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Abstract. This paper explores a strict relation between two core no-
tions of the semantics of programs and of fuzzy logics: Kleene Algebras
and (pseudo) uninorms. It shows that every Kleene algebra induces a
pseudo uninorm, and that some pseudo uninorms induce Kleene alge-
bras. This connection establishes a new perspective on the theory of
Kleene algebras and provides a way to build (new) Kleene algebras. The
latter aspect is potentially useful as a source of formalism to capture and
model programs acting with fuzzy behaviours and domains.

1 Introduction

The adoption of algebraic structures and techniques to model and reason about
programs has a long tradition in Computer Science and is the basis of some of
its main pillars, including Process Algebra and Abstract Data Types Specifi-
cation. In particular, Algebras of Programs, coming from regular languages and
automata theory, have been widely considered as a suitable framework to support
the rigorous semantics for analysis of algorithms and the design and development
of complex systems. On the basis of this field is the notion of Kleene Algebra [14],
today accepted as the standard abstraction of a computational system. Among
its examples, an algebraic framework for coherent confluence proofs, in rewriting
theory, for a higher dimensional generalisation of modal Kleene algebra proposes
in [3] and the algebra of the regular languages, traces of programs and the alge-
bra of relations on which the program states transitions are modelled as binary
relations on the set of states. For instance, by starting from the atomic programs
represented in the transition systems of Fig. 1 we can adopt the Kleene algebra
of binary relations to interpret composed programs. For instance, the sequential
composition Aπ;Aπ′ that consists in executing one computation step in Aπ fol-
lowed by another in Aπ′ , is interpreted by the standard relational composition,
as represented in Fig 2. Moreover, operations of non deterministic choice + and
iteration closure ∗, the ones needed to encode any imperative program, are also
provided by the mentioned Kleene algebra.

If the mentioned above models plays a relevant role in the current formal de-
velopment and design processes, the emergence of new computational paradigms
and scenarios, as Fuzzy and Probabilistic programming, entails not only the defi-
nition of new Kleene algebra models, but also some variants and generalisations.



Aπ ∶ s1
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]

Fig. 1. Examples of abstract programs

Aπ;π′ ∶ s1
�� **

s2
��

jj [
1 1
1 1
]

Fig. 2. Examples of abstract programs

As examples of the latter efforts, we can point out our recent development on
the study of Kleene algebras to deal with “intervals as programs” [22], in order
to deal with situations where the precise values of the transitions weights are not
provided (e.g. entailed by the machine representation of an irrational number).

This paper develops a novel algebraic study on Kleene algebras, based on
pseudo uninorms defined over partial orders. As is well known, we can easily
obtain a Kleene algebra from any Boolean algebra, by taking the operation ⋆
as the constant function x⋆ = ⊺, where ⊺ is the top element of the algebra.
Following this intuition, we abstract the infimum operation as pseudo uninorms
defined over partial orders, in order to build algebras for fuzzy programs. As
expected such new algebras generalises the standard case.

We investigate how fuzzy programs, i.e., elements of these structures, behaves
with respect to the Kleene operations. At this level, classic choice is maintained,
but the notions of sequential composition and Kleene closure are abstracted as
specific uninorms, defined over meet semilattices.

Building new Kleene algebras from other Kleene algebras can be also very
useful. The work of Conway plays a very relevant role. He introduces in [4]
some matricial constructions that preserve the Kleene algebra structure. In other
words, he introduces a method, with which, given a a Kleene algebra over a set
K, it construct a Kleene algebra over the squared matrices Mn(K). For instance
the Kleene algebra of relations used bellow (cf. Fig 1), which elements are the
adjacency matrices, can be taken with this method from the Kleene algebra
defined by the two-elements boolean algebra (with 0⋆ = 1⋆ = 1).

In this work we introduce an operator to construct new Kleene algebras from
other Kleene algebras based in the notion of automorphism. These maps re-
interprets programs and the programs operations of a Kleene algebra into a new
Kleene algebra, by contributing with an alternative source of program algebras.



Context and Contributions.

In [18] Menger introduced triangular norms (t-norms) in order to provide triangle
inequality for distances on probabilistic metric spaces. Since Menger’s definition
is weak, Schweizer and Sklar [23] provided a new definition for t-norms adding
new axioms such as associativity and taking 1 as the neutral element. In [24],
they introduced the notion of t-conorm by simply taking 0 as the neutral element
instead of 1.

The axioms of T-norms (T-conorms) was, then, changed by abolishing some
of its conditions. Those weakening gave rise to the so called pseudo t-norm. In
[9] (see also [7]) Siegfried Gottwald considered the notion of pseudo t-norm by
abolishing the commutativity property. On the other hand, further authors such
as abolished other axioms — see [11, 15, 29]. In particular, in [11] Sándor Jenei
suppressed the commutativity property and the left side of the isotonicity prop-
erty; and in [15], in addition to these two properties, Hua-Wen Liu suppressed
the associativity. In [17], M. Mas, M. Monserrat and J. Torrens introduced the
notion of left uninorms and right uninorms. One year after W. Sander [21] intro-
duced the notion of pseudo uninorm as a bivariated function on the unit interval
that is associative, isotone and has a neutral element. This notion coincides with
the functions which are, both, left and right uninorms. In [28] the notion of left
uninorms, right uninorms and pseudo uninorms was extended for lattice-valued
sets. Two pseudo uninorms having the same neutral element is called of the
same type. In [27] the notion of pseudo uninorm was extended for complete
lattices and here we generalize them for posets. Recently, the papers [16, 25, 26]
consider lattice-valued and [0,1]-valued pseudo uninorms.

In this paper, we investigate the notion of pseudo uninorms and show how
they can be used to build Kleene Algebras, which is a kind of algebra used to
model some computational systems.

Outline. This paper is organized in the following way: Section 2 introduces the
notions of pseudo uninorms and Kleene algebras. Section 3 provide some new re-
sults and construction on pseudo uninorms. Section 4 shows how Kleene algebras
are built from certain pseudo uninorms and that every Kleene algebra is related
to a pseudo uninorm. The section also studies automorphisms on this structures
and how they can generate new pseudo uninorm based Kleene algebras.

2 Preliminaries

Let ⟨P,≤⟩ be a poset and e ∈ P . Then, trivially, ⟨Pe,≤e⟩ and ⟨P e,≤e⟩ are poset
with a greater and least, respectively, element when Pe = {x ∈ P ∶ x ≤ e},
P e = {x ∈ P ∶ e ≤ x} and ≤e and ≤e are the restriction of ≤ to Pe and P e,
respectively 3. Let ∆P = {a ∈ P ∶ for each x ∈ P a ≤ x or x ≤ a}. ⟨P,≤⟩ is a total
order set, whenever ∆P = P . ⟨P,≤⟩ is a meet (join) semilattice if every

3 The reader can also find in the literature ↓ e and ↑ e, respectively.



x, y ∈ P have an infimum (supremum) in P , denoted by x ∧ y (x ∨ y). ⟨P,≤⟩ is a
lattice if it is both: meet and join semilattice.

