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ABSTRACT 

Due to the large number of heterogeneous applications using the same infrastructure, enforcing 

security and reliability in the cloud is a difficult but crucial task. A security analysis system that 

detects threats for example malicious software (malware) should exist within the cloud 

infrastructure. Different malware techniques that bypass network-based and host-based security 

protections have led to the development of new methods for analysing and detecting malware, 

which have evolved over the past decades. Due to the complexity of learning the ever-changing 

configurations of malware, it is challenging for forensics investigators to keep up with the 

exponential rise in the number and variety of malware species. In this research work, a malware 

detection model was developed for interconnected cloud infrastructures based on federated 

learning. This technique enables collaboration between multiple devices in the training of machine 

learning models without exchanging data, thereby preserving the privacy of individual users. Three 

different deep-learning algorithms were selected and used in the training, validation, and testing of 

the models. By the model training with eight clients and twenty-five federation rounds, the 

FeedForward Neural Networks(FFNN) model provided the best performance with a precision of 

84%, an F1-score of 84%, and an accuracy of 84% whereas the Multi-Layer Perceptron(MLP) 

model provided 83% of precision, 83% of F1-score, and 83% of accuracy and the Long Short-Term 

Memory(LSTM) model provided a performance with 80% of precision, 80% of F1-score, and 80% 

of accuracy as well.  

 

Keywords: Federated learning, malware detection, federated cloud, machine learning 


	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 1
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 2
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 3
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 4
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 5
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 6
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 7
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 8
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 9
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 10
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 11
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 12
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 13
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 14
	20PCK02091-MUGHOLE_KALIMUMBALO_DANIELLA 15

