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1. Introduction

The core [16,8] is one of the most important solution concepts 
of cooperative game theory. It is important not only from the the-
ory viewpoint, but for its simple and easy to understand nature, it 
also helps to solve various problems arising in practice.

In the transferable utility setting (henceforth TU games) the 
Bondareva-Shapley Theorem [2,17,5] provides a necessary and suf-
ficient condition for the non-emptiness of the core of a finite TU 
game; it states that the core of a finite TU game with our with-
out restricted cooperation is not empty if and only if the TU game 
is balanced. The textbook proof of the Bondareva-Shapley Theorem 
goes by the strong duality theorem of linear programs, see, e.g., 
Peleg and Sudhölter [12].

Schmeidler [15], Kannai [9,10], and Pintér [13], among others, 
considered TU games with infinitely many players. All these papers 
studied the case when the core consists of bounded additive set 
functions. Schmeidler [15] and Kannai [9] showed that the core of 
a non-negative TU game with infinitely many players is not empty 
if and only if the TU game is balanced.

In this paper we consider infinite sign unrestricted TU games 
with infinite many players with and without restricted coopera-
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tion. Particularly, we follow Schmeidler [15] and assume that the 
allocations are bounded additive set functions.

Applications of infinite signed TU games go back in times at 
least as early as Shapley and Shubik [18] (economic systems with 
externalities), which generalize market games [19]. Further appli-
cations are (semi-) infinite transportation games [14,20], infinite 
sequencing games [6], and somehow less directly the line of liter-
ature represented by, e.g., Montrucchio and Semeraro [11] among 
others.

While we can analyze the non-emptiness of the core in the 
finite setting by using the aforementioned Bondareva-Shapley The-
orem [2,17,5], we have been missing an appropriate tool for such 
TU games with infinitely many players.

Our contribution is an extension of Schmeidler’s result [15] say-
ing a non-negative infinite TU game without restricted cooperation 
has a non-empty core if and only if it is balanced, to the general 
case saying an infinite TU game bounded below with or without 
restricted cooperation has a non-empty core if and only if it is bal-
anced (Theorems 4 and 8).

It is worth mentioning that neither Schmeidler’s [15] nor Kan-
nai’s [9,10] approach (proof) can be applied to achieve our gener-
alization (Theorems 4 and 8). Our approach is different from the 
previous ones.

The set-up of this paper is as follows. In Sections 2 and 3, we 
introduce basic notions of TU games with infinitely many play-
ers, including the core and balancedness, and we present our main 
result (Theorem 4). In Sections 4 and 5, we recall some useful con-
le under the CC BY-NC-ND license (http://
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cepts pertaining to functional spaces, topology and compactness, 
and we prove our main result. We additionally give an example to 
show the tightness of our main result and we also mention an in-
teresting “limiting” property of the core. Finally, in Section 6, we 
discuss the case of restricted cooperation and give our second main 
result (Theorem 8).

2. Preliminaries of infinite TU games

We consider transferable utility cooperative games with a finite 
or infinite set N of players. A coalition is a subset S ⊆ N , so the 
power set P(N) = { S : S ⊆ N } is the collection of all coalitions that 
can be considered. Let A ⊆ P(N) be the collection of all feasible 
coalitions, which are those that can potentially form. When there 
are no restrictions on coalition formations, we assume that A is a 
field of sets over N; that is, the collection A is such that ∅ ∈ A
and, if S, T ∈ A, then N \ S ∈ A and also S ∪ T ∈ A. In the case of 
restricted cooperation, we assume only that ∅, N ∈A.

Then a transferable utility cooperative game (henceforth game for 
short) is represented by its coalition function, which is a mapping 
v : A → R such that v(∅) = 0. For any coalition S ∈ A, the value 
v(S) is understood as the payoff that the coalition S receives if it 
is formed.

