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Pipeline pressure monitoring has been the traditional and most popular leak detection approach, however, the 

delays with leak detection and localization coupled with the large number of false alarms led to the development 

of other sensor-based detection technologies. The Real Time Transient Model (RTTM) currently has the best 

performance metric, but it requires collection and analysis of large data volume which, in turn, has an impact in 

the detection speed. Several data mining (DM) methods have been used for leak detection algorithm development 

with each having its own advantages and shortcomings. Mathematical modelling is used for the generation of 

simulation data and this data is used to train the leak detection and localization models. Mathematical models and 

simulation software have also been shown to provide comparable results with experimental data with very high 

levels of accuracy. While the ANN and SVM require a large training dataset for development of accurate models, 

mathematical modelling has been shown to be able to generate the required datasets to justify the application 

of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper 

presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil 

applications, and presents the opportunities for the use of data analytics tools and mathematical modelling for 

the development of a robust real time leak detection and localization system for surface pipelines. Several case 

studies are also presented. 
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. Introduction 

Wherever there are pipelines, there will be a high probability for the

ccurrence of leaks. This assertion has been validated over the years

s shown in Figs. 1 and 2 . Fig. 1 shows the pipeline network of the

nited States while Fig. 2 shows the locations of pipeline leaks in the

nited States. The cause of these leaks ranges from man-made activities

uch as vandalization or inadequate protection of the pipeline against

he elements during installation to the corrosion induced failures of the

ines caused either by ageing of the lines or operational reasons such as

eld failures. 

The total length of the global trunk/transmission pipeline network

s estimated to be 2,034,065.0 km according to GlobalData reports.

rude oil pipelines make up over 379,000 km while petroleum prod-

cts pipelines constitute over 267,000 km. Natural gas pipeline have

he highest number with almost 1,300,000 km and natural gas liquids

onstitute over 92,000 km ( GlobalData, 2019 ). 

From the reports, North America has the highest oil and gas pipelines

ength of 834,152.5 km (with start years up to 2023), of which, crude oil

ipelines constitute 154,200.9 km, petroleum products pipelines consti-

ute 103,106.3 km, natural gas pipelines constitute 495,555.3 km and
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GL pipelines constitute 81,290.0 km. The region’s share in the global

ransmission pipeline length is 41.0%. 

From the data shown in Fig. 2 , in spite of the advantages provided

y pipelines for rapid crude oil transportation, the risks associated with

ipeline leaks present a significant challenge to both the companies and

he environment. These challenges justify the need for continuous re-

earch to develop faster and more accurate leak detection and oil spill

ontainment systems to minimize the impact of pipeline oil spills both

n the environment and the operator finances. This paper reviews the

ajor technologies used currently for the pipeline leak detection and

he use and development of the data analytics for leak detection based

n collection and analysis of large volume of data. 

. Regulations 

In view of the benefits of the use of petroleum pipelines and the

mpact of these spills on the environment, several countries developed

pecific guidelines and regulations to manage the operation of these

ipelines to ensure both the safety of the pipelines and the also that

f the environment where these pipelines traverse. These regulations

nd their countries of origin are as follows. 
 (M. Rabiei). 
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Fig. 1. Pipeline network in the USA ( Matthew, 2013 ). 

Fig. 2. USA pipeline leak locations ( Matthew, 2013 ). 

 

 

 

 

 

 

1130. 
1) Germany: Germany has the TRFL, the Technical Rule for Pipelines. 

2) United States of America: The US has three API standards which

guide different parameters in the deployment and operation of

petroleum pipelines. These regulations are: 

(1) API 1130, which deals with computational pipeline monitoring

for liquids. 
437 
(2) API 1149, which deals with variable uncertainties in pipelines

and their effects on leak detection performance. 

(3) The former API 1155, which contains performance criteria for

leak detection systems, which has since been replaced by API
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(4) American 49 CFR 195, which regulates the transport of haz-

ardous liquids via pipeline. 

3) Canada: CSA Z662, focuses on oil and gas pipelines. 

The API 1130 has four primary requirements for a Leak Detection

ystem (LDS) as presented by Lunger and Karami (2019) . 

1) Accuracy: the LDS should be able to calculate leak size and leak

location accurately. This is quantified as the maximum distance al-

lowed between estimated location and actual location, as well as the

maximum variation allowed between estimated and actual leak size.

2) Reliability: the LDS should correctly display any real alarms, but

also not report any false alarms. This should be quantified in the

number of false alarms acceptable. 

3) Robustness: the LDS should be able to operate in non-ideal environ-

ments, such as when sensor input equipment fails to provide data.

This should be quantified in% availability. 

4) Sensitivity: the LDS should be able to detect small leaks and detect

them quickly. This is quantified in absolute flow rate terms because

a relative change can be misleading. 

The performance criteria of the API 1155 which was replaced by the

PI 1130 is shown in Table 1 . 

. Leak detection classification 

Leak detection is the process of detecting the onset of leaks from

ipelines. There are two broad classifications of the leak detection sys-

ems, these include continuous and non-continuous systems. The non-

ontinuous systems comprise of : inspection by helicopter, smart pig-

ing, tracking dogs, and right of way (ROW) monitoring and patrol

 Baroudi et al., 2019 ). 

This approach is usually triggered by a drop-in pressure indicative of

 leak event or scheduled routine surveillance. The continuous method

an be further classified into internal and external based systems de-

ending on the location of the sensors. The internal systems include the

se of: pressure point analysis, mass balance method, statistical systems,

TTM based systems, and extended RTTM. 

The external systems include: fibre optic cables, acoustic systems,

ideo monitoring and semi-permeable sensor hoses. 

Often, the continuous and non-continuous systems are used together

 Romero-Tapia and Fuente, 2018 ). 

The following section presents an overview of the different pipeline

eak detection methods. 

.1. Non-continuous systems 

.1.1. Inspection by helicopter 

This approach involves the use of helicopters for overfly inspection.

he helicopter flies along the pipeline right of way, looking to detect

ny outflowing oil or gas spills. Special cameras are mounted on the heli-

opters as they fly over these lines to capture the images emanating from

he lines. Three common methods when detecting leaks by helicopter in-

lude detection using laser, infrared cameras and “leak sniffers ”. When

sing lasers for leak detection, a laser is set to the absorption wave-

ength of the medium to be detected. When the laser hits the medium,

 part of the laser energy is absorbed. The amount of energy absorbed

rom the laser is measured to arrive at the amount of leaked medium
able 1 

PI 1155 Performance criteria ( Fiedler, 2016 ). 

Label Description 

Sensitivity Minimum detectable leak rate; detection time 

Reliability Avoid false alarms; reliable detect leaks 

Accuracy Accurate localization of leaks 

Robustness Detect failing sensors; fall-back strategies in the event of sensor failure 

T
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 Fiedler, 2016 ). The leak sniffers are used to acquire samples from the

eak point for analysis. To accomplish these tasks, the helicopters must

y at very low altitudes and must go through the gas cloud. Some disad-

antages of this system include the high cost of helicopter rentals and the

nability of flight to take place during poor weather conditions. There is

he possibility of the leaked gas being carried away from the leak point

y high winds. This system is costly to deploy and is not suitable for

eal time leak detection. The use of Unmanned Aerial Vehicles (UAVs)

as replaced the helicopters in many operations as they are cheaper

o deploy and can carry several specialized cameras for pipeline mon-

toring. The UAVs range from very small portable quadcopters which

ave low range and can only carry video recording equipment to bigger

ized UAVs with capacity for large cameras and on-board gas processing

quipment. This has greatly reduced the costs associated with pipeline

nspections by helicopter and UAVs ( Idachaba, 2016 ). 

