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ABSTRACT 
Advances in structural and molecular biology have favoured the rational 
development of novel drugs through structure-based drug design 
(SBDD). Particularly, computational tools have proven to be rapid and 
efficient tools for hit discovery and optimization. The main motivation 
of this thesis is to improve and develop new methods in the area of 
computer-based drug discovery and to study challenging targets. 
Specifically, this thesis is focused on docking and Virtual Screening (VS) 
methodologies to be able to exploit non-standard sites, like protein-
protein interfaces or allosteric sites, and discover bioactive molecules 
with novel mechanisms of action. 

First, I developed an automatic pipeline for binding mode prediction 
that applies knowledge-based restraints and validated the approach by 
participating in the CELPP Challenge, a blind pose prediction challenge.  

The aim of the first VS in this thesis is to find small molecules able to 
not only disrupt the RANK-RANKL interaction but also inhibit the 
constitutive activation of the receptor. With a combination of 
computational, biophysical, and cell-based assays we were able to 
identify the first small molecule binders for RANK that could be 
developed into treatment for Triple Negative Breast Cancer.  

When working with novel targets, or with non-standard mechanisms of 
action, the relationship between binding and the biological response is 
unpredictable, because the latter depends on a multitude of unkown 
factors such as the function of the particular allosteric site, relationships 
with other proteins, cellular localization, etcetera. For this reason, in the 
next project we tested the applicability of the combination of ultrahigh-
throughput VS with low-throughput high content assay. This allowed 
us to characterize a novel allosteric pocket in PTEN and also describe 
the first allosteric modulators for this protein.  

Finally, as the accessible Chemical Space grows at a rapid pace, we 
developed an algorithm to efficiently explore ultra-large Chemical 
Collections using a Bottom-up approach. We prospectively validated 
the approach in BRD4 and identified novel BRD4 inhibitors with an 
affinity comparable to advanced drug candidates for this target. 
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1.1  THE JOURNEY TO DRUG DISCOVERY 

The history of drug discovery and medicine goes back a few thousand 
years B.C when people would evaluate the medicinal values of some 
herbs and apply them as a treatment for various diseases. One would 
think that with all the recent technological advances and knowledge we 
have nowadays, the drug discovery process would be relatively easy and 
straightforward. Unfortunately, this is far from reality. Today, Drug 
Discovery is an enormous field of investigation characterized by highly 
complex, time-consuming, expensive multidisciplinary processes, and, 
more often than not, unsuccessful. In fact, it is estimated that the path 
from the first identification of a disease-related target to the release of 
a drug in the market lasts an average of 12 years [1] and costs more than 
1 billion dollars [2,3].  

 

 
Figure 1 The process of Drug Discovery 

The start of the drug discovery process reflects an unmet medical need 
for a particular disease, whether it would be a rare disease or one that is 
extremely prevalent (like COVID-19) with mild or deadly outcomes. 
We can summarize this process into 5 different stages [Figure 1]: 
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Early Drug Discovery: It usually starts in an academic environment, 
where researchers collaborate to identify and characterize potential 
Targets to treat a specific disease. Once the Target is properly Identified, 
potential leads are found and optimized for that specific target (usually 
done in the industry). The lead molecule must elicit the desired effect 
on the specific biological target implicated in the disease. The different 
stages of early drug discovery will be discussed in more detail in the next 
section. 

Preclinical Research: The molecules identified in early Drug 
Discovery are refined, optimized, and extensively tested in the 
laboratory and in animal models. The aim of this step is to provide 
sufficient evidence of safety and efficacy before Clinical Trials in 
humans can begin.  

Clinical Research: Selected clinical candidates are then taken to clinical 
trials. At this stage, a drug candidate has to pass through 3 different 
phases. In Phase I the drug is tested in a small group of healthy subjects, 
between 20 and 100, with the aim of assessing safety, identify the dose 
that can be given without side effects, and studying how the substance 
behaves in the body. In Phase II the effectiveness, tolerability, and 
dosage are studied in a larger group, around 100 to 500 adult patients. 
In Phase III (the last phase before the possible approval of a drug), the 
molecule is tested in thousands of patients to confirm its effectiveness 
and safety in many different patients. This is the stage where most 
failures take place, between 2011-2020 the estimated overall likelihood 
of approval from Phase I is around 8%[4]. 

Drug Review by a regulatory authority: Before a Drug or a vaccine 
can be distributed to the public, it needs approval from a national 
regulatory authority, such as the FDA in the US and the EMA in the 
EC. 

Post-Market Drug Safety Monitoring: Once the drug is finally 
commercialized a series of studies are carried out to gather more 
comprehensive data regarding the effectiveness and safety of the new 
drug. 
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1.2 COMPUTER-AIDED DRUG DESIGN IN EARLY 

DRUG DISCOVERY 

Between the 1950s to the 1990s computer technology progressed at an 
unprecedented rate [5]. That is why in the early 1980s there was an 
increase of interest in the impact of computational methods applied to 
the pharmaceutical Industry. Millions of dollars were invested in 
hardware and software and the need for scientists specialized in this area 
grew tremendously [6]. We can define Computer-Aided Drug Design 
(CADD) as a broad range of theoretical and computational approaches 
with the aim of discovering, designing, and developing therapeutic 
chemical agents [7]. These computational methods are mostly (but not 
exclusively) applied during the early phase of drug discovery with the 
aim of increasing the odds of finding new compounds with desirable in 
vitro and in vivo properties. 

It is possible to define 4 steps in the Early Drug Discovery process as 
seen in Figure 2: 

 
Figure 2 Steps in Early Drug Discovery 

Target Identification and Validation Once we decide to start a drug 
discovery process aimed at a specific disease, one of the most important 
steps is the identification of the most relevant biological entities related 
to the development, progression or symptoms of that disease, which 
will be considered as targets. A good target, besides being clinically 
relevant, needs to be “druggable”. This means that it has to be able to 
bind a molecule and, upon binding, elicit a biological response that is 
therapeutically useful and can be measured both in vivo and in vitro. At 
this stage, computationally we can mine available biological data, which 
helps in identifying and prioritizing potential disease targets [8]. Also, 
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Machine Learning techniques can be applied to predict drug targets by 
means of analyzing proteomics and chemogenomic data [9]. Once we 
have identified our target of interest, we need to assess its ability to bind 
drug-like molecules, which may be referred to as “druggability” or 
“bindabilility”. This can be achieved by means of pocket detection 
programs, which look for cavities on the protein surface, or with other 
methods that try to identify binding hot spots (e.g. mixed-solvents MD). 

Hit Identification and Validation During this step, compounds are 
identified (hits) through experimental or virtual screening of libraries of 
molecules. Here we refer as hit a compound that shows activity against 
the target of interest on the primary screening assay. Some of the most 
used computational tools for hit Identification are docking and 
molecular dynamics. 

A common approach to identifying hits is virtual screening, where a 
large number of compounds are filtered with structure-based, ligand-
based, or hybrid approaches [10], such that only a small subset of 
compounds will be tested in the experimental assay.  

 Another technique that has been gaining popularity is fragment 
screening, which is based on the use of much smaller size molecules 
with the aim of eventually evolving these initial fragment hits into 
potent drug-like molecules [11].  

Hit-to-Lead When a new hit is identified, validated and selected for 
progression, it will enter the hit-to-lead stage. At this point, the main 
goal is to further improve the potency. Amongst the computational 
approaches for chemical optimization is the Quantitative SAR (QSAR) 
method, which is able to predict the activity of new analogs derived 
from a series of active compounds [12]. Another method used at this 
stage is the Free Energy Perturbation (FEP), which is able to calculate 
relative binding affinities for a congeneric series of ligands [13].  

Lead Optimization Finally, at this stage, other drug-relevant 
properties are improved. The aim is to produce a series of analogs with 
a particular focus on improving pharmacokinetic and ADMET 
properties (Absorption, Distribution, Metabolism, Excretion, and 
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Toxicity). Although there is still a long road for improvement, new 
machine learning models are being developed with promising 
results [14–16]. 

1.3 PRINCIPLES OF MOLECULAR RECOGNITION IN 

PROTEIN-LIGAND BINDING 

In any drug discovery process the end goal is that when we administer 
a drug, it will eventually bind to the therapeutic target with high affinity 
and elicit the desired biological response. One of the main drivers of 
the binding event is molecular recognition. Here we refer to molecular 
recognition as the existence of specific attractive interactions and shape 
complementary between two molecules [17].  

During the last decades, our understanding of the types of interactions 
that play a role in protein-ligand binding has advanced a lot, however, 
the consistently accurate prediction of compound affinities still remains 
the Achilles’ heel of CADD. We know that for a binding event to take 
place it needs to be associated with a negative binding free energy (ΔG), 
which can be seen as a measure of the stability of a protein-ligand 
complex or, as the binding affinity of a ligand to a given acceptor 
[18][Equation 1.1]. It depends on an enthalpic term (ΔH), defined as 
the changes in energy resulting from the formations of the non-covalent 
complex (which includes formation and rupture of interactions between 
the protein, the ligand and the whole molecular environment), and an 
entropic term (ΔS), which measures how heat energy is distributed over 
the thermodynamic system (related to the degrees of freedom of the 
system).    

ΔG=ΔH-TΔS          
Equation 1.1 

At the moment, the use of free energy calculations is still a crude 
estimate of affinity useful for an enrichment of ligand candidates in 
virtual screenings, but not for the accurate prediction of binding affinity 
[19]. The main problem of the scoring methods, is that they rely on the 
concept of additivity, where the contributions of pairwise interactions 
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are treated independently of the total binding free energy. In reality, this 
oversimplistic representation of protein-ligand binding is not accurate 
as there are many factors that affect the entropy and enthalpy of the 
system, such as: specific intermolecular interactions, protein flexibility, 
the solvent effect or the role of structural waters.  

1.3.1 SPECIFIC PROTEIN-LIGAND INTERACTIONS  

The Protein Data Bank is one of the most important resources for 
structure-based drug design. With, currently 192.489 macromolecular 
structures, it offers a background for not only the study of structural 
features of biologic complexes but also for the study of nature, 
geometry, and frequency of atomic interactions [Figure 3] [20].  

The most prevalent interaction is the Hydrophobic interaction, which 
is the contact between carbon, halogen, or sulfur atoms, with distances 
ranging from 3,7 to 4,4 Å. Between them, the most common one is the 
one formed by an aliphatic carbon in the receptor and an aromatic 
carbon in the ligand [21]. From the protein side, leucine, valine, 
isoleucine, and alanine side chains are the most frequently engaged in 
hydrophobic interactions.  

 
Figure 3 Frequency distribution of the most common non-covalent 
interactions observed in protein-ligands from the PDB. Adapted from [20] 
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Hydrogen bonds are the second most observed interactions, formed 
between two electronegative atoms (i.e nitrogen and oxygen) that share 
a hydrogen. Because of their sharp distance (2,7 to 3,2 Å [21] ) and 
angular dependencies, Hydrogen bonds provide the defined geometries 
in biological complexes and contribute to the specificity of molecular 
recognition [22,23].  They can contribute to the binding energy between 
-1,5 to 4,7 kcal/mol  [21], depending on the environment around the 
hydrogen bond. Usually, a hydrogen bond that is buried in a 
hydrophobic cavity has a higher contribution to the binding free energy 
than a bond that is solvent-exposed. In addition, it has also been shown 
that water-shielded hydrogen bonds can act as kinetic traps, slowing 
down the release of the ligand from the protein-ligand complex [24].   

π-stacking occurs between two aromatic rings and can be considered 
a special case of hydrophobic interaction. It is caused by intermolecular 
overlapping of p orbitals in π conjugated systems. Depending on the 
arrangement of the rings we can have different types of geometries: 
face-to-face, edge-to-face, and parallel displaced [Figure 4]. The 
distance range between 3,4-3,8 Å [21]. The aminoacids capable of doing 
this interaction with the ligand are Phenylalanine, Tyrosine, 
Tryptophan, and Histidine. 

 
Figure 4 Geometries of π-stacking interactions. Adapted from [25] 

Weak hydrogen bonds are hydrogen bonds where carbon is the 
hydrogen bond donor.  It only occurs on conjugated carbons in strong 
electro-withdrawing environments. Although the magnitude of the 
interaction is about one-half the strength of the hydrogen bond [26], it 
plays an important role in processes such as protein folding [27], the 
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interaction of nucleic acids with proteins [28], enzyme catalysis [29], and 
the stabilization of protein-ligand binding complexes [30].  

Salt bridges are contacts formed between positively charged and 
negatively charged atoms. They are similar to hydrogen bonds, but the 
distances are usually shorter (median of 2,79 Å) [21]. Their contribution 
to the binding energy is also highly dependent on the context, and, 
although they are stronger than neutral H-bonds, their contribution is 
masked due to the large energetic penalty for desolvating charged 
groups [31,32].The aminoacids capable of making salt bridges are: 
Aspartate and Glutamate (negatively charged), and Arginine, Lysine, 
and Histidine (positively).  

Amine stacking is the interaction occurring between an amide group 
and an aromatic ring. 

Cation-π is the interaction formed by an aromatic ring and a positively 
charged nitrogen atom. 

There are still other interactions that are not as common, like the 
halogen bonds, and others that have more of a covalent character, 
namely the coordination complexes with metalloproteins. But there are 
also important indirect interactions, such as the water bridges, where a 
network of structurally stable water molecules is mediating the 
interaction between the protein and the ligand. 

1.3.2 PROTEIN FLEXIBILITY  

Conformational change plays a big role in many biological processes 
such as molecular recognition, enzymatic activity, and allosteric 
modulation. The first model postulated by Fischer in 1894 was the “lock 
and key” model [33] where both the receptor and the ligand were treated 
as rigid bodies. If these two rigid entities shared a complementary shape, 
then the interaction would be possible [Figure 5a]. However, we know 
that this model is too simple to recreate what is happening in reality 
[34].  Both proteins and ligands are dynamic entities that undergo 
certain conformational changes upon binding (i.e. differences in apo 
and holo protein conformations). It was not until 1958 that Koshland 
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proposed the induced-fit model to explain the protein conformational 
changes during the binding process [35]. This model suggests that, when 
an enzyme binds to its substrate, it optimizes the interface through 
physical interactions to form the final complex structure [Figure 5b]. 
This model was able to explain, for example, why are there ligands 
buried in protein-binding sites [36], however, it can not explain big 
conformational changes such as backbone motions, domain 
rearrangements, or disorder-to-order transitions for very flexible 
proteins [37]. In the 1990s the conformational-selection model was 
proposed by several researchers [38]. This model suggests that when the 
receptor is in its unbound state, it fluctuates among multiple 
conformational states, with their occupancy probabilities explained by 
their relative free energies according to the Boltzmann distribution. 
Only a subset of those conformations have the ability to bind to the 
ligand, and when bound, the distribution of probabilities is shifted 
towards these states [Figure 5c].  

 
Figure 5 Types of models of molecular recognition a) Lock & key b) Induced fit, the 
ligand adapts the cavity conformation of the receptor c) Conformational selection: 
there is an ensemble of different conformations of the protein, the ligand only binds 
to some of the conformations shifting the equilibrium towards that conformation. 

1.4 PRINCIPLES OF DRUG-RECEPTOR 

MODULATION 

At the beginning of the early drug discovery process, there is one crucial 
step, assessing the druggability of the target and defining the cavity 
where our ligand will possibly bind. Based on where a drug binds, we 
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can differentiate them into orthosteric and allosteric binders. But 
perhaps, rather than where the small molecule is binding, the most 
important thing is understanding how the small molecule modulates the 
receptor upon binding. In this section, we will overview some of the 
most common mechanisms of drug-receptor modulation. 

 

Figure 6 Mechanisms of Drug-Receptor modulation with small molecules 

Orthosteric binders bind at the active site of the receptor, competing 
with the natural substrate [Figure 6a]. Traditionally, almost all the drugs 
that are on the market are orthosteric drugs. In the case of enzymes, 
orthosteric binders are almost invariably inhibitors. In the case of 
receptor proteins, we can classify the drugs as agonists and antagonists, 
depending on the effect that the drug will have over the receptor. 
Agonism occurs when a drug binds to a receptor and causes a biological 
response. If the drug is able to trigger a maximal response of the 
receptor, they are called full agonists. If they are only able to generate a 
fraction of the possible response of the receptor, they are called partial 
agonists. There are some occasions where an agonist binds to a receptor 
and causes an opposite response, these substances are called inverse 
agonists. Antagonism happens when a drug binds to the receptor and 
blocks or interferes with the ability of an agonist/natural substrate to 
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activate the receptor. The most common type of antagonism is the 
reversible competitive, where a drug competes with an agonist for its binding 
site and limits the amount of agonist that can bind. 

One of the main problems when dealing with orthosteric binders is 
selectivity. Usually, binding sites across protein families are highly 
conserved and when we administer the drug it will bind to the target 
protein as well as the binding sites of homologous proteins. Besides, the 
function of these similar proteins can vary a lot, which will lead to 
unwanted side effects [39].   

Allosteric binders bind into a site different from the active site of the 
receptor [Figure 6b]. When an effector binds at one site of the 
molecule, it causes a perturbation that leads to a functional change at 
another site by means of alteration of the shape or dynamics [40]. One 
of the most recent postulated models for allosterism is the ensemble 
model [41,42]. Similarly to the conformational selection model, the 
binding of the allosteric ligand, causes a perturbation that shifts the 
distribution of the conformational states.   

Allosteric binders have advantages over orthosteric ligands in terms of 
potency, because we remove the competition with the endogenous 
substrate, and in terms of selectivity, because allosteric sites are less 
conserved across protein families. Additionally, they allow a much more 
precise modulation of the protein activity. 

On the downside, allosteric drug discovery is challenging. Contrary to 
orthosteric drugs that bind to a known active site, allosteric sites are 
often unknown and the effects upon drug binding are difficult to 
predict, and even a small change in the drug-target interaction may lead 
to different downstream effects[43]. Complications in allosteric drug 
discovery can go further into the drug discovery process. Because of the 
high divergence rate of allosteric sites in species homologs, the 
translation from the initial pharmacological studies to animal models of 
disease can be challenging [44]. 

Interfacial modulators are molecules able to disrupt or stabilize PPI 
either by direct competition at the interface or via allosteric 
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destabilization binding at a protein site different from the interface [45] 
[Figure 6c]. The manipulation of PPI is an attractive mechanism of 
action as they are critically important in disease-specific molecular 
mechanisms and pathways [46]. PPI are challenging to target as they 
usually have small, shallow, or exposed cavities and the molecule has to 
compete with the protein partner, which usually have a much larger 
interaction area [47]. The first approved PPI inhibitors were peptides or 
molecules derived from natural products which led to a poor oral 
bioavailability and low cell-permeability. However, thanks to the greater 
understanding of PPI structure and energetics, PPI inhibitors have 
reached “drug-like” properties.  Many researchers suggested that the 
ΔGbind of PPIs was often not evenly distributed across the entire buried 
surface area, but rather concentrated on energetic “hot spots” that have 
a large contribution to ΔGbind [48]. By placing the molecules at these 
sites PPI inhibitors with lower molecular mass could be created [49,50]. 
Another type of Interfacial modulators that have been gaining 
popularity are the ones able to stabilize PPI, called Molecular glues (MG). 
They provide novel and additional interactions between proteins 
partners, over-stabilizing a (usually) pre-existing complex. This MOA 
has been exploited in the field of Targeted Protein Degradations (TPD), 
where the MG promotes the recruitment of neo-substrates by an E3 
ligase facilitating the ubiquitination and posterior degradation via the 
proteasome. 

Pharmacological chaperones. Most disease-causing mutations affect 
protein processing, folding, pH stability, protein aggregation, defective 
transport to the lysosomes, and many post-translational modifications. 
It has been proposed that small molecules, pharmacological chaperones (PC), 
could be used to restore the folding, trafficking and biological activity 
of these non-functional proteins [Figure 6d]. PC stabilizes the native 
conformation or promotes the correct folding of the protein, resulting 
in an enhancement of its activity [51]. 

PROteolysis TArgeting Chimera molecules (PROTACs) together 
with MG are the two main drivers of TPD.  In this case, PROTACs are 
hetero bifunctional molecules that bind simultaneously to a protein of 
interest (POI) and to an E3 ubiquitin ligase, inducing the formation of 
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a non-natural ternary complex that promotes the ubiquitination of the 
POI which is later recognized and degraded by the proteasome[52] 
[Figure 7]. PROTACs rely not only on the affinity of the individual 
warheads for the E3 or the POI, but in some cases, also on cooperativity 
(the formation of the ternary complex). Although TPD is a relatively 
new field, several PROTACs have already entered clinical trials.  

 

 

Figure 7 Targeted Protein Degradation (TPD) mechanism of action 

1.5 TOWARDS A COMPREHENSIVE DRUG 

SCREENING STRATEGY :  FROM IN-VITRO TO IN-
SILICO 

1.5.1 THE REVOLUTION OF HIGH-THROUGHPUT 

SCREENING  

Current drug discovery relies on the screening of large chemical libraries 
against an extracellular or intracellular target to identify novel 
compounds with the desired MOA. However, with the genomic 
revolution in the 1990s, which increased enormously the number of 
novel targets, and the concomitant increase in the number of available 
chemical compounds raised the need for an automated screening 
process. High-throughput screening (HTS) provides a practical method 
to screen thousands to millions of compounds in miniaturized in vitro 
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assays very quickly against multiple targets [53]. HTS is still the gold 
standard in the pharmaceutical industry today, having 
approximately >50% success rates [54].  Very early on, people noticed 
that rather than the target type, the main component affecting the 
success rate was the content, size, and quality of the compound 
collections used. That is why pharma companies cherish their 
proprietary databases and are not available for the scientific community 
to exploit [55]. There have been many initiatives to use HTS outside the 
pharma industries [56]. Still, the cost and logistics of handling large 
amounts of compounds make this method unaffordable for smaller 
organizations and academic labs.  

Thus, researchers are always finding new ways to not only expand the 
explored chemical space but also in an efficient and cost-effective 
manner. In this context virtual screening (VS) and fragment-based drug 
discovery (FBDD) have established themselves as the future of drug 
discovery. 

1.5.2 FINDING HITS IN VIRTUAL LIBRARIES :  VIRTUAL 

SCREENING   

The first publication about Virtual Screening appeared in 1997, where 
by using molecular docking and a database of 2500 “2D molecular 
sketches” they successfully identified new inhibitors for trypanothione 
reductase (TR) [57]. Since then, the use of Virtual Screening has been 
shown to be an excellent alternative to HTS due to its reduced cost and 
the ability to exploit larger chemical collections that in result raises the 
probability of finding more and better hits. VS is an in silico technique 
where large databases of chemical compounds are evaluated against a 
molecular target using computational methods. The goal of VS is to 
predict the binding between ligands and a molecular target and rank 
them according to their binding affinity [53]. Another advantage of 
“going virtual” is that the compounds can be tested even before being 
synthesized, which avoids the costly and time-consuming task of 
synthesis for inactive molecules. 
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Amongst all the methods used for Virtual screening, molecular docking 
is the most used technique for its relatively low computational cost and 
good results [58].  Despite all the advantages of docking, it has many 
disadvantages which will be discussed in more detail in section 3.3. 
Other methods used for virtual screening are, for example, machine 
learning classifiers. 

A recent example of docking-based virtual screening campaigns are the 
ones targeting the main protease of SARS-CoV-2. In early 2020, major 
efforts were initiated to develop new drugs to treat coronavirus 
infections. To that aim, many researchers made use of virtual screening 
strategies to successfully identify inhibitors, some of them with a broad-
spectrum activity against coronaviruses [59–61] 

Docking-based VS can be applied to library sizes up to 108 [62,63], but 
when dealing with larger chemical collections there are limitations 
related to calculation time and data management. An example of such a 
chemical collection is ENAMINE REAL SPACE with 31x109

 virtually 
synthesizable compounds. However, this pales in comparison to other 
proprietary spaces, like Merck’s MASSIV space [64], with 1020 
compounds, or Pfizer’s PGVL with 1014 [65]. 

There are methods to speed up the docking calculations, for example, 
we can use tailored VS protocols, where molecules are discarded early 
in the docking calculation if they do not achieve a specific energy value. 
Or if we have previous information about the molecular features that a 
ligand should have to interact with a specific receptor (pharmacophore), 
select only those molecules that are able to fulfil this pattern. Still, these 
strategies are not enough to solve all the challenges faced when 
searching in these massive spaces. 

1.5.3 FRAGMENT-BASED DRUG DISCOVERY (FBDD) 

Fragment screening was initially developed to find hit compounds 
where other traditional methods (HTS) fail. FBDD is based on 
identifying small chemical fragments that bind weakly to a biological 
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target, and then growing them by evolving or combining them to obtain 
a drug-like compound with a higher affinity. 

Fragments are small organic molecules with low molecular weight and 
tend to bind to the biological target with low affinity, usually in the μM 
to mM range. In analogy to Lipinski’s “rule of 5” to define a drug-like 
molecule [66], for fragments we have the “rule of 3” proposed by 
Congreve et al, which theorize that a fragment should have: (1) a MW 
equal or below 300 Da, (2) at most 3 rotatable bonds, (3) a logP below 
3, (4) at most three hydrogen bond donor groups and (5) at most three 
hydrogen bond acceptor groups [67]. 

A smaller chemical compound means less rotatable bonds which entails 
for more stable interactions. The other important property of fragments 
is that they are ligand efficient, meaning that they possess a high binding 
affinity per heavy atom, and thus, are ideal for optimization into clinical 
candidates with good drug-like properties. 

For fragment to lead (F2L) optimization there are three main 
approaches: Fragment growing, Fragment linking and Fragment 
merging. Fragment growing is the most used strategy, where we have an 
initial fragment hit and additional chemical groups are added to it to 
achieve a compound with drug-like properties. Fragment linking consists 
on the identification of multiple fragments binding to different parts of 
the pocket and then linking them without affecting the binding 
orientation and position of the initial fragments [68]. Fragment merging is 
an approach that consists of combining information of multiple 
chemical hits together.  
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Figure 8 Different Strategies for Fragment to Lead 

The interest in FBDD has grown further than finding hits that fit better 
challenging biding pockets, but also as an efficient way of exploring the 
chemical space. The chemical space grows exponentially with the 
number of atoms making the drug-like chemical space (≤35 heavy atoms) 
challenging to explore. However, by considering only the fragment 
space (≤22 heavy atoms) we can screen a bigger part of this space as it 
is much smaller. Then, by using F2L methods we can deeply explore 
the privileged areas of the drug-like space. This will be discussed in more 
detail in section 4.4.  
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2.1 MAIN OBJECTIVE 

The general objective of this work is to develop state-of-the-art 
methods for computer-based drug discovery and apply them to targets 
of pharmacological interest. In particular, we want to deepen our 
understanding of binding mode prediction, create new methodologies 
to efficiently explore the chemical space and discover bioactive 
molecules with novel mechanisms of action. 

2.2 SPECIFIC OBJECTIVES 

1. Improve docking binding mode prediction by applying knowledge-
based restraints and assessing the results in blind challenges.  

2. Rational discovery of small compounds to inhibit RANK protein 
and assess their applicability as a therapy for triple-negative breast 
cancer. 

3. Test the feasibility of combining ultrahigh-throughput Virtual 
Screening with low-throughput high-content assays, validating the 
approach prospectively by discovering novel PTEN allosteric 
modulators. 

4. Development of an algorithm to efficiently explore ultra-large 
chemical collections, validating the approach prospectively on a 
bromodomain protein, used as test system.   
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3.1 BACKGROUND ON MOLECULAR DYNAMICS 

SIMULATIONS 

The initial “lock-and-key” theory postulated by Fischer in 1984 [33] has 
been widely abandoned in favour of binding models that not only 
account for conformational changes upon ligand binding [69,70], but 
also for the intrinsic constant protein motions[36].  

Unfortunately, the calculations required to describe large systems’ 
quantum-mechanical motions and chemical reactions are often too 
complex and computationally intensive for even the best 
supercomputers. MD simulations developed in the late 1970s [71], seek 
to overcome this limitation by using simple approximations based on 
Newtonian physics to simulate atomic motions, thus reducing the 
computational complexity [72]. In MD, all the forces that govern 
molecular systems are estimated from equations like the one shown in 
Figure 9, where bonded and non-bonded interactions are parametrized 
to fit quantum-mechanical calculations and experimental data.  

 
Figure 9 Example of an equation used to approximate atomic forces during Molecular 
Dynamics. Extracted  from[72]. 

Many simulation programs have been developed, with the most popular 
being CHARMM [73], AMBER [74,75], GROMACS [75], and 
OpenMM [76]. Several Force Fields (the equations and parameters used 
to estimate de forces during MD) are commonly used in molecular 
dynamics simulations (i.e. AMBER [77,78], CHARMM [79], GROMOS 
[80] or OPLS [81]) differing in the way that they are parametrized, 
however, most advanced force-fields are similarly capable of 
reproducing experimental observables [82] 
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3.1.1 MOLECULAR DYNAMICS SIMULATIONS WITH 

MIXED SOLVENTS  

When a ligand binds to a protein, it triggers a cascade of changes in the 
receptor and the solvent, that optimizes the packing at the interface to 
accommodate the ligand [83]. Being able to locate and characterize these 
binding sites from other areas in the protein surface is an essential step 
in SBDD. In this thesis, the method used to achieve this purpose is 
MDmix [84,85]. MDmix relies on the use of MD simulations with 
aqueous/organic solvent mixtures to obtain high-quality interaction 
maps that later can be used as a guide in ligand design.  

After protein preparation, the target system is immersed in a solvent-
filled truncated octahedral box constructed from replicas of a pre-
equilibrated box of a selected solvent mixture. Then, the MDmix 
protocol performs an equilibration of the solvated system, consisting of 
a heating stage of 800 ps to reach 300 K in the NPT ensemble and a 1 
ns stage in the NVT ensemble at 300 K. Production runs of at least 20 
ns in the NPT ensemble are then carried out, storing atomic coordinates 
every picosecond. All non-hydrogen atoms of the protein are restrained 
with soft harmonic potentials (k=0.01 kcal/molÅ²).  

After the production stage, all replicas are superimposed to a reference 
structure. A grid with 0.5Å spacing in each direction is constructed for 
each one of the probes of the solvent mixture and the observed density 
in each grid element is compared to the expected density and converted 
to binding free energy (∆Gbind) [Equation 3.1] using the inverse 
Boltzmann relationship. 

∆𝐺!"#$ = −𝑘!𝑇 · 𝑙𝑛 *
%!
%"
+       

Equation 3.1 

Lastly, the regions of the grid with the most negative ∆Gbind for each 
probe are selected as a hotspot. 
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3.1.2 DYNAMIC UNDOCKING  

Hydrogen bonds are not only the most important polar interaction 
between protein-ligand complexes but they have also proven to be key 
at providing structural stability to such complexes [86,87], which is the 
ability to form a precise and stable binding mode, thanks to the strict 
angular and distance dependencies between the hydrogen bond donor 
and acceptor. Structural stable complexes not only need to have a low 
∆Gbind, but also present a narrow free energy minimum in the bound 
state [Figure 10]. As an example, in Figure 10 molecules 1, 2 and 3 have 
the same kinetics and thermodynamic constants. However, compound 
1 has a steeper slope around the bound state, leading us to conclude 
that this compound will be more structurally stable than the other two.  

