time series.

keywords: Singular Spectrum Analysis; HJ-biplot; Hankel matrix; NI-
PALS algorithm.

1 Introduction

The Singular Spectrum Analysis (SSA) is a non-parametric procedure based on principal
components (PC) and used for signal extraction in time series (TS) analysis. The SSA
can be used to decompose the original TS into a sum of a small number of interpretable
components, like a slowly varying trend, different oscillatory components, and a noise
(Golyandina et al., 2001). Briefly, in the basic version of SSA, a one-dimensional real-
valued TS is transformed into a Hankel matrix, the so-called trajectory matrix (X).
The singular value decomposition is applied on , resulting in a summation of rank-one
matrices. Some of these rank-one matrices are grouped appropriately in the grouping

∗Corresponding author: albertos@ua.pt
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step, and one can reconstruct the TS components by applying the diagonal averaging
step over each obtained group.

SSA has been applied to several fields, e.g., i) for forecasting and exploratory purposes
in economic data (Hassani and Zhigljavsky, 2009; de Carvalho et al., 2012); ii) for
forecasting the number of cases, deaths, and recoveries of disease in public health data
(Kalantari, 2021); and iii) understanding temperature and precipitation behavior in
climate records (Benzi et al., 1997). Despite being a powerful technique, SSA presents
some frailty in identifying the eigenvalues associated with the oscillatory components in
the grouping step (Hassani and Mahmoudvand, 2018). Because of this problem, SSA
requires external intervention to identify the extracted components’ harmonic frequencies
(Bógalo et al., 2017). Several studies have addressed the issue, emphasizing Ghil and
Mo (1991), who associated the oscillatory component with two eigenvalues close to each
other; the use of a periodogram to identify the association of pairs of eigenvectors to
a harmonic by Vautard et al. (1992); the application of cluster analysis proposed by
Alonso and Salgado (2008); the use of the asymptotic properties of a Toeplitz matrices’
eigenvalues to relate SSA and the Fourier analysis suggested by Bozzo et al. (2010); and
applying a versioned SSA based on circulant matrices Bógalo et al. (2017).

The SSA-HJ-biplot (da Silva and Freitas, 2020) was developed to improve the visual
interpretability of the SSA and can also be an alternative method to identify the PCs
associated with the harmonics. The tool takes advantage of the trajectory matrix de-
composition results and consists of a version of the biplot proposed by Galindo (1986).
On it, the HJ-biplot simultaneously represents both rows and columns of X through
markers computed from the left and right singular vectors.

Usually, the row and column markers express variables and individuals in the multi-
variate analysis context. On the other hand, they refer to lagged vectors in the SSA-HJ
biplot, i.e., they designate subseries of the original TS. Even so, the biplot interpreta-
tion remains valid regarding Euclidean distances, angles, and projections, with their due
specificities. In addition, other meanings and insights emerge from the SSA-HJ-biplot,
bringing different points of view regarding the relations between singular vectors and
singular values and the components of the TS. This investigation aims to look into pos-
sible interpretations made from the visual inspection of an SSA-HJ-biplot, going beyond
those elaborated according to the more general characteristics and properties of an ordi-
nary HJ-biplot. That includes a suggestion to identify the eigenstructure related to the
oscillatory components of a TS.

The paper is organized as follows. In Section 2, a short overview of the theoretical
background of the SSA and the SSA-HJ-biplot technique is provided. In Section 3,
the general bases for interpreting the SSA-HJ-biplot are first presented and then some
specific insights from the graphical results are shown. In Section 4, after applying
the tool on two real-world TS using the statistical software R (R Core Team, 2021),
the suggested interpretation is performed on the graphs produced. Discussions and
conclusions are presented in Section 5.
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2 Methodology

2.1 The basic SSA

Consider a real-valued time series Y = (y1, · · · , yn) of length n. To construct a graphical
tools to exploit features of Y , we consider the embedding procedure of the Basic SSA in
representing Y in κ lagged vectors x1, · · · ,xκ, each one of size ℓ (ℓ-lagged vectors), i.e.,
xj = [yj , · · · , yj+ℓ−1]

′, 1 ≤ j ≤ κ, where ℓ (1 < ℓ < n) is an integer value representing
the so-called window length and, consequently, κ = n− ℓ+1. This sequence of κ vectors
forms the trajectory matrix X = [x1 · · ·xκ] of Y which is defined by a Hankel matrix
with ℓ-lagged vectors by columns and given by

X =




y1 y2 y3 · · · yκ

y2 y3 y4 · · · yκ+1

y3 y4 y5 · · · yκ+2

...
...

...
. . .

...

yℓ yℓ+1 yℓ+2 · · · yn




(1)

The next step is to decompose the trajectory matrix into singular values, centering
X or not. For example, centering X by the columns is suitable when the TS presents a
trend since it extracts linear-like signals (Golyandina et al., 2001). The procedure starts
from computing the matrix

C =
1

ℓ
1ℓ1

′
ℓX, (2)

in which 1ℓ = (1, · · · , 1)′, and in which C has ℓ identical rows. Then, the columns-
centered trajectory matrix is

X̃ = X−C, (3)

where each column of X−C results from the comparison, in an all-to-one way, of ℓ
terms (all) of the TS Y with a single element (one) of the moving average series of order
ℓ, as illustrated in Figure 1.

Concretely, X̃ is defined by κ vectors vj so that

X−C = [v1 v2 · · · vκ], (4)

and, for j = 1, · · · , κ,

vj = [(yj − ȳj) (yj+1 − ȳj) · · · (yj+ℓ−1 − ȳj)]
′, (5)

where

ȳj =
1

ℓ

j+ℓ−1∑

i=j

yi. (6)
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Figure 1: Columns centering all-to-one scheme (lines’ length conceived just for the sake
of illustration).

In terms of the rows, centering X by the columns corresponds to comparing, in a
one-to-one way, each of the κ observations in Y with κ moving averages of order ℓ.
Figure 2 schematically illustrates the terms of the comparison for a hypothetical series.
Specifically,

X−C = [u′
1 u′

2 · · · u′
ℓ]
′, (7)

such that

u′
i = [(yi − ȳ1) (yi+1 − ȳ2) · · · (yi+κ−1 − ȳκ)]. (8)

The second step of the SSA consists of the decomposition of X̃ using the NIPALS
algorithm, such that

X̃ = T∗ΣP′, (9)

in which i) T∗ is the normalized scores matrix whose column vectors t∗i are orthonormal;
ii) P is the loadings matrix whose column vectors pi are also orthonormal; and iii) Σ
is a diagonal matrix containing the singular values

√
t′iti arranged in decreasing order,

and ti is the ith score vector of X̃. Another way to express (9) is by writing it as a
summation of d 1-rank matrices, as below:

X̃ =
d∑

i=1

X̃i =
√
t′1t1t

∗
1p

′
1 + · · ·+

√
t′dtdt

∗
dp

′
d, (10)
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Figure 2: The row vectors u′
1 and u′

i of the columns-centered trajectory matrix according
to the one-to-one scheme (lines’ length and parallelism conceived just for the
sake of illustration).

where d is de rank of X̃. The decomposition will reflect the columns v1, · · · ,vκ and rows
u′
1, · · · ,u′

ℓ in terms of the orthogonal vectors p1, · · · ,pd and t∗1, · · · , t∗d, respectively.
The following step consists of grouping the elementary matrices X̃i intom < d disjoint

groups, summing them within each group. Let Ik = {k1, · · · , kp}, k = 1, · · · ,m, be each
disjoint group of indices corresponding to the respective eigenvectors. Doing so, the
matrix X̃Ik = X̃k1 + · · ·+ X̃kp corresponds to Ik group. Consequently,

X̃ = X̃I1 + · · ·+ X̃Im . (11)

The last step (diagonal averaging) transforms each matrix X̃Ik into a Hankel matrix
XIk , converting the result into a TS, such that

ỸIk = T −1 (XIk) , (12)

in which T represents the embedding operator. Additionally, since

X =
d∑

i=1

X̃i +C, (13)

the matrix C yields an apart TS component afterward applying the diagonal averaging
step.
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2.2 The SSA-HJ-biplot construction

The primary purpose of the SSA-HJ-biplot is to be an auxiliary visualization tool in the
decomposition of a TS. Therefore, it applies between the trajectory matrix decomposition
step and the 1-rank matrix grouping step. For the two first PC, the SSA-HJ-biplot
considers the rows of the matrix J = T∗

2Σ2 as row markers, and the rows of the matrix
H = P2Σ2 as column markers of X̃, being that T∗

2 and P2 denote the first two columns
of T∗ and P, and Σ2 the diagonal matrix containing the two largest singular values in
decreasing order. Consequently,

X̃P2 = T∗
2Σ2P

′
2P2 = T∗

2Σ2. (14)

It means that the ℓ rows of the matrix J correspond to the projections of the ℓ points
representing the rows of X̃ onto the subspace spanned by the loading vectors p1 and
p2, i.e., the best-fit two-dimensional subspace for X̃. Correspondingly, the κ rows of the
matrix H coincide with the projections of the κ points expressing the columns of X̃ onto
the subspace spanned by the normalized score vectors t∗1 and t∗2, as below:

(T∗
2)

′X̃ = (T∗
2)

′T∗
2Σ2P

′
2 ⇐⇒ X̃

′
T∗

2 = P2Σ2. (15)

In addition, X̃P2 and X̃
′
T∗

2 are related since calling A = X̃P2 and B = X̃
′
T∗

2 one
can obtain

A = X̃
′
BΣ−1

2 (16)

and

B = X̃AΣ−1
2 . (17)

In other words, the coordinates of the rows of X̃ can be expressed as a weighted
average of the coordinates of the columns and vice-versa. Consequently, it allows the
representation of the rows and columns in the same Cartesian coordinates system with
optimal quality of representation (Galindo, 1986; Nieto et al., 2014). The same reasoning
goes for other pairs of PCs, with the proper adjustments. At last, in the SSA-HJ-biplot
construction, the all-to-one relations (Figure 1) of the columns of X̃ will be depicted as
arrows, while the one-to-one relations (Figure 2) of the rows of X̃ will be represented by
points.

3 SSA-HJ-biplot interpretation

3.1 Noticeable properties

1. Consider the matrix Λ = diag(λ1, · · · , λd), where λi, i = 1, · · · , d, are the eigen-

values of X̃X̃
′
, and d is its rank. In addition, keep in view that each λi = t′iti,

i.e., the respective squared singular value of X̃. Then, given that J = T∗Σ, the
following relation is established:
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JJ′ = T∗Σ(T∗Σ)′ = T∗ΣΣ′(T∗)′ = T∗Λ(T∗)′ = X̃X̃
′
, (18)

implying that the scalar product u′
iur is equal to j′ijr.

2. The Euclidean distances between two row vectors of X̃ and the distance between
the corresponding row markers in the full space are the same, so that

d2(u′
i,u

′
r) = (u′

i − u′
r)

′(u′
i − u′

r) = (j′i − j′r)
′(j′i − j′r) = d2(j′i, j

′
r), (19)

and where, from (8), if the difference between the row vectors is approximately the
zero vector, such that

(u′
i − u′

r) = [(yi − yr) (yi+1 − yr+1) · · · (yi+κ−1 − yr+κ−1)]
′ ≈ 0, (20)

then it is expected to observe the periodic behavior of the TS on the SSA-HJ-biplot,
indicating a period p = 1

k (r − i), for k = 1, · · · , ⌊np ⌋;

3. Regarding the columns of X̃, it is known that H = PΣ in the HJ-biplot scheme,
and then

HH′ = PΣ(PΣ)′ = PΣΣ′P′ = PΛP′ = X̃
′
X̃, (21)

resulting in the following properties:

• Since, for q = 1, · · · , κ, ||h′
q||2 = V ar(X̃q), the biplot arrows length approxi-

mate the standard deviation of the corresponding vq. In addition, as stated
in (da Silva and Freitas, 2020), if there is a τ ∈ N, τ < κ, such that

||h′
τ || ≈ ||h′

τ+ι|| ⇒ ||vτ || ≈ ||vτ+ι||, ∀ι = 1, 2, · · · , κ− τ, (22)

then it suggests that the ts (y1, · · · , yt, · · · , yn) might be generated by a vari-
ance stationary process for t > τ . Moreover, if ȳτ ̸= ȳτ+ι, then one can
suspect there is a trend component in the TS.

• Given that θq,r is the angle between the column markers h′
q and h′

r, then
cos(θq,r) approximates cor(vq,vr) = cor(xq,xr). Therefore, when cos(θq,r) ≈
1, this indicates that the TS might be generated by a stationary process
(da Silva and Freitas, 2020).

4. The proximity of two singular values (
√
t′iti ≈

√
t′hth) indicates that the associated

PCs are informative about the oscillatory components of the TS (Golyandina et al.,
2001).
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3.2 Initial considerations

The only parameter for the SSA is the window length. When it comes to the SSA-HJ-
biplot, choosing ℓ allows one to emphasize the representation of points or arrows. The
arrows will more faithfully reflect the series for narrower windows, i.e., for κ≫ ℓ. That
is because the longer the κ-lagged vectors, the better the trajectory matrix columns
capture the TS behavior. Otherwise, if ℓ ≫ κ, a long window length privileges the
representation of the points in the sense of detaining the shape of the TS. An alternative
choice is to opt for equilibrium, making ℓ ≈ κ. Note that this is a method that depends
on the proportion of variability explained by the components, calculated as

PC%(i) =
t′iti∑d
j=1 t

′
jtj

. (23)

In the SSA-HJ-biplot, the points and arrows are labeled according to the period when
the lagged vector starts, e.g., the month or year. Consider a TS of period p, so that
each observation refers to the terms ψ1, · · · , ψp, periodically. Thus, a biplot point j′k,
(k = 1, · · · , ℓ), will be tagged according to the ψf , (f = 1, · · · , p), of the corresponding
lagged vector’s first observation, such that f = i − υp, and where (υ = ⌊i/p⌋). With
this, it is possible to visually capture the behavior of the phenomenon under study in
terms of projections and distances between points (da Silva and Freitas, 2020).
From this moment on, let us assume an additive decomposition, in which we can write

the TS as
Y = T + S +R, (24)

where Y = (y1, · · · , yn) is the data, T is the trend-cycle, S is the seasonal component, and
R is the remainder component. First, we will examine the SSA-HJ-biplots constructed
from the PC associated with the dominant eigenvalue (trend) and from each of the
components with the highest similar eigenvalues. These last two correspond to the
dominant periodicity of the TS, with one referring to the cosine and the other to the
sine since we can express S as a Fourier series. By doing so, one can synthesize the
regular oscillatory with period p as a function s(t) defined by a linear combination of
sines and cosines such that

s(t) =

p∑

m=0

(αm cos(ωmt) + βm sin(ωmt)) , (25)

where ωm = 2πm/p. Given a pure harmonic in which ω is the frequency, and ℓ and
κ are multiples of the period p = 1/w, then the t∗i and the principal components have
the shape of sine and cosine sequences with the same p and the same phase. Hence,
to identify the PCs generated by a harmonic it is enough to determine the pairs of left
singular vectors presenting such shapes (Hassani, 2007).
As for the trend, we will approximate T by representing it through ỹt, i.e., the moving

average of order η (η-MA) such that, for η = p and t ≥ 1,

ỹt =
1

η

ν∑

i=−ν

yt+i, (26)
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where η = 2ν + 1. Somehow the PCA over the trajectory matrix is just another way to
approximate these terms, with the 1st PC representing the dominant trend (if any), pairs
of PCs with similar singular values reflect the sine and cosine for different frequencies,
and those PCs with negligible singular values are associated with noise.

3.3 Going into details

In the circumstances outlined above, the following is observed:

1. First, let’s examine the SSA-HJ-biplot constructed from the 1st PC (trend) and
the PC corresponding to the cosine direction in the pair of the largest similar
eigenvalues (2nd or 3rd PC). The biplot points j′k = (jk,1, jk,2) near to the 1st PC
axis explain the behavior of the p-MA. Also, when an observation for a determined
ψf , (f = 1, · · · , p), is located above the p-MA, it is expected that the respective j′k
will appear above the 1st PC axis. On the other hand, it will appear below, i.e.,
for k = 1, . . . ℓ,

yk − ỹk > 0 ⇒ (±jk,1,+jk,2), (27)

and
yk − ỹk < 0 ⇒ (±jk,1,−jk,2). (28)

In this case, the biplot points tend to replicate the behavior of Y concerning the
increasing or decreasing order of the observations. Hence, given that yk corresponds
to some ψf , and for k = 1, · · · , (ℓ− 1),

yk > yk+1 ⇒ jk,2 > j(k+1),2, (29)

where f = i− υp.

2. Next, considering the pair with the highest similar eigenvalues again, we will deal
with the SSA-HJ-biplot formed by the 1st PC and the one related to the sine
direction. Due to the orthogonality of the sine and cosine functions, the projections
of the trajectory matrix rows change positions in the plane formed by the factorial
axes. Thus, as long as the data are well represented, the biplot points labeled with
the ψf corresponding to tops and valleys in the TS place now near to the 1st PC,
and the same goes for the opposite case, i.e.,

max(|yk − ỹk|) ⇒ min(|jk,2|), (30)

and
min(|yk − ỹk|) ⇒ max(|jk,2|). (31)

3. In addition to the angle between the arrows, another way of interpreting the repre-
sentation of the ℓ-lagged vectors is through the cosine of the angle formed between
the arrows and a factor axis. The more acute the angle, the more the ℓ-lagged
vector is related to the axis. This relationship is called relative contribution (RC)
and represents the proportion of the variability of each ℓ-lagged vector explained
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by the PC of interest (Nieto et al., 2014). Hence, considering θ is the angle be-
tween h′

q and the axis corresponding to the ith PC, the greater the |cos(θ)|, the
more the variability of this associated column vector will have been affected by
this component.

4. The projection of a biplot point onto an arrow corresponds to the level of agreement
between the κ-lagged vector that determines the point and the ℓ-lagged vector that
induces the arrow.

4 Examples

To demonstrate the capabilities of the SSA-HJ-biplot in terms of interpretability, we
applied the SSA-HJ-biplot to two datasets. The first is a TS containing records of the
concentration of carbon dioxide in the Earth’s atmosphere, measured monthly at the
Mauna Loa observation station in Hawaii (TS CO2). The other is a dataset containing
the records of the average monthly wildfire statistics provided by the U. S. National
Interagency Fire Center (NIFC), available from January 2013 to December 2020 and
called here as TS Wildfire.

4.1 TS CO2

The TS CO2 consists of 192 observations from January 1965 to December 1980. Figure
3 shows the series with the respective 12-MA overlap.

The following procedures were applied for the construction of each SSA-HJ-biplot:
i) First, we defined the length of the window ℓ = 96, i.e., as n/2, and constructed
the trajectory matrix (X) using the embedding approach; ii) Next, we performed the
NIPALS algorithm to the centered X̃ to obtain the singular vectors (t∗i and p′

i ) and
the singular values (

√
t′iti), i = 1, · · · , d, where d is the rank of X̃; and iii) Lastly,

depending on the PCs that will function as factorial axes, we set the (ℓ × 2) matrix J
and the (κ × 2) matrix H choosing the adequate pairs of singular vectors along with
the corresponding singular values. Table 1 shows the proportion of variability explained
by the first ten PCs and computed according to (23). From Table 1, one can verify
that the eigenvalue t′1t1 is dominant, and then the 1st PC is associated with the trend.
Further, the proximity of t′2t2 and t′3t3 indicates that 2nd and 3rd PCs are related to
the periodicity of the TS. The same interpretation goes for the 4th and 5th PCs, whose
corresponding eigenvalues are close.

The set containing the labels is ψ = {J, F, · · · , D}, whose each element represents,
respectively, the months of January, February, and so on, until December. Hence, Figure
4 shows the SSA-HJ-biplot built from the 1st and 2nd PCs, which explain more than
80% of the data variability. The j′i points’ projections onto the horizontal axis evolve
in the same growth direction of the 1st PC, meaning a crescent trend. Differently, the
projections of points of the same label onto the vertical axis fall always close to the same
coordinate, indicating an association of the 2nd PC with the seasonality. Furthermore,
considering the shape of the the biplot points’ contour referring to the origin of the factor
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Figure 3: Time series CO2 representation and the respective moving average of order 12.

Table 1: Proportion of variability explained by the ten first principal components

PC (i) Variance (%) PC (i) Variance (%)

1 66.830 6 0.376

2 14.707 7 0.316

3 14.444 8 0.291

4 1.096 9 0.106

5 1.070 10 0.080

axes, we can infer that the 2nd PC is associated with the cosine direction. It can be seen
that February and August describe the behavior of the 12-MA as the points with F and
T labels are positioned close to the 1st PC along the entire axis. Within each period,
a biplot point j′i marked as Y always has the highest value compared to the 2nd PC,
which means we expect peaks to occur in May in the TS. Likewise, the j′i points tagged
as N always have the lowest values concerning the 2nd PC, so one can presume that the
valleys will appear in the series in November.

We can assume that the CO2 concentration decreases throughout the year from June
to November, starting to increase again from December to May. Besides, from March
to July, the CO2 concentration around the Hawaii station places above the 12-MA since
the projections of the corresponding j′i points onto the 2nd PC axis are always positive
(+ji,2). Correspondingly, from September to January, the accumulation of carbon diox-
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Figure 4: TS CO2 SSA-HJ-biplot regarding the 1st and 2nd PCs.

ide is below the moving average. The proximity of the points labeled A, Y and U , as
well as O, N and D indicates that the CO2 concentration levels in the corresponding
months are also close.

In the case of the SSA-HJ-biplot constructed using the 1st and 3rd PCs, the behavior
of the biplot points on the plane formed by the factor axes seems to confirm that the
1st component is related to the sine direction (Figure 5). Due to the sine and cosine
orthogonality, the projections represented by j′i points and hk arrows appear in inverted
positions in this plane. The months that appeared in the first SSA-HJ-biplot describing
the behavior of the 12-MA now form the tops and valleys of the contour points. To better
understand what happens here, it is necessary to remember that these elements (dots
and arrows) represent projections of the original observations in a reduced dimension.

As for the arrows, they represent the ℓ-lagged vectors (columns of X̃). The contour
of the row vectors h′

q consist of a representation similar to that of the j′i points but

compressed. It occurs because the trend is still present in the columns of X̃, unlike the
rows. In addition, compared to the points, there is also an inversion of both the position
of the months (upside down) and the direction of growth (counterclockwise). It happens

because the j′i points are eigenvectors of the matrix X̃X̃
′
, while h′

q are eigenvectors of

X̃
′
X̃.

It is necessary to analyze the SSA-HJ-biplots jointly to interpret the autocorrelation
through the h′

q vectors. In this example, for the same ψf label, all the h′
q form an

angle close to 0◦ with each other, regardless of the PCs used in the construction of the
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Figure 5: TS CO2 SSA-HJ-biplot regarding the 1st and 3rd PCs.

graph, meaning that the corresponding ℓ-lagged vectors are strongly correlated. On the
other hand, for different labels, the orthogonality of sine and cosine can lead to wrong
conclusions if we look only at a specific SSA-HJ-biplot. For example, the angles among
the arrows labeled with ψ2 = February and ψ11 = November are close to 0◦ in Figure 4,
in which the 2nd PC is related with the cosine direction.

However, something quite different occurs in the graph constructed using the PC
associated with the sine direction (Figure 5), where those angles are much closer to 90◦

than 0◦. The SSA-HJ-biplot of the 2nd and 3rd settles the issue by showing a right
angle between the two sets of arrows. All of it indicates the SSA-HJ-biplot that uses the
1st and 2nd PCs and is associated with the cosine direction better represents the biplot
points j′i than the arrows h′

q.