.1.2. Inspection by PIGs 

Pipeline Inspection Gauges (PIGs) are tools launched into the

ipeline carrying specialized inspection equipment for monitoring and

eporting the state of the pipeline internal surface. PIGs are also used for

leaning the pipelines, separating product batches, as well as gauging

ipeline condition. They enable operators determine information on cor-

osion, cracks, wall thickness as well as existing leaks in pipelines. The

rocess of pigging includes the insertion of the pig into the pipeline us-

ng a pig launcher. The pig advances through the pipeline, propelled by

he medium and gathers data along the way. A receiver is used to guide

he pig out of the pipeline to subsequently analyse the collected data.

arious techniques are used to collect pipeline information using smart

igs; two of the most common are the magnetic flux leakage method

nd the ultrasonic principle. For the magnetic flux leakage method, the

ipe is magnetized by a strong permanent magnet and as the pig passes

hrough the pipe, it detects and monitors any changes in the magnetic

ux of that section of the pipe wall. Such changes are indicative of an

bnormality or corrosion on the pipe. For the ultrasonic principle, the

ig transmits ultrasonic pulses into the pipeline wall and receives their

eflected signals. The signals are reflected by both the inner and outer

ipe walls and based on the running speed of the pig; the thickness of

he pipe wall can be derived. Variations in the pipe wall thickness is

nterpreted to be caused by a leak, a damage or a corrosion induced

ailure. A key requirement for the deployment of pigs is that the entire

ipe section through which the pig is to be deployed must be piggable.

he pipe bends and the valves along that pipe section must allow the

ree passage of the pig. There must also be additional installation of pig

aunchers and receivers installed on the lines and the wax build up in

he line must not be able to impede the movement of the pig as if goes

hrough the pipe. The speed of the pig must also be kept at between 3

nd 15 feet per second to ensure accuracy of the results. 

.1.3. Inspection by tracking dogs 

Tracking dogs are specially trained dogs that can detect and distin-

uish specific gas or hydrocarbon. These dogs are trained on these com-

ounds and are released on the pipeline right of way to sniff out the

resence of these spills if it exists. The limitation of this system includes

he fact that the dogs can only be deployed on onshore facilities and

n short pipelines or segments of pipeline, it is also difficult to certify a

racking dog as a leak detection system within the framework of API or

RFL. 

.1.4. Right of way monitoring and patrol 

This system includes the use of local contractors or members of

he pipeline host communities to patrol and monitor sections of the

ipelines passing through their communities. This approach is suitable

or pipelines in locations with a high possibility of vandalization and

estive youths. The operators engage the youths as a form of job cre-

tion and pays them to monitor the pipelines and report any criminal

ctivity along the pipeline right of way. These contractors are also able
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o report the commence of a leak as soon as it is detected and as such

elp to minimize the environmental impact of such leaks. This system

s not a real time system and there is no mean of ensuring that the con-

ractors are patrolling the pipeline right of way, however the operators

ave some form of assurances that they have persons in the commu-

ities who will provide them with accurate feedback about their pipes

hus reducing the HSE exposure of the operator staff. 

.2. Continuous systems 

The continuous system includes the use of external devices for

ipeline data acquisition and internal devices which rely on mathemat-

cal models and the data acquired from the sensors for detecting and

ocalizing the pipeline leaks. These external systems are as follows. 

.2.1. Optic fibre cables 

Optic fibre cables are installed beside the pipeline to utilize their

coustic and temperature sensing characteristics for the continuous ex-

ernal monitoring of pipelines for leaks. The sensor system sends light

ulses along the optic fibre and any external vibration due to leaks or

ntruder activities interferes with the light pulses resulting in reflections

hich are picked up by the system and interpreted to determine the lo-

ation of such activities. Oil leaks rely in the vibration and the acoustic

ignature of the leaks while gas leaks are detected through the temper-

ture differential around the leak point. A temperature profile can be

ade, and it is then possible to detect the characteristic change in tem-

erature that occurs at the leak site. The system provides accurate leak

ocalization but must follow specific installation guidelines such as the

nstallation of the fibre on top of the pipeline for gas detection since gas

ises. Other challenges associated with this system is the high CAPEX

ost associated with both the procurement and the installation of the

ables as it must cover the entire pipeline right of way to be able to

onitor the entire pipeline network. 

.2.2. Acoustic sensors 

The escape of oil and gas from a pipeline leak point is accompanied

y acoustic signals. Special acoustic sensors are installed outside of the

ipeline to detect leaks by measuring the noise levels at multiple sites

long the pipeline. This information is used to create a noise profile of

he pipeline. The system works by comparing the received signals with

he baseline noise profile of the pipeline. These deviations are translated

o leak alarms when they exceed specific thresholds. The sensors can

e mounted directly on the pipelines or coupled to the pipe wall using

teel rods. The longer the pipeline network, the greater the number of

coustic sensors needed for the monitoring. Other challenges associated

ith this system includes the exposure of the sensors to vandalization,

he inability of the system to detect small leaks whose acoustic signals

iffer slightly from the background noise and the possibility of several

alse alarms as external noise sources cannot be controlled or eliminated

rom the pipe surrounding. 

.2.3. Video monitoring 

The use of video monitoring for pipelines is restricted to short dis-

ances. The video system relies on the use of infrared sensitive filters

hich can detect the leaks and report them as a smoke image on the

ideo display screen. The difference in the thermal conductivity of wet

round from dry ground also makes it possible for the use of infrared

ameras for detecting liquid leaks. This system is limited to critical areas

uch as on company premises or for high consequence areas. 

.2.4. Semi permeable sensor hoses 

Sensor hoses are semi-permeable hoses installed along the pipeline

o detect the occurrence of leaks. When a leak occurs, the hydrocarbon

ischarge from the pipe enters the hose and this discharge combines

ith a test gas which is injected at specific time intervals. The hose sys-

em has an analysing unit at the end which then tests the hose contents
439 
or the presence of hydrocarbons. The run time of the test gas injected

t the inlet and the time for the gas to get to the analysing unit is used

o derive the leak point. The sensitivity of the analysing unit is high en-

bling it to detect very small volumes of leak but the material-specific

roperties of the hose, limits the use of sensor hoses to short pipelines

 Fiedler, 2016 ). 

. Leak detection strategies 

The most predominant leak detection strategy is the pipeline pres-

ure profile. The occurrence of a leak on a pipeline causes a sudden de-

rease in the pressure which is followed by a partial recovery to its origi-

al value. This pressure pulse travels upstream and downstream through

he pipeline as a wave. Leak detection, hydraulic transient wave prop-

gation velocity and leak location are the basic problems to deal when

n automatic supervision of a pipeline is to be implemented ( Silva et al.,

996 ). Operators monitor the pipeline pressure profile using the pres-

ure sensors installed at different points on the pipeline. These values

re compared with the pressure profile generated from the modelling

f the fluid flow in the pipeline using the Darcey Weisbach equation,

he pipeline friction factor, and the flow parameters of the fluid in the

ine. Comparing these two values enables operators to detect anoma-

ies which are indicative of the presence of pipeline leaks. This method

s, however, not capable of providing leak localization and as such the

dentification of a possible leak scenario would require further evalua-

ion and verification before a pipeline shutdown can be considered. The

omplex nature and the length of the pipeline networks means that each

ine will comprise of multiple compressors, pumps and these compo-

ents introduce delays and anomalies in the pressure profile thus mak-

ng it unreliable for real time leak detection. This challenge led to the

evelopment of other leak detection strategies which would enable op-

rators to determine the commencement of leaks with greater accuracy

nd be able to identify the location of these leaks. The leak detection

trategies can also be classified as either software or hardware based

 Cui et al., 2018 ). 

The hardware-based approach comprises of the installation of phys-

cal sensors on the pipeline, or the pipeline ROW and these sensors de-

ect the variation in pipeline pressure, as in the case of pressure sensors,

r detect the presence of leak, as in the case of the fibre optic cables.

he optic fibre approach utilizes an optic fibre cable buried beside the

ipeline ROW and can detect the leaks and other third-party intrusion by

icking the vibration signature of these activities. The data is transmit-

ed to the office location through the optic fibre cable and interpreted

o determine the leak point. While this is accurate and fast, the systems

re mostly proprietary, require high capital investment to install and

he vandalization of any section of the cable can shut down the entire

etection system. This technology is known as the Distributed Acoustic

ystem (DAS). The Distributed Temperature Sensing (DTS) feature of the

ptic fibre cable is used to detect the presence of gas leaks utilizing the

oule Thomson effect which creates a temperature differential (lower

emperature) around the leak point as the gas exits the lines during the

eaks. This method is only suitable for gas leaks. The performance of the

eak detection systems is summarised in Table 2 . 

From Table 2 , it is seen that the pressure point analysis and mass

alance methods produce very high rate of false alarm. This is often due

o the complex nature of the pipeline comprising of pumps compressors

nd pipe bends. These all introduce delays in the flow resulting in false

eak signatures or very long delay time to detect the leaks. 

