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"What we know is a drop,

what we don’t know is an ocean."

- Isaac Newton.
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Abstract

The rise of the IoT and other distributed environments are caus-
ing an increase in the number of devices that constantly collect and
exchange data. Machine learning models learn from these data to
model concrete environments and problems and predict future events
but, if the data are biased, they may reach biased conclusions. Such
models can be used to make essential and life-changing decisions in
a variety of sensitive contexts. Therefore, it is critical to make sure
their predictions are fair and not based on discrimination against spe-
cific groups or communities, like those of a particular race, gender, or
sexual orientation. Federated learning, a type of distributed machine
learning, has become one of the foundations of the next-generation AI
in distributed settings and needs to be equipped with techniques to
tackle this grand and interdisciplinary challenge. Even if FL provides
stronger privacy guarantees to the participating clients than central-
ized learning, in which the clients’ raw data are collected in a central
server, it is vulnerable to some attacks whereby malicious clients sub-
mit bad updates in order to prevent the model from converging or,
more subtly, to introduce artificial biases in the models’ predictions or
decisions (poisoning). Poisoning detection techniques compute statis-
tics on the updates sent by participants to identify malicious clients.
A downside of anti-poisoning techniques is that they might lead to
discriminating against minority groups whose data are significantly
and legitimately different from those of the majority of clients. A
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downside of anti-poisoning techniques is that they might lead to dis-
criminating against minority groups whose data are significantly and
legitimately different from those of the majority of clients. This would
not only be unfair but would yield poorer models that would fail to
capture the knowledge in the training data, especially when data are
not independent and identically distributed. In this work, we strive
to strike a balance between fighting poisoning and accommodating
diversity to help learn fairer and less discriminatory federated learn-
ing models. In this way, we forestall the exclusion of diverse clients
while still ensuring the detection of poisoning attacks. Additionally,
we explore the impact of our proposal on the performance of models
on non-i.i.d local training data.

On the other hand, in order to develop fair models and verify the
fairness of these models in the area of machine learning, we propose
a method, based on counterfactual examples, that detects any bias in
the ML model, regardless of the data type used in the model.
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Resum

El desplegament massiu de l’IoT provoca que un nombre creixent
de dispositius recullin i intercanviïn dades constantment. Els mod-
els d’aprenentatge automàtic aprenen d’aquestes dades per modelar
entorns i problemes concrets, i predir esdeveniments futurs, però si
les dades presenten biaixos, donaran lloc a prediccions i conclusions
esbiaixades. Aquests models es poden utilitzar per prendre decisions
essencials i que canvien la vida en diversos contextos sensibles. Per
tant, és fonamental assegurar-se que llurs prediccions són justes i no es
basen en la discriminació contra grups o comunitats específics, com els
d’una raça, gènere o orientació sexual en particular. L’aprenentatge
federat, una forma d’aprenentatge automàtic distribuït, ha esdevingut
una de les bases de l’IA de nova generació en entorns distribuïts i li
cal equipar-se amb tècniques per afrontar aquest gran repte interdis-
ciplinari. L’aprenentatge federat proporciona millors garanties de pri-
vadesa als clients participants que no pas l’aprenentatge centralitzat,
on les dades dels clients en clar són recollides en un servidor central.
Tot i així, l’aprenentatge federat és vulnerable a atacs en els quals
clients maliciosos presenten actualitzacions incorrectes per tal d’evitar
que el model convergeixi o, més subtilment, per introduir biaixos ar-
bitraris en les prediccions o decisions dels models (enverinament o
poisoning). Les tècniques de detecció de l’enverinament calculen es-
tadístiques sobre les actualitzacions per identificar clients maliciosos.
Un desavantatge d’aquestes tècniques és que podrien conduir a la dis-
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criminació de grups minoritaris, les dades dels quals són significativa-
ment i legítimament diferents de les de la majoria dels clients. Això no
tan sols seria injust, sinó que també produiria models amb rendiment
més baix que no podrien capturar tot el coneixement de les dades
d’entrenament, especialment quan les dades no són independentment
i idènticament distribuïdes. En aquest treball, ens esforcem per tro-
bar un equilibri entre combatre els atacs d’enverinament i acomodar
la diversitat, tot per a ajudar a aprendre models d’aprenentatge fed-
erats més justos i menys discriminatoris. D’aquesta manera, evitem
l’exclusió de clients de minories legítimes i alhora garantim la detec-
ció d’atacs d’enverinament. A més, explorem l’impacte de la nostra
proposta en el rendiment de models sobre dades d’entrenament locals
no idènticament i independentment distribuïdes.

D’altra banda, per tal de desenvolupar models justos i verificar-
ne la imparcialitat en l’àrea d’aprenentatge automàtic, proposem un
mètode basat en exemples contrafactuals que detecta qualsevol biaix
en el model de ML, independentment del tipus de dades utilitzat en
el model.
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Resumen

El auge del IoT está provocando que un número cada vez mayor de
dispositivos recojan e intercambien datos constantemente. Los mode-
los de aprendizaje automático aprenden de estos datos para modelar
entornos y problemas concretos y predecir eventos futuros, pero si
los datos están sesgados, darán lugar a predicciones sesgadas. Dichos
modelos se pueden usar para tomar decisiones esenciales y que cam-
bian la vida en una variedad de contextos sensibles. Por lo tanto,
es fundamental asegurarse de que sus predicciones sean justas y no
se basen en la discriminación contra grupos o comunidades específi-
cos, como los de una raza, género u orientación sexual en particu-
lar. El aprendizaje federado, una forma de aprendizaje automático
distribuido, se ha convertido en una de las bases de la IA de próx-
ima generación en entornos distribuidos y debe estar equipado con
técnicas para abordar este gran desafío interdisciplinario. Aunque
el aprendizaje federado ofrece mayores garantías de privacidad a los
clientes participantes que el aprendizaje centralizado, en el que los
datos brutos de los clientes son recogidos en un servidor central, este
es vulnerable a algunos ataques en los que clientes maliciosos envían
malas actualizaciones para evitar que el modelo converja o, más su-
tilmente, para introducir sesgos artificiales en sus predicciones o de-
cisiones (envenenamiento o poisoning). Las técnicas de detección de
envenenamiento calculan las estadísticas de las actualizaciones para
identificar a los clientes maliciosos. Una desventaja de las técnicas
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contra el envenenamiento es que pueden llevar a discriminar a gru-
pos minoritarios cuyos datos son significativamente y legítimamente
diferentes de los de la mayoría de los clientes. Esto no sólo sería in-
justo, sino que produciría modelos más pobres que no capturarían el
conocimiento de los datos de entrenamiento, especialmente cuando los
datos no están igual e independientemente distribuidos (no i.i.d.). En
este trabajo, nos dedicamos a lograr un equilibrio entre la lucha con-
tra el envenenamiento y dar espacio a la diversidad para contribuir
a un aprendizaje más justo y menos discriminatorio de modelos de
aprendizaje federado. De este modo, evitamos la exclusión de diver-
sos clientes y garantizamos la detección de los ataques de envene-
namiento. Además, exploramos el impacto de nuestra propuesta en
el rendimiento de los modelos con datos de entrenamiento locales no
i.i.d.

Por otro lado, para desarrollar modelos justos y verificar la equidad
de estos modelos en el área de ML, proponemos un método, basado
en ejemplos contrafactuales, que detecta cualquier sesgo en el mod-
elo de aprendizaje automático, independientemente del tipo de datos
utilizado en el modelo.
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Chapter 1

Introduction

1.1 Motivation

In this digital age, data are key social and economic assets. Sources
of data often include edge devices, such as smartphones, IoT sensors
attached to home and industrial equipment, or activities conducted at
organizations or other entities, such as hospitals. However, collecting,
sharing, or releasing these data lead to important privacy concerns. As
companies and institutions collect growing amounts of data on their
clients, they need to ensure that the privacy of the clients is not un-
justifiably breached and that data protection policies and regulations
are enforced throughout the data lifetime. The data collected from
everyday objects like smartphones, smartwatches or fitness trackers
almost invariably end up in centralized servers where they are aggre-
gated, packaged and then, more often than not, shared with or sold
to third parties. This may create privacy issues since these data sets
can include a person’s confidential data, such as her browsing history,

1
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2 Chapter 1. Introduction

sexuality, political affiliation, and even medical conditions. These is-
sues have led to the enactment of strict data protection laws, such as
the European Union’s General Data Protection Regulation (GDPR),
which is binding for any organization operating in the EU. Organiza-
tions that process the personal data of EU citizens must comply with
a number of principles laid out in the GDPR [2]. These principles
include the following: (1) lawfulness, transparency and fairness, (2)
purpose limitation, (3) data minimization, (4) storage limitation, (5)
integrity and confidentiality, (6) accuracy, and (7) accountability.

Privacy concerns have become more prominent during the COVID-
19 pandemic because, on the one hand, life has become more digital
than before and, on the other hand, data collection aimed at con-
trolling the spread of the pandemic might be perceived as a double-
edged sword. While contact and mobility tracing are powerful instru-
ments to preserve public health, their potential for misuse is high.
More generally, the privacy expectations of individuals are confronted
with the data-hungry artificial intelligence (AI) methods increasingly
adopted by organizations. Specifically, for deep learning to be effec-
tive, vast amounts of data are required to train the models. Service
providers collect data at massive scales for such training purposes.
Traditionally, these large amounts of data have been stored in cen-
tralized databases and processed in central servers owned or hired by
the service providers. Such central facilities need tight protection to
prevent data leaks. Even if no leaks arise, central data collection and
processing generate an asymmetry between the service provider and
the customer, because the former accumulates a wealth of personal
data on the latter.

Federated learning (FL) [3, 4] attempts to address some of these
issues. FL is a machine learning technique that operates in a decen-
tralized manner and allows the training of ML models with the help
of a set of clients, each of whom privately owns a local data set. In
FL, clients receive an initial global model from a service provider, of-
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1.1. Motivation 3

ten called the model manager. Then each client updates the received
model based on their private local data and then uploads the model
update to the model manager. The model manager aggregates the
client updates to produce a new version of the global model. In this
way, the global model can be iteratively improved and shared without
the model manager ever accessing the private data of clients. The
process iterates until the model converges.

The most usual situation in FL is that there is a crisp divide be-
tween the model manager, who orchestrates the different steps of the
process, and the clients, who update the global model based on their
private data. Yet, it is also conceivable to use federated learning in a
peer-to-peer scenario, where each peer may be both a model manager
of their own model and a client who updates the models of other peers.
In any case, clients transmit to the model manager the bare minimum
data to improve the model. This is inherently more privacy-preserving
than centralized approaches in which client data are collected by a cen-
tral server to build a machine learning model. Another advantage of
FL is that the learning effort is distributed among the clients, instead
of being centralized in a single entity.

For all its many advantages, FL is not free of issues. In particular,
it is vulnerable to security attacks whereby malicious clients sabotage
the learning process by sending bad model updates. These attacks
may seek to prevent convergence to a model (Byzantine attacks) or
to cause convergence to a flawed model whose output is determined
by the attacker, at least for designated inputs (poisoning attacks).
Poisoning attacks are described in [5], along with several solutions to
thwart them. A well-known poisoning attack is label flipping, where
the attacker is assumed to be able to flip the labels of a fraction of
training points. In [6], more effective attacks are investigated, that
achieve 100% accuracy on the attacker’s task within just a single learn-
ing round.
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4 Chapter 1. Introduction

Techniques to prevent security attacks compute statistics on the
client updates to detect outlying values. Since abnormal and mali-
cious behaviors are usually associated with outlying updates, these
are filtered out as an attack prevention strategy when updating the
global model. Even though this type of approaches are effective to
prevent attacks, systematically rejecting outlying updates might also
lead to unfair global models [7] if the outlying data correspond to a
legitimately different minority. Apart from facing the unfairness issue,
attack prevention countermeasures for FL often struggle to correctly
treat non-i.i.d. (non-independently and identically distributed) data.
Most research proposals assume that the clients’ private data are i.i.d.

1.2 Contributions

In this thesis, we contribute mechanisms to reconcile security with
fairness in FL on non-i.i.d data, and, further, we present a method
based on counterfactual examples to detect any biases in trained ML
models. Specifically:

1. We propose three methods to distinguish members of minority
groups from attackers. Our first method is based on microag-
gregation, the second one uses Gaussian Mixture Models, and
the third one is based on DBSCAN.

2. We propose a method, based on CE, that detects biases in
trained ML models regardless of the data type, and in particular
for image and tabular data.

1.3 Structure of this thesis

The rest of the thesis is organized as follows. Chapter 2 introduces
background concepts of interest throughout the whole work. Chap-
ter 3 presents our three methods for fair detection of attacks based on
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1.3. Structure of this thesis 5

microaggregation, Gaussian mixture models and DBSCAN, respec-
tively. Chapter 4 presents the proposed methodologies to measure
fairness in the ML models. Finally, conclusions and future research
lines are discussed in Chapter 5.
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Chapter 2

Background

This section presents the theoretical background of this work. Our
aim is to recall the knowledge which the reader needs to understand
the subsequent sections.

2.1 Machine learning

Machine learning is a type of artificial intelligence that allows soft-
ware systems to learn and improve their performance without being
explicitly programmed. It is based on the idea that systems can learn
from data, identify patterns, and make decisions with minimal hu-
man intervention. There are three main types of machine learning,
namely supervised learning, unsupervised learning, and reinforcement
learning:

• In supervised learning, the system is trained on a labeled dataset,
where the correct output is provided for each example in the
training set. The goal is for the system to make predictions on
new, unseen examples that are drawn from the same distribution

7
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8 Chapter 2. Background

as the training set. Common applications of supervised learn-
ing include image classification, speech recognition, and natural
language processing.

