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We introduce a rigorous and general framework to study systematically self-gravitating elastic
materials within general relativity, and apply it to investigate the existence and viability, including
radial stability, of spherically symmetric elastic stars. We present the mass-radius (M − R) diagram
for various families of models, showing that elasticity contributes to increase the maximum mass and
the compactness up to ≈ 22%, thus supporting compact stars with mass well above two solar masses.
Some of these elastic stars can reach compactness as high as GM/(c2R) ≈ 0.35 while remaining stable
under radial perturbations and satisfying all energy conditions and subluminal wave propagation,
thus being physically realizable models of stars with a light ring. We provide numerical evidence
that radial instability occurs for central densities larger than that corresponding to the maximum
mass, as in the perfect fluid case. Elasticity may be a key ingredient to build consistent models of
exotic ultracompact objects and black-hole mimickers, and can also be relevant for a more accurate
modelling of the interior of neutron stars.

Introduction. Astronomical compact objects are typ-
ically idealized as self-gravitating (often perfect) fluids,
wherein (isotropic) pressure prevents gravitational col-
lapse. However, while degenerate fermions behave as a
weakly-interacting gas at relatively small densities, nu-
clear interactions and QCD effects become crucial inside
relativistic stars. Thus, it is reasonable to expect that
the perfect fluid idealization will eventually break down,
at least to some extent, and that solid phases of mat-
ter may be relevant for astronomical compact objects.
This is indeed the situation in the crust of a neutron
star [1, 2], whose fundamental constituents are largely
unknown, especially in the core [3].
A natural generalization of fluid models is to con-

sider elastic materials [4–8], also studied perturbatively
to model the crust of a neutron star [1, 2]. In this
letter, we introduce a new systematic approach to the
problem of self-gravitating elastic materials in General-
Relativity (GR), which allows building elastic compact
objects in a simple – yet general – way and assessing their
viability in the strong gravity regime.

Beside offering a more accurate description of the stel-
lar interior [9–11], elasticity might play a crucial role
in constructing consistent models of exotic compact ob-
jects and black-hole mimickers within GR and extensions
thereof [12, 13]. Under certain hypotheses [12, 14], Buchd-
hal’s theorem [15] states that self-gravitating, perfect fluid
GR solutions satisfy the following bound on the compact-
ness: M/R ≤ 4/9, where M is the mass and R is the
radius of the star (henceforth we use G = c = 1 units).
Buchdhal’s theorem assumes that matter is described by
a perfect fluid, and can be extended to mildly anisotropic
fluids for which the radial pressure is larger than the
tangential one [14] (see [16, 17] for more general results).
Indeed, compact objects made of strongly anisotropic
fluids (e.g., gravastars [18] and anisotropic stars [19])

can have higher compactness and a continuous BH limit,
M/R→ 1/2 [20–23]. However, the viability of such ultra-
compact models is questionable, since they either violate
some of the energy conditions [24], or feature superlumi-
nal speed of sound or ad-hoc thin-shells within the fluid
(see [12] for a discussion). On the other hand, physically
realizable models like boson stars are not significantly
more compact than an ordinary perfect fluid neutron star
in the static case [25].

Since elastic materials feature shears and anisotropies, it
is natural to ask whether full-fledged, physically realizable
models of ultracompact [12] elastic stars can be built. In
this letter we will show that this is the case. Viable
elastic stars can haveM/R > 1/3, thus featuring the same
Schwarzschild photon sphere at radial coordinate r = 3M ,
a crucial property to mimic the phenomenology of black
holes [12, 13, 26, 27]. We will also show that elastic stars
can exceed the Buchdhal’s bound on the compactness,
but only in their unstable or superluminal branch, at least
for the class of materials under consideration.
Setup. We focus on spherical symmetry and study both
static solutions and their dynamical radial perturbations.
More details and models will be given in a companion
paper [28]. In Schwarzschild coordinates, the line element
reads ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2, where dΩ2

is the metric of the unit 2-sphere. A spherically sym-
metric self-gravitating body is described in terms of the
scalars (ρ, prad, ptan, v) satisfying the Einstein’s equations,
where ρ(t, r) is the energy density, prad(t, r) and ptan(t, r)
are the radial and tangential pressures, respectively, and
v(t, r) is the radial velocity. The 4-velocity of matter
is uµ = (e−α〈v〉, v, 0, 0), where 〈v〉 =