The real time systems, on the other hand, have very high detection

peeds with slight and average rate of false alarms. These systems rely

n the real time data acquired from the field sensors on the pipeline and

re not subject to the delays introduced by the length of the pipeline or

ts associated components such as valves. 

Fig. 3 shows the general classification of leak detection systems.

hile some methods, such as the visual methods, are suitable for short

ipe lengths, other methods e.g., the external and electromagnetic meth-
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Table 2 

Performance characteristic of LDS systems ( Fiedler, 2016 ). 

Method Typical Minimum 

Detectable leak rate 

Time to detect leak Detectable types of leaks False Alarm frequency 

Liquids Gases 

Pressure Point Analysis > 5% Short Long Spontaneous leaks High 

Mass Balance Method > 1% Long Very Long Spontaneous and Creeping leaks High 

Statistical Methods > 0.5% Long Very Long Spontaneous and Creeping leaks Slight 

Real Time Transient Model (RTTM) > 1% Short Short Spontaneous and Creeping leaks Average 

E-RTTM > 0.5% Very short short Spontaneous and Creeping leaks Slight 

Fig. 3. Classification of leak detection system ( Baroudi et al., 2019 ). 
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ds require specialized equipment which are costly to acquire and install

nd may not be able to provide real time pipeline monitoring. 

The internal method shown in Fig. 4 , on the other hand, relies on

perational data and pipeline models to determine the leak points. It

equires minimal physical installations and has a rapid detection (real-

ime) time when compared with the other methods. 

Internal systems rely on field sensors to monitor the operational and

ydraulic conditions of the pipeline, e.g., measurements of the flow,

ressure, and temperature. These real time parameters are compared

ith the normal working parameters of the pipeline which are deter-

ined either manually by pipeline controllers or based on sophisticated

lgorithms and hydraulic models ( Baroudi et al., 2019 ). A difference

etween the measured and predicted operational parameters indicates

 leak. The remote field sensors installed on the pipeline monitor the
Fig. 4. Classification of internal leak detection systems ( Baroudi et al., 2019 ). 
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440 
ines continuously and send the data to a centralized monitoring sta-

ion, where the data undergoes filtering, signal processing and is passed

n to the leak detection and localization algorithms to both detect the

resence of the leaks and identify its location. 

The data acquisition methods from the sensors include the following

our components. 

1) Volume Balance: This comprises of the volume differential between

the incoming and outgoing volumes. Volume balance can detect

catastrophic failures; however, its usage is rare due to its limited

performance. 

2) Rate of Pressure and Flow Change : Pipeline leaks are character-

ized by sudden change in pressure, and this can be used to indicate

the presence of leaks. However, sudden pressure variations can also

be due to transient conditions of the pipeline. Filtering techniques

and suitable algorithms are used to differentiate between leaks and

operations induced pressure changes. Pressure waves also dampen

out as they traverse a longer length and thus additional pressure

sensors need to be installed along the pipelines. 

3) Negative Pressure Wave (NPW): Negative pressure waves are cre-

ated by sudden leaks, and they propagate in both directions from

the leak. A critical challenge of this system is that it cannot differen-

tiate between leaks and normal operations, and this results in false

alarms. 

4) Computational Pipeline Monitoring (CPM) : This method detects

anomalies in pipeline operating parameters, and this is accomplished

using the Mass Balance with line pack approach and the RTTM

method ( Baroudi et al., 2019 ). 

The mass balance with line pack correction monitors the pipeline

sing sensors such as pressure, temperature, densitometer, and other

arameters. These sensors are installed at multiple locations on the

ipeline between the inlet and outlet flow meters and the parameters

f the topography of each pipeline is factored into the model for such

ocations. The changes measured by various sensors are adjusted in the
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Fig. 5. Section of the pipeline with the leak at distance D 1 from the inflow 

section. 
ass balance to account for transient flows, anticipated fluid changes,

nd other flow conditions. In the RTTM, the real time field data are

ompared with the parameters generated by the simulation model and

ny difference or discrepancy is interpreted as a leak. It has a very high

ensitivity and response time as very small leaks can be detected. How-

ver, the RTTM system requires extensive training and skilled workers

o both operate and maintain it. 

Current trends in pipeline leak detection and localizations methods

urther identifies two main categories for pipeline lead detection under

he internal method using real time transient modelling and pipeline

ata. These are the signal-based methods and the model-based methods.

hese methods are based on the steady state models of the pipelines,

hey can predict unknown parameters and determine the occurrence

nd localization of leaks more accurately. The pipeline-model-based

ethod predicts pressure distribution along the pipeline and locates

he leak through the pressure and flow rate signal on both ends of

he pipeline. The most popular and widely used pipeline model-based

ethod includes the pressure gradient (PG) method and the average

riction coefficient (AFC) method ( Cui et al., 2018 ). The PG method ig-

ores the influences of friction coefficient, temperature, pipe diameter

nd other factors on the pressure distribution along the pipeline and

onsiders the pressure to be linear. The AFC method, however, assumes

he friction coefficient and pipe diameter to be constant ( Cui et al.,

018 ). 

The PG method was introduced by Seiders et al. ( 1979 ). Two pres-

ure sensors were installed upstream and downstream on a pipe sec-

ion to measure the PG. The intersection of the two lines identified

he leak location. The challenge with this method was the fact that

he pressure gradient is not usually a straight line, and this led to the

uestions about the accuracy of the results. Zhang et al. (1993) re-

ised the PG method and successfully applied it to the oil pipelines

f Shell Company. Several other researchers such as Begovich ( 2010 ,

012 ) and Physiker (2003) further improved the location accuracy.

hysiker (2003) was able to estimate the flow rate at both ends

f the pipeline. A key limitation with these approaches is the fact

hat the methods were not applicable to gas pipelines. This is be-

ause while the methods were suitable for high pressure liquid lines,

as lines were not liquid and are characterised by negative pressure

 Cui et al., 2018 ). Table 3 shows a summary of all external leak detection

ethods. 

. Pipeline leak modelling 

The occurrence of a leak in pipeline causes a sudden decrease in

he pressure which is followed by a partial recovery to its original

alue. This pressure pulse travels upstream and downstream through

he pipeline as a wave. Leak detection, hydraulic transient wave prop-

gation velocity and leak location are the component of the system to

e considered for an automatic supervision of a ( Silva et al., 1996 ). The

nalysis of fluid flow in pipelines for leak detection research requires

ctual leak data to train the leak detection model. However, such data

s very scarce and difficult to obtain from oil and gas fields and op-

rators. This provides the justification for the use of hypothetical data

enerated by the transmission pipeline model ( Sukarno et al., 2007 ).

his generated data is utilized for training the leak detection and local-

zation models by applying the various physical configurations of the

ipeline and the oil properties from which an accurate pipeline can be

imulated. The data is then used in the development of a realistic and

ccurate leak detection and localization model. 

The transient pipeline flow model provides the foundation for

ipeline simulation and modelling. The basic equations governing this

odel include the continuity, the momentum, and the energy equation

nd the equation of state. 

The continuity equation focuses on the conservation of mass prin-

iple. It requires that the difference in mass flow into and out of any

ection of the pipeline is equal to the rate of change of mass within the
441 
ection. This can be expressed mathematically as shown: 

d 𝜌
d 𝑡 

+ 𝜌
d 𝑣 
d 𝑠 

= 0 (1) 

here 𝜌 is density, t is time, v is flow velocity and s is pipeline location

oordinates. 

The conservation of momentum equation is represented as shown: 

d 𝑣 
d 𝑡 

+ 

1 
𝜌

d 𝑝 
d 𝑠 

+ fs = 0 (2) 

here p is pressure, and fs is pipeline friction. 

The conservation of energy principle is represented in as shown: 

d ℎ 
d 𝑡 

− 

1 
𝜌

d 𝑝 
d 𝑡 

− 𝐼 L = 0 (3) 

here h is enthalpy, and I L is specific loss performance L . 

Eqs. (1) to (3) are the basic equations for one dimensional pipe flow

nalysis and are present in one form or the order in all transient pipe

odels. These equations are used in developing the required pipeline

odel for the specific fluid being transported. 

The pipeline network and the governing equations enable the simu-

ation of oil flow in the pipeline and predicts the pressure distribution

long the pipe with or without leak under specific flow conditions. 