Assume that the players form the grand coalition N ∈ A. Then 
v(N) ∈ R is the value of the grand coalition N , and the issue 
is to allocate this value among the players. Following Schmei-
dler [15], we define the allocations as bounded additive set func-
tions μ : A → R; that is, a function such that 

∣∣μ(S)
∣∣ ≤ C for all 

S ∈ A for some constant C ∈ R and μ(S ∪ T ) = μ(S) + μ(T ) for 
any disjoint S, T ∈ A. Let ba(A) = { μ : A → R : μ is a bounded 
additive set function } denote the space of all bounded additive set 
functions on A. Then the core of the game represented by v is the 
set

ba-core(v) = {
μ ∈ ba(A) : μ(N) = v(N) ,

μ( S ) ≥ v( S ) for all S ∈ A \ {N}}
.

In words, the core consists of all the allocations of the value v(N)

among the players (efficiency) such that any coalition S ∈ A \ {N}
that could potentially emerge gets by the proposed allocations at 
least as much as the value v(S) (coalitional rationality), see Shap-
ley [16], Gillies [8], Kannai [10], and Zhao [21].

It is worth noticing that if the class of feasible coalitions is a 
field, then any additive set function defined on the field can be ex-
tended onto the power set. Therefore, it is not misleading to call a 
game where the class of feasible coalitions is a field game without 
restricted cooperation.

The case when the class of feasible coalitions is not a field, 
however, leads to the very same features of the core as restricted 
cooperation leads in the finite setting, see Faigle [5], explaining 
why we call this case restricted cooperation.

The key question is whether the core is non-empty. An answer 
is provided by the Bondareva-Shapley Theorem.

3. The Bondareva-Shapley Theorem

Consider a game having finitely many players without restricted 
cooperation. In this case, we have N = {1, 2, . . . , n} for some nat-
ural number n and A = P(N). Moreover, in this setting, the allo-
cations of the value v(N) among the players are given by payoff 
vectors, any of them is an n-tuple a = (ai)

n
i=1 ∈ RN of real num-

bers; the number ai means the payoff allocated to player i for 
i = 1, 2, . . . , n. Then the core of this game is defined to be the 
set
154
core(v) = {
a ∈ RN : ∑

i∈N ai = v(N) ,∑
i∈S ai ≥ v( S ) for all S ∈ P(N) \ {N}}

.

The intuitive meaning of the core(v) is the same as that of the 
ba-core(v), see above. Clearly, given a payoff vector a ∈RN , we can 
define the corresponding additive set function μ : P(N) → R by 
μ(S) = ∑

i∈S ai for any S ∈P(N). Conversely, given an additive set 
function μ : P(N) → R, we can define the corresponding payoff 
vector a ∈ RN by ai = μ

({i}) for i = 1, 2, . . . , n. Here any additive 
set function μ : P(N) →R is bounded as the number of the play-
ers is finite. We thus have a one-to-one correspondence between 
the ba-core(v) and the core(v). Hence, the notion of bounded ad-
ditive function μ ∈ ba(A) naturally extends the concept of the 
payoff vector a ∈RN when the set N of the players is infinite.

Regarding the question whether the core(v) is non-empty, for 
any coalition S ⊆ N , define its characteristic vector to be the row 
vector χS = (

χS (1) χS(2) . . . χS (n)
)

with χS (i) = 1 if i ∈ S , and 
with χS (i) = 0 if i /∈ S , for i = 1, 2, . . . , n. We say that a collection 
S = {S1, S2, . . . , Sr} ⊆ P(N) of coalitions is balanced if there exist 
non-negative real numbers λ1, λ2, . . . , λr , called balancing weights, 
such that

r∑
p=1

λpχS p = χN . (1)

Moreover, we say that the game represented by v is balanced if

r∑
p=1

λp v(S p) ≤ v(N) (2)

for every balanced collection {S1, S2, . . . , Sr} ⊆ P(N) of coalitions. 
The following result due to Bondareva [2] and Shapley [17], later 
extended by Faigle [5] to the restricted cooperation case, has be-
come classical:

Theorem 1 (Bondareva-Shapley Theorem). Consider a game with finitely 
many players, with or without restricted cooperation, represented by a 
coalition function v : P(N) →R. Then the core(v) is non-empty if and 
only if the game is balanced.