• In unsupervised learning, the system is not given any labeled
training examples. Instead, it must discover the underlying
structure of the data through techniques such as clustering or di-
mensionality reduction. Common applications of unsupervised
learning include anomaly detection, data compression, and den-
sity estimation.

• In reinforcement learning, the system learns by interacting with
its environment and receiving feedback in the form of rewards
or penalties. The goal is for the system to learn a policy that
will maximize the cumulative reward over time. Reinforcement
learning has been used to develop game-playing agents, robotic
control systems, and recommendation engines.

There are many algorithms and techniques used in machine learn-
ing, including linear models, decision trees, random forests, support
vector machines, neural networks, and deep learning. These methods
can be used alone or in combination to solve a wide range of problems.

One of the key challenges in machine learning is choosing the right
algorithm and set of hyperparameters for a given task. It is also
important to have a sufficient amount of high-quality data, as the
performance of most machine learning algorithms depends heavily on
the data they are trained on. Access to these data and their quality
are important factors that can impact the privacy of data respondents
and the fairness of the resulting models.

Another crucial component of ML is the problem of how a com-
puter program determines which of its outcomes were appropriate and
which contained mistakes. The most important factors for evaluat-
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2.2. Federated learning 9

ing the performance of an ML model are accuracy, precision, recall,
F-measure, confusion matrix, and the misclassification rate.

Our contributions are aimed at measuring fairness in ML mod-
els and attaining fair and robust classification models via supervised
learning. Although we focus on deep neural networks trained in
distributed environments, our contributions are also applicable to
other optimization-based algorithms, such as linear regression models.
Techniques to detect outliers and/or attackers in federated learning
are usually based on unsupervised learning algorithms (e.g., clustering
algorithms).

2.2 Federated learning

In an FL scenario, a model manager initializes a learning model,
such as a neural network, with weights θ0, loss function L and learning
rate ρ. Other hyper-parameters may apply, such as dropout rate, de-
cay, or momentum, but we restrict to a general model using stochastic
gradient descent (SGD). The model manager may or may not pre-train
the model with available public or private data already in her posses-
sion. Each of the m clients, whose devices are called client or edge
devices, has access to a data set Du = {xu

i , yu
i }

nu
i=1 of size nu. The

total size of the available data is n = ∑m
u=1 nu. At epoch t —where

epoch means learning iteration—, the model manager sends the cur-
rent global model θt−1 to all clients; these use their devices to train
local models from the global model using their respective private data
sets Du; then, clients send their respective updates δt

u to the model
manager, who updates the global model θt−1 into θt by averaging the
updates, possibly subject to a parameter η which regulates the model
substitution rate. Additionally, a vector α⃗ can be used to adjust the
weight of each client’s contribution in the federated aggregate. The
intuition of FL is depicted in Figure 2.1.
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10 Chapter 2. Background

Figure 2.1: Overview of federated learning

A possible choice is for all components of α⃗ to be 1/m, in which
case all clients have the same influence. If the client data sets are
of very different sizes, an alternative choice giving weight αu = nu/n

to the u-th client might make sense. Also, in case a client is found
malicious, her αu value can be set to 0 to exclude her contributions
from the aggregate. This approach to aggregating updates is the most
usual one and is known as federated averaging (FedAvg, [3]). See its
pseudocode in Protocol 1.

Protocol 1: FedAvg
1 Initialize model parameters θ0 and distribute them among

clients;
2 while termination condition not met do
3 foreach client u ∈ S ; // S: set of m clients
4 do
5 δt

u ←
ρ

nu

∑
i∇L({xu

i , yu
i }, θt−1);

6 Send δt
u to the model manager;

7 end
8 α⃗← AttackerDetection(θt−1, {δt

u});
9 θt ← θt−1 + η

∑
u αuδt

u;
10 Distribute θt among clients;
11 end
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2.3. Notions of fairness 11

2.2.1 Attacks to federated learning

Despite the fact that FL appears secure, it cannot by itself fully
provide the levels of privacy and security required by current dis-
tributed systems. The following are major attacks and threats that
are relevant to FL settings [8, 9]:

• Byzantine attacks: The adversary’s goal in these attacks is to
stop the convergence and effectiveness of the global model.

• Poisoning attacks: In these attacks, malicious users inject fake
training data with the aim of corrupting the learned model.
They can be classified into two types:

– Data poisoning attacks: They involve tampering with the
client’s training data to produce undesirable outcomes. One
common example is the label-flipping attack, where the la-
bels of honest training examples of one class are flipped
to another class while the features of the data are kept
unchanged.

– Model poisoning attacks: They aim to poison local model
updates before sending them to the server or insert hidden
backdoors into the global model. One example of these
attacks are backdoor attacks.

• Inference attacks: In these attacks, a user is able to infer sen-
sitive information about a database by analyzing locally com-
puted updates.

2.3 Notions of fairness

ML systems use sensitive attributes, which cannot be ignored or
removed because they are correlated with other features and help un-
derstand the data. If not properly handled, these sensitive attributes
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12 Chapter 2. Background

may cause ML models to be biased in some way [10]. Model bias
stems from biased training data and/or from the decision algorithms
themselves. In [11], the authors list some potential causes of bias in
ML systems:

• A first type of bias in ML is inherited from humans, most likely
the designers or programmers of the ML system. This type of
bias typically surfaces when unfair judgments are made because
the designer/programmer is influenced by a characteristic that is
actually irrelevant to the matter at hand, typically a discrimina-
tory preconception about members of a vulnerable group. Thus,
one form of bias is a learned cognitive feature of a person, often
not made explicit[12].

• A second form of bias is also human-inherited, due to the fact
that human judgments are often not rational [13].

• A third form of bias is present in data that exhibit systematic
error, e.g., “statistical bias”. ML trained on such data would
not only fail to recognize the bias, but would incorporate it in
its decisions.

Research on bias-aware ML techniques can be separated into three
stages: pre-processing, in-processing, and post-processing, which cor-
respond to a typical ML model construction pipeline.

• Pre-processing: These techniques try to transform the train-
ing data so that the underlying discrimination is removed i.e.,
the prediction is independent of the sensitive attribute [14, 15,
16]. Often, fairness criteria will be used to filter out individual
records in the training data sets that do not conform to such
criteria. In cases in which the whole dataset is accessible and
can be modified, such as in centralized learning scenarios, then
pre-processing mechanisms can be used.
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2.3. Notions of fairness 13

• In-processing: Such methods try to modify or adapt the ma-
chine learning algorithms in order to account for and remove
discrimination during the model training process, according to
some fairness criteria. In cases in which the training data are
not accessible, but the learning procedure for a machine learn-
ing model can be altered (such as in an FL scenario), then in-
processing can be used, either by incorporating changes into the
objective function or imposing a constraint. Our first contribu-
tion falls in this category.

• Post-processing: These methods are performed after training
by accessing a holdout set that was not involved during the
training of the model. If the learning process must be treated
as a black box without any ability to modify the training data or
the learning algorithm, then only post-processing can be used.
In post-processing, the labels initially assigned by the black-box
model get reassigned based on some fairness criteria.

To avoid the existing bias in the ML systems and achieve fairness,
numerous fairness notions have been defined in the literature. There
have essentially been two sorts of fairness definitions: group fairness
notions, which make up the vast majority of them, and individual fair-
ness notions. The first type is about partitioning a population into
groups based on protected attributes (e.g., gender or ethnicity) and
aims to achieve some statistical measure to be equal across groups. In-
dividual fairness is based on the principle that any two individuals who
are similar should be classified similarly [17]. Similar individuals are
determined by the choice of the metric on individuals. Although [17]
does not distinguish between discriminatory and sensitive attributes,
it is possible to encode the distinction into the chosen metric.

To define these metrics, we begin with some notation:

Let A ∈ {0, 1} be a sensitive attribute (e.g., gender or race), Y ∈
{0, 1} be the target decision variable and Ŷ := ŷ(X, A) ∈ {0, 1} be
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14 Chapter 2. Background

the binary predictor produced by an ML algorithm as a prediction of
Y .

We assume X, A, Y are generated from an underlying distribution
D, i.e., (X, A, Y ) ∼ D. We will consider the binary classification
problem with a single sensitive attribute for simplicity, i.e., a beta-
binomial distribution D over X. When working with multiple sensi-
tive attributes, a Dirichlet-multinomial distribution can be used.

We denote individuals for whom y = 1 as being members of the
“positive” class and individuals for whom y = 0 as being members of
the “negative” class. For instance, if an algorithm predicts whether
an individual will get a loan, y will be 1 for the individuals who are
granted the loan (and who are therefore members of the positive class)
and 0 for individuals who are denied it (and are thus members of the
negative class). Whereas in this scenario the “positive” outcome y = 1
corresponds to the desirable outcome, this need not always be the case.

With this notation in hand, we now proceed to define and dis-
cuss several fairness criteria that commonly appear in the literature
[18, 19, 17]. All of the criteria presented below can also be assessed
conditionally by further conditioning on some covariates in the feature
vector X.

Traditional fairness-aware classification aims to learn a mapping
f : X → Y that accurately maps instances x to their correct classes
without discriminating between protected and non-protected groups.
The discrimination is assessed in terms of some fairness measure. It
is very important to select the right type of fairness; otherwise, the
wrong metric can lead to some harmful decisions. We start with
metrics for group fairness:

• Demographic parity or statistical parity. Regardless of the sen-
sitive attribute, the probability of a positive outcome should be
the same for each group:
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2.3. Notions of fairness 15

P (Ŷ | A = 0) = P (Ŷ | A = 1).

• Predictive parity, a.k.a. outcome test. A classifier satisfies this
definition if the subjects in the protected and unprotected groups
have equal positive predictive value (PPV), that is:

P (Y = 1 | Ŷ = 1, A = 0) = P (Y = 1 | Ŷ = 1, A = 1).

• False positive error rate balance, a.k.a. predictive equality. A
classifier satisfies this definition if the subjects in the protected
and unprotected groups have an equal false positive rate (FPR):

P (Ŷ = 1 | Y = 0, A = 0) = P (Ŷ = 1 | Y = 0, A = 1).

• False negative error rate balance, a.k.a. equal opportunity. A
classifier satisfies this definition if the subjects in the protected
and unprotected groups have an equal false negative rate (FNR):

P (Ŷ = 0 | Y = 1, A = 0) = P (Ŷ = 0 | Y = 1, A = 1).

The error rate balance is also closely connected to the notions
of equalized odds and equal opportunity as introduced in [20].

• Equalized odds, a.k.a. disparate mistreatment. This is a slightly
more complex version of the above-mentioned equal opportunity.
A classifier satisfies this metric if the subjects in the protected
and unprotected groups have an equal true positive rate (TPR)
and equal FPR. This means that the probability of a person in
the positive class being correctly assigned a positive outcome
and the probability of a person in a negative class being incor-
rectly assigned a positive outcome should both be the same for
the protected and unprotected group members:
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16 Chapter 2. Background

P (Ŷ = 1 | A = 0, Y = y) = P (Ŷ = 1 | A = 1, Y = y),

y ∈ {0, 1}.

Equal opportunity and equalized odds both assume that the
training data are correct.

• Calibration. Outcomes should be independent of the sensitive
attributes conditional on the risk score. The notion of calibra-
tion features among the widely accepted and adopted standards
for empirical fairness assessment. While predictive parity and
calibration look like very similar criteria, well-calibrated scores
can fail to satisfy predictive parity at a given threshold.

We now review criteria based on individual fairness.

• Fairness through awareness. Any two individuals who are simi-
lar with respect to a similarity (inverse distance) metric defined
for a particular task should receive a similar outcome.

• Fairness through unawareness. In this case, it is assumed that
if we are unaware of sensitive attributes when making decisions,
our decisions will be fair. This notion is consistent with dis-
parate treatment, which requires not to use the sensitive at-
tribute. The main limitation of this criterion is that there can
be many highly correlated features that are proxies of the sensi-
tive attribute. Thus, just removing the sensitive attribute may
not be enough.

2.4 Distribution of data

The fact that training data are often non-i.i.d. among clients is
a challenge faced by FL that also has fairness ramifications. In this
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2.5. Types of data 17

setting, the distribution of the local data of each client is not repre-
sentative of the distribution of the global data (those that would be
obtained if all the clients’ local data were pooled). Non-i.i.d. data
make it difficult for FL to learn models that are as good as those
obtained with centralized learning.

Non-i.i.d.-ness can be measured by the differences between the gra-
dients obtained by the clients on their respective local data and the
gradients of the global model. For a non-negative real value δ [21],
δ-non-i.i.d. data in FL can be characterized with the condition

||∇fu(θ)−∇f(θ)|| ≤ δ, ∀u, (2.1)

where θ are the model parameters, ∇fu(θ) are the gradients obtained
by client u after a local training phase, and ∇f(θ) are the global
model gradients. Expression (2.1) limits to δ the difference in the dis-
tributions of the gradients of individual users and those of the global
model.