Closure operators play an important role in several fields of the mathematics;
e.g. in Algebra, Logic and Topology. In this paper a closure operator will be
required to develop this work:

Definition 1. Let ⟨P,≤⟩ be a poset. A closure operator on P is a function
⋆ ∶ P → P such that for each x, y ∈ P

(C1) if x ≤ y then x⋆ ≤ y⋆ — Isotonicity,
(C2) x ≤ x⋆ — inflation, and
(C3) (x⋆)⋆ = x⋆ — idempotency.

Definition 2. Let ⟨P,≤⟩ be a poset. A function U ∶ P × P → P is a pseudo
uninorm on P , whenever, for each w,x, y, z ∈ P it satisfies:

1. U(x,U(y, z)) = U(U(x, y), z) — Associativity,
2. w ≤ x and y ≤ z then U(w,y) ≤ U(x, z) — Isotonicity, and
3. there is e ∈ P s.t. U(x, e) = U(e, x) = x — has neutral element.

Ue
P is the set of all pseudo uninorms on P with neutral element e. If e is

the greater (least) element of P then U is called of pseudo t-norm (pseudo
t-conorm).

Commutative pseudo uninorms are called of uninorm on P in [12]. Uninorms
on poset [0,1] were introduced in [6], but the name uninorm only was coined in
[30].

Remark 1. If ⟨P,≤⟩ is a meet-semilattice, then the infimum, i.e. ∧, is a pseudo
t-norm iff P has a top element. Analogously, if ⟨P,≤⟩ is a join-semilattice then
the supremum, i.e. ∨, is a pseudo t-conorm iff P has a bottom element.

Remark 2. The set Ue
P endowed with the following binary relation is a partial

order:
U1 ⪯e U2 iff ∀x, y ∈ P, U1(x, y) ≤ U2(x, y).

If U ∈ Ue
P then U(x, y) ≤ x ≤ e and U(x, y) ≤ y whenever x, y ∈ Pe, U(x, y) ≥ x ≥ e

and U(x, y) ≥ y whenever x, y ∈ P e, and x ≤ U(x, y) ≤ y (and also x ≤ U(y, x) ≤ y)
whenever x ∈ Pe and y ∈ P e.

Remark 3. Let ⟨P,≤⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P then U(⊺,⊺) ≥

U(⊺, e) = ⊺ and therefore U(⊺,⊺) = ⊺. Analogously it is possible to prove that
U(�,�) = �.

We recall in the notion of Kleene algebra. This algebraic structure represents
the abstract notion of a computational systems where programs can be modelled.
Namely it is constituted by an universe of programs K that can be operated by
a (non deterministic) choice +, by a sequential composition ; and by an iterative
closure ∗. The algebra of regular languages, of binary relations and of program
traces are well known instantiations of such structure.



Definition 3. An algebra ⟨K,+, ⋅,⋆,0,1⟩ of type (2,2,1,0,0) is a Kleene algebra
if for each a, b, c ∈K satisfy the following axioms:

(KA1) a + (b + c) = (a + b) + c;
(KA2) a + b = b + a;
(KA3) a + a = a;
(KA4) a + 0 = 0 + a = a;
(KA5) a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c;
(KA6) a ⋅ 1 = 1 ⋅ a = a;
(KA7) a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c);
(KA8) (a + b) ⋅ c = (a ⋅ c) + (b ⋅ c);
(KA9) a ⋅ 0 = 0 ⋅ a = 0;

(KA10) 1 + (a ⋅ a⋆) ≤ a⋆;
(KA11) 1 + (a⋆ ⋅ a) ≤ a⋆;
(KA12) If a ⋅ b ≤ b then a⋆ ⋅ b ≤ b; and
(KA13) If a ⋅ b ≤ a then a ⋅ b⋆ ≤ a.

Where ≤ is the natural partial order on K defined by

a ≤ b if and only if a + b = b. (1)

Remark 4. In fact ⟨K,≤⟩ is a join-semilattice with 0 as least element [14].

Lemma 1. [14] Let ⟨K,+, ⋅,⋆,0,1⟩ be a Kleene algebra. Then

(KO1) If a ≤ b then a⋆ ≤ b⋆.
(KO2) 0⋆ = 1.
(KO3) 1 + a ⋅ a⋆ = a⋆.
(KO4) (a⋆)⋆ = a⋆.

3 Some new results and construction on pseudo uninorms

Proposition 1. Let ⟨P,≤⟩ be a poset with a bottom element ⊥. For each e ∈ P ,
if ⟨P e,≤e⟩ is a join-semilattice, then ⟨Ue

P ,⪯e⟩ has a bottom element.

Proof. Let � be the least element of P . Then the function

Ue(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

� if x, y /∈ P e

x ∨ y if x, y ∈ P e

x if x /∈ P e and y ∈ P e

y if x ∈ P e and y /∈ P e

is the bottom element of ⟨Ue
P ,⪯e⟩.

Proposition 2. Let ⟨P,≤⟩ be a poset with a greater element ⊺. For each e ∈ P
if ⟨Pe,≤e⟩ is a meet-semilattice then ⟨Ue

P ,⪯e⟩ has a greater element.



Proof. The function

Ue(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ∧ y if x, y ∈ Pe

⊺ if x, y /∈ Pe

x if x /∈ Pe and y ∈ Pe

y if x ∈ Pe and y /∈ Pe

is the greater element of ⟨Ue
P ,⪯e⟩ .

Proposition 3. Let ⟨P,≤⟩ be a poset, e ∈ P and U ∈ Ue
P . Then the restriction,

U/Pe
, is a pseudo t-norm on ⟨Pe,≤e⟩ and U/P e is a pseudo t-conorm on ⟨P e,≤e⟩.

Proof. Straightforward.

Corollary 1. Let ⟨P,≤⟩ be a poset, e ∈ P , U ∈ Ue
P . Then for each isotone bijec-

tion ϕ ∶ Pe → P , the function T ∶ P × P → P defined by

T (x, y) = ϕ(U(ϕ−1(x), ϕ−1(y)))

is a pseudo t-norm on P .

Corollary 2. Let ⟨P,≤⟩ be a poset, e ∈ P , U ∈ Ue
P . Then for each isotone bijec-

tion ψ ∶ P e → P , the function S ∶ P × P → P defined by

S(x, y) = ψ(U(ψ−1(x), ψ−1(y)))

is a pseudo t-conorm on P .