On the other hand, the SSA-HJ-biplot with the 1st and 3rd PCs as factorial axes
provides more accurate information regarding the arrows h′

q. Based on this, in relation
to the 3rd PC, it can be seen in Figure 5 that the smallest angles are those formed
by the factor axis and the arrows labeled with M , A, S or O. Thus, we conclude
that the variability of the corresponding ℓ-lagged vectors is strongly affected by 3rd

PC. Likewise, regarding the 2nd PC, the ℓ-lagged vectors that start in January, June,
July, and December are those whose proportion of variability is more explained by that
component, i.e., the greater RC. Proceeding to a joint interpretation, comparing the
SSA-HJ-biplots formed by the 2nd and 3rd PCs (Figure 6) and the 4th and 5th PCs
(Figure 7) with those of Figures 4 and 5, we will see the same information as before, but
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Figure 6: TS CO2 SSA-HJ-biplot regarding the 2nd and 3rd PCs.

Figure 7: TS CO2 SSA-HJ-biplot regarding the 4th and 5th PCs.
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now without any interference from the trend direction. For example, as for Figure 6 and
regarding the 2nd PC, the j′i points tagged from M to L are located on the positive side
of the 2nd component, while those labeled from S to J are on the opposing part.

We can find the points related to the 12-MA around zero. The position of the arrows
also repeats the same positioning pattern concerning the labels on the first SSA-HJ-
biplot. In Figure 6, it is even more evident which months are most related to each PC,
i.e., the largest RC of each component as a function of the cosine of the angles formed
by the arrows and the axes. In addition, the periodicity appears in the formation of 12
groups of both points and arrows.

When it comes to the Figure 7, it reinforces the previous conclusions but now shows
the elements j′i and h′

q labeled with the same ψf in pairs, instead of mirrored regarding
some axis. For example, ψ6 = J and ψ12 = D appear in a symmetrical position in the
SSA-HJ-biplots of the 2nd and 3rd PCs, but appear together in the SSA-HJ-biplot of the
4th and 5th PCs. It suggests that the valleys tend to be six months behind the peaks.

4.2 TS Wildfire

Regarding the second example, the sample size of the TS Wildfire series is n = 96,
spanning January 2013 to December 2020. As usual, the window length is ℓ = n/2 = 48
and κ = n− ℓ+ 1 = 49. Figure 8 shows the shape of the TS Wildfire, and the overlaid
12-MA suggests there is no trend in the series. Table 2 confirms the absence of a
slowly varying trend since the two first eigenvalues t′1t1 and t′2t2 are next to each other,
indicating the corresponding 1st and 2nd PCs are associated with the TS oscillatory
component. And so do the 3rd and 4th PCs, given that the eigenvalues t′3t3 and t′4t4
are similar. From the eigenvalue t′5t5 on the absence of a geometric pattern on the
SSA-HJ-biplots suggests the corresponding PCs are related with the noise.

Table 2: Proportion of explained variance by the ten first principal components (TS
Wildfire).

PCi Variance (%) PCi Variance (%)

1 14 6 4

2 13 7 3

3 11 8 3

4 10 9 3

5 4 10 3

The TS Wildfire is a challenging case to analyze, as the behavior of the observations
appears more erratic than in the previous example. Even so, the SSA-HJ-biplots of the
1st and 2nd PCs (Figure 9) and the 3rd and 4th PCs (Figure 10) suggest a periodicity of
4 and 12. In the first case, the reason stems from i) four clusters inside which the points
are close to each other; ii) four bundles of arrows where the angle between them is close
to zero within each group.

The SSA-HJ-biplot (Figure 9) indicates that the κ-lagged vectors associated with the
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Figure 8: Time series Wildfire and the corresponding 12-MA.

Figure 9: TS Wildfire SSA-HJ-biplot of the 1st and 2nd PCs.
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Figure 10: TS Wildfire SSA-HJ-biplot of the 3rd and 4th PCs.

j′i points tagged as J , Y , and S are those where some movement starts, finishing in A, T ,
and D. The κ-lagged vectors starting in other months represent intermediate situations.
The angle between the h′

q arrows and the axes indicates the ℓ-lagged vectors starting at
J , Y , and S are more related to the 1st PC, while those starting at A, T , and D are
more associated with the 2nd PC. About the underlying phenomenon, one can expect
the occurrence of peaks of wildfires in April (A), August (T ), and December (D) relative
to the previous three months.

Finally, the SSA-HJ-biplot of Figure 10 shows some visual deterioration, but it is still
possible to verify that the amplitude of the series does not show a uniform pattern of
variation over time since the size of the h′

q arrows goes back and forth. Therefore, one
can expect that the associated TS is non-stationary. Biplot points labeled with a specific
month (e.g., T ) are close to each other and form twelve groups around the origin of the
axes but present an irregular contour. Regarding the RC, the ℓ-lagged vectors associated
with J and L are more related to the 3rd PC than the 4th PC. In contrast, the 4th PC
explains a greater proportion of the variability of ℓ-lagged vectors starting at A and O.

5 Conclusion

This article seeks to develop a general and comprehensive interpretation of the SSA-HJ-
biplot, providing a visual understanding of the linkage between the trajectory matrix
eigenstructure and the components of the corresponding TS. It is natural to look first
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for PCs that explain a considerable proportion of data variability in the construction
of each SSA-HJ-biplot. But notice that some harmonics may be associated with pairs
of eigenvectors whose PC explains less than 1% of the variability. The two examples
in Section 4 show i) the importance of performing joint analysis of SSA-HJ-biplots; ii)
the more components the TS has, the more informative the SSA-HJ-biplots will be;
iii) PCs associated with noise can explain a considerable amount of data variability; iv)
sometimes, due to the existence of a dominant eigenvalue (associated with the trend) and
two close eigenvalues (associated with the oscillatory component), it is crucial to building
two SSA-HJ-biplots for the 1st PC, one of them using the PC associated with the sine
and the other with the cosine. It is because biplot points may be better represented in
one biplot while arrows in another.

The SSA-HJ-biplots’ properties proved convenient in identifying the periodicity of the
studied TS. Regarding the phenomenon recorded in the first example (CO2), the sug-
gested interpretation highlighted the months with the highest and lowest concentration
of carbon dioxide. In addition, it showed the months whose records most resemble the
moving average of the series. As for the second example (wildfires), the SSA-HJ-biplots
helped to raise suspicions about the months that tend to have the highest incidence
of fires within every four months. The proposed interpretation strengthens the SSA-
HJ-biplot method, expanding its capacity as a visual exploratory technique. In more
complex data, we suggest the segmentation of the TS and, after, applying the approach
in more or less homogeneous intervals to maintain its interpretability.
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Abstract

HJ-biplots can be used with Singular Spectral Analysis to visualize

and identify patterns in univariate time series. Named SSA-HJ-biplots,

these graphs guarantee the simultaneous representation of the trajectory

matrix’s rows and columns with maximum quality in the same facto-

rial axes system and allow visualization of the separation of the time

series components. Structural changes in the time series can make it chal-

lenging to visualize the components’ separation and lead to erroneous

conclusions. This paper discusses an improved version of the SSA-HJ-

biplot capable of handling this type of complexity. After separating the

series’ signal and identifying points where structural changes occurred

using multivariate techniques, the SSA-HJ-biplot is applied separately

to the series’ homogeneous intervals, which is why some improve-

ment in the visualization of the components’ separation is intended.

Keywords: Structural change detection, Singular Spectrum Analysis,
NIPALS algorithm, Biplots
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2 An SSA-HJ-biplot for time series with complex structure

1 Introduction

The Biplot method is a multivariate technique that can be useful to visual-
ize some steps of the decomposition of univariate time series (TS) using the
Singular Spectrum Analysis (SSA) method (da Silva and Freitas, 2020). The
SSA is a powerful technique involving several other methodologies, including
classical TS analysis, signal processing, and multivariate statistics. Summarily,
the basic version of the method maps the original TS into a Hankel trajec-
tory matrix, whose columns are the so-called lagged vectors of size ℓ (the
window length). After, the technique performs a singular value decomposition
(SVD) to factorize the trajectory matrix into a summation of 1-rank matrices.
These elementary matrices are combined to capture a specific structure in the
grouping step. Then, the diagonal averaging step reconstructs the TS from the
resulting matrix. For more details, see Elsner and Tsonis (1996), Golyandina
et al (2001), and Hassani and Mahmoudvand (2018).

The resulting eigenvectors and eigenvalues from the SVD step of the SSA
allow the graphical representation of relevant characteristics of the TS through
HJ-biplots (Galindo-Villardón, 1986), which we named the SSA-HJ-biplot
method (da Silva and Freitas, 2020). The points’ position in the SSA-HJ-biplot,
the arrows’ size, and their location in the factorial axes system can reveal pat-
terns leading to the identification of TS’ features (Nieto et al, 2014). However,
some care is needed to ensure proper representation through biplots when fac-
ing more complex data. For example, structural changes in a TS can make
visualization more difficult and interpretation confusing. Thus, prior knowl-
edge about the occurrence of a modification in the TS structure can facilitate
the graphical exploratory analysis via SSA-HJ-biplot.

To state the problem, let us consider a univariate TS Y = (y1, · · · , yn) in
which the stochastic structure related to Y is said to be strictly stationary.
In this case, given t1, · · · , tk ∈ {1, · · · , n}, the joint distribution functions
of the random vectors (yt1 , · · · , ytk) and (yt1+τ , · · · , ytk+τ ) are the same for
all adequate integers τ and k. In turn, a weakly stationary structure occurs
when the process’s first and second-order moments do not depend on t, and
the autocovariance between yt and yt+τ depends just on the lag τ . On the
other hand, perturbations can occur in real data, bringing about modifications
on either the mean, the variance, or the autocorrelation structure. Thus, it
characterizes the process as nonstationary, and these disturbances provoke
structural changes (Kleiber, 2018).

Another way to approach the issue is characterizing the TS Y as homo-
geneous in the sense that, for all t, some linear recurrent formula drives the
process such that (Golyandina et al, 2001)

yt = a1yt−1 + · · ·+ aryt−r, (1)

in which a1, · · · , ar are constant coefficients, and r < n is the dimension of the
linear recurrent formula. A TS is heterogeneous when a disturbance results in
the linear recurrent formula interruption and, after a short transition period,
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another one begins to govern the series again. Thus, there are two ways to deal
with the structural change detection problem: i) regarding the heterogeneity or
ii) concerning the transition interval. The latter is also known as a change-point
detection problem (Golyandina et al, 2001).

Golyandina et al (2001) proposed solving the structural change detection
problem based on heterogeneity detection and using the SSA method. They
created a metric to evaluate the distances between lagged vectors and the tra-
jectory space, i.e., the space spanned by some eigenvectors of the lag-covariance
matrix, determined in different intervals of the series. Moskvina and Zhigl-
javsky (2003) used a quite similar approach to suggest an application of the
SSA to the detection of change points in TS. In both studies, two disjunct
intervals (base and test) are taken sequentially from the original series, which
initially follows a linear recurrent formula. Then, the associated trajectory
matrices are constructed. In case of disturbance, it is expected an increase in
the Euclidean distance between the lagged vectors of the trajectory matrix
(base) and the subspace generated by the eigenvectors of the lag-covariance
matrix (test).

Considering a TS with structural changes, two problems emerge for apply-
ing the SSA-HJ-biplot method. First, retaining more principal components to
capture such essential characteristics of the series can be necessary. Second,
visualizing these characteristics can be more challenging than when the TS
is entirely homogeneous. Thus, our primary goal is to refine the exploratory
capacity of the SSA-HJ-biplot in heterogeneous time series, applying the tech-
nique in its homogeneous intervals to improve its interpretability. To detect
the points where the linear recurrent formula is interrupted, we have as a sec-
ondary objective the creation of a procedure based on the SSA method to
evaluate the occurrence of disturbances.

The paper is organized as follows. Section 2 provides a brief overview of
the theoretical background of the SSA-HJ-biplot method. In Section 3, a new
structural change detection method is proposed to improve the performance
of the SSA-HJ-biplot when applied to heterogeneous TS, followed by examples
that use synthetic and real data. In Section 4, we establish the steps for the
SSA-HJ-biplot strengthening. Section 5, the suggested procedure is performed
on two real-world TS using the statistical software R (R Core Team, 2019).
Conclusions are presented in Section 6.

2 Brief overview

The SSA-HJ-biplot consists of an exploratory tool for visually inspecting the
main characteristics of univariate TS, using the results of both SSA and Biplot
methods. First, consider Y = (y1, · · · , yn) a univariate and real-valued TS,
and let ℓ be the greatest integer less than or equal to n/2 representing the
window length, as well as κ = n − ℓ + 1. The SSA embedding step comprises
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defining Y as κ lagged vectors x1, · · · ,xκ, each one of size ℓ, in which

xj = [yj · · · yj+l−1]
′, 1 ≤ j ≤ κ. (2)

These κ lagged vectors form a Hankel matrix X called trajectory matrix,
i.e., X = [x1 · · ·xκ]. Then, X is decomposed using the nonlinear iterative
partial least squares (NIPALS) algorithm (Wold, 1966). The NIPALS is the
forerunner of the Partial Least Squares (PLS) method and was designed to
iteratively estimate the principal components of a multivariate data matrix
through a sequence of simple ordinary least squares regressions (Esposito Vinzi
and Russolillo, 2013; Wold et al, 1983). The algorithm decomposes the matrix
computing the principal components one by one, with results equivalent to the
SVD concerning singular vectors and values. The NIPALS decomposition of
X results in a sum of d matrices of rank 1 in terms of the outer product of a
score vector ti and a loading vector pi, so that

X =

d
∑

i=1

tip
′
i, (3)

where d = rank(X). The elements of the score vector ti correspond to the
projections of the sample points in the associated principal component direc-
tion. In contrast, each loading in pi is the cosine of the angle between the
component direction vector and the corresponding variable axis (Geladi and
Kowalski, 1986). At each iteration, the NIPALS algorithm performs a linear
regression of the X columns on a score vector ti, resulting in a loading vector
pi. Then, the algorithm runs a linear regression of the X rows on the load-
ing vector to get a new estimate for ti. The cycle repeats until it converges
according to some criterion (Wold, 1966).

The NIPALS algorithm ignores any missing data when executing the
regressions, which is equivalent to setting all missing points to zero in the
least-squares objective function (Wold et al, 1983). Consequently, the proposed
approach can be applied even when missing values are detected in the series
without the need to use imputation methods. In addition, to get the results of
the NIPALS decomposition equivalent to those of the SVD, one can normalize
the score vectors as follows

t∗i =
ti

||ti||
⇐⇒ ti =

√

t′itit
∗
i . (4)

Thus, the decomposition ofX is obtained in terms of its left singular vectors t∗i ,
right singular vectors pi, and singular values

√

t′iti (Esposito Vinzi and Rus-
solillo, 2013; da Silva and Freitas, 2020). Each one of these NIPALS eigentriple
(
√

t′iti, t
∗
i ,pi), i = 1, · · · , d, lays down an elementary matrix such that

Xi =
√

t′itit
∗
ip

′
i, (5)

and
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X = X1 + · · ·+Xd. (6)

On the other hand, defining Σ as a diagonal matrix containing the singular
values

√

t′iti, i = 1, · · · , d, arranged in decreasing order, the matrix form of
the decomposition in (3) is

X = T∗ΣP′, (7)

where T∗ is the matrix containing the orthonormal score vectors t∗i in its
columns, and P is the matrix whose columns are the orthonormal loading
vectors pi.

The decomposition in (7) allows the assignment of the matrix Σ in differ-
ent ways to obtain the biplot scheme. Any ℓ × κ matrix X of rank d can be
factorized as X = GH′, where G is a (ℓ× q) matrix and H is a (κ× q) matrix,
with q ≤ d. The matrices G and H create two sets of q-dimensional points.
If q = 2, then the rows and columns of X can be simultaneously represented
in the so-called biplot, in which the rows of G are reproduced by points. The
columns of H′ are depicted as vectors connected to the origin (arrows). When
q > 2, the best 2-rank approximation of X is considered in the sense of least
square. Assuming G = T∗ and H = PΣ, the resultant factorization is charac-
terized by preserving the column metrics of X. The associated biplot is called
Gabriel biplot (Gabriel, 1971), later named GH′-biplot in Galindo-Villardón
(1986). In this case, the columns are better represented than the rows in terms
of quality. On the other hand, by defining G = T∗Σ and H = P, this factor-
ization will preserve the metric of the rows in the so-called form biplot, later
designated as JK′-biplot in Galindo-Villardón (1986). On it, the Euclidean dis-
tances between the row markers approximate the Euclidean distances between
the respective individuals in the full space. The representation of the rows is
better than the columns. From this point, consider the matrix J = T∗Σ, and
the matrix H = PΣ. Then, the rows and columns of X can be simultaneously
represented with maximum quality through the so-called HJ-biplot (Galindo-
Villardón, 1986), a 2-dimensional biplot in which the points reproduce the rows
of J (the row markers), and the rows of H (the column markers) are depicted
as vectors connected to the origin.

To substantially capture the behavior of the TS through the rows and,
simultaneously, the columns of X, da Silva and Freitas (2020) proposed a
window length ℓ = n/2, which allows an enhancement in the interpretability
of the graphics display. Considering the SSA-HJ-biplot interpretation is based
on the proximity of points, the arrow length, and the angle between arrows,
complex structures tend to blur the biplot, turning its visual understanding
into a challenging task. Next, a segmentation of the TS is suggested as a
solution to this problem.
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3 Enhancing the SSA-HJ-biplot through
structural change detection

3.1 Basics of the proposed structural change detection

method

In previous works (Golyandina et al, 2001; Moskvina and Zhigljavsky, 2003),
the procedure adopted to detect eventual structural changes in a TS using SSA
consists of applying a single decomposition method to two different trajectory
matrices (base and test) iteratively throughout the series. In each iteration,
the distances between some eigenvectors and an appropriate subspace are com-
puted, creating a measure for later comparison. We propose to assess this
difference using a distinct approach in this work. The comparison is based on
the difference between applying two decomposition methods (one robust and
the other ordinary) on the same trajectory matrix. These differences will be
more accentuated when there is an eventual change in the direction of some
principal components (eigenvectors) in case of interrupting the linear recurrent
formula. The main advantage of this strategy over those suggested by Golyan-
dina et al (2001) and Moskvina and Zhigljavsky (2003) lies in the possibility
of interpretation in terms of principal components that the visualization of
the results provides. As a drawback, the NIPALS algorithm may eventually
present instability in determining the principal components (Miyashita et al,
1990) and achieving convergence (Geladi and Kowalski, 1986).

Let Y = (y1, · · · , yn) be a univariate and real-valued TS, and
yh+1, · · · , yh+m be a subseries so that m < n and h = 0, · · · , n −m (Fig. 1).
Based on the SSA method, the following steps describe how to compute the
proposed differences.

1. Iteratively, from h = 0 to h = n − m, for some m previously defined, the
respective ℓ × κ trajectory matrix X(h) is constructed as follows, where
1 < ℓ ≤ m/2 and κ = m− ℓ+ 1:

X(h) =















yh+1 yh+2 · · · yh+κ

yh+2 yh+3 · · · yh+κ+1

yh+3 yh+4 · · · yh+κ+2

...
...

. . .
...

yh+ℓ yh+ℓ+1 · · · yh+m















. (8)

2. In each iteration, X(h) is decomposed in singular values in two different
ways. One uses a robust method (hereinafter, the subscript “rob”), and the
other uses the NIPALS algorithm (hereinafter, the subscript “nip”). The
robust decomposition method implemented in R in this work is a NIPALS-
based adaptation of the one described in (Rodrigues et al, 2018), which is
based on the L1 norm instead of the frequent least-squares L2 norm. The
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respectively, in which z
(h)
j indicates the jth column of Z(h), and d =

rank(Z(h)). They are given by

Dϕ(h) =

√

√

√

√

ϕ
∑

j=1

ℓ
∑

i=1

(z
(h)
ij )

2
, for ϕ = 1, · · · , d, (12)

noticing that

D2
ϕ(h) = D2

ϕ−1(h) +

ℓ
∑

i=1

(z
(h)
iϕ )

2
. (13)

Equation (13) holds for each ϕ as long as, by convention, we have D0(h)

equal to the null function. Besides, the term
∑ℓ

i=1 (z
(h)
iϕ )

2
in the second

member of (13) provides information about the structure of the trajectory
matrix in each iteration, helping to identify in which NIPALS component
(PCnip) the change of direction occurs.

The parameter m is crucial to adequately capture the change of direction
of the principal component in the NIPALS decomposition and, consequently,
a structural change of the TS. For minimal values of m, the behavior of Dϕ

tends to replicate the signal, while for higher values of m, the structural change
can occur inside the first subseries and not be noticed. An optimal value of m
would undoubtedly provide a graphical resolution of the Dϕ curves with the
best visual perception of the principal components’ direction shifts.

3.2 Graphical assessment of a TS structural change

To evaluate possible structural changes of a TS Y , we propose visually assessing
the behavior of Dϕ, ϕ = 1, 2, · · · , d, through a simultaneous graphical repre-
sentation of these d functions. Concretely, let us consider the existence of a
structural change in the TS Y at the time point i = h + m, i.e., occurring
at observation yh+m. In these conditions, we expect a sharp increase of some
functions Dϕ more highlighted for the highest curve starting at the iteration
k = h + 1, that is, at Dd(k). It is because when the observation yh+m first
appears in one of the m-sized subseries of Y (yh+1, · · · , yh+m), it will also be

the last element of the trajectory matrix X(h), causing changes of direction
in some principal component when applying the NIPALS decomposition in
X(h), but not when applying the robust method. Consequently, for some pos-
itive integer H and some k ∈ [h + 1, h + 1 + H], larger values of Dϕ(k) are
expected relative to those obtained in previous iterations (k ≤ h). These dif-
ferences will be more pronounced when considering the cumulative differences
contained in Dd. Then, horizontally, the analysis of the functions Dϕ focuses
on Dd because it contains the highest cumulative differences in different iter-
ations. Thus, we look for some iteration k such that Dd(k) presents an elbow,
evidencing a marked change in the slope of the curve. On the other hand, the
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Fig. 1 Segmentation of a TS of length n, and the embedding step of the SSA applied to
each subseries of length m.

resulting factorization from the two mentioned methods are, respectively:

X
(h)
rob = TrobP

′
rob = T∗

robΣrobP
′
rob, (9)

and
X

(h)
nip = TnipP

′
nip = T∗

nipΣnipP
′
nip. (10)

3. Next, for each h, it is computed a matrix formed by the difference between
the nip and rob score matrices, such that

Z(h) = T∗
nipΣnip −T∗

robΣrob. (11)

The purpose of the Z(h) matrix is to figure out possible deviations between
the homologous principal components provided by a sensitive method and
a non-sensitive one concerning outliers.

4. Taking into account the decreasing variability of the 1st to the dth col-
umn of the score matrices that generated the Z(h) matrix, d metrics that
cumulatively add more information are introduced. The proposed d metrics
Dϕ, ϕ = 1, · · · , d, correspond to the Frobenius norm of the matrices

[z
(h)
1 ], [z

(h)
1 z

(h)
2 ], · · · , [z

(h)
1 z

(h)
2 · · · z

(h)
d ],
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calculation of Dd at the iteration point h + m, for different values of m, can
also establish an estimate for m, as described below.

Since d = d(m), i.e., d depends on the dimension of the trajectory matrix

X(i), for some i = 0, 1, 2, · · · , n − m associated with the series of size n, we
first determine the iteration h∗ that maximizes the function D2

d normalized to
d(m) for each m, and given by

∑d(m)
j=1

∑ℓ
i=1(z

(h+m)
ij )2

d(m)
.

Hence,

h∗ = argmax
h

D2
d(h+m)

d(m)
. (14)

Thus, h∗ corresponds to defining, for a given m, the iteration h where the
average increments of D2

d(h+m) in (13) are maximums. Since (14) is only
dependent on m, the optimal m∗ could be estimated by

m∗ = argmax
m

(

max
h

D2
d(h+m)

d(m)

)

. (15)

After identifying the moment of occurrence of the structural change in the
series Y , says i = h + m, it is essential to know the type of change that
occurred at the observation yh+m. One could expect that the principal compo-
nent related to X(h) identified as presenting the most major direction change
will correspond to the homologous component of the TS Y (trend, periodicity,
etc.). The first subseries containing the observation where structural change
begins (yh+m) is no longer homogeneous. The subseries will also carry a hetero-
geneous part of the TS until Y starts obeying a new linear recurrent formula.
The increasing input of observations from the heterogeneous interval of the TS
makes the decomposition of the trajectory matrices related to these subseries
continue to show a structural change until Dϕ curves reach a peak. Conse-
quently, evaluating the graphs of functions D1, · · · ,Dd−1, we vertically look
for the most remarkable differences among their curves, i.e., higher difference
values among D1(k), · · · ,Dd−1(k). It is expected that more substantial differ-
ences will occur in the curves of the first functions as they reflect the first
principal components and carry more information (higher eigenvalues).