The simulation of a leak is accomplished by introducing a branch

ipe of a given diameter on the main pipeline. This branch pipe can be

ocated at any point on the main line with the leakage rate made vari-

ble. The variable leakage rate enables the study of different leak types

n the main pipeline. This model is represented in Fig. 5 schematically.

n this Figure, D 1 is the distance between leak point and upstream pres-

ure sensor and D 2 is the distance between leak point and downstream

ressure Sensor. 

The flow pattern in the pipeline is represented by the Reynolds num-

er as: 

e = 

𝜌vD 

𝜇
(4) 

here 𝜇 is the fluid viscosity, and D is pipe diameter. 

If Re < 2,000, the flow pattern is called laminar, whereas, if Re >

,000, the flow pattern is called turbulent. If 2,000 < Re < 4,000, the

ow is called transition. This parameter will be utilized in the modelling

f the pipeline. 

This pipeline model can produce sufficient data for different leak

onditions and the data will be used for training the leak detection

odel. Several machine learning models can utilize the generated data

or the development of the leak detection system. The model shown in

ig. 5 for a pipe section can be extended to cover the entire pipeline net-

ork and be extended to enable the detection of multiple pipeline leaks

rom pipelines. The installation for entire pipeline network is shown

chematically in Fig. 6 . 

The pipeline section in Fig. 6 comprises of sensors installed at spe-

ific points. The goal of the simulation of this pipeline network is to

etermine the minimum distance for installation of sensors which can

rovide end to end leak detection from multiple leak sources. 

Once the data has been generated from the pipeline transmission

odel, the data machine learning pipeline, shown in Fig. 7 , will be uti-

ized to develop the leak detection model which will be deployed for
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Table 3 

A summary of all the external leak detection methods ( Adegboye et al., 2019 ). 

Methods Principle of Operation Strengths Weaknesses 

Acoustic Emissions Detects leaks by picking up intrinsic signals 

escaping from a perforated pipeline 

Easy to install and suitable for early detection, 

portable and cost effective 

Sensitive to random and environmental noise, 

prone to false alarms and not suitable for 

small leaks 

fibre optic sensing Detects leaks through the identification of 

temperature changes in the optical property of 

the cable induced by the presence of a leak 

Insensitive to electromagnetic noise and the 

optical fibre can act both as a sensor and a 

data transmission medium 

The cost of implementation is high, not 

durable, and not applicable for pipelines 

protected by cathodic protection systems 

vapour sampling Utilizes hydrocarbon vapour diffused into the 

sensor tube to detect trace concentrations of 

specific hydrocarbon compounds 

Suitable for detecting small concentrations of 

diffused gases 

Time taken to detect a leak is long, not 

effective for subsea pipelines 

Infrared Thermography Detect leaks using infrared image techniques 

for detecting temperature variations in the 

pipeline environment 

Highly efficient power for transforming 

detected objects into visual images, easy to 

use and fast 

response time 

Quantifying leak orifices smaller than 1.0 mm 

using IRT-based systems is difficult 

Ground Penetration 

Radar 

Utilise electromagnetic waves transmitted into 

the monitoring object by means of moving an 

antenna along a surface 

Timely detection of leakage in underground 

pipelines, reliable and leak information is 

comprehensive 

GPR signals can easily be distorted in a clay 

soil environment, costly and require 

highly skilled operator 

Florescence Proportionality between the amount of fluid 

discharged and rate of light emitted at a 

different wavelength 

High spatial coverage, quick and easy 

scanning for leaks 

Medium to be detected must be naturally 

fluorescent 

Electromechanical 

Impedance 

Utilize mechanical impedance changes 

deduced by the incident 

of pipeline defect 

A single piezoelectric transducer can serve as 

both sensor and actuator 

It is only applicable for metal pipelines, 

operational limitations in high 

temperature environments 

Capacitive Sensing Measuring changes in the dielectric constant 

of the medium 

surrounding the sensor 

It can be employed for detection in 

non-metallic targets 

Requires direct contact with the leaking 

medium 

Spectral Scanners Comparing spectral signature against normal 

background 

Capable of identification of oil type 

(light/crude) and thickness of the oil slick 

The amount of data generated by a spectral 

scanner is large which limited its 

ability to operate in nearly real-time 

Lidar Systems Employed pulsed laser as the illumination 

source for 

methane detection 

Able to detect leaks in the absence of 

temperature variation between the 

gas and the surroundings 

High cost of execution and false alarm rate 

Electromagnetic 

Reflection 

Measure emitted energy at different 

wavelengths 

It can indicate leak location It can be affected by severe weather 

Fig. 6. Pipeline network modelling for leak detection. 

Fig. 7. Machine learning pipeline ( Akerkar, 2019 ). 
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he detection of leaks from the pipeline. The data will also be used in

eveloping the leak localization module. 

Once the model has been finalized, tested, and validated, it is de-

loyed to monitor the pipeline and develop a database of the sensor

eadings from the pipelines. The model will be able to learn from the

ata and optimize itself by increasing both its accuracy and speed of

etection. The continuous data acquisition leads to the development of

he RTTM approach for leak detection. 

. Mathematical modelling of oil and gas pipelines 

Pipeline leaks can be accurately modelled using mathematical mod-

lling of the flow in a gas or oil pipeline. The leaks can be accurately

redicted by analysing the variations of flow variables such as pressures
442 
nd flow rates at the ends of a pipeline following the occurrence of a

eak. The model can also be used to generate test data for validating

odel-based leak detection and location methods ( Sun, 2012 ). Utilizing

he negative pressure generated by the leak, the following analysis re-

orted by Sun (2012) shows the models for the oil and gas lines with

nd without leaks are shown in Fig. 8 . 

Assuming a uniform cross-sectional area along the pipeline, the flow

n a gas pipeline without leaks is represented as: 

𝑝 Q 
2 − 𝑝 Z 

2 

𝐺 

2 RT 
− 2 ln 

𝑝 𝑄 

𝑝 𝑍 
= 

𝜆𝐿 

𝐷 

(5) 

here 𝜆 is the average friction coefficient along the length of the

ipeline, G is the mass flux through the pipeline, p Q is the inlet pres-
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Fig. 8. Generation and propagation of an expanded wave from the leakage point 

( Sun, 2012 ). 
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ure, p Z is the outlet pressure, R is the universal gas constant and T is

he average temperature along the pipeline. 

The presence of a leak introduces a negative pressure wave which

ravels to both ends of the line. Analysing the wave in the 𝐶 ∗ 
− path,

nduced by the leak, the equation for the transient flow under leak con-

itions is given as: 

𝑝 Q 
2 − 𝑝 L 

2 

𝐺 Q 
2 RT 

− 2 ln 
𝑝 𝑄 

𝑝 𝐿 
= 

𝜆𝐿 r 
𝐷 

(6) 

here p L is the pressure at the leak point. G Q is the upstream mass flow

f the leak point. L r is the distance between the inlet and the leak point.

omputing for the flow along the 𝐶 ∗ 
+ path, the expression is shown as: 

𝑝 L 
2 − 𝑝 Z 

2 

𝐺 Z 
2 RT 

− 2 ln 
𝑝 L 
𝑝 Z 

= 

𝜆
(
𝐿 − 𝐿 r 

)

𝐷 

(7) 

here G z is the mass flow rate, downstream of the leak point. 

The leak rate is determined from the expression in Eq. (8) given that

he cross-sectional area of the pipeline remains constant. 

 = 

𝐺 Q − 𝐺 Z 

𝐺 Q 
(8) 

For liquid pipelines, the flow in the pipelines is expressed by the

ollowing equations. 

𝜕 

𝜕𝑡 
( 𝜌𝐴 ) + 

𝜕 

𝜕𝑥 
( 𝜌𝑤𝐴 ) = 0 (9)

here A is the cross sectional area of the pipeline. 