√
1 + e2βv2. The

Einstein equations are closed by postulating equations of
state (EoS) relating the pressures and the density.
Relativistic elasticity is based on a variational princi-

ple wherein the Lagrangian density is covariant under
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spacetime diffeomorphisms, and consists of the sum of the
rest-frame energy density for the undeformed material
and a (deformation) potential energy density, so that it
coincides with the total energy density ρ measured by an
observer at rest with respect to the material [29, 30]. For
homogeneous and isotropic elastic materials and under
spherically symmetry, the Lagrangian is given by [28]

ρ̂(δ, η) = δ(ρ0 + ŵ(δ, η)) , (1)

where the potential energy density (which we will call
stored energy function, by analogy with the Newtonian
case) is w(t, r) = ŵ(δ(t, r), η(t, r)), so that ρ(t, r) =
ρ̂(δ(t, r), η(t, r)). Here

δ(t, r) = n(t, r)
n0

, (2)

η(t, r) = 3
r3

∫ r

0
eβ(t,u)〈v(t, u)〉δ(t, u)u2du , (3)

where n(t, r) is the (conserved) particle number density
in the physical (deformed) state, and n0 > 0 and ρ0 > 0
are the particle number density and energy density in the
reference material frame, respectively. The reference state
is an idealized state with n = n0, β = 0 (corresponding to
a flat material metric), and v = 0, that is, (δ, η) = (1, 1).
The EoS are

p̂rad(δ, η) = δ∂δρ̂(δ, η) − ρ̂(δ, η) , (4a)

q̂(δ, η) ≡ p̂tan(δ, η)− p̂rad(δ, η) = 3
2η∂ηρ̂(δ, η) . (4b)

Note that the perfect fluid case is included for any La-
grangian such that ∂ηρ̂ = 0 (equivalently ∂ηŵ = 0).

The function ŵ(δ, η) satisfies the natural reference state
condition, ŵ(1, 1) = 0 (state of zero energy), i.e.,

ρ̂(1, 1) = ρ0. (5)

The radial and tangential pressures satisfy the reference
state condition

p̂rad(1, 1) = p̂tan(1, 1) = p0 . (6)

The reference state is said to be stress-free (pre-stressed)
if p0 = 0 (p0 6= 0). Furthermore, compatibility with linear
elasticity requires

∂δp̂rad(1, 1) = λ+ 2µ, ∂ηp̂rad(1, 1) = −4
3µ , (7a)

∂δp̂tan(1, 1) = λ, ∂ηp̂tan(1, 1) = 2
3µ , (7b)

where λ, µ are the Lamé parameters.
Restricting to static configurations, the radial veloc-

ity vanishes (v = 0), while (ρ, prad, ptan) and α, β are
functions of the areal coordinate r only. In this case the
Einstein equations reduce to the Tolman-Oppenheimer-
Volkoff (TOV) equations

dprad

dr
= 2
r

(ptan − prad)− (prad + ρ)dα
dr

, (8)

dα

dr
= e2β

r

(m
r

+ 4πr2prad

)
, (9)

where e−2β(r) = 1 − 2m(r)
r , α(r) is the relativistic grav-

itational potential, and m(r) = 4π
∫ r

0 ρ(u)u2du is the
Misner-Sharp mass.
In terms of the variables (δ(r), η(r),m(r)), the TOV