3.3 Examples

This subsection evaluates the proposed structural change detection method
through three examples. First, a synthetic dataset where occurs two struc-
tural changes regarding the periodicity. After, another synthetic dataset with
an upward shift in the series. Finally, the Nile database, described in R Doc-
umentation (R Core Team, 2019) as measurements of the annual flow of the
River Nile at Aswan (formerly Assuan), 1871–1970, in 108m3.
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I- Synthetic data (disturbance in periodicity): The constructed signal
contains 151 observations, and there are two change points at the time t51
and t101. Below is the R code (Listing 1) used to generate the signal and its
graphical representation (Fig. 2):

Listing 1 Code of the synthetic data presenting disturbances in periodicity.

Y = numeric ( )
for ( t in 1 :50 ){

Y[ t ] = 0 .1∗cos (3∗pi∗t/8) + 0 .2∗cos ( p i∗t ) + 0 .1∗cos (7∗pi∗t )
}

for ( t in 51 :100){
Y[ t ] = 0 .1∗cos ( p i∗t/4) + 0 .1∗cos (5∗pi∗t ) + 0 .1∗cos (3∗pi∗t )
}

for ( t in 101 :151){
Y[ t ]= 0 .2∗cos (3∗pi∗ ( t/4) ) + 0 .2∗cos (5∗pi∗t ) + 0 .1∗cos (5∗pi∗t )
}

plot (Y, type = ” l ” , col=”navy” , main = ” Synthet i c Data” , xlab=” t ” ,
ylab = expression ( ”Y” [ t ] ) , cex . lab = 1 . 3 , cex . main=1.5 , f ont . main=3)

0 50 100 150

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Synthetic Data

t

Y
t

Fig. 2 Signal of the Synthetic data in which there are two structural changes (t51 and t101).

In this case, the subseries size’s optimal value obtained according to (15) is
m∗ = 13, resulting in a window length ℓ = 7, and κ = 7. As the first inter-
ruption of the linear recurrent formula takes place in y51, thus is expected an
increase in Dϕ in iteration 39 and following, i.e., from h = 38 onwards. Since
the second interruption occurs in y101, then Dϕ should spike at iteration 89
(i.e., h = 88). The proposed structural change detection method results are
shown in Fig. 3 and are following as awaited. Also, there are three lines in the
graph because, for h = 0, · · · , n−m, rank(X(h)) = 3. Those graph’s lines cap-
ture each principal component’s contribution in the increase of Dϕ, or in other
words, which principal components vary more in direction when the singular
value decomposition of the trajectory matrix is not robust.
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Fig. 3 The spikes in the curves representing Dφ suggest two structural changes at obser-
vations y51 and y101.

II- Synthetic data (upward shift disturbance): This example shows a
sequence in which n = 60 and occurs an upward shift at the time t30. The
generated series was based on the patterns presented in (Alcock et al, 1999),
with implementation in R summarized in the code below (Listing 2) and a
graphical representation in Fig. 4.
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5
0
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0

Synthetic data with a upward shift

t

y
(t

)

Fig. 4 Synthetic data presents an upward shift disturbance structural at t30.
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Listing 2 Code of the synthetic data presenting an upward shift disturbance.

n = 60 ; Y = numeric (n)
m = 30 ; s = 2
r = runif (n , min = −1, max = 1)
x = 10 ; t3 = 30
for ( t in 1 : n){

k = i f e l s e ( t < t3 , 0 , 1)
Y[ t ] = m + s∗ r [ t ] + k∗x
}

According to (15), the optimal subseries length in the second example is m∗ =
20, following a window length ℓ = 10 and a κ = 11. Since the series level
moves up in y30, one could await a sharp increment of Dϕ from iteration 11
onwards (h = 10). And that is precisely what Fig. 5 shows since it suggests a
structural change in the series from observation y30, asm+h = 30. Besides, the
curves corresponding to the first two principal components seem to significantly
contribute to the Dϕ increment. In this specific sample, rank(X(h)) = ℓ, ∀h.
On the other hand, due to the way of construction of the trajectory matrix
in the SSA, eventually, X(h) may not have full rank in every iteration. If that
happens, the number of extracted principal components must be reduced to
the lowest computed rank of X(h), for h = 0, · · · , n−m.
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0
4

0
6

0
8

0

CPD using Robust/NIPALS decomposition of the trajectory matrix

iteration (h)

D
φ

1st.PC
2nd.PC
3rd.PC
4th.PC
5th.PC
6th.PC
7th.PC
8th.PC
9th.PC
10th.PC

Fig. 5 A sharp increment in the curves representing Dφ at iteration 11 (i.e., h = 10)
suggests a structural change in the series from observation y30. Since m = 20, this agrees
with the proposed method, as m+ h = 30.

III- The Nile data: After separating the signal from the noise using the SSA
method, the series looks like it appears in Fig. 6. The literature points out
“an apparent change point near 1898” (Cobb, 1978), i.e., from the observation
y29 onwards, the initial linear recurrent formula is no longer in effect. Fig. 7
represents the proposed structural change detection method using the optimal
value of m∗ equals 24 and, therefore, a window length ℓ = 12.
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The Nile TS signal

Year

A
n

n
u

a
l 
fl
o
w

1880 1900 1920 1940 1960

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

Fig. 6 Signal of the Nile TS, that represents the annual flow of the River Nile from 1871
to 1970.
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Fig. 7 A change point was detected at iteration 6 (i.e., h = 5) after a consistent increase
in the values of Dφ. The subseries’ length used was m = 24 and, therefore, the change point
occurs in the observation yh+m = y29.

In this case, all matrices X(h) are full rank, with 12 rows. In the graph, one
can verify that Dϕ starts to grow with h = 5 (iteration 6). Therefore, there
is an eventual change point in the observation yh+m = y29, following previous
literature results. Besides, the graph shows that the first two principal com-
ponents are the most affected in terms of change of direction and, thus, are
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the ones that most contribute to the increase in Dϕ. Therefore, this is relevant
information and should be considered when interpreting the SSA-HJ-biplot.

4 Strengthening the SSA-HJ-biplot

The SSA-HJ-biplot on any univariate TS (homogeneous or heterogeneous) will
be helpful if the interpretability of its elements related to the decomposition
of a TS is visually highlighted. This section brings an enhanced version of the
technique application, adding extra steps for seeking structural change points
at the TS. Therefore, the analysis of the global characteristics of the TS is
based on the inspection of homogeneous subseries. In this sense, a method
for detecting interruptions in the linear recurrent formula was presented in
Subsection 3.1, seeking to improve the SSA-HJ-biplot approach. As stated
before, the objective here is to increase the range of cases in which the SSA-HJ-
biplot technique is suitable for separating TS components. Thus, the following
steps are performed preliminarily in the case of a heterogeneous TS.

1. First, to increase the detection performance in the next step 2), a first round
of the SSA-HJ-biplot is applied to the entire TS to separate the signal from
the noise, followed by the series’ reconstruction concerning the signal.

2. Then, the structural change detection method proposed in Subsection 3.1 is
applied to the reconstructed time-series signal to identify the observations
yi in which an interruption of the linear recurrent formula is supposed to
occur. This step separates the TS into homogeneous subseries between the
change points.

3. Finally, the SSA-HJ-biplot is performed and interpreted in each homoge-
neous interval, that is, between change points.

5 Applications

The enhanced SSA-HJ-biplot technique was applied to two real climate time
series to assess the method comprehensively.

Case 1

The first TS (Fig. 8 – left), referring to the period from 1945 to 2019, was
obtained from the National Oceanic and Atmospheric Administration (NOAA
2020) website by adding the 20th-century global mean temperature (13.9◦C) to
the Earth’s surface temperature anomalies, defined as the difference between
the measured sea surface temperature (SST) and the average temperature for
a certain period (Yang et al, 2018). When applied to the entire series, the
SSA-HJ-biplot results in the biplots in Fig. 9. For now, note that using the
SSA-HJ-biplot interpretation rules, one can only identify a growing global
trend, and nothing can be concluded about the periodicity using the graph in
Fig 9.
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Fig. 8 TS of the average global surface temperatures plus anomalies, from 1945 to 2019.
The original data is represented on the left and the series signal on the right.

Next, taking advantage of the SSA’s grouping step, the signal was filtered
using the first three eigentriples. The corresponding TS was reconstructed
through the diagonal averaging step, represented in Fig. 8 – right. In the
present case, the visual perception of the principal components’ direction shifts
occurs for an optimal value of m∗ = 5, resulting in ℓ = κ = 3. It means
that the trajectory matrix in each iteration is a square matrix of order 3.
Also, X(h) is a full-rank matrix for all h and, therefore, there must exist three
lines to represent each component’s contribution to the increment of Dϕ. In
Fig. 10, it can be seen that Dϕ begins to grow rapidly in iteration 17, i.e.,
when h = 16. Therefore, all of that suggests that an eventual linear recurrent
formula was interrupted around 1966 (observation y21) since h + m = 21 in
this case. Besides, Fig. 10 shows the most marked change of direction occurs
in the extraction of the 2nd principal component.

Knowing that an eventual modification in the TS structure occurred in
observation y21, the series is then segmented in the intervals 1945 − 1965
and 1966 − 2019 to build the SSA-HJ-biplots, aiming to improve the visual-
ization and facilitate the graphic interpretation. Following the SSA-HJ-biplot
approach, one can set labels to the biplot points according to the year each of
the κ-lagged vectors starts. Thus, tag ”1” indicates that the first κ-lagged vec-
tor (first row of the trajectory matrix) begins in the year 1945 (or 1966), ”2”
indicates the year 1946 (or 1967) as the starting year of the second κ-lagged
vector, and so on. Eventually, one could use this approach to label the biplot
arrows instead of the points and make the tags indicate each ℓ-lagged vector
(columns of the trajectory matrix). Fig. 11 shows the SSA-HJ-biplot of the TS
for the 1st and 2nd principal components concerning the interval immediately
before the estimated structural change, which comprises 1945−1965. The first
two principal components explain about 85% of the data variability. Accord-
ing to the SSA-HJ-biplot interpretation (da Silva and Freitas, 2020), the graph
does not indicate a trend in this section since the points (red tags, from 1 to 10)
do not grow in the same direction as any component. On the other hand, the
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circular pattern suggests some periodicity, but the lack of enough observations
prevents a more comprehensive interpretation of this interval.
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Fig. 9 The original approach of the SSA-HJ-biplot concerning the TS of average temper-
atures on the globe’s surface from 1945 to 2019. The graph at the top refers to the 1st and
2nd principal components, followed by the SSA-HJ-biplot of the 2nd and 3rd principal com-
ponents.

Fig. 12 and Fig. 13 show the SSA-HJ-biplot concerning the interval after
the structural change, which comprises the years 1966 to 2019 and n = 55,
ℓ = κ = 28. Fig. 12 shows the SSA-HJ-biplot regarding the 1st and 2nd prin-
cipal components and explains 91% of the data variability. The biplot points
projections in the 1st principal component evolve in the same growth direction
as that component, which means that the 1st principal component is associated
with a crescent trend.
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Fig. 10 The graph points out the values of Dφ in each iteration according to each principal
component’s contribution. In this case, there is a substantial increase in iteration 17 (or
h = 16). This means the occurrence of a change point in the observation y21, since m = 5.
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Fig. 11 SSA-HJ-biplot (1st and 2nd principal components) of the Average Global Temper-
ature TS regarding the interval before the estimated structural modification (1945-1965).

In turn, the biplot points’ projection on the 2nd principal component reveals
a pattern in terms of proximity. For example, the projections of the peak points
are always within the same vicinity. It indicates the correspondence between
the 2nd principal component and the periodicity of the TS. However, the peri-
odicity is always associated with a pair of principal components (da Silva and
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Freitas, 2020) and, therefore, another SSA-HJ-biplot is required. The SSA-HJ-
biplot for the 2nd and 3rd principal components is represented in Fig. 13. Since
the 2nd and 3rd principal components explain only 8% of the data variability,
it is preferable to label the arrows to reveal the periodicity using the angles
between them to search for the most positively correlated ℓ-lagged vectors.
Even considering the low percentage of explained variability, the proximity
pattern between the arrows suggests a periodicity of 9 years in this interval.
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Fig. 12 SSA-HJ-biplot (1st and 2nd principal components) of the Average Global Temper-
ature TS regarding the interval after the estimated structural modification (1966-2019).
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Fig. 13 SSA-HJ-biplot (2nd and 3rd principal components) of the Average Global Tem-
perature TS regarding the interval after the estimated structural modification (1966-2019).
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Case 2

The second TS refers to the average annual precipitation in Brazil from 1901 to
2021, obtained in the World Bank Group Climate Change Knowledge Portal.
Fig. 14 shows the TS filtered after retaining the components explaining more
than 1% of the data variability. Fig. 15 brings up the SSA-HJ-biplot of the
entire TS, and Table 1 shows normalized D2

d for several values of m.
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Fig. 14 TS of the average annual precipitation in Brazil, from 1901 to 2021. The data
represents the series’ signal.

Except for the evident increase in the variability of the data expressed by
the variation in the size of the arrows, little information can be extracted from
the biplot representation in Fig. 15. Then, we compute the normalized D2

d to
determine the m for which the function (14) is maximum. For convenience,
Table 1 shows just a few values of them. Therefore, the optimal value for the
size of the subseries will be m∗ = 20, with which it will be possible to better
perceive the changes in the direction of the components by plotting the curves
Dϕ.

Fig. 16 suggests the existence of three change points from 1901 to 2021. As
m = 20 and the iterations where the curve Dd start to grow rapidly are those
regarding to h = 5, h = 66, and h = 94, then the observations of interest are
y25 (1925), y66 (1966), and y114 (2014). As we have a few observations before
the first change point and after the last one, we are interested in constructing
the SSA-HJ-biplots for the intervals between 1925-1965 e 1966-2014.
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Table 1 The optimal value of m obtained from the maximum normalized D
2
d
.

m max D2

d
/d(m) m max D2

d
/d(m)

17 27685.6 27 23694.4
18 29022.5 28 25959.6
19 27915.7 29 22797.9
20 31880.1 30 22873.5
21 23725.2 31 19802.1
22 22915.9 32 21482.7
23 27838.9 33 18017.6
24 27939.1 34 18189.9
25 21397.8 35 18528.6
26 20981.5 36 20036.4
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Fig. 15 The original approach of the SSA-HJ-biplot regarding the TS of average annual
precipitation in Brazil from 1901 to 2021.

In Fig. 17 and 18, the SSA-HJ-biplot for the 1st and 2nd principal compo-
nents for both intervals are presented. The subseries detected no trend from
1925 to 1965 (Fig. 17). In addition, the decrease and increase in the size of
the arrows indicate some variability in the TS, with the pattern of proximity
among arrows suggesting a periodicity of around ten years. Regarding Fig. 18,
the circular pattern again indicates the absence of a trend. The difference in
the sizes of the arrows likewise shows variability in the data, but no periodicity
is suggested in the subseries from 1966 to 2014.
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Fig. 16 For m = 20, the graph suggests the existence of three change points since Dd grows
fast after the iterations 6 (h = 5) , 67 (h = 66), and 95 (h = 94).
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Fig. 17 SSA-HJ-biplot (1st and 2nd principal components) of the Average Annual Precip-
itation in Brazil TS regarding the interval between the two first change points (1925-1965).
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Fig. 18 SSA-HJ-biplot (1st and 2nd principal components) of the Average Annual Precip-
itation in Brazil TS regarding the interval between the second and third detected change
points (1966-2014).

6 Conclusion

This paper proposes an improved version of the SSA-HJ-biplot visualization
method, intending to enlarge its applicability to univariate time series with
more complex structures, especially when a structural change occurs. A simple
approach based on multivariate techniques was performed to identify TS struc-
tural changes, preliminarily effective in the analyzed series. As usual in the
SSA-HJ-biplot, the application of NIPALS (X = TP′) prevails over the SVD
(X = UDV′) method to decompose the trajectory matrices since it allows
dealing with missing data without needing any imputation. This substitution
is possible because the matrices T (scores matrix) and UD (the product of the
left singular vectors matrix times the singular values matrix) are equivalent, as
well as P (loadings matrix) and V (right singular vectors matrix). Regarding
the proposed structural change detection method, the procedure could rec-
ognize the boundaries of homogeneous intervals in three series analyzed. The
method correctly pinpointed the moments when the linear recurrent formula
interruptions occurred in the two synthetic series containing previously estab-
lished structural changes (Examples I and II). The same success was obtained
using real data (Example III - The Nile River), where the change point is
well-known in the literature. The applications in Section 5 showed the effec-
tiveness of the proposed method. In Case 1, the suggested procedure allowed
segmenting a real climate time-series data into two homogeneous subseries.
The modified method proved useful in confirming the TS’ structural change
since it identified the absence of a trend in the first interval (1945 − 1965),
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in contrast to what occurred in the second (1966− 2019). Besides, the second
version of the SSA-HJ-biplot also captured a 9-year periodic component in the
second interval (1966 − 2019). As the first interval is short, it was impossible
to recognize the existence of periodicity by analyzing only the SSA-HJ-biplot
in Fig. 11. However, the periodicity identified in the subsequent interval and
the small angle formed by arrows 1 and 10 in Fig. 11 insinuates nine years
for the entire TS, agreeing with what is stated in other studies (Keeling and
Whorf, 1997), which claim an approximately decadal periodicity in surface air
temperature from 1945 onwards. In Case 2, we focused on showing how we
can estimate the size of the subseries, the parameter (m), in the procedure for
detecting structural changes in the analyzed series. In addition, the proposed
approach handled a more complex series, segmenting the TS in four intervals.
From the SSA-HJ-biplots analysis, the results suggest that the rainfall pattern
in Brazil has changed on at least three occasions, becoming more irregular from
1966 onwards, accentuating after 2014. Therefore, these two cases illustrate an
improvement in the modified method.
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An exploratory approach is proposed based on multivariate visualization
techniques to estimate the dominant periodicities of a time series. The ap-
plication of the NIPALS algorithm to the trajectory matrix of the Singular
Spectral Analysis (SSA) is presented, resulting in (i) a diagonal matrix con-
taining the norms of the score vectors (singular values); (ii) a matrix formed
by the normalized score vectors (left single vectors); (iii) another one formed
by the loading vectors (right singular vectors). Pairs of singular values close
to each other suggest the respective principal components (PCs) are associ-
ated with the periodicity of the time series. The proposed method consists of
constructing the biplot of these PCs, pinning a biplot vector of interest (i.e.,
some loading vector associated with a lagged vector), and the 90◦ rotation of
the others. Depending on the variability explained by the PCs, the areas of
the triangles formed by (i) the origin of the factorial axes, (ii) the endpoints
of the pinned vector, and (iii) each of the rotated vectors will provide visual
information regarding the magnitude of the autocorrelation between the cor-
responding lagged vectors. In addition, the periodicity will emerge from the
appearance of groups of similar triangles because of the strong autocorrela-
tion between groups of lagged vectors. The periodogram should confirm the
analysis if the data are not well represented in the biplot. In addition to the
method, the authors developed the R package areabiplot, available for use in
the Comprehensive R Archive Network (CRAN).
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1 Introduction

Understanding a time series (TS) behavior can be an essential advantage for under-
standing the associated phenomenon and making predictions about it. In this context,
periodicity is a crucial feature of an oscillatory TS. If its additive components are sepa-
rable or at least approximately separable, the basic Singular Spectrum Analysis (SSA)
is an effective tool for extracting the periodic component.

The SSA is a powerful non-parametric method used to analyze a TS, both for ex-
ploratory purposes and for making predictions (Elsner and Tsonis, 1996). In contrast
to other methods, SSA is indifferent to (i) the model’s specification; (ii) restrictive as-
sumptions (e.g., stationarity); (iii) the length of the TS for forecasting purposes. Basic
SSA is intended for one-dimensional, real-value TS and consists of two complementary
stages: decomposition and reconstruction. First, the TS is transformed into a Hankel
trajectory matrix (X) in the so-called embedding step of the decomposition stage. Then,
the singular value decomposition (SVD step) of X is calculated, resulting in a sum of
rank-one matrices such that

X = X1 +X2 + · · ·+Xd, (1)

where d is the rank of X. Each Xi is computed as the product of the respective singular
value (

√
λi), the left singular vector (ui), and the transposed right singular vector (v

′
i).

Note that ui is the ith eigenvector of XX
′
, vi is the ith eigenvector of X

′
X, and λi is

the ith eigenvalue of both XX
′
and X

′
X. In the literature of the SSA, the collection

(
√
λi,ui,vi) is called the ith eigentriple of the SVD.

In the second stage, some of those rank-one matrices are appropriately grouped. The
diagonal averaging step obtains an approximation to the original TS (or each component
separately). The eigentriples and the shape of the TS are related. Applying data visu-
alization techniques to these eigentriples helps select the proper groups and extract the
corresponding components. For instance, a scree plot can reveal seasonal components
showing the formation of plateaus in the eigenvalue spectra or by mean of geometric
patterns in a pairwise scatter plot of the singular vectors (see Golyandina et al. (2001)
and Hassani and Mahmoudvand (2018) for more details).

Another way to use eigenvectors to reveal the components of a TS graphically is
through Biplot methods (Silva and Freitas, 2020). A biplot is usually a 2-dimensional
graph that allows the joint plotting of both objects (rows) and variables (columns) of
multivariate data matrices (Gabriel, 1971). Biplots can reveal essential characteristics
of a multivariate data structure, e.g., similarities between observations, correlations be-
tween variables, and data variability. In the biplot theory, points represent the objects,
and vectors connected to the origin (arrows) describe the variables. An element xij of
the data matrix is visually estimated by projecting the point associated with the row
i into the vector related to column j, then multiplying the result by the length of this
vector. The so-called Area Biplot (Gower et al., 2010) is a particular method case. In
this, the area covered by a triangle formed by (i) a point rotated by 90◦, (ii) the origin
of the factorial axes, (iii) and the end of an arrow is used to estimate an element of the
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data matrix. In this technique, the graphical representation of the correlation structure
can also be made through the areas of the triangles (Gower et al., 2010; Graffelman,
2013).

In any case, when using biplots to visualize the eigentriples of the trajectory ma-
trix, one should observe that the rows and columns of X are lagged vectors (subseries)
of the original TS. Besides, the interpretability of biplots strongly depends on (i) the
percentage of variability explained by the principal components extracted in the X de-
composition; (ii) characteristics of the TS; (iii) and the separability of its components.
When interpretation makes interpretation difficult, the periodogram can help identify
the components in the SSA decomposition through biplots (Golyandina et al., 2001).

The periodogram analysis is an important auxiliary tool of the SSA to identify the
eigentriples associated with periodicity. The periodogram is an estimator for the spectral
density f and can be computed from the Discrete Fourier Transform (DFT) of a real-
valued sequence yn, n = 0, . . . , N −1. Note that the normalized DFT of yn is a sequence
of complex numbers Y (f ) given by

Y (fk/N ) =
1√
N

N−1∑

n=0

y(n)e−
i2πkn

N , for k = 0, . . . , (N − 1), (2)

where k is the index in the frequency domain of the DFT and k⁄N indicates the frequency
that each coefficient registers. The periodogram is then computed as the squared norm
of each Fourier coefficient associated with the frequency k⁄N :

P(fk/N ) = ∥Y (fk/N )∥2, for k = 0, . . . , ⌈N − 1

2
⌉. (3)

Within the scope of SSA, one should search for singular vectors whose frequencies
coincide with those of the original TS. Considering the periodogram of an eigentriples
pair, existing a peak at a particular frequency, one should expect they are related to the
signal (Hassani and Mahmoudvand, 2018).