𝜕𝑤 

𝜕𝑡 
+ 𝑤 

𝜕𝑤 

𝜕𝑥 
+ 

1 
𝑝 

𝜕𝑝 

𝜕𝑥 
+ gsin 𝛼 + 

𝜆𝑤 

2 

2 𝐷 

= 0 (10) 

here g is the acceleration due to gravity, 𝛼 is the inclined angle of the

ipeline to the horizontal, x is the length of the pipeline from the inlet

o the outlet, and w is the velocity. The fluid flow in a pipeline without

eak is given as: 

𝑝 Q − 𝑝 Z − 𝜌𝑔 
(
ℎ Z − ℎ Q 

)

𝑤 

2 = 

𝜆𝜌𝐿 

2 𝐷 

(11) 

here h Z and h Q are elevations of the inlet and the outlet ends of the

ipeline. 

The equation for a leaking pipe along the 𝐶 ∗ 
− path and 𝐶 ∗ 

+ path in

ig. 8 is represented by Eqs. (12) and (13) as: 

𝑝 Q − 𝑝 L − 𝜌𝑔 
(
ℎ L − ℎ Q 

)

𝑤 Q 
2 = 

𝜆𝜌𝐿 r 
2 𝐷 

(12) 

𝑝 L − 𝑝 Z − 𝜌𝑔 
(
ℎ Z − ℎ L 

)

𝑤 

2 = 

𝜆𝜌
(
𝐿 − 𝐿 r 

)

2 𝐷 

(13) 

Z 

443 
here w Q and w Z are the velocities of the upstream and downstream of

he leakage point and h L is the elevation of the leakage point. 

The leak rate at the leak point is determined as: 

 = 

𝑤 Q − 𝑤 Z 

𝑤 Q 
(14) 

The wall of the pipe introduces loss of pressure in the fluid flow

ue to the nature of the pipeline internal surface. This loss which is

nown as friction factor, or the flow coefficient is determined using the

arcy Weisbach equation. The Darcy–Weisbach equation is an equation,

hich relates the pressure loss or the head loss due to friction along a

iven length of pipeline to the average velocity of the fluid flow for an

ncompressible fluid. The friction factor for fluid flow in pipelines in

etermined using the Darcy Weisbach equation or the Moody diagram

nd the Colebrook equation. 

Given a cylindrical pipe of uniform diameter D , the pressure loss due

o viscous effects Δp is proportional to length L and can be characterized

y the Darcy-Weisbach equation shown in Eq. (15) . 

Δ𝑝 
𝐿 

= 

𝜌

2 
𝑓 D 

𝑣 2 

𝐷 

(15) 

here f D is the Darcy friction factor (also known as the flow coefficient).

For laminar flow, the friction factor is replaced by the following ex-

ression: 

 D = 

64 
Re 

(16) 

There are numerous models to calculate Darcy’s friction coefficient,

r friction factor. Most of them are empirical models limited to the range

f experimentation in which they were formulated, such as Moody equa-

ion. However, Colebrook-White model has been widely preferred due

o its precision within turbulent conditions. 

The Moody Diagram shown in Fig. 9 is a log-log plot of the Colebrook

orrelation on axes of friction factor and Reynolds number, combined

ith the f = 64/ Re result from laminar flow. 

. Leak localization 

Leak localization is the process of determining the leak point when-

ver the leak occurs. This is required to enable operators deploy appro-

riate strategies to contain the spills from the pipeline and minimize the

nvironmental impact of the leak. 

Leak localization methods include: gradient intersection method,

ave propagation method and extended wave propagation method. 

These methods can be deployed either independently or combined

o achieve higher accuracy in the localization of pipeline leaks. 

.1. Gradient intersection method 

The gradient intersection method uses the pressure profile along the

ipeline to localize the leak. The pressure drop for a horizontal line with-

ut any elevation is linear as such if a leak occurs, the flow before the

eak site increases and decreases after. This results in an increase in the

ressure drop before the leak and decreases after the leak generating two

ines with different gradients. Following these lines to the intersection,

he leak site can be determined. While this method is easy to deploy, it

as several limitations which limits its application. The system can be

sed to localize spontaneous and creeping leaks can be localized with a

ood accuracy in stationary operation. The accuracy of the system de-

ends on the total length of the pipeline and this localizing accuracy is

oor when the pipeline is in transient operation. The following parame-

ers must also be factored in the method to achieve a usable result. These

nclude changes in the height, cross-section, and pipe friction along the

ipeline. 
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Fig. 9. Moody diagram ( Moody, 1944 ). 
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.2. Wave propagation method 

This method uses the sound velocity of the leaks in the pipeline.

ipeline leaks create a negative pressure wave which propagates in both

irections of the pipeline at the speed of sound. Pressure gauges at the in-

et and outlet record these pressure waves and their time of arrival at the

ensors. The time of arrival of the leaks at the two sensors can be anal-

sed to determine the leak points. The arrival of the pressure waves at

oth sensor at the same time would indicate that the leak point is at the

idpoint on the pipeline assuming a uniform density in the hydrocar-

on and same speed in both directions. The wave propagation method

chieved good accuracy both during stationary and transient operation

rovided that the operational pressure waves are compensated for. The

ethod can be used during pumping and during pauses in pumping.

ne key limitation of this method is the fact that creeping leaks and

pontaneous leaks that are not large enough cannot be detected with

his method. The pressure gauges at both ends must be able to measure

he arrival time of the pressure wave as accurately as possible. 

.3. Extended wave propagation method 

This system increases the accuracy of the wave propagation method

y using multiple sensors. When a leak occurs, the pressure waves can

each the gauges/sensors faster. By considering the sensor sampling time

nd the actual fluid density / sound velocity profile the exact point in

ime at which the pressure wave reached the sensors can be narrowed

own even further thus improving the resolution of the leak point local-

zation. 

. Components of RTTM 

The RTTM which has the best leak detection performance

 Lunger and Karami, 2019 ) relies on data from the field sensors which

re fed into the model to both determine the commencement of a leak

nd the location of the leaks. The components of these system include

he field-based sensors clamped on the pipeline, the data transmission

ystem, and the Transient model. These are briefly explained in the next

ection. These are explained in the following subsections. 

.1. Clamp-on sensors with data transmission capacity 

The use of clamp-on sensors is an approach where sensors are

lamped on the pipeline at selected points to monitor parameters of the

ipe at those locations ( Shao et al., 2019 ). These sensors monitor the

ibration and temperature on the pipeline. These measurements can be
444 
sed to detect the flow in the pipe and the presence of leaks. The sen-

ors are connected to microcontrollers and transmission system for the

ransmission of the acquired data to the cloud storage location. Specially

eveloped algorithms are then used to analyse the data and determine

he commencement of a leak, the localization, and the quantifying of

he leak ( Turner and Mudford, 1988 ). The proposed system diagram for

he RTTM system and the sensors are shown in Fig. 10 . 

Fig. 10 shows the network architecture of the proposed RTTM based

eak detection system with integrated field sensors. The field sensors are

esponsible for acquiring the vibration and temperature data from the

ection of the pipeline where they are installed. The sensors transmit the

cquired data to the cloud location where machine learning algorithms

re utilized to extract the required information for the leak location. The

tatus of the lines can be monitored in real-time by all the responsible

arties. Due to the large volume of data generated from the leak time

etection sensors, dimensionality reduction algorithms must be engaged

o reduce the volume of data utilized in the algorithms. Key challenges

ssociated with large volume data transmission include shorter battery

ife and the presence of anomalies which extend the processing time for

he data processing algorithms. 

.2. Impact of local geography 

The local geography around the pipeline RoW has an impact on both

he detection time for the leaks and the rate of spread of the oil spills into

he environment. One key reason for this is the impact of the hydrostatic

ressure on the fluid flow in the pipeline and the impact of the natural

nvironment on the pipe. Leaks from pipelines in swampy locations are

ifficult to localize especially when the pipe is on the river floor. The

ffect of the water load also alters the pipeline pressure differential as

he hydrostatic pressure from the water head reduces the leak pressure

nd this can cause the pressure due to the leak to fall within the pres-

ure threshold of the pipeline there by making it difficult for the leak

etection system to use pressure profile to determine the leak presence

nd leak location. Surface pipelines are easier to manage when it comes

o pipeline leak detection and containment as the leaks are visible and

here is no hydrostatic pressure to interfere with the pipeline pressure

rofile readings. 