Proposition 4. Let ⟨P,≤⟩ be a poset, UP the set of all pseudo uninorms on P
and “⪯” the following binary relation:

U1 ⪯ U2 iff ∀x, y ∈ P, U1(x, y) ≤ U2(x, y).

Then

1. ⟨UP ,⪯⟩ is a poset;
2. Let U1, U2 ∈ UP be pseudo uninorms with neutral elements e1 and e2, respec-

tively. If U1 ⪯ U2 then e2 ≤ e1;
3. Let U1, U2 ∈ UP be pseudo uninorms with neutral elements e1 and e2, respec-

tively. If neither e1 ≤ e2 nor e2 ≤ e1 then neither U1 ⪯ U2 nor U2 ⪯ U1.
4. If ⟨P,≤⟩ has a greater and a least element then ⟨UP ,⪯⟩ also have a greater

and a least element.

Proof. 1. Straightforward.
2. e2 = U1(e2, e1) ≤ U2(e2, e1) = e1.
3. If U1 ⪯ U2 then by previous item e2 ≤ e1. Analogously, if U2 ⪯ U1 then by

previous item e1 ≤ e2. Therefore, if e1 and e2 are not comparable, then also
are not comparable U1 with U2.



4. Let � and ⊺ be the least and the greater element of P , respectively. Then,
let

U⊺(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x if y = �
y if x = �
⊺ otherwise

U�(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x if y = ⊺
y if x = ⊺
� otherwise

It is easy to prove that U�, U⊺ ∈ UP . Let U ∈ UP with e ∈ P as neutral element
and x, y ∈ P . Then if x = ⊺ then U�(⊺, y) = y = U(e, y) ≤ U(⊺, y). Analogously,
for the case y = ⊺. Now, if x ≠ ⊺ and y ≠ ⊺ then U�(x, y) = � ≤ U(x, y). So,
U� ⪯ U . Analogously, it is proven that U ⪯ U⊺.

Corollary 3. Let ⟨P,≤⟩ be a poset. Then,

1. If T is a pseudo t-norm on P then, T (x, y) ≤ x and T (x, y) ≤ y.
2. If S is a pseudo t-conorm on P then, x ≤ S(x, y) and y ≤ S(x, y).

It is obvious that uninorms, pseudo t-norms and pseudo t-conorms on a
bounded lattice are pseudo uninorms on the same lattice. But, there exist pseudo
uninorms which are neither uninorms, pseudo t-norms nor pseudo t-conorms.
The following proposition provides an infinite family of such pseudo uninorms.

The following results generalize the Proposition 2.1 and 2.2 of [5].

Proposition 5. Let ⟨P,≤⟩ be a join-semilattice with top element and T ∶ P×P →
P be a pseudo t-norm on P . Then for any e ∈ P and isotone bijection ϕ ∶ Pe → P ,
the mapping Ue ∶ P × P → P defined by:

Ue(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ−1(T (ϕ(x), ϕ(y))) if x, y ∈ Pe

x ∨ y if x, y /∈ Pe

x if x /∈ Pe and y ∈ Pe

y if x ∈ Pe and y /∈ Pe

(2)

is a pseudo uninorm on P with e as neutral element.

Proof. Let x, y, z ∈ P . If x, y, z ∈ Pe, then
Ue(x,Ue(y, z)) = ϕ−1(T (ϕ(x), T (ϕ(y), ϕ(z))))

= ϕ−1(T (T (ϕ(x), ϕ(y)), ϕ(z)))
= Ue(Ue(x, y), z).

In any other case, Ue(x,Ue(y, z)) = ∨{x, y, z} ∩ Pe = Ue(Ue(x, y), z). There-
fore, Ue is associative.

Let x ∈ P . If x ∈ Pe, then Ue(x, e) = ϕ−1(T (ϕ(x), ϕ(e))) = x = ϕ−1(T (ϕ(e), ϕ(x))) =
Ue(e, x). If x /∈ Pe then Ue(x, e) = x = Ue(e, x). Therefore e is a neutral element
of Ue.

Let x, y, z ∈ P such that y ≤ z. If x /∈ Pe we have the following cases:

1. y /∈ Pe: then z /∈ Pe and therefore, Ue(x, y) = x ∨ y ≤ x ∨ z = Ue(x, z).
2. z ∈ Pe: then y ∈ Pe and therefore, Ue(x, y) = x = Ue(x, z).
3. y ∈ Pe and z /∈ Pe and therefore, Ue(x, y) = x ≤ x ∨ z = Ue(x, z).



If x ∈ Pe the we have three cases:

1. y /∈ Pe: then z /∈ Pe and therefore,
Ue(x, y) = y ≤ z = Ue(x, z).

2. z ∈ Pe: then y ∈ Pe and therefore,
Ue(x, y) = ϕ−1(T (ϕ(x), ϕ(y))) ≤ ϕ−1(T (ϕ(x), ϕ(z))) = Ue(x, z).

3. y ∈ Pe and z /∈ Pe and therefore,
Ue(x, y) = ϕ−1(T (ϕ(x), ϕ(y))) ≤ y ≤ z = Ue(x, z).

Therefore, Ue is isotone in the second component. The prove that is isotone in
the first component is analogous.

Proposition 6. Let ⟨P,≤⟩ be a meet-semilattice with bottom element and S ∶
P ×P → P be a pseudo t-conorm on P . Then for any e ∈ P and isotone bijection
ψ ∶ P e → P , the mapping Ue ∶ P × P → P defined by:

Ue(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ−1(S(ψ(x), ψ(y))) if x, y ∈ P e

x ∧ y if x, y /∈ P e

x if x /∈ P e and y ∈ P e

y if x ∈ P e and y /∈ P e

(3)

is a pseudo uninorm on P with e as neutral element.

Proof. Analogous to Proposition 5.

Proposition 7. Let ⟨P,≤⟩ be a poset, e ∈ P and U1, U2 ∈ Ue
P . Then the mapping

U1 ⋊U2 ∶ P × P → P defined by

U1 ⋊U2(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U1(x, y) if x, y ∈ Pe

U2(x ∨ e, y ∨ e) if x, y /∈ Pe

x if x /∈ Pe and y ∈ Pe

y if x ∈ Pe and y /∈ Pe

(4)

is a pseudo uninorm on P with e as neutral element.

Proof. Let x, y, z ∈ P such that y ≤ z. If x /∈ Pe then:

– Case z ∈ Pe: then y ∈ Pe and therefore U1 ⋊U2(x, y) = x = U1 ⋊U2(x, z).
– Case y, z /∈ Pe: then U1 ⋊ U2(x, y) = U2(x ∨ e, y ∨ e) ≤ U2(x ∨ e, z ∨ e) =
U1 ⋊U2(x, z).