Consider now a general game without restricted cooperation; 
that is, the set N of the players can be finite or infinite and the 
class of feasible coalitions A ⊆ P(N) is a field of sets over N . 
Concerning the question whether the ba-core(v) is non-empty, we 
follow Schmeidler [15], who proceeds analogously as in the classi-
cal case; that is:

For any subset S ⊆ N , define its characteristic function χS : N →
{0, 1} by letting χS(i) = 1 if i ∈ S , and χS (i) = 0 if i /∈ S , for 
every i ∈ N . We say that a collection S = {S1, S2, . . . , Sr} ⊆ A
of coalitions is balanced if there exist non-negative real numbers 
λ1, λ2, . . . , λr , called balancing weights, such that

r∑
p=1

λpχS p = χN . (3)

Furthermore, we say that the game represented by v is balanced if

r∑
p=1

λp v(S p) ≤ v(N) (4)

for every balanced collection {S1, S2, . . . , Sr} ⊆A of coalitions.

Remark 2. Actually, Schmeidler [15] uses different notation – the 
player set N and the field of all feasible coalitions A is denoted 
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by S and �, respectively, in the following quotations – and de-
fines balancedness in a slightly different way: “A game is balanced 
if sup

∑
i ai v(Ai) ≤ v(S) when the sup is taken over all finite se-

quences of ai and Ai , where the ai are non-negative numbers, the 
Ai are in �, and 

∑
i aiχAi ≤ χS .” Considering non-negative games, 

Schmeidler explains that his definition is different from the “def-
inition with equality” formally: “It is easy to verify that this sup 
does not change even if it is constrained by 

∑
i aiχAi = χS (in-

stead of the inequality); also, for balanced games, the sup equals 
v(S).” — See Schmeidler [15, p. 1]. In the case of non-negative 
games Schmeidler’s definition of balancedness is equivalent with 
the “definition with equality”; however, in the general, signed case, 
those are different.

Then Schmeidler [15] proves the following result, see Kannai [9]
for another proof:

Theorem 3 (Bondareva-Shapley Theorem, Schmeidler [15]). Given a fi-
nite or infinite set N of the players and a field of sets A ⊆P(N) over N, 
consider a game represented by a coalition function v : A → R. If the 
game is non-negative; that is,

∀S ∈ A : v(S) ≥ 0 ,

then the ba-core(v) is non-empty if and only if the game is balanced.

It is easy to see that Theorem 3 is a generalization of Theorem 1
if the game is non-negative. Our goal, nonetheless, is to establish 
the following result:

Theorem 4 (Bondareva-Shapley Theorem, a generalization). Given a fi-
nite or infinite set N of the players and a field of sets A ⊆P(N) over N, 
consider a game represented by a coalition function v : A → R. If the 
game is bounded below; that is,

∃L ∈R ∀S ∈ A : v(S) ≥ L ,

then the ba-core(v) is non-empty if and only if the game is balanced.

Notice that Theorem 4 directly generalizes both Theorems 1 and 
3 because a game with finitely many players is always bounded 
below.

Notice also the following meaning of Schmeidler’s [15] bal-
ancedness condition (3) and (4). Let N be an infinite set of players, 
let A ⊆ P(N) be an infinite field of feasible coalitions over N , 
and let v : A → R represent a bounded below cooperative game. 
Assume that ba-core(v) = ∅; that is, the infinite system of lin-
ear relations μ(N) = v(N) and μ(S) ≥ v(S) for all S ∈ A \ {N}, 
which defines the ba-core(v), has no solution. Then, by Theo-
rem 4, the game is not balanced; that is, there exist a collec-
tion S = {S1, S2, . . . , Sr} ⊆ A and non-negative balancing weights 
λ1, λ2, . . . , λr such that (3) holds and (4) does not hold. Notice 
that this fact implies that the finite subsystem μ(N) = v(N) and 
μ(S p) ≥ v(S p) for p = 1, 2, . . . , r has no solution. It is no loss 
of generality to assume that the collection S is a field of sets 
over N . Letting v |S be the restriction of v onto S , we have that 
ba-core(v |S ) = ∅ too. Although the set N of the players is infi-
nite, notice that v |S represents a finite game in fact, and its core is 
empty. This “compactness” property behind Schmeidler’s [15] bal-
ancedness condition (3) and (4) is essential and we use it in our 
proof of Theorem 4 in Section 5.