equations become a closed first-order system,

∂δp̂rad
dδ

dr
= 3
r
∂ηp̂rad(η − eβδ) + 2

r
q̂

− (p̂rad + ρ̂) e
2β

r

(m
r

+ 4πr2p̂rad

)
, (10a)

dη

dr
= −3

r
(η − eβδ) , dm

dr
= 4πr2ρ̂ , (10b)

supplemented by (1) and the EoS (4). In the Newto-
nian limit we recover the results of [31, 32]. For regular
solutions we have lim

r→0+
δ(r) = δc and lim

r→0+
eβ(r) = 1, im-

plying lim
r→0+

η(r) = δc. Regularity at the origin imposes
prad(0) = ptan(0), which in turn implies

q̂(δ, δ) = 0 for all δ > 0. (11)

Material models. The above formalism is general
for any given set of functions (ρ, prad, ptan) satisfying
Eqs. (5), (6), (7), and (11). Here we focus on elastic
constitutive functions that are continuous deformations of
relativistic polytropes (other examples are given in [28]).
The simplest model is

ρ̂(δ, η) = (1− κn)ρ0δ + κnρ0δ
1+ 1

n + ερ0(δ − η)2, (12)

which contains three dimensionless parameters κ, n and ε.
For ε = 0 we have a perfect fluid with a polytropic EoS
with polytropic index n and reference state pressure p0 =
κρ0 > 0. The first Lamé parameter is λ = κρ0

(
1 + 1

n

)
−

ερ0, and the shear modulus is µ = 3
2ερ0, which implies

ε ≥ 0.
The Newtonian limit of the previous quadratic model

leads to equations of motion which are invariant under
homologous transformations [33] only for n = 1. It is
possible to generalize this stored energy function to one
that leads to Newtonian equations of motion which are
invariant under homologous transformations for general
polytropic index n [28]:

ŵ(δ, η) =w0 + η
1
n

[
w1 + w2

(
δ

η

)−1
+ w3

(
δ

η

) 1
s

]
,

(13)

where w0 ≡ −nκρ0, w1 ≡ (n−s)(1+n)
n ρ0κ − 2sρ0ε, w2 ≡

(s−n)
(1+s)nρ0κ + 2s

1+sρ0ε, w3 ≡ (1+n)s2

(1+s)n ρ0κ + 2s2

1+sρ0ε. Here s
can be interpreted as the shear index; when s = n and
ε = 0 we recover the usual relativistic polytropes (see
also [34, 35] for similar stored energy functions in the
Newtonian setting). The Lamé parameters are the same
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FIG. 1. Mass-radius diagram for the quadratic elastic model (12) with n = 1/2 and K = 6 × 104M4
� (left) and for the

two-parameter elastic model (13) with n = 1 and K = 160M2
� (right). Solid (dashed) curves correspond to configurations with

subluminal (superluminal) wave propagation. For some regions of the parameter space (cf. green curve of left panel) there are
configurations below the maximum mass featuring a photon sphere (R < 3M) and subluminal wave propagation.

as in the quadratic model (12), and in fact the two models
coincide when s = n = 1.
When the model is stress-free, p0 = 0, the reference

state (δ, η) = (1, 1) is uniquely defined. However, pre-
stressed models (such as the ones we are considering) do
not have a preferred reference state. In this case a different
reference state, compressed or expanded with respect to
the original reference state, provides an equivalent descrip-
tion of the material, moving from the parameters (ρ0, κ, ε)
to new parameters (ρ̃0, κ̃, ε̃). The choice of reference state
is thus akin to a gauge choice [28].
It can be shown that in the fluid case p̂rad = p̂tan =

κρ0δ
1+ 1

n = Kσ̂1+ 1
n , where σ̂ is the baryon density and

K = κ(1 − κn)−n+1
n ρ
− 1

n
0 . The latter quantity is in fact

invariant under renormalization of the reference state.
Moreover, changing K only changes the mass scale of
equilibrium configuration, and does not affect the value
of dimensionless ratios such as the compactness. Another
invariant quantity under renormalization is