– Case y ∈ Pe and z /∈ Pe: then, by Remark 2, U1 ⋊ U2(x, y) = x ≤ x ∨ e ≤
U2(x ∨ e, z ∨ e) = U1 ⋊U2(x, z).

If x ∈ Pe then:

– Case y, z ∈ Pe: Then we have that U1 ⋊ U2(x, y) = U1(x, y) ≤ U1(x, z) =
U1 ⋊U2(x, z).

– Case y ∈ Pe and z /∈ Pe: Then, by Remark 2, we have that U1 ⋊ U2(x, y) =
U1(x, y) ≤ y ≤ z = U1 ⋊U2(x, z).

– Case y /∈ Pe: then z /∈ Pe and therefore U1 ⋊U2(x, y) = y ≤ z = U1 ⋊U2(x, z).



Therefore, U1 ⋊U2 is isotone in the second component. The prove that is isotone
in the first component is analogous.

Let x, y, z ∈ P . Case x, y, z ∈ Pe or x, y, z /∈ Pe we have that by associativity of
U1 and U2, U1 ⋊U2(x,U1 ⋊U2(y, z)) = U1 ⋊U2(U1 ⋊U2(x, y), z). The other cases:

1. Case x, y ∈ Pe and z /∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = z = U1 ⋊ U2(U1 ⋊
U2(x, y), z).

2. Case x ∈ Pe and y, z /∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = U2(y ∨ e, z ∨ e) =
U1 ⋊U2(U1 ⋊U2(x, y), z).

3. Case x, y /∈ Pe and z ∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = U2(x ∨ e, y ∨ e) =
U1 ⋊U2(U1 ⋊U2(x, y), z).

4. Case x /∈ Pe and y, z ∈ Pe: U1 ⋊ U2(x,U1 ⋊ U2(y, z)) = x = U1 ⋊ U2(U1 ⋊
U2(x, y), z).

Therefore, U1⋊U2 is associative, and since e is clearly a neutral element then
U1 ⋊U2 is a pseudo uninorm.

Proposition 8. Let ⟨P,≤⟩ be a poset, e ∈ P and U1, U2 ∈ Ue
P . Then the mapping

U1 ⋉U2 ∶ P × P → P defined by

U1 ⋉U2(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U1(x ∧ e, y ∧ e) if x, y /∈ P e

U2(x, y) if x, y ∈ P e

x if x /∈ P e and y ∈ P e

y if x ∈ P e and y /∈ P e

(5)

is a pseudo uninorm on P with e as neutral element.

Proof. Analogous.

As corollary we have the following generalization of the Theorem 1 in [8] (see
also Theorem 2.1 in [27]).

Proposition 9. Let ⟨L,≤⟩ be a bounded lattice and T,S ∶ L×L→ L be a pseudo
t-norm and a pseudo t-conorm on L, respectively. Then, for any e ∈ L and isotone
bijections ϕ ∶ Le → L and ψ ∶ Le → L, the mappings U1, U2 ∶ L × L → L defined
by:

U1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ−1(T (ϕ(x), ϕ(y))) if x, y ∈ Le

ψ−1(S(ψ(x), ψ(y))) if x, y ∈ Le

x if x /∈ Le and y ∈ Le

y if x ∈ Le and y /∈ Le

(x ∧ y) ∨ e otherwise

(6)

U2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ−1(T (ϕ(x), ϕ(y))) if x, y ∈ Le

ψ−1(S(ψ(x), ψ(y))) if x, y ∈ Le

x if x /∈ Le and y ∈ Le

y if x ∈ Le and y /∈ Le

(x ∨ y) ∧ e otherwise

(7)

are pseudo uninorms on L with e as neutral element.



Proof. Let x, y, z ∈ L. If x, y, z ∈ Le then

Ue(x,Ue(y, z)) = ϕ−1(T (ϕ(x), T (ϕ(y), ϕ(z))))
= ϕ−1(T (T (ϕ(x), ϕ(y)), ϕ(z)))
= Ue(Ue(x, y), z).

Analogously, if {x, y, z} ⊆ Le then

Ue(x,Ue(y, z)) = ψ−1(S(ψ(x), S(ψ(y), ψ(z))))
= ψ−1(S(S(ψ(x), ψ(y)), ψ(z)))
= Ue(Ue(x, y), z).

UT
e (x,UT

e (y, z)) = ⊺ = UT
e (UT

e (x, y), z). Therefore, UT
e is associative.

Let x ∈ L. If x ∈ Le, then U
T
e (x, e) = ϕ−1(T (ϕ(x), ϕ(e))) = ϕ−1(T (ϕ(x),⊺)) =

x and, analogously, UT
e (e, x) = x. If x ∈ Le then UT

e (x, e) = x ∨ e = x = UT
e (e, x).

Finally, if x /∫ Le ∪ Le then UT
e (x, e) = e = UT

e (e, x). Therefore e is a neutral
element of PT

e .
Let x, y, z ∈ [0,1] such that y ≤ z. If x ≤ e then PT

e (x, y) = y ≤ z = PT
e (x, z)

and if x > e then PT
e (x, y) =max(x, y) ≤max(x, z) = PT

e (x, z). So, PT
e is isotonic

in the second argument. The prove that it is isotonic in the first component is
analogous.

Hence, PT
e is a pseudo uninorm.

3.1 Annihilators of pseudo uninorms

In the literature, an element a of a set A is called an annihilator for a func-
tion F ∶ A × A → A, whenever “F (a, x) = F (x, a) = a for each x ∈ A”. For
example, zero is an annihilator for the usual multiplication. It is not difficult
to see that an annihilator for F is unique and also that bottom, ⊥, and top, ⊺,
elements are annihilators for pseudo t-norm and pseudo t-conorm, respectively.

From this point on, the expression U(�,⊺) will be denoted by aU .

Theorem 1. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P has an

annihilator, then it is aU .

Proof. Suppose that a is the annihilator of U . Then U(�,⊺) ≤ U(a,⊺) = a and
U(�,⊺) ≥ U(�, a) = a. Therefore, a = aU . On the other hand, U(⊺,�) ≤ U(⊺, a) =
a and U(⊺,�) ≥ U(a,�) = a. Therefore, a = U(⊺,�) = U(�,⊺) = aU .

The next proposition is a generalization of the Lemma 1 in [8].