Before we present our proof of Theorem 4, we find it appropri-
ate to introduce and recall several notions and concepts.
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4. Several notions and concepts

Let N be a set and let A ⊆ P(N) be a field of sets over N . 
Then the pair (N, A) is called chargeable space. Recall that, for 
any S ⊆ N , the symbol χS denotes the characteristic function 
χS : N → {0, 1} of the set S . Given a function f : N → R, we say 
it is a simple function if f = λ1χS1 + λ2χS2 + · · · + λrχSr for some 
natural number r, for some real numbers λ1, λ2, . . . , λr , and for 
some sets S1, S2, . . . , Sr ∈ A. Let �(A) = { f : N →R : f is a sim-
ple function } denote the vector (i.e. linear) space of all simple 
functions defined over (N, A), where the sum of two functions 
and the multiplication of a function by a constant are both defined 
in the usual way, i.e. pointwise. For a simple function f ∈ �(A), 
define its norm to be

‖ f ‖ = sup
i∈N

∣∣ f (i)
∣∣ ,

so �(A) is a normed linear space.
Likewise, notice that the space ba(A) of all bounded additive 

set functions on A is also a vector space; for a μ ∈ ba(A), define 
its norm to be

‖μ‖ = sup
r∈N

S1,S2,...,Sr∈A
S1∪S2∪···∪Sr=N

Si∩S j=∅, i �= j

∣∣μ(S1)
∣∣ + ∣∣μ(S2)

∣∣ + · · · + ∣∣μ(Sr)
∣∣ . (5)

It is well-known that the topological dual (�(A))∗ of the vector 
space �(A), which is the space of all continuous linear functionals 
on �(A), is isometrically isomorphic to the space ba(A) (see, e.g., 
Dunford and Schwartz [4], Theorem IV.5.1, p. 258). Indeed, a con-
tinuous linear functional μ′ ∈ (�(A))∗ induces a bounded additive 
set function μ ∈ ba(A) by letting μ(S) = μ′(χS ) for S ∈ A, and, 
conversely, a bounded additive set function μ ∈ ba(A) induces a 
continuous linear functional μ′ ∈ (�(A))∗ by letting

μ′( f ) = λ1μ(S1) + λ2μ(S2) + · · · + λrμ(Sr) (6)

for any simple function f = λ1χS1 + λ2χS2 + · · · + λrχSr ∈ �(A). 
This is the reason why, for simplicity, we shall identify the space 
(�(A))∗ with ba(A).

Consider now a game represented by a coalition function 
v : A → R, and let the game be bounded below; that is, there 
exists a constant L ∈ R such that v(S) ≥ L for all S ∈ A. Assume 
that a μ ∈ ba-core(v). Let S1, S2, . . . , Sr ∈ A be pairwise disjoint 
and such that N = S1 ∪ S2 ∪ · · · ∪ Sr . Then

r∑
p=1

∣∣μ(S p)
∣∣ =

r∑
p=1

μ(S p)≥0

μ(S p) −
r∑

p=1
μ(S p)<0

μ(S p)

= μ

( r⋃
p=1

μ(S p)≥0

S p

)
− μ

( r⋃
p=1

μ(S p)<0

S p

)

= μ

(
N \

r⋂
p=1

μ(S p)≥0

(N \ S p)

)
− μ

( r⋃
p=1

μ(S p)<0

S p

)

= μ(N) − μ

( r⋂
p=1

μ(S p)≥0

(N \ S p)

)
− μ

( r⋃
p=1

μ(S p)<0

S p

)

≤ μ(N) − 2L = v(N) − 2L .