 
Figure 10 The Quasi-Bound State. Graphical representation of the Quasi-Bound 
State. Extracted from [86] 

Structural stability can be quantified by displacing the ligand from its 
equilibrium position to a quasi-bound (QB) state where a preselected 
H-bond interaction has been broken.  

Dynamic Undocking (DUck) makes use of Steered Molecular Dynamics 
(sMD) to pull the ligand from the original position to the QB state by 
using the distance between the selected hydrogen bond interacting 
atoms as the collective variable and monitoring the force required in the 
process to calculate the work (WQB).  
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The DUck protocol starts by defining the hydrogen bond of interest 
and selecting the protein’s residues that define the H-bond's local 
environment, referred to hereinafter as the chunk [Figure 11a].  After 
production of the chunk, DUck performs, automatic ligand 
parameterization in MOE, minimization, equilibration, and two sMD 
simulations (at two different temperatures, 300 K and 325 K), in which 
the distance between the interacting atoms in the ligand and protein is 
increased from 2.5 to 5.0Å [Figure 11b], and if the WQB value (work 
necessary to break the H-bond) in the previous step reaches a 
predefined threshold, then the system is sampled by a short unbiased 
MD simulation, after which the sMD protocol is run again with the 
resulting new structures. The simulations are discontinued if the 
measured WQB in any replica was below the threshold. Once a sufficient 
number of sMD runs are completed, the lowest WQB value obtained is 
selected. 

 
Figure 11 DUck set up a) An example of a protein Chunk b) sMD simplified. 

3.2 BACKGROUND ON MOLECULAR DOCKING 

Predicting how a ligand binds to a target is an essential step for SBDD, 
and molecular docking has become a standard tool for drug discovery 
[88,89]. The Docking protocol can be described as a combination of 
two components, a search algorithm that generates low-energy ligand 
conformations (poses), and a scoring function able to rank the poses 
generated by the search algorithm. These models can be used to 
interpret and guide ligand design well before the structure of the 
protein-ligand complex can be experimentally determined.  
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The perfect search algorithm would exhaustively elucidate all possible 
binding modes between the receptor and the ligand. However, even 
taking a really simple system, performing such an extensive search 
would require huge amounts of computational time [90] and would be 
infeasible for larger molecules. As a consequence, only a small amount 
of the conformational space is sampled by applying constraints and 
approximations in an attempt to locate the global minimum as 
efficiently as possible.   

However, generating a plethora of binding modes is ineffective without 
a model to rank them. The scoring function (SF) should be able to 
distinguish the experimental binding modes from all other modes 
explored through the searching algorithm. We can distinguish between 
different classes of scoring functions: force-field based, knowledge-
based, and empirical. Force-field based SF estimates the free energy 
with a weighted sum of several energy terms comprising inter- and intra- 
molecular interactions (eg. van der Waals, electrostatic interactions, 
hydrogen bonds). Knowledge-based SF are designed to reproduce 
experimental structures. They rely on the statistical analysis of 
intermolecular interactions within large 3D structural databases of 
complexes [91]. Finally, empirical scoring functions estimate the free 
energy of binding using a weighted sum of parameters [92]. Although 
proven to be a powerful asset in drug discovery campaigns, docking 
programs do not always find accurate ligand poses when compared to 
the experimental solution. 

In this thesis rDock [93] is used in all the docking calculations. rDock 
makes use of a combination of Stochastic search techniques to generate 
low energy ligand poses. The standard docking protocol generates the 
ligand pose using 3 stages of a Genetic Algorithm [94] followed by a 
low temperature Monte Carlo and Simplex Minimization.  

Before performing the docking calculations, a cavity needs to be defined 
[Figure 12].  In rDock this can be done with the “two sphere” method 
(two different-sized spheres are defined and the cavity is only accessible 
by the small spheres but not the large spheres) and the reference ligand 
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method (it creates a docking volume of a given size around a binding 
mode of a known ligand). 

 
Figure 12 Example of a cavity generated with rDock 

The scoring function of rDock falls in the category of empirical SF. As 
seen in Equation 3.2, rDock master socring function (Stotal) is a 
weighted sum of intermolecular (Sinter), ligand intramolecular (Sintra), site 
intramolecular (Ssite), and external restraints if provided (Srestraint).  The 
weights have been extrapolated from known experimental data using a 
set of protein-ligand and RNA-ligand complexes.  

𝑆&'&() = 𝑆"#&*+ + 𝑆"#&+( + 𝑆,"&* + 𝑆+*,&+("#& 
Equation 3.2 

𝑆"#&*+ = 𝑊-.$
"#&*+𝑆-.$"#&*+ +𝑊/')(+

"#&*+𝑆/')(+"#&*+ +𝑊+*/0)
"#&*+𝑆+*/0)"#&*+ +𝑊(&'1

"#&*+𝑆(&'1"#&*+

+𝑊,')-𝑆,')- +𝑊+'&𝑁+'& +𝑊2'#,& 
Equation 3.3  

𝑆"#&+( = 𝑊-.$
"#&+(𝑆-.$"#&+( +𝑊/')(+

"#&+(𝑆/')(+"#&+( +𝑊+*/0)
"#&+(𝑆+*/0)"#&+( +𝑊$"3*$+()

"#&+( 𝑆$"3*$+()"#&+(  
Equation 3.4  

𝑆,"&* = 𝑊-.$
,"&*𝑆-.$,"&* +𝑊/')(+

,"&* 𝑆/')(+,"&* +𝑊+*/0)
,"&* 𝑆+*/0),"&* +𝑊$"3*$+()

,"&* 𝑆$"3*$+(),"&*  
Equation 3.5  

𝑆+*,&+("#& = 𝑊2(-"&4𝑆2(-"&4 +𝑊&*&3*+𝑆&*&3*+ +𝑊#1+𝑆#1+ +𝑊/35𝑆/35 
Equation 3.6  
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Formally, solutions should be sorted based on Stotal, but it has been 
show that the intramolecular term bears large error and can introduce 
more noise than signal to the predictions [95].  

3.3 DEVELOPMENT OF AN AUTOMATIC PIPELINE 

FOR PARTICIPATION IN THE CELPP CHALLENGE 

3.3.1 CANDIDATE PREPARATION  

For each candidate structure, co-crystallized solvent and ligands are 
removed using Schrödinger’s split structure tool [96] and only the 
coordinates of the receptor are kept. Subsequently, the protein 
preparation tool from MOE [97] is used to fix problems within the 
crystal structure and the Protonate 3D tool [98] is used to assign 
protonation states to the protein (assuming pH 7.0). All the files are 
saved in Tripos MOL2 format, as required by the docking program, 
rDock [93] . All the above steps are integrated in an SVL script for 
automation.  

3.3.2 LIGAND PREPARATION .  

We take the query ligand in SMILES string format and use the LigPrep 
tool from Schrödinger [99] to calculate the 3D structure with proper 
topology, tautomerism, bond orders, and geometry of bonds, angles, 
dihedrals, and rings. Also, the ionizable groups are protonated at pH 7 
with a threshold of ±1 pH unit. All ligands are saved in SDF format.  

3.3.3 SELECTION OF SIMILAR PROTEINS ,  DRUGGABLE 

POCKETS ,  AND LIGAND RETRIEVAL  

One of the pillars of the whole process is being able to select good 
reference systems from which we can extract some restraints to guide 
our docking predictions. For this purpose, we have integrated into the 
pipeline a protocol based on the 3Decision tool from Discngine [100]. 
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3Decision is a web-based platform that centralizes all structural 
knowledge (including all the RCSB PDB dataset) to perform multiple 
kinds of analyses. We query 3decision using a dedicated REST API 
endpoint. Using as input the target sequence in FASTA format, a Blast 
against the database is performed to select those proteins that share a 
high Identity (I% > 80%). 3decision database also contains all pre-
computed druggable pockets as predicted by fpocket cavity detection 
tool [101]. The pockets are aligned based on the sequence and 
superimposed to the query structure. Finally, we export all the ligands 
found in the aligned pockets, in a SDF file which is also converted to 
SMILES format using Openbabel [102]. In the case where multiple 
druggable pockets are detected, the corresponding docking protocol is 
applied to every pocket. 

3.3.4 LIGAND SIMILARITY AND MAXIMUM COMMON 

SUBSTRUCTURE CALCULATION  

After retrieving the ligands found in similar pockets, a similarity analysis 
is performed between the query ligand and the list of retrieved ligands 
using MACCS keys fingerprints and the Tanimoto coefficient scoring, 
which has been identified as one of the best metrics for similarity 
calculations [103]. The Tanimoto coefficients as well as the fingerprints 
were calculated using rdkit [104]. 

The maximum common substructure (MCSS) between the target ligand 
and the ligands retrieved from similar proteins was calculated using 
RDKit’s FindMCS function [104]. As a complementary measure of 
similarity between the ligands and also working as a method to evaluate 
the robustness of the MCSS, a Tanimoto coefficient based on MCSS 
was calculated using Equation 3.7 [105]. 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜6788 =
𝑁9:

(𝑁9 +𝑁:) − 𝑁9:
 

Equation 3.7 
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where 𝑁! and 𝑁" 	are the number of heavy atoms in molecules A and B 
respectively, and 𝑁!" 	is the number of heavy atoms in the MCSS. The 
TanimotoMCSS can have values between 0 and 1, being 1 the value 
obtained when two molecules are identical. 

3.3.5  GENERATION OF PHARMACOPHORIC RESTRAINTS  

Ligand-based pharmacophore modelling has had a great impact in drug 
discovery [106].In this work this strategy is used to extract common 
chemical features from the aligned ligands retrieved by 3decision before 
elucidating the pharmacophores. The Align-it tool from Silicos-it [107] 
is used to generate a combination of pharmacophore points for each 
molecule in the set. In this work two different versions of the protocol 
for the generation of a consensus pharmacophore are tested. In the first 
version, after the generation of the pharmacophoric points for each 
molecule, the features that were common between molecules were 
selected and ranked by number of appearances and then the two highest 
ranked features were selected and used as mandatory pharmacophoric 
restraints for docking. In the second version, the ligands are first 
clustered based on similarity (MACCS fingerprints and Tanimoto 
similarity of 0,9). From each cluster the ligand corresponding to the 
centroid is selected, thus removing redundancy and getting a diverse set 
of ligands and then the pharmacophoric points are generated. From 
here, only the most representative points (those shared by more than 
45% of the ligands) are considered as mandatory restraints. Points 
shared by between 20% and 44% of the ligands are considered as 
optional restraints. For the optional restraints, at least one of them must 
be fulfilled during the docking process. 

3.3.6 MOLECULAR DOCKING  

To define the binding site in this work we chose the reference ligand 
method with rDock’s default parameters. From the pool of retrieved 
ligands, we select as reference ligand the one having the maximum sum 
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of MACCS Tanimoto similarity score and TanimotoMCSS score. This 
combined score implies a similar ligand and also a similar size to the 
target ligand. As a result, the cavity size is adapted to the query ligand, 
adding another restriction level to the docking process. 

rDock can perform free docking as well as different types of restraint 
docking. Using rDock capabilities, our pipeline can use three different 
docking protocols, depending on the characteristics of the system and 
the available information. If we find a good reference ligand 
(TanimotoMCSS> 0,5), then the pipeline will choose tethered docking, 
fixing the MCSS with the sdtether utility. Otherwise, if there is a sufficient 
number of diverse ligands to extract a pharmacophore (>5), a 
pharmacophoric restraint docking is chosen instead. Finally, 
unrestrained docking is used for the remaining cases. All the docking 
predictions use the standard rDock docking protocol (dock.prm). 

3.3.7  POSE SELECTION  

The output from the pipeline is a set of poses generated by the docking 
program for each candidate structure in an SDF file. Then the poses are 
sorted by rDock’s intermolecular score (SCORE.INTER), which 
accounts for the protein-ligand interaction free energy. Formally, 
solutions should be sorted based on the total score which accounts for 
the intramolecular energy as well (SCORE.INTRA + SCORE.INTER), 
but it has been shown that the intramolecular term bears a large error 
and can introduce more noise than signal to the predictions [95]. Using 
sdsort, the best pose is selected and saved in an SDF file. If more than 
one cavity were detected, this selection protocol is then applied to each 
cavity. Thereafter, the cavities are ranked based on the MCSS score 
obtained during the Ligand similarity and MCSS calculation and then, 
the best poses from each cavity are ranked by rDock’s SCORE.INTER. 
The best scoring pose from the top scoring pocket is then selected for 
submission. Finally, the files are transformed to the format required by 
CELPP submission rules: the ligand pose in MOL format and the 
receptor in PDB format. 
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3.4 TARGETING RANK RECEPTOR AS A NOVEL 

THERAPEUTIC STRATEGY FOR TRIPLE 

NEGATIVE BREAST CANCER 

3.4.1 COMPUTATIONAL METHODS  

3.4.1.1 HOMOLOGY MODELLING 

The extracellular domain of the human RANK (UNIPROT: Q9Y6Q6; 
residues 30-212) was modelled using the MOE homology model tool, 
selecting as a template the crystalized mouse RANK protein, presenting 
an Identity with human RANK of 82.53% (PDB: 3ME2 (chain B) 
[108]).  

3.4.1.2 MOLECULAR DYNAMICS 

Molecular dynamics (MD) simulations were carried out to identify 
druggable pockets and to monitor their dynamic behavior. In all cases, 
simulations were carried out with the pmemd.cuda program of the 
Amber package and preparation with the tleap program of the 
AmberTools package. The protein was assigned ff14SB [109] atom 
types, the TIP3P [110] water model and periodic boundary conditions, 
with a truncated octahedron cubic box extending at least 14 Å further 
from the protein in each direction and dimension. The solvated system 
is neutralized with Na+ or Cl- ions, as needed. Equilibration consisted 
of a heating stage of 800 ps to reach 300 K in the NPT ensemble and a 
1 ns stage in the NVT ensemble at 300 K. SHAKE [111] was applied 
to all bonds involving hydrogen using a 2 fs timestep. Electrostatic 
interactions were calculated by the particle-mesh Ewald (PME) method 
using constant pressure and temperature conditions. The temperature 
was kept constant at 300 K using a Berendsen thermostat with a 0,1 
picosecond (ps) coupling constant, and the pressure at 1.0 bar using the 
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Berendsen barostat with a 0.5 ps time coupling constant. Van der Waals 
and short-range Coulomb interactions were truncated at 9Å.   

3.4.1.3 DRUGGABILITY PREDICTION 

Protein homology model for human RANK was protonated and 
checked for accuracy using the ProteinPrepare tool from MOE [97].  
Then, using pyMDmix, immersed in a solvent-filled truncated 
octahedral box constructed from replicas of a pre-equilibrated box of 
solvent mixture. The solvents used were pure water, ethanol at 20% in 
water (ETA) and acetamide at 20% in water (MAM). Parameters for the 
organic solvents have been published in [112]. All non-hydrogen atoms 
of the protein are restrained with soft harmonic potentials (k=0,01 
kcal/molÅ²). Three independent simulations for each protein−solvent 
combination are carried out to obtain a total sampling of 60 ns for each 
system and solvent mixture.  

After the production stage, all replicas are superimposed to a reference 
structure (backbone atoms of the protein in the homology model 
coordinates). Then, a grid with 0.5Å spacing in each direction is 
constructed for each one of the probes of the solvent mixture and the 
observed density in each grid element is compared to the expected 
density and converted to binding free energy using the inverse 
Boltzman relationship. Lastly, the regions of the grid with the most 
negative ∆Gbind  for each probe are selected as a hot spot. 

3.4.1.4 ANALYSIS OF DRUGGABLE CAVITIES DURING MD 

To monitorize the volume of the putative ligand binding pockets, we 
generated 3 independent Molecular Dynamics simulations each 200ns-
long, for a total sampling of 600ns. The trajectories were then analysed 
using MDpocket [113], an open-source tool based on the fpocket [101] 
cavity detection algorithm. The MDpocket analysis was performed for 
each replica with 400 snapshots equally spaced in time using the default 
fpocket parameters (-m 3,0, -M 6,0, -I 30, -n3).  
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3.4.1.5 VIRTUAL SCREENING 

System preparation 

The structure for the selected RANK snapshot was prepared using 
MOE 2016 [97]  by removing water and cofactors, capping the termini 
and gaps, and for setting the protonation state of the protein with 
default settings. The cavity was defined in the prepared structure by the 
reference ligand method, using the hotspots identified by MDmix as 
atomic centers. 

Docking Protocol 

The virtual library of compounds consisted of ~7M compounds 
coming from different vendors. The library was prepared with LigPrep 
[114], so that at most eight stereoisomers, six tautomers and eight ring 
conformers would be generated and lastly, probable ionization states 
within the pH range of six to eight would be generated. The prepared 
library was docked with 3 pharmacophoric restraints, 1 H-bond 
acceptor at a distance of 3.1Å, from N of Cys-82, 1 Hydrophobic spot 
at a distance of 3.1Å from Trp-88 and another hydrophobic spot at a 
distance of 4.6Å from Leu-111. All the points were defined with a 
tolerance of 0.7 Å radius. If the feature did not adhere to the positional 
constraints, rDock would assign a positive (unfavourable) 
pharmacophore restraint score, for which the cutoff was set to 1.0. 
Furthermore, a high-throughput VS (HTVS) protocol was implemented 
(HTVS protocol in supplementary information), which consisted of 
three stages, for which at every stage the number of docking runs 
increases (up to 50 runs), and the rDock “SCORE.INTER” filter 
becomes stricter (-16 at 5 runs to -21 at 15 runs). If at the end of the 50 
runs the molecule did not achieve a SCORE.INTER lower than -22, 
the molecule would be discarded. 

Filtering Docking Results 

For each ligand the poses are sorted by rDock’s SCORE and the best 
one selected. All the ligands are then sorted by SCORE.INTER.norm 
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and clustered using Reynolds clustering in MOE, setting 0.95 Tanimoto 
similarity threshold using MACCS key fingerprints. Finally, for each 
cluster the molecule with the best SCORE.INTER.norm is selected as 
the cluster representative. 

3.4.1.6 DYNAMIC UNDOCKING 

DUck was performed on the top 2.000 compounds coming from 
docking, pulling from the N of the backbone of Cys-82. The first step 
for a DUck simulation is the definition of the chunk, that represents the 
local environment surrounding the residue interacting with the ligand. 
The sequence gaps created during the process of selecting the chunk 
residues were capped. For this, each section of residues was split into 
separate chains, and the termini of each chain were acetylated or 
methylated. Lastly, the chunk was checked for clashes possibly created 
during the capping of the chains. The chunk included the following 
residues: 60-70, 79-98, 111-116. 

After production of the chunk, up to 50 replicas of sMD/MD were 
performed, during which a WQB threshold of 4 kcal/mol was used, so 
that the simulations were discontinued if the measured WQB in any 
replica was below the threshold. 

DUck protocol uses MOE [97] to automatically prepare the scripts for 
the simulation and to prepare the structure (AMBER force field 99SB 
[115] ) and ligand (Parm@Frost [116]). The simulations were performed 
at the Barcelona Supercomputing Center using NVIDIA Tesla 
M2090GPUs. The average computational time was 0.5 GPU hours per 
molecule. 
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3.4.2 EXPERIMENTAL METHODS  

3.4.2.1 SURFACE PLASMON RESONANCE 

Surface Plasmon Resonance (SPR) is an optical technique to measure 
molecular interactions. SPR occur when plane-polarized light hits a 
metal film (usually gold) under total reflection conditions. In an SPR 
experiment, one molecule (Ligand) is immobilized on a sensor chip, 
then a second molecule (Analyte) is passed thru a constant flow. If 
there is binding between the ligand and analyte the change of mass in 
the chip surface results in changes in the refractive index which can be 
recorded and displayed in a sensorgram in real time. SPR experiments 
can be used to measure kinetic binding constants (ka, kd) and 
equilibrium binding constants (affinity, Ka = 1/Kd). 

 
Figure 13 Surface Plasmon Resonance Assay representation. Extracted from [117] 

Surface Plasmon Resonance Assay was performed using Biacore T200 
SPR biosensor (Cytiva) instrument at 25ºC. A CM5 sensor chip (Cytiva) 
was inserted, preconditioned and normalized following the protocol 
proposed by the supplier. For the experiments four channels in the chip 
were used: two with no protein immobilized but treated to block the 
dextran (reference) and the other two with immobilized RANK protein 
(683-RK, R&D Systems). Immobilization was carried out using 
standard amine coupling procedure, which starts with the activation of 
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the carboxymethyl dextran matrix of the sensor chip with 0.1 M N-
hydroxysuccinimide and 0,4 M 1-ethyl-3-(3- 
(dimethylamino)propyl)carbodiimide hydrochloride at a flow rate of 15 
μL/min for 7 min. The immobilization was then performed at a flow 
rate of 5 µL/min, using a protein mixture diluted 1:100 with 10mM 
sodium acetate (pH 5.5). To determine the amount of protein 
immobilized, the following formula in Equation 3 was used to have an 
expected Rmax of 50 RU (calculations for a hypothetical ligand of 500 
Da): 

𝑅𝐿 =
𝑀𝑊;

𝑀𝑊(
×
𝑅1(<
𝑠 	

 
Equation 3.8 

RL: Response level (RU) of immobilized ligand; MWL:molecular Weight of ligand 
(protein); MWa: Molecular weight of analyte (compound); Rmax: Maximum binding 
capacity; s: Stoichiometry (number of binding sites per analyte). 

Once the protein was immobilized, 1M ethanolamine hydrochloride 
was injected for 7 minutes at a flow rate of 15 μL/min to block activated 
groups of the dextran matrix. PBS (10mM phosphate, pH 7,4, 150mM 
NaCl) was used as an immobilization running buffer. Interaction assays 
were performed in a running buffer consisting of 1.05xPBS, 0.05% 
(v/v) tween 20, and 5% (v/v) DMSO. The 26 hits from VS were initially 
tested at a single dose concentration of 100uM. For that 20mM stock 
solutions were prepared by dissolving the ligand in 100% DMSO. For 
the compounds that tested positive, a bank of dilutions was prepared in 
100% DMSO from which the sample concentrations were obtained by 
diluting them with 1.05xPBS, 0.05% (v/v) Tween-20. The 
concentrations considered were 500µM, 125µM, 62,5µM, 31,25µM, 
15,625µM, 7,8µM. For the solvent correction, 8 dilutions that ranged 
from 3% to 8% DMSO in 1.05xPBS, 0,05% (v/v) Tween-20. 

The Biacore T200 evaluation software 2.0 was used for data analysis. 
Signals were corrected for nonspecific binding to the surface by 
subtracting signals from a reference surface (i.e., the same 
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immobilization procedure without protein) from those with protein 
bound. Artifacts derived from DMSO interferences were corrected 
using a series of solvent standards (solvent correction). Background 
signals were corrected subtracting blank injections (blank subtraction to 
the injected ligand signals). To estimate binding affinity, SPR data was 
fitted to a single interaction model, where steady state values were 
extracted from the sensorgrams recorded and plotted against the 
different concentrations assayed. 

3.5 TARGETING PTEN WITH A COMBINATION OF 

TARGET-BASED AND PHENOTYPIC SCREENING 

APPROACHES 

3.5.1 COMPUTATIONAL METHODS  

3.5.1.1 TARGET SELECTION 

Potential targets were selected according to their TUSON-p-value. 
TUSON is a computational method that analyzes the likelihood that an 
individual gene functions as a tumor suppressor (TSG) or an oncogene 
(OG) based on their characteristic pattern of different types of mutation 
[118]. From a set of 18.682 genes, only the ones with a TSG TUSON-
p-value lower than 0.005 were selected. We then selected only the ones 
that had a known PDB structure, discarded all the kinases and visually 
inspected all the structures.  

Druggable Cavities Inspection 

A search for putative druggable cavities was performed using fpocket 
[101], a pocket detection algorithm based on Voronoi tessellation. As 
the main measure to select the pockets we referred to the Druggability 
score, which indicates the probability of that pocket of binding a drug-
like molecule, being 1 very likely to bind and 0 being likely to not bind 
any drug-like molecule. By using a threshold of 0.5 4 structures were 
selected.  
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Druggability Assays 

Protein X-ray structures for PTPRK (2C7S [119]), PTEN (1D5R [120]), 
SMARCA4 (2GRC [121]), and MEN1(4GPQ [122]) were protonated 
and checked for accuracy using the ProteinPrepare tool from MOE 
[97,123], then immersed in a solvent-filled truncated octahedral box 
constructed from replicas of a pre-equilibrated box of solvent mixture. 
The solvents used were water, ethanol at 20% (ETA), acetamide 20% 
(MAM), isoxazole 20% (ISX). Equilibration consisted of a heating stage 
of 800 ps to reach 300 K in the NPT ensemble and a 1 ns stage in the 
NVT ensemble at 300 K. Production runs of 20 ns in the NPT 
ensemble are then carried out, storing atomic coordinates every 
picosecond. SHAKE [111] was applied to all bonds involving hydrogen 
using a 2 fs timestep. Electrostatic interactions were calculated by the 
particle-mesh Ewald (PME) method using constant pressure and 
temperature conditions. The temperature was kept constant at 300 K 
using a Berendsen thermostat with a 0,1 picosecond (ps) coupling 
constant, and the pressure at 1.0 bar using the Berendsen barostat with 
a 0,5 ps time coupling constant. Van der Waals and short-range 
Coulomb interactions were truncated at 9Å.  

 All non-hydrogen atoms of the protein are restrained with soft 
harmonic potentials (k=0,01 kcal/molÅ²). Three independent 
simulations are carried out for each protein−solvent combination to 
obtain a total sampling of 60 ns for each system and solvent mixture. 

After the production stage, all replicas are superimposed to a reference 
structure (backbone atoms of the protein in the crystallographic 
coordinates). Then, a grid with 0,5Å spacing in each direction is 
constructed for each one of the probes of the solvent mixture, and the 
observed density in each grid element is compared to the expected 
density and converted to binding free energy using the inverse 
Boltzmann relationship. Lastly, the regions of the grid with the most 
negative ∆Gbind  for each probe are selected as a hot spot. 
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3.5.1.2 VIRTUAL SCREENING 

System preparation 

The structures were prepared using MOE 2016 [97] by removing water 
and cofactors, capping the termini and gaps, and for protonation with 
default settings. For the virtual screening, the PTEN PDB structure, 
1D5R (chain A) [120] was used for docking, the cavity was defined in 
the prepared structure by the reference ligand method, using the 
hotspots identified by MDmix as reference atoms. 

Docking protocol 

The virtual library of compounds consisted of ~7M compounds 
coming from different vendors. The library was prepared with LigPrep 
[99] so that at most eight stereoisomers, six tautomers, and eight ring 
conformers would be generated and lastly, probable ionization states 
within the pH range of six to eight would be generated. The prepared 
library was docked with 3 pharmacophoric restraints, 1 H-bond 
acceptor at a distance of 3Å, from the hydroxyl of Tyr-164, 1 
Hydrophobic spot at a distance of 4Å from the ring center of Tyr-164, 
and a hydrophobic spot at a distance of 4,5Å from the Ca of Arg-163. 
All the points were defined with a tolerance (flat-bottom restraint) of 
0,7 Å radius. If the feature did not adhere to the positional constraints, 
rDock would assign a positive (unfavorable) pharmacophore restraint 
score, for which the cutoff was set to 1,0. Furthermore, a high-
throughput VS (HTVS) protocol was implemented, which consisted of 
three stages, for which at every stage the number of docking runs 
increases (up to 50 runs), and the rDock “SCORE.INTER” filter 
becomes stricter. 

Filtering Docking Results 

For each ligand, the poses are sorted by rDock’s SCORE and the best 
one selected. All the ligands are then sorted by SCORE.INTER and 
clustered using Reynolds clustering in MOE [97], setting 0,95 Tanimoto 
similarity threshold using MACCS key fingerprints [124]. Finally, for 
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each cluster the molecule with the best SCORE.INTER is selected as 
the cluster representative.  

Dynamic Undocking 

DUck was performed on the top 2.000 compounds coming from 
docking, pulling from Tyr-164, OH. The first step for a DUck 
simulation is the definition of the chunk, which represents the local 
environment surrounding the residue interacting with the ligand. The 
sequence gaps created during the process of selecting the chunk 
residues were capped. For this, each section of residues was split into 
separate chains, and the termini of each chain were acetylated or 
methylated. Lastly, the chunk was checked for clashes possibly created 
during the capping of the chains. The chunk included the following 
residues: 164-177, 188, 272-281, 318-320, 324, 345.  

After production of the chunk, we performed up to fifty replicas of 
sMD/MD, during which a WQB threshold of 3 kcal/mol was used, so 
that the simulations were discontinued if the measured WQB in any 
replica was below the threshold. If the runs were completed, the lowest 
obtained WQB value was used. 

DUck protocol uses MOE [97] to automatically prepare the scripts for 
the simulation and to prepare the structure (AMBER force field 99SB 
[115]) and ligand (Parm@Frost [116]). The simulations were performed 
at the Barcelona Supercomputing Center using NVIDIA Tesla 
M2090GPUs. The average computational time was 0,5 GPU hours per 
molecule. 

Enamine Real Sampling  

Enamine Real Database with 273M Compounds (as for June 2019) was 
filtered with rdkit [104] to find compounds that matched the following 
criteria: it contains a substituted tetrazole, the molecular weight is 
between 250-500Da, it has between 3-8 rotatable bonds and no reactive 
groups. As a result, from this search 5.5M compounds were clustered 
using Reynolds Clustering with a Tanimoto coefficient similarity of 90% 
using MACCS keys fingerprints. The centroid of each cluster was 
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chosen as the cluster representative resulting in 189.852 compounds 
that were prepared, docked, and undocked following the 
aforementioned protocol.  

3.5.1.3 MOLECULAR DYNAMICS WITH SMALL MOLECULES 

PTEN structure was obtained from the PDB id 1D5R [120]. Standard 
protein preparation protocols were followed using MOE [97]. 
Duplicated proteins, crystallization buffer, compounds and salts were 
removed.  The ff14SB [109] and gaff2 [78] forcefields were used to 
assign atom types for the protein and the compounds (CMP1, CMP1.2 
and CMP1.3) respectively. Partial charges for the compounds were 
derived using the RESP [125,126] protocol at the HF/6-31G(d) level of 
theory, as calculated with Gaussian09. Each system was solvated on a 
truncated octahedral TIP3P water box of 14 Å of radius and 13 Cl- 
anion was added to neutralize the system. Minimization and 
equilibration was performed with SANDER. The systems were heated 
in the NVT ensemble from 100 K to 298 K in three stages of 250 ps 
(100K-150K, 150K-250K, 250K-298K) while retaining the harmonic 
restraints to the compound and the protein. Subsequently, the density 
of the system was equilibrated to 1 bar in the NPT ensemble during 9 
stages of 250ps, where the harmonic potential lowered from 5,0 kcal 
mol-1 Å-2  to 0 kcal mol-1 Å-2.   