Proposition 10. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P , then

1. U(aU , x) ≤ aU ≤ U(x, aU) for all x ∈ P ;
2. U(aU , x) = aU for all x ∈ P e;
3. U(x, aU) = aU for all x ∈ Pe.



Proof. Let x ∈ P , then U(aU , x) ≤ U(aU ,⊺) = U(U(�,⊺),⊺) = U(�, U(⊺,⊺)) =
U(�,⊺) = aU and U(x, aU) ≥ U(�, U(�,⊺)) = U(U(�,�),⊺) = U(�,⊺) = aU .
Therefore, U(aU , x) ≤ aU ≤ U(x, aU) for all x ∈ P .

If x ≥ e then U(⊺, x) ≥ U(⊺, e) = ⊺ and so U(⊺, x) = ⊺. Therefore, U(aU , x) =
U(U(�,⊺), x) = U(�, U(⊺, x)) = U(�,⊺) = aU and U(x, aU) = U(x,U(�,⊺)) =
U(U(x,�),⊺) ≥ U(�,⊺) = aU .

If x ≤ e then U(x,�) ≤ U(e,�) = � and so U(x,�) = �. Therefore, U(x, aU) =
U(x,U(�,⊺)) = U(U(x,�),⊺) = U(�,⊺) = aU and U(aU , x) = U(U(�,⊺), x) =
U(�, U(⊺, x)) ≤ U(�,⊺) = aU . Hence, U(x, aU) = aU ≥ U(aU , x).

Corollary 4. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P is com-

mutative then U has an annihilator element.

The next proposition is stronger, since the commutativity is relaxed whereas
the existence of an annihilator is maintained.

Proposition 11. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P is such

that U(�,⊺) = U(⊺,�), then

– aU is annihilator;
– aU = � or aU = ⊺ or aU incomparable with e.

Proof. Let x ∈ P . Then, U(aU , x) ≥ U(aU ,�) = U(U(�,⊺),�) = U(U(⊺,�),�) =
U(⊺, U(�,�)) = U(⊺,�) and U(x, aU) ≤ U(⊺, U(�,⊺)) = U(⊺, U(⊺,�)) = U(U(⊺,⊺),�) =
U(⊺,�). Therefore, by Proposition 10, U(⊺,�) ≤ U(aU , x) ≤ aU ≤ U(x, aU) ≤
U(⊺,�) = U(⊺,�) and, consequently, U(aU , x) = aU = U(x, aU). Hence, aU is an
annihilator of U .

If aU ≤ e then aU = U(�, aU) ≤ U(�, e) = � and so aU = �. If aU ≥ e then
aU = U(⊺, aU) ≥ U(⊺, e) = ⊺ and so aU = ⊺. Therefore, aU = � or aU = ⊺ or aU
incomparable with e.

Proposition 12. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P is such

that U(�,⊺) = U(⊺,�) = �, then � is the annihilator of U .

Proof. Let x ∈ P . Since U is isotone then U(�, x) ≤ U(�,⊺) = � and U(x,�) ≤
U(⊺,�) = �. Therefore, U(x,�) = U(�, x) = � for each x ∈ P .

Proposition 13. Let ⟨P,≤,�,⊺⟩ be a bounded poset and e ∈ P . If U ∈ Ue
P is such

that U(�,⊺) = U(⊺,�) = ⊺ then ⊺ is an annihilator of U .

Proof. Let x ∈ P . Since U is isotone then U(x,⊺) ≥ U(�,⊺) = ⊺ and U(⊺, x) ≥
U(⊺,�) = ⊺. Therefore, U(x,⊺) = U(⊺, x) = ⊺ for each x ∈ P .

3.2 Idempotency

In the literature, an operation F ∶ A × A → A is called idempotent whenever
for each x ∈ A, F (x,x) = x. In this section we will confront the notion of pseudo
uninorms with such property.



Proposition 14. Let ⟨P,≤⟩ be a poset such that ⟨Pe,≤e⟩ is a meet-semilattice
and ⟨P e,≤e⟩ is a join-semilattice. U ∈ Ue

P is idempotent iff for each x, y ∈ L,

U(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x ∧ y if x, y ∈ Pe

x ∨ y if x, y ∈ P e

U(x, y) ∈ [x ∧ y, x ∨ y] otherwise

Proof. (⇒) If x, y ∈ Pe then, by one hand, U(x, y) ≤ U(x, e) = x and U(x, y) ≤
U(e, y) = y and therefore, U(x, y) ≤ x∧y. On the other hand, x∧y = U(x∧y, x∧
y) ≤ U(x, y). Therefore, U(x, y) = x ∧ y.

If x, y ∈ P e then, by one hand, U(x, y) ≥ x ∨ y and by the other hand,
x ∨ y = U(x ∨ y, x ∨ y) ≥ U(x, y). Therefore, U(x, y) = x ∨ y.

In other case:

– If x and y are comparable, then by a symmetric argument it is sufficient
to consider the case x ∈ Pe and y ∈ P e, and therefore x ≤ y. Thereby, x =
U(x,x) ≤ U(x, y) and U(x, y) = U(U(x,x), y) = U(x,U(x, y)) ≤ U(x, e) = x,
i.e. U(x, y) = x ∧ y.

– If x and y are not comparable, then x ∈ Pe and y /∈ Pe ∪ P e, or, x ∈ P e and
y /∈ Pe ∪ P e. In the first case, U(x, y) ≤ U(e, y) = y ≤ x ∨ y and U(x, y) ≥
U(x, y ∧ e) = x ∧ y ∧ e = x ∧ y. Analogously, in the second case, U(x, y) ≥
U(e, y) = y ≥ x ∧ y and U(x, y) ≤ U(x, y ∨ e) = x ∨ y ∨ e = x ∨ y. So, in both
cases, U(x, y) ∈ [x ∧ y, x ∨ y].

(⇐) Straightforward.

Corollary 5. ⟨P,≤⟩ be a meet-semilattice with a top element, denoted by ⊺.
Then U ∈ U⊺P is idempotent iff U(x, y) = x ∧ y for each x, y ∈ P .

Corollary 6. ⟨P,≤⟩ be a join-semilattice with a bottom element, denoted by �.
Then U ∈ U�P is idempotent iff U(x, y) = x ∨ y for each x, y ∈ P .

3.3 Join morphism

In this section we show how pseudo uninorms behave with respect to distribu-
tivity over supremum or just a join morphism.

Proposition 15. Let ⟨P,≤⟩ be a join-semilattice. If U ∈ UP , then for each
x, y, z ∈ P :

1. U(x, y ∨ z) ≥ U(x, y) ∨U(x, z), and
2. U(y ∨ z, x) ≥ U(y, x) ∨U(z, x).

Proof. For each x, y, z ∈ P we have that once U(x, y) ≤ U(x, y∨ z) and U(x, z) ≤
U(x, y ∨ z) then U(x, y) ∨ U(x, z) ≤ U(x, y ∨ z). The prove that U(y ∨ z, x) ≥
U(y, x) ∨U(z, x) is analogous.