This study suggests a visualization approach for identifying the periodicity of a TS
through a variation of the Area Biplot method. Pairs of singular values close to each other
suggest the respective principal components (PCs) are associated with the periodicity of
the TS. The proposed method consists of constructing the biplot of these PCs, pinning a
biplot vector of interest (i.e., some loading vector associated with a lagged vector), and
the 90◦ rotation of the others. Depending on the percentage of variability explained by
the PCs involved, the areas of the triangles formed by the origin of the factorial axes and
the endpoints of the pinned vector and each of the rotated vectors will provide visual
information regarding the magnitude of the autocorrelation between the corresponding
lagged vectors. In addition, the periodicity will emerge from the appearance of groups of
similar triangles because of the strong autocorrelation between groups of lagged vectors.
If the data are not well represented in the biplot, the periodogram should confirm the
analysis.

The paper is organized as follows. In Section 2, a short overview of the theoretical
background related to the SSA-HJ-biplot and Biplot methods is provided. In Section
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3, the proposed approach for TS periodicity detection is presented. In Section 4, the
suggested technique is performed on two real-world TS using the statistical software
R (R Core Team, 2021) and the R package areabiplot. Conclusions are presented in
Section 5.

2 Background

2.1 Basics about SSA-HJ-Biplot

Using the results of both SSA and Biplot methods, SSA-HJ-Biplot is an exploratory
graphic tool based on pairs of eigenvectors that, in the same plot, gather relevant infor-
mation about a TS and can lead to the identification of its main characteristics (Silva
and Freitas, 2020). It operates mainly after the SSA decomposition stage, i.e., following
the embedding and SVD steps. In turn, its results are a helpful feature in conducting
the grouping step of the reconstruction stage.

2.1.1 SSA decomposition stage

Consider Y = (y1, . . . , yn) a univariate and real-valued TS and let ℓ be the greatest
integer less than or equal to n/2 representing the window length, as well as κ = n−ℓ+1.
The SSA embedding step comprises representing Y as κ lagged vectors x1, . . . ,xκ , each
one of size ℓ, in which

xj = [yj , . . . , y(j+ℓ−1)]
′
, 1 ≤ j ≤ κ. (4)

These κ lagged vectors form the Henkel matrix X = [x1 . . .xκ], which is called the
trajectory matrix, having the following aspect:

X =




y1 y2 y3 . . . yκ

y2 y3 y4 . . . yκ+1

y3 y4 y5 . . . yκ+2

...
...

...
. . .

...

yℓ yℓ+1 yℓ+2 . . . yn



. (5)

Next, different from the classic approach of the basic SSA, in which X is factored
through the SVD method, the SSA-HJ-biplot uses the NIPALS algorithm to decompose
the trajectory matrix, and that results in

X =

d∑

j=1

tjp
′
j , (6)

where d = rank(X), each tj is a score vector, and p
′
j is a loading vector. In matrix

terms, one can rewrite (6) as follows
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X = TP
′
, (7)

in which the columns of the matrix T are the score vectors tj , and the matrix P columns
are the loading vectors pj . At each iteration, the NIPALS algorithm performs a linear
regression of the X columns on a score vector t, resulting in a loading vector p. Then,
the algorithm runs a linear regression of the X rows on the loading vector to get a new
estimate for t. The cycle repeats until it converges according to some criterion (Wold,
1966). The option for the NIPALS algorithm in this procedure is justified because it
ignores any missing data when executing the regressions, which is equivalent to setting
all missing points to zero in the least-squares objective function (Wold et al., 1983).
Representing the indices of missing values by s in the estimation of the jth principal
component, each iteration of NIPALS is such that

prj =
ℓ∑

i=1
i ̸=s

xirtij

/
ℓ∑

i=1
i ̸=s

t2ij , for r = 1, . . . , κ (8)

and

tij =

κ∑

r=1
r ̸=s

xirprj

/
κ∑

r=1
r ̸=s

p2rj , for i = 1, . . . , ℓ. (9)

It means that, in the case of missing data, no imputation method is required when
applying the NIPALS algorithm. To get the results of the NIPALS decomposition into
factors equivalent to those of the SVD, one can normalize the score vectors so that

t∗i =
ti
∥ti∥

⇔ ti =
√
t′itit

∗
i , (10)

meaning that the decomposition of X can be write in terms of its left singular vec-
tors t∗i , right singular vectors pi, and singular values

√
t′iti. Each NIPALS eigentriple

(
√
t′iti, t

∗
i ,p

′
i), i = 1, . . . , d, establishes an elementary matrix in which

Xi =
√
t′itit

∗
ip

′
i , (11)

and consequently

X =
√
t′1t1t

∗
1p

′
1 + · · ·+

√
t′dtdt

∗
dp

′
d. (12)

Defining Σ as a diagonal matrix containing the singular values
√
t′iti arranged in

decreasing order, one can write the matrix form of the decomposition in (12) as

X = T∗ΣP
′
, (13)

where T∗ is the matrix containing the orthonormal score vectors t∗i in its columns, and
P is the matrix whose columns are the orthonormal loading vectors pi.
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2.1.2 Biplot method

A biplot is a graphical representation of a multivariate structure, generally used to reveal
essential data characteristics, such as correlations between variables and similarities
between observations (Greenacre, 2010), among others. The basic scheme starts from,
e.g., factoring a d-rank (ℓ× κ) trajectory matrix X in the form

X ≈ AB
′
, (14)

where A is an (ℓ × p) matrix and B is an (κ × p) matrix, with p ≤ d. These two
matrices create two sets of p-dimensional points. Set p = 2, and then rows and columns
of X can be simultaneously represented as a biplot. The biplot points reproduce the
rows of A, the so-called row markers a

′
1, . . . ,a

′
ℓ. On the other hand, the biplot vectors

connected to the origin (arrows) depict the columns of B
′
, i.e., the column markers

b1, . . . ,bκ. Projecting a point onto an arrow followed by a multiplication by the length
of the biplot vector is equivalent to computing the inner product a

′
ibj , which provides

an approximation to the corresponding element xij .
Regarding the decomposition in (13), one could consider more than one factorization

form of X by making different choices for A and B and, consequently, getting back
distinct biplot results. For example, opting for A = T∗ and B = PΣ, the factorization
will preserve the metric of the columns of X. That is the classic biplot (Gabriel, 1971),
also called GH-biplot by Galindo (1986). Besides, if the matrix is centered by columns,
this type of biplot satisfies the following properties: i) the norm of a column marker
b1 is proportional to the standard deviation of the respective variable; ii) the cosine of
the angle formed by column markers approximates the correlation between the related
variables; iii) the columns are better represented than the rows in terms of quality. In
turn, choosing A = T∗Σ and B = P, this factorization will preserve the metric of
the rows so that the Euclidean distances between the row markers approximate the
Euclidean distances between the respective individuals in the full space. In addition, the
representation quality of the rows is better than the columns. It is called form biplot
(Gabriel, 1971), or JK-biplot (Galindo, 1986).
Another possibility is the selection that occurs in the HJ-biplot method, where A =

T∗Σ and B = PΣ. In this case, one can obtain an optimal representation of the ℓ
rows and the κ columns of X in the same Euclidean space (Galindo, 1986; Nieto et al.,
2014; Silva and Freitas, 2020). Conditioned on the quality of data representation in two-
dimensional space, some of the possible interpretations of an HJ-biplot are i) the distance
between points is expected to correspond to the dissimilarity between the associated
individuals, just as in JK-biplots; ii) as it occurs in GH-biplots, approximately, the longer
the arrow, the greater the correspondent standard deviation of the associated variable;
iii) the cosine of the angle between arrows approximates the correlation between the
variables they represent. A 90◦ angle indicates a weak correlation, while an angle close
to 0 degrees or 180◦ suggests a strong correlation, positive in the first case and negative
in the other. In the HJ-biplot, the inner product a

′
ibj does not approximate the element

xij , i = 1, . . . , ℓ, and j = 1, . . . , κ, but it is not a problem when it comes to the SSA-HJ-
biplot. On it, the main objective is to visually identify the components of a TS (trend,
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seasonality, and noise) and associate the corresponding eigentriple to each of these. An
SSA-HJ-biplot uses any two principal components to visualize information about a TS
in an integrative way since the row and column markers are displayed simultaneously on
the same graph, with maximum representation quality (Galindo, 1986; Silva and Freitas,
2020). Each PC associated with a TS component explains a proportion of the variability
of the data, given by

PCi(%) =
t
′
iti∑d

j=1 t
′
jtj

, (15)

being that the higher the percentage of variability explained, the better the quality of
the adjustment of the SSA-HJ-biplot. In this context, (i) biplot points whose Euclidean
distances are small imply similarity in the behavior of the associated κ-lagged vectors; (ii)
arrows with roughly the same size, indicating that the correspondent ℓ-lagged vectors
have standard deviation also close; (iii) the angle between two arrows pinpoints the
autocorrelation between the two ℓ-lagged vectors associated.

2.2 Area Biplot

The Area Biplot is a visualization technique used to estimate data values through the
areas spanned by a triangle constructed from the results of the SVD factorization of
a data matrix. In the original approach, Gower et al. (2010) propose another type of
target matrix factorization to guarantee that the row and column markers exhibit a
similar spread, facilitating the visual inspection of the produced biplots. It is done by
standardizing the matrices A and B, such that:

A = (
ℓ

κ
)
1
4T∗

2Σ
1
2
2 , (16)

and

B = (
κ

ℓ
)
1
4P2Σ

1
2
2 , (17)

where T∗
2 and P2 denote the first two columns of T∗ and P, and Σ2 the diagonal matrix

with the two largest singular values. Doing so, the inner product matrix AB
′
still

approximates the matrix X. The procedure starts with the rotation of the row markers
by 90◦, i.e.,

a
[r]
i = Rai, (18)

in which R is the (2×2) 90◦ counterclockwise rotation matrix. Considering θij the angle
between the vectors ai and bj , as well as that the inner product can be written as

a
′
ibj = ∥ai∥ ∥bj∥ cos(θij), (19)

the option for the 90◦ = π⁄2 counterclockwise rotation is justified because
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cos(θij) = sin(θij + π/2) = sin(ϕij), (20)

and then

a
′
ibj = ∥ai∥ ∥bj∥ sin(ϕij), (21)

where ϕij is the angle between the 90◦-rotated biplot point a
[r]
i and the biplot vector bj .

Besides, the expression (21) provides the area of the triangle formed by the origin and

the endpoints of the vectors a
[r]
i and bj multiplied by two (Figure 1). Therefore, the

element xij may be estimated by the double of the triangle area.

Figure 1: The inner product a
′
ibj is twice the area of the triangle ABC.

3 Our approach for periodicity detection

This section shows the foundations of an exploratory visualization technique used to
estimate the periodicity of a TS called SSA Area Biplot. Through triangles built from
sets of lagged vectors and whose autocorrelations are very close to each other, an estimate
for the TS periodicity is obtained by computing the number of groups of almost similar
triangles on the biplot graph. Similarly to in the area biplot method, the triangles here
are built with the singular vectors resulting from the trajectory matrix decomposition.
However, this approach uses the HJ-biplot factorization instead of the one proposed by
Gower et al. (2010). As X is a Hankel matrix and the ℓ-lagged and κ-lagged vectors of
the same order represent the same subseries (or almost the same), we are interested in
representing rows and columns simultaneously with maximum quality. Let us initiate
considering the trajectory matrix row markers as
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A = T∗
2Σ2 =




a
′
1

a
′
2
...

a
′
ℓ



, (22)

and the column markers as

B = P2Σ2 =




b
′
1

b
′
2
...

b
′
κ



. (23)

In this context, Σ2 is a diagonal matrix with two consecutive singular values asso-
ciated with some harmonic component of the series, and T∗

2 and P2 denote the two
corresponding columns of T∗ and P.

3.1 Triangles construction

The procedure starts with identifying a pair of singular values of X close to each other,
such that

√
t′iti ≈

√
t′i+1ti+1. (24)

The proximity between them means that the associated principal components (PC)
are related to the periodicity of the TS (Golyandina et al., 2001; Silva and Freitas, 2020).
Then, an adapted area biplot is built for the two selected PC, fixing one of the biplot
vectors as a reference (b

′
f ). The vector b

′
f will serve as the base for the triangles, and

hence it will be referred to as the base vector.
Next, all others biplot vectors are counterclockwise rotated by 90◦ (b[r]

j , j ∈ {1, . . . , κ}\
{f}), unlike what occurs in the original area biplot method, in which the points are the
objects that undergo the rotation. Triangles are then formed by connecting the endpoints
of the base vector and each rotated vector (Figure 2). According to the SSA-HJ-
biplot interpretation, the cosine of the angle formed by two biplot vectors approximates
the autocorrelation between the corresponding lagged vectors. Thus, naming the angle
between b

′
f and b

′
j as θfj ,

cos(θfj) ≈ corr(xf ;xj), (25)

and also

cos(θfj) = sin(90◦ ± θfj). (26)

In this way, taking into account the direction of b
′
f , and considering b

[r]
j is on its left,

then the correlation will have a positive sign. It occurs because, if 0 ≤ (90◦ ± θfj) ≤
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Figure 2: Triangle ABC formed by the reference and rotated vectors.

180◦, then sin(90◦ ± θfj) > 0. Otherwise, the correlation will have a negative sign.
Furthermore, concerning the angle whose vertex coincides with the origin of the factorial
axes, when triangle ABC (Figure 2) is almost a right triangle, then the corr(xf ;xj)
will be close to 1.
Assuming that the data is well represented in the biplot in terms of the percentage of

variability explained by the PCs, it is expected that:

1. For a fixed biplot vector b
′
f , and if π is the dominant period of the TS, then there

exists an integer η such that

∡(b′
f ,b

[r]
η+kπ) ≈ 90◦, k ∈ {0, 1, . . . , ⌊(κ− η)/π⌋}. (27)

In other words, the corresponding images will be close to being right-angled trian-
gles and, for stationary series in the variance, among those with the largest area.

Considering the direction of the base vector, if the vectors b
[r]
η+kπ are to its left,

then the autocorrelation between the associated ℓ-lagged vectors will be close to 1
and positive. Otherwise, it will be strongly negative.

2. Likewise, there exists an integer τ for which the norm of the difference between
the base vector b

′
f and some rotated biplot vectors is close to zero, such that

∥b′
f − b

[r]
τ+kπ∥ ≈ 0, k ∈ {0, 1, . . . , ⌊(κ− τ)/π⌋}, (28)

and then the related triangles will have minimal areas and imply a weak autocor-
relation between the corresponding ℓ-lagged vectors.

3. In intermediate situations, one or more cohesive groups of triangles may appear
(depending on the periodicity). Inside each group, The associated ℓ-lagged vectors
will be strongly correlated with each other but less intensely with the ℓ-lagged
vector corresponding to the base vector.
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4. In any case, considering the direction of the base vector, the rule is that groups of
triangles with similar shapes to the left of b

′
f will indicate a positive correlation.

When to the right, the correlation will be negative.

5. The periodicity of the TS is estimated by the number of groups of almost similar
triangles.

6. If some biplot vectors have approximately the same size, this indicates that the
corresponding ℓ-lagged vectors also have close standard deviations. So, if there is
a natural number ν < κ such that

∥b′
ν∥ ≈ ∥bν+j∥, ∀j = 1, 2, . . . , κ− ν, (29)

then,

var(xν) ≈ var(xν+j), ∀j = 1, 2, . . . , κ− ν. (30)

This leads to a greater similarity between triangles within the same group and
suggests that a stationary process in the variance may have generated the series.

As stated before, the SSA does not require rigid assumptions or model specifications,
and the separability of the components sought is usually only approximate (Golyandina
et al., 2001; Hassani and Mahmoudvand, 2018). Thus, these setbacks can lead to mis-
representing data in the biplot. To work around this, one could use the periodogram of
the series to compare with the SSA area biplot results. By providing a different perspec-
tive on the spectral structure of the TS, the periodogram analysis can be an important
confirmation tool on what is extracted from the analysis of biplot triangles.

4 Experimental results

We implemented an R package entitled x to test the technique, applying it over two
datasets provided by the North-American agency National Oceanic and Atmospheric
Administration (NOAA) and involving climate change-related issues, i.e., carbon dioxide
(CO2) concentration in the atmosphere and Wildfires. The first TS contains the records
of the CO2 concentration in the Earth’s atmosphere, measured monthly from January
1965 to December 1980 at an observing station on Mauna Loa in Hawaii. This is referred
to in this work as TS CO2. The graphical representation of the TS CO2 is shown in
Figure 3. The second dataset records the average monthly wildfire statistics provided by
the National Interagency Fire Center (NIFC), available from January 2013 to December
2020 (called here as TS Wildfire).
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Figure 3: Records of CO2 concentration in the Earth’s atmosphere measured monthly
from January of 1965 to December of 1980 at an observing station on Mauna
Loa in Hawaii.

4.1 Time Series CO2 - Hawaii

In this case, the length of the series is n = 192 and the window length is ℓ = n/2 = 96,
resulting in κ = n− ℓ+ 1 = 97.

Figure 4 brings the scree plot of the singular values resulting from the NIPALS
decomposition of X related to the TS CO2. This criterion suggests the first five principal
components are associated with the series signal. As the first singular value is dominant,
the first eigentriple is related to the trend (Silva and Freitas, 2020). Following,

√
t′2t2

and
√
t′3t3 are close to each other and form a plateau in the scree plot. So, it indicates

the eigentriples associated with them are related to the oscillatory component. The
same occurs with the 4th and 5th singular values, which corresponding eigentriples will
also be associated with the periodicity of the series. The first five components explain
98% of the data variability (Table 1). From the 6th principal component onwards, the
proportion of explained variance drops off and can be considered noise-related.

To detect periodicities in the TS CO2, two area biplots were built, one using the
2nd and 3rd PCs (Figure 5), and another related to the 4th and 5th PCs (Figure 6).
In both, we labeled the vertices of the triangles according to the start month of the
respective ℓ-lagged vector. Besides, we choose the first ℓ-lagged vector (1st column of
X) to be the base vector. Picking out a different base vector, one can get similar results.
Regarding the SSA area biplot in Figure 5, the proportion of explained variance by
the factorial axes is 29%, with the 2nd PC explaining 15% and the 3rd PC explaining
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Figure 4: Scree plot of the singular values resulting from the NIPALS decomposition of
the TS CO2 trajectory matrix. By this criterion, the first five components
must be considered when separating the signal from the series.

Table 1: Proportion of explained variance by the ten first PCs of the X (TS CO2).

PCi Variance (%) PCi Variance (%)

1 67 6 0.4

2 15 7 0.3

3 14 8 0.3

4 1 9 0.1

5 1 10 0.1

14% of the data variability. There are twelve distinct groups of nearly similar triangles,
and since the size of the biplot vectors is very close to each other, this also suggests
the stationarity of the series in the variance. Furthermore, each group of triangles is
composed of biplot vectors corresponding to ℓ-lagged vectors that start in a specific
month of the year. Therefore, each of the twelve groups presents biplot vectors whose
proximity of the angles suggests a strong autocorrelation between the related ℓ-lagged
vectors. And this points to a periodicity 12. Thus, the harmonic component of period
12 will be associated with the eigentriples (t∗2,

√
t′2t2,p2) and (t∗3,

√
t′3t3,p3).

The subseries corresponding to the 1st ℓ-lagged vector associated with the base vector
(b

′
1) starts in January. The triangles formed by b

′
1 and each rotated biplot vector

labeled J (January) establish a figure very close to a right triangle. Since they are to
the left of the base vector, it indicates a strong and positive autocorrelation between the
corresponding ℓ-lagged vectors.

On the other hand, triangles labeled L (July) establish patterns close to the right



14 Silva, Freitas

Figure 5: SSA Area Biplot of the TS CO2 related to the 2nd PC (15%) and 3rd PC
(14%).

Figure 6: SSA Area Biplot of the TS CO2 related to the 4th PC (1%) and 5th PC (1%).
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triangles but on the right side of the base vector. Therefore, it suggests a strong and
negative autocorrelation between the 1st ℓ-lagged vector and each of the rotated ℓ-lagged
vectors starting in July. In both cases, these are the triangles with the largest area, which
will be proportional to the magnitude of the autocorrelations. In addition, triangles
labeled N (November), D (December), J (January), F (February), M (March), and A
(April) are on the left of the base vector, while that labeled Y (May), U (June), L (July),
T (August), S (September), and O (October) are on the right. This suggests that the
values of the series increase from November to April and decrease from May to October.

Concerning the SSA area biplot formed by the 4th and 5th PCs (Figure 6), each group
of almost similar triangles is established by biplot vectors associated with pairs of months,
i.e., J and L, F and T, and so on. Thus, the six groups lead us to conclude that the
eigentriples (t∗4,

√
t′4t4,p4) and (t∗5,

√
t′5t5,p5) are related to the harmonic component

of period 6. Considering the biplot vectors related to the months of these pairs appear
in opposite directions in the biplot in Figure 5, one can conclude that the valleys tend
to be six months behind the peaks.

To conclude, we built the TS CO2 periodogram (Figure 7), in which we can observe
two peaks at frequencies 0.08(3) and 0.1(6), which leads us to infer that the two dominant
periods of the series are 12 and 6 and confirms the SSA area biplot analysis.

Figure 7: Periodogram of the TS CO2 showing two peaks at frequencies 0.08(3) and
0.1(6) and indicating 12 and 6 as the dominant periods.

4.2 Time Series Wildfire – USA

The sample size of the TS Wildfire series is n = 96, spanning January 2013 to December
2020. As usual, the window length is ℓ = n/2 = 48 and κ = n − ℓ + 1 = 49. Figure 8
shows the shape of the TS Wildfire, and Figure 9 depicts the scree plot of the singular
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values of its trajectory matrix X.

Figure 8: The monthly average number of wildfires in the USA.

The scree plot does not detach any dominant singular value, indicating no trend in
the TS Wildfire. When it comes to the oscillatory component, it is much more difficult
to identify a pair of eigentriples associated with periodicity in the TS Wildfire since the
proportion of explained variance is not so high even for the first four PCs (Table 2),
which totals just 48%.

Table 2: Proportion of explained variance by the ten first PCs of X (TS Wildfire).

PCi Variance (%) PCi Variance (%)

1 14 6 4

2 13 7 3

3 11 8 3

4 10 9 3

5 4 10 3

Nevertheless, through the scree plot criterion, the first two singular values are close
enough to suggest a correspondence between (t∗1,

√
t′1t1,p1) and (t∗2,

√
t′2t2,p2) with

a periodic component. We can apply an analogous reasoning regarding the proximity
of the next two singular values,

√
t′3t3 and

√
t′4t4, to deduce a relation between the

eigentriples (t∗3,
√
t′3t3,p3) and (t∗4,

√
t′4t4,p4) with another harmonic component. From

there is verified a sharp drop in the singular values, denoting the remaining ones are
related to noise. Accordingly, Figure 10 and Figure 11 bring the two SSA area biplots
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corresponding to the 1st and 2nd PCs and the 3rd and 4th PCs.

Figure 9: Scree plot of singular values resulting from the NIPALS decomposition of the
TS Wildfire trajectory matrix. By this criterion, the first four components
must be considered when separating the signal from the series.

Regarding the SSA area biplot related to the first two PCs (Figure 10), it is possible
to identify four groups of triangles according to the start month of the corresponding ℓ-
lagged vector, i.e., (J,Y,S),(F,U,O),(M,L,N), and (A,T,D). They are a little farther from
the desired quasi-similarity, but the groups are sufficiently distinct to visually recognize
a strong autocorrelation between the associated ℓ-lagged vectors. Thus, it looks like
the first pair of eigentriples is connected to the harmonic component of period 4, but
a confirmation through the periodogram is strongly recommended because it seems the
data are not well represented in the biplot.