During the equilibration and subsequent production and steered 
molecular dynamics trajectories, temperature control was achieved 
using a Langevin thermostat (with a collision frequency of 3 ps-1) and a 
Berendesen barostat was used to control the pressure when simulating 
in the NPT ensemble. SHAKE [111] was applied to all atoms involving 
hydrogen to allow for a timestep of 2 fs and all simulations were 
performed with the CUDA accelerated version of PMEMD. 
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3.5.2 EXPERIMENTAL METHODS  

3.5.2.1 CELL CULTURE CONDITIONS 

Human HCT116 cells were purchased from American Type Culture 
Collection (ATCC) (#CRL-247) and cultured in RPMI 1614 medium 
supplemented with 10% fetal bovine serum (FBS) in 5% CO2 at 37°C. 

3.5.2.2 CELL LINE CHARACTERIZATION BY WESTERN BLOT 

Protein extracts from cell samples were obtained by homogenizing the 
cells in a lysis buffer containing 50 mM Tris-HCl pH 7,4, 150mM NaCl, 
1% NP40, 0,25%SDS, 0,5mM DTT, 1mM NaF and protease inhibitors 
(Complete, Mini, EDTA-free protease inhibitor cocktail, Roche). Then 
the cells were rocked at 4ºC for 30 min and then centrifuged at 15.000 
rpm for 15 min at 4ºC. Protein was then quantified using the Pierce 
BCA Protein Assay Kit from Thermo Fisher following the 
manufacturer’s instructions.  

Cell lysates were separated by sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred onto a nitrocellulose 
membrane. After probing with primary antibodies, the membranes were 
incubated with horseradish peroxidase-conjugated secondary antibody 
and visualized by ECL (Pierce, Rockford, IL). Different exposure times 
of the films were used to ensure that bands were not saturated. 
Quantification of the films was performed by densitometry using 
ImageJ software (Bethesda, MD, USA). 

Antibodies specific for Akt, pAkt-Ser473, PTEN, S6 Ribosomal Protein 
(5G10), and Phospho-S6 Ribosomal Protein (Ser240/244) were 
obtained from Cell Signaling Technologies. Vinculin and α-Tubulin 
antibodies were obtained from Sigma-Aldrich. 
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3.5.2.3 CELL SURVIVAL ASSAY 

Cell survival was assessed with the CellTiter-Glo kit that measures ATP 
concentration in living cells by reacting with luciferin and quantified 
with luminescence reading [Figure 14]. Cells were plated in 96-well 
plates at a density of 10.000 cells per well and left overnight in the 
incubator to let them attach to the surface. The treatment is applied at 
the desired concentration in 0.5% of DMSO in the media and it is 
refreshed after 48h. After 72h cell survival is assayed following the 
manufacturer’s guidelines. An equal volume of Titer-Glo reagent is 
added to the well and mixed with the media. The plates are incubated 
on a rocking platform for 2 minutes to allow lysis to occur and then 10 
minutes in the dark without shaking to stabilize the luminescence signal. 
The plate is read with Spark 10M plate reader, with the luminescence 
settings at room temperature with 1s of integration time. The counts 
per second obtained are normalized to the DMSO control. 

 
Figure 14 CellTiter-Glo assay representation. Extracted from [127] 

3.5.2.4 PTEN PHOSPHATASE ASSAY 

The effect of the compounds on PTEN phosphatase activity was 
assessed using a Malachite green-based phosphatase assay kit (Echelon 
Biosciences, Salt Lake City, UT, USA) following the manufacturer's 
instructions. PTEN enzyme and PIP3 substrate were purchased from 
Echelon Biosciences (Salt Lake City, UT). The method is based on the 
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quantification of the phosphate liberated from PI(3,4,5)P3, which 
forms a colored complex with molybdate-malachite green and 
quantified by reading the absorbance at 620 nm. Briefly, 50 ng of PTEN 
enzyme was diluted in TBS buffer with 10 mM DTT, then the 
compound dissolved in DMSO, and the substrate were added to initiate 
the reaction. After 45 minutes of incubation at 37C, 100 uL of malachite 
green solution was added and incubated for 20 minutes to allow the 
complex to form and the color to develop. The activity was measured 
as the percentage conversion of PIP3 determined by using the formula 
according to the manufacturer's instruction, relative to the 3.000 
picomoles of the substrate at the beginning of the reaction. Control 
wells containing PIP3 only were set at 0% PTEN activity. The IC50 
value was calculated from the dose-response curves generated using 
GraphPad Prism 5 software with a three-parameter fitting. 

3.5.2.5 PAKT ELISA 

Phospho-Akt1 levels were measured from cells treated with the 
different compounds at a dose that warranted more than 50% survival 
in 0,1% FBS RPMI 116 media. Then the cells were collected and 
washed with PBS for a final lysis step with RIPA buffer (10 mM Tris 
(pH 7,4), 100 mM NaCl, 1 mM EDTA, 1% TritonTM X-100, 0,1% 
SDS, 0,5% deoxycholate, and Protease and phosphatase inhibitor 
cocktail from Thermo scientific). The lysate was incubated on ice with 
occasional vortexing and debris was pelleted centrifuging at 13.000 rpm 
for 10 minutes at 4°C. Finally, total protein from lysates was quantified 
with the Pierce BCA protein assay kit from Thermo Fisher following 
the manufacturer’s instructions. For phosphorylation measurements, 
AKT1 [pS473] Ultrasensitive ELISA Kit from Invitrogen was used 
according to the manufacturer’s protocols. Briefly, 20 ug of total protein 
was diluted with standard diluent buffer to a final volume of 50 uL and 
incubated with 50 uL of primary antibody solution for 3 hours. After 
thoroughly washing, 100 uL of secondary antibody solution was added 
and incubated for 30 minutes with a second washing step afterward. 
Finally, chromogen solution was incubated for 30 min and the reaction 
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was quenched with the stop solution. Absorbance was read at 450 nm 
and the results were fitted to a four-parameter curve for quantification. 

3.5.2.6 SURFACE PLASMON RESONANCE 

Surface Plasmon Resonance Assay was performed using Biacore T200 
SPR biosensor (Cytiva) instrument at 25ºC. A CM5 sensor chip (Cytiva) 
was inserted, preconditioned and normalized following the protocol 
proposed by the supplier. For the experiments four channels in the chip 
were used: two with no protein immobilized but treated to block the 
dextran (reference) and the other two with immobilized PTEN-GST 
(Tebu bio, 117E-3000-10UG) protein. Immobilization was carried out 
using standard amine coupling procedure, which starts with the 
activation of the carboxymethyl dextran matrix of the sensor chip with 
0.1 M N-hydroxysuccinimide and 0.4 M 1-ethyl-3-(3- 
(dimethylamino)propyl)carbodiimide hydrochloride at a flow rate of 15 
μL/min for 7 min. The immobilization was then performed at a flow 
rate of 5 µL/min, using a protein mixture diluted 1:100 with 10mM 
sodium acetate (pH 5,5). To determine the amount of protein 
immobilized, the following formula shown in Equation 3 was used to 
have an expected Rmax of 100 RU. On the High-density channel  
18.737,7 RU were immobilized and on the low-density channel 6.108,2 
RU. 

Once the protein was immobilized, 1M ethanolamine hydrochloride 
was injected for 7 minutes at a flow rate of 15 μL/min to block activated 
groups of the dextran matrix. PBS (10mM phosphate, pH 7,4, 150mM 
NaCl) was used as an immobilization running buffer. Interaction assays 
were performed in a running buffer consisting of 1,0xPBS, 0,05% (v/v) 
tween 20, and 5% (v/v) DMSO using a flow rate of 60 μL/min with a 
contact time of 60s and dissociation time of 120s. Compounds were 
tested from 200 μM to 3,125 μM with 1:2 serial dilutions. 

The Biacore T200 evaluation software 2,0 was used for data analysis. 
Signals were corrected for nonspecific binding to the surface by 
subtracting signals from a reference surface (i.e., the same 
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immobilization procedure without protein) from those with protein 
bound. Artifacts derived from DMSO interferences were corrected 
using a series of solvent standards (solvent correction). Background 
signals were corrected by subtracting blank injections (blank subtraction 
to the injected ligand signals). To estimate binding affinity, SPR data 
was fitted to a single interaction model, where steady state values were 
extracted from the sensorgrams recorded and plotted against the 
different concentrations assayed. 

3.6 BOTTOM-UP EXPLORATION OF THE CHEMICAL 

SPACE 

3.6.1.1 SEARCHING FOR FRAGMENTS IN ENAMINE REAL 

DATABASE AND ZINC20 

To generate the fragment library, we used two different compound 
collections, Enamine Real database and ZINC20 (up to 350MW). Both 
collections were filtered using rdkit [104], selecting compounds with 14 
or fewer heavy atoms and compounds containing at least one ring. After 
removing duplicates between both databases, we were left with a 
collection of 4.123.967 unique fragments in SMILES format.  

The fragment library was prepared with Corina and ChemAxon. The 
library was protonated at pH 7 and tautomers were generated using 
ChemAxon[128]. Then Corina (version 4.4.0) [129] was used to 
generate stereoisomers (up to 4), ring conformations (up to 5, with a 
maximum strain energy of 8 kcal/mol), and to add implicit hydrogens. 
The final library was saved in 3D SDF. After ligand preparation, we 
obtained a total of 11.952.000 entries (molecular states for docking). 

3.6.1.2 PROTEIN STRUCTURE SELECTION AND PREPARATION 

The PDB structure of BRD4 (PDB code 4LR6 [130])was prepared with 
MOE [97] and set the protonation states at pH 7,0. From an internal 
study of conserved waters carried out overlapping the PDB structure of 
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BRD4, we decided to maintain 7 water molecules in the cavity (HOH 
302, 305, 311, 322, 327, 331, 332). The structure was then saved in the 
standard Tripos MOL2 format. 

3.6.1.3 DOCKING THE FRAGMENT LIBRARY 

For docking of the fragment library, we used the rDock software. The 
cavity was defined with rbcavity using the “reference ligand method” 
with the cocrystallized ligand as the reference with a 6 Å radius. The 
prepared library was docked with 2  pharmacophoric restraints: 1 H-
bond acceptor at a distance of 2Å  from Nδ of Asn-140, and 1 
Hydrophobic spot at a distance of 2,5Å of the crystallographic water 
network [131]. The acceptor point had a tolerance (flat-bottom restraint 
radius) of 0,5 Å and the Hydrophobic point of 1 Å. If the feature did 
not adhere to the positional constraints, rDock would assign a positive 
(unfavorable) pharmacophore restraint score, for which the cutoff was 
set to 1.0. Furthermore, a high-throughput VS (HTVS) protocol was 
implemented, which consisted of three stages, for which at every stage 
the number of docking runs increases (up to 15 runs), and the rDock 
“SCORE.INTER” filter becomes stricter. 

3.6.1.4 FILTERING OF DOCKING RESULTS BASED ON 

PROPERTIES OF DESCRIBED ACTIVE FRAGMENTS 

A set of already known fragments from CHEMBL were selected as a 
test set to determine the conditions for further filtering the docking 
results. The set consisted of 35 fragments with 14 or fewer heavy atoms 
and containing at least one ring. The fragments had to also comply with 
the interaction with Nδ of Asn-140. The test set was docked following 
the same protocol as the fragment library and a SCORE.INTER of -12 
kcal/mol was deemed to be the most adequate to use as a threshold for 
filtering the docking results. Additionally, the docking solutions that did 
not place a hydrophobic group near the water network were discarded. 
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3.6.1.5 FRAGMENT CLUSTERING USING CHEMICAL CHECKER 

SIGNATURES  

362.345 fragments were characterized using the A1-A5 Chemical 
Checker signaturizers [132,133] which include information related to 
2D and 3D topological fingerprints, scaffolds, structural keys and broad 
physicochemical properties. These fragments were then clustered using 
the Sklearn Kmeans algorithm [134] with a fixed number of 2.000 
clusters and the remaining function parameters were left by default.  

For each cluster, the fragment compound closest to the cluster centroid 
was selected as the representative one, finally accounting for 2.000 
fragments out of 362.345. The clustering process was evaluated in three 
different ways: 

1. Comparison between distance distributions of same-cluster and 
different-cluster fragments and subsequent computation of the 
ROC Curve.  

2. Comparison between the average standard deviation for each 
feature of same-cluster and different-cluster fragments.  

3. Comparison between several molecular properties (molecular 
weight, logP, QED, number of donors, number of acceptors, 
polar surface area, number of rotatable bonds and number of 
aromatic groups) of the representative fragments and all the 
fragments. 

3.6.1.6 MMGBSA OF CLUSTER REPRESENTATIVES 

To further filter the docking results, we used Schrödinger’s Prime MM-
GBSA tool to calculate the Binding free energies of the 2.000 cluster 
representatives. To select a proper ΔGbind threshold value, we used the 
same test set of already known fragments. From the test set a value of  
-30 kcal/mol was set as threshold and applied to the fragment library 
(973). 
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3.6.1.7 DYNAMIC UNDOCKING 

DUck was performed on the 973 fragments, pulling from the Nδ of 
Asn140.  For BRD4, the chunk was prepared manually by selecting 
residues within 6 Å from Asn-140, Trp81-Ala89, Lys91-Leu94, Tyr97, 
Ile101, Pro104- Met105, Thr131, Asn135-Tyr137, Tyr139-Asn140, 
Asp144-Ile146, and Met149, and water molecules 302, 305, 311, 322, 
327, 331, and 332 (numbering according to PDB structure 4LR6 [131] 

5 replicas of sMD/MD were performed, during which a WQB threshold 
of 7 kcal/mol was used, so that the simulations were discontinued if the 
measured WQB in any replica was below the threshold. 

DUck protocol uses MOE [97] to automatically prepare the scripts for 
the simulation and to prepare the structure (AMBER force field 99SB 
[115]) and ligand (Parm@Frost [116]). The simulations were performed 
at the Barcelona Supercomputing Center using NVIDIA Tesla 
M2090GPUs. 
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4.1 RESULTS FOR DEVELOPING AN AUTOMATIC 

PIPELINE FOR THE CELPP  CHALLENGE 

4.1.1 BACKGROUND ON THE CELPP  CHALLENGE  

Computational approaches have proven to be a valuable addition to 
wet-lab techniques in the field of drug discovery [135]. Amongst them, 
we can find Structure-Based Drug Design (SBDD) methods, where the 
three-dimensional structure of biomolecules is used to identify small 
molecules that can interact with them. Predicting how a ligand binds to 
a target is an essential step for SBDD, and molecular docking has 
become a standard tool for drug discovery [89,136]. The outcome of 
docking is a set of proposed positions and conformations of the ligand 
in the binding site (poses), each with an associated score. These models 
can be used to interpret and guide ligand design well before the structure 
of the protein–ligand complex can be experimentally determined. 

Nonetheless, docking programs do not always find accurate ligand 
poses when compared to the experimental solution. There are still 
challenges that need to be addressed such as receptor flexibility, proper 
accounting of solvation effects or better scoring functions [89]. Owing 
to the potential and relevance of docking for SBDD, there has been a 
substantial and sustained effort to improve the technique, and many 
docking tools have been developed, such as GLIDE [137], rDock [93], 
GOLD [138] and AutoDock [139]. Because different docking programs 
use different sampling strategies and scoring functions, it is important 
to be able to evaluate and compare the performance between them. To 
that aim, test sets are available to evaluate the performance of docking 
and scoring methods in binding mode, binding affinity or virtual 
screening tasks. Regarding the former application, multiple assessments 
have been performed with different evaluation benchmarks [140–145]. 
One of the most recent and complete studies was conducted by Wang 
et al. (2016)[[144], who evaluated ten different docking programs, 
including five commercial programs and five academic programs using 
a collection of 2.002 protein–ligand complexes from the PDB. 
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Concurrently, a strong emphasis has been put on generating highly 
refined test sets, which only include high-quality structures of relevant 
protein targets containing drug-like ligands. Some of the most-used 
validation datasets are CCDC/Astex [146] and Iridium [147]. Such 
datasets and comparative studies provide a comprehensive 
understanding of the advantages and limitations of each docking 
program and help users make more appropriate choices among 
available methods. However, they suffer from an important limitation: 
in an attempt to keep the comparison across docking programs fair, the 
authors of the comparative studies use standard parameters, whereas, in 
real-life applications, advanced users introduce substantial bias to 
improve performance. In consequence, such comparative studies reveal 
the intrinsic capabilities of the programs, which is quite different from 
how they are actually used in typical drug-discovery settings. In addition, 
as relatively small sets of well-curated protein–ligand complexes 
become widely adopted as test-sets, there is a risk of biasing docking 
programs towards those specific datasets. 

The challenges organised by the Drug Design Resource (D3R) 
represent a welcome departure from this tendency. D3R aims to 
provide benchmark datasets and blinded challenges to assist in the 
evaluation and improvement of computational algorithms, giving 
participants the freedom to use the methods as they see fit, but 
encouraging the use of reproducible protocols. Besides the annual 
Grand Challenge, D3R also organises the CELPP Challenge 
(Continuous Evaluation of Ligand Pose Prediction) [148]. Participants 
in CELPP are encouraged to develop an automated workflow to 
generate binding mode predictions for different targets that are 
delivered weekly. 

In this section, we describe the development of the first version of a 
pipeline for participation in the CELPP Challenge, as well as validation 
results. The main focus of our workflow is to adopt a knowledge-based 
approach whenever possible, trying to extract data from similar systems 
that are already deposited in the PDB. Depending on the amount of 
information available, the docking algorithm may benefit from 
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knowledge about the location of the binding site, specific 
pharmacophores or even the binding mode of specific substructures. 
We will describe the different options, analyse their respective 
performances and identify aspects that need further improvement. 

4.1.2 OVERVIEW OF THE PIPELINE  

One of the key aspects of this work is the automation of the process; 
therefore, all the steps are gathered in a combination of python, SVL 
and shell scripts and divided into individually functional modules 
corresponding to the different phases of the protocol [Figure 15]. 
There are four phases summarized here (see Method section for further 
details): 

Phase 1: Protein analysis. Download the sequence of the query protein, 
and identify structures of homologous proteins in the PDB and ligands 
that bind to them (this is performed through a query in 3decision [100]). 

Phase 2: Ligand analysis. Compute a similarity score and maximum 
common substructure between the query ligand and all ligands retrieved 
in Phase 1. 

Phase 3: Pharmacophore generation. Derive, whenever possible, a 
pharmacophore for the ligands retrieved in Phase 1. 

Phase 4: Docking. Three docking strategies are used: tethered docking 
(when large maximum common substructure (MCS) is shared with a 
reference ligand), docking with pharmacophoric restraints (if a 
pharmacophore could be defined in Phase 3) and docking without any 
restraints (in all cases). 

Additionally, the process includes communication with the CELPP 
server to download the queries and upload the predictions. 
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Figure 15 Workflow employed for pose prediction. 

4.1.3  WORKFLOW INPUT DATA ,  DATA STRUCTURE AND 

OUTPUT  

Each weekly CELPP data package is downloaded as a gzipped tar file 
that contains one directory per target. The target is a protein defined by 
its primary sequence. Within each directory, there is a set of structures 
that have the same or highly similar sequences to the target. They are 
provided as potential receptor structures for docking and contain the 
highest resolution unbound candidate protein (hiResApo), the highest 
resolution ligand-bound (hiResHolo), the candidate protein that 
contains the ligand with the largest MCSS to the target ligand (LMCSS), 
the candidate protein that contains the ligand with the smallest MCSS 
(SMCSS) and the candidate protein that contains the ligand with the 
highest structural similarity (based on Tanimoto score and Daylight 
fingerprints, as implemented by RDkit [104]) to the target ligand 
(hiTanimoto). Then, we find the SMILES [149], MOL file and INCHI 
key [150] corresponding to the target ligand. Finally, the suggested 
binding pocket center is also given. However, our pipeline includes a 
cavity detection phase, so the suggested binding pocket center will not 
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be used. The expected output from participants is a docked pose of the 
target ligand with each suggested candidate structure. 

4.1.4 PIPELINE DEVELOPMENT  

4.1.4.1 BLAST RESULTS 

Before starting the implementation of the pipeline, we analyzed the 
targets from previous CELPP weeks (test set) to check how often they 
had high similarity homologues already deposited in the RCSB PDB. 
For this purpose, we ran a blast search against the RCSB PDB with two 
different identity thresholds: 80% and 95%. From this step, we could 
conclude that 100% of the targets had some close homolog structure 
available (>80% identity) within the RCSB PDB prior to its release. 
When looking for proteins with an identity higher than 95%, we 
obtained varying results across weeks with an average of 77,1% of 
positive cases [Figure 16a]. This mirrors the trends in the PDB, which 
is highly redundant in protein composition [151]. In light of the results, 
we set the identity threshold for blast searches in our automatic pipeline 
to 80%. 

 
Figure 16 Analysis of the targets from previous CELPP weeks A) Histogram 
representing the percentage of targets for which we obtained blast results with and 
identity higher than 80% (blue) and 95% (marron) (B) Distribution of Tanimoto 
MACSS score and (C) Tanimoto MCSS scores obtained for the ligands in the test 
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4.1.4.2 LIGAND SIMILARITY 

We analyzed the similarity between the ligands provided by CELPP and 
the ligands obtained by 3decision from similar proteins. After running 
the 3decision protocol, we were able to obtain sets of ligands for 75% 
of the proteins in the test set. Using MACSS keys fingerprints, we 
obtained a mean Tanimoto score of 0,6 with 0,008 and 0,96 being the 
minimum and the maximum scores obtained, respectively [Figure 16b]. 
We also took into account the size of the compared ligands and their 
maximum common substructure with a complementary similarity 
measure, the Tanimoto MCSS [105]. Its value distribution is rather 
different from the Tanimoto MACSS, [Figure 16c] with average, 
minimum and maximum values of 0,42, 0,1 and 0,947, respectively. 

4.1.4.3 DOCKING METHOD SELECTION 

Using the same target, we compared the performance of the three 
different docking methods (tethered, pharmacophoric restraints and 
free) and checked if there was any kind of correlation between the 
docking RMSD and the Tanimoto similarity to the reference ligands. 
RMSD values were calculated using the sdrmsd utility from rDock. The 
mean RSMD values for tethered docking, docking with 
pharmacophoric restraints and free docking were 2,81 Å, 2,15 Å and 
2,19 Å, respectively. Thus, while the use of knowledge-based restraints 
improved the predictions in individual cases [Figure 17], the overall 
performance was not better [Table 1]. In the case of tethered docking, 
our analysis showed that it should only be applied when the Tanimoto 
MCSS is larger than 0,65, after which point almost all predictions were 
correct [Figure 18a]. Unfortunately, this applied to a small proportion 
of the cases (15%). Surprisingly, free docking also produced improved 
predictions for this set of ligands, which might be due to the similarity 
with the ligand of reference used to define the cavity or to the protein 
pre-organisation (quasi self-docking). The plot also showed that using 
tethered docking when the MCSS is too small leads to worse predictions 
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than free docking, explaining the apparently worst performance of 
tethered docking compared to free docking when considering the entire 
test set. Regarding pharmacophore-guided docking, contrary to our 
initial expectations, we found that there was not a significant difference 
in total mean RMSD between restrained and free docking (2,15 Å and 
2,9 Å, respectively). This could, in part, be related to the cavity 
definition process, which already limits the docking space and may leave 
a small margin for improvement. However, it also suggested that the 
choice of pharmacophoric restraints was sub-optimal and had to be re-
optimised. Thus, we introduced an improved pharmacophore 
elucidation protocol (see Methods). 

Table 1 RMSD results obtained using different docking methods 

 

 

Figure 17 Differences in best pose predicted for target 5p8y from CELPP week 33. 
Image (A) corresponds to free docking with an RMSD of 4.09 Å. Image (B) is the best 
prediction obtained with pharmacophoric restraints (1.74 Å). Image (C) corresponds 
to the best pose. 
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Figure 18 Relation between RMSD and the MCSS score using (A) the test set and (B) 
the validation set. Free docking results shown in red, docking with pharmacophoric 
restraints in green (version 1) and yellow (version 2; only applied to the validation set) 
and MCS-tehtered docking in blue. 

4.1.4.4  PIPELINE EFFECTIVENESS AND PROCESSING TIME 

The above-described pipeline performance was tested with a collection 
of pre-released CELPP weeks as well as with the weekly released 
CELPP set. The execution time of the whole protocol took an average 
6.5 min per target. The total execution time varied each week depending 
on the number of released targets (26 to 68 in the period considered 
here) and the connection speed to 3decision (from 22s to 3min per 
target). The 3decision protocol could not obtain reference structures for 
20% of the targets due to some internal errors of a beta version of the 
program or because there were no ligands found in druggable pockets 
from similar proteins. This last event was relatively rare, as it accounted 
for 25% of times that we were not able to obtain results from 3decision, 
or 5% of the total. Finally, the similarity analysis to the docked ligand 
poses took 4,8 min per target on average [Table 2]. 
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Table 2 Statistics of the pipeline implementation CELPP weeks. 

 

4.1.5  PIPELINE VALIDATION  

To validate the pipeline, we ran it prospectively for a total of 12 weeks. 
Table 3 shows that the pharmacophoric restrained protocol was the 
most-used method (51% of the cases). On the other hand, free docking 
and tethered docking were applied in much lower percentages of cases, 
35% and 13,01%, respectively. The mean RMSD value for free docking 
was 6,2 Å, 5,1 Å for pharmacophore-guided docking and 2,8 Å for 
tethered docking. However, there is a bigger difference when looking at 
the proportion of correctly predicted cases by each method. For free 
docking, only 7,9% of the cases had an RMSD value lower than 2 Å, 
for pharmacophore guided docking this value increased to 21,4%, and 
in tethered docking we reached 31,5% of correct poses. 
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Table 3 RMSD values and percentage of cases for each docking protocol. 

 
The values obtained with the validation set were much worse than the 
ones obtained using the test set. The main difference between the sets 
as that the automatic pipeline for retrieving the cavities using 3decision 
was not yet automatized during the development stage. In consequence, 
all the cavities were visually inspected and selected using the 3decision 
webserver. By contrast, the automatic scripts used at the validation stage 
to identify the docking cavity and retrieve aligned ligands from 
3decision were error-prone. We also had to consider the possibility that 
the test set was not representative enough of the whole range of systems 
that can be found in the CELPP Challenge. Nonetheless, the sources of 
errors and the difference in performance between the test set and 
validation will be reviewed in the next section. 

After analysing the prospective results, we wanted to review if the 
algorithm for docking protocol selection derived from the test set was 
the most adequate one. For this purpose, we applied all three protocols 
to all the validation set and compared the best RMSD obtained for the 
three methods [Figure 18b]. We could find some differences regarding 
the accuracy of the docking methods in the test set and validation sets. 
Tethered docking yielded better results than free docking when MCSS 
score ≥ 0,5 on the validation set (vs. a marginal improvement on an 
MCSS score ≥ 0,65 for the test set). Nonetheless, tethered docking was 
still the method that gave the worst results in low MCSS score values 
(MCSS < 0,3). As for the pharmacophore-guided docking, during the 
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validation phase, we improved the pharmacophoric elucidation 
protocol that provided consistently better results than in the test set (see 
Methods). It also provided improved results compared to free docking 
in the 0,5 to 1 MCSS score range, with a performance on par with 
tethered docking. In the 0,25 to 0,5 MCSS score range, pharmacophore-
guided docking and free docking performed at a similar level. At lower 
MCSS score values, free docking outperformed pharmacophore-guided 
docking. 

4.1.6 CHALLENGES TO ADDRESS  

In this section we will describe the most important factors affecting the 
predictive performance of our pipeline. Figure 19 depicts the main 
issues and challenges to overcome in the CELPP challenge, which will 
be treated in more detail in the following sections. 

 
Figure 19 Overall view of validation set cases. 

4.1.6.1 AUTOMATED PROTOCOLS 

When testing a docking program or workflow, a crucial component that 
will have a big impact in the predictions is the choice of dataset [145]. 
Usually, the datasets to test docking programs, such as DUD-E [152] or 
Astex [146], are highly curated datasets, whilst the CELPP receptors are 
selected automatically and are not manually prepared by experts. 
Additionally, we have to take into account that CELPP is designed as a 
cross-docking challenge, which means that we have the added problem 
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of protein flexibility, as the used receptor may not be in the most-fitting 
position for the ligand. Finally, participants are given, each week, an 
average of 40 systems to predict and a limited amount of time (3 days), 
which implies that all the processes need to be automatized, leaving 
virtually no time for the visual inspection or study of the targets. 

In consequence, the pose prediction performance is lower than for 
other challenges. The median prediction RMSD for the best categories 
(LMCSS and hiTanimoto receptors) is around 5 Å, being only 20% of 
the pose predictions accurate within 2Å [148], whereas reported 
performance for curated datasets regularly reaches the 80% [145]. 
Clearly, the latter reflects a best-case scenario, which means that a 
significant effort to improve automated target structure selection and 
preparation will be necessary in order to attain better results in CELPP. 

4.1.6.2 SCORING CHALLENGES 

Over the past years extensive efforts have been dedicated to improving 
the existing scoring functions, but nowadays the accuracy of most 
scoring functions is still a limiting factor in many drug design projects, 
and results require careful evaluation and post-docking analysis. 

To assess the accuracy of the docking score, we selected a subset of 446 
submitted cases and checked if the submitted pose is the one with the 
lowest RMSD compared to the crystal structure. In 208 out of 446 total 
cases (46,6%) the docking protocol was able to produce a correct pose 
(RMSD lower than 2 Å), but in 75 of them, the pose with the lowest 
RMSD was not ranked as the best solution by rDock’s intermolecular 
score (SCORE.INTER). This translates to a 64% success rate when the 
correct pose can be generated. Note that this is close to the 76% success 
rate obtained on the CCDC-Astex Diverse Set, a standard test set for 
binding mode prediction where correct predictions can be generated for 
99% of cases [93]. 

Figure 20 shows the median RMSD obtained with the different 
receptors for the submitted pose and for the best pose generated by the 
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pipeline. The median RMSD for the submitted pose was around 4,18 
Å, whereas if we considered the best prediction, the mean decreased to 
2,9 Å and the median to 2,4 Å. From these results, it is evident that the 
pipeline would benefit greatly from a complementary method to re-
score the docking poses. An approach that presented better results in 
other blind challenges [24][153] was the combination of the docking 
scores with Dynamic Undocking (DUck) [86,87] simulations of the top-
scoring poses. By combining both methods, we expected to be able to 
obtain a more accurate pose ranking for challenge submission. 

 
Figure 20 Median RMSD for the submitted pose compared to the best pose generated 
by the pipeline. CELPP rDock workflow values obtained from the D3R website [154]. 

4.1.6.3 SAMPLING CHALLENGES 

Cavity Selection 

The CELPP Challenge is designed as a pose prediction challenge and 
to assess the influence of receptor choice in docking performance. For 
that reason, the coordinates for the centre of the cavity are provided by 
the organisers. Nonetheless, we wanted to go one step further by 
creating a pipeline of general applicability and add a cavity selection step 
to our protocol, thus avoiding the need to pre-define the binding site. 
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The cavity detection is performed automatically by 3decision, and all 
the possible cavities are retrieved and considered for docking. The 
method that 3decision uses for cavity detection is fpocket, a pocket 
detection algorithm based on Voronoi tessellation [101]. When more 
than one cavity is detected, our pipeline selects the cavity based on the 
similarity of the ligands retrieved by 3decision with the target ligand. On 
average, 3,2 cavities were detected per target, but in 67 cases (14%), the 
correct cavity was not detected, and so the docking was carried out in 
the wrong cavity. Figure 21 shows an example where 3decision only 
detected the cavity represented by the grey surface, missing the actual 
cavity represented by the green surface. In 9% of cases, the failure 
corresponded to shallow cavities on the protein surface that are not 
detected by the fpocket algorithm. 