E = ε

κ

(
κ

1− κn

)1−n
or E = ε

κ
, (14)

in the case of model (12) or model (13), respectively.
Equilibrium configurations. The equations (10) for
the stellar structure should be solved by requiring reg-
ularity of the functions at the center of the star. The
solutions form a one-parameter family in terms of δc, or,
equivalently, of the central density ρ(0) = ρ̂(δc, δc) = ρc.
The radius R of the star is defined by the condition
prad(R) = 0, whereas ρ(R) and ptan(R) do not need to
vanish. Due to Birkhoff’s theorem, the metric at r > R
(where ρ = prad = ptan = 0) is the standard Schwarzschild
metric with m(R) = M and α(r) = −β(r).
Within GR, physically viable matter fields should sat-

isfy the following energy conditions [24]:

SEC : ρ+ prad + 2ptan ≥ 0; ρ+ prad ≥ 0; ρ+ ptan ≥ 0;
WEC : ρ ≥ 0; ρ+ prad ≥ 0; ρ+ ptan ≥ 0;
NEC : ρ+ prad ≥ 0; ρ+ ptan ≥ 0;
DEC : ρ ≥ |prad|; ρ ≥ |ptan|,

for the strong, weak, null, and dominant energy condi-
tion, respectively. Some further restrictions come from
requiring causal wave propagation within the material.
For spherically symmetric elastic matter there are 5 inde-
pendent wave speeds [6]. However, from these, only 3 can
be obtained from a spherically symmetric stored energy
function ŵ(δ, η) (equivalently ρ̂(δ, η)), namely the speed
of longitudinal waves in the radial direction,

c2
L(δ, η) = δ∂δp̂rad

ρ̂+ p̂rad
, (16)

and the speeds of transverse waves in the radial and
tangential directions (the later oscillating in the radial
direction):

c2
T(δ, η) = p̂tan − p̂rad

(ρ̂+ p̂tan) (1− δ2/η2) , (17)

c̃2
T(δ, η) = p̂rad − p̂tan

(ρ̂+ p̂rad) (1− η2/δ2) . (18)

In general, the remaining 2 velocities, corresponding to
longitudinal waves in the tangential direction (c̃L) and to
transverse waves in the tangential direction oscillating in
the tangential direction (c̃TT), can only be obtained from
a stored energy function without symmetries. However,
as shown in [28], these two velocities satisfy the relation

c̃2
L(δ, η)−c̃2

TT(δ, η) =
δ2∂2

δ ρ̂+ 3δη∂2
ηδρ̂+ 9

4η
2∂2
η ρ̂+ 3

4η∂ηρ̂

ρ̂+ p̂tan
.

(19)
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Therefore, spherically symmetric elastic materials are de-
scribed by two functions, ρ̂(δ, η) and either c̃2

L(δ, η) or
c̃2

TT(δ, η) (since these are related by the above constraint).
Moreover, it is also shown in [28] that the simplest ex-
pression for c̃2

L satisfying the isotropic state condition at
the center is given by

c̃2
L(δ, η) = δ∂δp̂tan + 3η∂ηp̂tan

ρ̂+ p̂tan
(20)

(the so-called natural choice), so that the corresponding
value of c̃2

TT is

c̃2
TT(δ, η) =

3
2η∂ηp̂tan

ρ̂+ p̂tan
. (21)

Overall, reality and causality require 0 ≤ c2
L,T ≤ 1 and

0 ≤ c̃2
L,T,TT ≤ 1.