Definition 4. Let ⟨P,≤⟩ be a join-semilattice and U ∈ UP be a pseudo uninorm.
U is a join morphism if for each x, y, z ∈ P ,



1. U(x, y ∨ z) = U(x, y) ∨U(x, z), and
2. U(y ∨ z, x) = U(y, x) ∨U(z, x).

Proposition 16. Let ⟨P,≤⟩ be a join-semilattice and U ∈ UP be a pseudo uni-
norm such that:

1. For each w,x, y, z ∈ P , if y ≤ z and U(x, y) ≤ w ≤ U(x, z), then there exists
u ∈ P such that U(x,u) = w,

2. for each w,x, y, z ∈ P , if y ≤ z and U(y, x) ≤ w ≤ U(z, x), then there exists
u ∈ P such that U(u,x) = w, and

3. for each x, y, z ∈ P , if U(x, y) ≤ U(x, z) or U(y, x) ≤ U(z, x), then y ≤ z.

Then U is join morphism.

Proof. By Proposition 15,

U(x, y) ∨U(x, z) ≤ U(x, y ∨ z) (8)

Since, U(x, y) ≤ U(x, y)∨U(x, z) and U(x, z) ≤ U(x, y)∨U(x, z) then by property
1., there exist u ∈ P such that U(x,u) = U(x, y) ∨U(x, z) and therefore, by Eq.
(8), U(x,u) ≤ U(x, y ∨ z). So, by property 3., u ≤ y ∨ z. Thus, because u ≥ y
and u ≥ z, we have that u = y ∨ z and consequently U(x,u) = U(x, y ∨ z). Hence,
U(x, y) ∨U(x, z) = U(x,u) = U(x, y ∨ z).

The prove that U(y ∨ z, x) = U(y, x) ∨U(z, x) is analogous.

Proposition 17. Let ⟨P,≤⟩ be a totally ordered set. Each pseudo uninorm on
P is a join morphism.

Proof. Let x, y, z ∈ P . Since, P is totally ordered, by a symmetric argument, it
is sufficient just consider that y ≤ z. So, U(x, y) ≤ U(x, z) and U(y, x) ≤ U(z, x).
Therefore, U(x, y) ∨ U(x, z) = U(x, z) = U(x, y ∨ z) and U(y, x) ∨ U(z, x) =
U(z, x) = U(y ∨ z, x).

4 Kleene algebras based on pseudo uninorms

In this section we show how Kleene algebras are built by using pseudo uninorms
under some conditions. In order to achieve that we propose the notion of Kleene
operator based on a pseudo uninorm:

Definition 5. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P and U ∈ Ue
P a pseudo

uninorm. A Kleene operator based on U is a function ⋆ ∶ P → P such that
for each x, y ∈ P satisfy:

(K1) e ∨U(x,x⋆) ≤ x⋆,
(K2) e ∨U(x⋆, x) ≤ x⋆,
(K3) If U(x, y) ≤ y then U(x⋆, y) ≤ y, and
(K4) If U(y, x) ≤ y then U(y, x⋆) ≤ y.



Proposition 18. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P and U ∈ Ue
P such that

either U is a join morphism or e ∈ ∆P . If U(x,x) ≤ x for each x ∈ P e then the
operator x⋆ = x ∨ e is a Kleene operator for U .

Proof. Observe that U(x,x) ≤ x for each x ∈ Pe. So, the condition “U(x,x) ≤ x
for each x ∈ P e” is equivalent to “U(x,x) ≤ x∨e for each x ∈ P”. Let x ∈ P , then

(K1) Since x ≤ x⋆ and x⋆ ∈ P e then e∨U(x,x⋆) ≤ e∨U(x⋆, x⋆) ≤ e∨x⋆ = x⋆.
(K2) Analogous to (K1).
(K3) If U is a join morphism and U(x, y) ≤ y then U(x⋆, y) = U(x ∨ e, y) =

U(x, y) ∨ U(e, y) = U(x, y) ∨ y = y. On the other hand, if e ∈ ∆P and
U(x, y) ≤ y then when x ≤ e we have that U(x⋆, y) = U(x ∨ e, y) =
U(e, y) = y and when e ≤ x we have that U(x⋆, y) = U(x ∨ e, y) =
U(x, y) ≤ y. Therefore, in both cases, the operator ⋆ satisfy (K3).

(K4) Analogous to (K3).

Theorem 2. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P and U ∈ Ue
P such that either

U is a join morphism or e ∈∆P . Then the operator x⋆ = x∨e is a Kleene operator
for U iff for each x, y ∈ P e, U(x, y) = x ∨ y

Proof. Straighhtforward. (⇒) if x ∈ P e, then U(x,x) ≥ U(x, e) = x and so,
x = x⋆ ≥ e ∨ U(x,x⋆) = e ∨ U(x,x) = U(x,x). Therefore, U(x,x) = x for each
x ≥ e, i.e. U/P e is idempotent. So, by Proposition 3, U/P e is an idempotent pseudo
t-conorm on ⟨P e,≤e⟩. Hence, by Proposition 14, U(x, y) = U/P e(x, y) = x ∨ y for
each x, y ∈ P e.

(⇐) Straightforward of the Proposition 18.

Theorem 3. Let ⟨P,≤,�,⊺⟩ be a bounded join-semilattice, e ∈ ∆P and U ∈ Ue
P

such that U(�,⊺) = U(⊺,�) = � and U(x, y) = x ∨ y for each x, y ∈ P e. Then
⟨P,∨, U,⋆,�, e⟩ where x⋆ = x ∨ e, is a Kleene algebra.

Proof. The axioms (KA1) to (KA4) follows from definition of join-semilattice
and least element, the axioms (KA5) and (KA6) from definition of pseudo
uninorm, the axiom (KA9) from Proposition 12, and the axioms (KA10) to
(KA13) from Proposition 18. Let x, y, z ∈ P . Then, since e ∈ ∆P , we have the
following cases:

1. Case x, y, z ∈ P e then, from Theorem 2, we have that U(x, y∨z) = x∨(y∨z) =
(x ∨ y) ∨ (x ∨ z) = U(x, y) ∨U(x, z).

2. Case y ∈ Pe and z ∈ P e then y ≤ z and therefore U(x, y ∨ z) = U(x, z) =
U(x, y) ∨U(x, z).

3. Case y ∈ P e and z ∈ Pe then z ≤ y and therefore U(x, y ∨ z) = U(x, y) =
U(x, y) ∨U(x, z).

4. Case y, z ∈ Pe then U(x, y ∨ z) ≤ U(x, y ∨ e) = U(x, y) and U(x, y ∨ z) ≤
U(x, z∨e) = U(x, z) and therefore, U(x, y∨z) ≤ U(x, y)∨U(x, z). So, because,
trivially U(x, y)∨U(x, z) ≤ U(x, y ∨ z), then U(x, y)∨U(x, z) = U(x, y ∨ z).