2.5 Types of data

When dealing with data sets, the data type is crucial in deter-
mining the pre-processing strategy that would yield the right results
for a particular set, or the class of statistical analyses that should be
applied to acquire those results. In tabular data sets consisting of
records and attributes, there are two types of attributes: qualitative
and quantitative. Qualitative data are further classified into nominal
or ordinal, whereas quantitative data are either discrete or continuous.
We describe these types next:

• Qualitative or categorical data describes the object under con-
sideration using a finite set of discrete classes. It means that
this type of data cannot be counted or measured easily using
numbers and therefore divided into categories. Subtypes:
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18 Chapter 2. Background

– Nominal data in statistics are not quantifiable and cannot
be measured through numerical units, e.g., gender, marital
status, or ethnicity.

– Ordinal data express some kind of sequential order by in-
dicating a position within a scale. Although ordinal values
can be viewed as numbers, arithmetic operations on them
do not make sense in general (e.g. averaging two education
levels can yield a decimal number that does not correspond
to any education level).

• Quantitative or numerical data can be expressed in numerical
values, which can be operated arithmetically. Subtypes:

– Discrete data take values in a countable and typically finite
range, e.g., age.

– Continuous data can take any value within a range in the
real numbers, e.g., the height of a person.

2.6 Microaggregation

Microaggregation is a perturbative method for statistical disclosure
control of quantitative microdata. It is used to protect the privacy of
individuals by aggregating similar data points. It works by grouping
together data points that are similar and then replacing each point
with the average of the group. This process makes it difficult for an
individual to be identified from the data set, as their data is mixed in
with the data of others. By aggregating the data points, microaggre-
gation helps ensure that only the necessary data is shared and that
individuals are protected from having their information revealed. For
example, instead of publishing exact age or salary data, microaggre-
gation can be used to group individuals into ranges or categories.
This ensures that personal data is not revealed, while still providing
meaningful insights. The method was introduced in [22] for numerical
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2.7. Gaussian mixture models 19

data, and [23, 24] extended it for categorical data. Microaggregation
is based on two steps:

1. Partition. The records in the original data set are partitioned
into a number of clusters, each of them containing at least k

records (the minimum cluster size) and no more than 2k − 1
records. To minimize information loss in the following step,
records in each cluster should be as close to one another as
possible.

2. Aggregation. An aggregation operator is used to compute the
centroid (e.g. the arithmetic mean value) of the records in each
cluster. Then the records in the cluster are replaced by their
centroid.

2.7 Gaussian mixture models

Consider a data set {xj}mj=1 of points in Rd, representing client-
provided model updates, where each dimension would correspond to
a continuous demographic attribute.

Recall that the maximum-likelihood estimates of the mean µ and
covariance Σ parameters of a multivariate Gaussian model1

qµ,Σ(x) = 1√
(2π)d det Σ

e
− 1

2∥x−µ∥2
Σ−1

match their respective sample moments. This means that we may view
these moments as an expectation and covariance under a probability

1We adhere to the standard notation ∥x∥G for the norm corresponding to an
inner product ⟨x, y⟩G with Gramian matrix G, that is, ⟨x, y⟩G = xTGy and ∥x∥G =
xTGx. More explicitly, this general inner product is the quadratic form ⟨x, y⟩G =∑

i,j
gijxiyj of the vector components. As the Gramian is customarily positive

definite, its Cholesky decomposition G = LLT, with L lower triangular, enables us
to write ⟨x, y⟩G = ⟨Lx, Ly⟩ in terms of the canonical inner product, and similarly
for ∥x∥G = ∥Lx∥. This gives an efficient method to compute the probabilities of a
large number of multivariate Gaussian samples.
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mass function pX representing the relative frequencies of the observed
samples, typically uniform and therefore equal to 1/m in the case
of continuous alphabets, with samples that may now be construed
as a random vector X distributed according to pX . Precisely, the
maximum likelihood estimates are

µ̂maxL = EpX X = 1
m

m∑
j=1

xj and

Σ̂maxL = CovpX X = 1
m

m∑
j=1

(xj − µ)(xj − µ)T.

Under the simple assumption of uncorrelated, identically distributed
dimensions and after convenient scaling, we may concordantly restrict
the covariance parameter Σ to be the identity matrix, which finally
leads us to conclude that the probability density qµ,I(x) of any given
point x is a decreasing function of the Euclidean norm ∥x − µ∥ with
respect to the mean parameter µ. Simply put, the higher the distance,
the lesser the probability. Incidentally, the ever-present optimization
criterion in engineering of minimization of mean square error may be
often understood as the disguised maximization of likelihood under a
normal model.

On the other hand, without the symmetry restriction on Σ, our cri-
terion becomes formally equivalent to the identification of outliers by
means of their Mahalanobis distance to the centroid µ of the data set,
a distance that fully characterizes the probability density of a given
observed sample. This distance will thus offer no loss in statistical
information and constitute an adequate metric for outlier detection,
provided that the Gaussian model is deemed appropriate.

This probabilistic estimation perspective lends itself to the sophis-
tication of outlier detection by means of refining our choice of para-
metric estimation of probability density functions. In the context of
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client model updates, maximum-likelihood fitting of multimodal prob-
ability densities will enable us to identify both natural demographic
clusters and anomalous dispersions. With such multimodal methods,
outliers will not merely be points far from a single centroid, but statis-
tically unlikely combinations of weights and biases away from several
clusters, characterized with overlapping, smooth densities around sev-
eral centroids, automatically identified as we maximize the likelihood
of the parametric fit.

A particularly strong candidate, recognized by its suitability in a
wide variety of scenarios, is the Gaussian mixture model (GMM), a
probabilistically weighted combination of Gaussian components, each
with its own mean and covariance. Representing the observed samples
and the component index as random variables X and Y , respectively
(one continuous, the other discrete), the GMM is a generative model
with observation X and hidden label Y in which X given Y = y

is conditionally normally distributed with mean µ(y) and covariance
Σ(y). The weights of the components are the marginal probabilities
qY (y) of the component indices y. Therefore,

qX(x) = EY qX|Y (x|Y ) =
∑

y

qY (y)qX|Y (x|y)

=
∑

y

qY (y) 1√
(2π)d det Σ(y)

e
− 1

2∥x−µ(y)∥2
Σ(y)−1 .

This more expressive model comes with the challenge of selecting
not only the means and covariances but also the weights, jointly and
in accordance with the maximum-likelihood criterion.

The joint estimation of the mean, covariance, and weight param-
eters for the GMM is typically accomplished via the EM algorithm
[25, 26, 27], guaranteed to monotonically converge to local optima
under mild conditions [28, 29, 30]. Because of local convergence, the
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end result is ultimately driven by the initialization [31] of the algo-
rithm. A simple, common choice for the mean parameters resorts to
the k-means method, which itself requires initialization, for instance
in the form of the k-means++ method [32]. As is usually the case for
model hyperparameters, k-fold cross-validation permits selecting an
appropriate number of mixture components algorithmically. Cholesky
factorization of the covariance matrices may help efficiently compute
the probability densities involved. The maximum likelihood objective
may be logarithmically calculated as a cross-entropy.

The EM algorithm is an iterative method to find the maximum-
likelihood estimates for model parameters in the presence of latent
(hidden) variables.

To start, we need to pick the hyperparameter K 2 that decides
how many Gaussians we want in our model. The algorithm has the
following two steps:

• E-step: For each point xi, compute the probability that it be-
longs to cluster k. This can be written in terms of probability
and using Bayes’ theorem

rik = N (xi; µk, Σk) · πk∑k
j=1N (xi; µj , Σj) · πj

.

This is just the normalized probability of each point belonging
to one of the K Gaussians weighted by the mixture distribution
(πk).
The value rik will be higher when the point is assigned to the
right cluster and lower otherwise.

• M-step: After the E-step, we go back and update the π, µ, and
2This is non-trivial since it is not known how many clusters we have. One could

vary K until obtaining useful results.
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Σ values. We want to maximize the likelihood function across
all these values. These are updated in the following manner:

1. The new density is defined by the ratio of the number of
points in the cluster and the total number of points:

πk = number of points assigned to cluster
total number of points

= 1
m

∑
i

rik.

Next, we need to estimate the Gaussians.

2. The mean and the covariance matrix are updated based
on the values assigned to the distribution, in proportion to
the probability values for the data point. Hence, a data
point that has a higher probability of being part of that
distribution will contribute a larger portion. This yields
the following updates for the mean vector µk and the co-
variance matrix Σk:

µk =
∑

i rikxi∑
i rik

;

Σk =
∑

i rik(xi − µk)(xi − µk)T∑
i rik

.

Based on the updated values generated from this step, we cal-
culate the new probabilities for each data point and update the
values iteratively. This process is repeated in order to maximize
the log-likelihood function, which can be defined as

ℓ(π, µ, Σ) =
∑

i

log(
∑

k

N (xi; µk, Σ2
k) · πk).
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2.8 DBSCAN

In [33], a new notion called density-based cluster was introduced,
whereby clusters of any shape can be identified in data sets containing
noise and outliers. The goal of density-based spatial clustering of
applications with noise (DBSCAN) is to identify dense regions, which
can be measured by the number of objects close to a given point.

DBSCAN requires two parameters:

• Epsilon (Eps): maximum radius of the neighborhood around a
point.

• Minimum points (MinPts): minimum number of points in the
Eps-neighborhood of a point. This Eps-neighborhood of a point
p can be defined as NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}, where
D is the total set of points.

Any point p in the data set with a neighbor count at least MinPts

is marked as a core point. A point p is a border point if the num-
ber of its neighbors is less than MinPts, but it belongs to the Eps-
neighborhood of some core point. If a point is neither a core point
nor a border point, then it is called a noise point or an outlier. Figure
2.2 illustrates these points.

To understand the DBSCAN algorithm, the following definitions
are needed once parameters Eps and MinPts have been set:

• Direct density-reachability: A point q is directly density-reachable
from a core point p if q ∈ NEps(p).

• Density reachability: A point q is density-reachable from a core
point p if there is a set of core points p1, · · · , pn−1, such that
pi+1 is directly density-reachable from pi for i = 1 to n − 1,
where p1 = p and pn = q.
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• Density connected: A point q is density-connected to a point p

if there is a point s such that p and q are density-reachable from
s.

Figure 2.2: DBSCAN clustering

The DBSCAN algorithm is presented in Algorithm 2 and works as
follows. First, we arbitrarily select a point x in the data set X. Then,
we retrieve all points that are density-reachable from x with respect
to Eps and MinPts. If x is a core point, form a cluster with the
retrieved points. Otherwise, mark x as a noise point. Iterate through
the remaining unvisited points in the data set.

Those points that do not belong to any cluster are treated as out-
liers or noise. One limitation of DBSCAN is that it is sensitive to the
choice of parameters, especially if clusters have different densities. If
Eps is too small, a cluster whose point-to-point distances are greater
than Eps will be taken as noise. In contrast, if Eps is too large,
clusters whose inter-cluster distance is less than Eps may be merged
together.
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Algorithm 2: DBSCAN
Input: X, ϵ, minPts
Output: A set of clusters

1 foreach unvisited point x ∈ X do
2 mark x as visited
3 N ← find neighbors N of x
4 if |N | < minPts then
5 label(x) ← noise
6 end
7 c← next cluster label
8 label(x) ← c
9 foreach x′ ∈ N do

10 if x′ not visited then
11 mark x′ as visited
12 N ′ ← find neighbors N ′ of x′

13 if |N ′| < minPts then
14 N = N ∪N ′

15 end
16 end
17 end
18 if x′ /∈ c then
19 c← c ∪ x′

20 end
21 end

2.9 Generative adversarial networks

GANs are a type of ML algorithm used to generate new synthetic
data. They work by having two neural networks work together: a
generator network and a discriminator network. The generator net-
work creates data, while the discriminator network evaluates them
and determines their authenticity. The two networks then compete in
an adversarial process, with the goal being for the generator network
to create data that are indistinguishable from the “real” data in the
training set.
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Figure 2.3: Architecture of a Generative Adversarial Network

GANs were first introduced by Goodfellow et al. in [34]. They
have a variety of applications, but their most common usage is the
generation of synthetic images.

The generator G takes as input a random noise vector z and out-
puts an image z = G(z). The discriminator D receives as input either
a training image or a synthesized image from the generator and out-
puts a probability distribution D(X) over possible image sources. The
discriminator is trained to maximize the log-likelihood it assigns to
the correct source:

L = Ex[log(D(x))] + Ez[log(1−D(G(z)))].

The generator is trained to minimize the second term in the expression
above.

2.10 Adversarial examples

Adversarial examples are special inputs to machine learning models
constructed intentionally to confuse the model so that it misclassifies
the given input [35]. Adversarial examples can cause serious issues
in terms of security, but also safety. A noteworthy example of the
potential safety implications of adversarial examples is to cause ML
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models guiding self-driving cars to misclassify traffic signals. Adver-
sarial examples can be used to attack any machine learning system,
from image recognition to fraud detection. Adversarial examples are
closely related to counterfactual examples: in [36], counterfactuals are
described as adversarial examples in which the changes introduced to
the original inputs are interpretable by humans. Thus, the misclas-
sification of counterfactual examples can provide some insights into
how the model works internally. Since the changes to the original
input are interpretable, the reasons for giving a different classifica-
tion result than what was expected are also interpretable. Therefore,
counterfactual examples are a mechanism for ML interpretability or
explainability.