As for the biplot of the SSA area using the 3rd and 4th PCs (Figure 11), it is still
possible to distinguish twelve groups of triangles regarding the start month of the ℓ-
lagged vectors. But the heights concerning the base vector vary significantly, discarding
the expectation of obtaining quasi-similar triangles. One could suspect that the 3rd and
4th PCs are related to the oscillatory component of period 12, but again, we need the
periodogram to confirm these results.

Comparing what has been extracted from the SSA area biplot with what is shown
in Figure 12 allows us to conclude that the results of the initial visual analysis are
consistent with the periodogram results, which present two peaks at frequencies 0.25
and 0.08(3), meaning that the two dominant periods of the TS Wildfire should be 4 and
12.
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Figure 10: SSA Area Biplot of the TS Wildfire related to the 1st PC (14%) and 2nd PC
(13%).

Figure 11: SSA Area Biplot of the TS Wildfire related to the 3rd PC (11%) and 4th PC
(10%).
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Figure 12: Periodogram of the TS Wildfire showing two peaks at frequencies 0.25 and
0.08(3) and indicating 4 and 12 as the dominant periods.

5 Discussions and Conclusion

The SSA method offers few resources in terms of visualization, mainly regarding the
results of the trajectory matrix decomposition. In this paper, combining the SSA and
the Area Biplot methods, we proposed a straightforward exploratory approach to visually
estimate the periodicity of a TS through groups of quasi-similar triangles, which we call
the SSA area biplot. Due to the lack of R packages capable of building area biplots, we
have implemented the areabiplot package in R, which serves both the purposes stated in
this article and more general multivariate data. The technique presented also provides
interpretability for the ℓ-lagged vectors (which constitute the columns of the trajectory
matrix) in terms of their autocorrelations. For cases in which the data are poorly
represented in the biplot, either by the low proportion of variability explained or by the
complexity of the series, we proposed using the periodogram as a confirmatory measure.
The results obtained in the two applications of the procedure to climate TS data (TS
CO2 and TS Wildfire) were consistent with those given by the respective periodograms
regarding the periodicity of the series, even in the case of data badly described in the
biplot ( TS Wildfire). This study is promising in two senses: i) it has the potential to
provide reliable starting points for the application of other more sophisticated methods;
ii) for being an easily perceived visualization technique for any user.
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Abstract. Time series data usually emerge in many scientific domains. The ex-
traction of essential characteristics of this type of data is crucial to characterize 
the time series and produce, for example, forecasts. In this work, we take ad-
vantage of the trajectory matrix constructed in the Singular Spectrum Analysis, 
as well as of its decomposition through the Principal Component Analysis via 
Partial Least Squares, to implement a graphical display employing the Biplot 
method. In these graphs, one can visualize and identify patterns in time series 
from the simultaneous representation of both rows and columns of such decom-
posed matrices. The interpretation of various features of the proposed biplot is 
discussed from a real-world data set.  

Keywords: Singular Spectrum Analysis, NIPALS algorithm, Biplots. 

1 Overview 

Singular Spectrum Analysis (SSA) is a non-parametric method and a suitable tool to 
perform exploratory analysis on time series [6]. The Basic SSA schema is the version 
that deals with the description and identification of the structure of a one-dimensional 
real-valued time series. Basic SSA can be described as two successive stages: decom-
position and reconstruction. The first one is subdivided into step 1, the embedding, 
and step 2, the Singular Value Decomposition (SVD), while the second consists of 
two other phases, the grouping and the diagonal averaging. The primary purpose is to 
decompose the original time series into the sum of a few interpretable components, 
such as trend, oscillatory shape (e.g., seasonality) which should be separated from a 
noise component [5]. 
 For any matrix, the factorization given by SVD allows practical graphical represen-
tations of both rows and columns of the matrix employing biplots methods [2, 3]. 
Biplots provide easier interpretations, are much more informative than the traditional 
scatterplots, and might facilitate the work in the grouping step in SSA. Several types 
of biplots can be constructed depending on how the three factors identified by SVD 
are aggregated to obtain only two factors. Herein, the option is the biplot method 
proposed by Galindo [3], called HJ-biplot, which yields a simultaneous representation 
of both rows and columns of a matrix of interest with maximum quality [3].  
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 The main objective of this paper is to propose a new exploratory procedure to visu-
alize and identify patterns in the time series through the construction of an HJ-biplot 
from the results of the SVD step on the Basic SSA. Moreover, this work suggests an 
alternative approach to obtain the factorization referred in step 2 (first stage) based on 
the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm [11] instead of the 
usual SVD method. Although it provides equivalent results concerning the singular 
vectors and the singular values, it empowers the SSA to deal with missing values in 
the data, without employing any imputation method, since NIPALS is a suitable tool 
to treat this problem [10, 12]. That occurs because, in each iteration of the NIPALS 
algorithm, only present data are considered in the regressions performed, ignoring the 
missing elements. This is equivalent to defining all missing points in the least squares 
objective function as zero. 

The paper is organized as follows. In Section 2, we provide a short description of 
the theoretical background related to the methods involved in this work. In Section 3, 
we propose a biplot approach to the SSA method and some possible interpretations of 
it. In Section 4, we perform an application of the proposed technique by using real-
world data set. Final conclusions are contained in Section 5. 

2 Methods 

2.1 Basic Singular Spectrum Analysis 

The Basic SSA is a model-free tool used to recognize and identify the structure of a 
time series [5]. As before mentioned, it is composed of two complementary stages, as 
follows. 

First Stage: Decomposition. 
Consider a real-valued time series Y = (𝑦1, … , 𝑦𝑁) of length 𝑁. Let the integer value 
𝐿 (1 < 𝐿 < 𝑁) be the so-called window length, as well as 𝐾 = 𝑁 − 𝐿 + 1. Hereupon, 
the embedding procedure, that is the first step of the Basic SSA, consists in represent-
ing Y in 𝐾 lagged vectors, 𝐱1, … , 𝐱𝐾, each one of size 𝐿 (𝐿-lagged vectors), i.e., 𝐱𝑗 =

(𝑦𝑗 , … , 𝑦𝑗+𝐿−1), 1 ≤ 𝑗 ≤ 𝐾. This sequence of 𝐾 vectors forms the trajectory matrix 
𝐗 = [𝐱1 ∶ … ∶ 𝐱𝐾], that has as its columns the 𝐿-lagged vectors. Step 2, the SVD step, 
results in the singular value decomposition of the trajectory matrix. Consider that 
rank(𝐗) is equal to 𝑑, and the matrix 𝐒 is defined as the product 𝐗′𝐗. So, the SVD of 
𝐗 is the decomposition in the form 

 𝐗 = ∑ √𝜆𝑖𝐮𝑖𝐯𝑖
′𝑑

𝑖=1 , (1) 

where 𝜆𝑖, 𝑖 = 1, … , 𝑑, are the eigenvalues of the matrix 𝐒 arranged in decreasing order 
of magnitudes (𝜆𝑖 > 0), {𝐯1, … , 𝐯𝑑} is the orthonormal system of the eigenvectors of 
𝐒 associated with the eigenvalues 𝜆1, … , 𝜆𝑑, and 

 𝐮𝑖 = 𝐗𝐯𝐢 √𝜆𝑖⁄ . (2) 
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The elements of the triple √𝜆𝑖 , 𝐮𝑖 , 𝐯𝑖 are also known as singular values, left and right 
singular vectors of 𝐗, respectively.  Besides, defining 

 𝐗i =  √𝜆𝑖𝐮𝑖𝐯𝑖
′, (3) 

one can represent 𝐗 as a sum of 𝑑 1-rank matrices, i.e.,  

 𝐗 = 𝐗1 + ⋯ + 𝐗𝑑. (4) 

Second Stage: Reconstruction. 
Once the expansion (4) has been determined, the third step of the SSA starts with the 
partitioning of the index set {1, … , 𝑑} into disjoints subsets 𝐼𝑗 , 𝑗 = 1, … , 𝑝. Let 

 𝐗𝐼 = ∑ 𝐗𝑖𝑖∈𝐼  (5) 

and the decomposition can be written as 

 𝐗 = 𝐗𝐼1
+ ⋯ + 𝐗𝐼𝑝

. (6) 

The intention of the grouping procedure is the separation of the additive components 
of the time series [6]. The objective of the next phase, the diagonal averaging step, is 
to transform each matrix of the grouping decomposition into a new time series [5]. At 
this point, as in [6], it is convenient to define: 𝕄𝐿,𝐾 as the space of the matrices of 
dimension (𝐿 × 𝐾); 𝕄𝐿,𝐾

(𝐻) the space of Hankel matrices of dimension (𝐿 × 𝐾); the 
embedding operator 𝒯: ℝ𝑁 ↦ 𝕄𝐿,𝐾 as 𝒯(𝑌) = 𝐗; and the projector ℋ of 𝕄𝐿,𝐾 to 
𝕄𝐿,𝐾

(𝐻), that carries out the projection by changing entries on auxiliary diagonals (where 
𝑖 + 𝑗 is a constant) to their averages along the diagonal. So, the diagonal averaging 
procedure corresponds to obtaining 

 �̃�(𝑘) = 𝒯−1[ℋ(𝐗𝐼𝑘
)] (7) 

and, then 

 𝑌 = ∑ �̃�(𝑘)𝑝
𝑘=1 . (8) 

2.2 PCA through NIPALS 

The NIPALS algorithm belongs to the Partial Least Squares family, a set of iterative 
algorithms that implement a wide range of multivariate explanatory and exploratory 
techniques. The NIPALS is designed as an iterative estimation method for Principal 
Component Analysis (PCA), that computes the principal components through an it-
erative sequence of simple ordinary least squares regressions [10, 11]. It produces a 
singular value decomposition (SVD) of a matrix regardless of its dimensions and the 
presence of missing data [10].  Again, considering that the trajectory matrix has rank 
𝑑, the method decomposes 𝐗 as a sum of 𝑑 1-rank matrices in terms of the outer 
product of two vectors, a score 𝐭𝑖 and a loading 𝐩𝑖, so that  
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 𝐗 = 𝐭1𝐩1
′ + ⋯ + 𝐭𝑑𝐩𝑑

′ . (9) 

The elements of the scores vector 𝐭𝑖 are the projections of the sample points on the 
principal component direction, while each loading in 𝐩𝑖 is the cosine of the angle 
between the component direction vector and a variable axis [4]. The NIPALS first 
computes 𝐭1 and 𝐩1 from 𝐗 and, then, the outer product 𝐭1𝐩1

′  is subtracted from 𝐗 to 
calculate the residual matrix 𝐄1. After, 𝐄1 is used to compute 𝐭2 and 𝐩2, and the re-
sidual 𝐄2 is calculated subtracting 𝐭2𝐩2

′  from 𝐄1, and so on until to obtain 𝐭𝑑 and 𝐩𝑑. 
The NIPALS algorithm is shown in Algorithm 1. 

Algorithm 1. NIPALS internal relations. 

NIPALS 
                        Input: 𝐄𝟎 = 𝐗 
                        Output: 𝐏 = |𝐩𝟏 : …: 𝐩𝒅|, 𝐓 = |𝐭𝟏 : …: 𝐭𝒅| 
                                for all 𝒊 = 𝟏, … , 𝒅 do 
                                        step 0: initialize 𝐭𝒊 
                                        step 1: 
                                        repeat 
                                                    step 1.1: 𝐩𝒊 = 𝐄𝒊−𝟏

′ 𝐭𝒊 𝐭𝒊
′𝐭𝒊⁄  

                                                    step 1.2: 𝐩𝒊 = 𝐩𝒊 ‖𝐩𝒊‖⁄  
                                                    step 1.3: 𝐭𝒊 = 𝐄𝒊−𝟏𝐩𝒊 
                                        until convergence of 𝐩𝒊 
                                        step 2: 𝐄𝒊 = 𝐄𝒊−𝟏 − 𝐭𝒊𝐩𝒊

′ 
                                 end for 
 

 
From the internal relations in each iteration of the NIPALS algorithm, and after nor-
malizing 𝐭𝑖, such that  

 𝐭𝑖
∗ = 𝐭𝑖 ‖𝐭𝑖‖⁄ ⇔ 𝐭𝑖 = √𝐭𝑖

′𝐭𝑖 𝐭𝑖
∗ , (10) 

the following equations can be verified [10]: 

 𝐄𝑖−1
′ 𝐄𝑖−1𝐩𝑖 = 𝜆𝑖𝐩𝑖 (11) 

 𝐄𝑖−1𝐄𝑖−1
′ 𝐭𝑖

∗ = 𝜆𝑖𝐭𝑖
∗, (12) 

where 𝜆𝑖 = 𝐭𝒊
′𝐭𝒊 is the eigenvalue of both matrices 𝐄𝑖−1

′ 𝐄𝑖−1 and 𝐄𝑖−1𝐄𝑖−1
′ , as well as 

𝐩𝑖 and 𝐭𝑖
∗ are their corresponding eigenvectors. Thus, the NIPALS decomposition of 𝐗 

can be written as 

 𝐗 = √𝐭1
′ 𝐭1 𝐭1

∗𝐩1
′ + ⋯ + √𝐭𝑑

′ 𝐭𝑑  𝐭𝑑
∗ 𝐩𝑑

′ . (13) 

Now, define the matrix 𝚺 as a diagonal matrix containing the singular values √𝐭𝑖
′𝐭𝑖 

arranged in decreasing order. So, one can write the matrix form of the expansion (13) 
as 

 𝐗 = 𝐓∗𝚺𝐏′, (14) 
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where 𝐓∗ is the scores matrix whose column vectors 𝐭𝑖
∗ are orthonormal, and 𝐏 is the 

loadings matrix whose column vectors 𝐩𝑖 are also orthonormal. 

2.3 HJ-Biplot 

The term biplot is due to Gabriel [2] and is associated to a graphical representation 
that reveals essential characteristics of multivariate data structure, e.g., patterns of 
correlations between variables or similarities between observations [7]. Consider a 
target data matrix 𝐙 of dimension (𝐼 × 𝐽), and its decomposition in the form 

 𝐙 = 𝐀𝐁′, (15) 

where 𝐀 is a matrix of dimension (𝐼 × 𝑄), and 𝐁 is a matrix of dimension (𝐽 × 𝑄). 
The matrices 𝐀 and 𝐁 create two sets of points, and if 𝑄 = 2, then the rows and col-
umns of 𝐙 can be simultaneously represented into a two-dimensional graph called 
biplot, in which the rows of 𝐀 are reproduced by points and the columns of 𝐁′ are 
expressed as vectors connected to the origin (arrows). Thus, the biplot displays the 
row markers 𝐚1, … , 𝐚𝐼  of 𝐙, as well as its column markers 𝐛1, … , 𝐛𝐽, so that the inner 
product 𝐚𝑖

′𝐛𝑗 is the element 𝑧𝑖𝑗  of 𝐙 [8]. Very briefly, the interpretation of the biplot 
representation can be performed as follows:  

1. The distance between points corresponds to how different the associated in-
dividuals are (dissimilarities), mainly if they are well represented; 

2. The size of the arrow is proportional to the standard deviation of the associ-
ated variable. The longer the arrow, the greater the standard deviation; 

3. The cosine of the angle between arrows approximates the correlation be-
tween the variables they represent. Thus, if the angle is next to 90° it indi-
cates a poor correlation, while an angle close to 0° or 180° suggests a strong 
correlation, being positive in the first case and negative in the other. 

 The most popular biplot is the classic one [2], in which the metric of the columns is 
preserved. This version is also designated by GH-biplot [8]. An essential property of 
the GH-biplot is that the biplot vectors have the same configuration of the data matrix 
columns and the quality of representation of columns is maximum. By choosing row 
and column markers properly, the HJ-biplot allows representing the rows and col-
umns simultaneously in the same Euclidean space with optimal quality for both [3]. 
 To construct an HJ-biplot version based on NIPALS instead of SVD as proposed in 
[3], it’s enough to demonstrate the relationship between 𝐭𝑖

∗ and 𝐩𝑖, as will be done 
next. 
 From the equation (12), multiplying it to the left by 𝐄𝑖−1

′ , it becomes 

 𝐄𝑖−1
′ 𝐄𝑖−1(𝐄𝑖−1

′ 𝐭𝑖
∗) = 𝜆𝑖(𝐄𝑖−1

′ 𝐭𝑖
∗) (16) 

Next, the vector normalization of (𝐄𝑖−1
′ 𝐭𝑖

∗) results in 𝐄𝑖−1
′ 𝐭𝑖

∗ √𝐭𝑖
′𝐭𝑖⁄ , i.e., the vector 𝐩𝑖. 

Proceeding in the same way with respect to equation (11), and multiplying it to the 
left by 𝐄𝑖−1 we have 

 𝐄𝑖−1𝐄𝑖−1
′ (𝐄𝑖−1𝐩𝑖) = 𝜆𝑖(𝐄𝑖−1𝐩𝑖). (17) 
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After, (𝐄𝑖−1𝐩𝑖) is normalized, which produces 𝐄𝑖−1𝐩𝑖 √𝐭𝑖
′𝐭𝑖⁄ , i.e., the vector 𝐭𝑖

∗. 
Hence, 

 √𝐭𝑖
′𝐭𝑖𝐩𝑖 = 𝐄𝑖−1

′ 𝐭𝑖
∗, (18) 

and 

 √𝐭𝑖
′𝐭𝑖𝐭𝑖

∗ = 𝐄𝑖−1𝐩𝑖. (19) 

To unify the biplot axes scales similarly to what is done in [3], the following designa-
tion is done 

 𝐚𝑖 = 𝐄𝑖−1𝐩𝑖 = √𝐭𝑖
′𝐭𝑖𝐭𝑖

∗ (20) 

 𝐛𝑖 = 𝐄𝑖−1
′ 𝐭𝑖

∗ = √𝐭𝑖
′𝐭𝑖𝐩𝑖. (21) 

Substituting (18) into (20), it follows that 

 𝐚𝑖 = 𝐄𝑖−1𝐛𝑖 √𝐭𝑖
′𝐭𝑖⁄ , (22) 

and plugging (20) in (21) we get 

 𝐛𝑖 = 𝐄𝑖−1
′ 𝐚𝑖 √𝐭𝑖

′𝐭𝑖⁄ . (23) 

Thus, from (22) and (23), the coordinates of the i-th column are expressed as a func-
tion of the coordinates of the i-th row and vice versa. As a consequence, it allows the 
representation of the rows and columns in the same Cartesian coordinates system. 
Moreover, these expressions of the column and row coordinates lead to the maximum 
quality of the representation for rows and columns in the same system [3]. Consider-
ing the matrix form of the NIPALS decomposition in (14), it is worth to mention that 
for the configuration of the HJ-biplot, we have 

 𝐀 = 𝐓∗𝚺, (24) 

 𝐁 = 𝐏𝚺, (25) 

and so, 

 𝐗 ≠ 𝐀𝐁′. (26) 

3 The SSA-HJ-Biplot 

The trajectory matrix that will be decomposed by the NIPALS algorithm at the second 
step of the first stage of the SSA has some peculiarities in relation to the usual multi-
variate data matrix. Instead of individuals and variables, the rows and columns of the 
trajectory matrix represent 𝐿-lagged and 𝐾-lagged vectors of a time series, respective-
ly. That said, after the decomposition of 𝐗, a row marker in the HJ-biplot denotes a 𝐾-
lagged vector and is depicted in the graph as a point. In turn, a column marker repre-
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sents a 𝐿-lagged vector, being that an arrow symbolizes it. One of the goals of SSA-
HJ-biplot is to assist in the grouping step and for this, building more than one SSA-
HJ-biplot may be needed. The first SSA-HJ-biplot uses the 1st and the 2nd principal 
components (PC), the next one uses the 2nd PC and the 3rd PC, and so on as long as 
the remain components can explain the variability of the data, which is given by 

 𝑃𝐶%
(𝑖)

= 𝐭𝑖
′𝐭𝑖 ∑ 𝐭𝑗

′𝐭𝑗
𝑑
𝑗=1⁄ , (27) 

or visually through the scree plot of the singular values (√𝐭𝑖
′𝐭𝑖) [5].  

 The window length 𝐿 has to be large enough so that each 𝐿-lagged vector captures 
a substantial part of the behavior of the time series [5], but at the same time, it permits 
the interpretability of the graphics display. A window length equals to 𝑁/2 provides 
both capabilities because it allows for the most detailed decomposition [5]. The inter-
pretation of the first SSA-HJ-biplot is performed in terms of: 

1. The proximity of points. Biplot points whose Euclidean distances are small 
imply similarity in the behavior of the associated 𝐾-lagged vectors; 

2. The length of the biplot vectors. If the arrows are roughly the same size, this 
indicates that the 𝐿-lagged vectors have standard deviation also close, which 
suggests that the process is stationary in the variance; 

3. The angle formed between biplot vectors. If the angle between the two ar-
rows is next to 0°, it hints a strong and positive autocorrelation between the 
two 𝐿-lagged vectors associated (negative if next to 180°). If the angle is 
close to 90°, it is expectable an autocorrelation near to zero. 

It is worth to take in mind the percentage of explained variability represented by 
the first two components, since the higher the percentage, the better the quality of the 
adjust of the SSA-HJ-biplot [3].  

As a rule, a singular value represents the contribution of the corresponding PC in 
the form of the time series. As the tendency generally characterizes the shape of a 
time series, its singular values are higher than the others, that is, they are the first 
eigenvalues [1]. On the other hand, when two singular values are close enough, i.e., 

 √𝐭𝑖
′𝐭𝑖 ≈ √𝐭ℎ

′ 𝐭ℎ, 

this is an evidence of the formation of plateaus in the scree plot and indicates that the 
associated SSA-HJ-biplot is informative about the oscillatory components of the time 
series [5], as long as the PC explain high variability of the data. 

4 Example 

In this Section, an SSA-HJ-biplot is constructed to a time series that contains the rec-
ords the carbon dioxide concentration in the Earth's atmosphere, measured monthly 
from January of 1965 to December of 1980 at an observing station on Mauna Loa in 
Hawaii [9], referred as T.S. CO2 in this work and that is represented in Fig. 1. Two 
auxiliary plots in Fig. 2 provide some hints for what to expect in an SSA-HJ-biplot 
analysis in the data. In Fig. 2 (b), where the 1st  PC is plotted against an index 𝑗 =
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1, … , 𝐾, the presence of a trend component in T.S. CO2 is manifest, and this should 
emerge somehow in the first SSA-HJ-biplot, i.e., in the biplot where the axes are the 
1st and 2nd PCs. Fig. 3 brings the first SSA-HJ-biplot, where one can verify that the 1st 
PC explains 67% of the data variability, i.e., the trend direction. A channel formed by 
two dotted lines helps in the perception of the presence of the trend, although the 2nd  
PC contributes to attenuate the slope if compared with the plot in Fig. 2 (b). Each one 
of the biplot points (in red) represents a 𝐾-lagged vector, and its corresponding label 
indicates the month in which the lagged vector starts. In this sense, accordingly to the 
graph legend, a point labeled as “O” means a 𝐾-lagged vector starting in October of 
some year, and a label “D” symbolizes that the respective 𝐾-lagged vectors begins in 
December, and so on. These points are the row markers, determined by the rows of 
𝐓∗𝚺, that is 𝐚𝑖

′ = 𝐭𝑖
′, 𝑖 = 1, … , 𝐿. 

 

Fig. 1. Carbon dioxide concentration in the Earth's atmosphere measured monthly from January 
of 1965 to December of 1980 at an observing station on Mauna Loa in Hawaii. 

According to the biplot theory, near points indicate similarity in the behavior of the 
lagged vectors, e.g., the points tagged as A, Y, and U in Fig. 3, i.e., the 𝐾-lagged 
vectors starting in April, May, and June. But not only that. Considering the labeling 
procedure before mentioned, the SSA-HJ-biplot is also capable of capturing the be-
havior of the months, since April, May, and June correspond precisely to the periods 
in which the highest concentration of carbon dioxide occurs in the atmosphere. It 
means that the points in the first SSA-HJ-biplot can represent not only the K-lagged 
vectors that start in a given month but also the month itself. 
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Fig. 2. Auxiliary plots in the SSA-HJ-biplot analysis. 