Therefore, the axiom (KA7) is satisfied for each x, y, z ∈ P . The axiom (KA8)
can be proved in analogous way.

Theorem 4. Let ⟨P,≤,�,⊺⟩ be a bounded join-semilattice, e ∈ P , U ∈ Ue
P be a

join morphism such that U(�,⊺) = U(⊺,�) = � and U(x,x) ≤ x for each x ∈ P e.
Then ⟨P,∨, U,⋆,�, e⟩ where x⋆ = x ∨ e, is a Kleene algebra.

Proof. The axioms (KA1) to (KA4) follows from definition of join-semilattice
and least element, the axioms (KA5) and (KA6) from definition of pseudo
uninorm,the axioms (KA7) and (KA8) because U is a join morphism, the
axiom (KA9) from Proposition 12, and the axioms (KA10) to (KA13) from
Proposition 18.

Theorem 5. Let ⟨K,+, U,⋆,0, e⟩ be a Kleene algebra. Then

1. U ∈ Ue
P ;

2. e ≤ x⋆, for each x ∈K;
3. x⋆ ≥ e + x, for each x ∈K;
4. ⋆ is a closure operator on ⟨K,≤⟩.

Proof. 1. By the axioms (KA5) and (KA6), U is associative and e is a neutral
element. Suppose that y ≤ z then U(x, z) = U(x, y + z) = U(x, y) + U(x, z)
and therefore U(x, y) ≤ U(x, z). Analogously is proved that if x ≤ y, then
U(x, z) ≤ U(y, z).

2. Let x ∈K. Then by (KO1) and (KO2), once 0 ≤ x we have that e ≤ x⋆.
3. If x /≤ e then by (KO3), U ∈ Ue

P and by previous item, x⋆ = e + U(x,x⋆) ≥
e +U(x, e) = e + x.
Now, if x ≤ e then U(x, e) ≤ e. So, by (KA12), we have that x⋆ = U(x⋆, e) ≤
e. But, once by previous item e ≤ x⋆, then x⋆ = e. So, if x ≤ e then x⋆ = e =
e + x.

4. (C1) follows from (KO1), (C3) follows from (KO4) and (C2) follows from
previous item. In fact, x ≤ x + e ≤ x⋆.

4.1 Automorphisms on [0,1] acting on Kleene algebras

In fuzzy logic, a typical way of generating newer fuzzy connectives (t-norms,
t-conorms and implications) from a fuzzy connective of the same type is ob-
tained via automorphisms on the real unit interval [0,1], which are defined as
bijective functions on [0,1] preserving natural ordering. Formally, a function
ϕ ∶ [0,1] → [0,1] is an automorphism on [0,1] if it is bijective and isotone,
i.e. x ≤ y ⇒ ϕ(x) ≤ ϕ(y) [1, 13]. In [2] is considered the equivalent definition
where automorphisms are continuous and strictly isotone function satisfying the
boundary conditions ϕ(0) = 0 and ϕ(1) = 1.

Is clear that this notion can be generalize for arbitraries posets.

Definition 6. A function ϕ ∶ P → P is an automorphism on a poset ⟨P,≤⟩ if it
is bijective and for each x, y ∈ P we have that

ϕ(x) ≤ ϕ(y) if and only if x ≤ y. (9)



We will denote the set of all automorphism on ⟨P,≤⟩ by Aut⟨P,≤⟩.

Remark 5. Let ϕ,ψ ∈ Aut⟨P,≤⟩.

1. The inverse of an automorphism is also an automorphism. In fact, the inverse
of bijection also is a bijection and x ≤ y iff ϕ(ϕ−1(x)) ≤ ϕ(ϕ−1(y)) iff ϕ−1(x) ≤
ϕ−1(y).

2. The composition of two automorphism is also an automorphism. In fact, the
composition of bijective functions also is bijective and x ≤ y iff ψ(x) ≤ ψ(y)
iff ϕ ○ ψ(x) ≤ ϕ ○ ψ(y).

3. The identity function IdP on P is an automorphism. In addition, ϕ ○ IdP =
ϕ = IdP ○ ϕ.

Therefore, ⟨Aut⟨P,≤⟩, ○⟩ is a group.
Let ϕ be an automorphism on P and f ∶ Pn → P . In algebra has been

extensively study the actions of groups in order to interpret the elements of the
group as ”acting” on some space, but preserving the structure of that space [10,
20]. Here we study the action of the group ⟨Aut⟨P,≤⟩, ○⟩ on pseudo uninorms,
Kleene operators and Kleene algebras. In general, the action of ϕ on a function
f ∶ Pn → P , denoted by fϕ, is defined as follows

fϕ(x1, . . . , xn) = ϕ−1(f(ϕ(x1), . . . , ϕ(xn))). (10)

In particular, the action of automorphism preserve the usual fuzzy connectives
[1, 2, 19] and also pseudo uninorms on [0,1] [5, Theorem 3.1]. Here we generalize
this last result by consider pseudo uninorms on an arbitrary poset ⟨P,≤⟩.

Proposition 19. Let U be a pseudo uninorm and ϕ be an automorphism on a
poset ⟨P,≤⟩. Then Uϕ is also a pseudo uninorm. In addition,

1. if ⟨P,≤⟩ is bounded (with � and ⊺ as least and great elements) then ϕ(�) = �
and ϕ(⊺) = ⊺.

2. if ⟨P,≤⟩ is a join (meet) semilattice then ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) (ϕ(x ∧ y) =
ϕ(x) ∧ ϕ(y)), i.e. ϕ is a join (meet) morphism.

Proof. Associativity: Let x, y, z ∈ P . Then, by equations (10) and (9), and the
associativity of U ,
Uϕ(Uϕ(x, y), z)
= ϕ−1(U(ϕ(ϕ−1(U(ϕ(x), ϕ(y)))), ϕ(z)))
= ϕ−1(U(U(ϕ(x), ϕ(y)), ϕ(z)))
= ϕ−1(U(ϕ(x), U(ϕ(y)), ϕ(z)))
= ϕ−1(U(ϕ(x), ϕ(ϕ−1(U(ϕ(y)), ϕ(z)))))
= Uϕ(x,Uϕ(y, z))

Isotonicity: Let x1, x2, y1, y2 ∈ P such that x1 ≤ x2 and y1 ≤ y2. Then by equation
(10), Equation (9) and isotonicity of U ,
Uϕ(x1, y1) = ϕ−1(U(ϕ(x1), ϕ(y1)))

≤ ϕ−1(U(ϕ(x2), ϕ(y2)))
= Uϕ(x2, y2)



Neutral element: Let x ∈ P . Then by equation (10) and the existence of neutral
element for U (denoted by e), Uϕ(x,ϕ−1(e)) = ϕ−1(U(ϕ(x), e)) = x. So,
ϕ−1(e) is the neutral element of Uϕ.