 
Figure 21 PDB 6ok9 [155]with the pocket detected by 3decision represented by the 
purple surface and the correct pocket represented by the green surface. 

Another reason for not detecting the cavity correctly (14% of cases) is 
that the ligands bind at the interface of a dimer, but only one protein is 
reported in the challenge. Note that, unlike other docking challenges or 
scenarios, the receptors provided by CELPP are not manually curated. 
They rely on a fully Automated Pipeline to perform that task, which can 
sometimes lead to the selection of inappropriate structures (e.g., giving a 
monomer instead of a dimer) for obtaining an accurate ligand pose [148]. 
Figure 22a shows one such example. The remaining failures in this 
category were attributed to an error with the API when downloading the 
analysis results. 
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Figure 22 Example of ligand binding in a PPI interface (A) hiTanimoto receptor for 
target 6j65 [156]. The solution selected by the pipeline is represented as sticks. (B) 
Protein dimer in PDB code 6j65. The crystalized ligand is represented as sticks. For 
both figures, the reference cavity provided by 3decision is shown as a transparent 
surface. 

Docking Method Selection 

In our protocol we implemented three different docking strategies that 
were applied depending on the different set thresholds. From the 305 
cases of the validation set where we did not obtain the correct pose, in 
78 cases the correct binding pose had been correctly predicted by a 
different docking strategy. 

As shown in Table 4, from those 78 cases, only in 9 cases the correct 
solution was found by free docking instead of a form of guided docking. 
By contrast, 26 cases could have been correctly predicted if a form of 
guided docking had been used instead of free docking. This analysis also 
reveals that the two forms of guided docking employed here are not 
equivalent: 27 incorrect pharmacophore-guided docking solutions were 
correctly predicted by tethered docking. Vice versa, 16 incorrect 
tethered docking solutions were correctly predicted by pharmacophore-
guided docking. One such example is shown in Figure 23. These results 
suggest that all the binding poses generated by the different docking 
protocols should be considered, then rescored with a post-docking 
method to identify the best one [157]. 

A) B)
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Table 4 Comparison between the submitted docking method vs. the method that 
yields the best result. 

 

 
Figure 23 Predictions for PDB 6dfo and hiTanimoto Receptor using: (A) 
Pharmacophoric restraints. Predicted pose in orange. Pharmacophore represented as 
spheres. (B) Tether docking. Predicted pose in blue. Reference ligand in pink. In both 
cases, the crystallographic solution is shown in white for reference. The RMSD values 
with the predicted poses are 1,2 Å and 3,3 Å, respectively. 

Receptor Flexibility 

As pointed out by many previous studies [158], receptor flexibility is an 
important factor that can alter docking predictions. Both small changes 
on side-chain orientation and bigger structural changes can lead to 
incorrect predictions [159]. We could attest to this phenomenon when 
docking against the different proposed receptors. For each target, the 
docking protocol was run using all the receptors provided by the 
organisers. Figure 20 displays the validation results categorised by the 
receptor. The best-performing receptor was LMCSS, which 
corresponds to the one hosting the ligand most similar to the query. 
SMCSS obtained the worst results, with a median RMSD of 5,9 Å. 

A) B)
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As an example, Figure 24 shows two cases where the differences in 
side-chain orientation of residues from the binding site are interfering 
with the correct binding position. In the case of 6pl1 (Figure 24a and 
Figure 24b), there is a difference in the conformation of a loop in the 
binding site of all the receptors used that cause Phe-669 (in blue) to 
block part of the binding site obtaining a totally different cavity. It is 
established that, by using a variety of receptor conformations, we 
increased the probability of generating a correct ligand pose, but 
selecting the optimal docking cavity remains a major challenge for 
docking methods [160,161]. This result also highlights the need to select 
multiple binding mode predictions, which should be re-scored with a 
more rigorous computational methodology. 

 
Figure 24 Example of side chain orientation in different PDB structures. (A) 
Differences in binding site structure organisation between 6pl1 [162] crystal and 
the selected hiTanimoto receptor by CELPP; the correct ligand pose is represented 
in beige, (B) Differences in site conformations for target 6a6k [163]between 
receptor hiResHolo in purple, the crystal structure in white and hiTanimoto 
receptor in yellow. The ligand crystal pose is represented in green and in light 
purple is the pose obtained using the hiResHolo receptor. 

Other Molecules in the Binding Site 

This pipeline was intended for general applicability, and for this reason, 
during the cavity preparation process all the ligands and co-solvents 
were removed, and only the coordinates of the receptor were kept. 
However, in some systems, especially enzymes, cofactors can have an 
important role in determining the ligand binding mode. Two such 
examples are provided in Figure 25. Lastly, the fact that there can be 

A) B) C)
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other molecules in the binding site can interfere when generating the 
pharmacophoric restraints. As they are in the same cavity, our protocol 
included them in the list of retrieved ligands from similar proteins, and 
those are considered in the pharmacophoric restraint generation 
pipeline. 

 
Figure 25 Example of a system with other molecules on the binding site. a) 
Interaction of ligand G0D (green) with heme group (orange) in PDB 6DA2 
[164].Ligand belongs to a series of analogues with pyridine as a heme-ligating head 
that works as an inhibitor of CYP3A4 by decreasing the heme reduction rates [164]. 
b) Interaction of ligand EV8 (green) and NADP (pink) in PDB 6GD0 [165]. In yellow 
dashed lines are H-bond interactions and in green dashed lines π-interactions. 

A) B)
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4.2 RESULTS FOR TARGETING RANK  RECEPTOR AS 

A NOVEL THERAPEUTIC STRATEGY FOR TRIPLE-
NEGATIVE BREAST CANCER  

4.2.1 BACKGROUND ON RANK  RECEPTOR .  
IMPLICATIONS ON TRIPLE-NEGATIVE BREAST 

CANCER .   

Breast cancer is the most commonly diagnosed cancer among women 
worldwide. In 2020 more than two million cases were diagnosed 
worldwide, and although being curable in ~70–80% of patients with 
early-stage, non-metastatic disease, it accounted for more than half a 
million deaths that year.  One of the main issues with breast cancer is 
that, on the molecular level, breast cancer is a highly heterogeneous 
disease, resulting in different molecular subtypes which largely influence 
treatment decisions. One of these subtypes is Triple-negative breast 
cancer (TNBC) which accounts for 15-20% of all breast cancers and is 
commonly diagnosed in women younger than age 40. The term TNBC 
refers to the fact that this specific subtype does not express human 
epidermal growth factor receptor type 2 (HER2), oestrogen receptor 
(ER), or progesterone receptor (PR) making endocrine therapies 
targeted to these receptors not applicable in these patients. TNBC 
remains a clinical challenge due to high rates of relapse, a propensity to 
form visceral metastases, and the lack of targeted therapies. Thus, there 
is a clinical unmet need to identify novel targeted therapies for the 
treatment of TNBC. 

RANK signalling pathway, driven by the RANK receptor and its ligand 
RANKL, has emerged as a novel target in breast cancer. RANK is a 
type I transmembrane protein belonging to the Tumor Necrosis Factor 
Receptor Superfamily (TNFRSF). RANK extracellular domain is 
comprised of four tandem cysteine-rich-repeat domains (CRDs), which 
are characteristic of the TNFRSF proteins [108,166]. These CRDs are 
connected by loop regions which cause the receptor to fold into an 
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elongated shape and confer to the protein a high degree of flexibility 
[Figure 26]. RANKL (TNF superfamily TNFSF11), the only ligand 
binding to the extracellular portion of RANK, is a type II trans-
membrane protein belonging to the TNF family. Both the membrane-
spanning and soluble forms of RANKL are assembled into functional 
homotrimers like other members of the TNFSF. The binding of 
RANKL to RANK causes trimerization of the receptor, activating the 
signalling pathway [167] 

 
Figure 26 Representative structure of TNFSF ligand-receptor complexes. Top (left) 
and lateral (right) view of the structure of TNF-TNFR. A trimeric TNF ligand 
(magenta) is bound on the outside by three TNFR monomers (blue). In one of the 
TNFR monomers on the right, the four cysteine-rich domains (CRD1-CRD4) are 
labelled and the disulfide bonds are illustrated as yellow spheres (PDB:ID 3ALQ 
[168]). Extracted from [166] 

In mouse models, RANK overexpression promotes mammary 
tumorigenesis and lung metastasis, whereas inhibition of RANK 
signalling in established tumours reduces breast cancer recurrence and 
metastasis [169,170]. Moreover, RANK overexpression in breast cancer 
cells leads to constitutive activation of the pathway in a RANKL-
independent manner [171,172]. This RANKL-independent mechanism 
might explain the failure of Denosumab, an antibody that binds to 
RANKL and prevents its binding to RANK, to treat breast cancer 
patients[173]. 



  RE S U L T S  F O R  T A R G E T I N G  RANK  R E C E P T O R  A S  A  N O V E L  T H E R A P E U T I C  
S T R A T E G Y  F O R  T R I P L E -N E G A T I V E  B R E A S T  C A N C E R  

 

81 

The aim of this project is to develop small molecules that bind to the 
extracellular domain of RANK that, on the one hand, could inhibit the 
ligand-dependent signalling, acting as RANKL antagonists, and on the 
other hand, could abolish the constitutive activity of RANK, therefore 
acting as an inverse agonist. 

4.2.2 DRUGGABILITY ANALYSIS OF RANK 

For the identification of novel compounds with the ability of binding 
human RANK and disrupting the interaction with RANKL [Figure 
27a], we first generated a homology model for the RANK human 
receptor. We used as a template the crystal structure of the extracellular 
domain of mouse RANK (PDB:3ME2 [108]) as it has a sufficiently high 
level of sequence identity with the human protein (~85%) to obtain a 
reliable model. 

Starting from the homology model, MDmix was used to identify if there 
was any putative ligand binding site with suitable interaction hotspots 
that could be used as guide for virtual screening. Analysing the results 
for the ethanol probes, we identified a cluster of hydrophobic and polar 
hotspots near a CRDs domain [Figure 27b] (residues: 57-71 and 78-
96). This region agreed partially with an already described binding site 
for a peptide able to bind mouse RANK and disrupt the interaction 
with RANKL [174]. However, the cavity identified was too small to fit 
any drug-like molecule. Besides, the most energetic hotspot identified 
was a hydrophobic hotspot derived from the interaction with TRP88 
and the polar hotspots presented really week energy profile indicating 
that the site is not druggable because it offers scarce binding potential.  

It has been shown that TNFR molecules present a great domain 
flexibility between the CRDs and in some cases even within each CRD 
[166]. Taking into consideration this high flexibility and that near the 
identified cavity region there is a loop comprising residues 109-117, we 
carried out a long MD to test if it was possible for this region to move, 
leaving exposed a bigger cavity.  
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During the 200ns MD this loop presented a high flexibility during the 
whole simulation. Using MDpocket [113] we detected that, due to this 
loop movement, a path connecting the already identified cavity and a 
region below the loop was created leaving exposed a bigger cavity 
[Figure 27c]. We then selected a frame that presented an open 
conformation of the loop and repeated the MDmix analysis with the 
same solvents. This time, apart from having a bigger cavity, we were 
able to access a region of the cavity with a really strong polar interaction 
point (near the N of Cys-82) that could be used with high confidence 
as a pharmacophoric restraint. 

 
Figure 27 RANK structural analysis. a) Interaction between RANK and RANKL in 
pdb 3me2. b) MDmix results for the homology model of RANK. Hydrophobic 
binding hot spots are depicted in green, polar binding hot spots are in orange. c) The 
black mesh represents the transient cavity detected during MD, caused by the 
movement of the loop marked in red. d) MDmix results for the MD snapshot with 
the open conformation of the loop. Hydrophobic binding hot spots are depicted in 
green, polar binding hot spots are in orange. 
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4.2.3 IN SILICO IDENTIFICATION OF NOVEL SMALL 

MOLECULES BINDING TO RANK   

An in-house-assembled virtual library comprising ~7M commercially 
available compounds was used for the virtual screening campaign 
against the receptor conformation that was identified during the MD. 
The three hotspots with the lowest binding energy identified by MDmix 
were used as pharmacophoric restraints to guide the docking process: 
an acceptor near the backbone N of Cys-82, a hydrophobic point 
staking with the indole ring of TRP88, and another hydrophobic spot 
near the side-chain of Leu-111 [Figure 28]. 

 
Figure 28 Pharmacophoric restraints and pocket environment. In red is depicted the 
acceptor pharmacophoric point and in green are depicted the hydrophobic points. A 
compound selected by the VS protocol is shown for illustrative purposes (orange). 

 
After using the docking protocol detailed in the methods section (see 
Methods section 3.4.1.5), we obtained a total of 1.060.099 unique 
molecules that fulfilled the aforementioned pharmacophoric restraints. 
These molecules were then filtered by the rDock’s SCORE.INTER, 
which gave us a total of 125.616 molecules with a SCORE.INTER <-
25 KJ/mol. To discard very similar molecules, we performed a 
clustering step based on Tanimoto similarity and MACCS fingerprints 
[124], keeping only the best-scoring molecule as the cluster 



  RE S U L T S  F O R  T A R G E T I N G  RANK  R E C E P T O R  A S  A  N O V E L  T H E R A P E U T I C  
S T R A T E G Y  F O R  T R I P L E -N E G A T I V E  B R E A S T  C A N C E R  

 

84 

representative. We obtained 87.653 clusters, and thus the same number 
of molecules corresponding to the cluster representatives. Only the top 
2.000 cluster representatives (ranked by docking score) were subjected 
to DUck to calculate the work needed to break the key hydrogen bond 
with Cys-82. A WQB value of 4 kcal/mol was chosen as it is a value most 
ligands are able to fulfill [153]. Only 186 molecules of the 2.000 (9,3%) 
passed this threshold. Finally, we carried out a visual inspection of the 
compounds. 27 compounds were selected [Table 5] aiming for 
structural diversity, however, 1 of them was no longer available for 
purchase and we ended up purchasing 26 compounds. 

Table 5 Results of WQB and SCORE.INTER for the 27 prioritized compounds. 
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4.2.4 SPR  ASSAY CONFIRMED BINDING FOR SOME 

COMPUTATIONAL HITS  

After the in silico virtual screening, we used SPR to evaluate 
experimentally the binding of our compounds to immobilized RANK. 
We immobilized RANK in a CM5 sensor chip with immobilization 
levels between 5.000 and 8.000 RU following the protocol in section 
3.4.2.1. We first performed single-dose experiments at 100μM for the 
26 purchased compounds from which only 10 presented a positive 
response and were then selected for additional SPR experiments. The 
KD of the identified compounds ranged between 90μM and 7.000μM 
[Table 6]. The purpose of these experiments was to discern between 
true and false binders and to rank them for further activity assays 
performed at CNIO. 

Table 6 KD for the 10 compounds that showed binding to RANK receptor in SPR. 
Ch2 refers to the results obtained in the low-density Chanel. Ch4 refers to the results 
obtained in the high-density channel. The Chi2 refers to the difference between the 
experimental data and the model fitted curve (a measure of the average squared 
residuals). 
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Figure 29 SPR plots for compound 1. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right).  

 

Figure 30 SPR plots for compound 2. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right).  
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Figure 31 SPR plots for compound 3. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 

 

Figure 32 SPR plots for compound 4. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 
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Figure 33 SPR plots for compound 5. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 

 

Figure 34 SPR plots for compound 6. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 
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Figure 35 SPR plots for compound 7. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 

 

Figure 36 SPR plots for compound 8. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 
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Figure 37 SPR plots for compound 9. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 

 

Figure 38 SPR plots for compound 10. In the top row are displayed the steady state 
response against the concentration for the low-density Channel (Ch2; left) and the 
high-density Channel (Ch4; right). In the Bottom row are displayed the sensograms 
for the low-density Channel (Ch2; left) and the high-density Channel (Ch4; right). 
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4.2.5 ONGOING CELL-BASED EXPERIMENTS  

This project was done in collaboration with the group of Eva Gonzalez 
Suarez on the CNIO.  Thanks to the success in the virtual screening, 
this project was awarded an ERC Proof of Concept (ERC-PoC-2022-
1; project name TargetRank) to assess the therapeutic potential of the 
molecules found in the Virtual Screening and to further develop the 
compounds. To that aim, the group at CNIO is testing the ability of the 
compounds to inhibit the constitutive and the RANKL-dependent 
activation of RANK by means of cell-based assays. 

The first assay performed was using the breast cancer cell line HCC1954 
with basal levels of RANK and the same cell line where RANK was 
removed from the membrane (shRANK) [Figure 39]. The activity of 
RANK was measured using the level of expression of the mRNA of 
BiRC3, a protein involved in the RANK signaling pathway. In the left 
plot in Figure 39  was tested if compounds 2 and 3 were able to inhibit 
the constitutive activation of RANK. For compound 2 we do not see 
any difference in the levels of BiRC3 compared to the control. 
Compound 3 seems to work as an agonist, activating the pathway and 
increasing the levels of BiRC3. On the other hand, the right plot in 
Figure 39 shows the results for the inhibition of the RANKL-
dependent activation. Compound 2, in all the concentrations tested, 
reduced the levels of BiRC3 mRNA, indicating that compound 2 is able 
to inhibit the RANKL-dependent activation. For compound 3 we did 
not see a decrease on BiRC3 levels.  
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Figure 39 HCC1954 . In the plots is measured the activation of RANK by means of 
the increase in BiRC3 mRNA levels. The shRANK (grey bars) refers to a modified 
HCC1954 cell line were RANK is not expressed on the membrane. Scramble (white) 
refers to a HCC1945 with basal levels of RANK on the membrane. On the left is 
tested the ability of the compounds 2 and 3 to block the constitutive activation of 
RANK. On the right is tested the ability of the compounds to inhibit RANK-RANKL 
interaction. 

To better study the effect of the molecules, the HEK-Blue cell line is 
being used to monitor the activation of the NF-kB and AP-1 pathways, 
both implicated in the RNKL/RANK signaling pathway. Only the 
ability to block the constitutive activation was tested for the moment. 
As a result, compound 1 and compound 2 induced the activation of 
RANK [Figure 40] whereas compound 8 was able to inhibit RANK in 
a dose-dependent manner [Figure 41].   
 

 
Figure 40 HEK-Blue response to Compound 1 and Compound 2. In the plots is 
represented the activity of Alkaline phosphatase after treating the HEK-Blue cell line 
with compound 1 (left plot) and compound 2 (right). In both plots, the arrows indicate 
the difference between the treated and the DMSO control for each concentration.  
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Figure 41 HEK-Blue response for Compound 8. The plot represents the activity of 
Alkaline phosphatase after treating the HEK-Blue cell line with compound 8. The 
arrows indicate the difference between the treated and the DMSO control for each 
concentration. 
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4.3 RESULTS FOR TARGETING PTEN  WITH A 

COMBINATION OF TARGET-BASED AND 

PHENOTYPIC SCREENING APPROACHES 

4.3.1 BACKGROUND :  TARGET-BASED DRUG DISCOVERY 

VS PHENOTYPIC SCREENING  

Historically, new medicines were discovered through observation of 
their therapeutic effect either directly in humans as part of traditional 
medicine or in models of disease. However, with the advent of the 
molecular biology revolution of the 1980s and the sequencing of the 
human genome in 2021, the focus shifted towards the study of specific 
molecular targets. 

 
Figure 42 Comparison of target-based and phenotypic screening approaches in early 
drug discovery. 

Target-based drug discovery (TDD) [Figure 42] approaches offer a 
rational pathway for drug discovery [175]. It is based on the premise 
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that, once a biological component has been identified as disease-
modifying, it is possible to work with the component in its purified 
forms instead of in the complex natural environment (cell, tissue, or 
organism). Biophysical and biochemical assays make it possible to 
detect molecules that bind to and alter biological activity, respectively. 
This offers several desirable possibilities. For instance, the assays can be 
set up in a high-throughput mode, facilitating the hit identification 
phase. Additionally, it is possible to carry out the preliminary stages of 
optimization using the in vitro assay. In this way, when the molecules 
are tested in cell- or organism-based assays, they are already sufficiently 
potent to exert a measurable effect. An example of a successful TDD 
approach is the identification of the 5HT2a receptor as a key molecular 
target involved in psychosis [176]. After the discovery of the target, the 
drug pimavanserin was identified as an inverse agonist and approved by 
the US Food and Drug Administration (FDA) to treat Parkinson’s 
disease psychosis in 2016 [177]. On the downside, setting up the assays 
is a costly and lengthy process involving the production and purification 
of the biological component, followed by assay development and 
validation. This demands an up-front commitment to the project that 
often exceeds the capabilities of a mid-sized academic lab. 

Furthermore, there is a growing interest in non-standard mechanisms 
of action, such as allosterism or conformational trapping. In such cases, 
the relationship between binding and the biological response is 
unpredictable, because the biological response (if any) will depend on 
the biological function of the particular allosteric site, which is generally 
unknown. Investing resources in the development of binding and/or 
biochemical assays may be, not only expensive but also the wrong 
strategy here [178]. Instead, one should focus on the biological outcome 
from the onset of the project, pursuing only molecules that 1) modify 
the behaviour of the biological system, and 2) do so through direct 
interaction with the intended target. 

Furthermore, in recent years there has been a revival in interest in 
phenotypic drug discovery (PDD) [Figure 42] approaches [179–184] 
following the observation that the majority of the first-in-class drugs 
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approved by the FDA between 1999 and 2008 were discovered 
following a PDD strategy without a previous drug target hypothesis. In 
the case of PDD a physiologically relevant biological system or cellular 
signalling pathway is directly targeted to identify biologically active 
compounds that yield the desired phenotypic effect. The majority of 
successful drug discovery programs combine target knowledge and 
functional cellular assays to identify drug candidates with the most 
advantageous molecular mechanism of action. One of the main 
challenges in PDD is the relation between the disease model and the 
biology of the disease in humans (chain of translatability). Another 
challenge for PDD is the development of disease-relevant cell systems 
that are valid for high throughput hit identification [185–187]. 
However, technological advances in cell and molecular biology are 
enabling the development of models that are likely to strengthen the 
chain of translatability even in model systems that have reduced 
physiological complexity, by closely modelling the disease-relevant cell 
or cells and tissue, and/or focusing on the molecular and mechanistic 
phenotype. 

In this project, we want to assess the gained benefit of combining these 
two seemingly antagonistic strategies (TDD and PDD). The target-
based approach, allow us to screen huge virtual collections of chemical 
compounds, selecting molecules that can Bind an allosteric site of 
functionally central proteins (hubs). Experimental evaluation of the 
compounds in a phenotypic assay will allow us to focus on sites and 
molecules that elicit a biological response, discarding candidates that 
either do not bind or do not cause a functional effect. 

4.3.2 TARGET SELECTION AND DRUGGABILITY STUDY 

OF POTENTIAL TUMOR SUPPRESSORS 

First, we identified unexplored targets with therapeutic potential where 
the proposed approach could provide an advantage over the standard 
target-based approach [188]. The targets should be disease-associated, 
have structural information, allosteric cavities and, if possible, a strong 
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indication that their modification will elicit an identifiable change in 
gene expression profile. 

To select our POI we evaluated the TUSON-p-values from a list of 
18.641 gens evaluated by T.Davoli et al. [118]. Analysis done in the same 
article showed that there is no clear cutoff for predicting cancer drivers. 
Instead, there is a continuum decreasing the probability of a given gene 
being a cancer driver. By setting the p-value at 0,005, we obtained a list 
of 366 possible targets. From those 366 genes, we kept only genes 
coding for a protein with 3D structure and discarded kinases, nuclear 
receptors, and other well-known targets. At the end of the filtering 
process, we had 14 target candidates. To investigate their druggability 
we first did a search for druggable pockets with fpocket, and discarded 
the structures where no pocket with a druggability score larger than 0,5 
was found, which resulted in 9 proteins with at least 1 druggable pocket 
[Table 7].  

Table 7 TUSON p-value and Druggable Pockets found with fpocket for the 
candidate targets. 

 
After visual inspection of the putative pockets, PTEN, VHL, 
SMARCA4, MEN1, and PTPRK were selected for further druggability 
studies. In silico solvent mapping was performed with MDmix to 
explore the potential to interact with small molecules [Figure 43]. The 
systems were tested with a set of molecules containing polar and non-
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polar groups, which recapitulate the most common moieties of drug-
like ligands. Of those 5 targets, MEN1 was discarded as it did not have 
any clear combination of hotspots that were adequate for a virtual 
screening campaign. Of the other 4, PTPRK and PTEN were the ones 
that showed, an allosteric site with mainly hydrophobic hotspots and 
some key polar hotspots that could be used as pharmacophoric 
restraints. As PTEN had a much more significant association with 
cancer, we selected this protein as our target.  

 
Figure 43 MDmix results for PTEN, VHL, SMARCA4, MEN1, and PTPRK. In 
green are depicted the hydrophobic hotspots and in orange the polar hotspots. 

4.3.3 BACKGROUND ON PHOSPHATASE AND TENSIN 

HOMOLOG (PTEN):  FUNCTIONS AND REGULATION  

PTEN is one of the most frequently mutated tumor suppressors in 
human cancer. Even a small decrease in PTEN levels or activity 
increases the risk of tumor progression and development [189–193]. 
Structurally, PTEN is composed of five functional domains: a short N-
terminal phosphatidylinositol (PtdIns)(4,5)P-binding domain (PBD), a 
catalytic phosphatase domain, a C2 lipid/membrane-binding domain, a 
C-terminal tail containing Pro, Glu, Ser, and Thr sequences and a class 
I PDZ-binding motif. PTEN exerts its tumor-suppressive functions in 
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a lipid phosphatase-dependent, protein phosphatase-dependent, or 
scaffold-dependent manner. 

PTEN can be found both in the cytoplasm and nucleus where it is 
involved in many processes [Figure 44]. In the cytoplasm, it has a big 
influence on cell motility and polarity processes by contributing to 
establishing a gradient of PIP2-PIP3, it also plays a role in cell division 
and in the regulation of the tumor microenvironment. We can also find 
PTEN in the mitochondria, where it regulates homeostasis. In the 
nucleus, PTEN is involved in the control of genomic stability by 
maintaining centromere stability, and positively regulating DNA 
double-strand break repair. It also is involved in the induction of 
apoptosis, cell cycle arrest and senescence. 

 
Figure 44 Summary of PTEN Biochemical functions, Regulation, Physiological Role 
and Structure. 
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Not only PTEN is involved in a plethora of processes, but it also counts 
with really complex regulation, comprising Post Transcriptional 
modifications (i.e, Ubiquytilation, Phosphorylation, Sumoylation), 
Epigenetic control (i.e Histone Acetylation), and Genetic alterations 
that affect its function. The centrality and pleiotropy of this target 
means that binding to an allosteric site may have unpredictable 
consequences, making it an ideal target for our in vitro to phenotypic 
approach. 

4.3.4 IDENTIFICATION AND CHARACTERIZATION OF A 

NOVEL ALLOSTERIC SITE IN PTEN 

The MDmix analysis identified multiple interaction hotspots over the 
surface, however, only near the hinge we saw a cluster of mainly 
hydrophobic and polar hotspots overlapping with one of the pockets 
identified earlier with fpocket. If we take a look at the residues forming 
the pocket, we can see that it is heavily populated by aminoacids with 
hydrophobic side chains (i.e Leu, Tyr, Phe, Ile, Val) which has been 
reported to be a common trait across allosteric sites [194].  

The most energetic hotspots identified were one hydrophobic in close 
proximity of Tyr-164 and Phe-266, another hydrophobic one near Arg-
160, and finally, one polar hotspot making an interaction with the 
hydroxyl of Tyr-164. These 3 hotspots were then selected as 
pharmacophoric constraints to be used during the virtual screening. 
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Figure 45 Druggability Study of PTEN a) fpocket results b) hotspots identified with 
MDmix in green are depicted hydrophobic hotspots and in orange polar hotspots 
c)Distribution of hotspots of the allosteric binding site d) Selected pharmacophoric 
points to be used in the virtual Screening.  

4.3.5 VIRTUAL SCREENING USING PHARMACOPHORIC 

RESTRAINTS  

The protocol used for the virtual screening is summarized in Figure 46. 
A virtual library composed of ~7M commercially available compounds 
assembled in-house from several vendors was used for the virtual 
screening campaign. After using the docking protocol detailed in the 
methods section, we obtained a total of 48.831 molecules that fulfilled 
the pharmacophoric restraints and had a SCORE.INTER <-25 
KJ/mol. To decrease the number of candidate molecules while 
maintaining the chemical diversity we performed a clustering step where 
molecules with a Tanimoto similarity, based on MACCS keys 
fingerprints, higher or equal than 0,95 are grouped in the same cluster 
and only the molecule with the best docking score is selected as a cluster 
representative. With this clustering step we obtained 30.733 clusters, 
reducing the number of candidate molecules by 37%.  
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Figure 46 Virtual Screening protocol used for the identification of compounds 
binding to the novel allosteric site of PTEN. 

The 2.000 top-scoring molecules, were subjected to the DUck protocol, 
pulling from the hydrogen bond formed between the ligands and the 
hydroxyl of Tyr164. Interestingly, only 67 ligands surpassed the WQB 
threshold of 3 Kcal/mol, which is a really low threshold for drug-like 
molecules, and only 24 had a WQB value larger than 4 Kcal/mol. 
However, we noticed that the majority of molecules showing good 
interaction scores in the DUck step contained a substituted tetrazole 
making the interaction with Tyr-164, which can indicate that the ligands 
with this structure are preferred in this cavity. 

To assess this result, we used MDmix and selected from the already pre 
equilibrated solvent mixtures the organic molecule with the most similar 
structure to tetrazole isoxazole. We then examined the energy grid 
obtained to see if we could report high-affinity interactions between the 
solvent and the Tyr-164.  In Figure 47 we can see that the most 
energetic hotspots are the ones interacting with Tyr-164 (marked with 
the red square), and the one that is driving the interaction is the polar 
spot (purple). 
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Figure 47 MDmix results for the allosteric site of PTEN using isoxazole as solvent. 
The MDmix hotspots are represented in pymol with an isosurface with a contour level 
of 1.5.  

Having this hypothesis confirmed, we now wanted to search in a larger 
compound database for compounds containing this group to see if we 
could find other ligands with better affinity than the ones that we 
already identified. The database that we chose to explore was 
ENAMINE REAL db (ERdb), with about 1.2B compounds (as by July 
2020). Using the pattern illustrated in Figure 48 we were able to retrieve 
about 7.5M compounds that contained a substituted tetrazole. 

 
Figure 48 Smarts representation used to search in Enamine Real DB. Picture created 
by SMARTSviewer [195] with the SMARTS: c1[n;X2][n;X2][n;X2][n;X3]1.  

Then we filtered all the compounds that presented reactive groups and 
that did not fit into the Lipinsky rules, obtaining a collection of 5.5M 
compounds. To ensure that we had a diverse set we applied again a 
clustering step using a Tanimoto similarity of 0,9 using MACCS keys 
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fingerprints. After the clustering we obtained a diverse collection of 
189.852 compounds that, after ligand preparation to generate 
protomers, tautomers, esteroisomers and ring conformations, resulted 
in 520.290 molecular states to be docked.  