For pipelines installed in very cold locations such as North Dakota,

he formation of ice can cause flow assurance and process safety issues,

uch as restricting flow path, pipeline plugging, failure of pipeline com-

onents, the release of hazardous liquid, and fire ( Xu et al., 2018 ). The

resence of snow cover on the pipeline and the installation of the sen-

ors in buried pipelines increases the transmit power required for the

ransmissions from the sensors to get to the office domain IT infrastruc-

ure. Other topological environments include mountainous locations re-



F. Idachaba and M. Rabiei Journal of Pipeline Science and Engineering 1 (2021) 436–451 

Fig. 10. Pipeline leak detection system using field-based sensors and RTTM. 
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uiring steep pipeline installations, areas with high vegetation density

nd locations that are difficult to access. All these locations introduce

hallenges for pipeline leak detection and localization. While some of

he environmental parameters can be factored into the design, access to

hose location in the event of a pipeline leak would be both costly and

ime consuming. 

.3. Exception based transmission 

The use of exception-based transmission will enable the transmis-

ion of only the leak related data. This approach creates a distributed

rocessing system where each node can determine the pressure data

o transmit. This is accomplished using a pressure threshold for each

f the sensors and each sensor with a limited data processing capacity

an monitor and compare the received data with the pre-set threshold

nd send the values that fall outside the pre-set window. This mode of

ransmission will reduce the volume of transmissions made from the sen-

ors and limit the battery drain thus enabling the sensors to transmit at

igher power to overcome the snow cover and the soil compaction over

he pipeline. Fig. 11 shows the end-to-end configuration of the system

rom the sensors on the pipeline to the database and the leak detection

nd localization algorithms. 

This model of real time data acquisition from sensors is suitable for

nstallations in hard to access locations and for low-cost deployments.

he current battery technology coupled with the exception-based trans-
Fig. 11. End-to-end architecture of the

445 
ission can enable the battery life to extend beyond a year. The nature

f the sensor installation makes it suitable for surface pipeline installa-

ion however, it can be used for underground pipelines if the sensor sec-

ions are provided with suitable housing for easy access during battery

eplacement and providing a reduced attenuation for the signal trans-

ission from the sensors located on the pipeline. 

The methodology for this work includes the development of the

ipeline model using the Darcey Weisbach equations, the Colebrook

quation and the parameters of the pipeline and the fluid flowing in the

ipeline to determine the pressure profile of the pipeline. These data

ill be compared with the pressure profile of a similar pipeline with

he same parameters and both for the pipe, the topology and the fluid

eing transported. In view of the challenges associated with acquiring

ctual pipeline pressure profile, simulation software such as PIPESIM

 He et al., 2017 ) will be used to generate the pipeline pressure profile

ith multiple leak points. The use of the simulation software provides an

pportunity to model realistic pipeline installation environments, select

he desired pipeline specification and simulate various leak scenarios

 Lunger and Karami, 2019 ). MATLAB and EPANET are other simulation

oftware that have also been with very promising results for the detec-

ion of pipeline leaks ( Carbó-Bech et al., 2017 ; Candelieria et al., 2014 ).

he detection of leaks from these pipelines will be achieved by compar-

ng the pressure values at each point both in the model generated value

nd the simulation generated value or actual pipeline pressure values.

 threshold value is added to the simulation value to cater for spurious
 proposed leak detection system. 
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t  
ressure bursts occasioned by the irregularities of the pipeline inter-

al surface. A leak is assumed to occur when the model value exceeds

he sum of both the threshold value and the simulated leak value. The

ipeline is broken into sections bounded by the pressure sensors and the

eak detection process is applied to each section with the input pressure

f each section computed as the current pressure expected at that point

ess the leak pressure experienced in the preceding pipe section. 

. Data analytics applications for leak detection 

Data analytics tools have also been utilized in the development of

he leak detection algorithms with different success levels. The Gradi-

nt Boosting, Decision Trees (DT), Random Forest (RF), Support Vector

achine (SVM) and Artificial Intelligence (AI) have been utilized by

esearchers with varying levels of sensitivity, accuracy, and reliability.

he key finding of the research suggests that data analytics and arti-

cial intelligence can be utilized with the RTTM to improve the leak

etection results ( Akinsete and Oshingbesan, 2019 ; Kang et al., 2018 ).

he application of Machine learning (ML) for leak detection relies on

he analysis of data collected by the real-time sensors installed on the

ipelines without using any simulation ( Romano et al., 2011 ). 

Artificial Neural Network (ANN) based approaches have been

roposed by Caputo and Pelagagge (2003) and, more recently, by

ivapragasam et al. (2007) . Their systems use pressure and flow to

nfer the leak location and severity, through an ANN trained on a

ataset generated either by a mathematical model of the network or

he hydraulic simulation software EPANET ( Candelieria et al., 2014 ).

ashford et al. (2012) proposed the combination of the EPANET-based

eakage simulation and machine learning by using the SVM. The SVM

odel has been trained on a dataset of leaks simulated on the junc-

ions of the water distribution networks (while most approaches simu-

ate leaks on pipes). The trained SVM classifier can infer the leaky junc-

ion(s) according to the pressure and flow values ( Candelieria et al.,

014 ). 

Other supervised machine learning approaches have been recently

roposed, such as Genetic Programming ( Wang et al., 2012 ), Bayesian

pproaches ( Poulakis et al., 2003a ; Li et al., 2006 ) and Hidden Markov

ode-based agents ( Nasir et al., 2010 ). Table 4 presents a summary of

ey findings from the use of different data mining strategies and models

or leak detection. 

0. Selected case studies 

This section presents discussions on selected cases studies of Data

nalytics applied to leak detection 

0.1. Olga simulations 

This case study focuses on determination and analysis of leak esti-

ation parameters in two-phase flow pipelines using OLGA multiphase

oftware ( Vandrangi et al., 2021 ). This focus of the paper was on the

eak detection parameters which include mass flow rate, temperature,

nd pressure with and without leak in the pipelines. These parameters

ere evaluated using the OLGA multiphase software. An OLGA based

omputerized model was used in the leak simulation for analysing inlet

nd outlet parameters such as mass flow rate, temperature, and pressure

ver the flow inside the pipeline. The leak sizes were varied from 0% to

0% leak opening and the inlet and outlet parameters were measured

nd studied. The key findings of the research include the following: The

ressure, mass flow rates are observed to decrease with increase in leak

ize, while temperature decreases with leak size until 25% and later in-

reases. From the research, the Mass flow rate was observed to be the

ost important parameter in detecting a leak and localizing it. The max-

mum percentage of variation in mass flow rate was observed as 33.6%

or 50% leak openings, for single leak and 32.4% for multi leak sce-
446 
ario. Another paper which focuses on the use of the Olga simulation is

unger and Karami (2019) . 

0.2. Leakage location 

This was an integrated study for detection and location modelling for

eakages in liquid pipelines ( Liu et al., 2016 ). This work focused on the

evelopment of an integrated model for leak detection and localization

apable of detecting background leaks and very small microleaks in liq-

id pipelines. The model implemented a dynamic monitoring module

DMM) for detecting large leakages using amplitude propagation and

ttenuation model. It also utilizes a static testing module (STM) which

s based on the pressure loss model to detect micro-leakages. The re-

ults show that the integrated model can detect nearly all leakages. For

he DMM, the smallest detected ratio of leakage orifice to pipe diameter

RLOPD) in the field is 1/41.4, with location errors on the order of 1%.

or STM, the smallest detected leakage rate is just 0.0044%/h in the

eld. Thus, the model has capacity to both detect and locate leakages

rom liquid carrying pipelines. 

0.3. Liquid leakage 

This study introduced a method for simulating the entire leaking

rocess and calculating the liquid leakage volume of a damaged pres-

urized pipeline ( He et al., 2017 ). For this work, the authors utilized

hree models to determine the leaking flowrate and volume. The nega-

ive pressure wave propagation attenuation model was used to calculate

he sizes of the leak orifices. The transient oil leaking model which com-

rised of the continuity, momentum conservation, energy conservation

nd orifice flow equation was used to calculate the leakage volume. The

hird model was the steady- state leaking model and it was utilized to

alculate the leakage after the valves and the pumps have been shut

own. Validation of the numerical simulation was done using two types

f leakage test with different sizes of leakage holes and Sinopec product

ipelines. The leaking process under difference conditions were also de-

cribed and analysed. The authors also utilized the Synergi Pipeline Sim-

lator (SPS) software to simulate the pipeline and undertake the studies.

he results obtained includes the following: The models can be applied

o predict the equivalent diameter of the leaking orifice, the leakage vol-

me during the unsteady leaking process and the ultimate volume of the

teady leakage. The errors observed were within 7.6%. This study has

 wide application area as it has the potential to provide guidance for

stimating economic loss, evaluating the influence of accidental oil leak-

ng, and designing remediation technology for containing the leaks. The

odels can also be widely applied to other liquid-transporting pipelines.