By taking the definition (5) of the norm into account, it follows 
the ba-core(v) is contained in the closed ball B R = {

μ ∈ ba(A) :
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‖μ‖ ≤ v(N) − 2L 
}

of radius R = v(N) − 2L. (Notice that v(N) −
2L ≥ 0, for if we had v(N) < 2L, then the ba-core(v) would obvi-
ously be empty, contradicting the assumption that μ ∈ ba-core(v).)

We endow the space ba(A) with the weak* topology with re-
spect to �(A). The topology will be introduced if we describe all 
the neighborhoods of a point. A set U ⊆ ba(A) is a weak* neighbor-
hood of a μ0 ∈ ba(A) if there exist a natural number r and func-
tions f1, f2, . . . , fr ∈ �(A) such that 

⋂r
p=1

{
μ ∈ ba(A) : ∣∣μ′( f p) −

μ′
0( f p)

∣∣ < 1 
} ⊆ U , where μ′ and μ′

0 are continuous linear func-
tionals induced by μ and μ0, respectively, see (6). By Alaoglu’s 
Theorem (see, e.g., Aliprantis and Border [1], Theorem 6.21, p. 235), 
the closed ball B R is compact in the weak* topology. That is, if 
Gi ⊆ ba(A) are weakly* open sets for i ∈ I , where I is an index 
set, such that 

⋃
i∈I Gi ⊇ B R , then 

⋃n
j=1 Gi j ⊇ B R for some natural 

number n and for some i1, i2, . . . , in ∈ I .
Let Fi ⊆ B R be weakly* closed sets for i ∈ I , where I is an in-

dex set. We say the collection {Fi}i∈I is a centered system of sets if ⋂n
j=1 Fi j �= ∅ for any natural number n and for any i1, i2, . . . , in ∈

I . By considering the complements (Gi = ba(A) \ Fi ), it follows ⋂
i∈I F i �= ∅.
In our proof of Theorem 4 we consider the weakly* closed sets

F S = {
μ ∈ ba(A) : μ(N) = v(N) and μ(S) ≥ v(S) and ‖μ‖ ≤ R

}
for S ∈A. The main idea is to show that, if the game v is balanced, 
then the system {F S }S∈A is centered. Noticing that ba-core(v) =⋂

S∈A F S �= ∅, the proof will be done.
We are now ready to present our proof of Theorem 4.

5. Proof of Theorem 4

Below we give our proof of Theorem 4. The notions and con-
cepts introduced in Section 4 are utilized in the proof, with com-
pactness playing the crucial role.

Proof of Theorem 4. Assume that the given coalition function 
v : A → R is bounded below by L. We are going to show that 
ba-core(v) �= ∅ if and only if the given game is balanced. The 
“only if” part is obvious. Assume that μ ∈ ba-core(v) and let S =
{S1, S2, . . . , Sr} ⊆ A be a balanced collection of coalitions, so that 
(3) holds for some non-negative balancing weights λ1, λ2, . . . , λr . 
Then 

∑r
p=1 λp v(S p) ≤ ∑r

p=1 λpμ(S p) = μ(N) = v(N), so (4) is 
satisfied, and the game is balanced. It remains to prove the “if” 
part.

Take any sets S0, S1, . . . , Sn ∈ A. We want to show that ⋂n
j=0 F S j �= ∅. We can assume w.l.o.g. that the sets S0, . . . , Sn

are distinct with S0 = ∅ and Sn = N , and that the collection 
{S0, . . . , Sn} ⊆ A is a field of sets. (Roughly speaking, the more 
sets we take, the smaller the intersection 

⋂n
j=0 F S j is. Having to 

prove that the intersection is non-empty anyway, we can include 
the empty and the grand coalition among the sets. Moreover, we 
can add further sets from A so that the collection {S0, . . . , Sn} be-
comes a finite field of sets.)