In Fig. 3, the SSA-HJ-biplot represents the column markers (the 𝐿-lagged vectors) as 
black arrows up to the sixth 𝐿-lagged vector (tagged as 𝐿1 until 𝐿6), ordered from top 
to bottom. From the seventh 𝐿-lagged vector onwards the pattern repeats itself, and so 
they were plotted in gray. It means that the first group of arrows, which is at the top, 
refer to the 𝐿-lagged vectors beginning in January and July, just below those as start-
ing in February and August, and so on. The angle between two consecutive arrows 𝐿𝑖 
and 𝐿𝑗, such that 𝑖 = 1, … ,5 and 𝑗 = 𝑖 + 1, indicates a strong autocorrelation between 
the respective 𝐿-lagged vectors since 𝐿𝑖 and 𝐿𝑗 form very sharp angles. As for 𝐿1 and 
the others up to 𝐿6, the angles range from something close to 0 to something close to 
90 degrees, which suggests a fading of the autocorrelations. And this cycle repeats 
from 𝐿7 periodically, which suggests the non-stationarity also in the seasonality. 
 Fig. 4 shows the SSA-HJ-biplot formed by the 2nd and 3rd PCs, while Fig. 5 ex-
hibit the SSA-HJ-biplot constructed from the 4th and 5th PCs. Along with the first 
SSA-HJ-biplot, these are the only ones that produce interpretable results or evidence 
some pattern in the time series, being that these results are in agreement with the one 
verified in the scree plot of the singular values in Fig. 2 (a), where the pair of points 
related to √𝐭2

′ 𝐭2 and √𝐭3
′ 𝐭3 are around at the same level, the same with respect to 

√𝐭4
′ 𝐭4 and √𝐭5

′ 𝐭5. In the SSA-HJ-biplot of Fig. 4, there are well defined 12 groups of 
row markers, where each one of these groups refers to a 𝐾-lagged vector that starts 
for a specific month. Also, the column markers associated with each one of these 
groups show strong autocorrelation between the 𝐿-lagged vectors. All of this indicates 
a seasonal pattern, with peaks and valleys separated by 12 months. In turn, the SSA-
HJ-biplot of Fig. 5 groups the lagged vectors two by two, e.g., January and July, Feb-
ruary and August, and so on. Interpreting this together with the biplot of Fig. 4, where 
these same groups occur but in the opposite directions, one can conclude that the val-
leys tend to be six months behind the peaks. 
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Fig. 3. First SSA-HJ-biplot of the T.S.CO2 trajectory matrix decomposition. 

 
Fig. 4. The second SSA-HJ-biplot whose axes are the 2nd and 3rd PCs. 
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Fig. 5. The third SSA-HJ-biplot whose axes are the 4th and 5th PCs. 

 
Therefore, the result of the grouping step for the decomposition of the T.S. CO2 
should be 𝐗1 and 𝐗2, the first corresponding to the trend component, and the second 
describing the seasonal component, in which   

 𝐗1 = √𝐭1
′ 𝐭1 𝐭1

∗𝐩1
′ ,  (28) 

and 

 𝐗2 = ∑ √𝐭i
′𝐭i 𝐭i

∗𝐩𝑖
′5

𝑖=2 , (29) 

with the rest being related to the noise component. 

5 Conclusions 

This paper attempts to provide an alternative way to visualize and understand the 
underlying structure of the trajectory matrix, that is the result of the embedding step 
of the SSA. The HJ biplot visualization method appears to be a promisor exploratory 
technique adequate to the purposes of this work since it provides interpretability to the 
results of the SVD step as was illustrated by an application. The SSA-HJ-biplots and 
auxiliary graphics provided a visual solution for the decomposition of the analyzed 
time series, properly separating the trend and the oscillatory component, using biplot 
axes up to the fifth PC. Also, allowed the identification of all relevant eigentriple, 
composed by the singular values √𝐭i

′𝐭i, by the left singular vectors 𝐭i
∗, and by the right 

singular vectors 𝐩i, 𝑖 = 1, … , 5,  to perform the grouping step. The study also revealed 
that the SSA-HJ-biplot points, representative of the row markers (𝐚i

′) and symbol of 
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the 𝐾-lagged vectors that begin in a given period of the series (months in this specific 
case) could also depict the period itself in terms of dissimilarities, being possible to 
visually verify the months with the highest and lowest levels of CO2 concentration in 
the atmosphere throughout the years. The SSA-HJ-biplot built with the 1st and 2nd PCs 
proved yet to be useful in dealing with autocorrelations between the column markers, 
which are drawn as arrows and represent the 𝐿-lagged vectors. This study is promis-
ing in the sense that the SSA-HJ-biplot has a great potential as an exploratory tool to 
analyze the structure of a univariate time series due to its visual appeal in such a com-
plex issue. 
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Abstract. Based on a factorization provided by the Partial Least Square
(PLS) methodology, the construction of a biplot for both exploratory and pre-
dictive purposes was shown to visually identify patterns among response and
explanatory variables in the same graph. An application on a team effectiveness
research, collected from 82 teams from 57 Portuguese companies and their
respective leaders, containing two effectiveness criteria (team performance and
the quality of the group experience as response variables), was considered and
interpretation of the biplot was analyzed in detail. Team effectiveness was
considered as the result of the role played by thirteen variables: team trust (two
dimensions), team psychological capital (four dimensions), collective behavior,
transformational leadership, intragroup conflict (two dimensions), team psy-
chological safety, and team cohesion (two dimensions). Results revealed that the
biplot approach proposed was able to capture the most critical variables for the
model and correctly assigned the signals and the strength of the regression
coefficients. Regarding the response variable team performance, the most sig-
nificant variables to the model were team efficacy, team optimism, and team
psychological safety. Concerning the response variable quality of the group
experience, intragroup conflict, team-trust, and team cohesion emerged as the
most relevant predictors. Overall, the results found are convergent with the
literature on team effectiveness.
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1 Introduction

Frequently, multivariate data analysis seeks to perceive the existing underlying struc-
ture and to understand the relationships established within data. Visual information via
graphic displays can be a useful tool to explore the dataset since it summarizes the data
more directly and improves its understanding (Koch 2014). Likewise, a graph of the
results of a specific statistical method, e.g., the Principal Component Analysis
(PCA) biplot, enhances data familiarity. The biplot method permits visual evaluation of
the structure of large data matrices through the approximation of a high-rank matrix by
one of rank two. The PCA biplot represents observations with points and variables with
arrows. Small distances between units can indicate the existence of clusters, while the
size of an arrow depicts the standard deviation of the associated variable. Further, the
angle between two vectors approximates the linear correlation of the related variables
(Gabriel 1971).

When it comes to multivariate regression problems, sometimes one must fix some
problems before applying any methodology to estimate parameters and thinking about
the graphical representation of its results. This is the case of an ill-posed problem, in
which the predictors are many and quasi-collinear, leading to an unstable Ordinary
Least Squares (OLS) solution, i.e., the OLS estimates have high variance (Belsley et al.
2004). Under this condition, the Partial Least Squares (PLS) regression gives better
results, since it eliminates the quasi-collinearity issue. The PLS method extracts factors
that maximize the covariance between the predictors and response variables, and then
regresses the response on these latent factors. Based on the outputs of the PLS (scores,
loadings, and weights vectors), the variances and correlations of the variables can be
revealed by employing an exploratory PLS biplot. On the other hand, the PLS biplot
can be adapted to provide a visual approximation of the PLS coefficient estimates,
hence the reason for naming it predictive PLS biplot.

The primary purpose of this article is to provide a straightforward interpretation for
the PLS biplot applicable to both exploratory and predictive purposes, illustrating its
application in team effectiveness research data. Interest in understanding complex
relationships between variables of team effectiveness datasets has been growing in
recent years (Mathieu et al. 2019; Ringle et al. 2018) and the PLS biplot method can
play a crucial role in the analysis of this kind of data.

In order to achieve the main aim of the present work, the paper is structured in the
following sections: Sect. 2 gives a brief overview of how PLS works, describing
mathematical details; Sect. 3 presents an application of these methods on a subset of
variables of real work teams, exploring the relationships between a set of team effec-
tiveness predictors (team trust, team psychological capital, collective behavior, trans-
formational leadership, intragroup conflict, team psychological safety and team
cohesion) and two team effectiveness criteria (team performance and quality of group
experience). All the statistical analysis was executed using R software; finally, Sect. 4
includes the discussion of the results found, as well as conclusions and future
perspectives.
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2 Methods

2.1 Partial Least Squares

Assume a multivariate regression model Y¼XB þ E, in which Y is an (n � q)
response matrix and X is a (n � m) predictor matrix, and both are column centered,
with m and q being respectively the number of predictors and response variables, and n
the number of observations. Also, B is a (m � q) coefficients matrix, and E is a
(n � q) error matrix, such that m > n or the m explanatory variables are highly cor-
related. In this case, one might use the PLS to estimate the regression coefficients.
The PLS model consists of three other models, two external and one internal, as a result
of the application of a suitable algorithm, usually the Nonlinear Iterative Partial Least
Squares (NIPALS). The method seeks to estimate some underlying factors that
decompose X and Y simultaneously, maximizing the covariance between them,
establishing the so-called outer relations for X and Y individually (Geladi and
Kowalsky 1986). Considering the extraction of all possible factors, the PLS decom-
position results in

X ¼ TP0 and Y ¼ UQ0;

where T contains the scores of the predictors’ matrix, P holds the loadings of X. In
turn, U and Q are the matrices of scores and loadings relative to the response matrix
Y. Additionally, an inner relation links the X-scores and Y-scores matrices as follows:

bui ¼ aiti;

where

ai ¼ u0iti
t0iti

are the regression coefficients for a given factor. In order to ensure maximum
covariance between Y and X when extracting PLS components, it is necessary to find
two sets of weights w and q, which allow the vectors t = Xw and u = Yq to be
obtained. It can be done making t’u maximum and solving the optimization problem

argmaxw;q w0X0Yqf g;
subject to: COR ðti; tjÞ ¼ 0; 8i 6¼ j;

w0w ¼ 1:

2.2 Partial Least Squares Regression

Concisely, the NIPALS algorithm1 performs the following steps (Abdi 2010):

1 In this context, the symbol / means ‘to normalize the result of the operation’.
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– Step 1. w / X′u (X-weights).
– Step 2. t / Xw (X-factor scores).
– Step 3. q / Y′t (Y-weights).
– Step 4. u = Yq (Y-scores).

At the i-th iteration of the algorithm, the PLS method estimates a single column ti of
the matrix T as a linear combination of the variables X with coefficients w. This vector
of weights w will compose the i-th column of the matrix of weights W. Since in each
iteration the matrix X is deflated, the columns of W are non-comparable and, hence,

T 6¼ XW. In contrast, there exists a matrix R ¼ W P0Wð Þ�1 which allows direct
computation of T by doing T = XR (Wold et al. 2004).

The estimated PLS regression equation is:

bY ¼ TbB;where bB ¼ T0Tð Þ�1T0Y:

Moreover, bY ¼ XRbB and, thus, bBPLS ¼ RbB ¼ R T0Tð Þ�1T0Y ¼ RT0Y ¼ RQ0. Notice
that Q0 is the Y-weights matrix composed of the q vectors estimated in Step 3 of the
NIPALS algorithm. Lastly, we can write the predictive model as

bY ¼ XbBPLS;where bBPLS ¼ RQ0:

2.3 The Biplot

The term biplot was introduced by Gabriel (1971) and consists of a graphical repre-
sentation that reveals important characteristics of data structure, e.g., patterns of cor-
relations between variables or similarities between the observations (Greenacre 2010).
To achieve this, it uses the decomposition of a (n � m) target matrix D into the product
of two matrices, such that D = GH′. The dimension of the G matrix is (n � k), and the
size of H matrix is (m � k). Therefore, each element dij of the matrix D can be written
as the scalar product of the i-th row of the left matrix G and the j-th column of the right
matrix H′, as follows:

D ¼ GH0 ¼
g01
..
.

g0n

0
B@

1
CA h1 . . . hmð Þ ¼

g01h1 � � � g01hm
..
. . .

. ..
.

g0nh1 � � � g0nhm

0
B@

1
CA:

The matrices G and H that arise from the decomposition of D create two sets of points.
If these points are two-dimensional (i.e., k = 2), then the rows and columns of D can be
represented employing a two-dimensional graph, with the n rows of G represented by
points, and the m columns of H′ reproduced in the form of vectors connected to the
origin. In the graph, projecting g0i onto the axis determined by hj and then multiplying
the norm of that projection by the norm of hj, the result will be equivalent to the
geometric definition of the scalar product, which can also be used to represent the
element dij of the target matrix D, that is:
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dij ¼ g0ihj ¼ gik k hj
�� ��cosh;

where h is the angle formed by the vectors gi and hj. Furthermore, each set of coor-
dinates formed by a row of G (i.e., g0i) is represented as a biplot point, and each column
of the transpose of H (i.e., hj) is plotted as a biplot vector.

2.4 The Exploratory PLS Biplot

Given a rank r data matrix, the PLS allows another matrix to be obtained with rank
s that is an approximation of the former, in which s < r. The PLS dataset is composed
of two centered matrices X and Y, wherein the matrix of predictors X has the
dimension (n � m), and the matrix of responses Y has the size (n � q). Representing a
target matrix D as a juxtaposition of X and Y, then it will be (n � (m + q)) and denoted
as D = [X Y]. Considering that the number of PLS components extracted is lower than
the rank of X, i.e., k < r, thus the matrix product TP′ provides an approximation of
X. Similarly, the matrix product TQ′ gives an approximation for Y, instead of UQ′

(Oyedele and Lubbe 2015). As a consequence, ~D provides an approximation for D such
that

~D ¼ ~X ~Y
� � ¼ TP0 TQ0½ � ¼ T P Q½ �0:

Extracting just two components, the dimension of T is (n � 2) and the size of the
block matrix [P Q]′ is (2 � (m + q)). So, the rows of T represent the biplot points in
the exploratory PLS biplot, expressing the observations of the sample, while the col-
umns of the block matrix [P Q]′ indicate the biplot vectors and denote the variables,
wherein those from column 1 to m refer to the predictors and from column (m + 1) to
(m + q) are associated with the responses. Considering each set of biplot vectors
separately (predictors and responses), the angle formed by two vectors provides an
approximation for the sample correlation coefficient related to the associated variables

(Graffelman 2012). Therefore, if \ p0i; p
0
j

� �
ffi 0�; it means that the associated variables

are strongly correlated because the cosine of the angle between the biplot vectors is

close to one. On the other hand, when \ p0i; p
0
j

� �
ffi 180� and the biplot vectors point to

almost opposite directions, then it indicates a negative but substantial correlation.
Lastly, a right angle suggests a weak correlation between the related variables. How-
ever, the accuracy of this approximation will depend on how much the variables
contribute to each of the underlying components estimated (Bassani et al. 2010), as
well as the biplot explained variance (Greenacre 2012).

2.5 The Predictive PLS Biplot

As previously seen in Sect. 2.2, the (m � q) matrix bBPLS ¼ RQ0 contains the PLS
coefficient estimates, in which the R columns are the transformed PLS X-weights, and
Q is the matrix of Y-weights. In the predictive PLS biplot, the rows of the matrix
R denote the biplot points instead of the rows of T. Further, the columns of Q′
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symbolize the responses through biplot vectors. Each response can also define a cal-
ibrated axis, on which one can project the set of points (r0i) to get an approximation of
the coefficients. Considering a specific response Yj and a fixed predictor Xi, each

element of the matrix bBPLS is computed as

bbPLSij ¼ r0iqj ¼ rik k qj
�� ��coshri;qj :

Therefore, there are two ways to evaluate an approximation for these estimates in the
biplot visually. The first manner consists of the calibration of biplot axes (Greenacre
2010; Oyedele and Lubbe 2015) and mentally reading the projection of the biplot point
on the biplot axis. In the second mode, the area biplot method is applied (Gower et al.,

2010; Oyedele and Lubbe 2015), in which the approximation of bbPLSij is obtained from
the area determined by the origin, the rotated biplot point r0i, and the endpoint of qj. The
area and position of the triangles furnish other relevant information about the PLS
regression coefficients, such as the signal and the importance of each predictor to the
model.

3 Application

Teams of individuals working together to achieve a common goal are a central part of
daily life in modern organizations (Mathieu et al. 2014). By bringing together indi-
viduals with different skills and knowledge, teams emerge as a competitive asset in the
ever-changing organizational environment. When teams are created, the ultimate goal
is to generate value for the organization. Accordingly, studying team effectiveness and
the conditions that enable the team to be effective has been a central concern for both
research and practice (Kozlowski and Ilgen 2006).

3.1 Variables

In the present research, in line with previous studies (e.g., Hackman 1987), we consider
team effectiveness as a multidimensional construct. Thus, in this study, team effec-
tiveness is evaluated through two criteria: team performance and the quality of group
experience. Team performance (Y1) refers to the extent to which team outcomes
respect the standards set by the organization, in terms of quantity, quality, delivery time
and costs (Rousseau and Aubé 2010). The quality of the group experience (Y2) is
related to the quality of the social climate within the team (Aubé and Rousseau 2005).

Team effectiveness will be considered, in the present study, as the result of the role
played by thirteen variables: team trust (2 dimensions), team psychological capital (4
dimensions), collective behavior, transformational leadership, intragroup conflict (2
dimensions), team psychological safety, and team cohesion (2 dimensions). Each
variable will be briefly described as follows.

Team trust refers to the aggregate levels of trust that team members have in their
fellow teammates (Langfred 2004) and has been conceptualized as a bidimensional
construct: the affective dimension of team trust (X1) is related to the perception of the
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presence of shared ideas, feelings, and concerns within the team; the task dimension of
team trust (X2) has been associated with the recognition by team members of the levels
of professionalism and competence of their teammates and on their ability to appro-
priately perform the tasks (McAllister 1995).

Team psychological capital (PsyCap) can be defined as a team positive psycho-
logical state characterized by: having confidence (efficacy) to succeed in challenging
tasks; making a positive attribution (optimism) about succeeding now and in the future;
persevering, and when necessary, redirecting paths to goals (hope) in order to be
effective; and having the ability to bounce back from challenges and setbacks (re-
silience) (Luthans et al. 2007; Luthans and Youssef-Morgan 2017; Walumbwa et al.
2011). In summary, team PsyCap includes four team psychological resources: team
efficacy (X3), team optimism (X4), team hope (X5), and team resilience (X6).

Collective behavior (X7) refers to the members’ tendency to coordinate, evaluate,
and utilize task inputs from other team members when performing a group task
(Driskell et al. 2010).

Transformational leadership (X8) can be defined as a leadership style that
encourages followers to do more than they originally expected, broadening and
changing their interests and leading to conscientiousness and acceptance of the team’s
purposes (Bass 1990). Carless et al. 2000) described transformational leaders as those
who exhibit the following seven behaviors: they 1) communicate a vision; 2) develop
staff; 3) provide support for them to work towards their objectives through coordinated
team work; 4) empower staff; 5) are innovative by using non-conventional strategies to
achieve their goals; 6) lead by example; 7) are charismatic.

Intragroup conflict can be defined as a disagreement that is perceived as creating
tension at least by one of the parties involved in an interaction (De Dreu and Weingart
2003). Conflicts in teams may emerge as a result of the presence of different ideas
about the tasks performed (X9) – task conflict – or may be related to differences
between team members in terms of values or personalities (X10) – affective conflict
(Jehn 1994).

Team psychological safety (X11) relates to team members’ perceptions about what
the consequences will be of taking interpersonal risks at the work environment. It
means taking beliefs for granted about how others will react when one speaks up or
participates. It is a confidence climate that comes from mutual respect and trust
between members (Edmondson 1999).

Team cohesion can be defined as the team members’ inclination to create social
bonds, resulting in the group sticking together, remaining united, and wanting to work
together (Carron 1982; Salas et al. 2015). It can be related to the task or the affective
system of the team. Task cohesion (X12) refers to the shared commitment among
members towards achieving a goal that requires the collective efforts of the
group. Social cohesion (X13) refers to shared liking or attraction to the group and to the
nature and quality of the emotional bonds of friendship, liking, caring, and closeness
among group members (Chang and Bordia 2001).
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3.2 Sample and Data Collection Procedure

Organizations were selected by convenience, using the personal and professional
contacts network of the research team. To collect data, key stakeholders in each
organization (CEOs or human resources managers) were contacted to explain the
purpose and requirements of the study. When the organization agreed to participate, the
selection of teams for the survey was based on the following criteria (Cohen and Bailey
1997): teams must be composed of at least three members; should be perceived by
themselves and others as a team; they have to regularly interact, interdependently, to
accomplish a common goal; and they must have a formal supervisor who is responsible
for the actions of the team.

Data was collected following two strategies. In most organizations, questionnaires
were filled in during team meetings, in the presence of a member of the research team.
When it was not possible to implement this strategy, they were filled in online via an
electronic platform. Data was obtained from 104 teams and their respective leaders.
After eliminating from the sample teams with a team members’ response rate below
50% and participants with more than 10% of missing values, the remaining sample had
a total of 82 teams. In this remaining sample, missing values in the questionnaires were
replaced by the item average (in case of a random distribution) or by expectation-
maximization (EM) method (in case of a non-random distribution).

The 82 teams of the sample are from 57 Portuguese companies. Forty-two per cent
of these organizations are small, and the most representative sector is the services
sector (73%). Team size ranged from 3 to 18 members, with an average of approxi-
mately 6 members (SD = 3.55). Of the team members (N = 353), 67% were female,
63.3% had secondary education or less, with the remaining 36.7% having a higher
education background. The mean age was approximately 38 years old (SD = 12.33).
The average team tenure was approximately 6 years (SD = 7.25). Regarding team
leaders (N = 82), 57% were male, the mean age was about 42 years old (SD = 10.86)
and 55.7% had a higher education background. Leaders had, on average, 5 years of
experience as leader of the current team (SD = 4.87).

3.3 Measures

Apart from team performance that was assessed by team leaders, all variables were
measured by team members. The measures used are identified as follows: team per-
formance was measured with a scale developed by Rousseau and Aubé (2010), which
has five items; quality of the group experience was assessed with the scale developed
by Aubé and Rousseau (2005), which is composed of three items; team trust was
evaluated with the scale developed by McAllister (1995), which is constituted by 10
items; team psyCap was measured with the scale developed by Luthans et al. (2007),
which is composed of 24 items; collective behavior was measured with the scale
developed by Driskell et al. (2010), which has 10 items; transformational leadership
was measured with the scale developed by Carless et al. (2000), which is composed of
seven items; intragroup conflict was evaluated with the scale developed by Dimas and
Lourenço (2015), which is composed of nine items; team psychological safety was
assessed with the scale developed by Edmonson (1999), which is composed of seven
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items; team cohesion was measured with the scale developed by Chang and Bordia
(2001), which is constituted by eight items. Team trust and team psycap were assessed
using 6-point scales, intragroup conflict and team psychological safety were evaluated
on 7-point scales and the remaining variables were measured on 5-point scales.

3.4 PLS Biplot Results

In order to reveal a linear relation between the variables describing team effectiveness
and the explanatory variables, the PLS was used to construct the external and internal
models. First, the predictor matrix X82�13 and the response matrix Y82�4 were centered
and scaled. Next, the NIPALS algorithm was used to decompose the data matrices and
to extract two PLS components, yielding the matrices T82�2 ¼ T1T2½ �, P13�2, U82�2,
Q4�2, W13�2, R13�2, and B13�2. The latter contains the estimates of the PLS regression
coefficients, according to Table 1.

The first PLS component T1 explains 56.5% of the data variability, while the
proportion of variance explained by T2 is 9.5%. Figure 1 shows the exploratory PLS
biplot, in which the (black) biplot points (X-scores t0i) represent the 82 teams, the blue
biplot vectors depict the responses (Y-loadings q0i), and the red biplot vectors sym-
bolize the predictors (X-loadings p0i).