0.4. Leakage monitoring 

This leak detection and location model ( Liu et al., 2016 ) was based

n the amplitude attenuation model of the dynamic pressure waves and

as used for the detection of gas leaks. This was compared with the

raditional method based on the propagation velocity and time differ-

nces as determined by the waveforms of the upstream and downstream

ignals. The results indicate that all leakages can be detected by both

ethods but that the largest location error of the traditional method is

 0.780%, whereas the largest location errors with respect to the new

ethod are 0.054%. It is further determined that the influence of the

as flow effects cannot be ignored by either method. The conclusions

rawn suggest that the proposed methods can be applied to monitor gas

ipelines. The experimental layout of the leak detection system is shown

n Fig. 12 . 

0.5. Two-point leakages detection 

Fu et al. (2021) proposed pressure distribution analysis for the de-

ection of the leak points. This was done using experimental studies and
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Table 4 

A summary of Data Analytic models for leak detection. 

Method Authors Approach Key findings 

Artificial Neural 

Network 

Caputo and Pela- 

gagge (2003) 

The authors proposed a method of using ANN to 

estimate the leak location in piping networks. 

They generated input data for leaking and non-leaking 

states and used two neural networks in their proposal. 

The first NN was used for identifying the leaking 

branch and the second NN was for estimating the 

leakage amount and location 

The results obtained showed that the leaking branch could be correctly 

identified with the leak size estimated to be between 2% − 10% of the 

actual value. The location of the leak could be estimated within 

50 − 100 m of the actual leak location 

Mounce et al. 

(2010) 

Simulated bursts on pipeline networks. Two sensor 

locations were used: one at the input of the network 

and one at the output. The sensors measured both 

pressure and flow. Five different burst locations were 

simulated 

They were able to locate the bursts with an accuracy of 98.33% 

Salam et al. 

(2014) 

Investigated an on-line monitoring system to detect 

leakages in pipe networks. They used pressure 

measurements at each junction as input data. The 

input data were generated by simulating leaks in the 

network 

They used a Radial Basis Function Neural Network which could detect 

the leak location and sizes with an accuracy of 98% 

Zhang et al. 

(2016) 

(1) The configuration of the neural network is critical for constructing 

an effective data driven model for a given system 

(2) ANNs rely too much on training samples. The ANN prediction 

accuracy is poor if the size of the training samples is small. To achieve 

adequate accuracy, sufficient training samples will be needed 

(3) The ANN training time increases as the size of the training samples 

increases 

(4) ANN needs to be retrained when the physical conditions of a water 

system change; this is quite common in the developing countries 

Romano et al. 

(2011) 

Proposed a fully automated data-driven methodology 

using all the pressure and flow measurements 

available. This approach combined the use of an ANN 

for the short-term forecasting of hydraulic values and 

statistical processes to determine whether an abnormal 

event had occurred 

The results obtained showed the potential of data-driven technologies 

for near real-time incident reporting 

Mounce and 

Machell (2007) 

Used two ANN architectures (static ANN and time 

delay ANN) to detect the occurrence of bursts using 

flow data 

The use of ANNs showed potential for identifying changes in the flow 

that corresponded to unusual fluctuations of this hydraulic variable 

Support Vector 

Machines 

De Silva et al., 

2011 

Investigated support vector machines used as pattern 

recognisers to detect leaks in pipe networks. They 

started with a SVM (Support Vector Machine) as a 

regressor to try and predict emitter coefficients. Six 

monitoring nodes were used to act as sensor locations. 

They selected 10 candidate leaking nodes and 

generated a data set with varying emitter coefficients 

The SVM could, after training, achieve a testing accuracy of 76.8%. 

They then used 40 candidate leaking nodes and created a data set, for 

which a testing accuracy of 57.2% was achieved. They found that the 

predicted leak location was within 500 m of the actual leak location in 

all cases for a network that could fit into a 1,000 by 1,100 m square 

box. They went on to investigate whether the SVM could detect small 

leaks in the network. The smallest leak registered by EPANET to 

generate a pressure difference was a leakage of 90 l/hour. A new data 

set was created to which the SVM was trained. A testing accuracy of 

35% was found 

Bayesian 

Probabilistic 

Framework 

Poulakis et al. 

(2003a) 

Investigated the ability of a Bayesian probabilistic 

framework to detect leaks in a water pipe network. 

The derivation starts by assigning 𝜃 as the parameter 

to be optimized. This parameter includes the leaking 

pipe, location, and size of the leak. A network 

consisting of 50 pipes, 31 nodes, and 20 loops was 

used. The network forms a grid network supplied by 

one reservoir with one leak. They went on by 

introducing variation in pipe roughness coefficients, 

variation in the assumed demands, and a variation in 

the model measurements 

They found that when the model measurements had an uncertainty of 

2%, the location could be calculated. If the uncertainty in the model 

measurements was increased to 5% the model was unsure about the 

actual leak location 

Zhou et al. 

(2011) 

Proposed a feasible Bayesian reasoning approach 

based on a recursive algorithm for leakage detection. 

The recursive algorithm is used to update a belief 

rule-based expert system, which can learn the 

relationship between the flows/pressures in 

monitoring points and leak sizes 

The key findings from the Bayesian methods include the following. 

The characteristics of the Bayes method uses probability distribution to 

represent all forms of uncertainty, and the process of learning or 

reasoning is implemented through probability. This can avoid the 

unavoidable uncertainties in the process of measuring and modelling. 

However, the method has some disadvantages. 

(1) Assumptions need to be made for the probability distribution of 

training data. The recognition accuracy is usually very low when the 

assumed probability distribution is different from the real probability 

distribution 

(2) It is difficult to accurately estimate the variance matrix of the Bayes 

algorithm 

(3) Estimating probability density through training samples is a highly 

ill posed problem when the size of sample is small. Thus, to achieve 

better recognition accuracy the Bayes method usually needs a large size 

of training samples 

( continued on next page ) 447 
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Table 4 ( continued ) 

Method Authors Approach Key findings 

Costanzo et al. 

(2014) 

Developed a new Bayesian calibration methodology 

for leakage detection and calibration. The network is 

first divided into several zones according to piping 

roughness, and then the roughness is calibrated using 

the Bayes method. The leakage zone is identified by 

comparing the roughness of a normal condition and 

the roughness of an abnormal condition 

Romano et al. 

(2010) 

Applied wavelet analysis, ANNs, statistical process 

control, and Bayesian inference systems and integrated 

them into a unified framework for burst/leak 

detection. The method was tested in a real-life district 

metre area of the United Kingdom, and the results 

illustrated that the method could respond quickly to 

bursts/leaks 

Random forest Huang et al. 

(2018) 

Proposed the use of a random forest classifier to detect 

bursts in real time by analysing successive time 

windows (every 15 min) of flow 

data from the pipeline network 

These contributions demonstrate the use of a 

supervised learning technique for the detection of bursts in pipelines; 

however, all the applications to date have been focused at a DMA level 

and using SCADA flow (or pressure) data, which 

are often available in intervals between 1 min and 15 min 

Bohorquez et al. 

(2020) 

Presented a technique that uses ANNs to predict the 

presence of different features (leaks and junctions) in a 

pipeline after the generation 

of a controlled transient event 

The results demonstrated the 

potential of combining transient-based techniques, 

with ANNs to interpret the pressure traces 

Fig. 12. Gas leak detection layout. The inlet and outlet are A and B respectively. 

L is the length of the pipe section and C is the leak point ( Liu et al., 2016 ). 
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t  
omputational Fluid Dynamics (CFD) simulation. Different dimension-

ess variables, which include the dimensionless leak location, leak rate

nd pressure drop were applied to the analysis. The locations of the

eaks were detected using mathematical modelling. Multiple flowrate

esting was conducted to detect the location of two leaks. The outcome

f the research was that the method can be utilized to detect leakages

nder different flow rates. Fig. 13 shows the experimental layout of the

esearch. Key findings from this research include the fact that different

eak locations can lead to different pressure drop through the leaking

ipeline. It was also observed that the pressure drop between the inlet

nd outlet of the leaking pipe is positively related to the inflow rate.

hen the leak locations are the same, the pressure drop through the

eaking pipe becomes more significant with a larger inflow rate. The re-

earch also validated the use of simulations in leak detection studies as

he parameters obtained in the simulation using the CFD software were

f the same values as the those obtained from the experimental set up. 