We can also assume w.l.o.g. that S1, . . . , Sn′ are all the atoms 
of the field; that is, they are all minimal elements in the collection 
{S1, . . . , Sn}. Obviously, the atoms S1, . . . , Sn′ are pairwise disjoint, 
and it holds n = 2n′ − 1.

Now, the sets ∅ = S0, S1, . . . , Sn being fixed, we apply balanced-
ness to the sets S1, . . . , Sn:

∀λ1, . . . , λn ≥ 0 : λ1χS1 + · · · + λnχSn = χN

=⇒ λ1 v(S1) + · · · + λn v(Sn) ≤ v(N) .
(7)

By using the Bondareva-Shapley Theorem for finite games (Theo-
rem 1), we show that the system of relations
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μ( N ) = v( N ) ,

μ(S1) ≥ v(S1) ,

. . . . . . . . . . . . . . . .

μ(Sn) ≥ v(Sn)

(8)

has a solution μ ∈ ba(A) such that ‖μ‖ ≤ R .
Consider a new finite game v ′ : P(N ′) →R with the player set 

N ′ = {1, . . . , n′}. Define the game as follows. Recall first that the 
collection {S0, . . . , Sn} is a field of sets and that S1, . . . , Sn′ are 
all its atoms, which are pairwise disjoint. Now, for an S ′ ⊆ N ′ , let 
S = ⋃

i′∈S ′ Si′ , notice S ∈ {S0, . . . , Sn}, and set v ′(S ′) = v(S). The 
new finite game v ′ has thus been defined.

Now, condition (7) equivalently says that the new game v ′ is 
balanced. By the Bondareva-Shapley Theorem (Theorem 1), its core 
is non-empty: there exist a1, . . . , an′ ∈ R such that 

∑n′
i′=1 ai′ =

v ′(N ′) and 
∑

i′∈S ′ ai′ ≥ v ′(S ′) for any S ′ ⊆ N ′ .
Since the atoms S1, . . . , Sn′ are non-empty sets, there exist ele-

ments xi′ ∈ Si′ for i′ = 1, . . . , n′ . Consider the measure

μ = a1δx1 + · · · + an′δxn′ ,

where δxi′ is the Dirac measure concentrated at xi′ . We have 
μ(N) = μ(S1 ∪ · · · ∪ Sn′) = a1 + · · · + an′ = v(N). For any j =
1, . . . , n, let S ′

j = { i′ ∈ N ′ : Si′ ⊆ S j }. Then S j = ⋃
i′∈S ′

j
Si′ , and 

μ(S j) = ∑
i′∈S ′

j
ai′ ≥ v ′(S ′

j) = v(S j). We have shown thus that μ is 
a solution to the system of inequalities (8).

Finally, let us calculate the norm ‖μ‖ of the solution, see (5). 
For a T ∈A, we observe that

μ(T ) =
n′∑

i′=1
xi′ ∈T

ai′ .

Given pairwise disjoint sets T1, . . . , Ts ∈A such that N = T1 ∪· · ·∪
Ts , and recalling 

∑n′
i′=1 ai′ = v(N), we have

s∑
q=1

∣∣μ(Tq)
∣∣ =

s∑
q=1

∣∣∣∣
n′∑

i′=1
xi′ ∈Tq

ai′

∣∣∣∣ ≤
s∑

q=1

n′∑
i′=1

xi′ ∈Tq

|ai′ |

=
n′∑

i′=1

|ai′ | =
n′∑

i′=1
ai′≥0

ai′ −
n′∑

i′=1
ai′<0

ai′

= v(N) − 2
n′∑

i′=1
ai′<0

ai′ ≤ v(N) − 2v

( n′⋃
i′=1

ai′<0

Si′
)

≤ v(N) − 2L = R .