Figure 1 provides an approximation of the correlation structures of the data, but it
must be taken into account that the total proportion of variance explained by the two
components T1 and T2 is 66%. Table 2 shows some significantly correlated variables
evidenced by the biplot (X2 and X12, X7 and X12, X3 and X11, and X9 and X10), a pair
of variables that displayed negative correlation (X2 and X9), and others that manifested
a weak correlation visually (X5 and X13, X6 and X13), all of them flanked by the exact
sample correlation coefficients. Table 2 is not exhaustive, and it is possible to pinpoint
other exciting examples regarding the correlation structure in Fig. 1, e.g., the weak
correlation between the two responses (the correct sample correlation is ffi 0:28Þ.
Moreover, all of the variables are positively associated with the first PLS component
T1, except Task conflict (X9) and Affective conflict (X10), which are negatively asso-
ciated. Regarding T2, the predictor Team trust-affective (X1) is negligibly correlated,
and the predictors Team trust-task (X2), Collective behavior (X7), Task cohesion (X12),
and Social cohesion (X13) are negatively correlated.

For comparison purposes only, Fig. 2 shows the results of the area biplot method.
With respect to response Team performance (Y1) – left biplot, the predictors Team
efficacy (X3), Team optimism (X4), and Team psychological safety (X11) stand out as
the most influential variables to the model, since the triangle related to the regression
coefficients b3, b4, and b11 show the most significant area. On the other side, the
variables with the least positive impact on the model are Team trust-task (X2) and
Team task conflict (X9), because they are related to the smallest areas. Further, the
predictor Social cohesion (X13) affects Team performance negatively, given that the
triangle position is on the right side of the biplot axis. In its turn, regarding the response
Quality of the group experience (Y2), the most important predictors are Task conflict
(X9), Affective conflict (X10), Team trust-task (X2), Task cohesion (X12), and Social
cohesion (X13), with the first two in a negative way. All these findings are following the
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PLS results shown in Table 2, but one can easily reach the same conclusions through
Fig. 1 (exploratory PLS biplot).

Figure 3 brings a modified version of the exploratory PLS biplot, in which all of the
biplot vectors are projected onto the calibrated biplot axis Y1. One more time, the most
significant vector projections refer to Team efficacy (X3), Team optimism (X4), and

Table 1. Punctual estimates of the PLS regression coefficients.

Predictor name Predictor
identification

bb1 related to Team
performance (Y1)

bb2 related to Quality of the
group experience (Y2)

Team trust
(affective)

X1 0.076 0.079

Team trust (task) X2 0.005 0.141
Team efficacy X3 0.105 0.033
Team optimism X4 0.144 −0.027
Team hope X5 0.076 0.068
Team resilience X6 0.023 0.075
Collective
behavior

X7 0.047 0.095

Transformational
leadership

X8 0.055 0.043

Task conflict X9 0.017 −0.124
Affective conflict X10 0.051 −0.154
Team
psychological
safety

X11 0.090 0.053

Task cohesion X12 0.059 0.103
Social cohesion X13 −0.035 0.109

Fig. 1. Exploratory PLS biplot – sample and variables representation. (Color figure online)
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Team psychological safety (X11), as well as the less significant projection referring to
Team trust-task (X2). Beyond that, only the projection related to the variable Social
cohesion (X13) falls on the negative part of the biplot axis. The approximation of the
regression coefficients related to the dependent variable Quality of the group experience
is represented in Fig. 4, where the biplot vectors are projected onto the biplot axis Y2.
In this case, similarly to the results of the area biplot method, the largest projections
indicate the more relevant variables. On the negative side, the predictors Task conflict
(X9) and Affective conflict (X10) are the most influential in the model, while the
explanatory variables Team trust-task (X2), Task cohesion (X12), and Social cohesion
(X13) have the most significant and positive impact concerning Y2.

Table 2. Correlation approximation by biplot vectors and sample correlation coefficients.

Variables Correct Correlation Coefficient
(r)

X2 (Team trust - task) and X12 (Task cohesion) 0.71
X7 (Team efficacy) and X12 (Task cohesion) 0.70
X3 (Team efficacy) and X11 (Team psychological safety) 0.73
X9 (Task conflict) and X10 (Affective conflict) 0.85
X2 (Team trust - task) and X9 (Task conflict) −0.60
X5 (Team hope) and X13 (Social cohesion) 0.35
X6 (Team resilience) and X13 (Social cohesion) 0.25

Fig. 2. Area biplot Method applied to the team effectiveness dataset.
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4 Discussion and Conclusions

Regarding the application of the method we use in this work, the results point to the
“validity” of such an application concerning the relationships found between the group
processes and the team output variables considered. In fact, overall, the most significant
results found in our study suggest relationships between the predictors and the criteria
that are convergent with the literature.

One of the results points out the relevant role of cohesion as a predictor of team
outcomes but the different behavior of each one of the team cohesion dimensions.

Fig. 3. Visual approximation of the regression coefficients (response Y1).

Fig. 4. Visual approximation of the regression coefficients (response Y2).
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Indeed, task cohesion (X12) showed a positive relationship with both team effectiveness
criteria (although with higher magnitude regarding the quality of the group experience);
however, social cohesion (X13), although it emerged as one of the most relevant
positive predictors of the quality of group experience, revealed a negative influence on
team performance. These results are in line with the literature. Firstly, team cohesion is
recognized by researchers as one of the most influential factors on group behavior and,
consequently on group outcomes (Carron and Brawley 2000; Dionne et al. 2004).
Secondly, and despite that, the literature, namely a meta-analysis conducted by Mullen
and Cooper (1994), also suggests that the link between social cohesion and task
cohesion with team outcomes can be different. Task cohesion tends to be positively
associated with team outcomes, but social cohesion can have a more complex rela-
tionship with team outcomes due the fact that social cohesion, although it increases the
willingness to help each other and to cooperate, can also lead to uncritical acceptance
of solutions and to groupthink (Janis 1972). Thus, social cohesion can both increase the
sense of belonging to a group, contributing to a positive perception of the group
experience (quality of group experience), and decrease team performance, as suggested
by our study.

Another interesting result to highlight is related to the negative relationship of both
conflict types – task conflict (X9) and affective conflict (X10) – with the quality of group
experience and the less clear role of task conflict in team performance. Indeed, task
conflict revealed a negative relation with the quality of the group experience and a
positive (albeit low-level) relation with team performance. These results tend to con-
verge with the literature. On the one hand, the literature points out that conflict is
always experienced as a negative experience (e.g., Jehn et al. 2008) and, as a result
tends to have a negative influence on the attitudes of team members towards the
group. However, on the other hand, studies are not totally consensual with respect to its
effects on team performance, especially in what concerns to task conflict (De Wit et al.
2012; Dimas and Lourenço 2015). In fact, most studies found either negative associ-
ations between task conflict and team performance (e.g., Janssen et al. 1999) or a
nonsignificant relation (e.g., Jordan and Troth 2004), and a meta-analysis conducted by
De Dreu and Weingart (2003) supported those findings. However, more recently De
Wit et al. (2012) conducted a new meta-analysis and concluded that the effects of task
conflict on team outcomes are less negative (or even positive) as compared to affective
conflict. Overall, the studies tend to suggest that, in certain circumstances, task conflict
may be positively related to group outcomes (e.g., De Wit et al. 2012) emphasizing the
role of moderators, such as the conflict-handling strategies used in the team.

It is also interesting to mention the positive role of team trust (X1 and X2) in team
results and the more significant role of team task trust (X2) compared to team social
trust (X1). Again, our results are supported by the literature which indicates that trust
represents an important determinant of team effectiveness. In this regard, Dirks and
Ferrin (2001) pointed out in their meta-analysis that team trust is positively related to
performance and team satisfaction (an indicator of the quality of group experience).
The fact that, in the present study, task trust has showed to be a more important
predictor of performance than social trust can be explained by the fact that our sample
is composed of work teams in productive organizations, where trust in the members’
skills and their professionalism for the accomplishment of the tasks is more critical.
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Finally, it is important to mention the role of team psychological safety (X11), team
self-efficacy (X3) and team optimism (X4) as positive predictors of team performance.
Like the variables that we addressed above, the results obtained are supported by the
literature. Regarding the relationship between team psychological safety and team
performance, previous studies suggest that team performance can be facilitated, directly
or indirectly, by the presence of a psychological security climate (e.g., Edmondson
1999). According to these studies, team performance is increased by a group climate in
which team members are encouraged to express themselves without fear of the eval-
uations of the rest of the group. Regarding team efficacy and team optimism (dimen-
sions of PsyCap), several studies show that collective PsyCap is positively related to
team performance (e.g., Norman et al. 2010; Walumbwa et al. 2011). Additionally,
previous research suggests that when team members have a collective belief in their
ability to be effective, they explore and share knowledge and are more prepared to
implement new ways of achieving results, because they believe these behaviors will
lead to higher levels of performance (Bandura 1977). Similarly, a team with optimistic
beliefs has positive expectations, is usually more actively involved in tasks than a team
with a low level of optimism and use more adaptive coping skills when obstacles occur
(Avey et al. 2011).

In general, the interpretation method proposed in this work provided excellent
results in the application performed in Sect. 3, since it was able to capture the most
critical variables for the model, correctly assigned the signals of the regression coef-
ficients and gave an approximation to their values directly in the exploratory PLS
biplot. Nevertheless, some inconsistencies were detected. For example, regarding the

response Y1, one can see in Table 2 that bb41 [ bb31, but the projections of the biplot
vectors corresponding to X4 and X3 over the biplot axis yield the opposite result
(Fig. 3). In the same sense, the projections of the vectors related to X6 and X9 seem to

be overestimated considering the associated values (bb61 and bb91) in Table 2. Although
with less intensity, the same occurs in Fig. 4, where the projections are made over the
biplot axis Y2.

However, we should keep in mind that biplot is a visualization method whose
purpose is to provide a general idea of latent structures in the data, not to mention that
the interpretation technique suggested in this paper provides only an approximation of
the coefficients, which will be closer to the real values of the estimates, the higher the
PLS components’ ability to explain the variance.
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Chapter 10

Software

R package areabiplot

Published:

Silva, A. & Freitas, A. areabiplot: Area Biplot R package version 1.0.0 (2021).

https://CRAN.R-project.org/package=areabiplot

10.1 R package areabiplot: documentation

Packages are essential to the R language, bringing together documentation, reusable
functions, and data. They are community developed and easy to share with other
users. The Comprehensive R Archive Network, or CRAN, is the public repository
for R packages, consisting of web servers around the world that store identical and
up-to-date versions of code and documentation for R. The areabiplot package is our
contribution to this environment, implemented to meet multivariate generic purposes,
and also for the specific intents of this investigation. After loading the package evoking
in R the instruction library(areabiplot), one can construct SSA-HJ-biplots executing
the areabiplot function.
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Package ‘areabiplot’
March 10, 2021

Title Area Biplot

Version 1.0.0

Description Considering an (n x m) data matrix X, this package is based on the method proposed
by Gower, Groener, and Velden (2010) <doi:10.1198/jcgs.2010.07134>, and
utilize the resulting matrices from the extended version of the NIPALS decomposition
to determine n triangles whose areas are used to visually estimate the elements of
a specific column of X. After a 90-degree rotation of the sample points, the triangles
are drawn regarding the following points: 1.the origin of the axes; 2.the sample points;
3. the vector endpoint representing some variable.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests testthat

Imports grDevices, graphics, nipals

NeedsCompilation no

Author Alberto Silva [aut, cre] (<https://orcid.org/0000-0002-3496-6802>),
Adelaide Freitas [aut] (<https://orcid.org/0000-0002-4685-1615>)

Maintainer Alberto Silva <albertos@ua.pt>

Repository CRAN

Date/Publication 2021-03-10 19:00:02 UTC

R topics documented:

areabiplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Index 6

1



2 areabiplot

areabiplot Area Biplot

Description

Consider an (n x m) centered data matrix X and let rank(X) = r. Alternatively to the ordinary
NIPALS decomposition of X , where X = TP ′, this package uses the resulting matrices from the
extended version of the NIPALS decomposition (X = GHP ′) to determine n triangles whose areas
are used to visually estimate the n elements of a specific column of X (a variable of interest). After
a 90-degree rotation of the sample points, the triangles are drawn regarding the following points:

1. the origin of the axes.

2. the sample points.

3. the vector endpoint representing the selected variable.

Just keep in mind that The extended NIPALS decomposition,X = GHP ′, is equivalent to the SVD
decomposition, X = UDV ′, being that:

1. G is the matrix containing in its columns the normalized score vectors of X , i.e., the normal-
ized columns of T . If t is the i-th score vector of the matrix T , then the i-th column of G will
be g = t/||t||, which will correspond to the i-th left singular vector u.

2. If t is the i-th column of T , then ||t|| =
√

(t′t) gives the i-th singular value of X . In addition,
H is the diagonal matrix containing these singular values in decreasing order, i.e., H = D.

3. P is the loadings matrix, which is equivalent to the V matrix that contains the right singular
vectors of X .

Usage

areabiplot(
L,
S,
R,
ord.row,
mode = NULL,
tri.rgb = NULL,
bg.col = NULL,
plot.title = NULL,
plot.title.col = NULL,
plot.title.font = NULL,
plot.title.cex = NULL,
plot.sub = NULL,
plot.sub.col = NULL,
plot.sub.font = NULL,
plot.sub.cex = NULL,
plot.cex = NULL,
plot.col = NULL,
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plot.pch = NULL,
plot.xlab = NULL,
plot.ylab = NULL,
plot.xlim = NULL,
plot.ylim = NULL,
points.lab = NULL,
var.lab = NULL,
text.col.var = NULL,
text.cex = NULL,
text.font = NULL,
text.col = NULL,
text.pos = NULL,
axis.col = NULL,
axis.cex = NULL,
axis.font = NULL,
axis.asp = NULL,
arrow.lwd = NULL,
arrow.len = NULL,
arrow.col = NULL

)

Arguments

L A (n x 2) matrix containing normalized score vectors g (or left singular vectors
u).

S An appropriate (2 x 2) diagonal matrix containing the corresponding singular
values in decreasing order.

R A (m x 2) matrix containing the corresponding loading vectors (or right singular
vectors).

ord.row The row of R used as the base of the triangle, e.g., if 1 is provided, then the first
row of R will be taken.

mode a string providing the way the singular values will be allocated. The default is
"SS", i.e., the similar spread proposed by Gower et al.. Alternatively, one can
choose the "HJ" method (see more in Details).

tri.rgb The hexadecimal color and alpha transparency code for the triangle. The default
is #19FF811A (green and 90% of transparency).

bg.col A string providing the color of the background. The default is #001F3D (blue).

plot.title A string providing the main title. The default is NONE.

plot.title.col A string specifying the color of the main title text. The default is "FFFFFF"
(white).

plot.title.font

An integer providing the style of the main title text. The default is 1 (normal
text).

plot.title.cex A number indicating the amount by which the main title text should be scaled
relative to the default. 1 = default, 1.5 is 50% larger, and so on.

plot.sub A string providing a sub-title. The default is NONE.
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plot.sub.col A string specifying the color of the sub-title text. The default is "FFFFFF"
(white).

plot.sub.font An integer providing the style of the main title text. The default is 1 (normal
text).

plot.sub.cex A number indicating the amount by which the sun-title text should be scaled
relative to the default. 1 = default, 1.5 is 50% larger, and so on.

plot.cex A number indicating the expansion or contraction factor used to specify the point
size. The default is 0.6 (40% smaller).

plot.col A string specifying the color of the points. The default is "FFFFFF" (white).

plot.pch An integer specifying the shape of the points. The default is 21 (circle)

plot.xlab A string specifying a label to the horizontal axis. The default is NONE.

plot.ylab A string specifying a label to the vertical axis. The default is NONE.

plot.xlim The limits for the x axis.

plot.ylim The limits for the y axis.

points.lab A vector of characters containing the names of the data matrix rows.

var.lab A string providing the variable name used as triangle base.

text.col.var A string specifying the color of the variable label text. The default is "FFFFFF"
(white).

text.cex A number indicating the expansion or contraction factor used to specify the point
labels. The default is 0.5.

text.font An integer providing the style of the point labels. The default is 2 (bold).

text.col A string specifying the color of the point labels text. The default is "FFFFFF"
(white).

text.pos An integer providing the position of the point labels. The default is 3 (above).

axis.col A string specifying the color of the axis. The default is #FFFFFF (white).

axis.cex A number indicating the expansion or contraction factor used to specify the tick
label. The default is 0.7

axis.font An integer providing the style of the tick label. The default is 1 (normal text).

axis.asp A number specifying the aspect ratio of the axes. The default is 1.

arrow.lwd A number specifying the line width of the arrow. The default is 1.

arrow.len The length of the edges of the arrow head (in inches). The default is 0.1.

arrow.col A string specifying the color of the arrow. The default is "FFFFFF" (white).

Details

1. If the variables (the columns of X) are measured in different units or their variability differs
considerably, one could perform a variance scaling to get better visual results on the graph (see
Examples). In this case, the percentage of variance explained by the first principal components
might decrease.

2. The "HJ" mode is reserved for an application under implementation.
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Value

An area biplot is produced on the current graphics device.

Author(s)

Alberto Silva albertos@ua.pt, Adelaide Freitas adelaide@ua.pt

References

J.C. Gower, P.J.F. Groenen, M. van de Velden (2010). Area Biplots. Journal of Computational and
Graphical Statistics, v.19 (1), pp. 46-61. doi: 10.1198/jcgs.2010.07134

Examples

library(nipals)
data(uscrime)
Y = uscrime[, -1]

# first case: scale is false
nip = nipals(Y, ncomp = 2, center = TRUE, scale = FALSE, force.na = TRUE)
L = nip$scores
R = nip$loadings
S = diag(nip$eig[1:2])
areabiplot(L, S, R, 5, points.lab = c(uscrime[, 1]),var.lab= "burglary")

# second case: scale is true
nip = nipals(Y, ncomp = 2, center = TRUE, scale = TRUE, force.na = TRUE)
L = nip$scores
R = nip$loadings
S = diag(nip$eig[1:2])
areabiplot(L, S, R, 4, points.lab = c(uscrime[, 1]),var.lab= "assault")
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10.2 Code

1 #' Area Biplot
2 #'
3 #' @description
4 #' Consider a (n x m) centered data matrix \eqn{X} and let \eqn{rank(

X) = r}.
5 #' Alternatively to the ordinary NIPALS decomposition of \eqn{X},

where
6 #' \eqn{X = T P'}, this package uses the resulting matrices from the

extended
7 #' version of the NIPALS decomposition (\ eqn{X = G H P '}) to

determine \eqn{n}
8 #' triangles whose areas are used to visually estimate the \eqn{n}

elements of
9 #' a specific column of \eqn{X} (a variable of interest ). After a 90-

degree
10 #' rotation of the sample points , the triangles are drawn regarding

the
11 #' following points :
12

13 #' 1. the origin of the axes.
14 #' 2. the sample points .
15 #' 3. the vector endpoint representing the selected variable .
16

17 #' @description
18 #' Just keep in mind that the extended NIPALS decomposition , \eqn{X =

G H P'}, is
19 #' equivalent to the SVD decomposition , \eqn{X = U D V'}, being that:
20 #' 1. \eqn{G} is the matrix containing in its columns the normalized

score vectors
21 #' of \eqn{X}, i.e., the normalized columns of \eqn{T}. If \eqn{t} is

the i-th score
22 #' vector of the matrix \eqn{T}, then the i-th column of \eqn{G}

will be
23 #' \eqn{g = t / || t || }, which will correspond to the i-th left

singular vector \eqn{u}.
24 #' 2. If \eqn{t} is the i-th column of \eqn{T}, then \eqn {|| t || = \

sqrt(t' t)} gives
25 #' the i-th singular value of \eqn{X}. In addition , \eqn{H} is the

diagonal matrix
26 #' containing these singular values in decreasing order , i.e., \eqn{H

= D}.
27 #' 3. \eqn{P} is the loadings matrix , which is equivalent to the \eqn

{V} matrix that
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28 #' contains the right singular vectors of \eqn{X}.
29 #'
30 #'
31 #' @param L A (n x 2) matrix containing normalized

score vectors \eqn{g} (or left singular
32 #' vectors \eqn{u}).
33 #' @param S An appropriate (2 x 2) diagonal matrix

containing the corresponding singular
34 #' values in decreasing order.
35 #' @param R A (m x 2) matrix containing the

corresponding loading vectors (or right singular
36 #' vectors ).
37 #' @param ord.row The row of \eqn{R} used as the base of the

triangle , e.g.,
38 #' if 1 is provided , then the first row of \

eqn{R} will be taken.
39 #' @param mode A string providing the way the singular

values will be allocated . The default
40 #' is "SS", i.e., the similar spread proposed

by Gower et al.. Alternatively ,
41 #' one can choose the "HJ" method (see more in

Details ).
42 #' @param tri.rgb The hexadecimal color and alpha

transparency code for the triangle . The
43 #' default is #19 FF811A (green and 90% of

transparency ).
44 #' @param bg.col A string providing the color of the

background . The default is #001 F3D (blue).
45 #' @param plot.title A string providing the main title. The

default is NONE.
46 #' @param plot.title.col A string specifying the color of the main

title text. The default is " FFFFFF "
47 #' (white).
48 #' @param plot.title.font An integer providing the style of the main

title text. The default is 1 ( normal
49 #' text).
50 #' @param plot.title.cex A number indicating the amount by which the

main title text should be scaled
51 #' relative to the default . 1 = default , 1.5

is 50% larger , and so on.
52 #' @param plot.sub A string providing a sub -title. The default

is NONE.
53 #' @param plot.sub.col A string specifying the color of the sub -

title text. The default is " FFFFFF "
54 #' (white).
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55 #' @param plot.sub.font An integer providing the style of the main
title text. The default is 1 ( normal

56 #' text).
57 #' @param plot.sub.cex A number indicating the amount by which the

sun -title text should be scaled
58 #' relative to the default . 1 = default , 1.5

is 50% larger , and so on.
59 #' @param plot.cex A number indicating the expansion or

contraction factor used to specify the
60 #' point size. The default is 0.6 (40% smaller

).
61 #' @param plot.col A string specifying the color of the points

. The default is " FFFFFF " (white).
62 #' @param plot.pch An integer specifying the shape of the

points . The default is 21 ( circle )
63 #' @param plot.xlab A string specifying a label to the

horizontal axis. The default is NONE.
64 #' @param plot.ylab A string specifying a label to the vertical

axis. The default is NONE.
65 #' @param plot.xlim The limits for the x axis.
66 #' @param plot.ylim The limits for the y axis.
67 #' @param axis.col A string specifying the color of the axis.

The default is # FFFFFF (white).
68 #' @param axis.cex A number indicating the expansion or

contraction factor used to specify
69 #' the tick label. The default is 0.7
70 #' @param axis.font An integer providing the style of the tick

label. The default is 1 ( normal
71 #' text).
72 #' @param axis.asp A number specifying the aspect ratio of the

axes. The default is 1.
73 #' @param points .lab A vector of characters containing the names

of the data matrix rows.
74 #' @param var.lab A string providing the variable name used

as triangle base.
75 #' @param text.col.var A string specifying the color of the

variable label text. The default is
76 #' " FFFFFF " (white).
77 #' @param text.cex A number indicating the expansion or

contraction factor used to specify
78 #' the point labels . The default is 0.5.
79 #' @param text.font An integer providing the style of the point

labels . The default is 2 (bold).
80 #' @param text.col A string specifying the color of the point

labels text. The default is
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81 #' " FFFFFF " (white).
82 #' @param text.pos An integer providing the position of the

point labels . The default is 3
83 #' (above).
84 #' @param arrow.lwd A number specifying the line width of the

arrow. The default is 1.
85 #' @param arrow.len The length of the edges of the arrow head (

in inches ). The default is 0.1.
86 #' @param arrow.col A string specifying the color of the arrow.

The default is " FFFFFF "
87 #' (white).
88 #'
89 #'
90 #' @return An area biplot is produced on the current graphics device .
91 #'
92 #'
93 #' @author
94 #' Alberto Silva <albertos@ua .pt >, Adelaide Freitas <adelaide@ua .pt >
95 #'
96 #'
97 #' @references
98 #' J.C. Gower , P.J.F. Groenen , M. van de Velden (2010) . Area Biplots .