Theoretically, adversarial examples are typically defined as inputs
x′, where the differences between x′ and non-adversarial inputs x are
minimal under a distance metric d(·) (e.g., d(·) can be the Lp dis-
tance), whilst fooling the target model f . Generally, adversarial ex-
amples seek to satisfy

d(x′, x) < ϵ and ŷ(x′) ̸= ŷ(x),

where ϵ is a small constant that bounds the magnitude of the pertur-
bations, and ŷ(·) denotes the predicted label of a classifier model.
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Chapter 3

Fair Detection of
Poisoning Attacks in
Federated Learning on
Non-i.i.d. data

3.1 Introduction

In this work, we explore the tensions between data privacy, par-
tially achieved by the use of federated learning, model robustness
against label-flipping attacks, and fairness in classification tasks. As
outlined previously, federated learning is vulnerable to poisoning at-
tacks, and in particular to label-flipping attacks. Mechanisms to pro-
tect against these attacks are based on filtering outlying model up-
dates. However, it is not known ex ante whether these outliers come
from attackers or from benign clients whose data are genuinely differ-
ent from those of the majority of clients, either because the data are

29
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30 Chapter 3. Fair Detection of Poisoning Attacks in FL

non-i.i.d. or because those benign clients belong to a minority group.
Thus, attack protection mechanisms in the literature provide model
robustness at the cost of classification fairness. We propose mecha-
nisms to better model the updates provided by the clients, by finding
similarities among outliers that can indicate the existence of minor-
ity groups and by only discarding those updates which are completely
isolated. Other tensions among desirable properties of ML models are
explored in [37].

3.2 Contributions

No honest client ought to be discriminated in FL due to the gen-
uine attribute values of the person represented by the client when
interacting with other clients or the model manager. In other words,
all honest clients should be able to contribute to the training process,
because this is the best way to obtain not only fair but also good-
quality decision models. Note that ignoring minority groups in the
training process decreases the quality of the learned global model.

However, as introduced above, being inclusive with respect to mi-
norities often clashes with the ability to detect attacks against FL
models. A common detection approach is for the model manager to
compute the Euclidean distance between each of the client-provided
model updates and the average of such updates, and then discard as
potentially malicious any update too far from the average, according
to some threshold or rule. In the presence of non-i.i.d. data, or when
some of the clients represent individuals from minority groups, this
approach might lead to treating genuinely different individuals as po-
tential attackers. This would not only be unfair to minorities, but
would result in a biased model.

Our aim is to strike a balance between anti-poisoning and diversity
accommodation. By including diverse clients, we aim at making it
possible to learn less discriminatory machine learning models. Thus,
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the contributions in this chapter are:

• A first method to distinguish minority members from attackers
based on microaggregation. [22]. Clients who identify them-
selves as belonging to a minority group announce some relevant
attributes to their peers, such as their gender, their sexual orien-
tation, or their ethnicity. From these attributes, the peers carry
out a clustering process via collaborative microaggregation. In
this way, the majority group and the minority groups are clus-
tered separately. After that, an FL model is trained for each
cluster. Since peers have been already clustered according to
some of their attributes, outliers within clusters are likely to be
attackers because their updates are unusual even for a minority
group. Finally, a weighted aggregation of the different cluster-
level models is computed, where the weights are proportional to
the sizes of the clusters.

• A second method where we use Gaussian mixture models to
characterize the distribution of the client-provided updates and
classify outliers in a more sophisticated way than just relying
on the distance to an average client update. In the presence
of minority groups that differ from the majority group in some
attributes, but that are homogeneous within themselves, we ex-
pect this approach to label honest individuals from minority
groups as non-malicious.

• A third method predicated on density-based clustering. Specifi-
cally, we use the DBSCAN algorithm to identify clusters of any
shape among the client updates. In the FL setting the assump-
tion is that the objectives for all clients approximate the global
objectives. However, this is not the case with non-i.i.d. data.
DBSCAN can help correctly characterize the distribution of up-
dates from clients with non-i.i.d. data.
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3.3 Fair detection of poisoning attacks in FL

Several solutions have been proposed in the literature to detect
attacks or abnormal behaviors in machine learning [38, 39]. In the
specific context of FL, where the model manager has access to the
individual updates from the clients, the following classes of attack
detection methods have been proposed:

• Detection of malicious clients via model metrics. The model
manager can reconstruct the individual updated models for ev-
ery client u and compare the model performance metrics, such
as accuracy or loss, against a validation data set with respect
to the model obtained by aggregating all updates except that of
client u. The model manager can mark it as anomalous and pos-
sibly discard any client updates that degrade the model perfor-
mance according to some rule or threshold. Note that the model
manager needs a suitable validation data set, which may not al-
ways be available in the FL scenario. Moreover, re-evaluating
the model accuracy after each update is extremely costly, and
introduces an unacceptable overhead in the FL process.

• Detection of malicious clients via update statistics. A very com-
mon and natural approach for the model manager is to observe
the statistics of the magnitudes of the updates [40]. The model
manager can compute how much the distributions of distances
in successive iterations change, for example using the Kullback-
Leibler divergence metric. In a scenario with colluding malicious
clients, these might have enough influence on the computed cen-
troid to render the previous countermeasures ineffective. To
gain additional protection, the model manager can compute the
centroid as a median rather than as an average. The median is
more robust in front of outlying updates submitted by malicious
clients. More costly alternatives are presented in [41], where
anomalous clients are detected by generating low-dimensional
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surrogates of model weight vectors, and in [42], in which a spec-
tral anomaly detection is performed by the model manager.

A decentralized approach based on update statistics is presented
in [43]. A client’s model update is considered legitimate if its
distance to the centroid of all client updates is roughly between
the first and the third quartiles of the set of distances between
all client updates and the centroid.

• Krum aggregation. The authors of [44] propose an aggregation
function that is resilient against a certain number of malicious
clients. This function is called Krum. The authors show that
averaging does not stand Byzantine attacks, while Krum does.
An important advantage of Krum is its (local) time complexity
O(m2 · d), which is linear in the dimension of the updates. The
authors also evaluate a variant of Krum, Multi-Krum, which
interpolates between Krum and averaging.

• Coordinate-wise median. In [40], a median-based distributed
algorithm is proposed that selects the coordinate-wise median
instead of the coordinate-wise average. Since the median is a
more robust statistic than the mean (i.e., it is less influenced by
outliers), the obtained global model is less influenced by poten-
tial malicious peers.

• Coordinate-wise trimmed mean. Also in [40], a second dis-
tributed algorithm is proposed, called coordinate-wise trimmed
mean, that can achieve order-optimal error rate under weaker
assumptions than the coordinate-wise median algorithm.

In the approaches above, updates that are statistical outliers de-
parting from a global aggregate model are considered malicious. How-
ever, it may also be the case that honest clients have genuinely outly-
ing local data and therefore generate genuinely outlying updates. This
may be a consequence of the clients belonging to a minority group.
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There is a growing interest in the development of fair models for
machine learning. In federated settings, [45] propose DITTO, a multi-
task learning framework, to address the competing constraints of ac-
curacy, fairness, and robustness in FL. The authors of this work define
fairness as each client achieving equal test performance on the feder-
ated model. In [46], a collaborative fair federated learning framework
(CFFL) is proposed. In this work, fairness is achieved by adjusting
the performance of the models allocated to each participant based on
their contributions. Also, [47] aims at achieving group fairness in FL.
The authors mimic the centralized fair learning setting by very fre-
quently exchanging information for each local update, rather than for
each round of local training.

Several works have dealt with non-i.i.d. data in a federated learn-
ing setting. As prior studies show, decentralized learning algorithms
lose significant model accuracy in the non-i.i.d. setting. In [1], the
authors propose a strategy to improve training on non-i.i.d. data by
creating a small subset of data which are globally shared among all
the edge devices. However, this relies on a substantial amount of pub-
lic data being available for a given task. In [48], the authors propose
federated augmentation (FAug), where clients collectively train a gen-
erative model, thereby augmenting their local data towards yielding
an i.i.d. data set. The authors of [49] analyze the convergence of fed-
erated averaging on non-i.i.d. data and establish a convergence rate
of O( 1

T ) for strongly convex and smooth problems, where T is the
number of rounds of local SGD updates.

The commonly used FedAvg [3] makes no special adjustments when
encountering non-i.i.d data and therefore suffers from a deterioration
in the accuracy of FL [50]. This performance degradation can chiefly
be attributed to weight divergence of the local models resulting from
non-i.i.d data.

A systematic study on local model poisoning attacks to FL is of-
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fered in [51], including the attacks mentioned above. The authors
simulate FL with different non-i.i.d. training data distributions. They
generalize two defenses against data poisoning attacks, which are ef-
fective in some cases but not in others; this highlights the need for
new defenses against local model poisoning. For further background
on attacks and defenses in FL, see the surveys [52] and [53]. The
methods we introduce in the next sections depart from the state of
the art in that they aim at properly managing updates originated by
clients in minority groups.

3.4 Fair attack detection methods

To evaluate the performance of the trained model, the fairness
notions of Section 2.3 can be readily applied to centralized model
training. However, with non-i.i.d data in FL, low levels of fairness are
likely.

To address this problem, one must pay attention to the distribution
of outlying updates. If these are concentrated, then this could signal
a minority, rather than attackers. Fairness comes from differentiating
attackers from minorities, so that the latter can avoid rejection of
their updates.

3.4.1 Fair attack detection based on microaggregation

In this section, we introduce our microaggregation-based approach
for fair detection of attacks in federated learning.

In our approach, we are interested only in the partition step,
whereby similar clients will be clustered together based on their demo-
graphic attributes. The superiority of microaggregation over standard
clustering for our purposes lies in that the former ensures that clus-
ters will have at least size k. In this way, we avoid training models for
clusters that are too small. Note that it is impossible to detect any
outliers if too small clusters are allowed.
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We propose the solution in Protocol 3 based on collaborative mi-
croaggregation to distinguish malicious clients from genuine outlier-
s/minority group members, which we will call in what follows protected
clients.

Protocol 3: AttackerDetectionMicro
1 Each protected client publishes, together with her

pseudonym, demographic attribute values that characterize
her as a member of a minority group;

2 The model manager and protected clients engage in
decentralized microaggregation as per Protocol 4 to
microaggregate protected clients according to their
published attributes;

3 for each cluster C of the microaggregation do
4 Compute the centroid cC of the updates sent by clients in

C;
5 Let λC be the set of clients Pu ∈ C such that the distance

distu from Pu’s update δt
u to the centroid of the updates

is not an outlier, more precisely

λC = {Pu ∈ C|Q1− τ × IQR ≤ distu ≤ Q3 + τ × IQR},
(3.1)

where Q1 and Q3 are, respectively, the first and the
third quartile of the set of distances, IQR = Q3−Q1 is
the interquartile range and τ is a tolerance parameter;

6 if a client Pu ∈ λC then
7 αu = 1/m (or nu/n);
8 else
9 αu = 0;

10 end
11 end

In Line 1 of Protocol 3, the demographic attributes that char-
acterize a minority might for example be {Sex = female, Age =
young, Ethnicity = black}. In the microaggregation called in Line 2,
parameter k must be taken large enough so that outliers can be dis-
tinguished within a group of k, and a collusion of k clients or of a sig-
nificant fraction of k clients is unlikely. In Line 7, assigning a nonzero
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weight αu to Pu’s update means accepting the update as legitimate
(because it is similar to most updates in Pu’s cluster C). In contrast,
in Line 9 assigning αu = 0 means discarding the update (because it
is too outlying even for the minority group represented by C).

Protocol 4: Decentralized microaggregation
Input: Clients P1, . . . ,Pm; microaggregation parameter k;
Output: A partition of clients {Ci}pi=1;

1 Let qiu be demographic attribute values of Pu, for
u = 1, . . . , m;

2 Each Pu publishes qiu;
3 The model manager uses a microaggregation algorithm based

on the quasi-identifiers qi1, . . . , qic to obtain clusters C1, C2,
. . ., Cp, such that k ≤ |Cj | ≤ 2k − 1;

4 The model manager publishes C1, C2, . . ., Cp;
5 Each Pu can compute the above clusters and verify they are

correct, and check that the cluster CPu where qiu belongs
contains k or more quasi-identifiers;

Note that microaggregation attempts to create clusters such that
the published attributes of protected clients in each cluster are max-
imally similar. Therefore, if clients within a cluster are similar, it is
natural to expect that the updates they send are also similar. As a
consequence, if an update differs very much from the others, it is not
unreasonable to treat the client having contributed it as malicious.

To create homogeneous clusters in an efficient way, in Protocol 4
we use the maximum distance to average vector (MDAV) algorithm,
detailed in Algorithm 1, which is the most widely used microaggrega-
tion algorithm [24].

MDAV is a heuristic algorithm that clusters records in a data set
so that each cluster is guaranteed to contain at least k records. At
each iteration, two records are selected: the record xr farthest from
the average record x̄ of the data set and the record xs farthest from
xr. Then, a cluster is formed with xr and its closest k − 1 records,
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Algorithm 1: MDAV microaggregation algorithm
Input: Data set R, microaggregation parameter k;
Output: A partition of R, with sets of minimum size k;

1 while |R| ≥ 3k do
2 Compute the average record x̄ of all records in R;
3 Consider the most distant record xr to x̄;
4 Find the most distant record xs from xr considered in the

previous step;
5 Form two clusters around xr and xs, respectively, one

containing xr and the k − 1 records closest to xr and the
other cluster containing xs and the k − 1 records closest
to xs;

6 Take as a new data set R the previous data set R minus
the clusters formed around xr and xs in the last instance
of Step 5;

7 end
8 if there are between 3k − 1 and 2k records in R then
9 Compute the average record x̄ of the remaining records in

R;
10 Find the most distant record xr from x̄;
11 Form a cluster containing xr and the k − 1 records closest

to xr;
12 Form another cluster containing the rest of records;
13 else
14 Form a new cluster with the remaining records;
15 end
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and another cluster with xs and its closest k− 1 records. The records
in both clusters are removed from the data set in the next iteration.