Figure 1 shows the M − R diagram for some repre-
sentative examples of the aforementioned elastic models.
Larger values of E and of s − n increase the maximum
mass and maximum compactness of star. In particular, a
one-parameter deformation of the n = 1/2 polytrope (left
panel) supports configurations with a light ring (R < 3M)
and exceeding the Buchdahl’s limit (R < 9M/4). How-
ever, a relevant question is whether the equilibrium con-
figurations satisfy the various constraints imposed by the
subluminality of wave propagation in the radial and tan-
gential directions. Solid (dashed) parts of each curve
in Fig. 1 correspond to subluminality (superluminality).
Depending on the model, the transition can occur before
or after the maximum mass, which corresponds to the
heaviest stable configuration under radial perturbations,
as discussed below. In general, as the central density
increases, some wave speeds (predominantly c̃L, i.e. the
speed of longitudinal waves along the tangential direc-
tion) become superluminal within the star, as shown
in Fig. 2 for a configuration that is almost marginally
causal. These viability requirements set an upper bound
on the maximum mass and compactness of physically
realizable equilibrium solutions. Additionally, we find
that all subluminal and stable solutions satisfy all the
energy conditions. In all models under consideration,
the Buchdahl limit is exceeded only for radially unstable
or superluminal configurations. On the other hand, we
found physically realizable ultracompact configurations
(R < 3M) for both models (12) and (13) with n = 1/2,
although the second case requires a fine tuning of the pa-
rameters and the compactness never exceeds M/R = 1/3
by more than 1% [28].

For the simple quadratic model (12) with n = 1/2, we
find stable and causal configurations with compactness as
large as M/R ≈ 0.35, which is reached for E = O(10−1).
Interestingly, in this case the shear modulus is approxi-
mately

µ ≈ 7× 1026

(
ρ0

1011 g/cm3

)2√
K

105M4
�

(
E

0.1

)
erg/cm3

,

(22)
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FIG. 2. Sound speeds (upper panel) and density and pressure
profiles (bottom panel) for the quadratic elastic model with
n = 1/2, K = 6 × 104M4

�. We compare the perfect fluid
case (E = 0, dashed lines) with an elastic configuration with
E = 10−1 (solid lines). The latter configuration features a
light ring (M/R ≈ 0.35) and the wave speeds are always
subluminal.

which is in the typical range of values for lattice models
describing the neutron-star crust [1].
Radial stability. Linear radial perturbations of rela-
tivistic elastic balls have been treated in [36] using a
Lagrangian approach. In [28] we use our new Eulerian
definition for spherically symmetric elastic bodies and
linearise the Einstein equations around the static back-
ground, also including perturbations of a (possibly non-
flat) material metric. The main perturbation variables
are ζ(t, r) ≡ r2e−αξ and χ(t, r) = −eβ+2α(prad)L, where
ξ is the usual radial displacement in the perturbed con-
figuration and (prad)L is the Lagrangian perturbation of
the radial pressure. Making the ansatz ζ(t, r) = eiωtζ(r),
χ(t, r) = eiωtχ(r) leads to an eigenvalue problem for the
system of first-order ordinary differential equations

δ∂δp̂rad
dζ

dr
= −3

r
η∂ηp̂radζ + e−(3α+β)r2χ , (23a)

δ∂δp̂rad
dχ

dr
= 3
r
η∂ηp̂radχ−

[
Q1 +Q2ω

2] ζ , (23b)

where

Q1 = e3α+β

r2

[ 4
r2 (δ∂δ q̂ − q̂)2 + δ∂δp̂rad

( 2
r2 q̂ −

6
r2 η∂η q̂

− 4
r

dprad

dr
+
(

6
r
q̂ − dprad

dr

)
dα

dr
− 8π(ρ̂+ p̂rad)e2β p̂rad

)]
,

(24a)

Q2 = eα+3β

r2 δ∂δp̂rad(ρ̂+ p̂rad) , (24b)
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FIG. 3. Squared frequency eigenvalues for the radial stability
analysis of elastic stars in the quadratic model (12) with
n = 1/2 and different values of E as a function of the mass or
of the compactness (see inset). Solid (dashed) lines correspond
to stable (unstable) configurations with ω2 > 0 (ω2 < 0). In
all cases the zero crossing corresponds to the maximum mass
within numerical accuracy.

subject to the standard boundary conditions [37]
lim
r→0+

ζ
r = 0 and lim

r→R
χ = 0.