Journal of Computational and
99 #' Graphical Statistics , v.19 (1) , pp. 46 -61. \doi {10.1198 /jcgs

.2010.07134}
100 #'
101 #'
102 #' @examples
103 #' library ( nipals )
104 #' data( uscrime )
105 #' Y = uscrime [, -1]
106 #'
107 #' # first case: scale is false
108 #' nip = nipals (Y, ncomp = 2, center = TRUE , scale = FALSE , force.na

= TRUE)
109 #' L = nip [" scores "][[1]]
110 #' R = nip [" loadings "][[1]]
111 #' S = diag(nip [" eig "][[1]][1:2])
112 #' areabiplot (L, S, R, 5, points .lab = c( uscrime [, 1]) ,var.lab= "

burglary ")
113 #'
114 #' # second case: scale is true
115 #' nip = nipals (Y, ncomp = 2, center = TRUE , scale = TRUE , force.na =

TRUE)
116 #' L = nip [" scores "][[1]]
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117 #' R = nip [" loadings "][[1]]
118 #' S = diag(nip [" eig "][[1]][1:2])
119 #' areabiplot (L, S, R, 4, points .lab = c( uscrime [, 1]) ,var.lab= "

assault ")
120 #'
121 #'
122 #' @details
123 #' 1. If the variables (the columns of X) are measured in different

units or
124 #' their variability differs considerably , one could perform a

variance scaling
125 #' to get better visual results on the graph (see Examples ). In this

case , the
126 #' percentage of variance explained by the first principal components

might decrease .
127 #' 2. The "HJ" mode is reserved for an application under

implementation .
128 #'
129 #'
130 #' @export
131 #' @importFrom grDevices rgb
132 #' @importFrom graphics arrows par polygon axis text
133 #' @import nipals
134 #'
135 #'
136

137

138 ## area biplot function
139

140

141 areabiplot <-
142 function (L, S, R, ord.row , mode = NULL , tri.rgb = NULL , bg.col =

NULL , plot.title = NULL ,
143 plot.title.col = NULL , plot.title.font = NULL , plot.title.cex =

NULL , plot.sub = NULL ,
144 plot.sub.col = NULL , plot.sub.font = NULL , plot.sub.cex = NULL ,

plot.cex = NULL ,
145 plot.col = NULL , plot.pch = NULL , plot.xlab = NULL , plot.ylab =

NULL , plot.xlim = NULL ,
146 plot.ylim = NULL , points .lab = NULL , var.lab = NULL , text.col.var =

NULL , text.cex = NULL ,
147 text.font = NULL , text.col = NULL , text.pos = NULL , axis.col = NULL

, axis.cex = NULL ,
148 axis.font = NULL , axis.asp = NULL , arrow.lwd = NULL , arrow.len =

NULL , arrow.col = NULL)
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149 {
150

151 ## dimensions
152

153 n <- nrow(L)
154 m <- nrow(R)
155

156 ## scaling mode
157

158 if (is.null( mode )) mode <- "SS"
159 if ( mode == "HJ" ) {
160

161 ## HJ scaling mode
162

163 A <- L %*% S
164 B <- R %*% S
165

166 } else if ( mode == "SS" ) {
167

168 ## similar spread mode
169

170 q <- (n / m)^(1 / 4)
171 sig <- S^(1 / 2)
172 A <- q * L %*% sig
173 B <- (1 / q) * R %*% sig
174

175 } else { warning ( "the scaling mode provided was not recognized .
Try 'SS ' or 'HJ '!" )}

176

177 ## rotate sample points
178

179 rotate <- matrix (c(0, -1, 1, 0), 2)
180 M <- A %*% rotate
181 b <- c(B[ord.row , c(1, 2)])
182

183 ## other default parameters
184

185 if (is.null( tri.rgb )) tri.rgb <- "#19 FF811A "
186 if (is.null( bg.col )) bg.col <- "#001 F3D"
187 if (is.null( plot.title.col )) plot.title.col <- "# FFFFFF "
188 if (is.null( plot.title.font )) plot.title.font <- 1
189 if (is.null( plot.title.cex )) plot.title.cex <- 1
190 if (is.null( plot.sub.col )) plot.sub.col <- "# FFFFFF "
191 if (is.null( plot.sub.font )) plot.sub.font <- 1
192 if (is.null( plot.sub.cex )) plot.sub.cex <- 0.8
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193 if (is.null( plot.cex )) plot.cex <- 0.6
194 if (is.null( plot.col )) plot.col <- "# FFFFFF "
195 if (is.null( plot.pch )) plot.pch <- 21
196 if (is.null( plot.xlab )) plot.xlab <- ""
197 if (is.null( plot.ylab )) plot.ylab <- ""
198 if (is.null( plot.xlim )) plot.xlim <- c(min( min( M

[, 1]) , b[1]) , max( max( M[, 1] ), b[1] ))
199 if (is.null( plot.ylim )) plot.ylim <- c(min( min( M

[, 2]) , b[2]) , max( max( M[, 2] ), b[2] ))
200 if (is.null( text.cex )) text.cex <- 0.5
201 if (is.null( text.font )) text.font <- 2
202 if (is.null( text.col )) text.col <- "# FFFFFF "
203 if (is.null( text.pos )) text.pos <- 3
204 if (is.null( axis.col )) axis.col <- "# FFFFFF "
205 if (is.null( axis.cex )) axis.cex <- 0.7
206 if (is.null( axis.font )) axis.font <- 1
207 if (is.null( axis.asp )) axis.asp <- 1
208 if (is.null( arrow.lwd )) arrow.lwd <- 1
209 if (is.null( arrow.len )) arrow.len <- 0.1
210 if (is.null( arrow.col )) arrow.col <- "# FFFFFF "
211 if (is.null( text.col.var )) text.col.var <- "# FF0000 "
212

213 ## graphical parameter
214

215 temppar <- par(bg = bg.col)
216 on.exit(par( temppar ), add = TRUE)
217

218 ## plot sample points
219

220 plot(M[, 1], M[, 2], pch = plot.pch , cex = plot.cex , col = plot.
col , xlim = plot.xlim ,

221 ylim = plot.ylim , main = plot.title , col.main = plot.title.col ,
font.main = plot.title.font ,

222 cex.main = plot.title.cex , sub = plot.sub , col.sub = plot.sub.col ,
font.sub = plot.sub.font ,

223 cex.sub = plot.sub.cex , axes = FALSE , xlab = plot.xlab , ylab =
plot.ylab , asp = axis.asp)

224 text(M, labels = points .lab , cex = text.cex , font = text.font , col
= text.col , pos = text.pos)

225 text(x = b[1], y = b[2], labels = var.lab , cex = text.cex , font =
text.font , col = text.col.var , pos = text.pos)

226 axis (1, col = axis.col , col.axis = axis.col , col.ticks = axis.col ,
cex.axis = axis.cex , font = axis.font)

227 axis (2, col = axis.col , col.axis = axis.col , col.ticks = axis.col ,
cex.axis = axis.cex , font = axis.font)
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228

229 ## draw the triangles
230

231 for (j in 1:n) {
232 v1 = c(0, M[j, 1], b[1])
233 v2 = c(0, M[j, 2], b[2])
234 polygon (x = v1 , y = v2 , col = tri.rgb , border = NA)
235 }
236

237

238 ## draw the base of the triangle
239

240 arrows (0, 0, x1 = b[1], y1 = b[2], lwd = arrow.lwd , length = arrow
.len , col = arrow.col)

241

242 }
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Part III

Discussion and Conclusions
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Chapter 11

Discussion

The visualization methods and alternative multivariate approaches presented
throughout this investigation focused on creating additional tools for decomposing
a TS through the SSA. The proposed biplots allow a deeper visual inspection of the
trajectory matrix eigenstructure. This chapter is dedicated to examining the promising
points verified along the research, but in an integrated and articulated way according
to the sequence of articles contained in Part II. However, it does not neglect to present
and emphasize the weaknesses of the suggested methods, drawing attention to possible
mitigating solutions.

The discussion begins with consolidating the SSA-HJ-biplot interpretation rules
in light of aspects not yet addressed, namely, the use of different window lengths (`)
and the issue of centering the trajectory matrix. The objective is to comprehensively
understand the trajectory matrix structure associated with the TS components. The
reason is because this perception is crucial to both evidencing the components separation
(Article I and Article II) and to recognize the period through geometric patterns (Article
IV). Next, we reveal a setback in developing a new method for detecting change points
(Article III) using the NIPALS algorithm to decompose the trajectory matrix. The
aim is to examine the pros and cons of using NIPALS and determine whether one can
strike a balance between speed and instability. Finally, a summary of the development
and small solutions adopted in implementing the R package areabiplot (Software) is
presented.
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11.1 Consolidation of SSA-HJ-biplots interpretability

In the broader context, the properties of row and column markers in an HJ-biplot
are the same as in JK-biplot and GH-biplot, meaning that [77]:

• The smaller the distance between row markers, the greater the similarity between
the respective individuals.

• The column vectors’ lengths can approximate the variables’ standard deviations.
• The correlations of the variables are approximated by the cosines of the angles of

the column vectors. The more positively correlated the variables, the closer the
angle between the arrows will be to 0◦. Likewise, given two strongly negatively
correlated variables, the angle between the respective arrows appears close to 180◦.
Also, the closer to 90◦ the angle between two or more arrows is, the less correlated
the corresponding variables will be. Finally, correlations between column markers
and PCs are also approximated by the cosines of the angles formed by them.

As stated before, the SSA-HJ-biplot [17] starts with a univariate real-valued TS
Y = (y0, · · · , yn−1). Given the trajectory matrix X = [xij]`,κi,j=1, and where xij = yi+j−2,
we set the window length ` = n/2. Consequently, the κ-lagged vector (yi−1, · · · , yi+κ−2)
at the ith row and the `-lagged vector (yj−1, · · · , yj+`−2) at the jth column represent
almost the same subseries for some i and j. As shown in Article II, depending on the
characteristics of Y , one can center the trajectory matrix on the columns for better
visualization. The graphical interpretation is performed based on the row markers j′i ,
i = 1, . . . , `, and the column markers h′q , q = 1, . . . , κ. Each j′i is displayed as a biplot
point and corresponds to a κ-lagged vector, while each h′q is depicted as an arrow and
relates to an `-lagged vector.

Briefly, Article I handles the SSA-HJ-biplot interpretation in the following terms:
(R1) The proximity of points: Short Euclidean distances indicate similarity in the
behavior of the associated κ-lagged vectors.
∀i, ∃π ∈ N : ||j′i − j′i+π|| ≈ 0⇒ ||(yi, · · · , yi+κ−1)− (yi+π, · · · , yi+π+κ−1)|| ≈ 0;

(R2) The arrows length: Biplot vectors having roughly the same length indicate the
corresponding `-lagged vectors have a standard deviation also close.
∃τ ∈ N, τ < κ : ||h′τ || ≈ ||h

′
τ+q|| ⇒ var(xτ ) ≈ var(xτ+q), ∀q = 1, · · · , κ− τ ;

(R3) The angle between arrows: The cosine of the angle formed by arrows approx-
imates the autocorrelation between the corresponding `-lagged vectors.
∃η ∈ N, η < κ : | cos

(
∠(h′q,h

′
q+η)

)
| ≈ 1⇒ |cor(xq,xq+η)| ≈ 1 ∀q = 1, · · · , κ− η.

(R4) The trend and directions of PCs: If there is a trend, then the singular value
associated with the 1st PC will be dominant.
(R5) The seasonality and singular values: If ∃i ∈ N :

√
t′iti ≈

√
t′i+1ti+1, then the

associated PCs are informative about the oscillatory components as long as they explain
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a substantial proportion of variability.
In turn, Article II brought more contributions to analyzing the elements in the

SSA-HJ-biplot. Hence, given an additive model represented by Y = T + S +R, where
T is the trend-cycle, S is the seasonal component, and R is the remainder component,
the interpretation provided by that study is summarized below:
(R6) The singular vectors and the sine/cosine shape: If the 1st PC represents
the trend, one should consider identifying in the next pair with similar singular values
which one refers to the sine and the other one refers to the cosine, taking into account
this distinction in building the SSA-HJ-biplots.
(R7) The moving average of order η (η-MA) as a reference: Choosing η properly,
one can approximate the trend by the η-MA. Thus, the position of the points in the SSA-
HJ-biplot concerning the 1st PC axis allows us to assess the location of the observations
regarding the trend in the TS.
(R8) The biplot points and sine/cosine directions: Biplots constructed from the
1st PC, and each of the directions determined by sine and cosine will better evidence the
time units that summarize the trend behavior and those that determine the peaks/valleys
in the TS separately.
(R9) The angle θ between an arrow and a factor axis: The greater the |cos(θ)|,
the more the variability of the column vector associated with h′q is affected by the
corresponding ith PC.
(R10) The projection of a point onto an arrow: It provides the level of agreement
between the κ-lagged vector that determines the point and the `-lagged vector that induces
the arrow.

As for the HJ-biplot elaborated in Article IV, it focuses on identifying the periodicity
of a TS through the formation of geometrical patterns. Let h′f be the fixed arrow that
will serve as the basis for all triangles, and h[r]

q , q ∈ {1, . . . , κ} \ {f}, the corresponding
vectors representing the arrows counterclockwise rotated by 90◦. Then, the possible
insights that can emerge from the SSA area biplots are listed below:
(R11) The autocorrelation and right-angled triangles: Considering p is the
dominant period of the TS, the most expressive autocorrelations between the h′f and
some h[r]

q are indicated by right triangles, i.e.,
∃η ∈ Z : ](h′f ,h

[r]
η+kp) ≈ 90◦, k ∈ {0, 1, . . . , b(κ− η)/pc}.

(R12) Weak autocorrelation and the triangles’ area: Considering p is the domi-
nant period of the TS, almost zero-area triangles indicate the weaker autocorrelations
between the h′f and some h[r]

q , i.e.,
∃τ ∈ Z : ||h′f − h[r]

τ+kp|| ≈ 0, k ∈ {0, 1, . . . , b(κ− τ)/pc}.
(R13) Cohesive groups of triangles: Within intermediate groups of almost similar
triangles, the associated `-lagged vectors and also the correspondent subseries are strongly
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correlated with each other.
(R14) The triangles’ position and the autocorrelation signal: A group of almost
similar triangles to the left of the base vector indicate that the correlation between the
`-lagged vector corresponding to each h[r]

q and the `-lagged vector associated with h′f will
be positive. When on the right, the autocorrelation will be negative. In both situations,
the same reasoning applies to the corresponding subseries.
(R15) The TS periodicity: The periodicity of the TS is estimated by the number of
groups of almost similar triangles.

Given the exploratory nature of the SSA-HJ-biplot, ideally, the graphical results
should be interpreted together better to understand the underlying phenomenon and
characteristics of the TS. The overlaps related to some interpretation rules and method
properties bring consistency to the approach, providing the interpreter with different
points of view regarding the details of the TS structure. Property R1 in Article I and
the rules R7 and R8 in Article II are somehow related. The similarity in the behavior of
the κ-lagged vectors evidenced by the proximity of the biplot points will also reflect in
the determination of the time units that best show the peaks, valleys, and the trend. In
turn, criterion R3 in Article I and the properties from R11 to R13 in Article IV should
lead to the same understanding, as they are just particular ways of describing the same
information in two different ways about two different biplots. The properties and rules
of interpretation from R1 to R15 corroborate the solution to the problems previously
raised in questions P3 and P4.

11.1.1 Window length choices

The strategy of adjusting the window length in `/2 and employing the HJ-biplot
scheme proved efficient in decomposing and visualizing the characteristics of the series
studied through biplots. However, one may wish to privilege the representation of the
points, making the window length ` narrower, that is, making ` << κ. Ideally, for a
known period p, each row of the trajectory matrix will capture the entire behavior of
the TS, being represented in the SSA-HJ-biplot as p points. Notice that one is giving
up on representing the trend in this case. For example, compare the SSA-HJ-biplot of
the monthly TS CO2 in Figure 11.1, in which ` = 12, with the respective biplots at
Article I and Article II.

On the other hand, to give more importance to the representation of the arrows, one
can set the window size so that κ << `. Again, if there is a good guess for p, taking
κ = p is equivalent to reproducing the κ columns of the trajectory matrix as p arrows
in the SSA-HJ-biplot but better represented in terms of interpretability. Figure 11.2
shows the SSA-HJ-biplot of the monthly TS CO2 in which κ = 12. The corresponding
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Figure 11.1: Representation of the TS CO2 SSA-HJ-biplot (1st and 2nd PCs) when the
window length ` = 12 is narrower than κ.

biplots at Article I and Article II do not illustrate the arrows so well in comparison
with the one in Figure 11.2, despite the latter having lost the quality of representing
the points.

Figure 11.2: Representation of the TS CO2 SSA-HJ-biplot (1st and 2nd PCs) when the
window length ` is greater than κ = 12.

11.1.2 Centering the trajectory matrix

Article II also explains why one might eventually want to center the trajectory

179



matrix on the columns. In this case, it is shown that the `-lagged vectors and the
κ-lagged vectors are not the same subseries, even when ` = κ. When X is centered,
all elements of a specific `-lagged vector (X column) are subtracted from the same
average (of the corresponding column) in what we call an all-to-one scheme. In turn,
each element of a given κ-lagged vector (X row) is subtracted from a different average
(of each column), called an one-to-one schema. Figure 11.3 represents the all-to-one
scheme related to the TS CO2 trajectory matrix, and where the column averages appear
shifted downwards just for the sake of illustration.

The segment bundle connects the first ` observations of the TS CO2 to the average
of the first column of X, in terms of what is explained in Article II. The purpose of the
graph is to somehow represent the differences between the observations and ȳ1. With
that, the periodicity emerges when verifying the same pattern of segment bundle for
different averages. Besides, if this pattern occurs even when the involved mean are
expressive different, i.e., when for some k, ȳi << ȳi+k or ȳi >> ȳi+k, then it is probable
that a trend is present. Likewise, Figure 11.4 shows the all-to-one scheme for the κth

column of the centered X, in which the segments are an illustration of the differences
between the last ` observations of the series and the shifted ȳκ.

Figure 11.3: First column of the columns-centered trajectory matrix (TS CO2, 1st and 2nd
PCs) in the all-to-one scheme.

In turn, the one-to-one scheme is represented by Figures 11.5 and 11.6, which aim
to provide a visualization of what happens with the rows of the trajectory matrix when
centered by the columns. In the first case, the segments link the first κ observations to
all the column means (ȳj, j = 1, · · · , κ) shifted downwards. On the other, the procedure
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Figure 11.4: κth column of the columns-centered trajectory matrix (TS CO2, 1st and 2nd
PCs) in the all-to-one scheme.

is repeated for the last observations. These graphics show what happens with the rows
of X regarding differences in relation to distinct means. Ultimately, this is one way to
understand why the contours of points and arrows are shown in different formats in the
SSA-HJ-biplot.

Figure 11.5: First row of the columns-centered trajectory matrix (TS CO2, 1st and 2nd
PCs) in the one-to-one scheme.

Regarding computational efficiency, the problem P1 was partially addressed since
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Figure 11.6: Last row of the columns-centered trajectory matrix (TS CO2, 1st and 2nd PCs)
in the one-to-one scheme.

the choice made by the NIPALS algorithm did not prove to be advantageous over the
SVD method in terms of speed, given that the trajectory matrices used were not of
high dimension. Nevertheless, NIPALS worked well when asked to handle missing data,
dispensing with imputation methods. In cases where the ST shows some structural
change, visualization becomes more problematic. Thus, complementary measures were
developed in Article III to guarantee the interpretability of the SSA-HJ-biplot.

11.2 The structural change detection and NIPALS instability

A structural change in the context of TS analysis can be characterized by the
interruption of the LRR that governs the process over some time interval [39]. This
type of heterogeneity brings undesired complexity for methods of visual representation
based on determining directions of maximum variability of the data, as is the case of
the SSA-HJ-biplot. Nevertheless, the intervals between two subsequent interruption
points are suitable for applying the SSA-HJ-biplot. Article III handles the problem
answering the questions P6 and P7.

During the implementation of the detection method, we used massive sequences
of iterations of the SSA method to discover these breakpoints. At each iteration, a
trajectory matrix constructed from subseries of the original series was decomposed
by NIPALS twice, once in a robust way and once in a usual way. For the first case,
we developed a robust version of the NIPALS based on the L1 rather than the L2
least-squares norm. In this phase, the instability of the NIPALS algorithm emerged so
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that, in many cases, it did not reach convergence. On the other hand, for the same data,
the robust SVD method decomposed the corresponding trajectory matrix without effort.
Therefore, it is worth mentioning that in the case of the CPD method proposed in
Article III, some care must be taken when replacing the SVD method with the NIPALS
algorithm due to the instability of the latter.

11.3 Development summary of the areabiplot package

Hosting a package in the CRAN repository guarantees code authenticity and more
discoverability. But verification criteria can make processing time-consuming and
cumbersome. Attention to small details is necessary even with simple code (e.g., the
areabiplot). We use the devtools package in code development and the Roxygen2 in
the documentation phase to minimize errors. Below, as examples, are some specific
solutions adopted:

• As it is a graphical application, the areabiplot allows the user to change graphical
parameters, such as the background color. As a good practice, the function on.exit
(exit code) for resetting graphic parameters was used.

• To ensure a unity ratio to factor axes, the asp parameter was set to 1 by default.
The asp defines the aspect ratio, i.e., the proportional relationship between the
width and height of the plot axes.

• The scaling mode solution. At this point, the code allows the user to assign which
way he intends to allocate the diagonal matrix of singular values, whether in the
HJ scheme or the one proposed by the creator of the area biplot.

An example of using the package in the multivariate context is shown at the end of
the documentation. The result is shown in Figure 11.7.
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Figure 11.7: Example of the area biplot provided in the areabiplot package documentation.

184



Chapter 12

Conclusions

The research work carried out in this investigation resulted in a new way of visualizing
the decomposition of a TS called SSA-HJ-biplot. The closer the series is to being
classified as separable, the greater the ability of this approach to provide interpretable
graphs. The properties of the biplot methods, especially the HJ-biplot, assure the
interpretability of the tool. The exploratory nature of this new method also allows
evaluating the spectral structure of the trajectory matrix of a univariate TS, providing
indications of other characteristics, for example, regarding the stationarity or not of the
series. One of the research questions aligned with this aspect is related to expanding
the capabilities of the method created to emphasize the visualization of the approach.
And the SSA Area biplot method is one of the achievements that help answer this issue,
given its capacity to visually estimate the dominant periodicities of a TS. To further
increase the range of possibilities of both tools, we created an alternative procedure for
their application between points of structural changes in the analyzed series.

During the investigation, some of the objectives initially established were achieved,
and other setbacks that arose in the course of the development of the work were also
circumvented, highlighting:

• The definition of at least fifteen properties and interpretation rules of graphical
tools in the context of SSA-HJ-biplot and SSA Area biplot.

• The implementation of a Software (R package) that automated the SSA Area
biplot method but also works in the more general context of the Area biplot
method.
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• The definition of a distance measure to evaluate sudden changes in the direction
of a PC to detect structural changes in a TS.

• The development of a CPD method based on a sudden PC’s change of direction
and using SSA.

• The verification of an optimal value for the window length, permitting representing
the `-lagged vectors and κ-lagged vectors simultaneously in the same SSA-HJ-
biplot with optimal quality.

• The assignment of an alternative matrix decomposition method (NIPALS) within
the SSA allowing the application of the method to TS in which missing data is
checked.

This new method contributes to the visual interpretability of SSA and provides
another perspective on time series analysis. As expected, it has its limitations, but
the answers to the research questions raised here showed its versatility in applying it
to more complex data. Thus, the following research steps will focus on improving the
method and expanding its applicability. In the first case, we will seek to establish more
robust connections between the SSA-HJ-biplot and the separability of the components
of a TS, creating new graphical tools and improving those proposed here. The other
consists of possible adaptations of the SSA-HJ-biplot for use in TS forecasting.
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