3.4.2 Fair attack detection based on Gaussian mixtures
and expectation-maximization

In this section, we propose a second approach to tackle the problem
of fair attack detection in federated learning. It is based on Gaussian
mixture models (GMM) and the expectation-maximization (EM) al-
gorithm.

Gaussian mixture models are probabilistically weighted combina-
tions of Gaussian components, each with its own mean and covariance.

Mixture models, in general, are better suited than single distribu-
tions at modeling populations where differences between sub-popula-
tions exist. We leverage this property of Gaussian mixture models to
capture the differences among different sub-populations (e.g., minori-
ties) while still being able to determine whether some data points are
too far from the distribution modeling the population.

The expectation-maximization algorithm takes the number of Gaus-
sians to model the data, K, and iteratively finds for each Gaussian
k ∈ {1, . . . , K} its weight πk, its mean µ, and its covariance matrix
Σk. Given these parameters, we are able to compute how likely each
point is to belong to the mixture of Gaussians.

Algorithm 2 shows how we use the expectation-maximization al-
gorithm to detect potential malicious updates in federated learning
aggregation.

This algorithm is used at each global learning step, that is, at the
time of aggregating local updates. Once the model manager receives
all updates from clients, it fits a GMM to the received updates us-
ing the expectation-maximization algorithm. Then, each individual
update is evaluated according to the log-likelihood that it follows the

UNIVERSITAT ROVIRA I VIRGILI 
FAIRNESS AND ROBUSTNESS IN MACHINE LEARNING 
Ashneet Khandpur Singh 
 



40 Chapter 3. Fair Detection of Poisoning Attacks in FL

derived distribution. Those updates with a log-likelihood below a pa-
rameter τ (i.e., those updates that are significantly different from the
rest) are flagged as potentially malicious and discarded.

Algorithm 2: AttackerDetectionEM
Input: Client updates {δt

u}mu=1
1 π, µ, Σ← EM({δt

u}mu=1);
2 for u in S do
3 ℓ← log(∑kN (δt

u; µk, Σk) · πk);
4 if ℓ < τ then
5 αu = 0;
6 else
7 αu = 1/m (or nu/n);
8 end
9 end

3.4.3 Fair attack detection based on DBSCAN

In this section, we propose a third approach to tackle the prob-
lem of fair attack detection in federated learning. It is based on a
commonly used data clustering algorithm, i.e. density-based spatial
clustering of applications with noise (DBSCAN).

In Algorithm 3 we show how DBSCAN can be used for attacker
detection in federated learning.

The model manager fits the model to the updates and goes through
each individual update to check if it is a noise point. If the latter
happens, then the model manager flags the update as malicious.
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3.5. Experimental results 41

Algorithm 3: AttackerDetectionDBSCAN
Input: Set of clients S, Client updates {δt

u}mu=1, Eps, MinPts

1 Core, Border, Noise← DBSCAN({δt
u}mu=1, Eps, MinPts);

2 for u in S do
3 if δt

u ∈ Noise then
4 αu = 0;
5 else
6 αu = 1/m (or nu/n);
7 end
8 end

3.5 Experimental results

We conducted experiments to examine the effectiveness of our at-
tack detection mechanisms in FL with minority groups and non-i.i.d.
data. To that end, we chose three publicly available data sets, namely
(i) the Adult Income data set [54], (ii) the Athletes data set [55], and
(iii) the Bank Marketing data set [56].

In the next sections, we describe these data sets and the prepro-
cessing we conducted on them to emulate both client bases including
minority groups and client bases with non-i.i.d. data.

3.5.1 Data sets, preprocessing, and baseline scenarios

Here, we present a summary table (Table 3.1) of the data sets we
use in our experiments, along with how we compute the initial baseline
metrics.
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42 Chapter 3. Fair Detection of Poisoning Attacks in FL

Table 3.1: Characteristics of data sets.

Adult Athletes Bank Marketing
# Records 45, 222 206, 165 45, 211

Sensitive attr. Race Height and Country Marital status
Balanced No Yes No
Attributes 14 17 17
Class label Income Height Term deposit

For the three data sets, we first cleaned missing values and iden-
tified (sensitive) attributes that split the population of individuals in
each data set into majority and minority groups.

To measure potential biases in the data sets, we trained a fed-
erated learning baseline model for each of them and we computed
performance metrics. In all three cases, the baseline models were
built using Keras and consisted of a multilayer perceptron (MLP)
with two hidden layers using the ReLU activation function. Since we
were training binary classifiers, the output layer used a sigmoid ac-
tivation function. We used binary cross-entropy as the loss function
and the Adam optimizer with a learning rate 3e−4. We split the data
randomly in same-size sets and trained the models using the FedAvg 1
algorithm, with no attackers and no attacker detection mechanisms.
All results were computed using random 75-25% train-test splits, and
we trained the models for 100 epochs each time. The resulting metrics
are provided as the average of several training procedures.

After this evaluation, we prepared the data sets for further experi-
ments in a federated scenario with fair malicious client detection. We
considered three different kinds of clients: majority clients, minority
clients, and malicious clients. We followed the approach of [3]. The
step-by-step process was to first sort the data, then divide the data
into equally sized shards, and finally assign each of the shards to a
different client.
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3.5. Experimental results 43

The next subsections provide details on these procedures for each
of the data sets.

Adult Income data set

The Adult data set has been typically used to train classifiers that
predict whether an individual earns more or less than $50, 000 per
year, according to a set of demographic attributes, and with two class
values: ≤ $50K (class 0) and > $50K (class 1). The two classes are
distributed as follows: 34, 014 individuals (75.21%) earn up to $50K

per year and 11, 208 individuals (24.78%) earn more.

The race attribute has 5 distinct values: (i) White: 38, 903 (86.02%);
(ii) Black: 4, 228 (9.34%); (iii) Asian-Pac-Islander: 1, 303 (2.88%);
(iv) Amer-Indian-Eskimo: 435 (0.96%); and (v) Other: 353 (0.78%).

We observe that White and Asian-Pacific-Islander are more likely
to be in the > $50K class than the rest, with over 25% of the obser-
vations of these two in that class. In comparison, only around 12%
of black individuals belong to this class. Therefore, we found that
this data set had a bias towards White and Asian-Pacific-Islander in-
dividuals, so we first wanted to establish whether a machine learning
model trained with these data will also show this bias.

To that end, we first set to finding which proportion of black in-
dividuals were misclassified as earning less than $50K, in comparison
to individuals from other ethnicities. The whole data set is clearly
imbalanced towards the low-earning class, and so we expected a cer-
tain FNR (taking the class < $50K as class 0) across all ethnicities.
We wanted to know if this FNR was balanced across all ethnicities.

First, we recoded the ’Black’ individuals in the variable ’race’ as 0
and the rest as 1, who were the ’nonblack’ individuals. This resulted
in 4, 228 black individuals and 40, 994 nonblack individuals.

Then, we trained an MLP as described above.
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44 Chapter 3. Fair Detection of Poisoning Attacks in FL

The training set consisted of 33, 916 samples and the test set had
11, 306 samples.

Table 3.2 shows the baseline scenario results for Adult.

Table 3.2: Performance measures for the Adult baseline scenario

Black Nonblack
Accuracy 87.31% 90.18%

FNR 0.1203 0.0881
FPR 0.0797 0.0702

ROC AUC 0.80 0.82

From Table 3.2, we can confirm that the model is biased to favor
the ’nonblack’ individuals since their FNR is smaller (9.5%) than for
the ’Black’ individuals (12.21%), i.e., black individuals are incorrectly
assigned to be in the low income category in a bigger proportion than
nonblack individuals.

Next, we prepared the Adult data set for a federated learning sce-
nario with malicious clients. Adult was split into 50 client shards, as
follows:

• 30 shards contained records that only included nonblack indi-
viduals, i.e., race = 1. These corresponded to the majority
clients. Each shard consisted of 1, 500 records, of which 1, 400
were reserved for training and 100 for testing.

• 19 shards contained records of black individuals, i.e., race = 0
across the two income classes. These shards corresponded to
the minority clients. Each shard consisted of 1, 500 records, of
which 1, 400 were reserved for training and 100 for testing.

• The remaining shard contained 55% of rich black individuals and
45% of low-income black individuals (3, 694), whose labels had
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3.5. Experimental results 45

been flipped to high-income. This shard represented a malicious
client, trying to make the model misclassify low-income black
individuals as high-income.

Our objective was to detect and remove those updates computed on
poisoned records without contributing to the bias against the minority
clients. That is, without punishing the genuine high-income black
individuals.

Athletes Data set

The second data set contains information on all the athletes that
have competed in any of the Olympic games from Athens 1896 to Rio
2016.

We replaced all missing values in the ’Medal’ attribute with ’No
Medal’, and, after dropping the rest of missing values, we were left
with 206, 165 records.

For our study, we used ’Country’ and ’Height’ as sensitive at-
tributes. We made a new column ’Country_height’, which has the val-
ues ’SouthAsian’, labeled as 0 and ’NSA’, labeled as 1. The first class
included countries from south Asia and south east Asia present in the
data set (Indonesia, Vietnam, Philippines, Malaysia, Sri Lanka, Thai-
land, Singapore, India, Pakistan, Maldives, Afghanistan, Bangladesh,
Bhutan, Nepal, Brunei, Cambodia, Laos, Myanmar, Japan) for which
the data shows people are more likely to have a height attribute be-
low the data set median height (175.0 cm). The second value was the
non-South Asian countries, which included the rest of the countries.

We considered ’tall’ (class 1) those athletes with height 175.0 (the
data set median) or above (110, 618 athletes) and ’short’ (class 0)
those athletes with height below 175.0 (95, 547). This was the classi-
fication task.
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46 Chapter 3. Fair Detection of Poisoning Attacks in FL

We were interested in studying the biases in models trained on
these data, by focusing on male South Asian athletes as the protected
minority.

First, we created a new data set with only male athletes, where
7, 851 were from South Asian countries and 131, 603 were from non
South Asian countries. Then, we trained an MLP as described above,
in which the training set consisted of 104, 590 samples and the test
set of 34, 864 samples.

This was the baseline scenario, whose metrics we show in Fig-
ure 3.3.

Table 3.3: Performance measures for the Athletes baseline scenario

SouthAsian NonSouthAsian
Accuracy 89.42% 92.81%

FNR 0.0794 0.0701
FPR 0.0566 0.0513

ROC AUC 0.82 0.83

Then, we prepared the data set to be evaluated in a federated learn-
ing scenario with fair malicious client detection as described above.

In this case, we split the data into 90 shards, again, with three
different kinds of clients:

• 60 shards contained records of non South Asian athletes, i.e.,
’Country’ = 1. These corresponded to the majority clients.
Each shard consisted of 1, 500 records, of which 1, 400 were re-
served for training and 100 for testing.

• 29 shards contained records of South Asian athletes, i.e. ’Coun-
try’ = 0. These shards corresponded to the minority clients.
Each shard consisted of 1, 500 records, of which 1, 400 were re-
served for training and 100 for testing.
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• The last shard contained both tall South Asian athletes (25%)
and short South Asian athletes (75%) whose labels had been
flipped to tall. This shard is assigned to the attacker.

Again, our purpose was to detect the attacker and discard its up-
dates without affecting the performance of the model or causing South
Asian athletes to be misclassified in a larger proportion than in the
baseline scenario.

Bank Marketing data set

The last data set we used is related to direct marketing campaigns
(phone calls) of a Portuguese banking institution. Its classification
goal is to predict whether the individual will subscribe to a term
deposit (’yes’ = 0, ’no’ = 1).

It is an imbalanced data set with the class 1 (’no’, that is, not
subscribed) being the majority class (88.7%).

In this case, we used the Marital−status attribute as the sensitive
attribute. The majority of the individuals are married (60.19%) and
these are the most approached ones. The rest are singles (28.29%) or
divorced (11.52%).

To find out whether this imbalance caused bias in classification,
we first labeled ’Divorced’ individuals in the variable ’Marital-status’
as 0 and the rest as 1, which are the ’non-divorced’. 5, 207 records
belonged to divorced individuals and 40, 004 belonged to individuals
who are not. Then, we trained an MLP as described above, with a
training data set of size 33, 908 and a testing data set of size 11, 303.

We show the metrics for this baseline scenario in Table 3.4.

To prepare the data set for experiments with malicious clients, we
split it in 50 shards as follows:
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48 Chapter 3. Fair Detection of Poisoning Attacks in FL

Table 3.4: Performance measures for the Marketing baseline scenario

Divorced NonDivorced
Accuracy 85.74% 88%

FNR 0.1102 0.1063
FPR 0.0787 0.0709

ROC AUC 0.79 0.80

• 30 shards contained records of non-divorced clients, i.e., ’Marital-
status’ = 1. These corresponded to the majority clients. Each
shard consisted of 1, 500 records, of which 1, 400 were reserved
for training and 100 for testing.

• 19 shards contained records of divorced individuals. These shards
corresponded to the minority clients. Each shard consisted of
1, 500 records, of which 1, 400 were reserved for training and 100
for testing.

• 1 shard of 1,500 records included 622 divorced individuals who
had not subscribed to a term deposit. The label for 90% of those
622 records was flipped from ’no’ to ’yes’. This shard represented
a malicious client trying to poison the model into misclassifying
non-subscribers to term deposits as subscribers.