It follows that ‖μ‖ ≤ R . To conclude, we have a μ ∈ ba(A) such 
that it is a solution to (8) and ‖μ‖ ≤ R , which means μ ∈⋂n

j=1 F S j . Since F S j ⊆ F∅ for j = 1, . . . , n, it holds μ ∈ ⋂n
j=0 F S j . 

We have shown thus that the system {F S }S∈A is centered. As 
the closed R-ball B R is weakly* compact, we have ba-core(v) =⋂

S∈A F S �= ∅. �
The following example demonstrates that Theorem 4 cannot be 

generalized any further. We are going to construct a game un-
bounded below that is balanced, but its core is empty.

Example 5. Let the player set be N =N , and let A = { S ⊆ N : S is 
finite or N \ S is finite }. Consider the game represented by the 
coalition function v : A →R defined as follows: for any S ∈A, let
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v(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if S = {1},

1 + 1
n if S = {1,n} for n = 2, 3, . . . ,

−∑
n∈T

1
n if S = N \ T for a finite T ∈ A,

0 otherwise.

It is easy to see that this game is balanced. Assuming that a 
μ ∈ ba-core(v), then μ

({1}) ≥ v
({1}) = 1 and μ

(
N \ {1}) ≥ v

(
N \

{1}) = −1. Since μ
({1}) + μ

(
N \ {1}) = μ(N) = v(N) = 0, we have 

μ
({1}) = 1. As μ

({1, n}) ≥ v
({1, n}) = 1 + 1/n, it follows μ

({n}) ≥
1/n for all n = 2, 3, . . . . Summing up, we have μ

({1, . . . , n}) ≥
ln(n + 1), so μ /∈ ba(A) because μ is not bounded. It follows 
ba-core(v) = ∅.

The following “limiting” property of the ba-core is interesting. 
It is obtained as a corollary of Theorem 4 by considering the bal-
ancedness condition (3) and (4).

Corollary 6. Given a finite or infinite set N of the players and a field of 
sets A ⊆ P(N) over N, let the game represented by a coalition function 
v : A → R be bounded below. For any ε > 0, define the coalition func-
tion vε : A →R as follows: let vε(N) = v(N) +ε and vε(S) = v(S) for 
all S ∈A \ {N}. If ba-core(vε) �= ∅ for all ε > 0, then ba-core(v) �= ∅.

Under the assumptions of Corollary 6, the converse statement 
is clear: if ba-core(v) �= ∅, then ba-core(vε) �= ∅ for all ε > 0. We 
thus conclude that a game represented by the coalition function v
is balanced if and only if ba-core(vε) �= ∅ for all ε > 0. It follows 
hence that both the core non-emptiness and the game balanced-
ness are monotone and closed prosperity properties in the sense 
of van Gellekom et al. [7].

6. Games with restricted cooperation

We now consider games with restricted cooperation. In general, 
the cooperation is restricted whenever the collection A ⊆P(N) of 
coalitions that can potentially form is a proper subset of P(N). 
In this sense, Theorem 4 covers the case of restricted cooperation, 
under the additional assumption that A ⊆ P(N) is a field of sets 
over N , too. Now, let A′ ⊆ P(N) be the collection of all coalitions 
that can potentially emerge; the collection A′ need not be a field 
of sets now. Assume only ∅, N ∈ A′ . Then any coalition function 
v ′ : A′ →R, such that v(∅) = 0, represents a game with restricted 
cooperation.

To introduce the concept of core of this game with restricted 
cooperation, let A = field(A′) be the field hull of A′; that is, the 
minimal collection A ⊇ A′ that is a field of sets over N . Then the 
core of a game v ′ with restricted cooperation is the set

ba-core(v ′) ={
μ ∈ ba

(
field(A′)

) : μ(N) = v ′(N) ,

μ( S ) ≥ v ′( S ) for all S ∈ A′ \ {N}}
.

We again ask whether ba-core(v ′) �= ∅.
The following example presents a non-negative game with re-

stricted cooperation that is balanced as defined by (3) and (4), but 
only the feasible coalitions are considered. The core of this game 
is empty.