Bound preserving: Since ϕ is bijective, there exists y ∈ P such that ϕ(y) = �.
Thus, once � ≤ y then by equation (9), ϕ(�) ≤ �. Analogously, we prove that
⊺ ≤ ϕ(⊺).

Joint (meet) morphism: Since x ≤ x ∨ y and y ≤ x ∨ y then ϕ(x) ≤ ϕ(x ∨ y)
and ϕ(y) ≤ ϕ(x ∨ y). So, ϕ(x) ∨ ϕ(y) ≤ ϕ(x ∨ y). On the other hand, since
ϕ is bijective, there exists z ∈ P such that ϕ(z) = ϕ(x) ∨ ϕ(y). Therefore,
ϕ(z) ≥ ϕ(x) and ϕ(z) ≥ ϕ(y). Hence, by Equation (9), z ≥ x and z ≥ y, i.e.
z ≥ x∨y, and z ≤ x∨y. Consequently, ϕ(x)∨ϕ(y) = ϕ(x∨y). The proof that
ϕ is a meet morphism (when ⟨P,≤⟩ is a meet-semilattice) is analagous.

Proposition 20. Let ⟨P,≤⟩ be a join-semilattice, e ∈ P , U ∈ Ue
P and ϕ ∈ Aut⟨P,≤

⟩. If ⋆ ∶ P → P is a Kleene operator for U then ⍟ ∶ P → P , defined by x⍟ =
ϕ−1(ϕ(x)⋆) is a Kleene operator based on Uϕ.

Proof. By Proposition 19, Uϕ ∈ Uϕ−1(e)
P .

(K1) Since, ⋆ is Klene opertaor for U and φ−1 is an automorphism and
therefore is a join morphism and isotone, ϕ−1(e)∨Uϕ(x,x⍟) = ϕ−1(e)∨
ϕ−1(U(ϕ(x), ϕ(x)⋆)) =
ϕ−1(e ∨U(ϕ(x), ϕ(x)⋆)) ≤ ϕ−1(ϕ(x)⋆) = x⍟.

(K2) Analogous to (K1).
(K3) If Uϕ(x, y) ≤ y then U(ϕ(x), ϕ(y)) ≤ ϕ(y). So, because ⋆ is a Kleene

operator based on U , U(ϕ(x)⋆, ϕ(y)) ≤ ϕ(y). Therefore, because ϕ−1 ∈
Aut⟨P,≤⟩, we have that Uϕ(x⍟, y) ≤ y.

(K4) Analogous to (K3).

Proposition 21. Let ⟨K,+, ⋅,⋆,0,1⟩ be a Kleene algebras and ϕ ∈ Aut⟨K,≤⟩
where ≤ is the partial order defined in Equation 1. Then ⟨K,+ϕ, ⋅ϕ,⍟,0,1⟩ also is
Kleene algebra. In addition, for each x, y ∈K we have that ϕ(x+y) = ϕ(x)+ϕ(y),
ϕ(x ⋅ y) = ϕ(x) ⋅ ϕ(y), ϕ(0) = 0 and ϕ(1) = 1.

Proof. (KA1) a+ϕ (b+ϕ c) = ϕ−1(ϕ(a)+(ϕ(b)+ϕ(c))) = ϕ−1((ϕ(a)+ϕ(b))+
ϕ(c)) = (a +ϕ b) +ϕ c.

(KA2) a +ϕ b = ϕ−1(ϕ(a) + ϕ(b)) = ϕ−1(ϕ(b) + ϕ(a)) = b +ϕ a.
(KA3) a +ϕ a = ϕ−1(ϕ(a) + ϕ(a)) = ϕ−1(ϕ(a)) = a.
(KA4) a +ϕ 0 = ϕ−1(ϕ(a) + 0) = ϕ−1(ϕ(a)) = a.
(KA5) Analogous to (KA1).
(KA6) Analogous to (KA4).
(KA7) a ⋅ϕ (b +ϕ c) = ϕ−1(ϕ(a) ⋅ (ϕ(b) + ϕ(c))) = ϕ−1((ϕ(a) ⋅ ϕ(b)) + (ϕ(a) ⋅

ϕ(c))) = (a ⋅ϕ b) +ϕ (a ⋅ϕ c).
(KA8) Analogous to previous item.
(KA9) Analogous to (KA4).

(KA10) 1 +ϕ (a ⋅ϕ a⍟) = ϕ−1(1 + (ϕ(a) ⋅ ϕ(a)⋆)) ≤ ϕ−1(ϕ(a)⋆) = a⍟
(KA11) Analogous to previous item.



(KA12) If a ⋅ϕ b ≤ b then ϕ−1(ϕ(a) ⋅ϕ(b)) ≤ b and so ϕ(a) ⋅ϕ(b) ≤ ϕ(b). Hence,
ϕ(a)⋆ ⋅ ϕ(b) ≤ ϕ(b) and therefore a⍟ ⋅ϕ b ≤ b.

(KA13) Analogous to previous item.
In addition, since for each x, y ∈K, we have that x ≤ x+ y and y ≤ x+ y then

(*) x∨y ≤ x+y, where x∨y is the supremum of x and y w.r.t. ≤. By [14] we have
that if a ≤ b then a+c ≤ b+c, and therefore, since x ≤ x∨y then x+y ≤ (x∨y)+y.
But, because y ≤ x ∨ y by Equation (1) (x ∨ y) + y = x ∨ y and therefore (**)
x+y ≤ x∨y. Hence, from (*) and (**), x+y = x∨y for each x, y ∈K. Analogously
we can prove that x ⋅ y = x ∧ y for each x, y ∈ K. Consequently, because ϕ is an
automorphism ϕ(0) = 0, ϕ(1) = 1, and it is a join and meet morphism and so
ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(x ⋅ y) = ϕ(x) ⋅ ϕ(y).

5 Final remarks

In this paper we have shown the relation between the notions of Kleene alge-
bras and pseudo uninorms. We have shown that every Kleene algebra induces a
pseudo uninorm and that some pseudo uninorms induce Kleene algebras. This
connection enables both: (1) another viewpoint on the theory of Kleene algebras
and (2) indicates a way to build Kleene algebras in the fuzzy setting — since we
provide the requirements to build Kleene algebras from pseudo uninorms.
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