3.5.2 Detection of malicious updates

We compared four approaches to detect malicious updates on the
generated data sets:

1. Baseline. In the baseline experiment we trained a federated
learning model using a distance-based method to detect outliers
as in [43].

In summary, an average update was computed from all client-
provided updates. Then, the Euclidean distance between ev-
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ery individual update and the average update was computed.
All updates whose distance fell outside the bounds in Expres-
sion (3.1) with τ = 1.5 were considered malicious and thus dis-
carded.

2. Microaggregation. The second experiment modeled FL with
microaggregation-based attack detection. We used different pa-
rameters for the experiments to show how varying them affects
the metrics. The local learning steps varied among 1, 2 and 5,
and for parameter k we chose 1, 3 and 5. Note that microaggre-
gation with k = 1 is actually the baseline case (no clusters).

3. GMM. This experiment tested the GMM-based approach.

We used the GMM implementation in Scikit-learn [57], with
parameters K = n_components = 3 (3 mixture components)
and covariance_type = “full′′ (each component had its own
general covariance matrix).

Any update whose log-likelihood fell below τ = −20, 000 was
considered malicious and was discarded. We used different pa-
rameters to see how this affected the metrics. The local learning
steps were the same as in the previous experiment, the mean µ

took values 0 and 2, and the covariance σ2 took values 1 and
4. To get the optimal number of clusters, we used the Bayesian
Information Criterion (BIC) function. The optimal value is the
one that minimizes BIC.

4. DBSCAN. The last experiment was similar to the previous one,
but using Algorithm 3 to detect malicious updates.

The algorithm used the DBSCAN implementation provided in
Scikit-learn with parameters Eps = 0.5, 3, 5, and minPts de-
pending on the data set as follows:

• Adult Income data set: minPts = 5, 15, 28.
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50 Chapter 3. Fair Detection of Poisoning Attacks in FL

• Athletes data and Bank Marketing data sets: minPts =
5, 18, 34.

Values for Eps other than 0.5 and values for MinPts other than
5 were selected following the procedure in Section 4.2 of [58].

3.5.3 Performance measures and discussion

In Table 3.5 we count the number of good updates sent by gen-
uine minority clients but flagged as malicious, for each of the four
approaches and for each of the three data sets. The numbers are cu-
mulative over all epochs (100 epochs were used for all approaches).
Clearly, the three methods we propose misclassified genuine minor-
ity updates as malicious in a smaller proportion than plain federated
learning for the three studied data sets. In particular, the method
based on microaggregation offered the best results among our three
proposals.

Table 3.5: Number of genuine minority updates misclassified as mali-
cious.

Baseline Microaggr. GMM DBSCAN
Adult 183 102 131 126

Athletes 385 213 227 234
Bank Marketing 271 158 172 164

Further, we used Accuracy and ROC AUC as performance metrics
for majority, minority, and attacker clients. The basic objective of
our mechanisms was to increase these performance metrics for both
majority and minority clients while ensuring attackers achieved worse
results. Additionally, we used the above mentioned Predictive Equal-
ity (PE) and Equal Opportunity (EO) metrics to detect the presence
of unfairness towards the majority or the minority. According to these
two metrics, the closer PE and EO to 0, the fairer is a method.

Results are summarized in the following tables. Tables 3.6, 3.7
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and 3.8 report the above metrics for the microaggregation experiment
with different parameters k and learning steps LS. Tables 3.9, 3.10
and 3.11 report the above metrics for the GMM experiment with
different mean, covariance and learning steps. Finally, Tables 3.12,
3.13 and 3.14 report the above metrics for the DBSCAN experiment
with different Eps, minPts, and learning steps.

Table 3.6: Performance measures for Adult Income data set with
different microaggregation parameters. ‘B’ stands for black (minor-
ity clients), ‘NB’ for non-black (majority clients), ‘Att’ for attacker
clients.

Parameters Accuracy ROC AUC PE EO
k LS B NB Att B NB Att — —
1 1 0.9003 0.9307 0.7712 0.82 0.83 0.68 0.0323 0.238
1 2 0.9125 0.9362 0.8298 0.82 0.84 0.72 0.0271 0.0205
1 5 0.9072 0.9251 0.7809 0.83 0.83 0.71 0.0308 0.0251
3 1 0.9395 0.9591 0.7421 0.84 0.85 0.72 0.0097 0.0061
3 2 0.9594 0.9873 0.8406 0.86 0.87 0.73 0.0022 0.031
3 5 0.9775 0.9849 0.7421 0.89 0.90 0.78 0.0035 0.0029
5 1 0.92 0.9401 0.8103 0.84 0.83 0.73 0.0106 0.0095
5 2 0.9261 0.9387 0.8164 0.83 0.84 0.71 0.0182 0.0206
5 5 0.9122 0.9394 0.8027 0.82 0.83 0.72 0.0213 0.0285

UNIVERSITAT ROVIRA I VIRGILI 
FAIRNESS AND ROBUSTNESS IN MACHINE LEARNING 
Ashneet Khandpur Singh 
 



52 Chapter 3. Fair Detection of Poisoning Attacks in FL

Table 3.7: Performance measures for Athletes data set with different
microaggregation parameters. ‘SA’ stands for South Asian (minority
clients), ‘NSA’ for non-South-Asian (majority clients), ‘Att’ for at-
tacker clients.

Parameters Accuracy ROC AUC PE EO
k LS B NB Att B NB Att — —
1 1 0.9227 0.9546 0.8115 0.83 0.85 0.71 0.0118 0.0241
1 2 0.9395 0.9591 0.802 0.82 0.85 0.72 0.0172 0.0283
1 5 0.9282 0.9487 0.8146 0.82 0.84 0.71 0.0105 0.0199
3 1 0.9582 0.9721 0.7903 0.87 0.89 0.69 0.0081 0.0065
3 2 0.9689 0.9984 0.8049 0.88 0.9 0.72 0.0037 0.0103
3 5 0.9508 0.9714 0.8021 0.87 0.89 0.71 0.0073 0.0091
5 1 0.9372 0.9522 0.8241 0.85 0.86 0.73 0.011 0.0183
5 2 0.9388 0.9564 0.8173 0.84 0.86 0.72 0.0256 0.0174
5 5 0.9261 0.947 0.8153 0.84 0.85 0.72 0.0234 0.0201

The results show that all methods perform comparably or slightly
better than the baseline scenario (microaggregation with k = 1) in
terms of accuracy and ROC AUC. These results indicate that our
methods allow the models to better capture the differences present
between the majority and minority groups, while still being able to
discard malicious updates which, in all cases, show worse performance
measures than those from legitimate users.

Additionally, all methods reduce in most cases the differences be-
tween majority and minority groups with respect to the baseline sce-
nario, which can be observed with the EO and PE.

Regarding the different parameters, we can observe in the results
for microaggregation that the accuracy with k = 3 is better than
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Table 3.8: Performance measures for Bank Marketing data set with
different microaggregation parameters. ‘D’ stands for divorced (mi-
nority clients), ‘ND’ stands for non-divorced (majority clients), ‘Att’
for attacker clients.

Parameters Accuracy ROC AUC PE EO
k LS B NB Att B NB Att — —
1 1 0.9106 0.9212 0.7572 0.81 0.83 0.68 0.0147 0.0132
1 2 0.9163 0.9387 0.7681 0.83 0.84 0.72 0.0212 0.0263
1 5 0.9201 0.93 0.7657 0.83 0.83 0.72 0.0178 0.0224
3 1 0.9695 0.9691 0.7521 0.86 0.87 0.74 0.0098 0.0113
3 2 0.9738 0.9888 0.7806 0.87 0.89 0.75 0.0096 0.0077
3 5 0.9572 0.9614 0.7521 0.87 0.88 0.74 0.0103 0.0094
5 1 0.9362 0.9584 0.7662 0.86 0.86 0.73 0.0152 0.188
5 2 0.9344 0.9482 0.78 0.85 0.86 0.73 0.0183 0.0205
5 5 0.9272 0.9439 0.7638 0.85 0.85 0.72 0.0175 0.0226

with k = 1 (baseline). However, further increasing k to 5 decreases
accuracy. A plausible explanation is that larger values of k yield larger
clusters, which entails some information loss and thus a performance
degradation. Thus, k = 3 seems best for accuracy, and it also yields
the best values (closer to 0) for fairness metrics PE and EO between
majority and minority groups.

In the case of GMM, the results improve as we increase the mean.
When the means are too low, then the maximum-likelihood of the
model fits Gaussians that may encompass legitimate users not distin-
guishable from malicious ones.

For the last method, with low minPts, the outliers are more clear.
This is because, with a higher number of minPts, smaller clusters will
be incorporated into the larger ones, making it difficult to differentiate
between majority and minority groups. Moreover, the accuracy and
ROC AUC are better when minPts are lower.

Also, for the three methods, taking LS = 2 local learning steps
appears as a better choice than LS = 1 or LS = 5.
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Table 3.9: Performance measures for Adult Income data set with dif-
ferent GMM parameters

Parameters Accuracy ROC AUC PE EO
µ σ2 LS B NB Att B NB Att — —
0 1 1 0.9117 0.9398 0.7251 0.83 0.83 0.72 0.042 0.0158
0 1 2 0.9295 0.9401 0.7288 0.83 0.84 0.71 0.0301 0.0242
0 1 5 0.9272 0.9464 0.73 0.83 0.84 0.71 0.0323 0.0168
0 4 1 0.939 0.9591 0.7321 0.84 0.84 0.70 0.0285 0.0315
0 4 2 0.9208 0.9446 0.74 0.83 0.83 0.71 0.0273 0.0205
0 4 5 0.9384 0.9516 0.7461 0.84 0.85 0.72 0.0207 0.0186
2 4 1 0.9473 0.9628 0.7582 0.87 0.89 0.73 0.0096 0.105
2 4 2 0.9578 0.9763 0.7534 0.88 0.91 0.74 0.0062 0.0091
2 4 5 0.9455 0.9682 0.7495 0.87 0.89 0.73 0.0071 0.0112

Again, this allows us to conclude that our proposed outlier detec-
tion mechanisms are capable of distinguishing between genuine minor-
ity groups and attackers. In particular, the microaggregation-based
method achieves the best performance in most cases. This was to be
expected because microaggregation implements a finer-grained assess-
ment of inter-client likeness not only to a prototypical majority, but
to prototypical minorities. In this way, minority groups are properly
(and fairly) considered, and only true outliers within these minority
groups are discarded.

Finally, from the related work approaches mentioned in Section 3.3
for non-i.i.d. data in FL, we took [1] and its implementation1 to en-
hance our approach in the non-i.i.d. setting. We implemented our
three methods on top of their approach and measured their perfor-
mance on the Adult data set. Table 3.15 shows the results, where
FL_Zhao is the baseline (microaggregation with k = 1) on top of [1].
For all the methods, the local learning steps are the same, LS = 1.
The parameter k for microaggregation is 3. In the second method,
GMM, we use µ = 0 and σ2 = 1. And for the last one, DBSCAN, the
parameters used are ϵ = 0.5 and minPts = 5. We observe that the

1https://github.com/yjlee22/FedShare
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Table 3.10: Performance measures for Athletes data set with different
GMM parameters

Parameters Accuracy ROC AUC PE EO
µ σ2 LS B NB Att B NB Att — —
0 1 1 0.9109 0.9423 0.7762 0.83 0.84 0.69 0.0289 0.0213
0 1 2 0.9154 0.9365 0.7864 0.84 0.84 0.7 0.0162 0.0197
0 1 5 0.9277 0.9488 0.7742 0.83 0.83 0.7 0.0256 0.0301
0 4 1 0.9293 0.9491 0.7821 0.84 0.84 0.71 0.0143 0.0106
0 4 2 0.9207 0.9456 0.7895 0.83 0.85 0.71 0.0187 0.0259
0 4 5 0.9156 0.9327 0.7759 0.83 0.83 0.7 0.0175 0.0201
2 4 1 0.9476 0.9702 0.8143 0.86 0.89 0.73 0.0084 0.0107
2 4 2 0.9587 0.9765 0.8278 0.87 0.89 0.73 0.0051 0.0038
2 4 5 0.9443 0.9631 0.8109 0.87 0.88 0.72 0.0096 0.012

results improve for all three methods and show similar behavior when
compared to our previous experiments. In particular, we see that the
microaggregation protocol performs the best out of the three.

3.6 Summary

In this chapter, we have dealt with the problem of distinguish-
ing abnormal/malicious behaviors from legitimate ones in federated
learning. We focus on scenarios with clients having legitimate minor-
ity data, whose updates are likely to be classified as outlying/mali-
cious by the standard attack detection mechanisms proposed in the
literature. To make progress towards fair attack detection, we pro-
pose three different methods, one based on microaggregation, another
based on the Gaussian mixture model, and the third one based on
DBSCAN.