We applied the same docking protocol and filters described above to 
this focused compound collection, resulting in 202 compounds that 
surpass the WQB threshold of 3 kcal/mol and 22 compounds had a WQB 
> 5kcal/mol. After visual inspection a diverse set of 15 ligands coming 
from the initial collection (6) and from the filtered version of ERdb (8) 
were selected, from which 14 were available for purchase [Table 8].  

Table 8 Results of WQB and SCORE.INTER for the 14 prioritized compounds. The 
Collection HTSDB makes reference to the in-house collection and ER makes 
reference to the filtered version of ENAMINE REAL Db. 
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4.3.6 CMP1  INDUCES MORPHOLOGICAL CHANGES IN 

HCT116  PTEN  +/-  CELL LINE  

To measure the cytotoxicity of the compounds and as a primary screen 
to test the effect of the compounds over the cell lines, we performed a 
CellTiter-Glo assay. All 14 molecules were tested at 3 different 
concentrations 10μM, 25μM and 50μM and the treatment was refreshed 
at 24h and cell viability was measured after 72h of treatment. We first 
performed the assay with HCT116 PTEN (+/-) and HCT116 PTEN (-
/-) cell lines and compared if we had a differential effect on proliferation 
[Figure 49a]. As a positive control we included two previously 
described PTEN inhibitors SF1670 and VO/OH [196–198]. From this 
first analysis we saw a clear cytotoxic effect for compound and 8 even 
in the lowest concentration tested for both cell lines and was discarded 
from further analysis (not shown in Figure 49). In general, under these 
experimental conditions for the majority of the compounds, including 
the positive control, we saw no clear difference in proliferation between 
the cell lines. Only in compound 1, 7, and 9 we see a difference in 
proliferation at the highest concentration, meaning that these 
compounds had a more noticeable effect on the HCT116 PTEN (+/-) 
cell line than on the HCT116 PTEN (-/-). In the light of this results, 
we decided to further study the proliferation differences between the 
PTEN (+/-) and PTEN(-/-). We compared the proliferation rate on 
DMSO between the cell lines, and, as shown in Figure 49d, the 
complete loss of functional PTEN has no noticeable effect on overall 
proliferation. Interestingly, the HCT116 cell line has mutations in 
KRAS and PI3K genes which cause an overactivation of pathways 
related to cell proliferation [199]. We hypothesize that the effect of these 
mutations in synergy with the growth factors present in FBS could be 
overcoming the effect of the compounds over this cell line. To test this 
hypothesis, we decided to reduce the serum concentration from 10% 
FBS to 0.1% FBS and repeat the CellTiterGlo assay [Figure 49b]. 
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Figure 49 Cell Titter-Glo assay a) Proliferation differences between HCT116(+/-) 
and HTC116(-/-) using 10% FB when treated with the compounds b) Proliferation 
differences between HCT116 (+/-) and HCT116(-/-) using 0.1% FBS when treated 
with the compounds c) Difference in AKT phosphorilation between HCT116 cell 
lines d) Basal proliferation of HCT116 (+/-) and HCT116 (-/-).  

For compound 1 (from here on refered as CMP1) in all the 
concentrations tested, we saw a clear change in HCT116 PTEN (+/-) 
cell morphology, which could be linked to an Epithelial-mesenchymal 
transition (EMT). EMT is a biological process that allows a polarized 
epithelial cell to undergo a series of biological changes that enable it to 
assume a mesenchymal phenotype [200]. In many studies the activation 
of the EMT program has been proposed as the turning point for the 
acquisition of a malignant phenotype in many epithelial cancer cells 
[200–204]. More importantly, it has been reported by previous studies 
that PTEN loss induces EMT and cancer stem cell activity in human 
colon cancer cell lines such as HCT116 [205–208]. To confirm the EMT 
we tracked the levels of E-cadherin and Vimentin as the loss of E-
cadherin and an increase in Vimentin have been linked to EMT 
[201,202]. We can clearly see that, when treated with CMP 1, there is a 
drastic decrease in E-cadherin [Figure 50a] levels and an increase in 
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Vimentin [Figure 50b] in HCT116 PTEN(+/-) cells compared to the 
control. It is also worth noting the big difference in cell 
morphology when we compare the treated cells to the control. 

 
Figure 50 Immunohistochemistry for HCT116 PTEN (+/-) treated with CMP1, 
CMP1.2 and CMP1.3. Nuclei are dyed in blue, actin filaments in red and E-cadherin 
in green. 
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4.3.7 CMP1.3   INDUCES POLYPLOIDIZATION OF 

HCT116  PTEN(+/-) 

 In view of the effect that CMP1 has on the cell line, we wanted to see 
if some analogues for this compound could have a similar effect. To 
that end, we revisited the results from the virtual screening and looked 
for compounds that shared a similar scaffold to compound 1 and that 
passed all the post docking filters. From this step, we selected two 
additional compounds, CMP1.2 and CMP1.3 that although showing 
lower WQB values and lower SCORE.INTER than CMP1 [Table 9] they 
shared a common scaffold and the predicted binding mode by docking 
was similar. 

Table 9 Values of WQB and SCORE.INTER for compounds 1, 1.2 and 1.3. HTSDB 
referes to the in-house collection of compounds. 

 
Both compounds were then tested first with the CellTiter-Glo assay and 
then the same markers for EMT were evaluated. From the proliferation 
results, we did not see any clear difference between cell lines in any of 
the concentrations tested [Figure 49]. As for the markers related to 
EMT (E-cadherin and Vimentin), for CMP1.2 the levels of E-cadherin 
and Vimentin were similar to the control [Figure 50]. For CMP1.3 we 
see an increase in Vimentin compared to the control but not a decrease 
in E-cadherin. However, we can see that, after the treatment, the cells 
showed a different phenotype where we can observe an enlargement of 
the cell and the presence of more than one nuclei [Figure 51]. It has 
been shown in previous studies that PTEN deficiency is related to 
polyploidization, as it is able to regulate and control chromosomal 
stability during cell division [209]. 
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Figure 51 Immunohistochemistry for HCT116 PTEN (+/-) treated with CMP1.3. 
Nuclei are dyed in blue, actin filaments in red and E-cadherin in green. 

4.3.8 SPR  CONFIRMED BINGING FOR SOME OF THE 

COMPUTATIONAL HITS INCLUDING CMP1  AND 

CMP1.3 

Due to PTEN’s multiple roles and implications in many biological 
pathways we wanted to assess via SPR biosensor experiments the 
binding of all the tested compounds even if they did not show any 
phenotypic effect on the cell line. We immobilized PTEN in a CM5 
sensor chip with immobilization levels between 5.000 and 8.000 RU 
following the protocol in section 3.5.2.6. In Table 10 are summarized 
the SPR results for all the compounds.  Compounds CMP1, CMP1.2, 
CMP1.3, CMP8 are the ones that showed a better affinity for PTEN, 
having a Kd of 65,37μM, 25,02μM, 18.82μM and 62,84μM respectively. 
Interestingly, with compounds CMP.6 and CMP.7, we observed that 
the Rmax obtained double the expected Rmax in both cases. This could 
indicate that these two compounds have a 2:1 stoichiometry, 
corresponding to a two-binding site model. On the other hand, 
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compounds CMP2, CMP3, CMP5, CMP9, and CMP12 showed little to 
no response. Compound CMP4, CMP11, CMP13, and CMP14 showed 
nice kinetics profiles but we were not able to reach saturation. CMP10 
needed also higher concentrations to reach saturation, however, this 
compound was only tested at a maximum concentration of 20μM 
because it precipitates. This is in accordance with the cell assays as at 
10μM already formed crystals at 1% of DMSO. 

Table 10 SPR results for PTEN compounds 

 
 

4.3.9 CMP1  AND CMP1.3  CAUSE A MORPHOLOGY 

CHANGE INDEPENDENTLY OF PTEN  LIPID 

PHOSPHATASE ACTIVITY  

One of the main and most well-known functions of PTEN is the lipid 
phosphatase activity, by which it regulates the levels of PI(3,4,5)P3 in 
vivo. Not only that, but the lipid phosphatase activity has also been 
proven to be critical for the tumor suppressor function of PTEN [210]. 
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To assess if our compounds had an effect on the lipid phosphatase 
activity of PTEN we performed a Malachite Green assay using PIP3 
diC8 as substrate and quantified the free phosphate resulting from 
PTEN enzymatic activity. Strikingly, only CMP14 showed a significant 
decrease in substrate conversion, 20% decrease compared to the 
DMSO [Figure 52]. The positive controls SF1670 and VO-OH showed 
a decrease of more than 40% compared to the DMSO. 

 
Figure 52 PTEN activity assay a) PTEN activity assay results b) Dose-Response of 
compound 14. 

4.3.10 ASSESSING THE BINDING MODE STABILITY FOR 

CMP1,  CMP1.2  AND CMP1.3  WITH MD 

To evaluate the stability of the proposed binding mode and assess the 
dynamics of PTEN, independent MD simulations were run for the Apo 
structure of PTEN and PTEN bound with CMP1, CMP1.2, and 
CMP1.3. During the MD simulations of PTEN bound with the 
compounds, the 3 compounds stayed in the binding site for the whole 
duration of the simulation. CMP1.2 appeared to be the one with the 
most stable binding mode, with RMSD fluctuations between 0.5 Å and 
1.5 Å. CMP1 and CMP1.3 present a less stable binding mode, with 
RMSD fluctuations between 1. Å and 3.0 Å. However, in all the cases 
the interaction with Tyr-164 is maintained for the whole duration of the 
MD simulation [Figure 53 top], thus validating the binding mode 
provided by the virtual screening protocol. 
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Figure 53 Analysis of the long MD simulations of PTEN apo and PTEN bound to 
CMP1, CMP1.2, and CMP1.3. Above is represented the RMSD of the ligands during 
the MD simulation. Below is represented the Root Mean Square Fluctuation for each 
residue in PTEN. 

The root mean square fluctuation (RMSF) of PTEN was calculated to 
check if there were any differences in the dynamics of the protein when 
it was bound to the compounds [Figure 53 bottom]. Compared to 
PTEN Apo, we could not see any difference in the RMSF when PTEN 
is bound to the compounds. 
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4.4 RESULTS FOR BOTTOM-UP EXPLORATION OF 

THE CHEMICAL SPACE 

4.4.1 BACKGROUND ON CHEMICAL SPACE 

EXPLORATION  

Drug discovery starts with identifying a “hit” compound that, after a 
long and expensive optimization, evolves into a drug candidate. In order 
to produce new drugs more cheaply and quickly, researchers need to 
make the drug discovery cycle more efficient. For this reason, big 
pharmaceutical companies have invested heavily in HTS collections, 
that nowadays can contain up to 5-million compounds [Figure 54], 
which is a small fraction of the enormous chemical space estimated to 
be 1020 to 1060 million available drug-like compounds. On-demand 
chemical collections emerged a few years ago, pioneered by the 
chemical supplier Enamine, which created the first catalogue in 2015, 
with 600 million compounds (https://enamine.net/compound 
collections/real-compounds). These collections were initially dismissed 
because chemical synthesis outcomes are uncertain and people assumed 
that the synthetic success rate would be low. Nowadays, the Enamine 
collection boasts 32 billion compounds and the company has repeatedly 
demonstrated the ability to deliver >90% of the requested compounds 
in 4 weeks at very competitive prices (10 mg for 120€ to 170€). 
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Figure 54 Size Comparison for different chemical spaces. 

However, with increasingly bigger libraries, the computational time and 
cost of the exploration itself become the next bottleneck. But this 
bottleneck was recently removed with the introduction of the 
combinatorial search of the chemical space. This approach involves the 
fragmentation of the database into a collection of building blocks and 
reactions, which allows for extremely fast searches without the need of 
enumerating the individual compounds. One of the first methods 
developed to explore this fragmented space is FTrees-FS [211], a 
pharmacophoric-style similarity search method that uses a reduced 
graph representation of the molecules.  

Nonetheless, docking-based VS of this huge number of compounds is 
unattainable, even with parallel cloud computing capabilities. To 
address this challenge, we have conceived a novel strategy that explores 
the chemical universe from the bottom up. First, we performed a 
systematic search of the fragment space (up to 14 heavy atoms), 
identifying the most promising scaffolds making the key interactions 
with the receptor. We then search for drug-like molecules that contain 
this initial scaffold. This allows us to focus only on the most promising 
areas of the vast chemical space, maximizing the success probability of 
the selected compounds and reducing immensely the computational 
cost. 
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4.4.2 IDENTIFICATION OF NOVEL FRAGMENTS THAT 

BIND TO BRD4 

 
Figure 55 Screening strategy for the exhaustive exploration of the fragment space. 

To exhaustively explore the fragment space, we followed the protocol 
depicted in Figure 55. First, we performed a virtual screening using the 
library of ~11M fragments described in the Methods section [see 
methods section 3.6.1.1] From previous studies done in the group, we 
know that BRD4 has a highly preserved water network inside the 
binding site that favors the placement of a hydrophobic group and the 
main hydrogen bond is made with Asn-140 [131] [Figure 56]. 

 
Figure 56 Cavity and pharmacophoric restraints used during the Virtual Screening. 
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With that in mind, we decided to apply a filtering strategy favoring the 
placement of a hydrophobic group near the water network. First, all the 
ligand poses with polar groups near the net of waters were removed. 
Then, we selected only the ligand poses that placed a hydrophobic 
group at the bottom of the cavity. Finally, using as a reference the 
SCORE.INTER values obtained from fragments deposited in 
CHEMBL with reported activity for BRD4, we selected only those 
ligands with a SCORE.INTER<-12. At the end of the filtering stage, 
we were left with 362.345 unique fragments. Even though, we were able 
to filter out around 89% of the fragments from the initial fragment 
database a clustering process was needed to reduce the number of 
putative fragments and to ensure chemical diversity. To that end, we 
applied a K-means clustering with 2.000 clusters based on the chemical 
signatures from the Chemical Checker [see methods] and selected only 
the cluster representative. Then, for the 2.000 cluster representatives, 
we used MMGBSA calculations to assess the binding free energy using 
a threshold value of ∆Gbind≤ -30 kcal/mol (value obtained using the set 
of active fragments from CHEMBL), which discarded 51,3% of the 
fragments [Figure 57a]. As the last step, we used DUck on the 
remaining 973 fragments to assess structural robustness, as a combined 
rDock and DUck approaches have been shown to reduce false positives 
and retrieve higher experimental hit rates[86,153].  By using a value of 
WQB >7 kcal/mol we filtered out 99,3% of the fragments having only 7 
possible fragment candidates. The top 6 candidates were selected for 
fragment growing [Table 11].  
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Figure 57 a) Distribution of ∆Gbind for the active Chembl set, the non-active Chembl 
set and the fragments obtained in the VS. In red is represented the threshold value b) 
Distribution of WQB values for the VS fragments. In red is represented the threshold 
value. 

Table 11 WQB value for the 6 selected fragments. 

 

4.4.3 FRAGMENT GROWING AND EXPERIMENTAL 

VALIDATION  

To test our approximation of fragment growing three different starting 
points were used: I) Scaffolds extracted from already known drug 
candidates. II) Experimentally validated fragment hits III) 
Computational fragment hits. 

For each initial scaffold, we perform a scaffold search on Enamine 
REALSpace using SpaceMacs [212]. At the end of this process, we 
obtain a scaffold-focused library of druglike compounds. Then a 
hierarchical HTVS comprised of 4 steps is performed [Figure 58]. First, 
the library of ~10M druglike compounds is docked with rDock 
restraining the scaffold corresponding to the initial fragment. The 
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resulting ligands are then clustered by k-means using the Chemical 
Checker fingerprints. The cluster representatives are then ranked 
through the ∆Gbind and WQB obtained by MMGBSA and DUck 
respectively. The threshold WQB value was adjusted according to the 
WQB value obtained for the input molecule. 

 
Figure 58 Pipeline used for exhaustive search of the fragment space and for Scaffold 
growing. 

The first experiment for binding assessment was differential scanning 
fluorimetry (DSF), a thermal shift assay that measures changes in 
protein stability upon binding. The compounds were tested at 1uM and 
selected as positive the ones that caused a shift in ∆Tm higher than 1ºC. 
We also applied an orthogonal technique for binding assessment based 
on time-resolved fluorescence resonance energy transfer (TR-FRET). 
In DSF a total of 48 compounds showed a change in ∆Tm higher than 
1ºC, which corresponds to a hit rate of 47%. In TR-FRET we obtained 
11 compounds that had an IC50 between 1-100nM. Interestingly, 7 of 
these compounds come from the computational fragment hits, which 
shows a much higher hit rate (28%) compared to the experimental 
fragment hits (8%) and to the scaffolds coming from drug candidates 
(7%) [Figure 59]. 
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Figure 59 Number of compounds found at different stages for the bottom-up 
exploration using different starting points:1)Scaffolds from Drug candidates 
2)Experimental fragment hits 3) Computational Fragment Hits. 

Finally, we were also interested in assessing the chemical diversity of 
these 11 compounds by comparing them with I) known BRD4 binders 
from CHEMBL and II) a random set of 50.000 molecules from the 
Chemical Checker Universe. In Figure 60a we can see that the 11 
compounds (red dots) are distributed across the projected chemical 
space (CC random molecules in grey), and not only near the areas 
enriched with the known BRD4 binders (blue). We also tested the 
difference between the CC molecules, BRD4 molecules, and the 11 
compounds to the set of BRD4 known binders and check the similarity 
between them [Figure 60] using different metrics. In Figure 60c is 
depicted the Tanimoto similarity using Morgan fingerprints, which 
accounted for the 2D chemical similarity. We can see that the 
distribution of 11 molecules (orange) is much more similar to the 
distribution obtained with the CC molecules, than the one obtained 
with the BRD4 molecules. Finally, to further characterize the 
compounds we used the CC Chemistry Space (A*) accounting for 
various chemical properties (i.e 3D similarity, physicochemical 
parameters). Using the CC signatures, we can see that, while the 
chemical space for the Brd4 binders are clustered in a similar region, 
our molecules explore a more diverse chemical space (not biased to the 
brd4 chemical space) similar to the expected background distribution 
[Figure 60d]. 
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Figure 60 Results for the diversity analysis of the evolved compounds a)t-SNE 
representation of the CC Chemical space (grey), known BRD4 inhibitors (blue) and 
compounds found during the bottom-up exploration (red) b)Representation of the 
cosine distance calculation c) Tanimoto similarity using Morgan fingerprints d) Cosine 
distance using the CC (A*) fingerprints. 
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The process of Drug Discovery is a highly complex, time-consuming, 
expensive and multidisciplinary process that, more often than not, 
results in failure. Computational methods are applied with the aim of 
increasing the odds of finding new compounds with desirable in vitro 
and in vivo properties thus, helping reduce attrition rates, costs and time 
needed to release a drug into the market.  

The main focus of this thesis is the process of Virtual Screening, and 
how we can adapt it to obtain the most accurate results, even for 
challenging targets. To that aim, first and foremost we have to 
understand the limitations as well as the strengths of the VS method 
that we wish to apply.  In the context of this thesis, all the VS performed 
are docking-based using rDock software.  

In Chapter 4.1 we introduced the importance of quantifying the 
performance of docking software in real scenarios, which is essential to 
understand their limitations, manage expectations and guide future 
developments. With the CELPP Challenge, the D3R consortium aims 
to provide a fast-growing validation set that better captures all the 
complexity in a real drug discovery setting. In this Chapter, we 
presented an initial version of our pipeline for participation in the 
CELPP Challenge, which applies different knowledge-based docking 
approaches depending on the already available information on PDB. 

To provide a baseline performance, the CELPP team has developed 
four workflows based on different docking programs, one being rDock. 
The rDock workflow represents a default implementation of the 
method without any optimization and using the cavity defined by the 
challenge. Our protocol has the added challenge of detecting the cavity 
automatically, but if we consider only the cases where the cavity is 
correctly predicted, we can observe a significant gain of performance of 
our protocol relative to the baseline, with improvements in the median 
RMSD value ranging from 1.0Å to 2.6Å, depending on the docking 
cavity. This confirms that gathering information from already deposited 
complexes in PDB and transforming it into the appropriate restraints 
benefits the docking process greatly. 
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Our final goal is to evolve this platform into a docking server where 
more rigorous, but also more computationally demanding methods, 
could be applied (e.g. Molecular Dynamics). Nonetheless, some 
additional points need to be revised. The first one is cavity detection 
and characterization. 3decision has proven to be a valuable tool for our 
pipeline being able to identify possible binding sites for the majority of 
targets. However, there are some cases where the 3decision protocol is 
not able to retrieve the correct pocket because they are shallow cavities 
or the receptor structure is ill-defined. In this first version of the 
pipeline, targets where there is no pocket information are neglected and 
no docking protocol is applied. For these situations, we could use a local 
implementation of fpocket [101] to check whether there are in fact no 
possible druggable cavities. Another option would be using Molecular 
Dynamics with aqueous/organic solvent mixtures (MDmix)[213,214] to 
identify possible binding sites. Nonetheless, we would like to add the 
option of taking the cavity coordinates as a reference. With this, we 
would separate the cavity-finding problem from the docking problem, 
reduce execution time and increase the predictive power when the 
binding site is already known.  

A second point to revisit is the choice of receptor structure. As 
discussed, protein flexibility is an important aspect to consider in a drug 
discovery setup. Proteins can adapt their structure to the bound ligand, 
so using an apo structure or one in a complex with a very different 
compound degrades the performance of the docking program. One way 
to mitigate this effect would be to use different conformations of the 
receptor and select the one with the better score as the optimal structure 
[215].  

A third aspect is the management of “third-party” molecules in the 
binding site, namely cofactors and water molecules. In this initial 
version of the pipeline, all systems are processed and prepared in the 
same way, stripping the binding site of all non-protein molecules. 
However, we detected several cases where docking failed owing to 
missing cofactor molecules that should be considered as part of the 
receptor. This can be solved with a curated list of cofactors that should 
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not be removed. Water molecules are frequently found at the protein-
ligand interface, mediating hydrogen bonds between the partners. By 
keeping these structural waters on the binding site, the ligand pose 
predictions can be more accurate. 

We will also continue to monitor the performance of restrained and 
unrestrained docking in prospective CELPP predictions. As previously 
shown, by using the MCSS score we are able to determine which is the 
docking method that performs best for each case. Initially, we applied a 
rather restrictive cutoff of 0,65, which included only 13% of the total 
cases. After considering all the participation cases, we were able to 
determine better ranges of application for each type of docking 
protocol, which presently is set to 0,5 and includes 31% of cases. 

As far as the creation of the pharmacophores, in cases where, due to 
lack of pre-existing information, and ligand-based pharmacophores 
cannot be extracted we could make use of hot spots derived from the 
structure. Such hot spots can be identified by their ability to bind small 
organic co-solvents [3,5]. The afore-mentioned MDmix method not 
only identifies binding sites, but can also elucidate binding hot spots 
[213]  that can be used as pharmacophoric restraints for docking. The 
addition of this methodology to our workflow would also allow us 
identify non-displaceable water molecules and re-assess the druggability 
of the pockets selected by 3decision. 

All in all, from the participation in the CELPP challenge we highlighted 
some of the major challenges related to the prediction of protein-ligand 
complexes. The overall performance of docking in the CELPP 
challenge, with overall success rates of 20%, provides a sobering 
perspective of the state of the art in automated binding mode 
prediction. This is not strictly related to the rDock program, as the 
baseline performance with other software, as provided by the CELPP 
team, ranges between 20% and 30%. This is in stark contrast with the 
expectation (in this thesis and in the scientific literature) that docking 
can be an effective virtual screening tool. If docking cannot even predict 
how true ligands bind, how will it be able to distinguish such true ligands 
from non-binders? The solution to this apparent contradiction lies in 
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the fact that, for virtual screening applications, there is a large human 
intervention to select the most adequate conformation, define key 
interaction points to bias the scoring function, and eliminate 
unreasonable solutions. Equally important, docking is not the final 
selection criteria, but a very useful first step that enables various post-
docking methods. All of this becomes evident when performing a 
docking-based VS, like the ones performed in Chapter 4.2, with the 
discovery of the first small molecules binding to RANK, and in Chapter 
4.3, where we identified, characterized, and designed compounds 
binding to an allosteric site in PTEN. 

In 2010 Gonzalez Suarez described the key role of RANK in the 
development of Breast Cancer [169,170]. Since then, her group and 
others have been studying the effectiveness of RANKL inhibitors like 
denosumab (used in the treatment of osteoporosis and bone metastasis) 
as a treatment for breast cancer. Unfortunately, this therapy has shown 
limited therapeutical effects in clinical trials with breast cancer patients.  

Interestingly, Gonzalez Suarez has observed in mice that the inhibition 
of RANK signaling pathway is much more effective than acting upon 
RANKL [173]. RANK, like many other TNFR, presents two different 
activation pathways, one dependent on RANKL, and the other is based 
on the oligomerization of the receptor independently of RANKL 
(constitutive activation). 

Due to the recently proven interest in RANK as a target for TNBC, in 
Chapter 4.2 I described the implementation of a VS campaign to find 
small molecules binding to RANK that not only can inhibit the RANK-
RANKL interaction, but also avoid the constitutive activation of the 
receptor. 

As we could attest during the participation in the CELPP Challenge, 
(discussion of chapter 4.1), the selection of the structure used for 
docking has to be chosen with care as it can have an outstanding impact 
on the results. In the case of RANK, there is the added challenge of not 
having a crystal structure for the human receptor, which forced us to 
create a homology model based on the mouse RANK receptor. 
Homology modeling is considered the most accurate computational 



   
 

127 

tool to determine the 3D structure [216]. However, the sequence 
similarity level between the template and the target sequence is an 
important factor to generate 3D structures with high accuracy [217]. 
The sequence similarity between the template and the target sequence 
for the RANK homology model was >80%, a value high enough to 
have a high accuracy model.   

Because there are no other described small molecules that bind to the 
receptor, we applied MDmix to get a thorough druggability analysis and 
identify any putative cavity, and also to find hotspots that could be used 
as pharmacophoric restraints. From that analysis, we could not find any 
druggable cavity nor any combination of hotspots that could be used as 
pharmacophores. The PDB structure used to perform the homology 
model corresponded to the RANK-RANKL dimer, which presented a 
closed conformation of RANK, which is needed to properly interact 
with RANKL. As TNFR molecules present great domain flexibility, we 
hypothesized that a region comprising residues 109-117, which was 
close to the RANK-RANKL binding interface, was flexible enough to 
move leaving exposed a putative druggable cavity.  

Although MDmix is an MD-based method, it is not adequate to assess 
any big conformational change of the receptor as the length of the MD 
is relatively short (20ns x 3replicas) and light restraints on the Heavy 
Atoms are applied during the simulation to avoid protein 
conformational sampling but ensuring convergence of the solvent 
exchange process [218]. Consequently, we performed a series of long 
unrestrained MD simulations, which confirmed this region's high 
degree of mobility when the receptor is not bound to RANKL. From 
the MD simulation, we selected a representative snapshot and repeated 
the MDmix analysis. This time, the structure presented a promising 
cavity with two hydrophobic and one polar hotspots that could be used 
as pharmacophoric restraints. 

We selected a collection of ~7M compounds coming from different 
vendors and performed the VS campaign using the pharmacophoric 
restraints found with MDmix, an acceptor near N of Cys-82, a 
hydrophobic point near Trp-88, and another hydrophobic spot near 
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Leu-111. From this process, only 27 compounds passed the docking 
and undocking filters (see section 3.4.1.5). We must point out that, 
although the conformation extracted from the MD presented better 
druggability, the selected binding site is still really shallow and solvent-
exposed which makes it difficult to find really strong binders. On the 
other hand, the fact that we are targeting an extracellular domain implies 
that eventual ligands would not need to permeate the cell membrane 
and could have physicochemical properties beyond the rule of five. 
Furthermore, the targeted protein conformation implies that eventual 
ligands could inhibit through non-competitive mechanism (e.g. 
conformational trapping), which is less demanding in terms of binding 
affinity. 

We chose SPR to validate their interaction and quantify the binding 
affinity of the compounds. We confirmed binding for 10 compounds 
with KD values ranging from 90 μM to 7 mM. Notwithstanding that 
the affinity values are on the weaker side, these are the first reported 
small molecule binders for the RANK receptor. From here on, some 
efforts have already started to optimize the potency of the compounds, 
by trying to grow the compounds so they can reach other interesting 
hotspots found during the druggability analysis with MDmix. It is 
important to note that the domain responsible for the oligomerization 
and subsequent activation of the RANKL-independent mechanism 
(PLAD domain), is located in the intracellular region of the receptor, 
making really difficult to predict if the ligands will be able to reduce the 
constitutive activity.  

Currently, assays in cancer cell lines are being carried out in the CNIO 
to test the ability of the compounds to block both activation pathways, 
with promising preliminary results for some of the compounds.   

In the RANK project, we have adopted the traditional pathway of 
following up the virtual screening hits with a biophysical or biochemical 
assay, then proceeding to cell-based assays. While this makes sense for 
drug discovery projects that pursue the traditional mechanism of action 
of competitive inhibition, it may be counterproductive when dealing 
with a non-standard mechanism of action. Instead, it may be more 
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effective to look for functional effects in relevant biological systems. To 
illustrate this point, in chapter 4.3 we have set the objective of 
discovering allosteric modulators of a protein with key regulatory 
function, but without making any pre-assumption about the 
consequence of such allosteric binding. We have focused our attention 
on tumor suppressor proteins because they play a central regulatory role 
and there is a lack of chemical compounds that specifically modulate 
their function.  

Our selection procedure led us to PTEN. PTEN regulation is really 
complex, and even a small decrease in its levels or activity increases the 
risk of tumor progression and development [193]. Additionally, PTEN 
is also involved in restraining several cellular regeneration processes 
[192]. In the nervous system, where tissue (re)growth is limited, PTEN 
inhibition has been shown to promote axon regeneration after crush 
injuries in both optical and spinal neurons [219–221]. Additionally, 
PTEN deletion has benefits in cardiomyocyte survival by preventing 
ischemia and limiting reperfusion [222]. PTEN dose reduction may also 
have an application in the context of Alzheimer’s disease. The inhibition 
of PTEN at the synapses affected by β-amyloid aggregation leads to 
reductions in cognitive deficiencies [223]. In this regard, reducing the 
functional dose of PTEN is risky, as its prominent role as tumor 
suppressor has to be considered. That is why PTEN deletion has raised 
some concerns over its therapeutic suitability [219,224–226]. To address 
these issues, potent and selective inhibitors are required that allow 
selective, short-term PTEN inhibition. Unfortunately, the compounds 
available today are not selective as they have been shown to have an 
effect over other phosphatases, leading to unwanted side effects [198]. 
In this case, allosteric regulation of the protein would solve some of the 
issues regarding selectivity as allosteric sites are less conserved than 
orthosteric sites. Other targeting paradigms are also being considered 
like targeted-RNA degradation (RIBOTAC) of miR-21 (a regulator of 
the expression of PTEN and other proteins) [227,228]. In summary, 
modulation of PTEN, either activating or inhibiting some of its 
functions, offers potential therapeutic opportunities, and there is a lack 
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of specific modulators of this protein that could be used as chemical 
probes. 