As a representative example, in Fig. 3 we show the
eigenvalues ω2 obtained numerically for model (12) as a
function of the mass for n = 1/2 and a range of values of E.
Within numerical accuracy, the zero crossing corresponds
to the point of the maximum mass. We found the same
result in all models under investigation [28]. Based on this
numerical evidence, we conclude that elastic stars beyond
the maximum-mass configuration are radially unstable,
as in the perfect fluid case [37].
Discussion. Anisotropies are ubiquitous in physical sys-
tems and seem also a key ingredient to built solutions for
ultracompact self-gravitating objects. However, introduc-
ing anisotropies in GR is often based on ad-hoc models
which might also suffer from violation of the energy con-
ditions or superluminal wave propagation. We presented
a general framework to build pathology-free relativistic
compact objects containing elastic materials.

All elastic relativistic configurations that we have con-
structed have ptan ≥ prad within the star. Interestingly,
this condition violates the mild-anisotropy assumption of
the Buchdahl’s theorem [14], and in fact elasticity allows
for compact objects which can exceed the Buchdahl’s limit,
M/R > 4/9. However, in all models we have explored this
limit is reached only in the branch that is unstable against
radial perturbations. In addition to radial stability, we
advocate the importance of checking the (nontrivial) via-
bility of the matter fields for anisotropic configurations, in
particular all causality conditions for wave propagation.
While these requirements limit the maximum mass and
compactness of elastic stars, we showed that it is neverthe-
less possible to obtain physically realizable ultracompact
configurations featuring a light ring. Elastic stars are one

of the few GR models of ultracompact objects that satisfy
all the above viability requirements and come from a first-
principles Lagrangian approach. The only other known
example in the static case are quark stars [14, 38–40] that
however require strange matter.
Due to the photon sphere, nonradial perturbations of

ultracompact elastic stars can feature gravitational-wave
echoes [41–43], as in the quark star case [14, 38–40]. Hori-
zonless compact objects with an unstable light ring feature
a second, stable, inner photon sphere, which might be
prone to nonlinear instabilities [26, 44, 45]. Investigating
this problem in detail was so far hampered by the lack
of physically realizable and first-principle solutions, but
it can be done within our framework. Indeed, by solv-
ing the null geodesic equations we have confirmed that
ultracompact elastic stars do feature a stable light ring.

Elasticity tends to support more massive and compact
configurations. For the models at hand the maximum
mass can increase up to ≈ 22% relative to the perfect
fluid case while the material remains physically realizable.
Interestingly, this suggests that static neutron star models,
that can reach M ≈ 2M� in the perfect fluid case, could
potentially be as massive as M ≈ 2.5M� when elasticity
is included, without violating any physical requirement.
Such heavy neutron stars would be compatible with the
exotic secondary object of the gravitational-wave event
GW190814 [46]. Furthermore, more compact configu-
rations would tend to have smaller tidal deformability.
Thus, stiff EoS that are in tension with the relatively
small tidal deformability measured by GW170817 [47]
could evade those bounds when elasticity is included.

Further natural applications of our framework include
considering: (i) other models of elastic materials, includ-
ing non-flat reference material metrics; (ii) consistent
multilayer solutions, e.g. made of a perfect fluid inte-
rior and an outer elastic crust [1, 2, 48], or deforma-
tions of piecewise polytropes [49] that approximate tabu-
lated, nuclear-physics based EoS; (iii) models that deform
generic barotropic fluids beyond the polytropic EoS. We
will report on these applications elsewhere [28]. Finally,
we focused here on spherical symmetry but our approach
can be extended to less symmetric configurations. In
particular, future work will also focus on rotating and
(possibly tidally) deformed [48] elastic solutions.
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