To evaluate and compare the performance of these methods, we
computed standard evaluation metrics, namely accuracy, ROC AUC,
PE, and EO. Our results indicate that the microaggregation method
is especially effective at differentiating malicious model updates from
normal (even minority) model updates. This results in improvements
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Table 3.11: Performance measures for Bank Marketing data set with
different GMM parameters

Parameters Accuracy ROC AUC PE EO
µ σ2 LS B NB Att B NB Att — —
0 1 1 0.8906 0.9273 0.8064 0.82 0.84 0.69 0.0359 0.0401
0 1 2 0.9159 0.9365 0.7929 0.83 0.84 0.7 0.0225 0.0362
0 1 5 0.9066 0.9284 0.7942 0.84 0.83 0.7 0.0274 0.0207
0 4 1 0.9224 0.9391 0.7831 0.84 0.84 0.71 0.0148 0.0262
0 4 2 0.9282 0.9256 0.7995 0.83 0.85 0.71 0.0197 0.0211
0 4 5 0.9144 0.9397 0.8059 0.83 0.84 0.7 0.025 0.0193
2 4 1 0.9376 0.9551 0.8142 0.86 0.89 0.73 0.0123 0.0085
2 4 2 0.9554 0.9672 0.8178 0.87 0.89 0.73 0.011 0.0152
2 4 5 0.9437 0.9614 0.8109 0.87 0.88 0.72 0.0097 0.0104

Table 3.12: Performance measures for the Adult Income data set with
different DBSCAN parameters

Parameters Accuracy ROC AUC PE EO
Eps minPts LS SA NSA Att SA NSA Att — —
0.5 5 1 0.9632 0.9861 0.7994 0.89 0.91 0.72 0.0062 0.0031
0.5 5 2 0.9777 0.9636 0.7885 0.9 0.9 0.71 0.0045 0.0081
0.5 5 5 0.9592 0.9622 0.7839 0.89 0.9 0.71 0.0093 0.0106
3 15 1 0.94 0.9546 0.8047 0.85 0.85 0.7 0.0126 0.0174
3 15 2 0.9584 0.9603 0.8021 0.85 0.86 0.69 0.0117 0.0109
3 15 5 0.9401 0.9514 0.7962 0.84 0.85 0.7 0.0183 0.0196
5 28 1 0.9225 0.9347 0.8139 0.83 0.84 0.7 0.0241 0.0273
5 28 2 0.9332 0.9289 0.8016 0.84 0.84 0.71 0.0191 0.0262
5 28 5 0.9187 0.9311 0.7812 0.83 0.84 0.72 0.0285 0.0306

in all observed evaluation metrics. From a more qualitative perspec-
tive, our approach avoids discriminating minority groups.
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Table 3.13: Performance measures for the Athletes data set with dif-
ferent DBSCAN parameters

Parameters Accuracy ROC AUC PE EO
Eps minPts LS SA NSA Att SA NSA Att — —
0.5 5 1 0.9505 0.9682 0.8082 0.88 0.89 0.76 0.0105 0.0138
0.5 5 2 0.9602 0.9688 0.7943 0.89 0.9 0.75 0.0078 0.0063
0.5 5 5 0.9558 0.9592 0.8031 0.88 0.89 0.76 0.0097 0.0115
3 18 1 0.9372 0.9546 0.8147 0.85 0.85 0.71 0.0167 0.0199
3 18 2 0.9434 0.9501 0.8104 0.85 0.86 0.7 0.0202 0.0186
3 18 5 0.9386 0.9427 0.8175 0.84 0.83 0.7 0.0231 0.0295
5 34 1 0.9269 0.9335 0.8268 0.83 0.84 0.72 0.0282 0.0334
5 34 2 0.9037 0.9284 0.82 0.82 0.83 0.7 0.0227 0.0285
5 34 5 0.8948 0.9005 0.8293 0.82 0.82 0.73 0.0312 0.0294

Table 3.14: Performance measures for the Bank Marketing data set
with different DBSCAN parameters

Parameters Accuracy ROC AUC PE EO
Eps minPts LS SA NSA Att SA NSA Att — —
0.5 5 1 0.9522 0.9568 0.8121 0.88 0.89 0.72 0.0061 0.0074
0.5 5 2 0.9641 0.9759 0.8195 0.89 0.88 0.71 0.0094 0.0103
0.5 5 5 0.9548 0.9607 0.805 0.88 0.88 0.71 0.0114 0.0101
3 18 1 0.9476 0.9532 0.8048 0.85 0.86 0.7 0.0182 0.0192
3 18 2 0.94 0.9503 0.8021 0.85 0.86 0.7 0.0174 0.0152
3 18 5 0.9366 0.9407 0.7932 0.84 0.85 0.7 0.0252 0.0138
5 34 1 0.913 0.9328 0.8039 0.82 0.84 0.7 0.0322 0.0285
5 34 2 0.9174 0.9349 0.7963 0.83 0.84 0.71 0.0387 0.0393
5 34 5 0.9021 0.9136 0.7812 0.82 0.82 0.71 0.0372 0.0414

Table 3.15: Performance measures for Adult Income data set with [1]
approach.

FL Zhao Microaggr. Zhao GMM Zhao DBSCAN Zhao
Accuracy 0.8108 0.9075 0.9023 0.864

PE 0.0195 0.009 0.0103 0.0110
EO 0.0351 0.0192 0.0201 0.0273

UNIVERSITAT ROVIRA I VIRGILI 
FAIRNESS AND ROBUSTNESS IN MACHINE LEARNING 
Ashneet Khandpur Singh 
 



58 Chapter 3. Fair Detection of Poisoning Attacks in FL

UNIVERSITAT ROVIRA I VIRGILI 
FAIRNESS AND ROBUSTNESS IN MACHINE LEARNING 
Ashneet Khandpur Singh 
 



Chapter 4

Measuring Fairness in
Machine Learning Models
via Counterfactual
Examples

4.1 Introduction

The existing research addressing the topic of fairness in machine
learning has focused on how to measure and evaluate fairness (or,
equivalently, bias) in models.

In [59], the authors introduced a causal, individual-level, definition
of fairness, called counterfactual fairness, which states that a decision
is fair toward an individual if it coincides with the one that would have
been taken in a counterfactual world in which the protected (a.k.a.
sensitive) attributes were different1.

1Vulnerable minorities to be protected from biased decisions are formed by

59
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60 Chapter 4. Measuring Fairness in ML Models via CE

More formally, consider a classifier f with protected attributes A,
remaining inputs X, and output Y . Then f is counterfactually fair
if, for any values X = x and A = a,

Pr(YA←a = y|X = x, A = a) = Pr(YA←a′ = y|X = x, A = a)

for all y and for any value a′ attainable by A.

In relation with group fairness, counterfactual fairness is comple-
mentary to the group fairness notion of equality of odds, which de-
mands equality of true positive rates and true negative rates for dif-
ferent values of the protected attribute.

Any of the metrics mentioned in Section2.3 can be used to calculate
disparities in data across groups, but many of them cannot be bal-
anced across subgroups at the same time. As a result, one of the most
crucial components of measuring bias in the model is understanding
how fairness should be defined for a certain scenario.

In this work, we are going to merge the concept of group fairness
with individual fairness, in the sense that the proposed method pro-
tects the individuals of any minority against any bias in the model.

Contributions

The purpose of this work is to detect any bias in the ML mod-
els targeting any individual, regardless of the data type used in the
model, by leveraging the use of the counterfactual examples. The key
contributions in this chapter are:

1. The proposed method detects the bias in the ML model with
regard to the model behavior and the training data, unlike the
previous work [59] that solely targets the bias in the data sets.

those individuals having certain values for the protected attributes. For example,
a protected attribute could be Ethnicity, and a vulnerable minority could be that
formed by individuals with Ethnicity=‘black’.
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2. The method we are proposing is based on the concept of coun-
terfactual examples, which provide bias detection regardless of
the data type (tabular, images, text, etc.). This offers the model
developers a straightforward way to measure the fairness of their
developed models.

4.2 Measuring fairness in ML models via coun-
terfactual examples

Ensuring the algorithms used in machine learning are free from
discriminatory biases has spurred researchers to define an enormous
assemblage of new work seeking to better understand and prevent dis-
crimination. The existing research addressing the topic of fairness in
ML has focused on how to measure and evaluate fairness (or, equiv-
alently, bias) in models. There are several fairness definitions based
on group fairness or individual fairness. Group fairness compares
statistics of protected groups, whereas individual fairness compares
outcomes for comparable subjects. For instance, [19] survey more
than twenty measures of fairness; however, no clear indication exists
as to which measure is most suitable for classification tasks.

The work in [17] introduced the definition of individual fairness,
which contrasts with group-based notions of fairness [20], [60] that
require demographic groups to be treated similarly on average.

Later, [59] introduced a causal, individual-level definition of fair-
ness, called counterfactual fairness, which states that a decision is fair
toward an individual if it coincides with the one that would have been
taken in a counterfactual world in which the protected attributes were
different.

In [61], by utilizing adversarial examples for data augmentation,
the authors implemented a prototype application to solve the algo-
rithmic bias problem. In order to obtain a fair data set in which the
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distribution of bias variables is balanced, they apply adversarial at-
tacks to generate examples containing information of the bias variable
as the enhanced data.

In [62], the authors develop a GAN for fairness. Their architec-
ture is developed for low-dimensional tabular data and only applies
to demographic parity, whereas our work is geared towards high-
dimensional image data and individual fairness.

Another work that measures fairness based on GANs is [63]. The
authors propose an adversarial approach, inspired by GANs, in which
a sanitizer is learned from data representing the population. In this
work, local sanitization has been considered to reach algorithmic fair-
ness.

4.3 Measuring fairness via counterfactual ex-
amples

In this section, we propose a method to measure fairness in ML
models. Our approach relies on generating counterfactual examples.
The technique used to generate those counterfactuals may differ ac-
cording to the input data type.

4.3.1 Measuring fairness in tabular data

We want to measure the fairness of any ML model, that is, its
lack of bias against any particular minority. To this end, we need
to guarantee that the ML model is not making its predictions based
on a protected attribute. This process should be automated in the
sense that it is not enough to change the attribute value and monitor
the outcome of the model. At the same time, this process should be
model- and data-related, because the bias might be in the training
data themselves, or in the model learned during the training.

In order to measure the fairness of an ML model f , for a specific
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data-record x, taking into consideration the protected attributes A,
we have to meet the counterfactual fairness definition described in
Section 4.1. We propose an automated approach that creates coun-
terfactual examples for each record in the data set. The proposed
method uses adversarial examples as a means to create those coun-
terfactual examples. To create an adversarial example, the proposed
method targets only the attribute with the highest effect on the ML
model prediction in an attempt to alter its predicted label. As a re-
sult, if the changed attribute was one of the protected attributes, this
indicates that the model is not fair to this record.

Algorithm 4 describes the proposed method to generate the coun-
terfactual examples that are used to measure the fairness of the model.
Given an ML model f , a maximum allowed value ϵmax, and an input
record x containing n attributes, the proposed method generates the
counterfactual example x∗ by changing at most c ≤ n attributes from
x, where c is the number of protected attributes. First, to set the tar-
get classification label y∗ we desire x∗ to be classified into, we compute
probs, that is, the probability vector f outputs for x. Then, we set
the desired class label y∗ to be the index of the second most probable
class in probs. Choosing this class makes it easier for the proposed
method to find the desired x∗ with small changes to x. Note that the
user can also set y∗ to any class label she wants. Then, to select the
c attributes which have the highest effect on the model prediction,
we compute the gradient of the loss between the model output fu(x)
and the desired output y∗ with regard to the attributes of the input
record. After that, we take the L1-norm of the computed gradient
∇x. Subsequently, we identify the c attributes with the highest L1-
norms as the attributes to be changed when generating x∗. This is
done using a weighting vector w which contains 0s for the unchanged
attributes and 1s for the changed attributes. Using this vector allows
us to change only c attributes while creating x∗. Afterwards, we keep
repeating the gradient descent step
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x∗ = x− w · ϵ · ∂

∂x
L(f(x), y∗), (4.1)

with regard to w until one of two following conditions is satisfied:
i) an adversarial example x∗ is obtained that fools f into labeling it as
y∗ or ii) the maximum value ϵmax is reached for ϵ. Note that we start
with a small ϵ = 0.05 and we increase it by 0.05 at each step. Once we
create the adversarial example x∗, we compare it with x to identify the
changed attributes. If one or more of the changed attributes belong
to A, the set of the protected features, then this indicates bias in the
model.

Algorithm 4: Creating the counterfactual example
Input: Trained model f , record x, maximum allowed ϵmax,

maximum number of attributes to be changed c.
Output: Counterfactual example x∗

1 probs←Get_Probabilities(f(x));
2 y∗ ← argmax(probs, 2);
3 n← Number of attributes in x;
4 |∇x| ← abs( ∂

∂xL(f(x), y∗));
5 w ← Zero vector of length n;
6 idxs← Indices of the highest c values in |∇x|;
7 for idx ∈ idxs do
8 w[idx] = 1;
9 end

10 x∗ ← x;
11 ϵ← 0.05;
12 while f(x∗) ̸= y∗ and ϵ ≤ ϵmax do
13 x∗ ← x− w · ϵ · ∂

∂xL(f(x), y∗);
14 ϵ← ϵ + 0.05;
15 end
16 if f(x∗) = y∗ then
17 Return x∗;
18 else
19 Return ∅;
20 end
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4.3.2 Measuring fairness in image data

Measuring fairness in image classifiers is more challenging than
measuring fairness in tabular data classifiers because the attributes
in image data are not self-explanatory. To tackle this challenge, we
propose a method that generates counterfactual examples for image
data by leveraging the cycle GANs described in 2.9.