From the cavity search and druggability analysis performed with 
MDmix, a putative allosteric site was identified at the hinge region 
between the C2 and Phosphatase domains. The hotspot with the best 
energy value for this region corresponded to a polar hotspot interacting 
with the hydroxyl of Tyr-164. In a later study, Nira Smith et al 
employing MD simulations and network proximity assays, studied the 
conformational dynamics of PTEN germline mutations associated with 
cancer and autism. This study highlights the inter-domain region, the 
same region that we identified with MDmix, as a crucial region that 
participates in both the stability and the overall dynamics of the protein, 
having some key residues working as key functional centers that might 
govern long-range allosteric regulation [229].  

Initially, we performed the VS using the same compound collection as 
we used in chapter 4.2. Strikingly, only 24 compounds showed WQB 
values larger than 4 kcal/mol, which is a relatively low value for drug-
like molecules. However, we noticed that the majority of molecules 
showing good WQB values in DUck contained a substituted tetrazole 
making the interaction with Tyr-177, which can indicate that the ligands 
with this structure are preferred in this cavity.  

There is some evidence from the literature that, in ligand-based virtual 
screening at least, increasing the size of the search space does lead to an 
increase in the number of hits [230]. We decided to search in a bigger 
chemical space like ENAMINE Real Db for compounds having the 
substituted tetrazole. Following this strategy and applying the same VS 
protocol to the new set of compounds, we were able to identify ligands 
with better WQB values. At the end of the VS, 14 compounds were 
selected to be tested with the phenotypic approach.  

Initially, we considered a cell growth assay as screening method, but 
later found out that cell growth was equivalent in WT, heterozigous and 
PTEN KO cells. We noted that the cell lines used (HCT116) have 
mutations in KRAS and PI3K genes, which cause overactivation of the 
pathways related to cell proliferation. We hypothesized that the effect 
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of these mutations in synergy with the growth factors present in the 
FBS could be overcoming the lower dose (hterozygous cell line) and 
even the absence (KO cell line) of PTEN. We then repeated the 
experiment with 0,1% FBS, but even in the absence of growth factors, 
all cell lines were growing at the same rate. However, in the course of 
this assay, we noted a striking morphological change in the 
heterozygous cells upon treatment with some of our compounds. For 
CMP1 the morphological changes could be attributed to an EMT 
process, previously linked to PTEN inhibition [205–208]. Indeed, when 
treated with CMP1 the levels of E-cadherin, responsible for the 
establishment and maintenance of epithelial cell morphology, decreased 
and the levels of Vimentin, a class-III intermediate filament found in 
non-epithelial cells, increased. For CMP1.3 we detected another type of 
morphological change also closely related to PTEN inhibition. In this 
case, we observed an enlargement of the cell and the presence of more 
than one nuclei [209,231].  

An important reason to avoid biophysical assays as primary screening is 
that they require good quality protein, which is often difficult to obtain. 
Exceptionally, the protein PTEN can be readily purchased, thus we 
were able to test the binding of all the 14 selected compounds through 
SPR, to obtain an orthogonal readout that will be compared to the 
phenotypic effect on the cell-based assays. Out of the 14 compounds, 
we detected binding for 8 of them, with KD ranging from 18 μM to 160 
μM. Remarkably, CMP1.3 had the lowest KD value (18 μM) and CMP1 
ranked in the top 4. Non-binders – as expected – did not show any 
biological effect. However, the SPR-derived Kd was not a good 
predictor of phenotypic outcome. This suggests that, if it is practical to 
perform a binding assay a primary screening, it could be used as a first-
pass filter, but it would be advisable to test all compounds in the 
phenotypic assay. 

As a second comparator, we have assessed the compounds in a 
biochemical assay. As PTEN’s best-known function is its phosphatase 
activity, it would be tempting to use such biochemical assay as a primary 
screening. However, we find that only one compounds (CMP14) has 
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any effect on this assay, but this activity does not translate into any 
observable phenotypic consequence. Even more interestingly, CMP1 
and CMP1.3, which showed binding in SPR, did not affect the 
phosphatase activity of PTEN. The fact that with SPR we had a clear 
signal but the activity of PTEN is not disrupted, confirms that we are 
not targeting the active site and suggests that we are regulating PTEN 
through an allosteric mechanism independent of the phosphatase 
activity. But, of course, we will need to assess the enzymatic activity in 
the cell context, considering the multitude of PTEN substrates, not just 
PIP3. This will be addressed in future work. 

Looking retrospectively, we have seen that the combination of target-
based and phenotypic screening offers an advantage when working with 
novel MOA for challenging targets with intricate regulations like PTEN. 
The TDD approach has allowed us to select a small number of drug-
like ligands (14), which facilitates the thorough assessment of the effect 
of the compounds on the cell lines. Additionally, we have attested that 
when dealing with a novel allosteric site, the effects of the compounds 
are almost unpredictable. As an example, two analogues like CMP1 and 
CMP1.3, which share the same binding motive to the receptor, exert 
different phenotypic effects.  

We have also seen that, apart from the selection of the receptor and the 
druggability study needed before performing a VS, the other paramount 
player is the molecular database used. For RANK and PTEN we 
followed a similar approach, we exhaustively searched in moderately 
large chemical databases for ligands with drug-like properties. However, 
when targeting PTEN, we have seen that exploring bigger screening 
collections, if they maintain a high diversity, increases the probability of 
finding better hits. 

These collections were initially treated with skepticism because chemical 
synthesis outcomes are uncertain and people assumed that the synthetic 
success rate would be low and delivery would take a long time. 
Nowadays, ENAMINE has a set of well-established and optimized 
reactions that enables a fast synthesis with a success rate of >80% and 
guaranteed purity of >90%. Today, ENAMINE contains 31 billion 
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compounds and is expected to reach the trillion scale (1012) in a couple 
of years, growing towards the theoretically accessible chemical space 
[232]. 

Despite the potential of these chemical collections, with increasingly 
bigger libraries, the computational time and cost of an exhaustive 
exploration become unfeasible. Standard methods require vast 
computational resources that scale linearly with the growing number of 
compounds. For these reasons, it is still necessary to develop HTVS 
protocols capable of navigating these massive collections. 

In Chapter 4.4 we describe the development of a novel strategy that 
explores the chemical universe from the bottom up. By first performing 
a systematic exploration of the low molecular weight chemical space, it 
allows us to rapidly focus on the most privileged areas of the chemical 
space to be further explored following an FBDD approach. We 
validated our protocol by prospectively finding novel BRD4 inhibitors. 

As FBDD success depends largely on the quality of the initial hit, we 
decided to explore three different starting points I) from known drug 
scaffold II) experimentally validated fragments III) computational 
fragment hit obtained from an exhaustive screening. 

FS collections are usually designed to provide uniform coverage of the 
chemical space [233], giving great importance to a diversity-based 
design of the collection. However, these collections have a typical size 
of 103 which only represents a sample of the 17 million fragments that 
can be synthesized on demand[ or the 109 theoretically possible 
fragments [234]. To be able to exhaustively explore the fragment space, 
we extracted the fragment-sized molecules containing less than 14 
heavy atoms and at least one ring from ENAMINE REAL Db and 
ZINC20. Thus obtaining an FS collection of 4.1 million unique 
fragments. 

Virtual FS was carried out by docking, biased by pharmacophoric 
interaction points derived from the natural substrate preferences. 
Besides, as we have seen with the participation in the CELPP Challenge, 
often gathering previous information about your system can yield better 
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results [235,236]. We selected a set of active fragments in CHEMBL to 
have an idea which are the values of SCORE.INTER, ΔGbind and WQB 
that we could expect.  

After preparing the compounds, HTVS with rDock was performed, 
using the energy values obtained from the CHEMBL active 
compounds. Thanks to the work done by a previous colleague, we know 
that a hydrophobic hot spot is preferred near the structural network of 
waters at the bottom of the BRD4 cavity [131]. However, rDock counts 
the presence of waters as a possible source for H-bonds, thus 
positioning polar groups or positively charged substituents close to the 
waters. For that reason, all these molecules were filtered out. 

Nevertheless, docking of fragment molecules is often regarded as 
particularly challenging for two main reasons:  first, fragments may be 
more promiscuous in their binding modes than larger “drug-like” 
molecules [237,238]; and second, docking scoring functions are 
inaccurate even for large molecules, and are likely to be still less accurate 
for fragments [239–241]. Thus, Docking is not a reliable method to 
prioritize fragments. For that reason, and in contrast to other published 
HTVS campaigns [62,242,243], we apply a hierarchy of increasingly 
sophisticated computational methods, which maximizes the success 
probability of the selected compounds. The resulting docking hits were 
clustered using the CC fingerprints and using a k-means algorithm with 
2.000 clusters. Dynamic Undocking and MMGBSA are quick and 
powerful tools to enhance the results from docking. Specially DUck, as 
we have demonstrated its potential in discriminating False Positives 
[86]. A final set of 6 compounds passed all the filters and were selected 
as candidates for fragment evolution.  

As for the Fragment Growing Stage, we used SpaceMACS to perform 
substructure searches in ENAMINA REALspace so to obtain scaffold-
focused libraries of around 10M to 20M compounds for each initial 
fragment. Scaffold searches took an average of 10 hours (using 32 CPU 
multithread node). Benchmarks done by changing the library size, 
scaffold and parameters showed that computational cost (as well as 
memory requirements) scaled with the output library size more than the 
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database size. Thus, when the combinatorial databases inevitably grow, 
the performance of this crucial step will remain stable.  

This, however, arises a concern on the chemical diversity of the 
combinatorial databases have. As all compounds are generated from a 
limited amount of building blocks, molecules are bound to be similar. 
Several studies have shown that the overlap between different 
combinatorial databases is minimal [232], consequently, it would be 
advisable to do the substructure search in more than one database. 
Finally, not all compounds from the database were optimal for drug 
discovery. PAINS and druglike property filtering was still needed before 
docking.  

To validate the compounds we selected two orthogonal biophysical 
assays, DSF and TR-FRET. In DSF a total of 48 compounds showed a 
change in ∆Tm higher than 1ºC, which corresponds to a hit rate of 47%. 
In TR-FRET we obtained 11 compounds that had an IC50 between 1-
100nM. Interestingly, there aren’t any trends pointing at drug derivate 
scaffolds having a higher hit ratio than any computational scaffold. 
Even, in TR-FRET from the 11 compounds that showed an IC50 
between 1-100nM, placing them in a similar range than other BET 
inhibitors that are in clinical phases (JQ1 with 10,7nM, IBET 151 with 
20-100nM and ABBV-075 with 1-2,2nM) [244]. We also assessed the 
chemical diversity of the 11 compounds by comparing them with 
known BRD4 binders from CHEMBL and also a random set of 50.000 
molecules. All the compounds were distributed across the chemical 
space, and not only in areas enriched with known BRD4 binders. This 
indicates that we were able to explore a more diverse chemical space, 
not biased to the “BRD4 Chemical Space”. 

Finally, we have initiated a collaboration with the group of Maria 
Garcia-Alai in the EMBL to perform crystallization with the active 
compounds.  

With this project we showed that the massive chemical libraries offer 
opportunities for finding highly active compounds. Additionally, we 
have demonstrated that a bottom-up approach enables us to explore the 
chemical space with minimal computational resources. This approach 
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could open the path for computational campaigns to aim for lead-like 
affinities directly in the hit discovery phase. Allowing to reduce 
significantly the efforts and shift the attention towards optimization of 
other important properties (e.g toxicity, availability). 
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6.1 GENERAL CONCLUSIONS 

This thesis described the application of novel methodologies in Virtual 
Screening with the aim of discovering bioactive molecules better, more 
effectively, even against challenging targets and novel mechanisms of 
action.  

6.2 SPECIFIC CONCLUSIONS 

1. We developed an automatic pipeline for participation on the 
CELPP Challenge that makes use of knowledge-based restraints to 
improve the docking predictions. The pipeline is able to generate 
predictions for most of the proposed targets as well as obtain poses 
with low RMSD values when compared to the crystal structure. 
Besides, our pipeline highlights some major challenges in the 
automatic prediction of protein-ligand complexes that need to be 
carefully considered in SBDD.   

2. We described the first small molecule inhibitors targeting RANK 
protein. Preliminary results indicate that the compounds are able 
to block the RANKL-dependent and the constitutive activation of 
the RANK signalling pathway.  

3. We described a protocol that combines ultrahigh-throughput 
Virtual Screening with low-throughput high-content assays. We 
tested the approach with PTEN, which led as to describing the first 
allosteric modulators for this protein.   

4. We developed an algorithm to efficiently explore ultra-large 
chemical collections. We show that the bottom-up exploration of 
the chemical space is an efficient approach towards finding potent 
hits in combinatorial libraries. We identified BRD4 inhibitors with 
potencies comparable to advanced drug candidates such as JQ1. 
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5 
if - -16 SCORE.INTER 1.0 if - SCORE.NRUNS  5 0.0 -1.0, 
if - 1 SCORE.RESTR.PHARMA 1.0 if - SCORE.NRUNS  5 0.0 -1.0, 
if - -21 SCORE.INTER 1.0 if - SCORE.NRUNS  15 0.0 -1.0, 
if - 1 SCORE.RESTR.PHARMA 1.0 if - SCORE.NRUNS  3 0.0 -1.0, 
if - SCORE.NRUNS 49 0.0 -1.0, 
2 
- SCORE.INTER -10, 
- SCORE.RESTR.PHARMA 1, 

A. 1 HTSV filter file used for the Virtual Screening of RANK. The first 5 lines 
correspond to the running filters and the last 2 correspond to the writing filters 

  
 

5 
if - -18 SCORE.INTER 1.0 if - SCORE.NRUNS  5 0.0 -1.0, 
if - 1 SCORE.RESTR.PHARMA 1.0 if - SCORE.NRUNS  5 0.0 -1.0, 
if - -23 SCORE.INTER 1.0 if - SCORE.NRUNS  15 0.0 -1.0, 
if - 1 SCORE.RESTR.PHARMA 1.0 if - SCORE.NRUNS  3 0.0 -1.0, 
if - SCORE.NRUNS 49 0.0 -1.0, 
2 
- SCORE.INTER -10, 
-SCORE.RESTR.PHARMA 1 

A. 2 HTSV filter file used for the Virtual Screening of PTEN. The first 5 lines 
correspond to the running filters and the last 2 correspond to the writing filters. 
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A. 3 Characterization of the HCT116 PTEN(+/-), HCT116 PTEN(-/-) and HCT116 
WT Cell lines. a) Western blot. On the left panel the bands correspond to the 
unphosphorilated state of AKT and S6. On the right panel the bands correspond to 
the phosphorilated state of AKT and S6. On both panels are also displayed PTEN 
and vinculine levels b) Fold Change difference in the phosphorilation of AKT 
between the three cell lines c) Fold Change difference in the phosphorilation of S6 
between the three cell lines 

 

 Prot Ab1 Ab2 ECL 

Vinculin 5μg 1/10000 (O.N 4ºC) 1/10000 (1h RT) 1’ 

Tubuline 5μg 1/5000 (30’ RT) 1/5000 (30’ RT) 1’ 

S6 5μg 1/30000 (30’ RT) 1/40000 (30’ RT) 1’ 

pS6 5μg 1/20000 (30’ RT) 1/20000 (30’ RT) 1’ 

AKT 5μg 1/10000 (O.N 4ºC) 1/10000 (1h RT) 1’ 

pAKT 26,6μg 1/2000 (O.N 4ºC) 1/5000 (1h RT) 5’ 

PTEN 20μg 1/2000 (O.N 4ºC) 1/5000 (1h RT) 5’ 

 

A. 4 Western blot conditions used during the Characterization of the HCT116 
PTEN(+/-), HCT116 PTEN(-/-) and HCT116 WT Cell lines. Prot column refers to 
the amount of protein charged for the lecture of each protein. Ab1 column corresponds 
to the dilution of the primary antibody used. Ab2 column corresponds to the dilution 
of the secondary antibody used. ECL corresponds to the minutes of incubation with 
the Thermo Scientific SuperSignal ECL substrate.   
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A. 5 Structure of described PTEN inhibitors. a) Structure of SF1670 b) Structure of 
VO-OH. 

 

 
A. 6 SPR Plot for SF1670. Steady-state response against concentration to determine 
the binding affinity of control compound SF1670 against PTEN. 
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A. 7 SPR plot for VO-OH. Steady-state response against concentration to determine 
the binding affinity of control compound VO-OH against PTEN. There is no 
interaction between VO-OH and PTEN due to the degradation of the compound 
batch. 

 

 

A. 8 SPR plot for Compound 1. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 1 against PTEN. 
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A. 9 SPR plot for Compound 1.2. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 1.2 against PTEN. 

 

 
A. 10 SPR plot for Compound 1.3. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 1.3 against PTEN. 
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A. 11 SPR plot for Compound 2. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 2 against PTEN. The 
response does not saturate and the linear signal is not consistent. RU is in the negative 
range. It was not possible to determine a KD for this compound. 

 

 
A. 12 SPR plot for Compound 3. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 3 against PTEN. 
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A. 13 SPR plot for Compound 4. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 4 against PTEN. 

 
 

 
A. 14 SPR plot for Compound 5. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 5 against PTEN. 
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A. 15 SPR plot for Compound 6. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 6 against PTEN. 
Rmax is double than expected, possible if the stoichiometry is 2:1. 

 
 

 
A. 16 SPR plot for Compound 6, Two binding site Model. Steady-state response 
against concentration to determine the binding affinity of control compound 
Compound 6 against PTEN fitted with a 2:1 binding model. 
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A. 17 SPR plot for Compound 7. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 7 against PTEN. 
Rmax is double than expected, possible if the stoichiometry is 2:1. 

 
 

 
A. 18 SPR plot for Compound 7, Two binding site Model. Steady-state response 
against concentration to determine the binding affinity of control compound 
Compound 7 against PTEN fitted with a 2:1 binding model. 
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A. 19S PR plot for Compound 8. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 8 against PTEN. 

 
 

 
A. 20 SPR plot for Compound 9. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 9 against PTEN. 
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A. 21 SPR plot for Compound 10. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 10 against PTEN. 
Tested at a maximum concentration of 20µM because it precipitates. 

 
 

 
A. 22 SPR plot for Compound 11. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 11 against PTEN. 
Saturation not reached giving higher RU than expected. 
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A. 23  SPR Kinetic profile for compound 11. Kinetic profile of compound 11 against 
PTEN. 

 

 
A. 24 SPR plot for Compound 12. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 12 against PTEN. 
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A. 25 SPR plot for Compound 13. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 13 against PTEN. 

 

 
A. 26 SPR plot for Compound 14. Steady-state response against concentration to 
determine the binding affinity of control compound Compound 14 against PTEN. 
Saturation not reached giving higher RU than expected. 
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A. 27 SPR Kinetic profile for compound 14. Kinetic profile of compound 14 against 
PTEN. The spikes on the signal are due to problems in data collection with the 
instrument. 
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5 
if - -3 SCORE.INTER 1.0 if - SCORE.NRUNS  3 0.0 -1.0, 
if - 2 SCORE.RESTR.PHARMA 1.0 if - SCORE.NRUNS  3 0.0 -1.0, 
if - -6 SCORE.INTER 1.0 if - SCORE.NRUNS  8 0.0 -1.0, 
if - 1 SCORE.RESTR.PHARMA 1.0 if - SCORE.NRUNS 8 0.0 -1.0, 
if - SCORE.NRUNS 15 0.0 -1.0, 
2 
- SCORE.INTER -8, 
- SCORE.RESTR.PHARMA 1, 

A. 28 HTVS filter file used for the fragment Virtual Screening of BRD4. The first 5 
lines correspond to the running filters and the last 2 correspond to the writing filters. 

  



   
 

186 

 
A. 29 Summary of DSF and TR-FRET for JQ1. In the left table are displayed the 
ΔTm at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and 
if any solubility problems were observed for the compound. On the right is depicted 
the Dose-Response curve and the IC50 value obtained with TR-FRET.   

 
A. 30 Summary of DSF and TR-FRET for BC-11D. The initial scaffold for this 
compound is the Computational fragment 1. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the 
Dose-Response curve and the IC50 value obtained with TR-FRET.   
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A. 31 Summary of DSF and TR-FRET for BC-15D. The initial scaffold for this 
compound is the Computational fragment 2.In the left table are displayed the ΔTm at 
1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the 
Dose-Response curve and the IC50 value obtained with TR-FRET.   

 
A. 32 Summary of DSF and TR-FRET for BC-16A. The initial scaffold for this 
compound is the Computational fragment 2. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the Dose-
Response curve and the IC50 value obtained with TR-FRET.   
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A. 33 Summary of DSF and TR-FRET for BC-14E. The initial scaffold for this 
compound is the Computational fragment 2. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the Dose-
Response curve and the IC50 value obtained with TR-FRET. 

 

  
A. 34 Summary of DSF and TR-FRET for BC-12D. The initial scaffold for this 
compound is the Computational fragment 5. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the Dose-
Response curve and the IC50 value obtained with TR-FRET. 
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A. 35 Summary of DSF and TR-FRET for BC-14A. The initial scaffold for this 
compound is the Computational fragment 6. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the 
Dose-Response curve and the IC50 value obtained with TR-FRET.   

 

 
A. 36 Summary of DSF and TR-FRET for BC-14B. The initial scaffold for this 
compound is the Computational fragment 6. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the Dose-
Response curve and the IC50 value obtained with TR-FRET. 
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A. 37 Summary of DSF and TR-FRET for BC-15A. The initial scaffold for this 
compound is the Computational fragment 6. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the Dose-
Response curve and the IC50 value obtained with TR-FRET 

 
A. 38 Summary of DSF and TR-FRET for BC-17C. The initial scaffold for this 
compound is JQ1. In the left table are displayed the ΔTm at 1μM obtained with DSF, 
the IC50 value obtained with TR-FRET at 1.5h and if any solubility problems were 
observed for the compound. On the right is depicted the Dose-Response curve and the 
IC50 value obtained with TR-FRET.   
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A. 39 Summary of DSF and TR-FRET for BC-02E. The initial scaffold for this 
compound is the crystalized fragment in PDB 4LZ6.  In the left table are displayed 
the ΔTm at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h 
and if any solubility problems were observed for the compound. On the right is 
depicted the Dose-Response curve and the IC50 value obtained with TR-FRET.   

 
A. 40 Summary of DSF and TR-FRET for BC-05D. The initial scaffold for this 
compound is the crystalized fragment in PDB 6ZED.. In the left table are displayed 
the ΔTm at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h 
and if any solubility problems were observed for the compound. On the right is 
depicted the Dose-Response curve and the IC50 value obtained with TR-FRET.   
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A. 41 Summary of DSF and TR-FRET for BC-15C. The initial scaffold for this 
compound is the Computational fragment 4. In the left table are displayed the ΔTm 
at 1μM obtained with DSF, the IC50 value obtained with TR-FRET at 1.5h and if any 
solubility problems were observed for the compound. On the right is depicted the Dose-
Response curve and the IC50 value obtained with TR-FRET.   

 
A. 42 Summary of DSF and TR-FRET for BC-07C. The initial scaffold for this 
compound is ABBV1. In the left table are displayed the ΔTm at 1μM obtained with 
DSF, the IC50 value obtained with TR-FRET at 1.5h and if any solubility problems 
were observed for the compound. On the right is depicted the Dose-Response curve 
and the IC50 value obtained with TR-FRET.   
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Abstract: The prediction of how a ligand binds to its target is an essential step for Structure-Based
Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a
ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple
applications in drug design. However, docking programs do not always nd correct solutions,
either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying
the docking performance in real scenarios is essential to understanding their limitations, managing
expectations and guiding future developments. Here, we present a fully automated pipeline for pose
prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP)
Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to
automatically mine and exploit pre-existing data, dening—whenever possible—empirical restraints
to guide the docking process. We prove that the pipeline is able to generate predictions for most of
the proposed targets as well as obtain poses with low RMSD values when compared to the crystal
structure. All things considered, our pipeline highlights some major challenges in the automatic
prediction of protein–ligand complexes, which will be addressed in future versions of the pipeline.

Keywords: docking; D3R; automated pipeline; pocket detection; binding mode prediction

1. Introduction

Computational approaches have proven to be a valuable addition to wet-lab tech-
niques in the eld of drug discovery [1]. Amongst them, we can nd Structure-Based Drug
Design (SBDD) methods, where the three-dimensional structure of biomolecules is used
to identify small molecules that can interact with them. Predicting how a ligand binds
to a target is an essential step for SBDD, and molecular docking has become a standard
tool for drug discovery [2,3]. The outcome of docking is a set of proposed positions and
conformations of the ligand in the binding site (poses), each with an associated score. These
models can be used to interpret and guide ligand design well before the structure of the
protein–ligand complex can be experimentally determined.

Nonetheless, docking programs do not always nd accurate ligand poses when com-
pared to the experimental solution. There are still challenges that need to be addressed such
as receptor exibility, proper accounting of solvation effects or better scoring functions [3].
Owing to the potential and relevance of docking for SBDD, there has been a substantial and
sustained effort to improve the technique, and many docking tools have been developed,
such as GLIDE [4], rDock [5], GOLD [6] and AutoDock [7]. Because different docking
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programs use different sampling strategies and scoring functions, it is important to be
able to evaluate and compare the performance between them. To that aim, test sets are
available to evaluate the performance of docking and scoring methods in binding mode,
binding afnity or virtual screening tasks. Regarding the former application, multiple
assessments have been performed with different evaluation benchmarks [8–13]. One of the
most recent and complete studies was conducted by Wang et al. (2016), who evaluated
ten different docking programs, including ve commercial programs and ve academic
programs using a collection of 2002 protein–ligand complexes from the PDB. Concurrently,
a strong emphasis has been put on generating highly rened test sets, which only include
high-quality structures of relevant protein targets containing drug-like ligands. Some of
the most-used validation datasets are CCDC/Astex [14] and Iridium [15]. Such datasets
and comparative studies provide a comprehensive understanding of the advantages and
limitations of each docking program and help users make more appropriate choices among
available methods. However, they suffer from an important limitation: in an attempt to
keep the comparison across docking programs fair, the authors of the comparative studies
use standard parameters, whereas in real-life applications, advanced users introduce sub-
stantial bias to improve performance. In consequence, such comparative studies reveal the
intrinsic capabilities of the programs, which is quite different from how they are actually
used in typical drug-discovery settings. In addition, as relatively small sets of well-curated
protein–ligand complexes become widely adopted as test-sets, there is a risk of biasing
docking programs towards those specic datasets.

The challenges organised by the Drug Design Resource (D3R) represent a welcome
departure from this tendency. D3R aims to provide benchmark datasets and blinded
challenges to assist in the evaluation and improvement of computational algorithms, giving
participants the freedom to use the methods as they see t, but encouraging the use of
reproducible protocols. Besides the annual Grand Challenge, D3R also organises the CELPP
Challenge (Continuous Evaluation of Ligand Pose Prediction) [16]. Participants in CELPP
are encouraged to develop an automated workow to generate binding mode predictions
for different targets that are delivered weekly.

In this article, we describe the development of the rst version of a pipeline for
participation in the CELPP Challenge, as well as validation results. The main focus of our
workow is to adopt a knowledge-based approach whenever possible, trying to extract
data from similar systems that are already deposited in the PDB. Depending on the amount
of information available, the docking algorithm may benet from knowledge about the
location of the binding site, specic pharmacophores or even the binding mode of specic
substructures. We will describe the different options, analyse their respective performances
and identify aspects that need further improvement.

2. Results and Discussion

The goal of this work was to create an automated workow for protein–ligand pose
prediction. It must be able to extract information from related complexes deposited in the
PDB and to use it in different docking protocols. Throughout this work, a test set consisting
of structures released in previous weekly CELPP challenges was used to design the protocol
and for benchmarking.

2.1. Overview of the Pipeline

One of the key aspects of this work is the automation of the process; therefore, all
the steps are gathered in a combination of python, SVL and shell scripts and divided into
individually functional modules corresponding to the different phases of the protocol
(Figure 1). There are four phases summarized here (see Method section for further details):

Phase 1: Protein analysis. Download the sequence of the query protein, identify structures of
homologous proteins in the PDB and ligands that bind to them (this is performed through a query in
3decision [17]).
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Phase 2: Ligand analysis. Compute a similarity score and maximum common substructure
between the query ligand and all ligands retrieved in Phase 1.

Phase 3: Pharmacophore generation. Derive, whenever possible, a pharmacophore for the
ligands retrieved in Phase 1.

Phase 4: Docking. Three docking strategies are used: tethered docking (when large maximum
common substructure (MCS) is shared with a reference ligand), docking with pharmacophoric
restraints (if a pharmacophore could be dened in Phase 3) and docking without any restraints (in
all cases).

Additionally, the process includes communication with the CELPP server to download
the queries and upload the predictions.

.

Figure 1. Workow employed for pose prediction.

2.2. Workow Input Data, Data Structure and Output

Each weekly CELPP data package is downloaded as a gzipped tar le that contains
one directory per target. The target is a protein dened by its primary sequence. Within
each directory, there is a set of structures that have the same or highly similar sequences to
the target. They are provided as potential receptor structures for docking and contain the
highest resolution unbound candidate protein (hiResApo), the highest resolution ligand-
bound (hiResHolo), the candidate protein that contains the ligand with the largest MCSS
to the target ligand (LMCSS), the candidate protein that contains the ligand with the
smallest MCSS (SMCSS) and the candidate protein that contains the ligand with the highest
structural similarity (based on Tanimoto score and Daylight ngerprints, as implemented
by RDkit [18]) to the target ligand (hiTanimoto). Then, we nd the SMILES [19], MOL le
and INCHI key [20] corresponding to the target ligand. Finally, the suggested binding
pocket centre is also given. However, our pipeline includes a cavity detection phase, so the
suggested binding pocket centre will not be used. The expected output from participants is
a docked pose of the target ligand with each suggested candidate structure.

2.3. Pipeline Development

2.3.1. Blast Results

Before starting the implementation of the pipeline, we analysed the targets from
previous CELPP weeks (test set) to check how often they had high similarity homologues
already deposited in the RCSB PDB. For this purpose, we ran a blast search against the
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RCSB PDB with two different identity thresholds: 80% and 95%. From this step, we
could conclude that 100% of the targets had some close homolog structure available (>80%
identity) within the RCSB PDB prior to its release. When looking for proteins with an
identity higher than 95%, we obtained varying results across weeks with an average of
77, 1% of positive cases (Figure 2A). This mirrors the trends in the PDB, which is highly
redundant in protein composition [21]. In light of the results, we set the identity threshold
for blast searches in our automatic pipeline to 80%.

(A) (B) (C)

Figure 2. (A) Histogram representing the percentage of targets for which we obtained blast results
with and identity higher than 80% (blue) and 95% (marron) (B) Distribution of Tanimoto MACSS
score and (C) Tanimoto MCSS scores obtained for the ligands in the test set.