0.6. Single leakage diagnosis 

In this study ( Fu et al., 2020 ), a pipeline leak detection method was

eveloped using the pressure distribution through the leak. A flow loop
448 
as used to undertake pipeline leak detection tests. Through the exper-

ments, four parameters which are pressures and flow rates of pipeline

nlet and outlet are recorded. The dimensionless analysis of these pa-

ameters was used to detect the leak location. To generate the solution

o locate the leak, three dimensionless variables which are the dimen-

ionless leak location and leak rate, and the dimensionless pressure drop

ere used. A 3D computational fluid dynamics (CFD) simulation was un-

ertaken with a commercial software (FLUENT) to determine the leak

oints. The pressure distribution in the pipeline with leakage were veri-

ed using experimental data. Mathematical models were also developed

o detect and evaluate the leak through the pipelines. The key findings

rom the CFD simulation results show that both the leak rate and lo-

ation have significant effects on the pressure distribution through the

ipe. This finding is identical to the outcome from the experiments. The

athematical model which is based on these dimensionless variables

an be applied in locating the leak point in the real accident. The gen-

ral conclusion from this research shows that simulation and experi-

ents can be used to both determine the leaks and locate such leaks

ith a high degree of accuracy. 

0.7. Real-time sensor data analysis 

Oliveira et al., (2018) in this study, utilized data Science and ad-

anced data analytics technologies to develop a leak detection system

n a slurry pipeline. The techniques used to detect leakage were based on

rtificial intelligence, a machine learning model for the energy balance

f the pipe combined with an anomaly detection technique approach.

he pipeline was divided into sections and the system predicts energy at

ne point of the pipe based on another point. This is done to determine

f there is a leak in that section. The machine learning model used in this

ork is the simple parametric linear regression model. The line used in

his study had a length of 5.5 km and had two pressure gauges (PITR

nd PIT1) installed after each pump assembly as shown in the Fig. 14 . 

Other gauges installed on the line include a flow metre (FIT) and

ther density (DIT). Along the tailings line, there are two pressure

auges: PIT2, which is 3.3 km of pump sets and PIT3 which is 4.5 km

rom the beginning of the pipeline. The values measured by these sen-

ors are shown in Table 5 . 

The pipeline system and the working fluid was modelled based on

he energy conservation principle and the linear regression algorithm
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Fig. 13. Experimental set up ( Fu et al., 2021 ). 

Fig. 14. Pipeline overview. ( Oliveira et al., 2018 ). 
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as used to predict the energy at different points on the pipeline. The

nergy measured along the pipeline under normal operations without

eaks was used to train the machine learning model. This enabled the

odel to determine the normal behaviour of the line or the expected

nergy balance of the line. One key challenge with this approach is the

ack of leak data for training the model, thus it would be difficult to

rain the model for leak conditions. 

The anomaly detection technique is the most suitable approach for

raining the model as it helps to define the threshold between anomalous

nd not anomalous behaviour. The leak in this case is an anomalous

peration and is defined as the difference between the mean and the

tandard deviation of the error the reading of both the leak and the no

eak models. The system was designed to activate protection systems

hat shut off the lines whenever a leak was detected, this meant that

alse positives had to be kept to the barest minimum as it would lead
Table 5 

Reading from the sensors installed on the 

pipeline ( Oliveira et al., 2018 ). 

Sensor Mean Value 

PIT1 1,441.6 kPa 

PITR 1,412.2 kPa 

PIT2 755.1 kPa 

PIT3 931.6 kPa 

DIT 1.5 g/cm 

3 

FIT 1,000 m 

3 /h 
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o production losses. Fig. 15 shows the response of the leak detection

odel. The real-time sensor data values and the model estimates align

hen there is no leak but when an anomalous behaviour is detected, the

eak alarm is triggered. 

One key challenge with this solution is the definition of the thresh-

ld between normal or abnormal behaviour of the pipeline line. This

hallenge exists the position of the threshold impacts on both the pre-

ision and robustness of the system and determine the detection of leak

olume and detection time. The lower the threshold, the greater the ac-

uracy, but this also means the greater the number of false positives

hich leads to pipeline shutdown and production losses. This challenge

an be overcome by tuning the model to the operator facilities to factor

n the impact of the operational sequences and terrain in the develop-

ent of the model. 

The implementation of the system used a very simple architecture.

he data, which was continuously uploaded onto the plant historian,

as read from there and stored an updated in a SQL database every

ve minutes. The analytics platform (KNIME) reads such data (sensor

ignals) and interprets it using data mining techniques (cleaning and

rocessing of data), and machine learning techniques (linear regression

nd anomaly detection). The results (which are leak alarms) are written

n the same SQL database. The alarm signals are also made available via

PC to the plant supervisory system. 

Three leaks’ tests were performed on a real pipeline to validate the

eak detection system. The system was able to detect the leaks. When

he pre-set thresholds were exceeded, the leak alarms were triggered as

hown in Fig. 16 . The blue line represents the real time measured data
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Fig. 15. Real time leak detection system ( Oliveira et al., 2018 ). 

Fig. 16. System validation tests ( Oliveira et al., 2018 ). 
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hile the green line represents the model estimates for that section of

he line. When there is an unusual change or reduction in the in the

eal-time measurements as compared with the model values, the leak

larms are triggered. 

One key challenge posed by the system during the tests was the num-

er of false positives. While the system was able to detect small leaks, it

ad a high number of false positives per day (5 false positives per day).

he solution to this was a trade-off between robustness and accuracy

he threshold of the system was re-tuned using the leak data collected

uring the tests. This resulted in the retraining of the model and the use

f a higher threshold for defining leak scenarios. This retraining and

emodelling of the system resulted in the detection of leaks but with

ewer false positive detections (5 false positives per month). The system

roved to be able to detect leaks using the real time data acquired from

he pipeline and the dynamic model of the line. 

1. Conclusion 

Leak detection remains as a very critical area in oil and gas opera-

ions as such the need to develop robust leak detection and localization

ystems continue to be of prime importance to the oil and gas operators.

ata analytics provides an opportunity for the application of intelligent
 i  

450 
lgorithms for the analysis of the data acquired from the sensors located

n the field for the detection and localization of pipeline oil and gas

eaks. Mathematical models and simulation software have been shown

o provide comparable results with experimental data with very high

evels of accuracy. These systems also provide the opportunity for the

evelopment of early warning systems for pipeline leaks by analysing

he vibration signature of the pipeline and identifying variations caused

y corrosion of the pipelines before eventual failure and oil spill occurs.

he vibration signature can also be studied to determine the state of the

ipeline internal condition and detect the presence of hydrate formation

n the pipeline internal surface. Several machine learning models, and

lgorithms have also been used for detecting and locating leaks pipeline

ressure profile data. The most prominent of these models are the Ar-

ificial Neural Network (ANN) and the Support Vector Machine (SVM).

eural networks and data from leaking and non-leaking pipelines were

tilized to determine the leakage amount and the location of the leak. In

he absence of pipeline data from operators, simulation data was used

or the studies with pressure being the most predominant pipeline pa-

ameter used for leak detection. The key findings from the use of Ar-

ificial Neural networks includes the fact that ANNs rely too much on

raining samples, its prediction accuracy is poor if the size of the train-

ng samples is small. To achieve adequate accuracy, sufficient training
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amples will be needed however, the ANN training time increases as the

ize of the training samples increase. SVM was used as a pattern recog-

ition system to detect the variations in the sensor data generated from

he pipelines and it was able to detect small leaks. The use of machine

earning has been shown to play a critical role in the detection of leaks.

he ability to develop leak detection models using synthetic data (data

enerated from pipeline models) increases the suitability of the use of

achine learning for leak detection and localization algorithms. While

ome of the models require large volumes of training data, threshold de-

ection can be combined with the machine learning algorithms to enable

he development of a robust machine learning enabled leak detection

ystem. 
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