In the proposed method, we use two generators and one discrimina-
tor consisting of a trained binary classifier, as shown in Fig.4.1. Both
generators create images to fool the trained image classifier model.
However, each generator can only fool the model into one specific
outcome. Generator A creates counterfactual images to be classified
by the classifier into class a, whereas generator B’s counterfactuals are
to be classified into class b. After training both generators, they can
be used to create counterfactual examples to detect any bias in the
classifier. Any image m from class a that the classifier misclassifies
into class b is passed through generator A to generate the counter-
factual m∗, which will be classified into class a. By comparing m

and m∗, we can notice whether they differ in any of the discrimina-
tory attributes (those related to race, such as dark skin or dark hair).
Similarly, an image m′ from class b misclassified into class a is passed
through generator B to create the counterfactual m′∗.

4.4 Empirical results

In this section, we evaluate the performance of the proposed ap-
proach on two ML tasks: tabular data classification and image classi-
fication. For each task, we trained a baseline model with the original
data set and a biased model after we did some alterations to the data
set. In both data sets, the baseline and biased models had the same
architecture. First, we show the performance of the models, and then
we evaluate the proposed fairness measures.
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Generater A

Generater B

Image
classifier prediction

loss

loss

Figure 4.1: Training the generator of the counterfactual examples

4.4.1 Experimental setup

Data sets and provider models. We evaluated the proposed
approach on two data sets:

• Adult (more details in Section 3.5). From the attributes of this
data set, we dropped the final weights (fnlwgt, capital-loss, and
capital-gain), which reveal too much information to the model,
and the education attribute, which is redundant with education-
num. We also encoded categorical attributes as numbers. The
class label is the attribute income, which classifies records into
either > 50K or ≤ 50K. We used 80% of the data as training
data, and the remaining 20% as validation data.

• CelebA2 is a binary classification data set from Kaggle. It con-
sists of RGB images of male and female faces with a training
set of 17,943 female images and 10,057 male images. The val-
idation set contains 2,000 images evenly divided into the two
classes. Since the images have large sizes of 1024 × 1024 pixels,

2https://www.kaggle.com/dataset/504743cb487a5aed565ce14238c6343b7d650ffd28c071f03f2fd9b25819e6c9

UNIVERSITAT ROVIRA I VIRGILI 
FAIRNESS AND ROBUSTNESS IN MACHINE LEARNING 
Ashneet Khandpur Singh 
 

https://www.kaggle.com/dataset/504743cb487a5aed565ce14238c6343b7d650ffd28c071f03f2fd9b25819e6c9


4.4. Empirical results 67

Table 4.1: Architectures of the models used in the experiments for the
Adult and the CelebA classification data sets. C(3, 32, 3, 0, 1) denotes
a convolutional layer with 3 input channels, 32 output channels, a
kernel of size 3×3, a stride of 0, and a padding of 1; MP (2, 2) denotes
a max-pooling layer with a kernel of size 2× 2 and a stride of 2; and
FC(18432, 2048) indicates a fully connected layer with 18,432 inputs
and 2,048 output neurons. We used ReLU as an activation function
in the hidden layers; lr stands for learning rate.

Data set Model architecture Hyper-parameter

Adult FC(12,100), FC(100,100), FC(100,2)
lr = 0.001,

epochs = 10,
batch = 128

CelebA

C(3,32,3,0,1), C(32,64,3,1,1), MP(2,2),C(64,128,3,0,1),
C(128,256,3,1,1), MP(2,2), C(256,512,3,0,1), C(512,512,3,1,1), MP(2,2),

C(512,256,3,0,1), C(256,256,3,1,1), MP(2,2), FC(16384,2048),
FC(2048,1024), FC(1024,512), FC(512,128), FC(128,32), FC(32,2)

lr = 0.001
epochs = 10
batch = 64

we first resized them to 256×256 pixels in order to train our
models faster.

The architectures of the models used in the experiments are shown
in Table 4.1. These models were used in a previous paper [64]. For all
the experiments, the binary cross-entropy loss function and the Adam
optimizer [65] were used.

Biased models training data. The two data sets were balanced
in terms of sensitive data. To this end, we modified as follows both
training data sets in order to train the biased model.

• Adult: To cause the model to be biased against the attribute
gender , we selected 45% of the females whose race was black,
and we changed their income into ≤ 50k. Also, we selected 45%
of the males whose race was black, and we changed their income
into >50k.

• CelebA: To train a biased gender classification model, we sepa-
rated from the female training data the images containing dark
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skin. In order to do so, we used the unsupervised cluster K-
means [66], while keeping track of some cherry-picked images to
monitor the outcome of the cluster. The desired class consisted
of 1904 images. We changed the class of 60% of those images
from female into male.

Evaluation metrics. We used the following evaluation metrics
to measure the performance of the trained surrogate models and the
generated explanations:

• Accuracy: Number of correct predictions divided by the total
number of predictions. We used this metric to measure and
compare the performance of the baseline and the biased models.

• ROC curve: The receiver operating characteristic (ROC) is a
graph plotting the false positive rate (FPR) in the abscissae
and the true positive rate (TPR) in the ordinates. It shows
the performance of a classification model at all classification
thresholds. The AUC (area under the ROC curve) measures the
two-dimensional area underneath the ROC curve, giving values
from 0.0 (when the model predictions are 100% wrong), to 1.0
(when the model predictions are 100% correct). AUC is scale-
invariant and classification-threshold invariant. In some cases,
it is a better metric than accuracy.

4.4.2 Results

Accuracy and ROC-AUC score

In Table 4.2, we show the accuracy of the baseline and biased
model when evaluated on the full evaluation data set, for both data
sets. The baseline models were more accurate than the biased models
on both data sets, even though the biased models’ accuracies were not
much lower.
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Table 4.2: Accuracy of the baseline and biased models evaluated on
the full evaluation data set, on both data sets

Data set Baseline model Bias model
Adult 82.80% 79.67%

CelebA 98.52% 86.42%

In Fig. 4.2 the ROC curves are presented for both models on the
two data sets. The results shown are consistent with those in Table
4.2, where both the baseline models and the biased models display
a similar performance, even though there are small differences in the
curves between both models.

(a) ROC curve of the baseline model
on the Adult data set

(b) ROC curve of the biased model on
the Adult data set

(c) ROC curve of the baseline model
on the CelebA data set

(d) ROC curve of the bias model on
the CelebA data set

Figure 4.2: ROC curves of the baseline and biased models on both
data sets

To better understand the performance differences between the base-
line and the biased models, we evaluated them on modified data sets,
which consist of the samples belonging to the minorities in each data
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Table 4.3: Accuracy of the baseline and biased model evaluated on
the targeted versions of Adult and CelebA.

data set Baseline model Bias model
Targeted Adult 81.90% 0.54%

Targeted CelebA 99.60% 1.67%

set. For the Adult data set, the modified set consisted of all the records
with the race value equal to black, and for the CelebA dataset, we took
a modified data set consisting of all female images with dark skin. We
call those modified sets the targeted data sets. Table 4.3 reports the
accuracy of the models when they were evaluated on the targeted sets.
For both data sets, the baseline model accuracy was similar to that in
Table 4.2, while the performance of the biased model was very poor:
it was around 1% in both data sets. This illustrates that the biased
models were precisely biased against the individuals in the targeted
data sets.

Fairness of the trained models

• Adult data set: We generated a counterfactual example for
each record in the validation portion of the Adult data set.
First, we considered the attribute gender as the protected at-
tribute. Then, we used Algorithm 4 with c = 1, to restrict
the changes to only one attribute when generating the exam-
ples. After that, we computed the number of cases where the
counterfactual example was created by changing the protected
attribute. We found that for the bias model, this happened
1,637 times, whereas for the baseline model, this happened only
12 times. This indicates that for the baseline model, the pro-
tected attribute was not essential to the prediction. On the
other hand, the protected attribute had a very high impact on
the predictions made by the biased model. We present two of
the counterfactual examples generated by the proposed method
in Table 4.4. Record 1’s income was classified as > 50K by
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Table 4.4: Two examples of records from the Adult data set. Symbol
’"’ indicates that the value of the attribute did not change during the
creation of the counterfactual example.

Features age workclass educational
-num

marital
-status occupation relationship race gender

hours
-per

-week

native
-country income

Original record 1 38 State-gov 13 Married Protective-serv Husband Black Male 52 United-States >50K
Baseline

recommendation ” ” 9 ” ” ” ” ” ” ” ≤ 50K

Biased model
recommendation ” ” ” ” ” ” ” Female ” ” ≤ 50K

Original record 2 43 Local-gov 14 Unmarried Tech-support Not-in-family Black Female 47 United-States ≤ 50K
Baseline

recommendation ” ” ” ” ” ” ” ” 60 ” > 50K

Bias-model
recommendation ” ” ” ” ” ” ” Male ” ” > 50K

both models. The first counterfactual example which was cre-
ated based on the baseline model shows that we can change the
original record’s prediction to ≤ 50K by decreasing educational
level from 13 to 9. This recommendation from the proposed
method seems logical in the sense that less education yields less
income. The second counterfactual example which was created
based on the biased model recommended changing the gender
from male to female, which shows the model learned a gender
bias (the income of males is higher than the income of females).
On the other hand, record 2’s income was classified as ≤ 50K

by both models. In this case, the counterfactual created by the
baseline recommended increasing the hours-per-week from 47 to
60, which is also reasonable where more working hours usually
means more payout. In contrast, the counterfactual created by
the biased model recommended changing the attribute gender
but this time from female to male, because the model learned
that males earn more.

• CelebA data set: In order to generate the counterfactual ex-
amples for the CelebA data set, we selected the female images
that were classified into the label male by the biased model and
into the label female by the baseline model, because those im-
ages were targeted when training the biased model. Fig. 4.3
presents five examples of the counterfactual created by the pro-
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Original image

counterfactual image

Figure 4.3: Five examples of the counterfactual examples created by
the proposed method.

posed method. In all the images, the proposed method made
the skin lighter, and the hair color blond. Those counterfactu-
als were classified as females by both models. Thus, our method
detected that the biased model classified every face image with
dark skin and black hair as male.

4.5 Summary

In this chapter, we have examined fairness in the scenario of binary
classification for two types of input data, tabular and image data. The
proposed method is based on generating counterfactual examples to
measure fairness in ML models. In the case of tabular data, we used
adversarial examples to create the counterfactuals. To achieve this
for image data, we used GANs as a generator for the counterfactuals.
Our experiments confirm that the proposed method can detect any
bias in the model against protected attributes.
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Chapter 5

Conclusions

This chapter gives a conclusion over the analysis of the results and
discuss the potential future work that can be done on these subjects.

5.1 Contributions

In this thesis, we have developed methods for fair and robust ML.
We want to ensure that no minority in the data set is unfairly impacted
by the model’s prediction. To this end, we have proposed methods
that tackle this situation. To differentiate members of minority groups
from potential model poisoners while performing robust aggregation
of updates, we have presented three approaches. These are based on
clustering algorithms: microaggregation, GMM, and DBSCAN. Also,
we have studied the differences between the cases of i.i.d. and non-
i.i.d. data. To measure fairness in generalized ML models, we have
proposed a method based on generating counterfactual examples. In
the case of tabular data, we made use of adversarial examples to create
these counterfactual examples. In this way, we can create scenarios
that are similar to real-life situations, with minimal differences to force
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our models to make an incorrect prediction. Also, counterfactuals
are useful for testing the robustness of our models. When dealing
with image data, we have leveraged GANs to generate counterfactual
examples. They also show the robustness of our models. The results
confirmed that the biased models were precisely biased against the
individuals in the targeted datasets.

5.2 Future work

We outline potential avenues of further research for the two main
areas investigated in the thesis (Chapters 3 and 4, respectively).

• Our experimental work has considered a single protected at-
tribute and binary classification. Using a single protected at-
tribute if there are multiple protected attributes in a data set
could exacerbate the actual underlying bias. Therefore we plan
to work with multiple protected attributes.

• In Chapter 3, we have restricted to the detection of label-flipping
attacks. Another future direction is to apply similar approaches
to protect against other kinds of poisoning attacks, such as collu-
sion attacks, while taking the fairness of the classification tasks
into account.

• The recent literature mostly focuses on group fairness, and it
seems that individual fairness definitions are neglected by re-
searchers. In Chapter 4, we have used both types of fairness.
However, an important future direction would be to perform
more studies on the de-biasing methods capable of reducing both
the individual and the group biases in classification.

• We plan to implement a new measure that guarantees the fair-
ness of the image classifier models, since there is a limitation in
the current literature on this topic.
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• Furthermore, we intend to automate the comparison process
between the original data and the counterfactual example.

5.3 Publications

The publications supporting the content of this thesis are listed
below:

1. Singh, A. K., Blanco-Justicia, A., Domingo-Ferrer, J., Sánchez,
D., & Rebollo-Monedero, D. (2020, November). “Fair detec-
tion of poisoning attacks in federated learning”. In 2020 IEEE
32nd International Conference on Tools with Artificial Intelli-
gence (ICTAI) (pp. 224-229). IEEE.
This publication supports Chapter 3.

2. Singh, A.K., Blanco-Justicia, A. & Domingo-Ferrer, J. “Fair
detection of poisoning attacks in federated learning on non-i.i.d.
data”. Data Mining and Knowledge Discovery (2023). https:
//doi.org/10.1007/s10618-022-00912-6.
This publication supports Chapter 3 and is the journal extension
of the previous publication.

3. Haffar, R., Singh, A. K., Domingo-Ferrer, J., & Jebreel, N.
(2022). “Measuring fairness in machine learning models via
counterfactual examples”. In International Conference on Mod-
eling Decisions for Artificial Intelligence (MDAI 2022) (pp. 119-
131). Springer.
This publication supports Chapter 4.
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