2.3.2. Ligand Similarity

We analysed the similarity between the ligands provided by CELPP and the ligands
obtained by 3decision from similar proteins. After running the 3decision protocol, we
were able to obtain sets of ligands for 75% of the proteins in the test set. Using MACSS
keys ngerprints, we obtained a mean Tanimoto score of 0.6 with 0.008 and 0.96 being the
minimum and the maximum scores obtained, respectively (Figure 2B). We also took into
account the size of the compared ligands and their maximum common substructure with a
complementary similarity measure, the Tanimoto MCSS [22]. Its value distribution is rather
different from the Tanimoto MACSS, (Figure 2C) with average, minimum and maximum
values of 0.42, 0.1 and 0.947, respectively.

2.3.3. Docking Method Selection

Using the same target, we compared the performance of the three different docking
methods (tethered, pharmacophoric restraints and free) and checked if there was any kind of
correlation between the docking RMSD and the Tanimoto similarity to the reference ligands.
RMSD values were calculated using the sdrmsd utility from rDock. The mean RSMD
values for tethered docking, docking with pharmacophoric restraints and free docking
were 2.81 Å, 2.15 Å and 2.19 Å, respectively. Thus, while the use of knowledge-based
restraints improved the predictions in individual cases (Figure 3), the overall performance
was not better (Table 1). In the case of tethered docking, our analysis showed that it should
only be applied when the Tanimoto MCSS is larger than 0.65, after which point almost all
predictions were correct (Figure 4A). Unfortunately, this applied to a small proportion of
the cases (15%). Surprisingly, free docking also produced improved predictions for this set
of ligands, which might be due to the similarity with the ligand of reference used to dene
the cavity or to the protein pre-organisation (quasi self-docking). The plot also showed
that using tethered docking when the MCSS is too small leads to worse predictions than
free docking, explaining the apparently worst performance of tethered docking compared
to free docking when considering the entire test set. Regarding pharmacophore-guided
docking, contrary to our initial expectations, we found that there was not a signicant
difference in total mean RMSD between restrained and free docking (2.15 Å and 2,19 Å,
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respectively). This could, in part, be related to the cavity denition process, which already
limits the docking space and may leave a small margin for improvement. However, it also
suggested that the choice of pharmacophoric restraints was sub-optimal and had to be
re-optimised. Thus, we introduced an improved pharmacophore elucidation protocol (see
Methods and results below).

Figure 3. Differences in best pose predicted for target 5p8y from CELPP week 33. Image
(A) corresponds to free docking with an RMSD of 4.09 Å. Image (B) is the best prediction obtained
with pharmacophoric restraints (1.74 Å). Image (C) corresponds to the best pose using tethered
docking, obtaining an RMSD of 0.95 Å. The red substructure indicates the tethered atoms.

Table 1. RMSD results obtained using different docking methods.

Free Docking Tethered Docking Ph4 Docking

Mean 2.19 2.81 2.15
Median 1.96 1.71 1.63
Min 0.43 0.33 0.39
max 7.41 15.07 7.41

RMSD values in Å.

2.3.4. Pipeline Effectiveness and Processing Time

The above-described pipeline performance was tested with a collection of pre-released
CELPP weeks as well as with the weekly released CELPP set. The execution time of the
whole protocol took an average 6.5 min per target. The total execution time varied each
week depending on the number of released targets (26 to 68 in the period considered here)
and the connection speed to 3decision (from 22 s to 3 min per target). The 3decision protocol
could not obtain reference structures for 20% of the targets due to some internal errors
of a beta version of the program or because there were no ligands found in druggable
pockets from similar proteins. This last event was relatively rare, as it accounted for 25% of
times that we were not able to obtain results from 3decision, or 5% of the total. Finally, the
similarity analysis to the docked ligand poses took 4.8 min per target on average (Table 2).

2.4. Pipeline Validation

To validate the pipeline, we ran it prospectively for a total of 12 weeks. Table 3
shows that the pharmacophoric restrained protocol was the most-used method (51% of
the cases). On the other hand, free docking and tethered docking were applied in much
lower percentages of cases, 35% and 13.01%, respectively. The mean RMSD value for
free docking was 6.2 Å, 5.1 Å for pharmacophore-guided docking and 2.8 Å for tethered
docking. However, there is a bigger difference when looking at the proportion of correctly
predicted cases by each method. For free docking, only 7.9% of the cases had an RMSD
value lower than 2 Å, for pharmacophore guided docking this value increased to 21.4%,
and in tethered docking we reached 31.5% of correct poses.
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Figure 4. Relation between RMSD and the MCSS score using (A) the test set and (B) the validation
set. Free docking results shown in red, docking with pharmacophoric restraints in green (version 1)
and yellow (version 2; only applied to the validation set) and MCS-tethered docking in blue.

Table 2. Statistics of the pipeline implementation CELPP weeks.

No. of Targets 3decision Time Docking Time Total Time

Week1 31 34 103 137
Week2 44 103 174 277
Week3 27 10 113 123
Week4 43 118 176 294
Week5 29 35 153 188
Week6 40 182 265 447
Week7 68 234 123 357
Week8 26 102 111 213
Week9 28 126 247 373
Week10 48 158 382 540
Week11 50 193 270 463
Week12 26 137 716 853
Mean 38 119.33 236.08 355.42

Time measured in minutes.

The values obtained with the validation set were much worse than the ones obtained
using the test set. The main difference between the sets as that the automatic pipeline for
retrieving the cavities using 3decision was not yet automatized during the development
stage. In consequence, all the cavities were visually inspected and selected using the
3decision webserver. By contrast, the automatic scripts used at the validation stage to
identify the docking cavity and retrieve aligned ligands from 3decision were error-prone.
We also had to consider the possibility that the test set was not representative enough of
the whole range of systems that can be found in the CELPP Challenge. Nonetheless, the
sources of errors and the difference in performance between the test set and validation will
be reviewed in the next section.
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Table 3. RMSD values and percentage of cases for each docking protocol.

Free Docking Ph4 Docking Tethered Docking

Mean 6.2 5.1 2.8
Std 6.2 3.4 1.6
Min 1 0.5 0.7
Q1 3.9 2.2 1.6
Q2 6.3 4.7 2.3
Q3 8.2 7.7 3.6
max 13.6 13.9 12.7
≤2Å 7.9% 51% 13%

Application rate 35% 51% 13%
RMSD values in Å.

After analysing the prospective results, we wanted to review if the algorithm for
docking protocol selection derived from the test set was the most adequate one. For this
purpose, we applied all three protocols to all the validation set and compared the best
RMSD obtained for the three methods (Figure 4). We could nd some differences regarding
the accuracy of the docking methods in the test set and validation sets. Tethered docking
yielded better results than free docking when MCSS score ≥ 0.5 on the validation set
(vs. a marginal improvement on an MCSS score ≥ 0.65 for the test set). Nonetheless,
tethered docking was still the method that gave the worst results in low MCSS score values
(MCSS < 0.3). As for the pharmacophore-guided docking, during the validation phase, we
improved the pharmacophoric elucidation protocol that provided consistently better results
than in the test set (see Methods). It also provided improved results compared to free
docking in the 0.5 to 1 MCSS score range, with a performance on par with tethered docking.
In the 0.25 to 0.5 MCSS score range, pharmacophore-guided docking and free docking
performed at a similar level. At lower MCSS score values, free docking outperformed
pharmacophore-guided docking.

2.5. Challenges to Address

In this section we will describe the most important factors affecting the predictive
performance of our pipeline. Figure 5 depicts the main issues and challenges to overcome
in the CELPP challenge, which will be treated in more detail in the following sections.

Figure 5. Overall view of validation set cases.
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2.5.1. Automated Protocols

When testing a docking program or workow, a crucial component that will have
a big impact in the predictions is the choice of dataset [13]. Usually, the datasets to test
docking programs, such as DUD-E [23] or Astex [14], are highly curated datasets, whilst
the CELPP receptors are selected automatically and are not manually prepared by experts.
Additionally, we have to take into account that CELPP is designed as a cross-docking
challenge, which means that we have the added problem of protein exibility, as the used
receptor may not be in the most-tting position for the ligand. Finally, participants are
given, each week, an average of 40 systems to predict and a limited amount of time (3 days),
which implies that all the processes need to be automatized, leaving virtually no time for
the visual inspection or study of the targets.

In consequence, the pose prediction performance is lower than for other challenges.
The median prediction RMSD for the best categories (LMCSS and hiTanimoto receptors)
is around 5 Å, being only 20% of the pose predictions accurate within 2 Å [17], whereas
reported performance for curated datasets regularly reaches the 80% [13]. Clearly, the latter
reects a best-case scenario, which means that a signicant effort to improve automated
target structure selection and preparation will be necessary in order to attain better results
in CELPP.

2.5.2. Scoring Challenges

Over the past years extensive efforts have been dedicated to improving the existing
scoring functions, but nowadays the accuracy of most scoring functions is still a limiting
factor in many drug design projects, and results require careful evaluation and post-
docking analysis.

To assess the accuracy of the docking score, we selected a subset of 446 submitted cases
and checked if the submitted pose is the one with the lowest RMSD compared to the crystal
structure. In 208 out of 446 total cases (46.6%) the docking protocol was able to produce a
correct pose (RMSD lower than 2 Å), but in 75 of them, the pose with the lowest RMSD
was not ranked as the best solution by rDock’s intermolecular score (SCORE.INTER). This
translates to a 64% success rate when the correct pose can be generated. Note that this
is close to the 76% success rate obtained on the CCDC-Astex Diverse Set, a standard test
set for binding mode prediction where correct predictions can be generated for 99% of
cases [5].

Figure 6 shows the median RMSD obtained with the different receptors for the sub-
mitted pose and for the best pose generated by the pipeline. The median RMSD for the
submitted pose was around 4.18 Å, whereas if we considered the best prediction, the mean
decreased to 2.9 Å and the median to 2.4 Å. From these results, it is evident that the pipeline
would benet greatly from a complementary method to re-score the docking poses. An
approach that presented better results in other blind challenges [24] was the combination of
the docking scores with Dynamic Undocking (DUck) [25,26] simulations of the top-scoring
poses. By combining both methods, we expected to be able to obtain a more accurate pose
ranking for challenge submission.

2.5.3. Sampling Challenges
Cavity Selection

The CELPP Challenge is designed as a pose prediction challenge and to assess the
inuence of receptor choice in docking performance. For that reason, the coordinates for
the centre of the cavity are provided by the organisers. Nonetheless, we wanted to go one
step further by creating a pipeline of general applicability and add a cavity selection step
to our protocol, thus avoiding the need to pre-dene the binding site. The cavity detection
is performed automatically by 3decision, and all the possible cavities are retrieved and
considered for docking. The method that 3decision uses for cavity detection is fpocket, a
pocket detection algorithm based on Voronoi tessellation [27]. When more than one cavity
is detected, our pipeline selects the cavity based on the similarity of the ligands retrieved
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by 3decision with the target ligand. On average, 3.2 cavities were detected per target, but
in 67 cases (14%), the correct cavity was not detected, and so the docking was carried out
in the wrong cavity. Figure 7 shows an example where 3decision only detected the cavity
represented by the grey surface, missing the actual cavity represented by the green surface.
In 9% of cases, the failure corresponded to shallow cavities on the protein surface that are
not detected by the fpocket algorithm.

Figure 6. Median RMSD for the submitted pose compared to the best pose generated by the pipeline.
The CELPP rDock workow values are obtained from the D3R website (https://drugdesigndata.org/
about/celpp2-charts accessed on 1 May 2021).

Figure 7. PDB 6ok9 with the pocket detected by 3decision represented by the purple surface and the
correct pocket represented by the green surface.

Another reason for not detecting the cavity correctly (14% of cases) is that the ligands
bind at the interface of a dimer, but only one protein is reported in the challenge. Note that,
unlike other docking challenges or scenarios, the receptors provided by CELPP are not
manually curated. They rely on a fully Automated Pipeline to perform that task, which
can sometimes lead to the selection of inappropriate structures (e.g., giving a monomer
instead of a dimer) for obtaining an accurate ligand pose [17]. Figure 8A shows one such
example. The remaining failures in this category were attributed to an error with the API
when downloading the analysis results.
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(A) (B)

Figure 8. (A) hiTanimoto receptor for target 6j65. The solution selected by the pipeline is represented
as sticks. (B) Protein dimer in PDB code 6j65. The crystalized ligand is represented as sticks. For both
gures, the reference cavity provided by 3decision is shown as transparent surface.

Docking Method Selection

In our protocol we implemented three different docking strategies that were applied
depending on the different set thresholds. From the 305 cases of the validation set where
we did not obtain the correct pose, in 78 cases the correct binding pose had been correctly
predicted by a different docking strategy.

As shown in Table ??, from those 78 cases, only in 9 cases the correct solution was
found by free docking instead of a form of guided docking. By contrast, 26 cases could
have been correctly predicted if a form of guided docking had been used instead of free
docking. This analysis also reveals that the two forms of guided docking employed here
are not equivalent: 27 incorrect pharmacophore-guided docking solutions were correctly
predicted by tethered docking. Vice versa, 16 incorrect tethered docking solutions were
correctly predicted by pharmacophore-guided docking. One such example is shown in
Figure 9. These results suggest that all the binding poses generated by the different docking
protocols should be considered, then rescored with a post-docking method to identify the
best one [28].

Table 4. Comparison between the submitted docking method vs. the method that yields the best result.

Best Prediction

Free Ph4 Tethered

Submitted
Free 6 20
Ph4 8 27

Tethered 1 16

Receptor Flexibility

As pointed out by many previous studies [29], receptor exibility is an important
factor that can alter docking predictions. Both small changes on side-chain orientation
and bigger structural changes can lead to incorrect predictions [30]. We could attest to
this phenomenon when docking against the different proposed receptors. For each target,
the docking protocol was run using all the receptors provided by the organisers. Figure 6
displays the validation results categorised by the receptor. The best-performing receptor
was LMCSS, which corresponds to the one hosting the ligand most similar to the query.
SMCSS obtained the worst results, with a median RMSD of 5.9 Å.
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(A) (B)

Figure 9. Predictions for PDB 6dfo and hiTanimoto Receptor using: (A) Pharmacophoric restraints.
Predicted pose in orange. Pharmacophore represented as spheres. (B) Tether docking. Predicted pose
in blue. Reference ligand in pink. In both cases, the crystallographic solution is shown in white for
reference. The RMSD values with the predicted poses are 1.2 Å and 3.3 Å, respectively.

As an example, Figure 10 shows two cases where the differences in side-chain orien-
tation of residues from the binding site are interfering with the correct binding position.
In the case of 6pl1 (Figure 10A), there is a difference in the conformation of a loop in the
binding site of all the receptors used that cause Phe 669 (in blue) to block part of the binding
site obtaining a totally different cavity. It is established that, by using a variety of receptor
conformations, we increased the probability of generating a correct ligand pose, but se-
lecting the optimal docking cavity remains a major challenge for docking methods [31,32].
This result also highlights the need to select multiple binding mode predictions, which
should be re-scored with a more rigorous computational methodology.

(A) (B)

Figure 10. (A) Differences in binding site structure organisation between 6pl1 crystal and the selected
hiTanimoto receptor by CELPP; the correct ligand pose is represented in beige, (B) Differences in site
conformations for target 6a6k between receptor hiResHolo in purple, the crystal structure in white
and hiTanimoto receptor in yellow. The ligand crystal pose is represented in green and in light purple
is the pose obtained using the hiResHolo receptor.

Other Molecules in the Binding Site

This pipeline was intended for general applicability, and for this reason, during the
cavity preparation process all the ligands and co-solvents were removed, and only the
coordinates of the receptor were kept. However, in some systems, especially enzymes,
cofactors can have an important role in determining the ligand binding mode. Two such
examples are provided in Figure 11. Lastly, the fact that there can be other molecules in
the binding site can interfere when generating the pharmacophoric restraints. As they are
in the same cavity, our protocol included them in the list of retrieved ligands from similar
proteins, and those are considered in the pharmacophoric restraint generation pipeline.
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(A) (B)

Figure 11. (A) Interaction of ligand G0D (green) with heme group (orange) in PDB 6DA2 [33].Ligand
belongs to a series of analogues with pyridine as a heme-ligating head that works as an inhibitor
of CYP3A4 by decreasing the heme reduction rates [33]. (B) Interaction of ligand EV8 (green) and
NADP (pink) in PDB 6gd0. In yellow dashed lines are H-bond interactions and in green dashed lines
π interactions.

3. Materials and Methods

3.1. Candidate Preparation

For each candidate structure, co-crystallized solvent and ligands were removed using
Schrödinger’s split structure tool [34], and only the coordinates of the receptor were kept.
Subsequently, the protein preparation tool from MOE [35] was used to x problems within
the crystal structure, and the Protonate 3D tool [36] was used to assign protonation states to
the protein (assuming pH 7.0). All the les were saved in Tripos MOL2 format, as required
by the docking program, rDock [5]. All the above steps were integrated in an SVL script for
automation purposes.

3.2. Ligand Preparation

We took the query ligand in SMILES string format and used the LigPrep tool from
Schrödinger [37] to calculate the 3D structure with the proper topology; tautomerism; bond
orders and geometry of bonds, angles, dihedrals and rings. Additionally, the ionizable
groups were protonated at pH 7 with a threshold of ±1 pH unit. All ligands were saved in
SDF format.

3.3. Selection of Similar Proteins, Druggable Pockets and Ligand Retrieval

One of the pillars of the whole process was being able to select good reference systems
from which we could extract some restraints to guide our docking predictions. For this
purpose, we integrated into the pipeline a protocol based on the 3decision tool from
Discngine; 3decision [17] is a web-based platform that centralizes all structural knowledge
(including all the RCSB PDB dataset) to perform multiple kinds of analyses. We queried
3decision using a dedicated REST API endpoint. Using as input the target sequence in
FASTA format, a blast against the database was performed to select those proteins that
share a high identity (I% > 80%). The 3decision database also contains all pre-computed
druggable pockets as predicted by the fpocket cavity detection tool [27]. The pockets
are aligned based on the sequence and superimposed to the query structure. Finally,
we exported all the ligands found in the aligned pockets in an SDF le, which was also
converted to SMILES format using Openbabel [38]. In the case where multiple druggable
pockets were detected, the corresponding docking protocol was applied to every pocket.
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3.4. Ligand Similarity and Maximum Common Substructure Calculation

After retrieving the ligands found in similar pockets, a similarity analysis was per-
formed between the query ligand and the list of retrieved ligands using MACCS keys
ngerprints and the Tanimoto coefcient scoring, which has been identied as one of best
metrics for similarity calculations [39]. The Tanimoto coefcients as well as the ngerprints
were calculated using rdkit [19].

Themaximum common substructure (MCSS) between the target ligand and the ligands
retrieved from similar proteins was calculated using RDKit’s FindMCS function [19]. As a
complementary measure of similarity between the ligands, and also working as a method to
evaluate the robustness of the MCSS, a Tanimoto coefcient based on MCSS was calculated
using Equation (1) [22].

TanimotoMCSS =
NAB

(NA + NB)− NAB
(1)

where NA and NB are the number of heavy atoms in molecules A and B, respectively,
and NAB is the number of heavy atoms in the MCSS. The TanimotoMCSS can have values
between 0 and 1, 1 being the value obtained when two molecules are identical.

3.5. Generation of Pharmacophoric Restraints

Ligand-based pharmacophore modelling has had a great impact in drug discovery [40].
In this work, this strategy was used to extract common chemical features from the aligned
ligands retrieved by 3decision before elucidating the pharmacophores. The Align-it tool
from Silicos-it [41] was used to generate a combination of pharmacophore points for
each molecule in the set. In this work two different versions of the protocol for the
generation of a consensus pharmacophore were tested. In the rst version, after the
generation of the pharmacophoric points for each molecule, the features that were common
between molecules were selected and ranked by number of appearances, and then the two
highest ranked features were selected and used as mandatory pharmacophoric restraints for
docking. In the second Version, the ligands were rst clustered based on similarity (MACCS
ngerprints and Tanimoto similarity of 0.9). From each cluster, the ligand corresponding
to the centroid was selected, thus removing redundancy and obtaining a diverse set of
ligands, and then the pharmacophoric points were generated. From here, only the most-
representative points (those shared by more than 45% of the ligands) were considered
as mandatory restraints. Points shared by between 20% and 44% of the ligands were
considered optional restraints. For the optional restraints, at least one of them needed to be
fullled during the docking process.

3.6. Molecular Docking

To perform all the docking processes, we used rDock [5], a fast, versatile and open-
source docking program. To run rDock, we needed the prepared receptor structure and a
denition of the binding site. To dene the binding site in this work, we chose the reference
ligand method with rDock’s default parameters. From the pool of retrieved ligands, we
selected as a reference ligand the one having the maximum sum of the MACCS Tanimoto
similarity score and TanimotoMCSS score. This combined score implies a similar ligand and
also a similar size to the target ligand. As a result, the cavity size was adapted to the query
ligand, adding another restriction level to the docking process.

After ligand preparation, rDock is able to explore exocyclic bond rotations on the y
using a genetic algorithm together with rotations and translations. Conveniently, rDock
can perform free docking as well as different types of restraint docking. Using rDock
capabilities, our pipeline could use three different docking protocols, depending on the
characteristics of the system and the available information. If we found a good reference
ligand (TanimotoMCSS > 0.5), then the pipeline would choose tethered docking, xing
the MCSS with the sdtether utility. Otherwise, if there was a sufcient number of diverse
ligands to extract a pharmacophore (>5), a pharmacophoric restraint docking was chosen
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instead. Finally, unrestrained docking was used for the remaining cases. All the docking
predictions used the standard rDock docking protocol (dock.prm).

3.7. Pose Selection

The output from the pipeline was a set of poses generated by the docking program
for each candidate structure in an SDF le. Then, the poses were sorted by rDock’s
intermolecular score (SCORE.INTER), which accounts for the protein–ligand interaction’s
free energy. Formally, solutions should be sorted based on the total score, which accounts
for the intramolecular energy as well (SCORE.INTRA + SCORE.INTER), but it has been
shown that the intramolecular term bears a large error and can introduce more noise than
signal to the predictions [42]. Using sdsort, the best pose was selected and saved in an SDF
le. If more than one cavity was detected, this selection protocol was then applied to each
cavity. Thereafter, the cavities were ranked based on the MCSS score obtained during the
Ligand similarity and MCSS calculation, and then the best poses from each cavity were
ranked by rDock’s SCORE.INTER. The best scoring pose from the top scoring pocket was
then selected for submission. Finally, the les were transformed to the format required by
CELPP submission rules: the ligand pose in MOL format and the receptor in PDB format.

4. Conclusions

Quantifying the performance of docking software in real scenarios is essential to
understanding their limitations, managing expectations and guiding future developments.
With the CELPP Challenge, D3R aimed to provide a fast-growing validation set that better
captures all the complexity in a real drug-discovery setting. Here we presented an initial
version of our pipeline for participation on the CELPP Challenge, which applies different
knowledge-based docking approaches depending on the already available information
on PDB.

To provide a baseline performance, the CELPP team developed four workows based
on different docking programs, one being rDock. The rDock workow represents a default
implementation of themethodwithout any optimisation and using the cavity dened by the
challenge. Our protocol had the added challenge of detecting the cavity automatically, but
when we considered only the cases where the cavity was correctly predicted, we observed
a signicant performance of our protocol relative to the baseline, with improvements in the
median RMSD value ranging from 1.0 Å to 2.6 Å, depending on the docking cavity (Fig-
ure 6). This conrms that gathering information from already-deposited complexes in PDB
and transforming them into the appropriate restraints benets the docking process greatly.

Our nal goal was to evolve this platform into a docking server where more rigorous,
but also more computationally demanding methods, could be applied (e.g., molecular
dynamics). Nonetheless, there are some additional points that need to be revised. The rst
one is cavity detection and characterization. For our pipeline being able to identify possible
binding sites for the majority of targets, 3decision has proven to be a valuable tool. However,
there are some cases where the 3decision protocol is not able to retrieve the correct pocket
because they are shallow cavities or the receptor structure is ill-dened. In this rst version
of the pipeline, targets where there is no pocket information are neglected, and no docking
protocol is applied. For these situations, we could use a local implementation of fpocket [38]
to check whether there are, in fact, no possible druggable cavities. Another option would
be using molecular dynamics with co-solvent/water mixtures (MDmix) [43,44] to identify
possible binding sites. Nonetheless, we would like to add the option of taking the cavity
coordinates as a reference. With this, we would separate the cavity-nding problem from
the docking problem, reduce execution time and increase the predictive power when the
binding site is already known.

A second point to revisit is the choice of receptor structure. As discussed, protein
exibility is an important aspect to consider in a drug-discovery setup. Proteins can adapt
their structures to the bound ligand, so using an apo structure or one in a complex with a
very different compound degrades the performance of the docking program. One way to
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mitigate this effect would be to use different conformations of the receptor and select the
one with the better score as the optimal structure [45].

A third aspect is the management of ‘third-party’ molecules in the binding site, namely
cofactors and water molecules. In this initial version of the pipeline, all systems are
processed and prepared in the same way, stripping the binding site of all non-protein
molecules. However, we detected several cases where docking failed owing to missing
cofactor molecules that should be considered part of the receptor. This can be solved with
a curated list of cofactors that should not be removed. Water molecules are frequently
found at the protein–ligand interface, mediating hydrogen bonds between the partners.
By keeping these structural waters on the binding site, the ligand pose predictions can be
more accurate.

We will also continue to monitor the performance of restrained and unrestrained
docking in prospective CELPP predictions. As previously shown, by using the MCSS score,
we are able to determine which is the docking method that performs best for each case.
Initially, we applied a rather restrictive cutoff of 0.65, which included only 13% of the total
cases. After considering all the participation cases, we were able to determine better ranges
of applications for each type of docking protocol, which presently is set to 0.5 and includes
31% of cases.

As far as the creation of the pharmacophores, in cases where, due to a lack of pre-
existing information when ligand-based pharmacophore cannot be extracted, we could
make use of hot spots derived from the structure. Such hot spots can be identied by their
ability to bind small organic co-solvents [43,46]. By performing molecular dynamics with
co-solvent/water mixtures (MDmix), we can identify binding sites and hot spots [47] that
could be used as pharmacophoric restraints for docking. The addition of this methodology
to our workow would also allow us to assess the druggability of the pockets selected
by 3decision.
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3. Śledź, P.; Caisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol. 2018,

48, 93–102. [CrossRef] [PubMed]
4. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.;

Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking
Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2022, 23, 4756 16 of 17

5. Carmona, S.R.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A.B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R.E.;
Morley, S.D. rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Comput.

Biol. 2014, 10, e1003571.
6. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for exible docking. J.

Mol. Biol. 1997, 267, 727–748. [CrossRef]
7. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efcient

optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]
8. Perola, E.; Walters, W.P.; Charifson, P.S. A detailed comparison of current docking and scoring methods on systems of pharmaceu-

tical relevance. Proteins Struct. Funct. Bioinform. 2004, 56, 235–249. [CrossRef]
9. Chen, H.; Lyne, P.D.; Giordanetto, F.; Lovell, T.; Li, J. On Evaluating Molecular-Docking Methods for Pose Prediction and

Enrichment Factors. J. Chem. Inf. Model. 2005, 46, 401–415. [CrossRef]
10. Warren, G.L.; Andrews, C.W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.;

Senger, S.; et al. A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 2005, 49, 5912–5931. [CrossRef]
11. Cross, J.B.; Thompson, D.C.; Rai, B.K.; Baber, J.C.; Fan, K.Y.; Hu, Y.; Humblet, C. Comparison of Several Molecular Docking

Programs: Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model. 2009, 49, 1455–1474. [CrossRef]
12. Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse

set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016,
18, 12964–12975. [CrossRef]

13. Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Mol. Des. 2012,
26, 775–786. [CrossRef]

14. Hartshorn, M.J.; Verdonk, M.L.; Chessari, G.; Brewerton, S.C.; Mooij, W.T.; Mortenson, P.N.; Murray, C.W. Diverse, high-quality
test set for the validation of protein−ligand docking performance. J. Med. Chem. 2007, 50, 726–741. [CrossRef]

15. Warren, G.L.; Do, T.; Kelley, B.P.; Nicholls, A.; Warren, S.D. Essential considerations for using protein–ligand structures in drug
discovery. Drug Discov. Today 2012, 17, 1270–1281. [CrossRef] [PubMed]

16. Wagner, J.R.; Churas, C.P.; Liu, S.; Swift, R.V.; Chiu, M.; Shao, C.; Feher, V.A.; Burley, S.K.; Gilson, M.K.; Amaro, R.E. Continuous
Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking. Structure 2019, 27, 1326–1335.e4.
[CrossRef] [PubMed]

17. Le Roux, E.; Schmidtke, P. 3Decision (Version 2021.3.1) [Computer Software]. Discngine. Available online: https://3decision.
disngine.cloud (accessed on 31 March 2022).

18. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem.

Inf. Comput. Sci. 1988, 28, 31–36. [CrossRef]
19. Landrum, G.; Kelley, B.; Tosco, P.; Vianello, R.; Turk, S.; Swain, M.; Pahl, A.; Fuller, P.; Wójcikowski, M.; Sforna, G.; et al.

rdkit/rdkit: 2016_09_4 (Q3 2016) Release. 2017. Available online: https://zenodo.org/record/268688#.Ymc9o9pByUk (accessed
on 5 February 2017).

20. Heller, S.R.; McNaught, A.; Pletnev, I.V.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC International Chemical Identier. J. Chemin.

2015, 7, 1–34. [CrossRef]
21. Khazov, K.; Madrid-Aliste, C.; Almo, S.C.; Fiser, A. Trends in structural coverage of the protein universe and the impact of the

Protein Structure Initiative. Proc. Natl. Acad. Sci. USA 2014, 111, 3733–3738. [CrossRef] [PubMed]
22. Boström, J.; Hogner, A.; Schmitt, S. Do Structurally Similar Ligands Bind in a Similar Fashion? J. Med. Chem. 2006, 49, 6716–6725.

[CrossRef] [PubMed]
23. Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and

Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [CrossRef]
24. Ruiz-Carmona, S.; Barril, X. Docking-undocking combination applied to the D3R Grand Challenge 2015. J. Comput. Mol. Des.

2016, 30, 805–815. [CrossRef]
25. Carmona, S.R.; Schmidtke, P.; Luque, F.J.; Baker, L.; Matassova, N.; Davis, B.; Roughley, S.; Murray, J.; Hubbard, R.; Barril, X.

Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem. 2016, 9, 201–206. [CrossRef]
26. Majewski, M.; Barril, X. Structural Stability Predicts the Binding Mode of Protein–Ligand Complexes. J. Chem. Inf. Model. 2020, 60,

1644–1651. [CrossRef]
27. Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinform. 2009, 10, 1–11.

[CrossRef] [PubMed]
28. Varela-Rial, A.; Majewski, M.; de Fabritiis, G. Structure based virtual screening: Fast and slow. Wiley Interdiscip. Rev. Comput. Mol.

Sci. 2021, 12, 1–17. [CrossRef]
29. Feixas, F.; Lindert, S.; Sinko, W.; McCammon, J.A. Exploring the role of receptor exibility in structure-based drug discovery.

Biophys. Chem. 2013, 186, 31–45. [CrossRef]
30. Kumar, A.; Zhang, K.Y.J. A cross docking pipeline for improving pose prediction and virtual screening performance. J. Comput.