Example 7. Let the player set be N =N and let A′ = {∅}∪ { {1, i} :
i = 1, 2, 3, . . .

} ∪ {
N \ {1}} ∪ {

N
}

. Consider the game represented 
by the coalition function v ′ : A′ → R defined as follows: for any 
S ∈A, let
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v ′(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if S = {1},

2 + 1
n if S = {1,n} for n = 2, 3, . . . ,

0 if S = N \ {1} or S = ∅,

1 if S = N .

Notice that this game is analogous to the one presented in Ex-
ample 5. The field hull of A′ is A = { S ⊆ N : S is finite or 
N \ S is finite }. The fact that this game is balanced as defined by 
(3) and (4), where A and v are replaced with A′ and v ′ , respec-
tively, is clear. To show that ba-core(v ′) = ∅, it is enough to follow 
the arguments presented in Example 5.

Because of Example 7, we have to introduce a new notion of 
balancedness in the case of restricted cooperation. A game repre-
sented by a coalition function v ′ defined on the class of feasible 
coalitions A′ is bounded-balanced if there exists a bounded be-
low balanced game v defined on A = field(A′) such that for every 
S ∈A′ it holds that v(S) = v ′(S). It is clear that if A′ is a field and 
the game is bounded below (as in Theorem 4), then we get back 
the notion of balancedness applied in Theorem 4. Moreover, notice 
that for finite games bounded-balancedness and balancedness by 
Faigle [5] are equivalent.

The game in Example 7 above has an empty core because, 
even if it is non-negative, none of its bounded below “extensions” 
onto A is balanced and none of its balanced “extensions” onto A
is bounded below.

Then the following theorem extends Theorem 4 to the class of 
games with restricted cooperation, hence it extends Theorem 4 in 
Faigle [5].

Theorem 8. Consider a coalition function v ′ : A′ → R, where ∅, N ∈
A′ ⊆P(N) and N is a finite or infinite set of the players. If v ′ is bounded 
below, then the ba-core(v ′) �= ∅ if and only if v ′ is bounded-balanced.

Proof. If A′ is a field, then we are back at Theorem 4, hence there 
is nothing to do.

Suppose that A′ is not a field. If v ′ is bounded-balanced, then 
take any game v that makes v ′ bounded-balanced and apply The-
orem 4 to get ∅ �= ba-core(v) ⊆ ba-core(v ′).

If ba-core(v ′) �= ∅, then take an arbitrary μ ∈ ba-core(v ′), and 
let

v(S) =
{

v ′(S) if S ∈ A′,
μ(S) if S ∈ field(A′) \A′.

Since v ′ is bounded below, v is a bounded below game with 
non-empty core (ba-core(v) �= ∅). Therefore, by Theorem 4, v is 
balanced. Finally, v makes v ′ bounded-balanced. �

Notice that the game v ′ of Example 7 is not bounded-balanced, 
hence ba-core(v ′) = ∅.

Finally, the following phenomenon that may occur in the 
case of restricted cooperation is worth mentioning: If the col-
lection A′ is not a field, then there may exist allocations μ, ν ∈
ba-core(v ′) such that μ(S) ≥ ν(S) for all coalitions S ∈ A′ and 
μ �= ν . In other words, the core allocation μ is more desirable 
than ν for at least one coalition. Define the core of the collection A′
by

ba-Core(A′) ={
μ ∈ ba

(
field(A′)

) : μ(N) = 0 ,

μ( S ) ≥ 0 for all S ∈ A′ \ {N}}
.

It is easy to see that, if the ba-core(v ′) is not empty, then the 
aforementioned phenomenon occurs if and only if ba-Core(A′) �=
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{0} because μ −ν ∈ ba-Core(A′). Derks and Reijnierse [3] study the 
conditions under which the ba-Core(A′) is a singleton, a pointed 
cone, or a linear subspace in the case when the player set N is 
finite. The study of these conditions in the case of the core con-
sisting of bounded additive functions, when the player set N is 
infinite, is a topic for further research.
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