Mol. Des. 2017, 32, 163–173. [CrossRef]
31. Barril, X.; Morley, S.D. Unveiling the Full Potential of Flexible Receptor Docking Using Multiple Crystallographic Structures. J.

Med. Chem. 2005, 48, 4432–4443. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2022, 23, 4756 17 of 17

32. Rueda, M.; Bottegoni, G.; Abagyan, R. Recipes for the Selection of Experimental Protein Conformations for Virtual Screening. J.
Chem. Inf. Model. 2009, 50, 186–193. [CrossRef]

33. Samuels, E.R.; Sevrioukova, I. Structure–Activity Relationships of Rationally Designed Ritonavir Analogues: Impact of Side-
Group Stereochemistry, Headgroup Spacing, and Backbone Composition on the Interaction with CYP3A4. Biochemistry 2019, 58,
2077–2087. [CrossRef] [PubMed]

34. Schrödinger, L. Small-Molecule Drug Discovery Suite 2018-1. New York, NY, USA, 2018. Available online: https://www.
macinchem.org/blog/les/1ed80631e38d91494a9921f6344cac55-1411.php (accessed on 31 March 2022).

35. Molecular Operating Enviroment; MOE 2006.08; Chemical Computing Group: Montreal, QC, Canada, 2006.
36. Labute, P. Protonate 3d: Assignment of Macromolecular Protonation State and Geometry; Chemical Computing Group Inc.: Montreal,

QC, Canada, 2008.
37. LigPrep; Version 3.0; Schrödinger: Mannheim, Germany, 2014.
38. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J.

Cheminform. 2011, 3, 33. [CrossRef] [PubMed]
39. Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for ngerprint-based similarity calculations? J.

Cheminform. 2015, 7, 20. [CrossRef] [PubMed]
40. Yang, S.-Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today

2010, 15, 444–450. [CrossRef] [PubMed]
41. Taminau, J.; Thijs, G.; De Winter, H. Pharao: Pharmacophore alignment and optimization. J. Mol. Graph. Model. 2008, 27, 161–169.

[CrossRef]
42. Tirado-Rives, J.; Jorgensen, W.L. Contribution of Conformer Focusing to the Uncertainty in Predicting Free Energies for

Protein−Ligand Binding. J. Med. Chem. 2006, 49, 5880–5884. [CrossRef] [PubMed]
43. Alvarez-Garcia, D.; Barril, X. Molecular Simulations with Solvent Competition Quantify Water Displaceability and Provide

Accurate Interaction Maps of Protein Binding Sites. J. Med. Chem. 2014, 57, 8530–8539. [CrossRef]
44. Seco, J.; Luque, F.J.; Barril, X. Binding Site Detection and Druggability Index from First Principles. J. Med. Chem. 2009, 52,

2363–2371. [CrossRef] [PubMed]
45. Novoa, E.M.; Pouplana, L.R.D.; Barril, X.; Orozco, M. Esemble docking from homology models. J. Chem. Theory Comput. 2010, 6,

2547–2557. [CrossRef]
46. Alvarez-Garcia, D.; Barril, X. Relationship between Protein Flexibility and Binding: Lessons for Structure-Based Drug Design. J.

Chem. Theory Comput. 2014, 10, 2608–2614. [CrossRef]
47. Bajusz, D.; Rácz, A.; Héberger, K. Comparison of data fusion methods as consensus scores for ensemble docking. Molecules 2019,

24, 2690. [CrossRef]





Lenalidomide stabilizes protein-protein complexes 

by turning labile intermolecular H-bonds into 

robust interactions. 

Marina Miñarro-Lleonar,1,2,3 Andrea Bertran-Mostazo1, 3, Jorge Duro,1,2 Xavier Barril,1,2,3,4*

Jordi Juárez-Jiménez,1,2*

1Unitat de Fisicoquímica, Departament de Farmàcia i Tecnologia Farmacéutica, i

Fisicoquímica. Facultat de Farmacia I Ciències de l’Alimentació. Universitat de Barcelona

(UB). Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.

2Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona (UB),

Barcelona, Spain.

3Institut de Biomedicina, Universitat de Barcelona (UB), Barcelona, Spain

4 Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain.

Abstract

Targeted protein degradation (TPD) is emerging as a very promising strategy to modulate

protein activities in several diseases, spearheaded by anti–myeloma drugs lenalidomide and

pomalidomide. It has been recently demonstrated that the mechanism of action of these drugs

involves the increased degradation of several proteins, including the transcription factors Ikaros

and Aiolos as well as the enzyme Caseine Kinase 1 (CK1). It has been shown that

lenalidomide and pomalidomide are able to stabilize the complex between the E3 ligase

Cereblon (CRL4CRBN) and the aforementioned proteins, while, remarkably, the stability of the

protein-protein interaction is very low. Even though the structures for these complexes have



been determined, there are no evident interactions that can account for the high formation

efficiency of the ternary complex. In this work, we have leveraged Molecular Dynamics to

shed light into the molecular determinants underlying the stabilization effect exerted by

lenalidomide in the complex between CRL4CRBN and CK1. Furthermore, we evaluated the

effect that different mutations of CK1 in the stability of the ternary complex CRL4CRBN–

lenalidomide–CK1 and provide a thermodynamic and kinetic rational for the stabilization

effect. These results pave the way to further understand cooperativity effects in drug–induced

protein–protein complexes and could help in the future design of improved targeted molecular

degraders.

Introduction

The concept of molecular glues (MGs) was introduced by Zheng and co–workers1 to describe

the stabilizing effect of the plant hormone auxin on several complexes with the SCFTIR1

ubiquitin ligase complex. Subsequently, it has been revealed that this mechanism is quite

common in nature2–5 and that even a number of widely used drugs such as the

immunosuppressant drug Cyclosporin A6 or the anti–cancer agents Paclitaxel7 or Indisulam8

share a similar mechanism of action. These findings have spured interest in leveraging selective

stabilization of protein–protein interaction in drug discovery. However, it has been repeatedly

noted in the literature9–11 that MGs discovery is too reliant on serendipity and that the future

development of successful MGs as therapeutic agents ought to shift into more rational

approaches and further understanding of the molecular mechanisms underpinning the ligand–

induced stabilization of protein–protein interactions. Contrary to traditional drug discovery,

which focuses on the formation of binary complexes, rational development of MGs will require

detailed understanding of the formation of ternary complexes, which often imply non–additive

mechanisms.12 The physicochemical factors underlying these mechanisms are usually difficult

to anticipate from structural analysis or common Computer Aided Drug Design protocols such



as docking or Virtual Screening.3 Nonetheless, they are critical to the selective stabilization of

protein–protein complexes, and must be understood to fully exploit the therapeutic

opportunities offered by MGs.

A landmark example of the potential of MGs to impact human health is provided by

thalidomide derivatives lenalidomide and pomalidomide, so called IMiDs, widely used in the

treatment of multiple myeloma. Only recently it was described that these molecules induce the

ubiquitination and degradation of the transcription factors Ikaros (IKZF1) and Aiolos

(IKZF3)13 and the enzyme Casein Kinase 1 (CK1)14 by stabilizing the complex of these

proteins with the E3 ligase CRBN, which is the substrate receptor of the CUL4–RBX1–DDB1

ubiquitin ligase complex (CRL4). IMiDs are accommodated in a tryptophan cage in the

substrate binding domain of CRBN15 and structural evidence has shown that IKZF1,16 CK117

and other proteins18 bind to the CRBN–IMiD interface, establishing a set of protein–protein

interactions through a β–hairpin loop structure that contains a Gly residue on the apex.5,16,17 In

a recent work, Cao et. al.19 estimated that pomalidomide stabilizes the IKZF1–CRBN complex

by around fourfold, while lenalidomide stabilizes the CK1–CRBN complex by around 30–

fold. The authors also proposed that instead of creating new sets of interactions, MGs in

general, and IMiDs in particular, must be able to stabilize pre–existing protein–protein

interactions. Analysis of the structural data available seems to support this hypothesis, as the

direct intermolecular interaction between lenalidomide–CK117 and pomalidomide–IKZF116

are rather unremarkable and thus, cannot account for the increase in stability of the ternary

complex. These observations highlight the importance of the non–additive mechanism at play

in these interactions.12 In this work, we use biomolecular simulations to evidence that the

stabilization effect exerted by lenalidomide in the complex between CRBN and CK1 relies

on the its ability to increase the structural stability of three key H–bonds at the CRBN–CK1

interface. Using data for four different mutants of CK1 we demonstrate that the robustness of



these three H–bonds directly correlates with the stability of the ternary CRBN–lenalidomide–

CK1 complex, even when mutations do not directly disturb the ability of either protein to

establish these interactions. The underlying mechanism is proposed to depend on the capacity

of lenalidomide to provide hydrophobic shielding to pre–existing protein–protein hydrogen

bonds, thus increasing the structural, kinetic and thermodynamic stability of the complex. We

anticipate that this may be a general mechanism that can be exploited for the future rational

development of MG.

Results

Presence of lenalidomide results in stronger H–bond interactions at the CRBN–CK1

interface.

Examination of the protein–protein interface of the CRBN–lenalidomide–CK1 complex

reveals that there are three protein–protein hydrogen bonds between the 36–42 β–hairpin loop

of CK1 and the C–terminal domain of CRBN (Supplementary Figure S1). Namely, the side–

chains of CRBN residues Asn351, His357 and Trp400 engage the backbone carbonyl oxygens

of the CK1 residues Ile37, Thr38 and Asn39 respectively. These interactions hereafter

referred to as CRBNAsn351–CK1Ile37, CRBNHis357–CK1Thr38 and CRBNTrp400–CK1Asn39

respectively, have been demonstrated to be key for the recruitment of CK1 by CRBN.17

However, there is no evident factor precluding the formation of these interactions in the

absence of lenalidomide, which is in line with the hypothesis of stabilization of pre–existing

protein–protein complexes put forward by Cao and co–workers. Previous works have shown

that most stable receptor–ligand complexes display, at least, one robust and hard–to break

intermolecular H–bond,20–22 and the importance of these interactions has also been highlighted

as a main player in protein structural stability.23,24 Therefore, we investigated the energetic cost



of independently breaking each of the H–bonds identified at the CRBN–CK1 interface

(Figure 1) combining Steered Molecular Dynamics and the Jarzynski’s equality.25,26

Figure 1: H–bond dissociation energy profiles in the presence and absence of lenalidomide at the CRBN–

CK1 interface. A. Detailed view of the CK1–CRBN dimeric interface (top) and its ternary complex with

lenalidomide (bottom). B. Energy profile of the CRBNTrp400– CK1Asn39H–bond in the absence (top) and presence

(bottom) of lenalidomide. C. Energy profile of the CRBNHis357 – CK1Thr38 H–bond in the absence (top) and

presence (bottom) of lenalidomide. D. Energy profile of the CRBNAsn351 – CK1Ile37 H–bond in the absence (top)

and presence (bottom) of lenalidomide.

Although convergence of sampling is usually a concern when applying the Jarzynski

relationship, we consider that the reduced number of degrees of freedom that the system may

access during sampling of the rupture of a given H–bond (where donor and acceptor are pulled

apart from 2.5 Å to 5 Å, vide infra) will allow to calculate Potentials of Mean Force along the

separation distance between donor and acceptor (hereafter referred to as PMF of H–bond

breakage or PMFHB_break) of sufficient accuracy as to distinguish strong from weak H–bond

interactions, similarly to what us and others have previously reported in the literature for other

systems.21,27,28 By comparing the values of PMFHB_break, we established that, in the absence of

lenalidomide, the stronger H–bond is CRBNAsn351–CK1Ile37 (PMFHB_break = 6.4 +/- 0.1



kcal/mol) followed by the CRBNHis357–CK1Thr38 interaction (PMFHB_break = 3.7 +/- 0.6

kcal/mol) and the CRBNTrp400–CK1Asn39 interaction (PMFHB_break = 2.3 +/- 0.3 kcal/mol). The

presence of lenalidomide at the interface causes a large increase in the energy necessary to

break the three H–bonds, with estimated PMFHB_break of 10.9 +/- 0.1, 6.3 +/- 0.3 and 11.0 +/-

0.4 kcal/mol for the CRBNAsn351–CK1Ile37, CRBNHis357–CK1Thr38 and CRBNTrp400–

CK1Asn39 interactions respectively (Table 1). We examined the 3D–structure of the ternary

complex to obtain clues about the stabilization of the investigated H–bonds. The only direct

H–bond between lenalidomide and CRBN (the carbonyl group of the oxoisoindol moiety with

the side–chain of Asn351) is insufficiently connected to the protein–protein H–bonds to

suggest that it can cause a concerted change in the interaction network. Instead, the increased

stability may be explained by the change of local environment around the H–bonds. Indeed, it

has been previously shown that incoming water molecules catalyze the rupture of solvent

exposed H–bonds, by decreasing the energetic barrier required to bring apart donor and

acceptor.20,29 Based on these observations, we hypothesized that the main role of lenalidomide

will be to create a hydrophobic environment around the protein–protein interface that

effectively shields the H–bonds from incoming water molecules.

Reinforced H–bonds display increased hydrophobic shielding at the CRBN–CK1

interface.

To probe our hypothesis that lenalidomide stabilizes the CRBN–CK1 complex mainly by

hydrophobic shielding effects, we studied the changes on the local environment of the three

key H–bonds at the interface upon binding of the MG. The radial distribution function (RDF)

provides the average number of water molecules found around a certain atom with respect to

what would be expected on the bulk solvent during the course of a Molecular Dynamics

simulation.



Figure 2: Radial Distribution Function (RDF) of water molecules around the backbone carbonyl oxygen of

CK1 involved on the key CRBN–CK1 H–bonds. The blue line represents values for the two–body complex

CRBN–CK1 and the orange represents values for the three–body complex CRBN–lenalidomide–CK1

Therefore, it can be used as a proxy to estimate the solvent exposure of certain atoms or

residues. We determined the RDF of the backbone carbonyl groups of CK1 in molecular

dynamics of both the CRBN–CK1 and CRBN–lenalidomide–CK1 complexes (Figure 2) in

which the H–bond distances for the three key interactions was kept between 2.5 and 3.5 Å

using flat bottom restraints (see the methods section for further details). As expected for atoms

at the interface of the protein–protein complex, their water exposure is relatively low. However,

there was a noticeable reduction on the RDF around the backbone carbonyl of Asn39 (from 0.3

in the binary complex to 0 in the ternary complex). Furthermore, the RDF around the

CRBNAsn351 – CK1Ile37 and the CRBNTrp400– CK1Asn39H–bonds for radii below 5 Å drops to

0 in the presence of lenalidomide. On the other hand, the reductions in the RDF for the

CRBNHis357 – CK1Thr38 H–bond – the interaction that is least reinforced by the presence of

lenalidomide – is relatively minor.



Figure 3: H–bond dissociation energy profiles in the presence and absence of lenalidomide at the CRBN–

CK1 interface. Detailed view of the CRBN–lenalidomide–CK1 interface for I35GCK1, I37ECK1, N39GCK1

and G40NCK1 and associated PMFHB_break profiles for CRBNTrp400–CK1Asn39 (Top), CRBNHis357–CK1Thr38

(middle) and CRBNAsn351–CK1Ile37 (bottom). PMFHB_break profiles for CRBN–lenalidomide–wtCK1 (dark grey)

and the CRBN–wtCK1 (light grey) are included for reference

H–bond robustness correlates with the measured stability of CRBN–lenalidomide–

MUTCK1 complexes.

Petzold et. al. reported that the ternary complexes between CRBN–lenalidomide and CK1

mutants I35GCK1, I37ECK1, N39GCK1 and G40NCK1 displayed decreasing stability.17 We

therefore investigated whether the robustness of the H–bonds at the interface on these ternary

complexes was diminished with respect to the CRBN–lenalidomide–CK1 complex (Figure 3

and Table 1).

Analysis of the energetic profiles of H–bond breakage showed that N39GCK1 and G40NCK1

displayed the greatest alterations, both with PMFHB_break in excess of 4 kcal/mol for the



CRBNAsn351–CK1Ile37 and CRBNTrp400–CK1Asn39 interactions. In the case of the

CRBNHis357–CK1Thr38 interaction, there was a lesser reduction in N39GCK1 (PMFHB_break =

1.7 kcal/mol) , while in the case of G40NCK1 the latter interaction was not affected. In fact,

besides N39GCK1, the effect of mutations on the CRBNHis357–CK1Thr38 interaction was within

the estimated uncertainty margins (PMFHB_break of 0.0  0.6, -0.4  0.5 and 1.0  0.5 kcal/mol

for the G40NCK1, I35GCK1 and I37ECK1 mutants respectively). For the I35GCK1 and

I37ECK1 mutants, only the CRBNAsn351 –CK1Ile37 was significantly weakened with respect

the wt complex, displaying PMFHB_break of 2.5  0.3 kcal/mol and 4.1  0.4 kcal/mol

respectively. Therefore, all mutants displayed as or even more robust H–bonds, on average,

than the complex between CRBN and CK1 without lenalidomide, but the profile of

dissociation energy with respect to the wt ternary complex was weakened for at least one of the

H–bonds in all the cases.

Table 1. Summary of the absolute and relative PMFHB_break values (in kcal mol-1) for the CRBN– CK1 systems

considered in this work. Relative values (in parentheses) are showed with respect to the CRBN–LEN–CK1

complex. Error estimates were obtained by bootstrapping ten times the W profiles used to estimate the PMF.

H–bond

(CRBN–CK1)

wtCK1 wtCK1

No LEN

I35GCK1 I37ECK1 N39GCK1 G40NCK1

Trp400–Asn39 10.9  0.3 2.3  0.3
(-8.6  0.6)

10.3  0.3
(-0.6  0.6)

10.7  0.3
(-0.2  0.6)

6.3  0.4
(-4.6  0.7)

-0.4  1.2
(-11.3  1.5)

His357–Thr38 6.2  0.3 3.7  0.6
(-2.5  0.9)

5.8  0.2
(-0.4  0.5)

5.2  0.2
(-1.0  0.5)

4.5  0.1
(-1.7 0.4)

6.2  0.3
(0.0  0.6)

Asn351–Ile37 10.9  0.1 6.5  0.2
(-4.4  0.3)

8.4  0.2
(-2.5  0.3)

6.8  0.3
(-4.1  0.4)

6.2  0.6
(-4.7  0.7)

5.8  1.0
(-5.1  1.1)

∑_ 28.0  0.7 12.4  1.1
(-15.6  1.8)

24.5  0.7
(-3.5  1.4)

22.7  0.8
(-5.3  1.5)

16.9  1.1
(-11.1  1.8)

12.4  2.4
(-15.6  3.1)

While there is no experimental value that can be linked directly with the calculated

PMFHB_break for the breaking of singular H–bonds, we hypothesized that the observed

variation in the energy required for breaking the three interactions at the CRBN–CK1



interface may inform about the stability of the resulting ternary complex with lenalidomide. To

probe this possibility, we first established that there was no co–dependence between the

breakages of the three hydrogen bonds (Figure S2), and therefore, the energy required to break

all three bonds could be approximated as the addition of the individual PMFHB_break values. We

found that the sum of PMFHB_break for the three key H–bonds in each of the complexes between

CRBN and CK1 was correlated with its estimated binding affinity (R2 = 0.94, Figure 4).

Figure 4: Correlation plot between the sum of the PMFHB_break for the three H–bonds for different variants

of CK1 with respect to ∆Gbin calculated from KD estimations. The PMFHB_break was taken at the end point of

the PMF profile and error bars were obtained by bootstrapping of the W profiles. PMFHB_break values are reported

in table 1. The ΔGbin was obtained by transforming the KDs fitted using data from reference17 and error bars were

obtained by error propagation. The reproduced [CRBN]–520/490 nm TR–FRET Ratio plot is provided in

supplementary figure S7 and experimental values are provided in supplementary tables S1 and S2.

Weakening of the three H–bond interactions stems from better accessibility of water

molecules to the protein–protein interface.



Having stablished the correlation between the strength of the hydrogen bonds at the CRBN–

lenalidomide–CK1 interface and the stability of the ternary complex, we next investigated

the molecular determinants that could account for the reduced strength of the hydrogen bonds

displayed by the four single point CK1 mutants. First, we determined the RDF of water

molecules around the H–bonds and compared them with the RDF profiles obtained for the

binary and ternary complexes of CK1 (Supplementary Figure S3). All the mutants displayed

RDF profiles closer to the ternary complex than to the binary complex. Nevertheless, the

profiles obtained for the ternary complex involving the N39GCK1 mutant was very different

that the one obtained for the wild type CK1, with increased RDF values with respect to the

latter in the areas of the first and second solvation shell for both the CRBNHis357–CK1Thr38 and

the CRBNTrp400–CK1Asn39 H–bonds, while the remaining H–bond (the furthest from the

mutation point) only displayed differences beyond 6 Å. A similar pattern was observed on the

profiles obtained for the I35GCK1 and I37ECK1 mutants, where the closest H–bond was the

most affected by the change, although in these cases the differences were only observed on the

second solvation shell region. In contrast with the stark decrease in PMFHB_break, the profiles

for the remaining mutant G40NCK1 were indistinguishable from the profiles of the ternary

complex with the wild type CK1. Intrigued by this apparent discrepancy, we visualized the

trajectories and identified that, regardless of the system involved, low breaking profiles

corresponded with those in which at least one water molecule entered the protein–protein

interface from the bulk and established an H–bond with the carbonyl atom previously involved

in the protein–protein interaction, while high work profiles corresponded with H–bond

breakages in which water molecules did not access the protein–protein interface or did not

stablish an H–bond. (Supplementary Movie S1). We hypothesized that the higher rate of access

of water molecules to the protein–protein interface in the case of the G40NCK1 maybe related

to a worse hydrophobic packing of lenalidomide’s core against the bulkier and more flexible



Asn sidechain than against the Gly residue in position 40. We therefore measured the average

distance between lenalidomide’s centre of mass and the alpha carbon of residue 40 of CK1

in all the mutants and in the wild type (Figure S4). The average distance was estimated to be

ca. 4.8 Å for all the systems but G40NCK1, in which the average distance was closer to 5.8 Å.

Figure 5: Proposed mechanism underlying the stabilization of the CRBN–CK1 complex by lenalidomide

and the effect of mutations in the CK1 sequence. Lenalidomide hinders water accessibility to the CRBN–

CK1 interface, increasing the strength of H–bonds. Mutations that alter water accessibility to the interface

diminish the stability of the ternary complex.

Considering the results, we propose that lenalidomide (and by extension other IMiDs) enable

the degradation of CK1 and other CRBN neo–substrates by strengthening the pre–existing

H–bonds at the interface, which results in a complex stable enough as to be tagged by

ubiquitination (Figure 5). The reinforcement of the H–bonds seems to be related to the ability

of IMiDs to hinder access of water molecules to the protein–protein interface, and hence, their

effectiveness is very susceptible to single point mutations that increase the flow of water into

the interface, either by means of local or long–range effects.



Discussion

The work demonstrates that the presence of lenalidomide at the CRBN–CK1 interface results

in a significant increase in the free energy required to break three key H–bond interactions at

the protein–protein interface (Figure 1), as well as highlighting the sensitivity of this effect to

point mutations of one of the partners, even when these mutations do not directly hinder the

formation of the H–bonds (Figure. 3 and Table 1). Interestingly, we detect an important

correlation (squared Pearson R value of 0.94) between the cumulative strength of the three

hydrogen bonds and the energy of binding derived from the observed KD. In principle, there is

no reason why the binding energies derived from KD measurements (an equilibrium property)

and the breaking energies of H–bonds (which as computed are an out of equilibrium property)

should be correlated. However, we propose that the correlation is not spurious and instead

reflects two key mechanistical aspects of the interaction between CRBN and CK1. First, is

that the CK1 point mutations studied are not likely to affect the kon of the complexes, which

makes the observed decreases of affinity almost exclusively dependent on changes of the koff.

Second, and more crucially, the outstanding correlation between the free energy of H–bonds

rupture and the observed affinity indicates that the dissociation of these complexes follows a

rather simple two state mechanism, where breaking the H–bonds at the interface is the rate

limiting step. Under these circumstances, the PMFHB_break is the major contributor to changes

in the koff. And can inform about the equilibrium constant. This observation, together with the

dramatic effect of lenalidomide, underscores the potential that rationally designed MGs could

hold for the modulation of protein–protein interactions in biomedical and biotechnological

settings.

Regarding the underlying mechanism, we have shown that, when bound to the CRBN–CK1

interface, lenalidomide severely hinders water accessibility to the key protein–protein

hydrogen bonds, as demonstrated by the stark decrease on the RDF value. (Figure 2) This



hydrophobic shielding effect seems a main driver in the stabilization effect triggered by

lenalidomide, and thus could be considered to play a major role in the non–additive effects

observed for this compound. It has been previously reported that relatively minor alterations of

the H–bond environment can significantly alter H–bond lifetimes.20,29 This effect is entirely

consistent with the stabilization of pre–existing interactions put forward by Cao and co–

workers and it is expected that similar mechanism underlies the degradation of other CRBN

neo–substrates such as Ikaros and Aiolos and that is shared by other IMiDs such as

pomalidomide (Figure 5). Beyond CRBN related systems, by analysing the crystallographic

structures available in the PDB, we hypothesize that a similar effect underlies the recently

described Cannabidiol–dependent stabilization of a dual–nanobody sensor19 (PDBid 7TE8)

and the long–standing puzzle of the Fucsicoccin–dependent stabilization of interactions

involving 14-3-3 proteins (PDBid: 3P1S)30 (Figure S5). Interestingly, evaluating water

accessibility to the protein interface is not enough to anticipate H–bond strength. While the

changes triggered by the I35GCK1, I37ECK1 and N39GCK1 mutations can be rationalised on

the basis of local changes to the environment of the H–bond, the behaviour observed for

G40NCK1 is rather unexpected, as an increase in the size and hydrophobicity of the sidechain

results in better access of water molecules to the protein–protein interface during the H–bond

rupture process, that is not anticipated by RDF profiles of the complexes in equilibrium.

Therefore, our results stress that, though often neglected, changes in the protein–protein

interactions caused by the presence of MGs are as important as the direc interactions between

the MGs and the proteins. We postulate that instead of solely focusing in maximizing affinity,

computer–aided drug design strategies for MGs should also aim at maximizing protein–protein

interactions by hydrophobic shielding of polar interactions. Analogous strategies should also

be investigated for other types of interactions. In this work we demonstrate that an easy–to–

implement SMD–based protocol is enough to predict stabilization of H–bonds which, in this



particular system, offer an excellent predictor of the thermodynamic stability of the ternary

complex. It remains to be investigated if these results will transfer to other MGs systems, but

the incorporation of this strategy in drug design workflows may assist much–needed rational

approaches to the design of future MGs

Methods

Molecular simulations setup. Lenalidomide was built using the Molecular Operating

Environment software package.31Models for the CRBN and CK1 were built starting from the

crystallographic structure PDB id. 5FQD,32 downloaded from the Protein Data Bank.33–35

Standard protein preparation protocols were followed, including the removal of duplicated

proteins, crystallization buffer compounds and salts. Additionally, the DNA Damage–Binding

Protein 1 was removed in all systems and the appropriate capping groups were added to the

terminal residues of CRBN. Mutants of CK1 were obtained with the mutagenesis wizard tool

of PyMOl.36,37 The ff14SB38and gaff239 forcefields were used to assign atom types for the

protein and the lenalidomide respectively. Partial charges for lenalidomide were derived using

the RESP40,41 protocol at the HF/6-31G(d) level of theory, as calculated with Gaussian09. The

Zn2+ cation bound to CRBNwas modelled using the out of center dummymodel42 Each system,

was solvated on a truncated octahedral box of TIP3P43,44 water molecules and the appropriate

number of counterions were added to achieve charge neutrality, accounting for simulations

systems of approximately 100000 atoms. Each system was then minimized in three stages:

first, the position of water molecules was minimized combining 3500 steps of steepest descent

and 6500 steps of conjugate gradient, while the position of the proteins and ligand atoms was

restrained using a harmonic potential with force constant of 5.0 kcal mol-1 Å-2. Next, side chains

and water molecules were minimized using 4500 steps of steepest descent, followed by 7500

steps of conjugate gradient while the atoms of lenalidomide and the Zn2+ cation were restrained



with a harmonic potential using the same force constant. The systems were then heated in the

NVT ensemble from 100 K to 298 K in three stages of 250 ps (100K–150K, 150K–250K,

250K–298K), while retaining the harmonic restraints to lenalidomide and the Zn2+ cation and

subsequently their density was equilibrated to 1 bar for 1 ns in the NPT ensemble. During the

equilibration and subsequent production and steered molecular dynamics trajectories,

temperature control was achieved using a Langevin thermostat (with a collision frequency of

3 ps-1) and a Berendesen barostat was used to control the pressure when simulating in the NPT

ensemble. SHAKE45 was applied to all atoms involving hydrogen to allow for a timestep of 2

fs and all simulations were performed with the CUDA accelerated version of PMEMD.46

Steered Molecular Dynamics protocol. The stability of each H–bond in each system was

assessed using 100 independent SMD trajectories conducted in three stages. First, new

velocities were assigned to the equilibrated structure using a different random seed number at

298 K. Subsequently an MD trajectory was performed for 10 ns, using flat–bottom restraints

to keep the three protein–protein H–bonds at the interface between 2.5 and 3.5 Å, using a force

constant of 60 kcal/mol Å2. Second, the final configuration of each trajectory was then used as

a starting structure for a short (1 ns) SMD simulation in which the donor and acceptor involved

in one of the H–bonds were brought to a distance of 2.5 Å. Third, a 5 ns–long SMD trajectory

was started, in which the distance between donor an acceptor was increased at a rate of 0.5

Å/ns, using a spring constant of 500 kcal/ mol Å2 to ensure the applicability of the stiff spring

approximation.47 The PMFHB_break was then computed leveraging the Jarzynki’s equality48,49

(1).

∆ 
= 〈  〉 (1)



were the right–hand term corresponding to the ensemble average of exponential work values

obtained in non–equilibrium conditions. From the above equation, for every increase of 0.0005

Å in the H–bond distance, the PMFHB_break was obtained using expresion (2)

_ = −   
_ ⁄


1 (2)

Where
_ refers to the work value of the ith independent SMD trajectory and N is the

number of independent SMD trajectories (N=100 in this work). Error estimations for the

PMFHB_break profiles were obtained by bootstrapping ten times at each distance point the set of

_ values. Convergence of the PMFHB_break at 5 Å of H–bond (Figure S6) distance was

evaluated combining subsampling and bootstrapping.

Calculation of water radial distribution function. The radial distribution function of water

molecules around the backbone carbonyl oxygen of the CK1 residues involved in the

interaction with CRBN was calculated was calculated using cpptraj50,51, for a range between 0

and 10 Å from the atom of interest and with a bin spacing value of 0.1 Å.

Experimental data sourcing and analysis. Time–resolved fluorescence resonance energy

transfer (TR/FRET) data points were extracted from Petzold et. al.32 using WebPlotDigitizer

v4.552 and analysis was performed with the Graphpad Prism 8 software.53 Data points were

adjusted to a non–linear regression curve achieving binding saturation. The maximum ratio

value obtained for the CRBN–CK1–lenalidomide ternary complex was use as constrained

maximum signal (Ymax) in all the conditions to determine the KD.
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